51
|
Signaling molecules regulating phenotypic conversions of astrocytes and glial scar formation in damaged nerve tissues. Neurochem Int 2014; 78:35-42. [DOI: 10.1016/j.neuint.2014.08.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/17/2014] [Accepted: 08/22/2014] [Indexed: 12/21/2022]
|
52
|
Jahan N, Hannila SS. Transforming growth factor β-induced expression of chondroitin sulfate proteoglycans is mediated through non-Smad signaling pathways. Exp Neurol 2014; 263:372-84. [PMID: 25446723 DOI: 10.1016/j.expneurol.2014.10.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 10/23/2014] [Accepted: 10/29/2014] [Indexed: 01/27/2023]
Abstract
The expression of chondroitin sulfate proteoglycans (CSPGs) by reactive astrocytes is a major factor contributing to glial scarring and regenerative failure after spinal cord injury, but the molecular mechanisms underlying CSPG expression remain largely undefined. One contributing factor is transforming growth factor β (TGFβ), which is upregulated after injury and has been shown to induce expression of CSPGs in vitro. TGFβ typically mediates its effects through the Smad2/3 signaling pathway, and it has been suggested that this pathway is responsible for CSPG expression. However, there is evidence that TGFβ can also activate non-Smad signaling pathways. In this study, we report that TGFβ-induced expression of three different CSPGs--neurocan, brevican, and aggrecan--is mediated through non-Smad signaling pathways. We observed significant increases in TGFβ-induced expression of neurocan, brevican, and aggrecan following siRNA knockdown of Smad2 or Smad4, which indicates that Smad signaling is not required for the expression of these CSPGs. In addition, we show that neurocan, aggrecan, and brevican levels are significantly reduced when TGFβ is administered in the presence of either the PI3K inhibitor LY294002 or the mTOR inhibitor rapamycin, but not the MEK1/2 inhibitor U0126. This suggests that TGFβ mediates this effect through non-Smad-dependent activation of the PI3K-Akt-mTOR signaling pathway, and targeting this pathway may therefore be an effective means of reducing CSPG expression in the injured CNS.
Collapse
Affiliation(s)
- Naima Jahan
- Department of Human Anatomy and Cell Science, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
| | - Sari S Hannila
- Department of Human Anatomy and Cell Science, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
53
|
Bastien D, Lacroix S. Cytokine pathways regulating glial and leukocyte function after spinal cord and peripheral nerve injury. Exp Neurol 2014; 258:62-77. [PMID: 25017888 DOI: 10.1016/j.expneurol.2014.04.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 02/20/2014] [Accepted: 04/08/2014] [Indexed: 01/13/2023]
Abstract
Injury to the nervous system causes the almost immediate release of cytokines by glial cells and neurons. These cytokines orchestrate a complex array of responses leading to microgliosis, immune cell recruitment, astrogliosis, scarring, and the clearance of cellular debris, all steps that affect neuronal survival and repair. This review will focus on cytokines released after spinal cord and peripheral nerve injury and the primary signalling pathways triggered by these inflammatory mediators. Notably, the following cytokine families will be covered: IL-1, TNF, IL-6-like, TGF-β, and IL-10. Whether interfering with cytokine signalling could lead to novel therapies will also be discussed. Finally, the review will address whether manipulating the above-mentioned cytokine families and signalling pathways could exert distinct effects in the injured spinal cord versus peripheral nerve.
Collapse
Affiliation(s)
- Dominic Bastien
- Centre de recherche du Centre hospitalier universitaire de Québec-CHUL, Département de médecine moléculaire, Université Laval, Québec, QC, Canada
| | - Steve Lacroix
- Centre de recherche du Centre hospitalier universitaire de Québec-CHUL, Département de médecine moléculaire, Université Laval, Québec, QC, Canada..
| |
Collapse
|
54
|
Hanada M, Tsutsumi K, Arima H, Shinjo R, Sugiura Y, Imagama S, Ishiguro N, Matsuyama Y. Evaluation of the effect of tranilast on rats with spinal cord injury. J Neurol Sci 2014; 346:209-15. [PMID: 25194634 DOI: 10.1016/j.jns.2014.08.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/17/2014] [Accepted: 08/20/2014] [Indexed: 01/30/2023]
Abstract
BACKGROUND Glial and fibrotic scars inhibit neural regeneration after spinal cord injury (SCI). N-[3,4-dimethoxycinnamoyl]-anthranilic acid (tranilast) inhibits transforming growth factor β, alleviates allergic reactions, and decreases hypertrophic skin scars. We evaluated its ability to improve motor function and inhibit the spread of tissue damage in rats with SCI. METHODS Rats with SCI were divided into groups that received tranilast (30 mg/[kg · day]) by intravenous administration (group IV), tranilast (200mg/[kg · day]) by oral administration (group OR), and saline injections (control). Motor functions were assessed by determining Basso, Beattie, and Bresnahan (BBB) scores and %grip tests for 8 weeks after SCI. Histological evaluation of ionized calcium binding adaptor molecule 1 (Iba1) at 1 week after SCI and glial fibrillary acidic protein (GFAP), fibronectin, and chondroitin sulfate (CS) at week 8 was performed. RESULTS Motor function recovery, BBB score, and the %grip test were significantly higher in the tranilast-treated groups than in the control group. At week 1 after SCI, inflammatory-cell invasion was more severe and Iba1 expression was significantly higher in the control group. At week 8, although the number of GFAP-positive cells increased greatly from the impaction site to the proximal and distal sites in the control group, these cells were confined around a cavity in the tranilast-treated groups. GFAP distribution coincided with that of fibronectin. Anti-CS antibody level in the tranilast-treated groups was significantly lower than that in the control group. CONCLUSIONS Tranilast inhibits inflammation in the acute phase of SCI and reduces glial and fibrotic scars and could present a new method for treating SCI.
Collapse
Affiliation(s)
- Mitsuru Hanada
- Department of Orthopaedic Surgery, Hamamatsu University School of Medicine, Handayama 1-20-1, Hamamatsu, Shizuoka 431-3192, Japan.
| | - Koji Tsutsumi
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Hideyuki Arima
- Department of Orthopaedic Surgery, Hamamatsu University School of Medicine, Handayama 1-20-1, Hamamatsu, Shizuoka 431-3192, Japan
| | - Ryuichi Shinjo
- Department of Orthopedics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan; JST Precursory Research for Embryonic Science and Technology (PRESTO) Project, Japan
| | - Shiro Imagama
- Department of Orthopedics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Naoki Ishiguro
- Department of Orthopedics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yukihiro Matsuyama
- Department of Orthopaedic Surgery, Hamamatsu University School of Medicine, Handayama 1-20-1, Hamamatsu, Shizuoka 431-3192, Japan.
| |
Collapse
|
55
|
Osuka K, Watanabe Y, Usuda N, Aoyama M, Takeuchi M, Takayasu M. Eotaxin-3 Activates the Smad Pathway through the Transforming Growth Factor Beta 1 in Chronic Subdural Hematoma Outer Membranes. J Neurotrauma 2014; 31:1451-6. [DOI: 10.1089/neu.2013.3195] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Koji Osuka
- Department of Neurological Surgery, Aichi Medical University, Aichi, Japan
| | - Yasuo Watanabe
- High Technology Research Center, Pharmacology, Showa Pharmaceutical University, Tokyo, Japan
| | - Nobuteru Usuda
- Department of Anatomy II, Fujita Health University School of Medicine, Aichi, Japan
| | - Masahiro Aoyama
- Department of Neurological Surgery, Aichi Medical University, Aichi, Japan
| | - Mikinobu Takeuchi
- Department of Neurological Surgery, Aichi Medical University, Aichi, Japan
| | - Masakazu Takayasu
- Department of Neurological Surgery, Aichi Medical University, Aichi, Japan
| |
Collapse
|
56
|
Cekanaviciute E, Fathali N, Doyle KP, Williams AM, Han J, Buckwalter MS. Astrocytic transforming growth factor-beta signaling reduces subacute neuroinflammation after stroke in mice. Glia 2014; 62:1227-40. [PMID: 24733756 PMCID: PMC4061255 DOI: 10.1002/glia.22675] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/27/2014] [Accepted: 03/31/2014] [Indexed: 12/12/2022]
Abstract
Astrocytes limit inflammation after CNS injury, at least partially by physically containing it within an astrocytic scar at the injury border. We report here that astrocytic transforming growth factor-beta (TGFβ) signaling is a second, distinct mechanism that astrocytes utilize to limit neuroinflammation. TGFβs are anti-inflammatory and neuroprotective cytokines that are upregulated subacutely after stroke, during a clinically accessible time window. We have previously demonstrated that TGFβs signal to astrocytes, neurons and microglia in the stroke border days after stroke. To investigate whether TGFβ affects astrocyte immunoregulatory functions, we engineered "Ast-Tbr2DN" mice where TGFβ signaling is inhibited specifically in astrocytes. Despite having a similar infarct size to wildtype controls, Ast-Tbr2DN mice exhibited significantly more neuroinflammation during the subacute period after distal middle cerebral occlusion (dMCAO) stroke. The peri-infarct cortex of Ast-Tbr2DN mice contained over 60% more activated CD11b(+) monocytic cells and twice as much immunostaining for the activated microglia and macrophage marker CD68 than controls. Astrocytic scarring was not altered in Ast-Tbr2DN mice. However, Ast-Tbr2DN mice were unable to upregulate TGF-β1 and its activator thrombospondin-1 2 days after dMCAO. As a result, the normal upregulation of peri-infarct TGFβ signaling was blunted in Ast-Tbr2DN mice. In this setting of lower TGFβ signaling and excessive neuroinflammation, we observed worse motor outcomes and late infarct expansion after photothrombotic motor cortex stroke. Taken together, these data demonstrate that TGFβ signaling is a molecular mechanism by which astrocytes limit neuroinflammation, activate TGFβ in the peri-infarct cortex and preserve brain function during the subacute period after stroke.
Collapse
Affiliation(s)
- Egle Cekanaviciute
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305-5489
- Neurosciences Graduate Program, Stanford University, Stanford, CA, 94305-5489
| | - Nancy Fathali
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305-5489
| | - Kristian P. Doyle
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305-5489
| | - Aaron M. Williams
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305-5489
| | - Jullet Han
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305-5489
| | - Marion S. Buckwalter
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305-5489
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305-5489
| |
Collapse
|
57
|
Liu Y, Liu Z, Li X, Luo B, Xiong J, Gan W, Jiang M, Zhang Z, Schluesener HJ, Zhang Z. Accumulation of connective tissue growth factor+ cells during the early phase of rat traumatic brain injury. Diagn Pathol 2014; 9:141. [PMID: 25012526 PMCID: PMC4227000 DOI: 10.1186/1746-1596-9-141] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 07/01/2014] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Glial scar formation is a common histopathological feature of traumatic brain injury (TBI). Astrogliosis and expression of transforming growth factor beta (TGF-β) are key components of scar formation and blood-brain barrier modulation. Connective tissue growth factor (CTGF) is considered a cytokine mediating the effects of TGF-β. METHODS Here, we studied the CTGF expression in an open-skull weight-drop-induced TBI, with a focus on the early phase, most amenable to therapy. RESULTS In normal rat brains of our study, CTGF+ cells were rarely observed. Significant parenchymal accumulation of CTGF+ non-neuron cells was observed 72 h post-TBI and increased continuously during the investigating time. We also observed that the accumulated CTGF+ non-neuron cells were mainly distributed in the perilesional areas and showed activated astrocyte phenotypes with typical stellate morphologic characteristics. CONCLUSION Our observations demonstrated the time-dependent and lesion-associated accumulation of cellular CTGF expression in TBI, suggesting a pathological role of CTGF in TBI. VIRTUAL SLIDES The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/3963462091241165.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zhiren Zhang
- Institute of Immunology, Third Military Medical University, 30 Gaotanyan Main Street, Chongqing 400038, People's Republic of China.
| |
Collapse
|
58
|
Scar-modulating treatments for central nervous system injury. Neurosci Bull 2014; 30:967-984. [PMID: 24957881 DOI: 10.1007/s12264-013-1456-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 04/09/2014] [Indexed: 02/04/2023] Open
Abstract
Traumatic injury to the adult mammalian central nervous system (CNS) leads to complex cellular responses. Among them, the scar tissue formed is generally recognized as a major obstacle to CNS repair, both by the production of inhibitory molecules and by the physical impedance of axon regrowth. Therefore, scar-modulating treatments have become a leading therapeutic intervention for CNS injury. To date, a variety of biological and pharmaceutical treatments, targeting scar modulation, have been tested in animal models of CNS injury, and a few are likely to enter clinical trials. In this review, we summarize current knowledge of the scar-modulating treatments according to their specific aims: (1) inhibition of glial and fibrotic scar formation, and (2) blockade of the production of scar-associated inhibitory molecules. The removal of existing scar tissue is also discussed as a treatment of choice. It is believed that only a combinatorial strategy is likely to help eliminate the detrimental effects of scar tissue on CNS repair.
Collapse
|
59
|
Yu Z, Yu P, Chen H, Geller HM. Targeted inhibition of KCa3.1 attenuates TGF-β-induced reactive astrogliosis through the Smad2/3 signaling pathway. J Neurochem 2014; 130:41-49. [PMID: 24606313 DOI: 10.1111/jnc.12710] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 02/27/2014] [Accepted: 03/05/2014] [Indexed: 12/16/2022]
Abstract
Reactive astrogliosis, characterized by cellular hypertrophy and various alterations in gene expression and proliferative phenotypes, is considered to contribute to brain injuries and diseases as diverse as trauma, neurodegeneration, and ischemia. KCa3.1 (intermediate-conductance calcium-activated potassium channel), a potassium channel protein, has been reported to be up-regulated in reactive astrocytes after spinal cord injury in vivo. However, little is known regarding the exact role of KCa3.1 in reactive astrogliosis. To elucidate the role of KCa3.1 in regulating reactive astrogliosis, we investigated the effects of either blocking or knockout of KCa3.1 channels on the production of astrogliosis and astrocytic proliferation in response to transforming growth factor (TGF)-β in primary cultures of mouse astrocytes. We found that TGF-β increased KCa3.1 protein expression in astrocytes, with a concomitant marked increase in the expression of reactive astrogliosis, including glial fibrillary acidic protein and chondroitin sulfate proteoglycans. These changes were significantly attenuated by the KCa3.1 inhibitor 1-((2-chlorophenyl) (diphenyl)methyl)-1H-pyrazole (TRAM-34). Similarly, the increase in glial fibrillary acidic protein and chondroitin sulfate proteoglycans in response to TGF-β was attenuated in KCa3.1(-/-) astrocytes. TRAM-34 also suppressed astrocytic proliferation. In addition, the TGF-β-induced phosphorylation of Smad2 and Smad3 proteins was reduced with either inhibition of KCa3.1 with TRAM-34 or in KCa3.1(-/-) astrocytes. These findings highlight a novel role for the KCa3.1 channel in reactive astrogliosis phenotypic modulation and provide a potential target for therapeutic intervention for brain injuries. Reactive astrogliosis is characterized by the expression of glial fibrillary acidic protein and chondroitin sulfate proteoglycans. We demonstrate that either pharmacological blockade or knockout of KCa3.1 channels reduces reactive gliosis in cultured astrocytes caused by TGF-β, and also reduces TGF-β-induced phosphorylation of Smad2/3.
Collapse
Affiliation(s)
- Zhihua Yu
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Developmental Neurobiology Section, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Panpan Yu
- Developmental Neurobiology Section, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Hongzhuan Chen
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Herbert M Geller
- Developmental Neurobiology Section, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
60
|
Astrocyte-secreted matricellular proteins in CNS remodelling during development and disease. Neural Plast 2014; 2014:321209. [PMID: 24551460 PMCID: PMC3914553 DOI: 10.1155/2014/321209] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 12/18/2013] [Indexed: 12/20/2022] Open
Abstract
Matricellular proteins are secreted, nonstructural proteins that regulate the extracellular matrix (ECM) and interactions between cells through modulation of growth factor signaling, cell adhesion, migration, and proliferation. Despite being well described in the context of nonneuronal tissues, recent studies have revealed that these molecules may also play instrumental roles in central nervous system (CNS) development and diseases. In this minireview, we discuss the matricellular protein families SPARC (secreted protein acidic and rich in cysteine), Hevin/SC1 (SPARC-like 1), TN-C (Tenascin C), TSP (Thrombospondin), and CCN (CYR61/CTGF/NOV), which are secreted by astrocytes during development. These proteins exhibit a reduced expression in adult CNS but are upregulated in reactive astrocytes following injury or disease, where they are well placed to modulate the repair processes such as tissue remodeling, axon regeneration, glial scar formation, angiogenesis, and rewiring of neural circuitry. Conversely, their reexpression in reactive astrocytes may also lead to detrimental effects and promote the progression of neurodegenerative diseases.
Collapse
|
61
|
Decorin blocks scarring and cystic cavitation in acute and induces scar dissolution in chronic spinal cord wounds. Neurobiol Dis 2013; 64:163-76. [PMID: 24384090 DOI: 10.1016/j.nbd.2013.12.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 11/30/2013] [Accepted: 12/12/2013] [Indexed: 12/22/2022] Open
Abstract
In the injured central nervous system (CNS), transforming growth factor (TGF)-β1/2-induced scarring and wound cavitation impede axon regeneration implying that a combination of both scar suppression and axogenic treatments is required to achieve functional recovery. After treating acute and chronic dorsal funicular spinal cord lesions (DFL) in adult rats with the pan-TGF-β1/2 antagonist Decorin, we report that in: (1), acute DFL, the development of all injury parameters was significantly retarded e.g., wound cavity area by 68%, encapsulation of the wound by a glia limitans accessoria (GLA) by 65%, GLA basal lamina thickness by 94%, fibronectin, NG2 and Sema-3A deposition by 87%, 48% and 48%, respectively, and both macrophage and reactive microglia accumulations by 60%; and (2), chronic DFL, all the above parameters were attenuated to a lesser extent e.g., wound cavity area by 11%, GLA encapsulation by 25%, GLA basal lamina thickness by 31%, extracellular fibronectin, NG2 and Sema-3A deposition by 58%, 22% and 29%, respectively, and macrophage and reactive microglia accumulations by 44%. Moreover, in acute and chronic DFL, levels of tissue plasminogen activator (tPA) were raised (by 236% and 482%, respectively), as were active-MMP-2 (by 64% and 91%, respectively) and active-MMP-9 (by 122% and 18%, respectively), while plasminogen activator inhibitor-1 (PAI-1) was suppressed (by 56% and 23%, respectively) and active-TIMP-1 and active TIMP-2 were both lower but only significantly suppressed in acute DFL (by 56 and 21%, respectively). These findings demonstrate that both scar tissue mass and cavitation are attenuated in acute and chronic spinal cord wounds by Decorin treatment and suggest that the dominant effect of Decorin during acute scarring is anti-fibrogenic through suppression of inflammatory fibrosis by neutralisation of TGF-β1/2 whereas, in chronic lesions, Decorin-induction of tPA and MMP (concomitant with reduced complimentary levels of TIMP and PAI-1) leads to dissolution of the mature established scar by fibrolysis. Decorin also promoted the regeneration of similar numbers of axons through acute and chronic wounds. Accordingly, intrathecal delivery of Decorin offers a potential translatable treatment for scar tissue attenuation in patients with spinal cord injury.
Collapse
|
62
|
Villapol S, Wang Y, Adams M, Symes AJ. Smad3 deficiency increases cortical and hippocampal neuronal loss following traumatic brain injury. Exp Neurol 2013; 250:353-65. [PMID: 24120438 DOI: 10.1016/j.expneurol.2013.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 09/11/2013] [Accepted: 10/03/2013] [Indexed: 12/13/2022]
Abstract
Transforming growth factor-β (TGF-β) signaling is involved in pathological processes following brain injury. TGF-β signaling through Smad3 contributes significantly to the immune response and glial scar formation after brain injury. However, TGF-β is also neuroprotective, suggesting that Smad3 signaling may also be involved in neuroprotection after injury. We found expression of the TGF-β type II receptor (TβRII) and Smad3 protein to be strongly and rapidly induced in neurons in the ipsilateral cortex and CA1 region of the hippocampus after stab wound injury. In contrast, astrocytic expression of TβRII and Smad3 was induced more slowly. Comparison of the response of wild-type and Smad3 null mice to cortical stab wound injury showed a more pronounced loss of neuronal viability in Smad3 null mice. Neuronal density was more strongly reduced in Smad3 null mice than in wild-type mice at 1 and 3days post lesion in both the ipsilateral cortex and hippocampal CA1 region. Fluoro-Jade B, TUNEL staining, and cleaved caspase-3 staining also demonstrated increased neuronal degeneration at early time points after injury in the ipsilateral hemisphere in Smad3 null mice. Taken together, our results suggest that TGF-β cytokine family signaling through Smad3 protects neurons in the damaged cortex and hippocampus at early time points after injury.
Collapse
Affiliation(s)
- Sonia Villapol
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | | | |
Collapse
|
63
|
Ereifej ES, Cheng MMC, Mao G, VandeVord PJ. Examining the inflammatory response to nanopatterned polydimethylsiloxane using organotypic brain slice methods. J Neurosci Methods 2013; 217:17-25. [DOI: 10.1016/j.jneumeth.2013.04.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/23/2013] [Accepted: 04/25/2013] [Indexed: 12/18/2022]
|
64
|
Joko M, Osuka K, Usuda N, Atsuzawa K, Aoyama M, Takayasu M. Different modifications of phosphorylated Smad3C and Smad3L through TGF-β after spinal cord injury in mice. Neurosci Lett 2013; 549:168-72. [PMID: 23727390 DOI: 10.1016/j.neulet.2013.05.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 05/20/2013] [Accepted: 05/21/2013] [Indexed: 10/26/2022]
Abstract
Transforming growth factor-β (TGF-β) is an anti-inflammatory cytokine and is expressed in the injured spinal cord. TGF-β signals through receptors to activate Smad proteins, which translocate into the nucleus. In the present study, we investigated the chronological alterations and cellular locations of the TGF-β/Smad signaling pathway following spinal cord injury (SCI) in mice. ELISA analysis showed that the concentration of interleukin-6 (IL-6) in injured spinal cords significantly increases immediately after SCI, while the concentration of TGF-β gradually increased after SCI, peaked at 2 days, and then gradually decreased. Immunohistochemical studies revealed that Smad3 was mainly expressed in neurons of the spinal cord. Phosphorylated Smad3 at the C-terminus (p-Smad3C) was stained within the motor neurons in the anterior horn, while phosphorylated Smad3 at the linker regions (p-Smad3L) was expressed in astrocytes within gray matter. These findings suggest that SCI induces gradual increases in TGF-β and induces different activation of p-Smad3C and p-Smad3L. Phosphorylated Smad3C might be involved in neuronal degeneration after SCI, and p-Smad3L may play a role in glial scar formation by astrocytes.
Collapse
Affiliation(s)
- Masahiro Joko
- Department of Neurological Surgery, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | | | | | | | | | | |
Collapse
|
65
|
Wu W, Wu W, Zou J, Shi F, Yang S, Liu Y, Lu P, Ma Z, Zhu H, Xu XM. Axonal and Glial Responses to a Mid-Thoracic Spinal Cord Hemisection in the Macaca fascicularis Monkey. J Neurotrauma 2013; 30:826-39. [DOI: 10.1089/neu.2012.2681] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Wenjie Wu
- Department of Neurobiology, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery and Goodman Campbell Brain and Spine, Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Wei Wu
- Department of Neurobiology, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery and Goodman Campbell Brain and Spine, Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jian Zou
- Department of Neurobiology, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Department of Clinical Laboratory Sciences, the First Wuxi Affiliated Hospital of Nanjing Medical University, Wuxi, People's Republic of China
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery and Goodman Campbell Brain and Spine, Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Fujun Shi
- Department of Neurobiology, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Senfu Yang
- Jinghong Breeding Station, Yunnan Laboratory Primates Inc., Yunnan, People's Republic of China
| | - Yansheng Liu
- PLA Clinical Center for Spinal Cord Injury, Kunming General Hospital of PLA, Kunming, People's Republic of China
- Kunming Tongren Hospital, Kunming, People's Republic of China
| | - Peihua Lu
- Department of Neurobiology, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Zhengwen Ma
- Department of Neurobiology, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Hui Zhu
- PLA Clinical Center for Spinal Cord Injury, Kunming General Hospital of PLA, Kunming, People's Republic of China
- Kunming Tongren Hospital, Kunming, People's Republic of China
| | - Xiao-Ming Xu
- Department of Neurobiology, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- PLA Clinical Center for Spinal Cord Injury, Kunming General Hospital of PLA, Kunming, People's Republic of China
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery and Goodman Campbell Brain and Spine, Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
66
|
Dragunow M. Meningeal and choroid plexus cells--novel drug targets for CNS disorders. Brain Res 2013; 1501:32-55. [PMID: 23328079 DOI: 10.1016/j.brainres.2013.01.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 01/07/2013] [Indexed: 12/13/2022]
Abstract
The meninges and choroid plexus perform many functions in the developing and adult human central nervous system (CNS) and are composed of a number of different cell types. In this article I focus on meningeal and choroid plexus cells as targets for the development of drugs to treat a range of traumatic, ischemic and chronic brain disorders. Meningeal cells are involved in cortical development (and their dysfunction may be involved in cortical dysplasia), fibrotic scar formation after traumatic brain injuries (TBI), brain inflammation following infections, and neurodegenerative disorders such as Multiple Sclerosis (MS) and Alzheimer's disease (AD) and other brain disorders. The choroid plexus regulates the composition of the cerebrospinal fluid (CSF) as well as brain entry of inflammatory cells under basal conditions and after injuries. The meninges and choroid plexus also link peripheral inflammation (occurring in the metabolic syndrome and after infections) to CNS inflammation which may contribute to the development and progression of a range of CNS neurological and psychiatric disorders. They respond to cytokines generated systemically and secrete cytokines and chemokines that have powerful effects on the brain. The meninges may also provide a stem cell niche in the adult brain which could be harnessed for brain repair. Targeting meningeal and choroid plexus cells with therapeutic agents may provide novel therapies for a range of human brain disorders.
Collapse
Affiliation(s)
- Mike Dragunow
- Department of Pharmacology and Centre for Brain Research, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
67
|
El-Ansary A, Al-Ayadhi L. Neuroinflammation in autism spectrum disorders. J Neuroinflammation 2012; 9:265. [PMID: 23231720 PMCID: PMC3549857 DOI: 10.1186/1742-2094-9-265] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Accepted: 11/28/2012] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES The neurobiological basis for autism remains poorly understood. However, research suggests that environmentalfactors and neuroinflammation, as well as genetic factors, are contributors. This study aims to test the role that might be played by heat shock protein (HSP)70, transforming growth factor (TGF)-β2, Caspase 7 and interferon-γ (IFN-γ)in the pathophysiology of autism. MATERIALS AND METHODS HSP70, TGF-β2, Caspase 7 and INF-γ as biochemical parameters related to inflammation were determined in plasma of 20 Saudi autistic male patients and compared to 19 age- and gender-matched control samples. RESULTS The obtained data recorded that Saudi autistic patients have remarkably higher plasma HSP70, TGF-β2, Caspase 7 and INF-γ compared to age and gender-matched controls. INF-γ recorded the highest (67.8%) while TGF-β recorded the lowest increase (49.04%). Receiver Operating Characteristics (ROC) analysis together with predictiveness diagrams proved that the measured parameters recorded satisfactory levels of specificity and sensitivity and all could be used as predictive biomarkers. CONCLUSION Alteration of the selected parameters confirm the role of neuroinflammation and apoptosis mechanisms in the etiology of autism together with the possibility of the use of HSP70, TGF-β2, Caspase 7 and INF-γ as predictive biomarkers that could be used to predict safety, efficacy of a specific suggested therapy or natural supplements, thereby providing guidance in selecting it for patients or tailoring its dose.
Collapse
Affiliation(s)
- Afaf El-Ansary
- Biochemistry Department, Science College, King Saud University, P.O. Box 22452, 11495, Riyadh, Saudi Arabia
- Autism Research and Treatment Center, Riyadh, Saudi Arabia
- Shaik AL-Amodi Autism Research Chair, King Saud University, Riyadh, Saudi Arabia
- Medicinal Chemistry Department, National Research Centre, Dokki, Cairo, Egypt
| | - Laila Al-Ayadhi
- Autism Research and Treatment Center, Riyadh, Saudi Arabia
- Shaik AL-Amodi Autism Research Chair, King Saud University, Riyadh, Saudi Arabia
- Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
68
|
Zhilai Z, Hui Z, Anmin J, Shaoxiong M, Bo Y, Yinhai C. A combination of taxol infusion and human umbilical cord mesenchymal stem cells transplantation for the treatment of rat spinal cord injury. Brain Res 2012; 1481:79-89. [PMID: 22960115 DOI: 10.1016/j.brainres.2012.08.051] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 08/14/2012] [Accepted: 08/27/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND PURPOSE Studies have shown that the administration of Taxol, an anti-cancer drug, inhibited scar formation, promoted axonal elongation and improved locomotor recovery in rats after spinal cord injury (SCI). We hypothesized that combining Taxol with another promising therapy, transplantation of human umbilical mesenchymal stem cells (hUCMSCs), might further improve the degree of locomotor recovery. The present study examined whether Taxol combined with transplantation of hUCMSCs would produce synergistic effects on recovery and which mechanisms were involved in the effect. METHODS A total of 32 rats subjected to SCI procedures were assigned to one of the following four treatment groups: phosphate-buffered saline (PBS, control), hUCMSCs, Taxol, or Taxol+hUCMSCs. Immediately after injury, hUCMSCs were transplanted into the injury site and Taxol was administered intrathecally for 4 weeks. Locomotor recovery was evaluated using the Basso, Beattie and Bresnahan locomotor (BBB) rating scale. Survival of the transplanted human cells and the host glial reaction in the injured spinal cord were studied by immunohistochemistry. RESULTS Treatment with Taxol, hUCMSCs or Taxol+hUCMSCs reduced the extent of astrocytic activation, increased axonal preservation and decreased the number of caspase-3(+) and ED-1(+) cells, but these effects were more pronounced in the Taxol+hUCMSCs group. Behavioral analyses showed that rats in the Taxol+hUCMSCs group showed better motor performance than rats treated with hUCMSCs or Taxol only. CONCLUSIONS The combination of Taxol and hUCMSCs produced beneficial effects in rats with regard to functional recovery following SCI through the enhancement of anti-inflammatory, anti-astrogliosis, anti-apoptotic and axonal preservation effects.
Collapse
Affiliation(s)
- Zhou Zhilai
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
69
|
Gharaibeh B, Chun-Lansinger Y, Hagen T, Ingham SJM, Wright V, Fu F, Huard J. Biological approaches to improve skeletal muscle healing after injury and disease. ACTA ACUST UNITED AC 2012; 96:82-94. [PMID: 22457179 DOI: 10.1002/bdrc.21005] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Skeletal muscle injury and repair are complex processes, including well-coordinated steps of degeneration, inflammation, regeneration, and fibrosis. We have reviewed the recent literature including studies by our group that describe how to modulate the processes of skeletal muscle repair and regeneration. Antiinflammatory drugs that target cyclooxygenase-2 were found to hamper the skeletal muscle repair process. Muscle regeneration phase can be aided by growth factors, including insulin-like growth factor-1 and nerve growth factor, but these factors are typically short-lived, and thus more effective methods of delivery are needed. Skeletal muscle damage caused by traumatic injury or genetic diseases can benefit from cell therapy; however, the majority of transplanted muscle cells (myoblasts) are unable to survive the immune response and hypoxic conditions. Our group has isolated neonatal skeletal muscle derived stem cells (MDSCs) that appear to repair muscle tissue in a more effective manner than myoblasts, most likely due to their better resistance to oxidative stress. Enhancing antioxidant levels of MDSCs led to improved regenerative potential. It is becoming increasingly clear that stem cells tissue repair by direct differentiation and paracrine effects leading to neovascularization of injured site and chemoattraction of host cells. The factors invoked in paracrine action are still under investigation. Our group has found that angiotensin II receptor blocker (losartan) significantly reduces fibrotic tissue formation and improves repair of murine injured muscle. Based on these data, we have conducted a case study on two hamstring injury patients and found that losartan treatment was well tolerated and possibly improved recovery time. We believe this medication holds great promise to optimize muscle repair in humans.
Collapse
Affiliation(s)
- Burhan Gharaibeh
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | | | | | | | | | | | | |
Collapse
|
70
|
Fischer D, Leibinger M. Promoting optic nerve regeneration. Prog Retin Eye Res 2012; 31:688-701. [PMID: 22781340 DOI: 10.1016/j.preteyeres.2012.06.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 06/13/2012] [Accepted: 06/21/2012] [Indexed: 10/28/2022]
Abstract
Vision is the most important sense for humans and it is irreversibly impaired by axonal damage of retinal ganglion cells (RGCs) in the optic nerve due to the lack of axonal regeneration. The failure of regeneration is partially attributable to factors located in the inhibitory environment of the forming glial scar and myelin as well as an insufficient intrinsic ability for axonal regrowth. Moreover, RGCs undergo apoptotic cell death after optic nerve injury, eliminating any chance for regeneration. In this review, we discuss the different aspects that cause regenerative failure in the optic nerve. Moreover, we describe discoveries of the last two decades demonstrating that under certain circumstances mature RGCs can be transformed into an active regenerative state allowing these neurons to survive axotomy and to regenerate axons in the injured optic nerve. In this context we focus on the role of the cytokines ciliary neutrophic factor (CNTF) and leukemia inhibitory factor (LIF), their receptors and the downstream signaling pathways. Furthermore, we discuss strategies to overcome inhibitory signaling induced by molecules associated with optic nerve myelin and the glial scar as well as the regenerative outcome after combinatorial treatments. These findings are encouraging and may open the possibility that clinically meaningful regeneration may become achievable one day in the future.
Collapse
Affiliation(s)
- Dietmar Fischer
- Department of Neurology, Experimental Neurology, Heinrich Heine University Düsseldorf, Merowingerplatz 1a, 40225 Düsseldorf, Germany.
| | | |
Collapse
|
71
|
Kawano H, Kimura-Kuroda J, Komuta Y, Yoshioka N, Li HP, Kawamura K, Li Y, Raisman G. Role of the lesion scar in the response to damage and repair of the central nervous system. Cell Tissue Res 2012; 349:169-80. [PMID: 22362507 PMCID: PMC3375417 DOI: 10.1007/s00441-012-1336-5] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 01/19/2012] [Indexed: 02/06/2023]
Abstract
Traumatic damage to the central nervous system (CNS) destroys the blood–brain barrier (BBB) and provokes the invasion of hematogenous cells into the neural tissue. Invading leukocytes, macrophages and lymphocytes secrete various cytokines that induce an inflammatory reaction in the injured CNS and result in local neural degeneration, formation of a cystic cavity and activation of glial cells around the lesion site. As a consequence of these processes, two types of scarring tissue are formed in the lesion site. One is a glial scar that consists in reactive astrocytes, reactive microglia and glial precursor cells. The other is a fibrotic scar formed by fibroblasts, which have invaded the lesion site from adjacent meningeal and perivascular cells. At the interface, the reactive astrocytes and the fibroblasts interact to form an organized tissue, the glia limitans. The astrocytic reaction has a protective role by reconstituting the BBB, preventing neuronal degeneration and limiting the spread of damage. While much attention has been paid to the inhibitory effects of the astrocytic component of the scars on axon regeneration, this review will cover a number of recent studies in which manipulations of the fibroblastic component of the scar by reagents, such as blockers of collagen synthesis have been found to be beneficial for axon regeneration. To what extent these changes in the fibroblasts act via subsequent downstream actions on the astrocytes remains for future investigation.
Collapse
Affiliation(s)
- Hitoshi Kawano
- Laboratory of Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Setagaya City, Tokyo 156-8506, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Neuroinflammation in the aging down syndrome brain; lessons from Alzheimer's disease. Curr Gerontol Geriatr Res 2012; 2012:170276. [PMID: 22454637 PMCID: PMC3290800 DOI: 10.1155/2012/170276] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 11/15/2011] [Indexed: 12/25/2022] Open
Abstract
Down syndrome (DS) is the most genetic cause of mental retardation and is caused by the triplication of chromosome 21. In addition to the disabilities caused early in life, DS is also noted as causing Alzheimer's-disease-like pathological changes in the brain, leading to 50-70% of DS patients showing dementia by 60-70 years of age. Inflammation is a complex process that has a key role to play in the pathogenesis of Alzheimer's disease. There is relatively little understood about inflammation in the DS brain and how the genetics of DS may alter this inflammatory response and change the course of disease in the DS brain. The goal of this review is to highlight our current understanding of inflammation in Alzheimer's disease and predict how inflammation may affect the pathology of the DS brain based on this information and the known genetic changes that occur due to triplication of chromosome 21.
Collapse
|
73
|
Thuret S, Thallmair M, Horky LL, Gage FH. Enhanced functional recovery in MRL/MpJ mice after spinal cord dorsal hemisection. PLoS One 2012; 7:e30904. [PMID: 22348029 PMCID: PMC3278405 DOI: 10.1371/journal.pone.0030904] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 12/29/2011] [Indexed: 11/20/2022] Open
Abstract
Adult MRL/MpJ mice have been shown to possess unique regeneration capabilities. They are able to heal an ear-punched hole or an injured heart with normal tissue architecture and without scar formation. Here we present functional and histological evidence for enhanced recovery following spinal cord injury (SCI) in MRL/MpJ mice. A control group (C57BL/6 mice) and MRL/MpJ mice underwent a dorsal hemisection at T9 (thoracic vertebra 9). Our data show that MRL/MpJ mice recovered motor function significantly faster and more completely. We observed enhanced regeneration of the corticospinal tract (CST). Furthermore, we observed a reduced astrocytic response and fewer micro-cavities at the injury site, which appear to create a more growth-permissive environment for the injured axons. Our data suggest that the reduced astrocytic response is in part due to a lower lesion-induced increase of cell proliferation post-SCI, and a reduced astrocytic differentiation of the proliferating cells. Interestingly, we also found an increased number of proliferating microglia, which could be involved in the MRL/MpJ spinal cord repair mechanisms. Finally, to evaluate the molecular basis of faster spinal cord repair, we examined the difference in gene expression changes in MRL/MpJ and C57BL/6 mice after SCI. Our microarray data support our histological findings and reveal a transcriptional profile associated with a more efficient spinal cord repair in MRL/MpJ mice.
Collapse
Affiliation(s)
- Sandrine Thuret
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, United States of America
- * E-mail: (ST); (FHG)
| | - Michaela Thallmair
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Laura L. Horky
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Fred H. Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, United States of America
- * E-mail: (ST); (FHG)
| |
Collapse
|
74
|
Hepatocyte growth factor reduces astrocytic scar formation and promotes axonal growth beyond glial scars after spinal cord injury. Exp Neurol 2012; 233:312-22. [DOI: 10.1016/j.expneurol.2011.10.021] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 10/19/2011] [Accepted: 10/25/2011] [Indexed: 11/19/2022]
|
75
|
Susarla BTS, Laing ED, Yu P, Katagiri Y, Geller HM, Symes AJ. Smad proteins differentially regulate transforming growth factor-β-mediated induction of chondroitin sulfate proteoglycans. J Neurochem 2011; 119:868-78. [PMID: 21895657 DOI: 10.1111/j.1471-4159.2011.07470.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Traumatic injury to the CNS results in increased expression and deposition of chondroitin sulfate proteoglycans (CSPGs) that are inhibitory to axonal regeneration. Transforming growth factor-β (TGF-β) has been implicated as a major mediator of these changes, but the mechanisms through which TGF-β regulates CSPG expression are not known. Using lentiviral expressed Smad-specific ShRNA we show that TGF-β induction of CSPG expression in astrocytes is Smad-dependent. However, we find a differential dependence of the synthetic machinery on Smad2 and/or Smad3. TGF-β induction of neurocan and xylosyl transferase 1 required both Smad2 and Smad3, whereas induction of phosphacan and chondroitin synthase 1 required Smad2 but not Smad3. Smad3 knockdown selectively reduced induction of chondroitin-4-sulfotransferase 1 and the amount of 4-sulfated CSPGs secreted by astrocytes. Additionally, Smad3 knockdown in astrocytes was more efficacious in promoting neurite outgrowth of neurons cultured on the TGF-β-treated astrocytes. Our data implicate TGF-β Smad3-mediated induction of 4-sulfation as a critical determinant of the permissiveness of astrocyte secreted CSPGs for axonal growth.
Collapse
Affiliation(s)
- Bala T S Susarla
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | | | | | | | | | | |
Collapse
|
76
|
Podvin S, Gonzalez AM, Miller MC, Dang X, Botfield H, Donahue JE, Kurabi A, Boissaud-Cooke M, Rossi R, Leadbeater WE, Johanson CE, Coimbra R, Stopa EG, Eliceiri BP, Baird A. Esophageal cancer related gene-4 is a choroid plexus-derived injury response gene: evidence for a biphasic response in early and late brain injury. PLoS One 2011; 6:e24609. [PMID: 21935431 PMCID: PMC3173480 DOI: 10.1371/journal.pone.0024609] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 08/14/2011] [Indexed: 01/07/2023] Open
Abstract
By virtue of its ability to regulate the composition of cerebrospinal fluid (CSF), the choroid plexus (CP) is ideally suited to instigate a rapid response to traumatic brain injury (TBI) by producing growth regulatory proteins. For example, Esophageal Cancer Related Gene-4 (Ecrg4) is a tumor suppressor gene that encodes a hormone-like peptide called augurin that is present in large concentrations in CP epithelia (CPe). Because augurin is thought to regulate senescence, neuroprogenitor cell growth and differentiation in the CNS, we evaluated the kinetics of Ecrg4 expression and augurin immunoreactivity in CPe after CNS injury. Adult rats were injured with a penetrating cortical lesion and alterations in augurin immunoreactivity were examined by immunohistochemistry. Ecrg4 gene expression was characterized by in situ hybridization. Cell surface augurin was identified histologically by confocal microscopy and biochemically by sub-cellular fractionation. Both Ecrg4 gene expression and augurin protein levels were decreased 24-72 hrs post-injury but restored to uninjured levels by day 7 post-injury. Protein staining in the supraoptic nucleus of the hypothalamus, used as a control brain region, did not show a decrease of auguin immunoreactivity. Ecrg4 gene expression localized to CPe cells, and augurin protein to the CPe ventricular face. Extracellular cell surface tethering of 14 kDa augurin was confirmed by cell surface fractionation of primary human CPe cells in vitro while a 6-8 kDa fragment of augurin was detected in conditioned media, indicating release from the cell surface by proteolytic processing. In rat CSF however, 14 kDa augurin was detected. We hypothesize the initial release and proteolytic processing of augurin participates in the activation phase of injury while sustained Ecrg4 down-regulation is dysinhibitory during the proliferative phase. Accordingly, augurin would play a constitutive inhibitory function in normal CNS while down regulation of Ecrg4 gene expression in injury, like in cancer, dysinhibits proliferation.
Collapse
Affiliation(s)
- Sonia Podvin
- Department of Surgery, School of Medicine, University of California San Diego, San Diego, California, United States of America
| | - Ana-Maria Gonzalez
- Department of Neuropharmacology and Neurobiology, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom
| | - Miles C. Miller
- Departments of Neurosurgery and Pathology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Xitong Dang
- Department of Surgery, School of Medicine, University of California San Diego, San Diego, California, United States of America
| | - Hannah Botfield
- Department of Neuropharmacology and Neurobiology, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom
| | - John E. Donahue
- Departments of Neurosurgery and Pathology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Arwa Kurabi
- Department of Surgery, School of Medicine, University of California San Diego, San Diego, California, United States of America
| | - Matthew Boissaud-Cooke
- Department of Neuropharmacology and Neurobiology, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom
| | - Ryan Rossi
- Departments of Neurosurgery and Pathology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Wendy E. Leadbeater
- Department of Neuropharmacology and Neurobiology, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom
| | - Conrad E. Johanson
- Departments of Neurosurgery and Pathology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Raul Coimbra
- Department of Surgery, School of Medicine, University of California San Diego, San Diego, California, United States of America
| | - Edward G. Stopa
- Departments of Neurosurgery and Pathology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Brian P. Eliceiri
- Department of Surgery, School of Medicine, University of California San Diego, San Diego, California, United States of America
| | - Andrew Baird
- Department of Surgery, School of Medicine, University of California San Diego, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
77
|
Mejia HA, Bradley JP. The Effects of Platelet-Rich Plasma on Muscle: Basic Science and Clinical Application. OPER TECHN SPORT MED 2011. [DOI: 10.1053/j.otsm.2011.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
78
|
Hamby ME, Hewett JA, Hewett SJ. Smad3-dependent signaling underlies the TGF-β1-mediated enhancement in astrocytic iNOS expression. Glia 2011; 58:1282-91. [PMID: 20607716 DOI: 10.1002/glia.21005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We previously demonstrated that transforming growth factor-beta1 (TGF-beta1), while having no effect alone, enhances nitric oxide (NO) production in primary, purified mouse astrocytes induced by lipopolysaccharide (LPS) plus interferon-gamma (IFN-gamma), by recruiting a latent population of astrocytes to respond, thereby enhancing the total number of cells that express Nos2. In this investigation, we evaluated the molecular signaling pathway by which this occurs. We found that purified murine primary astrocytes express mRNA for TGFbetaRII as well as the TGFbetaRI subunit activin-like kinase 5 (ALK5), but not ALK1. Immunofluorescence microscopy confirmed the expression of TGFbetaRII and ALK5 protein in astrocytes. Consistent with ALK5 signaling, Smad3 accumulated in the nucleus of astrocytes as early as 30 min after TGF-beta1 (3 ng/mL) treatment and persisted upto 32 hr after TGF-beta1 administration. Addition of ALK5 inhibitors prevented TGF-beta1-mediated Smad3 nuclear accumulation and NO production when given prior to the Nos2 induction stimuli, but not after. Finally, astrocyte cultures derived from Smad3 null mutant mice did not exhibit a TGF-beta1-mediated increase in iNOS expression. Overall, this data suggests that ALK5 signaling and Smad3 nuclear accumulation is required for optimal enhancement of LPS plus IFNgamma-induced NO production in astrocytes by TGF-beta1.
Collapse
Affiliation(s)
- Mary E Hamby
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, 06030, USA
| | | | | |
Collapse
|
79
|
Deng LX, Hu J, Liu N, Wang X, Smith GM, Wen X, Xu XM. GDNF modifies reactive astrogliosis allowing robust axonal regeneration through Schwann cell-seeded guidance channels after spinal cord injury. Exp Neurol 2011; 229:238-50. [PMID: 21316362 DOI: 10.1016/j.expneurol.2011.02.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 01/28/2011] [Accepted: 02/03/2011] [Indexed: 01/19/2023]
Abstract
Reactive astrogliosis impedes axonal regeneration after injuries to the mammalian central nervous system (CNS). Here we report that glial cell line-derived neurotrophic factor (GDNF), combined with transplanted Schwann cells (SCs), effectively reversed the inhibitory properties of astrocytes at graft-host interfaces allowing robust axonal regeneration, concomitant with vigorous migration of host astrocytes into SC-seeded semi-permeable guidance channels implanted into a right-sided spinal cord hemisection at the 10th thoracic (T10) level. Within the graft, migrated host astrocytes were in close association with regenerated axons. Astrocyte processes extended parallel to the axons, implying that the migrated astrocytes were not inhibitory and might have promoted directional growth of regenerated axons. In vitro, GDNF induced migration of SCs and astrocytes toward each other in an astrocyte-SC confrontation assay. GDNF also enhanced migration of astrocytes on a SC monolayer in an inverted coverslip migration assay, suggesting that this effect is mediated by direct cell-cell contact between the two cell types. Morphologically, GDNF administration reduced astrocyte hypertrophy and induced elongated process extension of these cells, similar to what was observed in vivo. Notably, GDNF treatment significantly reduced production of glial fibrillary acidic protein (GFAP) and chondroitin sulfate proteoglycans (CSPGs), two hallmarks of astrogliosis, in both the in vivo and in vitro models. Thus, our study demonstrates a novel role of GDNF in modifying spinal cord injury (SCI)-induced astrogliosis resulting in robust axonal regeneration in adult rats.
Collapse
Affiliation(s)
- Ling-Xiao Deng
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | |
Collapse
|
80
|
Yoshioka N, Kimura-Kuroda J, Saito T, Kawamura K, Hisanaga SI, Kawano H. Small molecule inhibitor of type I transforming growth factor-β receptor kinase ameliorates the inhibitory milieu in injured brain and promotes regeneration of nigrostriatal dopaminergic axons. J Neurosci Res 2010; 89:381-93. [PMID: 21259325 DOI: 10.1002/jnr.22552] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 10/14/2010] [Accepted: 10/19/2010] [Indexed: 12/15/2022]
Abstract
Transforming growth factor-β (TGF-β), a multifunctional cytokine, plays a crucial role in wound healing in the damaged central nervous system. To examine effects of the TGF-β signaling inhibition on formation of scar tissue and axonal regeneration, the small molecule inhibitor of type I TGF-β receptor kinase LY-364947 was continuously infused in the lesion site of mouse brain after a unilateral transection of the nigrostriatal dopaminergic pathway. At 2 weeks after injury, the fibrotic scar comprising extracellular matrix molecules including fibronectin, type IV collagen, and chondroitin sulfate proteoglycans was formed in the lesion center, and reactive astrocytes were increased around the fibrotic scar. In the brain injured and infused with LY-364947, fibrotic scar formation was suppressed and decreased numbers of reactive astrocytes occupied the lesion site. Although leukocytes and serum IgG were observed within the fibrotic scar in the injured brain, they were almost absent in the injured and LY-364947-treated brain. At 2 weeks after injury, tyrosine hydroxylase (TH)-immunoreactive fibers barely extended beyond the fibrotic scar in the injured brain, but numerous TH-immunoreactive fibers regenerated over the lesion site in the LY-364947-treated brain. These results indicate that inhibition of TGF-β signaling suppresses formation of the fibrotic scar and creates a permissive environment for axonal regeneration.
Collapse
Affiliation(s)
- Nozomu Yoshioka
- Department of Developmental Morphology, Tokyo Metropolitan Institute for Neuroscience, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
81
|
Yoshioka N, Hisanaga SI, Kawano H. Suppression of fibrotic scar formation promotes axonal regeneration without disturbing blood-brain barrier repair and withdrawal of leukocytes after traumatic brain injury. J Comp Neurol 2010; 518:3867-81. [PMID: 20653039 DOI: 10.1002/cne.22431] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The fibrotic scar containing type IV collagen (Col IV) formed in a lesion site is considered as an obstacle to axonal regeneration, because intracerebral injection of 2,2'-dipyridyl (DPY), an inhibitor of Col IV triple-helix formation, suppresses fibrotic scar formation in the lesion site and promotes axonal regeneration. To determine the role of the fibrotic scar on the healing process of injured central nervous system (CNS), the restoration of blood-brain barrier (BBB) and withdrawal of inflammatory leukocytes were examined in mice subjected to unilateral transection of the nigrostriatal dopaminergic pathway and intracerebral DPY injection. At 5 days after injury, destruction of BBB represented by leakage of Evans blue (EB) and widespread infiltration of CD45-immunoreactive leukocytes was observed around the lesion site, whereas reactive astrocytes increased surrounding the BBB-destroyed area. By 2 weeks after injury, the region of EB leakage and the diffusion of leukocytes were restricted to the inside of the fibrotic scar, and reactive astrocytes gathered around the fibrotic scar. In the DPY-treated lesion site, formation of the fibrotic scar was suppressed (84% decrease in Col IV-deposited area), reactive astrocytes occupied the lesion center, and areas of both EB leakage and leukocyte infiltration decreased by 86%. DPY treatment increased the number of regenerated dopaminergic axons by 2.53-fold. These results indicate that suppression of fibrotic scar formation does not disturb the healing process in damaged CNS, and suggest that this strategy is a reliable tool to promote axonal regeneration after traumatic injury in the CNS.
Collapse
Affiliation(s)
- Nozomu Yoshioka
- Department of Developmental Morphology, Tokyo Metropolitan Institute for Neuroscience, Fuchu, Tokyo 183-8526, Japan
| | | | | |
Collapse
|
82
|
Doyle KP, Cekanaviciute E, Mamer LE, Buckwalter MS. TGFβ signaling in the brain increases with aging and signals to astrocytes and innate immune cells in the weeks after stroke. J Neuroinflammation 2010; 7:62. [PMID: 20937129 PMCID: PMC2958905 DOI: 10.1186/1742-2094-7-62] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 10/11/2010] [Indexed: 01/18/2023] Open
Abstract
Background TGFβ is both neuroprotective and a key immune system modulator and is likely to be an important target for future stroke therapy. The precise function of increased TGF-β1 after stroke is unknown and its pleiotropic nature means that it may convey a neuroprotective signal, orchestrate glial scarring or function as an important immune system regulator. We therefore investigated the time course and cell-specificity of TGFβ signaling after stroke, and whether its signaling pattern is altered by gender and aging. Methods We performed distal middle cerebral artery occlusion strokes on 5 and 18 month old TGFβ reporter mice to get a readout of TGFβ responses after stroke in real time. To determine which cell type is the source of increased TGFβ production after stroke, brain sections were stained with an anti-TGFβ antibody, colocalized with markers for reactive astrocytes, neurons, and activated microglia. To determine which cells are responding to TGFβ after stroke, brain sections were double-labelled with anti-pSmad2, a marker of TGFβ signaling, and markers of neurons, oligodendrocytes, endothelial cells, astrocytes and microglia. Results TGFβ signaling increased 2 fold after stroke, beginning on day 1 and peaking on day 7. This pattern of increase was preserved in old animals and absolute TGFβ signaling in the brain increased with age. Activated microglia and macrophages were the predominant source of increased TGFβ after stroke and astrocytes and activated microglia and macrophages demonstrated dramatic upregulation of TGFβ signaling after stroke. TGFβ signaling in neurons and oligodendrocytes did not undergo marked changes. Conclusions We found that TGFβ signaling increases with age and that astrocytes and activated microglia and macrophages are the main cell types that undergo increased TGFβ signaling in response to post-stroke increases in TGFβ. Therefore increased TGFβ after stroke likely regulates glial scar formation and the immune response to stroke.
Collapse
Affiliation(s)
- Kristian P Doyle
- Department of Neurology and Neurological Sciences, Stanford University Medical School, Stanford, CA 94305-5489, USA
| | | | | | | |
Collapse
|
83
|
East E, Golding JP, Phillips JB. A versatile 3D culture model facilitates monitoring of astrocytes undergoing reactive gliosis. J Tissue Eng Regen Med 2010; 3:634-46. [PMID: 19813215 PMCID: PMC2842570 DOI: 10.1002/term.209] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A major impediment to CNS repair is the glial scar, which forms following damage and is composed mainly of ramified, ‘reactive’ astrocytes that inhibit neuronal regrowth. The transition of astrocytes into this reactive phenotype (reactive gliosis) is a potential therapeutic target, but glial scar formation has proved difficult to study in monolayer cultures because they induce constitutive astrocyte activation. Here we demonstrate a 3D collagen gel system in which primary rat astrocytes were maintained in a persistently less reactive state than comparable cells in monolayer, resembling their status in the undamaged CNS. Reactivity, proliferation and viability were monitored and quantified using confocal, fluorescence and time-lapse microscopy, 3D image analysis, RT–PCR and ELISA. To assess the potential of this system as a model of reactive gliosis, astrocytes in 3D were activated with TGFβ1 to a ramified, reactive phenotype (elevated GFAP, Aquaporin 4, CSPG, Vimentin and IL-6 secretion). This provides a versatile system in which astrocytes can be maintained in a resting state, then be triggered to undergo reactive gliosis, enabling real-time monitoring and quantitative analysis throughout and providing a powerful new tool for research into CNS damage and repair. Copyright © 2009 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Emma East
- Department of Life Sciences, The Open University, Milton Keynes, UK
| | | | | |
Collapse
|
84
|
Komuta Y, Teng X, Yanagisawa H, Sango K, Kawamura K, Kawano H. Expression of transforming growth factor-beta receptors in meningeal fibroblasts of the injured mouse brain. Cell Mol Neurobiol 2010; 30:101-11. [PMID: 19653094 DOI: 10.1007/s10571-009-9435-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 07/17/2009] [Indexed: 01/06/2023]
Abstract
The fibrotic scar which is formed after traumatic damage of the central nervous system (CNS) is considered as a major impediment for axonal regeneration. In the process of the fibrotic scar formation, meningeal fibroblasts invade and proliferate in the lesion site to secrete extracellular matrix proteins, such as collagen and laminin. Thereafter, end feet of reactive astrocytes elaborate a glia limitans surrounding the fibrotic scar. Transforming growth factor-beta1 (TGF-beta1), a potent scar-inducing factor, which is upregulated after CNS injury, has been implicated in the formation of the fibrotic scar and glia limitans. In the present study, expression of receptors to TGF-beta1 was examined by in situ hybridization histochemistry in transcortical knife lesions of the striatum in the mouse brain in combination with immunofluorescent staining for fibroblasts and astrocytes. Type I and type II TGF-beta receptor mRNAs were barely detected in the intact brain and first found in meningeal cells near the lesion 1 day postinjury. Many cells expressing TGF-beta receptors were found around the lesion site 3 days postinjury, and some of them were immunoreactive for fibronectin. After 5 days postinjury, many fibroblasts migrated from the meninges to the lesion site formed the fibrotic scar, and most of them expressed TGF-beta receptors. In contrast, few of reactive astrocytes expressed the receptors throughout the postinjury period examined. These results indicate that meningeal fibroblasts not reactive astrocytes are a major target of TGF-beta1 that is upregulated after CNS injury.
Collapse
Affiliation(s)
- Yukari Komuta
- Department of Developmental Morphology, Tokyo Metropolitan Institute for Neuroscience, Fuchu, Tokyo, 183-8526, Japan
| | | | | | | | | | | |
Collapse
|
85
|
Kimura-Kuroda J, Teng X, Komuta Y, Yoshioka N, Sango K, Kawamura K, Raisman G, Kawano H. An in vitro model of the inhibition of axon growth in the lesion scar formed after central nervous system injury. Mol Cell Neurosci 2009; 43:177-87. [PMID: 19897043 DOI: 10.1016/j.mcn.2009.10.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 10/15/2009] [Accepted: 10/29/2009] [Indexed: 02/06/2023] Open
Abstract
After central nervous system (CNS) injury, meningeal fibroblasts migrate in the lesion center to form a fibrotic scar which is surrounded by end feet of reactive astrocytes. The fibrotic scar expresses various axonal growth-inhibitory molecules and creates a major impediment for axonal regeneration. We developed an in vitro model of the scar using coculture of cerebral astrocytes and meningeal fibroblasts by adding transforming growth factor-beta1 (TGF-beta1), a potent fibrogenic factor. Addition of TGF-beta1 to this coculture resulted in enhanced proliferation of fibroblasts and the formation of cell clusters which consisted of fibroblasts inside and surrounded by astrocytes. The cell cluster in culture densely accumulated the extracellular matrix molecules and axonal growth-inhibitory molecules similar to the fibrotic scar, and remarkably inhibited the neurite outgrowth of cerebellar neurons. Therefore, this culture system can be available to analyze the inhibitory property in the lesion site of CNS.
Collapse
Affiliation(s)
- Junko Kimura-Kuroda
- Department of Developmental Morphology, Tokyo Metropolitan Institute for Neuroscience, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Kohta M, Kohmura E, Yamashita T. Inhibition of TGF-beta1 promotes functional recovery after spinal cord injury. Neurosci Res 2009; 65:393-401. [PMID: 19744530 DOI: 10.1016/j.neures.2009.08.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 08/25/2009] [Accepted: 08/31/2009] [Indexed: 10/20/2022]
Abstract
Trauma to the spinal cord initiates a series of cellular and biochemical processes that damage both neurons and glia. TGF-beta and its receptors are expressed around the injury site following a spinal cord injury. Here, we report that the intrathecal administration of a neutralizing antibody to TGF-beta1 in rats with thoracic spinal cord contusion results in a significant enhancement of the locomotor recovery. The inhibition of TGF-beta1 suppresses glial scar formation and upregulates microglia/macrophage activation after the injury, presumably providing a favorable environment for restoration of the neural network. Rats treated with the anti-TGF-beta1 antibody exhibited a mild enhancement of growth and/or preservation of axons in the injured spinal cord caudal to the site of contusion. These results support the possibility of using TGF-beta1 inhibitors in the treatment of human spinal cord injuries.
Collapse
Affiliation(s)
- Masaaki Kohta
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
87
|
|
88
|
Abstract
It has long been thought that astrocytes, like other glial cells, simply provide a support mechanism for neuronal function in the healthy and inflamed central nervous system (CNS). However, recent evidence suggests that astrocytes play an active and dual role in CNS inflammatory diseases such as multiple sclerosis (MS). Astrocytes not only have the ability to enhance immune responses and inhibit myelin repair, but they can also be protective and limit CNS inflammation while supporting oligodendrocyte and axonal regeneration. The particular impact of these cells on the pathogenesis and repair of an inflammatory demyelinating process is dependent upon a number of factors, including the stage of the disease, the type and microenvironment of the lesion, and the interactions with other cell types and factors that influence their activation. In this review, we summarize recent data supporting the idea that astrocytes play a complex role in the regulation of CNS autoimmunity.
Collapse
Affiliation(s)
- A. Nair
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Fienberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611 USA
| | - T. J. Frederick
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Fienberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611 USA
| | - S. D. Miller
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Fienberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611 USA
| |
Collapse
|
89
|
Liao CW, Fan CK, Kao TC, Ji DD, Su KE, Lin YH, Cho WL. Brain injury-associated biomarkers of TGF-beta1, S100B, GFAP, NF-L, tTG, AbetaPP, and tau were concomitantly enhanced and the UPS was impaired during acute brain injury caused by Toxocara canis in mice. BMC Infect Dis 2008; 8:84. [PMID: 18573219 PMCID: PMC2442079 DOI: 10.1186/1471-2334-8-84] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2008] [Accepted: 06/24/2008] [Indexed: 11/25/2022] Open
Abstract
Background Because the outcomes and sequelae after different types of brain injury (BI) are variable and difficult to predict, investigations on whether enhanced expressions of BI-associated biomarkers (BIABs), including transforming growth factor β1 (TGF-β1), S100B, glial fibrillary acidic protein (GFAP), neurofilament light chain (NF-L), tissue transglutaminases (tTGs), β-amyloid precursor proteins (AβPP), and tau are present as well as whether impairment of the ubiquitin-proteasome system (UPS) is present have been widely used to help delineate pathophysiological mechanisms in various BIs. Larvae of Toxocara canis can invade the brain and cause BI in humans and mice, leading to cerebral toxocariasis (CT). Because the parasitic burden is light in CT, it may be too cryptic to be detected in humans, making it difficult to clearly understand the pathogenesis of subtle BI in CT. Since the pathogenesis of murine toxocariasis is very similar to that in humans, it appears appropriate to use a murine model to investigate the pathogenesis of CT. Methods BIAB expressions and UPS function in the brains of mice inoculated with a single dose of 250 T. canis embryonated eggs was investigated from 3 days (dpi) to 8 weeks post-infection (wpi) by Western blotting and RT-PCR. Results Results revealed that at 4 and 8 wpi, T. canis larvae were found to have invaded areas around the choroid plexus but without eliciting leukocyte infiltration in brains of infected mice; nevertheless, astrogliosis, an indicator of BI, with 78.9~142.0-fold increases in GFAP expression was present. Meanwhile, markedly increased levels of other BIAB proteins including TGF-β1, S100B, NF-L, tTG, AβPP, and tau, with increases ranging 2.0~12.0-fold were found, although their corresponding mRNA expressions were not found to be present at 8 wpi. Concomitantly, UPS impairment was evidenced by the overexpression of conjugated ubiquitin and ubiquitin in the brain. Conclusion Further studies are needed to determine whether there is an increased risk of CT progression into neurodegenerative disease because neurodegeneration-associated AβPP and phosphorylated tau emerged in the brain.
Collapse
Affiliation(s)
- Chien-Wei Liao
- Institute of Tropical Medicine, National Yang-Ming University School of Medicine, 155 Li-Nong St,, Sec, 2, Taipei 112, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
90
|
Cullen DK, Stabenfeldt SE, Simon CM, Tate CC, LaPlaca MC. In vitro neural injury model for optimization of tissue-engineered constructs. J Neurosci Res 2008; 85:3642-51. [PMID: 17671988 DOI: 10.1002/jnr.21434] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Stem cell transplantation is a promising approach for the treatment of traumatic brain injury, although the therapeutic benefits are limited by a high degree of donor cell death. Tissue engineering is a strategy to improve donor cell survival by providing structural and adhesive support. However, optimization prior to clinical implementation requires expensive and time-consuming in vivo studies. Accordingly, we have developed a three-dimensional (3-D) in vitro model of the injured host-transplant interface that can be used as a test bed for high-throughput evaluation of tissue-engineered strategies. The neuronal-astrocytic cocultures in 3-D were subjected to mechanical loading (inducing cell death and specific astrogliotic alterations) or to treatment with transforming growth factor-beta1 (TGF-beta1), inducing astrogliosis without affecting viability. Neural stem cells (NSCs) were then delivered to the cocultures. A sharp increase in the number of TUNEL(+) donor cells was observed in the injured cocultures compared to that in the TGF-beta1-treated and control cocultures, suggesting that factors related to mechanical injury, but not strictly astrogliosis, were detrimental to donor cell survival. We then utilized the mechanically injured cocultures to evaluate a methylcellulose-laminin (MC-LN) scaffold designed to reduce apoptosis. When NSCs were co-delivered with MC alone or MC-LN to the injured cocultures, the number of caspase(+) donor cells significantly decreased compared to that with vehicle delivery (medium). Collectively, these results demonstrate the utility of an in vitro model as a pre-animal test bed and support further investigation of a tissue-engineering approach for chaperoned NSC delivery targeted to improve donor cell survival in neural transplantation.
Collapse
Affiliation(s)
- D Kacy Cullen
- Wallace H. Coulter Department of Biomedical Engineering, Institute for Bioengineering and Bioscience, Laboratory for Neuroengineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA
| | | | | | | | | |
Collapse
|
91
|
Laird MD, Vender JR, Dhandapani KM. Opposing Roles for Reactive Astrocytes following Traumatic Brain Injury. Neurosignals 2008; 16:154-64. [DOI: 10.1159/000111560] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
92
|
Franz MG, Steed DL, Robson MC. Optimizing healing of the acute wound by minimizing complications. Curr Probl Surg 2007; 44:691-763. [PMID: 18036992 DOI: 10.1067/j.cpsurg.2007.07.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Michael G Franz
- University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
93
|
Moreels M, Vandenabeele F, Dumont D, Robben J, Lambrichts I. Alpha-smooth muscle actin (alpha-SMA) and nestin expression in reactive astrocytes in multiple sclerosis lesions: potential regulatory role of transforming growth factor-beta 1 (TGF-beta1). Neuropathol Appl Neurobiol 2007; 34:532-46. [PMID: 18005096 DOI: 10.1111/j.1365-2990.2007.00910.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS Rapid and extensive activation of astrocytes occurs subsequent to many forms of central nervous system (CNS) injury. Recent studies have revealed that the expression profile of reactive astrocytes comprises antigens present during astrocyte development. Elevated levels of the injury-related cytokine transforming growth factor-beta 1 (TGF-beta1) secreted by microglial cells and invading macrophages have been correlated with the reactive astrocyte phenotype and glial scar formation. METHODS In the present study, the expression profile of alpha-smooth muscle actin (alpha-SMA) and nestin, two cytoskeletal proteins expressed during astrocyte development, was studied in multiple sclerosis (MS) lesions. In addition, alpha-SMA and nestin organization and expression were analysed in rat primary astrocyte cultures in response to TGF-beta1. RESULTS In active lesions and in the hypercellular margin of chronic active MS lesions, immunostaining for alpha-SMA revealed a subpopulation of reactive astrocytes, whereas the majority of reactive astrocytes expressed nestin. alpha-SMA and nestin expressing reactive astrocytes were in close relationship with TGF-beta1 expressing macrophages or microglia. In addition, TGF-beta1 expression within alpha-SMA or nestin expressing astrocytes was also detected. Our in vitro experiments showed that TGF-beta1 regulated the organization and expression of alpha-SMA and nestin in astrocytes. CONCLUSIONS Reactive astrocytes in active MS lesions re-express alpha-SMA and nestin. We suggest that the in vivo re-expression might be under regulation of TGF-beta1. These results further clarify the regulation of astrocyte activity after CNS injury, which is important for the astroglial adaptation to pathological situations.
Collapse
Affiliation(s)
- M Moreels
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences, B-3590 Diepenbeek, Belgium.
| | | | | | | | | |
Collapse
|
94
|
Endogenous transforming growth factor beta 1 suppresses inflammation and promotes survival in adult CNS. J Neurosci 2007; 27:11201-13. [PMID: 17942715 DOI: 10.1523/jneurosci.2255-07.2007] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Transforming growth factor beta1 (TGFbeta1) is a pleiotropic cytokine with potent neurotrophic and immunosuppressive properties that is upregulated after injury, but also expressed in the normal nervous system. In the current study, we examined the regulation of TGFbeta1 and the effects of TGFbeta1 deletion on cellular response in the uninjured adult brain and in the injured and regenerating facial motor nucleus. To avoid lethal autoimmune inflammation within 3 weeks after birth in TGFbeta1-deficient mice, this study was performed on a T- and B-cell-deficient RAG2-/- background. Compared with wild-type siblings, homozygous deletion of TGFbeta1 resulted in an extensive inflammatory response in otherwise uninjured brain parenchyma. Astrocytes increased in GFAP and CD44 immunoreactivity; microglia showed proliferative activity, expression of phagocytosis-associated markers [alphaXbeta2, B7.2, and MHC1 (major histocompatibility complex type 1)], and reduced branching. Ultrastructural analysis revealed focal blockade of axonal transport, perinodal damming of axonal organelles, focal demyelination, and myelin debris in granule-rich, phagocytic microglia. After facial axotomy, absence of TGFbeta1 led to a fourfold increase in neuronal cell death (52 vs 13%), decreased central axonal sprouting, and significant delay in functional recovery. It also interfered with the microglial response, resulting in a diminished expression of early activation markers [ICAM1 (intercellular adhesion molecule 1), alpha6beta1, and alphaMbeta2] and reduced proliferation. In line with axonal and glial findings in the otherwise uninjured CNS, absence of endogenous TGFbeta1 also caused an approximately 10% reduction in the number of normal motoneurons, pointing to an ongoing and potent trophic role of this anti-inflammatory cytokine in the normal as well as in the injured brain.
Collapse
|
95
|
Vugler A, Lawrence J, Walsh J, Carr A, Gias C, Semo M, Ahmado A, da Cruz L, Andrews P, Coffey P. Embryonic stem cells and retinal repair. Mech Dev 2007; 124:807-29. [PMID: 17881192 DOI: 10.1016/j.mod.2007.08.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 08/07/2007] [Accepted: 08/07/2007] [Indexed: 12/11/2022]
Abstract
In this review we examine the potential of embryonic stem cells (ESCs) for use in the treatment of retinal diseases involving photoreceptors and retinal pigment epithelium (RPE). We outline the ontogenesis of target retinal cell types (RPE, rods and cones) and discuss how an understanding of developmental processes can inform our manipulation of ESCs in vitro. Due to their potential for cellular therapy, special emphasis is placed upon the derivation and culture of human embryonic stem cells (HESCs) and their differentiation towards a retinal phenotype. In terms of achieving this goal, we suggest that much of the success to date reflects permissive in vitro environments provided by established protocols for HESC derivation, propagation and neural differentiation. In addition, we summarise key factors that may be important for enhancing efficiency of retinal cell-type derivation from HESCs. The retina is an amenable component of the central nervous system (CNS) and as such, diseases of this structure provide a realistic target for the application of HESC-derived cellular therapy to the CNS. In order to further this goal, the second component of our review focuses on the cellular and molecular cues within retinal environments that may influence the survival and behaviour of transplanted cells. Our analysis considers both the potential barriers to transplant integration in the retina itself together with the remodelling in host visual centres that is known to accompany retinal dystrophy.
Collapse
Affiliation(s)
- Anthony Vugler
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V9EL, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Tsunoda I, Libbey JE, Fujinami RS. TGF-beta1 suppresses T cell infiltration and VP2 puff B mutation enhances apoptosis in acute polioencephalitis induced by Theiler's virus. J Neuroimmunol 2007; 190:80-9. [PMID: 17804084 PMCID: PMC2128758 DOI: 10.1016/j.jneuroim.2007.07.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 07/31/2007] [Accepted: 07/31/2007] [Indexed: 02/08/2023]
Abstract
GDVII and DA strains of Theiler's murine encephalomyelitis virus (TMEV) differ in VP2 puff B. One week after GDVII virus infection, SJL/J mice had large numbers of TUNEL+ apoptotic cells with a relative lack of T cell infiltration in the brain. DA viruses with mutation in puff B induced higher levels of apoptosis than wild-type DA virus, but levels of inflammation in brains were similar between DA and DA virus mutants. The difference in inflammation among TMEVs could be due to TGF-beta1 expression that was seen only in GDVII virus infection and negatively correlated with CD3+ T cell infiltration.
Collapse
Affiliation(s)
- Ikuo Tsunoda
- Department of Pathology, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
97
|
Li HP, Homma A, Sango K, Kawamura K, Raisman G, Kawano H. Regeneration of nigrostriatal dopaminergic axons by degradation of chondroitin sulfate is accompanied by elimination of the fibrotic scar and glia limitans in the lesion site. J Neurosci Res 2007; 85:536-47. [PMID: 17154415 DOI: 10.1002/jnr.21141] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Chondroitin sulfate increases around a lesion site after central nervous system injury and is believed to be an impediment to axonal regeneration, because administration of chondroitinase ABC, a chondroitin sulfate-degrading enzyme, promotes axonal regeneration of central neurons. To examine the physiological role of chondroitin sulfate up-regulation after injury, the nigrostriatal dopaminergic axons were unilaterally transected in mice, and chondroitinase ABC was then injected into the lesion site. In mice transected only, tyrosine hydroxylase-immunoreactive axons did not extend across the lesion at 1 or 2 weeks after the transection. Immunoreactivities of chondroitin sulfate side chains and core protein of NG2 proteoglycan increased in and around the lesion site, and a fibrotic scar containing type IV collagen deposits developed in the lesion center. In contrast, in mice transected and treated with chondroitinase ABC, numerous tyrosine hydroxylase-immunoreactive axons were regenerated across the lesion at 1 and 2 weeks after the transection. In these animals, chondroitin sulfate immunoreactivity remarkably decreased, and immunoreactivity of 2B6 antibody, which recognizes the stub of degraded chondroitin sulfate side chains, was enhanced. Furthermore, the formation of a fibrotic scar and a glia limitans that surrounds the former was completely prevented, although type IV collagen immunoreactivity remained in newly formed blood capillaries around the lesion site. We discuss the question of whether the chondroitin sulfate is acting as a direct inhibitor of axonal regeneration or whether the observed changes are due to a prevention of the fibrotic scar formation and a rearrangement of astrocytic membranes.
Collapse
Affiliation(s)
- Hong-Peng Li
- Department of Developmental Morphology, Tokyo Metropolitan Institute for Neuroscience, Fuchu, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
98
|
Cullen DK, Simon CM, LaPlaca MC. Strain rate-dependent induction of reactive astrogliosis and cell death in three-dimensional neuronal-astrocytic co-cultures. Brain Res 2007; 1158:103-15. [PMID: 17555726 PMCID: PMC3179863 DOI: 10.1016/j.brainres.2007.04.070] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 04/12/2007] [Accepted: 04/13/2007] [Indexed: 02/08/2023]
Abstract
A mechanical insult to the brain drastically alters the microenvironment as specific cell types become reactive in an effort to sequester severely damaged tissue. Although injury-induced astrogliosis has been investigated, the relationship between well-defined biomechanical inputs and acute astrogliotic alterations is not well understood. We evaluated the effects of strain rate on cell death and astrogliosis using a three-dimensional (3-D) in vitro model of neurons and astrocytes within a bioactive matrix. At 21 days post-plating, co-cultures were deformed to 0.50 shear strain at strain rates of 1, 10, or 30 s(-1). We found that cell death and astrogliotic profiles varied differentially based on strain rate at 2 days post-insult. Significant cell death was observed after moderate (10 s(-1)) and high (30 s(-1)) rate deformation, but not after quasi-static (1 s(-1)) loading. The vast majority of cell death occurred in neurons, suggesting that these cells are more susceptible to high rate shear strains than astrocytes for the insult parameters used here. Injury-induced astrogliosis was compared to co-cultures treated with transforming growth factor beta, which induced robust astrocyte hypertrophy and increased glial fibrillary acidic protein (GFAP) and chondroitin sulfate proteoglycans (CSPGs). Quasi-static loading resulted in increased cell density and CSPG secretion. Moderate rate deformation increased cell density, GFAP reactivity, and hypertrophic process density. High rate deformation resulted in increased GFAP reactivity; however, other astrogliotic alterations were not observed at this time-point. These results demonstrate that the mode and degree of astrogliosis depend on rate of deformation, demonstrating astrogliotic augmentation at sub-lethal injury levels as well as levels inducing cell death.
Collapse
Affiliation(s)
- Daniel Kacy Cullen
- Coulter Department of Biomedical Engineering Georgia Institute of Technology/Emory University, 313 Ferst Dr., Atlanta, GA 30332-0535 Ph: 404-385-5051 Fx: 404-385-5044
| | - Crystal Michelle Simon
- Coulter Department of Biomedical Engineering Georgia Institute of Technology/Emory University, 313 Ferst Dr., Atlanta, GA 30332-0535 Ph: 404-385-5051 Fx: 404-385-5044
| | - Michelle Camille LaPlaca
- Coulter Department of Biomedical Engineering Georgia Institute of Technology/Emory University, 313 Ferst Dr., Atlanta, GA 30332-0535 Ph: 404-385-0629 Fx: 404-385-5044
| |
Collapse
|
99
|
Ishii K, Nakamura M, Dai H, Finn TP, Okano H, Toyama Y, Bregman BS. Neutralization of ciliary neurotrophic factor reduces astrocyte production from transplanted neural stem cells and promotes regeneration of corticospinal tract fibers in spinal cord injury. J Neurosci Res 2007; 84:1669-81. [PMID: 17044031 DOI: 10.1002/jnr.21079] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Transplantation of neural stem cells (NSC) into lesioned spinal cord offers the potential to increase regeneration by replacing lost neurons or oligodendrocytes. The majority of transplanted NSC, however, typically differentiate into astrocytes that may exacerbate glial scar formation. Here we show that blocking of ciliary neurotrophic factor (CNTF) with anti-CNTF antibodies after NSC transplant into spinal cord injury (SCI) resulted in a reduction of glial scar formation by 8 weeks. Treated animals had a wider distribution of transplanted NSC compared with the control animals. The NSC around the lesion coexpressed either nestin or markers for neurons, oligodendrocytes, or astrocytes. Approximately 20% fewer glial fibrillary acidic protein-positive/bromodeoxyuridine (BrdU)-positive cells were seen at 2, 4, and 8 weeks postgrafting, compared with the control animals. Furthermore, more CNPase(+)/BrdU(+) cells were detected in the treated group at 4 and 8 weeks. These CNPase(+) or Rip(+) mature oligodendrocytes were seen in close proximity to host corticospinal tract (CST) and 5HT(+) serotonergic axon. We also demonstrate that the number of regenerated CST fibers both at the lesion and at caudal sites in treated animals was significantly greater than that in the control animals at 8 weeks. We suggest that the blocking of CNTF at the beginning of SCI provides a more favorable environment for the differentiation of transplanted NSC and the regeneration of host axons.
Collapse
Affiliation(s)
- Ken Ishii
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA.
| | | | | | | | | | | | | |
Collapse
|
100
|
Zurn AD, Bandtlow CE. Regeneration failure in the CNs: cellular and molecular mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 557:54-76. [PMID: 16955704 DOI: 10.1007/0-387-30128-3_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Anne D Zurn
- Department of Experimental Surgery, Lausanne University Hospital, Faculty of Biology and Medicine, Switzerland
| | | |
Collapse
|