51
|
Expression, Distribution and Role of Aquaporin Water Channels in Human and Animal Stomach and Intestines. Int J Mol Sci 2016; 17:ijms17091399. [PMID: 27589719 PMCID: PMC5037679 DOI: 10.3390/ijms17091399] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/09/2016] [Accepted: 08/22/2016] [Indexed: 12/22/2022] Open
Abstract
Stomach and intestines are involved in the secretion of gastrointestinal fluids and the absorption of nutrients and fluids, which ensure normal gut functions. Aquaporin water channels (AQPs) represent a major transcellular route for water transport in the gastrointestinal tract. Until now, at least 11 AQPs (AQP1–11) have been found to be present in the stomach, small and large intestines. These AQPs are distributed in different cell types in the stomach and intestines, including gastric epithelial cells, gastric glands cells, absorptive epithelial cells (enterocytes), goblet cells and Paneth cells. AQP1 is abundantly distributed in the endothelial cells of the gastrointestinal tract. AQP3 and AQP4 are mainly distributed in the basolateral membrane of epithelial cells in the stomach and intestines. AQP7, AQP8, AQP10 and AQP11 are distributed in the apical of enterocytes in the small and large intestines. Although AQP-null mice displayed almost no phenotypes in gastrointestinal tracts, the alterations of the expression and localization of these AQPs have been shown to be associated with the pathology of gastrointestinal disorders, which suggests that AQPs play important roles serving as potential therapeutic targets. Therefore, this review provides an overview of the expression, localization and distribution of AQPs in the stomach, small and large intestine of human and animals. Furthermore, this review emphasizes the potential roles of AQPs in the physiology and pathophysiology of stomach and intestines.
Collapse
|
52
|
Pelagalli A, Squillacioti C, Mirabella N, Meli R. Aquaporins in Health and Disease: An Overview Focusing on the Gut of Different Species. Int J Mol Sci 2016; 17:ijms17081213. [PMID: 27472320 PMCID: PMC5000611 DOI: 10.3390/ijms17081213] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/14/2016] [Accepted: 07/14/2016] [Indexed: 12/11/2022] Open
Abstract
Aquaporins (AQPs) play a pivotal role in gut homeostasis since their distribution and function is modulated both in physiological and in pathophysiological conditions. The transport of water and solutes through gut epithelia is essential for osmoregulation and digestive and absorptive functions. This passage is regulated by different AQP isoforms and characterized by their peculiar distribution in the gastrointestinal tract. To date, AQP localization has been identified in the gut and associated organs of several mammalian species by different techniques (immunohistochemical, western blotting, and RT-PCR). The present review describes the modulation of AQP expression, distribution, and function in gut pathophysiology. At the same time, the comparative description of AQP in animal species sheds light on the full range of AQP functions and the screening of their activity as transport modulators, diagnostic biomarkers, and drug targets. Moreover, the phenotype of knockout mice for several AQPs and their compensatory role and the use of specific AQP inhibitors have been also reviewed. The reported data could be useful to design future research in both basic and clinical fields.
Collapse
Affiliation(s)
- Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy.
- Institute of Biostructures and Bioimages, National Research Council, Via De Amicis 95, 80131 Naples, Italy.
| | - Caterina Squillacioti
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Via Veterinaria 1, 80137 Naples, Italy.
| | - Nicola Mirabella
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Via Veterinaria 1, 80137 Naples, Italy.
| | - Rosaria Meli
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy.
| |
Collapse
|
53
|
Erokhova L, Horner A, Ollinger N, Siligan C, Pohl P. The Sodium Glucose Cotransporter SGLT1 Is an Extremely Efficient Facilitator of Passive Water Transport. J Biol Chem 2016; 291:9712-20. [PMID: 26945065 PMCID: PMC4850308 DOI: 10.1074/jbc.m115.706986] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/04/2016] [Indexed: 11/06/2022] Open
Abstract
The small intestine is void of aquaporins adept at facilitating vectorial water transport, and yet it reabsorbs ∼8 liters of fluid daily. Implications of the sodium glucose cotransporter SGLT1 in either pumping water or passively channeling water contrast with its reported water transporting capacity, which lags behind that of aquaporin-1 by 3 orders of magnitude. Here we overexpressed SGLT1 in MDCK cell monolayers and reconstituted the purified transporter into proteoliposomes. We observed the rate of osmotic proteoliposome deflation by light scattering. Fluorescence correlation spectroscopy served to assess (i) SGLT1 abundance in both vesicles and plasma membranes and (ii) flow-mediated dilution of an aqueous dye adjacent to the cell monolayer. Calculation of the unitary water channel permeability, pf, yielded similar values for cell and proteoliposome experiments. Neither the absence of glucose or Na(+), nor the lack of membrane voltage in vesicles, nor the directionality of water flow grossly altered pf Such weak dependence on protein conformation indicates that a water-impermeable occluded state (glucose and Na(+) in their binding pockets) lasts for only a minor fraction of the transport cycle or, alternatively, that occlusion of the substrate does not render the transporter water-impermeable as was suggested by computational studies of the bacterial homologue vSGLT. Although the similarity between the pf values of SGLT1 and aquaporin-1 makes a transcellular pathway plausible, it renders water pumping physiologically negligible because the passive flux would be orders of magnitude larger.
Collapse
Affiliation(s)
- Liudmila Erokhova
- From the Institute of Biophysics, Johannes Kepler University Linz, 4020 Linz, Austria
| | - Andreas Horner
- From the Institute of Biophysics, Johannes Kepler University Linz, 4020 Linz, Austria
| | - Nicole Ollinger
- From the Institute of Biophysics, Johannes Kepler University Linz, 4020 Linz, Austria
| | - Christine Siligan
- From the Institute of Biophysics, Johannes Kepler University Linz, 4020 Linz, Austria
| | - Peter Pohl
- From the Institute of Biophysics, Johannes Kepler University Linz, 4020 Linz, Austria
| |
Collapse
|
54
|
Patil RV, Xu S, van Hoek AN, Rusinko A, Feng Z, May J, Hellberg M, Sharif NA, Wax MB, Irigoyen M, Carr G, Brittain T, Brown P, Colbert D, Kumari S, Varadaraj K, Mitra AK. Rapid Identification of Novel Inhibitors of the Human Aquaporin-1 Water Channel. Chem Biol Drug Des 2016; 87:794-805. [PMID: 26685080 DOI: 10.1111/cbdd.12713] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 11/28/2015] [Accepted: 12/04/2015] [Indexed: 01/26/2023]
Abstract
Aquaporins (AQPs) are a family of membrane proteins that function as channels facilitating water transport in response to osmotic gradients. These play critical roles in several normal physiological and pathological states and are targets for drug discovery. Selective inhibition of the AQP1 water channel may provide a new approach for the treatment of several disorders including ocular hypertension/glaucoma, congestive heart failure, brain swelling associated with a stroke, corneal and macular edema, pulmonary edema, and otic disorders such as hearing loss and vertigo. We developed a high-throughput assay to screen a library of compounds as potential AQP1 modulators by monitoring the fluorescence dequenching of entrapped calcein in a confluent layer of AQP1-overexpressing CHO cells that were exposed to a hypotonic shock. Promising candidates were tested in a Xenopus oocyte-swelling assay, which confirmed the identification of two lead classes of compounds belonging to aromatic sulfonamides and dihydrobenzofurans with IC50 s in the low micromolar range. These selected compounds directly inhibited water transport in AQP1-enriched stripped erythrocyte ghosts and in proteoliposomes reconstituted with purified AQP1. Validation of these lead compounds, by the three independent assays, establishes a set of attractive AQP1 blockers for developing novel, small-molecule functional modulators of human AQP1.
Collapse
Affiliation(s)
- Rajkumar V Patil
- Department of Ophthalmology, Novartis Institutes of Biomedical Research Institute, Fort Worth, TX, 76134, USA
| | - Shouxi Xu
- Department of Ophthalmology, Novartis Institutes of Biomedical Research Institute, Fort Worth, TX, 76134, USA
| | - Alfred N van Hoek
- Department of Nephrology, School of Medicine, University of Utah, Salt Lake City, UT, 84132, USA
| | - Andrew Rusinko
- Department of Ophthalmology, Novartis Institutes of Biomedical Research Institute, Fort Worth, TX, 76134, USA
| | - Zixia Feng
- Department of Ophthalmology, Novartis Institutes of Biomedical Research Institute, Fort Worth, TX, 76134, USA
| | - Jesse May
- Department of Ophthalmology, Novartis Institutes of Biomedical Research Institute, Fort Worth, TX, 76134, USA
| | - Mark Hellberg
- Department of Ophthalmology, Novartis Institutes of Biomedical Research Institute, Fort Worth, TX, 76134, USA
| | - Najam A Sharif
- Department of Ophthalmology, Novartis Institutes of Biomedical Research Institute, Fort Worth, TX, 76134, USA
| | - Martin B Wax
- Department of Ophthalmology and Visual Sciences, University of Texas Southwestern Medical School, Dallas, TX, 75390, USA
| | | | - Grant Carr
- AMRI Bothell Research Center, Bothell, WA, 98021, USA
| | - Tom Brittain
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Peter Brown
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Damon Colbert
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Sindhu Kumari
- Department of Physiology & Biophysics, Health Sciences Center, State University of New York, Stony Brook, NY, 11794, USA
| | - Kulandaiappan Varadaraj
- Department of Physiology & Biophysics, Health Sciences Center, State University of New York, Stony Brook, NY, 11794, USA
| | - Alok K Mitra
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| |
Collapse
|
55
|
Immunohistochemical localization of aquaporin 4 (AQP4) in the porcine gastrointestinal tract. ACTA VET BRNO 2015. [DOI: 10.2754/avb201584040321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The water channel aquaporin-4 (AQP4) is a protein widely expressed on plasma membrane of a variety of epithelial cells. In this study we investigated the expression of AQP4 in the gastrointestinal tract of the pig using immunohistochemical staining. We found no presence of AQP4 in the different regions of the pig stomach. In the porcine small intestine moderate immunoreactivity to AQP4 was detected in enterocytes (along the villi and in the bottom of the crypts), duodenal Brunner’s glands and in enteric ganglia in cells lying in close vicinity to myenteric as well as submucous neurons. In superficial epithelial cells of the colonic mucosa as well as of caecal and colonic glands a very strong immunoreactivity to AQP4 was found. Both in the myenteric and submucous ganglia of the large intestine AQP4-positive cells surrounding enteric neurons were observed. We concluded that AQP4 expression in the porcine gastrointestinal tract showed some species-dependent differences in relation to other species. Based on the presented distribution pattern of AQP4, it is likely that the aquaporin plays a role in mucous (but not acid) secretion and intestinal absorptive processes in the pig.
Collapse
|
56
|
Squillacioti C, De Luca A, Pero ME, Vassalotti G, Lombardi P, Avallone L, Mirabella N, Pelagalli A. Effect of colostrum and milk on small intestine expression of AQP4 and AQP5 in newborn buffalo calves. Res Vet Sci 2015; 103:149-55. [PMID: 26679810 DOI: 10.1016/j.rvsc.2015.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 07/16/2015] [Accepted: 10/17/2015] [Indexed: 01/17/2023]
Abstract
Functional studies indicate differences in newborn gastrointestinal morphology and physiology after a meal. Both water and solutes transfer across the intestinal epithelial membrane appear to occur via aquaporins (AQPs). Given that the physiological roles of AQP4 and AQP5 in the developing intestine have not been fully established, the objective of this investigation was to determine their distribution, expression and respective mRNA in the small intestine of colostrums-suckling buffalo calves by using immunohistochemistry, Western blot, and reverse transcriptase-PCR analysis. Results showed different tissue distribution between AQP4 and AQP5 with the presence of the former along the enteric neurons and the latter in the endocrine cells. Moreover, their expression levels were high in the ileum of colostrum-suckling buffalo calves. The data present a link between feeding, intestinal development and water homeostasis, suggesting the involvement of these channel proteins in intestinal permeability and fluid secretion/absorption during this stage of development after birth.
Collapse
Affiliation(s)
- C Squillacioti
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Veterinaria 1, Naples 80137, Italy
| | - A De Luca
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Veterinaria 1, Naples 80137, Italy
| | - M E Pero
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Veterinaria 1, Naples 80137, Italy
| | - G Vassalotti
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Veterinaria 1, Naples 80137, Italy
| | - P Lombardi
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Veterinaria 1, Naples 80137, Italy
| | - L Avallone
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Veterinaria 1, Naples 80137, Italy
| | - N Mirabella
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Veterinaria 1, Naples 80137, Italy
| | - A Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini 5, Naples 80131, Italy; Institute of Biostructures and Bioimages, National Research Council, Via De Amicis 95, Naples 80131, Italy.
| |
Collapse
|
57
|
Pelagalli A, Squillacioti C, De Luca A, Pero ME, Vassalotti G, Lombardi P, Avallone L, Mirabella N. Expression and Localization of Aquaporin 4 and Aquaporin 5 along the Large Intestine of Colostrum-Suckling Buffalo Calves. Anat Histol Embryol 2015; 45:418-427. [PMID: 26429198 DOI: 10.1111/ahe.12210] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 09/05/2015] [Indexed: 02/06/2023]
Abstract
Aquaporins (AQPs) are membrane channel proteins that play a role in regulating water permeability in many tissues. To date, seven isoforms of AQPs have been reported in the gastrointestinal tract in different mammalian species. In contrast, both tissue distribution and expression of AQPs are unknown in the buffalo. The purpose of this study was to investigate the expression of both AQP4 and AQP5 mRNAs and their relative proteins in the large intestinal tracts of buffalo calves after colostrum suckling using reverse transcriptase polymerase chain reaction (RT-PCR), Western blotting and immunohistochemistry. Our results revealed a diversified tissue AQP4 and AQP5 immunolocalization accompanied by their highest expression in the tissues of colostrum-suckling buffalo calves confirmed by Western blotting. In particular, AQP4 was distributed along the endothelium and enterocytes while AQP5 in the endocrine cells. These findings provide direct evidence for AQP4 and AQP5 expression in the large intestine, suggesting that different AQPs collaborate functionally and distinctively in water handling during intestinal development, especially during the first period after delivery.
Collapse
Affiliation(s)
- A Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini 5, Naples, 80131, Italy. .,Institute of Biostructures and Bioimages, National Research Council, Via De Amicis 95, Naples, 80131, Italy.
| | - C Squillacioti
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Veterinaria, Naples, 80137, Italy
| | - A De Luca
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Veterinaria, Naples, 80137, Italy
| | - M E Pero
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Veterinaria, Naples, 80137, Italy
| | - G Vassalotti
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Veterinaria, Naples, 80137, Italy
| | - P Lombardi
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Veterinaria, Naples, 80137, Italy
| | - L Avallone
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Veterinaria, Naples, 80137, Italy
| | - N Mirabella
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Veterinaria, Naples, 80137, Italy
| |
Collapse
|
58
|
Chen JA, Chang LR, Feng GM, Lee ST, Hsieh CY, Jeng SF, Huang WS. Stress alters the expression of aquaporins in cultured rat intestinal epithelial cells. Exp Ther Med 2015; 10:1967-1972. [PMID: 26640581 DOI: 10.3892/etm.2015.2771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 09/01/2015] [Indexed: 12/24/2022] Open
Abstract
Aquaporins (AQPs) are widely-expressed small water channel proteins that provide the major route for water transport across plasma membranes in various cell types. Although the quantity of water transported in the intestinal tract is second only to that in the kidney, the precise role of AQPs in this organ remains largely uncertain. The present study reports the effects of hypertonic stress and ischemia/reperfusion injury on the expression of AQPs in intestinal epithelial cells. Cultured rat intestinal epithelial cells were incubated in 300 mM mannitol-containing, hypertonic culture medium or subjected to simulated ischemia/reperfusion treatment. The cell viability was evaluated by MTT assay, and the expression of AQPs was determined by semi-quantitative reverse transcription polymerase chain reaction and western blotting. Despite reduced viability, the cells exposed to hypertonic stress for 16 h demonstrated enhanced expression of AQP1 mRNA and protein. AQP9 and glycosylated AQP11 proteins were also markedly upregulated. Ischemia alone did not affect the cell viability, but subsequent reperfusion significantly reduced viability. The mRNA expression levels of all the tested AQPs were not altered by ischemia alone or by ischemia/reperfusion; however, AQP8 protein was markedly reduced by ischemic injury. In addition, treatment with ischemia alone eradicated the normally-expressed, non-glycosylated AQP11 protein whilst inducing pronounced expression of the glycosylated form. These observations may indicate that AQPs function in the intestinal epithelia in response to stress.
Collapse
Affiliation(s)
- Jian-An Chen
- Division of Plastic Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung 802, Taiwan, R.O.C. ; Department of Plastic Surgery, E-DA Hospital, Kaohsiung 824, Taiwan, R.O.C
| | - Li-Ren Chang
- Department of Plastic Surgery, E-DA Hospital, Kaohsiung 824, Taiwan, R.O.C
| | - Guan-Ming Feng
- Department of Plastic Surgery, E-DA Hospital, Kaohsiung 824, Taiwan, R.O.C
| | - Shu-Ting Lee
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung 802, Taiwan, R.O.C
| | - Chien-Yan Hsieh
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung 802, Taiwan, R.O.C
| | - Seng-Feng Jeng
- Department of Plastic Surgery, E-DA Hospital, Kaohsiung 824, Taiwan, R.O.C
| | - Wen-Shyan Huang
- Division of Plastic Surgery, Kaohsiung Armed Forces General Hospital Zuoying Branch, Kaohsiung 813, Taiwan, R.O.C. ; Department of Surgery, National Defense Medical Center, Taipei 114, Taiwan, R.O.C
| |
Collapse
|
59
|
Beneficial effects of fluid resuscitation via the rectum on hemodynamic disorders and multiple organ injuries in an experimental severe acute pancreatitis model. Pancreatology 2015; 15:626-34. [PMID: 26424226 DOI: 10.1016/j.pan.2015.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 08/21/2015] [Accepted: 09/07/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Exaggerated hydration is harmful for patients with severe acute pancreatitis (SAP), and it can increase mortality rate. In this study, we investigated the role of fluid resuscitation via the rectum (FRVR) on the hemodynamic state and compared FRVR with intravenous fluid resuscitation (IVFR) on resuscitation effect and organ function in an early stage of SAP. METHODS We studied whether FRVR corrects hemodynamic disorders at an early stage of SAP in Spraque-Dawley (SD) rats and whether it mitigates organ dysfunction and whether FRVR is superior to IVFR. RESULTS In both IVFR and FRVR groups, we observed a rebound in the mean arterial pressure (MAP) after 5 h and 6 h of administration (p < 0.05), respectively. MAP of the FRVR group reached the same level as the SHAM group at the end of the treatment, with hematocrit declining compared with the non-fluid resuscitation (NFR) group (p < 0.05). A concomitant increase in abdominal ascites and the lung wet/dry ratio by IVFR was depressed in the FRVR group (p < 0.05). Liver function was ameliorated in both fluid resuscitation groups (p < 0.05), consistent with histopathological improvement. TNF-α in serum and MPO in the lungs and jejunum of the FRVR group were lower than the IVFR group (p < 0.05). Pancreas histopathological injuries were ameliorated by both IVFR and FRVR (p < 0.05). CONCLUSIONS Our findings suggested FRVR is a potential supplementary method for fluid management in an early stage of SAP and FRVR should be studied further.
Collapse
|
60
|
Bottino C, Vázquez M, Devesa V, Laforenza U. Impaired aquaporins expression in the gastrointestinal tract of rat after mercury exposure. J Appl Toxicol 2015; 36:113-20. [DOI: 10.1002/jat.3151] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 02/18/2015] [Accepted: 02/18/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Cinzia Bottino
- Department of Molecular Medicine, Human Physiology Unit; University of Pavia; Pavia Italy
| | - Marta Vázquez
- Institute of Agrochemistry and Food Technology (IATA-CSIC); Paterna Valencia Spain
| | - Vicenta Devesa
- Institute of Agrochemistry and Food Technology (IATA-CSIC); Paterna Valencia Spain
| | - Umberto Laforenza
- Department of Molecular Medicine, Human Physiology Unit; University of Pavia; Pavia Italy
| |
Collapse
|
61
|
Huang H, Liao D, Liang L, Song L, Zhao W. Genistein inhibits rotavirus replication and upregulates AQP4 expression in rotavirus-infected Caco-2 cells. Arch Virol 2015; 160:1421-33. [PMID: 25877820 DOI: 10.1007/s00705-015-2404-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 03/19/2015] [Indexed: 11/29/2022]
Abstract
Rotavirus (RV) is the primary cause of severe dehydrating gastroenteritis and acute diarrheal disease in infants and young children. Previous studies have revealed that genistein can inhibit the infectivity of enveloped or nonenveloped viruses. Although the biological properties of genistein are well studied, the mechanisms of action underlying their anti-rotavirus properties have not been fully elucidated. Here, we report that genistein significantly inhibits RV-Wa replication in vitro by repressing viral RNA transcripts, and possibly viral protein synthesis. Interestingly, we also found that aquaporin 4 (AQP4) mRNA and protein expression, which was downregulated in RV-infected Caco-2 cells, can be upregulated by genistein in a time- and dose-dependent manner. Further experiments confirmed that genistein triggers CREB phosphorylation through PKA activation and subsequently promotes AQP4 gene transcription. These findings suggest that the pathophysiological mechanism of RV infection involves decreased expression of AQP4 and that genistein may be a useful candidate for developing a new anti-RV strategy by inhibiting rotavirus replication and upregulating AQP4 expression via the cAMP/PKA/CREB signaling pathway. Further studies on the effect of genistein on RV-induced diarrhea are warranted.
Collapse
Affiliation(s)
- Haohai Huang
- School of Pharmacy, Guangdong Medical College, No. 1, Xincheng Road of Songshan Lake Science and Technology Industry Park, Dongguan, 523808, Guangdong, China
| | | | | | | | | |
Collapse
|
62
|
Kon R, Ikarashi N, Hayakawa A, Haga Y, Fueki A, Kusunoki Y, Tajima M, Ochiai W, Machida Y, Sugiyama K. Morphine-Induced Constipation Develops With Increased Aquaporin-3 Expression in the Colon via Increased Serotonin Secretion. Toxicol Sci 2015; 145:337-47. [PMID: 25766885 DOI: 10.1093/toxsci/kfv055] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aquaporin-3 (AQP3) is a water channel that is predominantly expressed in the colon, where it plays a critical role in the regulation of fecal water content. This study investigated the role of AQP3 in the colon in morphine-induced constipation. AQP3 expression levels in the colon were analyzed after oral morphine administration to rats. The degree of constipation was analyzed after the combined administration of HgCl(2) (AQP3 inhibitor) or fluoxetine (5-HT reuptake transporter [SERT] inhibitor) and morphine. The mechanism by which morphine increased AQP3 expression was examined in HT-29 cells. AQP3 expression levels in rat colon were increased during morphine-induced constipation. The combination of HgCl(2) and morphine improved morphine-induced constipation. Treatment with morphine in HT-29 cells did not change AQP3 expression. However, 5-HT treatment significantly increased the AQP3 expression level and the nuclear translocation of peroxisome proliferator-activated receptor gamma (PPARγ) 1 h after treatment. Pretreatment with fluoxetine significantly suppressed these increases. Fluoxetine pretreatment suppressed the development of morphine-induced constipation and the associated increase in AQP3 expression in the colon. The results suggest that morphine increases the AQP3 expression level in the colon, which promotes water absorption from the luminal side to the vascular side and causes constipation. This study also showed that morphine-induced 5-HT secreted from the colon was taken into cells by SERT and activated PPARγ, which subsequently increased AQP3 expression levels.
Collapse
Affiliation(s)
- Risako Kon
- Department of Clinical Pharmacokinetics, Hoshi University, Tokyo, Japan; and Division of Applied Pharmaceutical Education and Research, Hoshi University, Tokyo, Japan
| | - Nobutomo Ikarashi
- Department of Clinical Pharmacokinetics, Hoshi University, Tokyo, Japan; and Division of Applied Pharmaceutical Education and Research, Hoshi University, Tokyo, Japan Department of Clinical Pharmacokinetics, Hoshi University, Tokyo, Japan; and Division of Applied Pharmaceutical Education and Research, Hoshi University, Tokyo, Japan
| | - Akio Hayakawa
- Department of Clinical Pharmacokinetics, Hoshi University, Tokyo, Japan; and Division of Applied Pharmaceutical Education and Research, Hoshi University, Tokyo, Japan
| | - Yusuke Haga
- Department of Clinical Pharmacokinetics, Hoshi University, Tokyo, Japan; and Division of Applied Pharmaceutical Education and Research, Hoshi University, Tokyo, Japan
| | - Aika Fueki
- Department of Clinical Pharmacokinetics, Hoshi University, Tokyo, Japan; and Division of Applied Pharmaceutical Education and Research, Hoshi University, Tokyo, Japan
| | - Yoshiki Kusunoki
- Department of Clinical Pharmacokinetics, Hoshi University, Tokyo, Japan; and Division of Applied Pharmaceutical Education and Research, Hoshi University, Tokyo, Japan
| | - Masataka Tajima
- Department of Clinical Pharmacokinetics, Hoshi University, Tokyo, Japan; and Division of Applied Pharmaceutical Education and Research, Hoshi University, Tokyo, Japan
| | - Wataru Ochiai
- Department of Clinical Pharmacokinetics, Hoshi University, Tokyo, Japan; and Division of Applied Pharmaceutical Education and Research, Hoshi University, Tokyo, Japan
| | - Yoshiaki Machida
- Department of Clinical Pharmacokinetics, Hoshi University, Tokyo, Japan; and Division of Applied Pharmaceutical Education and Research, Hoshi University, Tokyo, Japan
| | - Kiyoshi Sugiyama
- Department of Clinical Pharmacokinetics, Hoshi University, Tokyo, Japan; and Division of Applied Pharmaceutical Education and Research, Hoshi University, Tokyo, Japan
| |
Collapse
|
63
|
Walpole ME, Schurmann BL, Górka P, Penner GB, Loewen ME, Mutsvangwa T. Serosal-to-mucosal urea flux across the isolated ruminal epithelium is mediated via urea transporter-B and aquaporins when Holstein calves are abruptly changed to a moderately fermentable diet. J Dairy Sci 2015; 98:1204-13. [PMID: 25529427 DOI: 10.3168/jds.2014-8757] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/21/2014] [Indexed: 12/16/2023]
Abstract
Urea transport (UT-B) proteins are known to facilitate urea movement across the ruminal epithelium; however, other mechanisms may be involved as well because inhibiting UT-B does not completely abolish urea transport. Of the aquaporins (AQP), which are a family of membrane-spanning proteins that are predominantly involved in the movement of water, AQP-3, AQP-7, and AQP-10 are also permeable to urea, but it is not clear if they contribute to urea transport across the ruminal epithelium. The objectives of this study were to determine (1) the functional roles of AQP and UT-B in the serosal-to-mucosal urea flux (Jsm-urea) across rumen epithelium; and (2) whether functional adaptation occurs in response to increased diet fermentability. Twenty-five Holstein steer calves (n=5) were assigned to a control diet (CON; 91.5% hay and 8.5% vitamin and mineral supplement) or a medium grain diet (MGD; 41.5% barley grain, 50% hay, and 8.5% vitamin and mineral) that was fed for 3, 7, 14, or 21 d. Calves were killed and ruminal epithelium was collected for mounting in Ussing chambers under short-circuit conditions and for analysis of mRNA abundance of UT-B and AQP-3, AQP-7, and AQP-10. To mimic physiologic conditions, the mucosal buffer (pH 6.2) contained no urea, whereas the serosal buffer (pH 7.4) contained 1 mM urea. The fluxes of (14)C-urea (Jsm-urea; 26 kBq/10 mL) and (3)H-mannitol (Jsm-mannitol; 37 kBq/10 mL) were measured, with Jsm-mannitol being used as an indicator of paracellular or hydrophilic movement. Serosal addition of phloretin (1 mM) was used to inhibit UT-B-mediated urea transport, whereas NiCl2 (1 mM) was used to inhibit AQP-mediated urea transport. Across treatments, the addition of phloretin or NiCl2 reduced the Jsm-urea from 116.5 to 54.0 and 89.5 nmol/(cm(2) × h), respectively. When both inhibitors were added simultaneously, Jsm-urea was further reduced to 36.8 nmol/(cm(2) × h). Phloretin-sensitive and NiCl2-sensitive Jsm-urea were not affected by diet. The Jsm-urea tended to increase linearly as the duration of adaptation to MGD increased, with the lowest Jsm-urea being observed in animals fed CON [107.7 nmol/(cm(2) × h)] and the highest for those fed the MGD for 21 d [144.2 nmol/(cm(2) × h)]. Phloretin-insensitive Jsm-urea tended to increase linearly as the duration of adaptation to MGD increased, whereas NiCl2-insensitive Jsm-urea tended to be affected by diet. Gene transcript abundance for AQP-3 and UT-B in ruminal epithelium increased linearly as the duration of MGD adaptation increased. For AQP-7 and AQP-10, gene transcript abundance in animals that were fed the MGD was greater compared with that of CON animals. These results demonstrate that both AQP and UT-B play significant functional roles in urea transport, and they may play a role in urea transport during dietary adaptation to fermentable carbohydrates.
Collapse
Affiliation(s)
- M E Walpole
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5A8
| | - B L Schurmann
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5A8
| | - P Górka
- Department of Animal Nutrition and Feed Management, University of Agriculture in Krakow, Krakow, Poland
| | - G B Penner
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5A8
| | - M E Loewen
- Department of Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5B4
| | - T Mutsvangwa
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5A8.
| |
Collapse
|
64
|
Ricanek P, Lunde LK, Frye SA, Støen M, Nygård S, Morth JP, Rydning A, Vatn MH, Amiry-Moghaddam M, Tønjum T. Reduced expression of aquaporins in human intestinal mucosa in early stage inflammatory bowel disease. Clin Exp Gastroenterol 2015; 8:49-67. [PMID: 25624769 PMCID: PMC4296881 DOI: 10.2147/ceg.s70119] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objectives The aim of this study was to investigate the relationship between aquaporin (AQP) water channel expression and the pathological features of early untreated inflammatory bowel disease (IBD) in humans. Methods Patients suspected to have IBD on the basis of predefined symptoms, including abdominal pain, diarrhea, and/or blood in stool for more than 10 days, were examined at the local hospital. Colonoscopy with biopsies was performed and blood samples were taken. Patients who did not meet the diagnostic criteria for IBD and who displayed no evidence of infection or other pathology in the gut were included as symptomatic non-IBD controls. AQP1, 3, 4, 5, 7, 8, and 9 messenger RNA (mRNA) levels were quantified in biopsies from the distal ileum and colon by quantitative real-time polymerase chain reaction. Protein expression of selected AQPs was assessed by confocal microscopy. Through multiple alignments of the deduced amino acid sequences, the putative three-dimensional structures of AQP1, 3, 7, and 8 were modeled. Results AQP1, 3, 7, and 8 mRNAs were detected in all parts of the intestinal mucosa. Notably, AQP1 and AQP3 mRNA levels were reduced in the ileum of patients with Crohn’s disease, and AQP7 and AQP8 mRNA levels were reduced in the ileum and the colon of patients with ulcerative colitis. Immunofluorescence confocal microscopy showed localization of AQP3, 7, and 8 at the mucosal epithelium, whereas the expression of AQP1 was mainly confined to the endothelial cells and erythrocytes. The reduction in the level of AQP3, 7, and 8 mRNA was confirmed by immunofluorescence, which also indicated a reduction of apical immunolabeling for AQP8 in the colonic surface epithelium and crypts of the IBD samples. This could indicate loss of epithelial polarity in IBD, leading to disrupted barrier function. Conclusion AQPs 1 and 8 and the aquaglyceroporins AQPs 3 and 7 are the AQPs predominantly expressed in the lower intestinal tract of humans. Their expression is significantly reduced in patients with IBD, and they are differentially expressed in specific bowel segments in patients with Crohn’s disease and ulcerative colitis. The data present a link between gut inflammation and water/solute homeostasis, suggesting that AQPs may play a significant role in IBD pathophysiology.
Collapse
Affiliation(s)
- Petr Ricanek
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway ; Department of Gastroenterology, Akershus University Hospital, Lørenskog and Campus Ahus, Institute of Clinical Medicine, University of Oslo, Lørenskog, Norway
| | - Lisa K Lunde
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Stephan A Frye
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Mari Støen
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Ståle Nygård
- Bioinformatics Core Facility, Institute for Medical Informatics, Oslo University Hospital and University of Oslo, Norway
| | - Jens P Morth
- Centre for Molecular Medicine, Nordic EMBL Partnership, University of Oslo, Norway ; Institute for Experimental Research, Oslo University Hospital (Ullevaal), Oslo, Norway
| | - Andreas Rydning
- Department of Gastroenterology, Akershus University Hospital, Lørenskog and Campus Ahus, Institute of Clinical Medicine, University of Oslo, Lørenskog, Norway
| | - Morten H Vatn
- EpiGen Institute, Campus Ahus, Institute of Clinical Medicine, University of Oslo, Lørenskog, Norway ; Section of Gastroenterology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | | | - Tone Tønjum
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway ; Department of Microbiology, University of Oslo, Oslo, Norway
| |
Collapse
|
65
|
Wang YH, Liu TT, Kung WM, Chen CC, Wen YT, Lin IC, Huang CC, Wei L. Expression of aquaporins in intestine after heat stroke. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:8742-53. [PMID: 26464618 DOI: pmid/26464618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 07/26/2015] [Indexed: 02/08/2023]
Abstract
Heat stroke (HS) has been shown to induce intestinal barrier dysfunction during whole body hyperthermia. HS-induced intestinal permeability change may result from modulation of aquaporin (AQP) expression, which subsequently regulates water homeostasis. This study aimed to evaluate AQP expression in the intestine of rats with HS at different recovery time points. Sprague-Dawley (SD) rats were exposed to an ambient temperature of 40 ± 0.5°C until a maximum core temperature of 40.5°C was attained. The small intestine was surgically removed and histologically examined, and AQP expression was determined by reverse transcription polymerase chain reaction and immunohistochemical staining. H&E staining revealed those intestinal villi were destroyed from HS0 to HS1 and rebuilt from HS3 to HS12. We further stain with activated caspase 3 found expressed at HS0 and back to normal at HS3. Investigation of AQP mRNA expression identified 10 genes. PCR results of AQP1, 3, 7, 8, and 11 transcripts were significantly higher in the HS group than in the sham group. Immunohistochemical staining showed a more than 11-fold increase in AQP3 and 11 expressions at HS0. AQP1 and 8 increased at HS1 and AQP7 increased at HS3 compared with those in the sham group. In this study, we found HS induced jejunum damage and cell apoptosis. AQPs were upregulation/downregulation after HS in different time point suggested that water/glycerol transport was important when hyperthermia occurred. Furthermore, the biological function of the AQP needs more exploration in response to HS.
Collapse
Affiliation(s)
- Yuan-Hung Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University Taipei, Taiwan, ROC ; Division of Urology and Surgery, Shuang Ho Hospital, Taipei Medical University New Taipei City, Taiwan, ROC
| | - Tsung-Ta Liu
- Department of Biology and Anatomy, National Defense Medical Center Taipei, Taiwan, ROC
| | - Woon-Man Kung
- Department of Exercise and Health Promotion, College of Education, Chinese Culture University Taipei, Taiwan, ROC
| | - Chun-Chi Chen
- Division of Nephrology, Tri-Service General Hospital, National Defense Medical Center Taipei, Taiwan, ROC
| | - Ya-Ting Wen
- Department of Neurosurgery, Taipei Medical University-Wan Fang Hospital Taipei, Taiwan, ROC
| | - I-Chan Lin
- Department of Ophthalmology, Shuang Ho Hospital, Taipei Medical University New Taipei, Taiwan, ROC
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University Taoyuan, Taiwan, ROC
| | - Li Wei
- Department of Neurosurgery, Taipei Medical University-Wan Fang Hospital Taipei, Taiwan, ROC
| |
Collapse
|
66
|
De Luca A, Vassalotti G, Pelagalli A, Pero ME, Squillacioti C, Mirabella N, Lombardi P, Avallone L. Expression and Localization of Aquaporin-1 Along the Intestine of Colostrum Suckling Buffalo Calves. Anat Histol Embryol 2014; 44:391-400. [PMID: 25348329 DOI: 10.1111/ahe.12157] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 09/23/2014] [Indexed: 11/30/2022]
Abstract
Aquaporin-1 (AQP1), a six-transmembrane domain protein, belongs to a highly conserved group of proteins called aquaporins known to regulate permeability across cell membranes. Although the role of AQP1 has been extensively studied, its specific activity along the gastrointestinal tract in animals during early postnatal development is poorly known. This study investigates the expression of AQP1 mRNA and protein in the small and large intestine of water buffalo calves after colostrum ingestion using reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, and cellular localization of AQP1 by immunohistochemistry. Our results revealed AQP1 immunoreactivity and the presence of the corresponding mRNA in all the examined tracts of the intestine but with a different cellular localization. Western blotting confirmed the presence of AQP1, with a more intense band in colostrum-suckling animals. These findings offer insights into AQP1 expression in the small and large intestine, suggesting its involvement in osmoregulation in gastrointestinal physiology particularly during the first week after birth in relation to specific maturation of intestinal structures.
Collapse
Affiliation(s)
- A De Luca
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Veterinaria, Naples, 80137, Italy
| | - G Vassalotti
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Veterinaria, Naples, 80137, Italy
| | - A Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini 5, Naples, 80131, Italy.,Institute of Biostructures and Bioimages, National Research Council, Via De Amicis 95, Naples, 80131, Italy
| | - M E Pero
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Veterinaria, Naples, 80137, Italy
| | - C Squillacioti
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Veterinaria, Naples, 80137, Italy
| | - N Mirabella
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Veterinaria, Naples, 80137, Italy
| | - P Lombardi
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Veterinaria, Naples, 80137, Italy
| | - L Avallone
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Veterinaria, Naples, 80137, Italy
| |
Collapse
|
67
|
The over-expression of aquaporin-1 alters erythroid gene expression in human erythroleukemia K562 cells. Tumour Biol 2014; 36:291-302. [PMID: 25252847 DOI: 10.1007/s13277-014-2614-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 09/09/2014] [Indexed: 10/24/2022] Open
Abstract
Aquaporin genes are differentially expressed in primitive versus definitive erythropoiesis. Our previous research results showed that over-expression of aquaporin-1 (AQP1) gene greatly promotes the erythroid differentiation of erythroleukemia K562 cells, using benzidine staining and quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) analysis for representative erythroid-related genes, including γ-globin. But the molecular mechanisms underlying erythroid-specific gene regulation remain unknown. In this study, we demonstrated that AQP1 induced hemoglobins expression and altered erythroid gene expression by microarray analysis in K562 cells. The retroviral expression vector of AQP1 (pBABE-puro-AQP1) was constructed and infected K562 cells to establish a stable AQP1 over-expression cell line (K562-AQP1). AQP1 over-expression effectively inhibited cell proliferation and induced cell growth arrest in G1 phase of K562 cells. Then microarray profile was applied to analyze the differentially expressed genes which involved the mechanism of AQP1 in erythroid differentiation induction. The DAVID functional annotation clustering tool was used to identify biological functions enriched with the differentially expressed genes (n = 466 genes) and to group genes into clusters based on their functional similarity. Significant enrichment of genes involved in "oxygen transporter activity" (p = 3.8E-7) including hemoglobins (HBD, HBG, HBB, HBE1, and HBQ1), HEMGN, and EBP42 were validated by qRT-PCR. Moreover, silencing of HEMGN by RNA interference in K562-AQP1 cells resulted in down-regulation of these genes. These data provide a better understanding of the role of AQP1 in erythroid differentiation, by promoting HEMGN induction and other potential signaling pathways associated with hemoglobin induction.
Collapse
|
68
|
Rhubarb tannins extract inhibits the expression of aquaporins 2 and 3 in magnesium sulphate-induced diarrhoea model. BIOMED RESEARCH INTERNATIONAL 2014; 2014:619465. [PMID: 25215286 PMCID: PMC4151595 DOI: 10.1155/2014/619465] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/14/2014] [Accepted: 07/21/2014] [Indexed: 01/29/2023]
Abstract
Tannins, a group of major active components of Chinese rhubarb and widely distributed in nature, have a significant antidiarrhoeal activity. Aquaporins (AQPs) 2 and 3 play important roles in regulating water transfer during diarrhoea. The present study aims to determine the effect of the total tannins extract of rhubarb on aquaporins (AQPs) 2 and 3 in diarrhoea mice and HT-29 cells both induced by magnesium sulphate (MgSO4). Our results showed that rhubarb tannins extract (RTE) significantly decreased the faecal water content in colon and evaluation index of defecation of diarrhoea mice. Interestingly, RTE could markedly reduce the mRNA and protein expression levels of AQPs 2 and 3 in apical and lateral mucosal epithelial cells in the colons of diarrhoea mice and HT-29 cells both induced by MgSO4 in a dose-dependent manner. Furthermore, RTE suppressed the production of cyclic monophosphate- (cAMP-) dependent protein kinase A catalytic subunits α (PKA C-α) and phosphorylated cAMP response element-binding protein (p-CREB, Ser133) in MgSO4-induced HT-29 cells. Our data showed for the first time that RTE inhibit AQPs 2 and 3 expression in vivo and in vitro via downregulating PKA/p-CREB signal pathway, which accounts for the antidiarrhoeal effect of RTE.
Collapse
|
69
|
Zheng YF, Liu CF, Lai WF, Xiang Q, Li ZF, Wang H, Lin N. The laxative effect of emodin is attributable to increased aquaporin 3 expression in the colon of mice and HT-29 cells. Fitoterapia 2014; 96:25-32. [DOI: 10.1016/j.fitote.2014.04.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 03/28/2014] [Accepted: 04/01/2014] [Indexed: 12/01/2022]
|
70
|
AQP1 expression in human gingiva and its correlation with periodontal and peri-implant tissue alterations. Acta Histochem 2014; 116:898-904. [PMID: 24698289 DOI: 10.1016/j.acthis.2014.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 11/22/2022]
Abstract
Aquaporins (AQPs) are a family of hydrophobic integral membrane proteins that function as transmembrane channels and play an important role in tissue homeostasis. Aquaporin-1 (AQP1), in particular, has been reported to be involved in several biological processes including inflammation, angiogenesis, wound healing and others. Periodontitis and peri-implantitis can be defined as inflammatory processes that affect the tissues surrounding a tooth or an osseointegrated implant, respectively. To date, there are limited data about the involvement of AQPs in these diseases. The aim of this study was to evaluate the possible link between the histomorphological alterations and the expression of AQP1 in healthy, pathological and healed periodontal and peri-implant gingival tissues. The results obtained showed that changes in organization of collagen fibers were observed in periodontitis and peri-implantitis, together with an increase in the percentage of area occupied by inflammatory cell infiltration and an increase of AQP1 immunostaining, which was located in the endothelial cells of the vessels within the lamina propria. Moreover, in healed periodontal and peri-implant mucosa a restoration of histomorphological alterations was observed together with a concomitant decrease of AQP1 immunostaining. These data suggested a possible link between the degree of inflammatory state and the presence of AQP1, where the latter could be involved in the chain of inflammatory reactions triggered at periodontal and peri-implant levels.
Collapse
|
71
|
Zhao G, Li J, Wang J, Shen X, Sun J. Aquaporin 3 and 8 are down-regulated in TNBS-induced rat colitis. Biochem Biophys Res Commun 2013; 443:161-6. [PMID: 24286754 DOI: 10.1016/j.bbrc.2013.11.067] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 11/16/2013] [Indexed: 12/15/2022]
Abstract
Aquaporins (AQPs) plays an important role in transcellular water movement, but the AQPs expression profile has not been demonstrated in 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis which closely mimics human Crohn's disease (CD) histopathologically. To solve the problem, 30 female Sprague-Dawley (SD) rats were randomly divided into a model group (n=18), an ethanol control group (n=6) and a normal control group (n=6). On day 1, the rats in the model group received TNBS+50% ethanol via the rectum, while the ethanol control rats received an equal volume of 50% ethanol and the normal control rats did not receive any treatment. All rats were sacrificed on day 7, and ileum, proximal colon and distal colon specimens were obtained to examine the alteration in AQP3 and AQP8 using real-time polymerase chain reaction, Western blot analysis and immunohistochemistry. As a result, exposure to TNBS+ethanol resulted in a marked decrease in both the mRNA and protein expression of AQP3 and AQP8, with the exception of AQP8 protein which was negative in the distal colon in all three groups. These reductions in AQP3 and AQP8 were accompanied by an increase in intestinal inflammation and injury. The results obtained here implied that both AQP3 and AQP8 may be involved in the pathogenesis of inflammatory bowel disease.
Collapse
Affiliation(s)
- Guangxi Zhao
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Li
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiyao Wang
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xizhong Shen
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianyong Sun
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
72
|
Expression of aquaporin-4 water channels in the digestive tract of the guinea pig. J Mol Histol 2013; 45:229-41. [DOI: 10.1007/s10735-013-9545-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 10/03/2013] [Indexed: 01/14/2023]
|
73
|
Yu YC, Sohma Y, Takimoto S, Miyauchi T, Yasui M. Direct visualization and quantitative analysis of water diffusion in complex biological tissues using CARS microscopy. Sci Rep 2013; 3:2745. [PMID: 24067894 PMCID: PMC3783033 DOI: 10.1038/srep02745] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 09/04/2013] [Indexed: 12/29/2022] Open
Abstract
To date, it has not been possible to measure microscopic diffusive water movements in epithelia and in the interstitial space of complex tissues and organs. Diffusive water movements are essential for life because they convey physiologically important small molecules, e.g. nutrients and signaling ligands throughout the extracellular space of complex tissues. Here we report the development of a novel method for the direct observation and quantitative analysis of water diffusion dynamics in a biologically organized tissue using Coherent Anti-Stokes Raman Scattering (CARS) microscopy. Using a computer simulation model to analyze the CARS O-H bond vibration data during H2O/D2O exchange in a 3D epithelial cyst, we succeeded in measuring the diffusive water permeability of the individual luminal and basolateral water pathways and also their response to hormonal stimulation. Our technique will be applicable to the measurement of diffusive water movements in other structurally complex and medically important tissues and organs.
Collapse
Affiliation(s)
- Ying-Chun Yu
- 1] Department of Pharmacology, Keio University School of Medicine, Tokyo, Japan [2]
| | | | | | | | | |
Collapse
|
74
|
Collaco AM, Jakab RL, Hoekstra NE, Mitchell KA, Brooks A, Ameen NA. Regulated traffic of anion transporters in mammalian Brunner's glands: a role for water and fluid transport. Am J Physiol Gastrointest Liver Physiol 2013; 305:G258-75. [PMID: 23744739 PMCID: PMC3742856 DOI: 10.1152/ajpgi.00485.2012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Brunner's glands of the proximal duodenum exert barrier functions through secretion of glycoproteins and antimicrobial peptides. However, ion transporter localization, function, and regulation in the glands are less clear. Mapping the subcellular distribution of transporters is an important step toward elucidating trafficking mechanisms of fluid transport in the gland. The present study examined 1) changes in the distribution of intestinal anion transporters and the aquaporin 5 (AQP5) water channel in rat Brunner's glands following second messenger activation and 2) anion transporter distribution in Brunner's glands from healthy and disease-affected human tissues. Cystic fibrosis transmembrane conductance regulator (CFTR), AQP5, sodium-potassium-coupled chloride cotransporter 1 (NKCC1), sodium-bicarbonate cotransporter (NBCe1), and the proton pump vacuolar ATPase (V-ATPase) were localized to distinct membrane domains and in endosomes at steady state. Carbachol and cAMP redistributed CFTR to the apical membrane. cAMP-dependent recruitment of CFTR to the apical membrane was accompanied by recruitment of AQP5 that was reversed by a PKA inhibitor. cAMP also induced apical trafficking of V-ATPase and redistribution of NKCC1 and NBCe1 to the basolateral membranes. The steady-state distribution of AQP5, CFTR, NBCe1, NKCC1, and V-ATPase in human Brunner's glands from healthy controls, cystic fibrosis, and celiac disease resembled that of rat; however, the distribution profiles were markedly attenuated in the disease-affected duodenum. These data support functional transport of chloride, bicarbonate, water, and protons by second messenger-regulated traffic in mammalian Brunner's glands under physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Anne M. Collaco
- 1Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut;
| | - Robert L. Jakab
- 1Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut;
| | - Nadia E. Hoekstra
- 1Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut;
| | - Kisha A. Mitchell
- 2Department of Pathology, Yale University School of Medicine, New Haven, Connecticut; and
| | - Amos Brooks
- 2Department of Pathology, Yale University School of Medicine, New Haven, Connecticut; and
| | - Nadia A. Ameen
- 1Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut; ,3Department Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
75
|
Sakai H, Sagara A, Matsumoto K, Hasegawa S, Sato K, Nishizaki M, Shoji T, Horie S, Nakagawa T, Tokuyama S, Narita M. 5-Fluorouracil induces diarrhea with changes in the expression of inflammatory cytokines and aquaporins in mouse intestines. PLoS One 2013; 8:e54788. [PMID: 23382968 PMCID: PMC3559799 DOI: 10.1371/journal.pone.0054788] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/14/2012] [Indexed: 12/20/2022] Open
Abstract
Although the mechanisms of 5-fluorouracil (5-FU)-induced diarrhea remain unclear, accumulating evidence has indicated that changes in the mucosal immune system and aquaporins (AQPs) may play a role in its pathogenesis. Therefore, we investigated the possible changes in the gene expression of inflammatory cytokines and AQPs in the intestines of mice with 5-FU-induced diarrhea. In the present study, the expressions of mRNAs that encode inflammatory cytokines, TNF-α, IL-1β, IL-6, Il-17A and IL-22, were significantly increased throughout the entire colon of mice that exhibited diarrhea following 5-FU administration. In contrast, the gene expression of IFNγ was upregulated only in the distal colon. These increases were significantly reduced by the administration of etanercept. However, 5-FU-induced diarrhea was not recovered by etanercept. On the other hand, the genes for AQPs 4 and 8 were markedly present in the colon, and these expressions in the intestines were significantly decreased by treatment with 5-FU. These decreases were not reversed by etanercept. These findings suggest TNF-α neutralization had no effect on the acutely 5-FU-induced diarrhea and impaired AQPs but reduced dramatically several inflammatory cytokines.
Collapse
Affiliation(s)
- Hiroyasu Sakai
- Department of Pharmacology, Hoshi University, Tokyo, Japan
- Research promotion committee, Japanese Society for Pharmaceutical Palliative Care and Sciences, Tokyo, Japan
| | | | - Kenjiro Matsumoto
- Department of Pharmacology, Hoshi University, Tokyo, Japan
- Laboratory of Pharmacology, Josai International University, Togane, Japan
- Research promotion committee, Japanese Society for Pharmaceutical Palliative Care and Sciences, Tokyo, Japan
| | | | - Ken Sato
- Department of Pharmacology, Hoshi University, Tokyo, Japan
| | | | - Tetsuro Shoji
- Department of Pharmacology, Hoshi University, Tokyo, Japan
| | - Syunji Horie
- Laboratory of Pharmacology, Josai International University, Togane, Japan
| | - Takayuki Nakagawa
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
- Research promotion committee, Japanese Society for Pharmaceutical Palliative Care and Sciences, Tokyo, Japan
| | - Shogo Tokuyama
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, Japan
- Research promotion committee, Japanese Society for Pharmaceutical Palliative Care and Sciences, Tokyo, Japan
| | - Minoru Narita
- Department of Pharmacology, Hoshi University, Tokyo, Japan
- Research promotion committee, Japanese Society for Pharmaceutical Palliative Care and Sciences, Tokyo, Japan
| |
Collapse
|
76
|
Nico M, Melo J, Lourenço S. Cheilitis glandularis: immunohistochemical expression of protein water channels (aquaporins) in minor labial salivary glands. J Eur Acad Dermatol Venereol 2013; 28:382-7. [DOI: 10.1111/jdv.12059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
77
|
Measurement of Drug Concentration in the Stomach After Intragastric Administration of Drug Solution to Healthy Volunteers: Analysis of Intragastric Fluid Dynamics and Drug Absorption. Pharm Res 2012. [DOI: 10.1007/s11095-012-0931-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
78
|
Musumeci G, Leonardi R, Carnazza ML, Cardile V, Pichler K, Weinberg AM, Loreto C. Aquaporin 1 (AQP1) expression in experimentally induced osteoarthritic knee menisci: an in vivo and in vitro study. Tissue Cell 2012; 45:145-52. [PMID: 23164158 DOI: 10.1016/j.tice.2012.10.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 10/08/2012] [Accepted: 10/11/2012] [Indexed: 01/01/2023]
Abstract
Osteoarthritis (OA) of the knee is a major problem in our society. The development of new treatment options for OA is limited, because the pathophysiological mechanisms are not clearly understood, especially on the molecular level. Aquaporin 1 (AQP1) is a specific protein channels for water transport; it is expressed in articular chondrocytes, human synovitis, in chondrocytes of patients with rheumatoid arthritis or OA and in chondrocyte-like cells of human intervertebral disc. The aim of this study was to investigate the expression of AQP1, through immunohistochemistry, immunocytochemistry and Western blot, in experimentally induced OA knee menisci. AQP1 was studied in vivo in knee OA menisci from 36 rats that underwent medial or lateral meniscectomy, and in vitro on fibrochondrocytes derived from knee OA menisci rats. OA in rats was experimentally induced and tested by histomorphometric analysis. Histological results demonstrated structural alterations in OA menisci accompanied by a very strong AQP1 immunohistochemical and immunocytochemical staining. The Western blot analysis confirmed a strong expression of AQP1 in OA fibrochondrocytes cells. The results of the present research suggest that an activation of AQP1, induced by the OA process, may represent an endogenous mechanism, which can be used to control the tissue degeneration within OA articular joints.
Collapse
Affiliation(s)
- G Musumeci
- Department of Bio-Medical Sciences, Section of Human Anatomy and Histology, University of Catania, Catania, Italy.
| | | | | | | | | | | | | |
Collapse
|
79
|
Stewart GS, Smith CP. Urea nitrogen salvage mechanisms and their relevance to ruminants, non-ruminants and man. Nutr Res Rev 2012; 18:49-62. [PMID: 19079894 DOI: 10.1079/nrr200498] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Maintaining a correct balance of N is essential for life. In mammals, the major sources of N in the diet are amino acids and peptides derived from ingested proteins. The immediate endproduct of mammalian protein catabolism is ammonia, which is toxic to cells if allowed to accumulate. Therefore, amino acids are broken down in the liver as part of the ornithine-urea cycle, which results in the formation of urea - a highly soluble, biochemically benign molecule. Mammals cannot break down urea, which is traditionally viewed as a simple waste product passed out in the urine. However, urea from the bloodstream can pass into the gastrointestinal tract, where bacteria expressing urease cleave urea into ammonia and carbon dioxide. The bacteria utilise the ammonia as an N source, producing amino acids and peptides necessary for growth. Interestingly, these microbial products can be reabsorbed back into the host mammalian circulation and used for synthetic processes. This entire process is known as 'urea nitrogen salvaging' (UNS). In this review we present evidence supporting a role for this process in mammals - including ruminants, non-ruminants and man. We also explore the possible mechanisms involved in UNS, including the role of specialised urea transporters.
Collapse
Affiliation(s)
- Gavin S Stewart
- School of Biological Sciences, Stopford Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
80
|
Abstract
OBJECTIVES The objectives of this study were to investigate the expression of aquaporin 1 in capillary endothelial cells of rats with experimental acute necrotizing pancreatitis (ANP) and to explore its pathogenic role in capillary leak. METHODS Sixty-four male Sprague-Dawley rats were randomly divided into control (n = 32) and ANP groups (n = 32). Eight rats in each group were killed at 3, 6, 12, and 18 hours after induction of experimental models. Quantity of ascites and levels of serum amylases were measured. Capillary permeability in pancreas, lung, and intestinal tissue was detected by Evans blue extravasation method. Aquaporin 1 expression in pancreas, lung, and intestinal tissue was detected by real-time polymerase chain reaction, immunohistochemical staining, and Western blot. RESULTS Serum amylase level was significantly higher in ANP group than in controls (P < 0.05). Evans blue concentration in tissues in the ANP group was significantly higher than that in controls (P < 0.05). Aquaporin 1 mRNA and protein expressions in tissues were significantly less in the ANP group than in the controls (P < 0.05). CONCLUSIONS The expression of aquaporin 1 was down-regulated in the pancreas, lung, and intestinal tissue of ANP rats, which could play an important role in the pathogenesis of capillary leak syndrome.
Collapse
|
81
|
Sundell KS, Sundh H. Intestinal fluid absorption in anadromous salmonids: importance of tight junctions and aquaporins. Front Physiol 2012; 3:388. [PMID: 23060812 PMCID: PMC3460234 DOI: 10.3389/fphys.2012.00388] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 09/11/2012] [Indexed: 01/17/2023] Open
Abstract
The anadromous salmonid life cycle includes both fresh water (FW) and seawater (SW) stages. The parr-smolt transformation (smoltification) pre-adapt the fish to SW while still in FW. The osmoregulatory organs change their mode of action from a role of preventing water inflow in FW, to absorb ions to replace water lost by osmosis in SW. During smoltification, the drinking rate increases, in the intestine the ion and fluid transport increases and is further elevated after SW entry. In SW, the intestine absorbs ions to create an inwardly directed water flow which is accomplished by increased Na+, K+-ATPase (NKA) activity in the basolateral membrane, driving ion absorption via ion channels and/or co-transporters. This review will aim at discussing the expression patterns of the ion transporting proteins involved in intestinal fluid absorption in the FW stage, during smoltification and after SW entry. Of equal importance for intestinal fluid absorption as the active absorption of ions is the permeability of the epithelium to ions and water. During the smoltification the increase in NKA activity and water uptake in SW is accompanied by decreased paracellular permeability suggesting a redirection of the fluid movement from a paracellular route in FW, to a transcellular route in SW. Increased transcellular fluid absorption could be achieved by incorporation of aquaporins (AQPs) into the enterocyte membranes and/or by a change in fatty acid profile of the enterocyte lipid bilayer. An increased incorporation of unsaturated fatty acids into the membrane phospholipids will increase water permeability by enhancing the fluidity of the membrane. A second aim of the present review is therefore to discuss the presence and regulation of expression of AQPs in the enterocyte membrane as well as to discuss the profile of fatty acids present in the membrane phospholipids during different stages of the salmonid lifecycle.
Collapse
Affiliation(s)
- Kristina S Sundell
- Fish Endocrinology Laboratory, Department of Biology and Environmental Sciences, University of Gothenburg Gothenburg, Sweden
| | | |
Collapse
|
82
|
Zhang Y, Wang X, Sha S, Liang S, Zhao L, Liu L, Chai N, Wang H, Wu K. Berberine increases the expression of NHE3 and AQP4 in sennosideA-induced diarrhoea model. Fitoterapia 2012; 83:1014-22. [DOI: 10.1016/j.fitote.2012.05.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/23/2012] [Accepted: 05/26/2012] [Indexed: 11/28/2022]
|
83
|
Mack AF, Wolburg H. A novel look at astrocytes: aquaporins, ionic homeostasis, and the role of the microenvironment for regeneration in the CNS. Neuroscientist 2012; 19:195-207. [PMID: 22645111 DOI: 10.1177/1073858412447981] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aquaporin-4 (AQP4) water channels are located at the basolateral membrane domain of many epithelial cells involved in ion transport and secretion. These epithelial cells separate fluid compartments by forming apical tight junctions. In the brain, AQP4 is located on astrocytes in a polarized distribution: At the border to blood vessels or the pial surface, its density is very high. During ontogeny and phylogeny, astroglial cells go through a stage of expressing tight junctions, separating fluid compartments differently than in adult mammals. In adult mammals, this barrier is formed by arachnoid, choroid plexus, and endothelial cells. The ontogenetic and phylogenetic barrier transition from glial to endothelial cells correlates with the regenerative capacity of neuronal structures: Glial cells forming tight junctions, and expressing no or unpolarized AQP4 are found in the fish optic nerve and the olfactory nerve in mammals both known for their regenerative ability. It is hypothesized that highly polarized AQP4 expression and the lack of tight junctions on astrocytes increase ionic homeostasis, thus improving neuronal performance possibly at the expense of restraining neurogenesis and regeneration.
Collapse
Affiliation(s)
- Andreas F Mack
- Institute of Anatomy, University of Tübingen, Tübingen, Germany.
| | | |
Collapse
|
84
|
Theodosiou NA, Simeone A. Evidence of a rudimentary colon in the elasmobranch, Leucoraja erinacea. Dev Genes Evol 2012; 222:237-43. [PMID: 22610344 DOI: 10.1007/s00427-012-0406-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 05/06/2012] [Indexed: 12/29/2022]
Abstract
The transition from aquatic to terrestrial life presented tetrapodamorphs with the challenge of maintaining water homeostasis and preventing desiccation on land. The colon evolved in terrestrial vertebrates to help maintain fluid balance. Although marine elasmobranchs lack a colon, their spiral intestine contains a subregion that histologically appears to be colon-like, possibly representing an evolutionary precursor to terrestrial digestive tracts. The distal-most region of the spiral intestine of elasmobranchs has no villi and a large number of acid mucins: hallmarks of water absorption in the colons of terrestrial animals. To determine if histologically distinct regions of the elasmobranch digestive tract correspond to functional differences, we compared water absorption in different subregions of the skate, Leucoraja erinacea digestive tract. Water absorption in stomach and spiral intestinal sacs was linear with time and not hydrostatic pressure-dependent. The histologically distinct distal portion of the spiral intestine had a threefold higher rate of water absorption than the proximal portion of the spiral intestine. In addition, the water-selective, colon-specific aquaporin 4 is expressed strongly in the distal spiral intestine epithelia, correlating with the region of the spiral intestine exhibiting the greatest rate of water absorption. We demonstrate that the distal spiral intestine is histologically and functionally distinct from the rest of the spiral intestine and represents a rudimentary colon within the vertebrate lineage.
Collapse
|
85
|
Portincasa P, Calamita G. Water channel proteins in bile formation and flow in health and disease: when immiscible becomes miscible. Mol Aspects Med 2012; 33:651-64. [PMID: 22487565 DOI: 10.1016/j.mam.2012.03.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 03/29/2012] [Accepted: 03/31/2012] [Indexed: 12/19/2022]
Abstract
An essential function of the liver is the formation and secretion of bile, a complex aqueous solution of organic and inorganic compounds essential as route for the elimination of body cholesterol as unesterified cholesterol or as bile acids. In bile, a considerable amount of otherwise insoluble cholesterol is solubilized by carriers including two other classes of lipids, namely phospholipid and bile acids. Formation of bile and generation of bile flow are driven by the active secretion of bile acids, lipids and electrolytes into the canalicular and bile duct lumens followed by the parallel movement of water. Thus, water has to cross rapidly into and out of the cell interior driven by osmotic forces. Bile as a fluid, results from complicated interplay of hepatocyte and cholangiocyte uptake and secretion, concentration, by involving a number of transporters of lipids, anions, cations, and water. The discovery of the aquaporin water channels, has clarified the mechanisms by which water, the major component of bile (more than 95%), moves across the hepatobiliary epithelia. This review is focusing on novel acquisitions in liver membrane lipidic and water transport and functional participation of aquaporin water channels in multiple aspects of hepatobiliary fluid balance. Involvement of aquaporins in a series of clinically relevant hepatobiliary disorders are also discussed.
Collapse
Affiliation(s)
- Piero Portincasa
- University of Bari Medical School, Clinica Medica A. Murri, Department of Biomedical Sciences and Human Oncology, Policlinico Hospital, 70124 Bari, Italy.
| | | |
Collapse
|
86
|
Laforenza U. Water channel proteins in the gastrointestinal tract. Mol Aspects Med 2012; 33:642-50. [PMID: 22465691 DOI: 10.1016/j.mam.2012.03.001] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 03/09/2012] [Accepted: 03/11/2012] [Indexed: 12/24/2022]
Abstract
Water transport through the human digestive system is physiologically crucial for maintaining body water homeostasis and ensure digestive and absorptive functions. Within the gastrointestinal tract, water recirculates, being secreted with the digestive juices and then almost entirely absorbed by the small and large intestine. The importance of aquaporins (AQPs), transmembrane water channel proteins, in the rapid passage of water across plasma membranes in the gastrointestinal tract appears immediately evident. Several AQP isoforms are found in gastrointestinal epithelia, with AQP1, 3, 7, 10 and 11 being the most abundantly expressed in the whole gut. On the other hand, AQP4 and 8 are located selectively in the stomach and colon, respectively. Here we review AQP expression and localization at the tissue, cellular and subcellular level in gastrointestinal epithelia, and their modification in various gut diseases.
Collapse
Affiliation(s)
- Umberto Laforenza
- Department of Molecular Medicine, Section of Human Physiology, University of Pavia, Via Forlanini 6, I-27100 Pavia, Italy.
| |
Collapse
|
87
|
Tie L, Lu N, Pan XY, Pan Y, An Y, Gao JW, Lin YH, Yu HM, Li XJ. Hypoxia-induced up-regulation of aquaporin-1 protein in prostate cancer cells in a p38-dependent manner. Cell Physiol Biochem 2012; 29:269-80. [PMID: 22415096 DOI: 10.1159/000337608] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Aquaporin-1 (AQP1) is a glycoprotein that mediates osmotic water transport, its expression has been found to correlate with tumour stage in some tumours. However, the mechanism by which AQP1 protein expression is regulated in tumor cells remains to be fully elucidated. We hypothesized that hypoxia might play an important role in AQP1 induction during tumorigenesis and at the late stages of tumor development. METHODS Isotonic and serum-free hypoxic models were used to investigate AQP1 expression in PC-3M human prostate cancer cells. RESULTS AQP1 expression was up-regulated by density-induced pericellular hypoxia and cobalt(II) chloride (CoCl(2))-induced hypoxia at the transcriptional level. Moreover, phosphorylation of p38 mitogen-activated protein kinase (MAPK) was induced by density-induced pericellular hypoxia and CoCl(2)-induced hypoxia, specific inhibitors of p38 MAPK could concentration-dependently block those effects of hypoxia on AQP1 expression. Intracellular calcium ion (Ca(2+)) and protein kinase C (PKC) were shown to be responsible for the activation of p38 MAPK pathway. In addition, AQP1 induction in dense cultures was dependent on lowered oxygen (O(2)) tension. In high cell density culture, certain secretory proteins might induce AQP1 expression indirectly. CONCLUSION These findings suggest that AQP1 could be induced by hypoxia at transcription level, and the regulation of AQP1 in PC-3M cells is dependent on calcium, PKC and p38 MAPK, as well as low oxygen tension.
Collapse
Affiliation(s)
- Lu Tie
- State Key Laboratory of Natural & Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences and Institute of System Biomedicine, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Cutler CP, Harmon S, Walsh J, Burch K. Characterization of Aquaporin 4 Protein Expression and Localization in Tissues of the Dogfish (Squalus acanthias). Front Physiol 2012; 3:21. [PMID: 22363294 PMCID: PMC3279706 DOI: 10.3389/fphys.2012.00021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 01/29/2012] [Indexed: 11/13/2022] Open
Abstract
The role of aquaporin water channels such as aquaporin 4 (Aqp4) in elasmobranchs such as the dogfish Squalus acanthias is completely unknown. This investigation set out to determine the expression and cellular and sub-cellular localization of Aqp4 protein in dogfish tissues. Two polyclonal antibodies were generated (AQP4/1 and AQP4/2) and these showed somewhat different characteristics in Western blotting and immunohistochemistry. Western blots using the AQP4/1 antibody showed two bands (35.5 and 49.5 kDa) in most tissues in a similar fashion to mammals. Liver had an additional band of 57 kDa and rectal gland two further faint bands of 37.5 and 38.5 kDa. However, unlike in mammals, Aqp4 protein was ubiquitously expressed in all tissues including gill and liver. The AQP4/2 antibody appeared much less specific in Western blots. Both antibodies were used in immunohistochemistry and showed similar cellular localizations, although the AQP4/2 antibody had a more restricted sub-cellular distribution compared to AQP4/1 and therefore appeared to be more specific for Aqp4. In kidney a sub-set of tubules were stained which may represent intermediate tubule segments (In-III-In-VI). AQP4/1 and AQP4/2 antibodies localized to the same tubules segments in serial sections although the intensity and sub-cellular distribution were different. AQP4/2 showed a basal or basolateral membrane distribution whereas AQP4/1 was often distributed throughout the whole cell including the nuclear region. In rectal gland and cardiac stomach Aqp4 was localized to secretory tubules but again AQP/1 and AQP/2 exhibited different sub-cellular distributions. In gill, both antibodies stained large cells in the primary filament and secondary lamellae. Again AQP4/1 antibody stained most or all the cell including the nucleus, whereas AQP4/2 had a plasma membrane or plasma membrane and cytoplasmic distribution. Two types of large mitochondrial rich transport cells are known to exist in elasmobranchs, that express either Na, K-ATPase, or V-type ATPase ion transporters. Using Na, K-ATPase, and V-type ATPase antibodies, Aqp4 was colocalized with these proteins using the AQP4/1 antibody. Results show Aqp4 is expressed in both (and all) branchial Na, K-ATPase, and V-type ATPase expressing cells.
Collapse
|
89
|
Cutler CP, Maciver B, Cramb G, Zeidel M. Aquaporin 4 is a Ubiquitously Expressed Isoform in the Dogfish (Squalus acanthias) Shark. Front Physiol 2012; 2:107. [PMID: 22291652 PMCID: PMC3254168 DOI: 10.3389/fphys.2011.00107] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Accepted: 12/05/2011] [Indexed: 01/22/2023] Open
Abstract
The dogfish ortholog of aquaporin 4 (AQP4) was amplified from cDNA using degenerate PCR followed by cloning and sequencing. The complete coding region was then obtained using 5' and 3' RACE techniques. Alignment of the sequence with AQP4 amino acid sequences from other species showed that dogfish AQP4 has high levels (up to 65.3%) of homology with higher vertebrate sequences but lower levels of homology to Agnathan (38.2%) or teleost (57.5%) fish sequences. Northern blotting indicated that the dogfish mRNA was approximately 3.2 kb and was highly expressed in the rectal gland (a shark fluid secretory organ). Semi-quantitative PCR further indicates that AQP4 is ubiquitous, being expressed in all tissues measured but at low levels in certain tissues, where the level in liver > gill > intestine. Manipulation of the external environmental salinity of groups of dogfish showed that when fish were acclimated in stages to 120% seawater (SW) or 75% SW, there was no change in AQP4 mRNA expression in either rectal gland, kidney, or esophagus/cardiac stomach. Whereas quantitative PCR experiments using the RNA samples from the same experiment, showed a significant 63.1% lower abundance of gill AQP4 mRNA expression in 120% SW-acclimated dogfish. The function of dogfish AQP4 was also determined by measuring the effect of the AQP4 expression in Xenopus laevis oocytes. Dogfish AQP4 expressing-oocytes, exhibited significantly increased osmotic water permeability (P(f)) compared to controls, and this was invariant with pH. Permeability was not significantly reduced by treatment of oocytes with mercury chloride, as is also the case with AQP4 in other species. Similarly AQP4 expressing-oocytes did not exhibit enhanced urea or glycerol permeability, which is also consistent with the water-selective property of AQP4 in other species.
Collapse
|
90
|
Martinez AS, Cutler CP, Wilson GD, Phillips C, Hazon N, Cramb G. Cloning and expression of three aquaporin homologues from the European eel (Anguilla anguilla): effects of seawater acclimation and cortisol treatment on renal expression. Biol Cell 2012; 97:615-27. [PMID: 15850452 DOI: 10.1042/bc20040111] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION The European eel (Anguilla anguilla) is able to osmoregulate over a wide range of environmental salinities from FW (freshwater) to hyperconcentrated SW (seawater). Successful acclimation is associated with strict regulation of ion and water transport pathways within key osmoregulatory epithelia to enable animals to survive the dehydrating or oedematous conditions. These observations suggested that homologues of the AQP (aquaporin) water channel family were expressed in the eel and that these proteins may contribute to the water transport and osmoregulation in all euryhaline teleosts. RESULTS Complementary DNAs encoding a homologue of the mammalian aquaglyceroporins (termed AQPe) and two homologues of mammalian aquaporin-1 [termed AQP1 and AQP1dup (aquaporin-1 duplicate)] were isolated from the European eel. Northern-blot analysis revealed (i) two AQP1 transcripts exhibiting a wide tissue distribution, (ii) a single AQP1dup mRNA transcript found in the kidney and the oesophagus, and (iii) a single AQPe mRNA detectable mainly in the kidney and the intestine. The relative expression of isoforms within the kidney was AQP1dup>AQPe>AQP1. SW acclimation significantly reduced the abundance of AQP1, AQP1dup and AQPe transcripts in the kidney of yellow eels by approx. 72, 66 and 34% respectively, whereas the expression levels in silver eels were independent of salinity and equivalent to those observed in yellow SW-acclimated fish. AQP1 protein expression was primarily located within the vascular endothelium in yellow eels and the epithelial apical brush border in some renal tubules in silver eels. Infusion of cortisol into FW eels had no effect on AQPe mRNA expression, but induced significant decreases in AQP1 and AQP1dup mRNA levels in the kidney of yellow eels. Cortisol infusion had no effect on the expression of any isoform in the silver eels. CONCLUSIONS These results suggest that SW-acclimation or cortisol infusion induces a down-regulation of renal AQP expression in yellow eels. However, the lower levels of aquaporin expression found within the silver eel kidney were not further reduced by salinity transfer or steroid infusion. These differences in mRNA expression were accompanied by changes in the cellular distribution of the AQP1 protein between vascular endothelial and tubular epithelial cells.
Collapse
Affiliation(s)
- Anne-Sophie Martinez
- School of Biology, Bute Medical Buildings, University of St. Andrews, St. Andrews, Fife, Scotland, KY16 9TS, UK
| | | | | | | | | | | |
Collapse
|
91
|
Gupta AB, Verma RK, Agarwal V, Vajpai M, Bansal V, Sankararamakrishnan R. MIPModDB: a central resource for the superfamily of major intrinsic proteins. Nucleic Acids Res 2012; 40:D362-9. [PMID: 22080560 PMCID: PMC3245135 DOI: 10.1093/nar/gkr914] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 10/05/2011] [Accepted: 10/08/2011] [Indexed: 12/23/2022] Open
Abstract
The channel proteins belonging to the major intrinsic proteins (MIP) superfamily are diverse and are found in all forms of life. Water-transporting aquaporin and glycerol-specific aquaglyceroporin are the prototype members of the MIP superfamily. MIPs have also been shown to transport other neutral molecules and gases across the membrane. They have internal homology and possess conserved sequence motifs. By analyzing a large number of publicly available genome sequences, we have identified more than 1000 MIPs from diverse organisms. We have developed a database MIPModDB which will be a unified resource for all MIPs. For each MIP entry, this database contains information about the source, gene structure, sequence features, substitutions in the conserved NPA motifs, structural model, the residues forming the selectivity filter and channel radius profile. For selected set of MIPs, it is possible to derive structure-based sequence alignment and evolutionary relationship. Sequences and structures of selected MIPs can be downloaded from MIPModDB database which is freely available at http://bioinfo.iitk.ac.in/MIPModDB.
Collapse
Affiliation(s)
- Anjali Bansal Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016 and Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Ravi Kumar Verma
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016 and Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Vatsal Agarwal
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016 and Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Manu Vajpai
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016 and Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Vivek Bansal
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016 and Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Ramasubbu Sankararamakrishnan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016 and Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
92
|
Jia Y, Yao H, Zhou J, Chen L, Zeng Q, Yuan H, Shi L, Nan X, Wang Y, Yue W, Pei X. Role of epimorphin in bile duct formation of rat liver epithelial stem-like cells: involvement of small G protein RhoA and C/EBPβ. J Cell Physiol 2011; 226:2807-16. [PMID: 21935930 DOI: 10.1002/jcp.22625] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epimorphin/syntaxin 2 is a high conserved and very abundant protein involved in epithelial morphogenesis in various organs. We have shown recently that epimorphin (EPM), a protein exclusively expressed on the surface of hepatic stellate cells and myofibroblasts of the liver, induces bile duct formation of hepatic stem-like cells (WB-F344 cells) in a putative biophysical way. Therefore, the aim of this study was to present some of the molecular mechanisms by which EPM mediates bile duct formation. We established a biliary differentiation model by co-culture of EPM-overexpressed mesenchymal cells (PT67(EPM)) with WB-F344 cells. Here, we showed that EPM could promote WB-F344 cells differentiation into bile duct-like structures. Biliary differentiation markers were also elevated by EPM including Yp, Cx43, aquaporin-1, CK19, and gamma glutamyl transpeptidase (GGT). Moreover, the signaling pathway of EPM was analyzed by focal adhesion kinase (FAK), extracellular regulated kinase 1/2 (ERK1/2), and RhoA Western blot. Also, a dominant negative (DN) RhoA-WB-F344 cell line (WB(RhoA-DN)) was constructed. We found that the levels of phosphorylation (p) of FAK and ERK1/2 were up-regulated by EPM. Most importantly, we also showed that RhoA is necessary for EPM-induced activation of FAK and ERK1/2 and bile duct formation. In addition, a dual luciferase-reporter assay and CHIP assay was performed to reveal that EPM regulates GGT IV and GGT V expression differentially, possibly mediated by C/EBPβ. Taken together, these data demonstrated that EPM regulates bile duct formation of WB-F344 cells through effects on RhoA and C/EBPβ, implicating a dual aspect of this morphoregulator in bile duct epithelial morphogenesis.
Collapse
Affiliation(s)
- Yali Jia
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Madsen SS, Olesen JH, Bedal K, Engelund MB, Velasco-Santamaría YM, Tipsmark CK. Functional characterization of water transport and cellular localization of three aquaporin paralogs in the salmonid intestine. Front Physiol 2011; 2:56. [PMID: 21941512 PMCID: PMC3171111 DOI: 10.3389/fphys.2011.00056] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 08/17/2011] [Indexed: 01/05/2023] Open
Abstract
Intestinal water absorption is greatly enhanced in salmonids upon acclimation from freshwater (FW) to seawater (SW); however, the molecular mechanism for water transport is unknown. We conducted a pharmacological characterization of water absorption in the rainbow trout intestine along with an investigation of the distribution and cellular localization of three aquaporins (Aqp1aa, -1ab, and -8ab) in pyloric caeca, middle (M), and posterior (P) intestine of the Atlantic salmon. In vitro iso-osmotic water absorption (J(v)) was higher in SW than FW-trout and was inhibited by (mmol L(-1)): 0.1 KCN (41%), 0.1 ouabain (72%), and 0.1 bumetanide (82%) suggesting that active transport, Na(+), K(+)-ATPase and Na(+), K(+), 2Cl(-)-co-transport are involved in establishing the driving gradient for water transport. J(v) was also inhibited by 1 mmol L(-1) HgCl(2), serosally (23% in M and 44% in P), mucosally (27% in M), or both (61% in M and 58% in P), suggesting involvement of both apical and basolateral aquaporins in water transport. The inhibition was antagonized by 5 mmol L(-1) mercaptoethanol. By comparison, 10 mmol L(-1) mucosal tetraethylammonium, an inhibitor of certain aquaporins, inhibited J(v) by 20%. In the presence of glucose, mucosal addition of phloridzin inhibited water transport by 20%, suggesting that water transport is partially linked to the Na(+)-glucose co-transporter. Using polyclonal antibodies against salmon Aqp1aa, -1ab, and -8ab, we detected Aqp1aa, and -1ab immunoreactivity in the brush border and sub-apical region of enterocytes in all intestinal segments. The Aqp8ab antibody showed a particularly strong immunoreaction in the brush border and sub-apical region of enterocytes throughout the intestine and also stained lateral membranes and peri-nuclear regions though at lower intensity. The present localization of three aquaporins in both apical and lateral membranes of salmonid enterocytes facilitates a model for transcellular water transport in the intestine of SW-acclimated salmonids.
Collapse
Affiliation(s)
- Steffen S Madsen
- Institute of Biology, University of Southern Denmark Odense, Denmark
| | | | | | | | | | | |
Collapse
|
94
|
Zhang W, Xu Y, Chen Z, Xu Z, Xu H. Knockdown of aquaporin 3 is involved in intestinal barrier integrity impairment. FEBS Lett 2011; 585:3113-9. [PMID: 21907710 DOI: 10.1016/j.febslet.2011.08.045] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 07/26/2011] [Accepted: 08/28/2011] [Indexed: 12/31/2022]
Abstract
AQP3 is a water/glycerol transporter expressed at the basolateral membrane of colonic epithelial cells. Although AQPs are expressed in the gastrointestinal tract, their effect on intestinal barrier has not been clear. Here, we showed that knockdown of AQP3 caused a dramatic, dose-dependent increase in E. coli C25 translocation, with the reduction of TEER and increasing LY permeability. Western blots revealed that expression of Claudin-1 and Occludin were significantly decreased in the AQP3 knockdown group, demonstrating that this treatment enhances paracellular permeability via an opening of the tight junction complex. These data not only describe the correlation between transcellular and paracellular pathways in human intestines, but also show that targeted knockdown of AQP3 might impair the intestinal barrier integrity.
Collapse
Affiliation(s)
- Wenjie Zhang
- Division of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | | | | | | | | |
Collapse
|
95
|
Røjen BA, Poulsen SB, Theil PK, Fenton RA, Kristensen NB. Short communication: Effects of dietary nitrogen concentration on messenger RNA expression and protein abundance of urea transporter-B and aquaporins in ruminal papillae from lactating Holstein cows. J Dairy Sci 2011; 94:2587-91. [PMID: 21524550 DOI: 10.3168/jds.2010-4073] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 01/23/2011] [Indexed: 12/16/2023]
Abstract
To test the hypothesis that dietary N concentrations affect gut epithelial urea transport by modifying the expression of urea transporter B (UT-B) and aquaporins (AQP), the mRNA expression and protein abundance of UT-B and AQP3, AQP7, AQP8, and AQP10 were investigated in ruminal papillae from 9 lactating dairy cows. Ruminal papillae were harvested from cows fed low N (12.9% crude protein) and high N (17.1% crude protein) diets in a crossover design with 21-d periods. The mRNA expression was determined by real-time reverse transcription-PCR and protein abundance by immunoblotting. The mRNA expression of UT-B was not affected by dietary treatment, whereas mRNA expression of AQP3, 7, and 10 were greater in the high N compared with the low N fed cows. Using peptide-derived rabbit antibodies to cow AQP3, 7, and 8, immunoblotting revealed bands of approximately 27, 27, and 24 kDa in ruminal papillae, respectively. A peptide-derived chicken antibody to cow UT-B detected a band of approximately 30 to 32 kDa in ruminal papillae. The abundance of UT-B and AQP3 and 7 were not affected by dietary treatment. In contrast, the abundance of AQP8 was greater in high N compared with low N diets. In conclusion, AQP3, 7, and 8 were found to be expressed in bovine rumen papillae. None of the investigated transcripts or proteins correlated to the increased rumen epithelial urea permeability observed with low dietary N concentration.
Collapse
Affiliation(s)
- B A Røjen
- Department of Animal Health and Bioscience, Faculty of Agricultural Sciences, Aarhus University, DK-8830 Tjele, Denmark
| | | | | | | | | |
Collapse
|
96
|
|
97
|
Immunolocalization of aquaporin-4 in the brain, kidney, skeletal muscle, and gastro-intestinal tract of chicken. Cell Tissue Res 2011; 344:51-61. [DOI: 10.1007/s00441-011-1134-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 01/13/2011] [Indexed: 11/26/2022]
|
98
|
Wolburg H, Wolburg-Buchholz K, Fallier-Becker P, Noell S, Mack AF. Structure and functions of aquaporin-4-based orthogonal arrays of particles. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 287:1-41. [PMID: 21414585 DOI: 10.1016/b978-0-12-386043-9.00001-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Orthogonal arrays or assemblies of intramembranous particles (OAPs) are structures in the membrane of diverse cells which were initially discovered by means of the freeze-fracturing technique. This technique, developed in the 1960s, was important for the acceptance of the fluid mosaic model of the biological membrane. OAPs were first described in liver cells, and then in parietal cells of the stomach, and most importantly, in the astrocytes of the brain. Since the discovery of the structure of OAPs and the identification of OAPs as the morphological equivalent of the water channel protein aquaporin-4 (AQP4) in the 1990s, a plethora of morphological work on OAPs in different cells was published. Now, we feel a need to balance new and old data on OAPs and AQP4 to elucidate the interrelationship of both structures and molecules. In this review, the identity of OAPs as AQP4-based structures in a diversity of cells will be described. At the same time, arguments are offered that under pathological or experimental circumstances, AQP4 can also be expressed in a non-OAP form. Thus, we attempt to project classical work on OAPs onto the molecular biology of AQP4. In particular, astrocytes and glioma cells will play the major part in this review, not only due to our own work but also due to the fact that most studies on structure and function of AQP4 were done in the nervous system.
Collapse
Affiliation(s)
- Hartwig Wolburg
- Institute of Pathology, University of Tübingen, Tübingen, Germany
| | | | | | | | | |
Collapse
|
99
|
|
100
|
Pandey RN, Yaganti S, Coffey S, Frisbie J, Alnajjar K, Goldstein D. Expression and immunolocalization of aquaporins HC-1, -2, and -3 in Cope's gray treefrog, Hyla chrysoscelis. Comp Biochem Physiol A Mol Integr Physiol 2010; 157:86-94. [DOI: 10.1016/j.cbpa.2010.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 04/08/2010] [Accepted: 04/09/2010] [Indexed: 01/13/2023]
|