51
|
Lewis DK, Thomas KT, Selvamani A, Sohrabji F. Age-related severity of focal ischemia in female rats is associated with impaired astrocyte function. Neurobiol Aging 2012; 33:1123.e1-16. [PMID: 22154819 PMCID: PMC5636220 DOI: 10.1016/j.neurobiolaging.2011.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 11/02/2011] [Accepted: 11/04/2011] [Indexed: 01/07/2023]
Abstract
In middle-aged female rats, focal ischemia leads to a larger cortical infarction as compared with younger females. To determine if stroke-induced cytotoxicity in middle-aged females was associated with impaired astrocyte function, astrocytes were harvested and cultured from the ischemic cortex of young and middle-aged female rats. Middle-aged astrocytes cleared significantly less glutamate from media as compared with young female astrocytes. Furthermore, astrocyte-conditioned media from middle-aged female astrocytes induced greater migration of peripheral blood monocyte cells (PBMCs) and expressed higher levels of the chemoattractant macrophage inflammatory protein-1 (MIP-1). Middle-aged astrocytes also induced greater migration of neural progenitor cells (NPCs), however, their ability to promote neuronal differentiation of neural progenitor cells was similar to young astrocytes. In males, where cortical infarct volume is similar in young and middle-aged animals, no age-related impairment was observed in astrocyte function. These studies show that the aging astrocyte may directly contribute to infarct severity by inefficient glutamate clearance and enhanced cytokine production and suggest a cellular target for improved stroke therapy among older females.
Collapse
Affiliation(s)
- Danielle K. Lewis
- Women’s Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A & M Health Science Center, College Station, TX, USA
| | - Kristen T. Thomas
- Women’s Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A & M Health Science Center, College Station, TX, USA
| | - Amutha Selvamani
- Women’s Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A & M Health Science Center, College Station, TX, USA
| | - Farida Sohrabji
- Women’s Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A & M Health Science Center, College Station, TX, USA
| |
Collapse
|
52
|
Abstract
Therapeutic hypothermia (TH) is the intentional reduction of core body temperature to 32°C to 35°C, and is increasingly applied by intensivists for a variety of acute neurological injuries to achieve neuroprotection and reduction of elevated intracranial pressure. TH improves outcomes in comatose patients after a cardiac arrest with a shockable rhythm, but other off-label applications exist and are likely to increase in the future. This comprehensive review summarizes the physiology and cellular mechanism of action of TH, as well as different means of TH induction and maintenance with potential side effects. Indications of TH are critically reviewed by disease entity, as reported in the most recent literature, and evidence-based recommendations are provided.
Collapse
Affiliation(s)
- Lucia Rivera-Lara
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 USA
| | - Jiaying Zhang
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 USA
| | - Susanne Muehlschlegel
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 USA
- Departments of Neurology (Division of Neurocritical Care), Anesthesia/Critical Care and Surgery, University of Massachusetts Medical School, Worcester, Massachusetts 01655 USA
| |
Collapse
|
53
|
Smith HAB, Fuchs DC, Pandharipande PP, Barr FE, Ely EW. Delirium: an emerging frontier in the management of critically ill children. Anesthesiol Clin 2011; 29:729-50. [PMID: 22078920 DOI: 10.1016/j.anclin.2011.09.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Delirium is a syndrome of acute brain dysfunction that commonly occurs in critically ill adults and most certainly is prevalent in critically ill children all over the world. The dearth of information about the incidence, prevalence, and severity of pediatric delirium stems from the simple fact that there have not been well-validated instruments for routine delirium diagnosis at the bedside. This article reviewed the emerging solutions to this problem, including description of a new pediatric tool called the pCAM-ICU. In adults, delirium is responsible for significant increases in both morbidity and mortality in critically ill patients. The advent of new tools for use in critically ill children will allow the epidemiology of this form of acute brain dysfunction to be studied adequately, will allow clinical management algorithms to be developed and implemented following testing, and will present the necessary incorporation of delirium as an outcome measure for future clinical trials in pediatric critical care medicine.
Collapse
Affiliation(s)
- Heidi A B Smith
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | | | | | | | |
Collapse
|
54
|
Kostandy BB. The role of glutamate in neuronal ischemic injury: the role of spark in fire. Neurol Sci 2011; 33:223-37. [PMID: 22044990 DOI: 10.1007/s10072-011-0828-5] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 10/20/2011] [Indexed: 12/21/2022]
Abstract
Although being a physiologically important excitatory neurotransmitter, glutamate plays a pivotal role in various neurological disorders including ischemic neurological diseases. Its level is increased during cerebral ischemia with excessive neurological stimulation causing the glutamate-induced neuronal toxicity, excitotoxicity, and this is considered the triggering spark in the ischemic neuronal damage. The glutamatergic stimulation will lead to rise in the intracellular sodium and calcium, and the elevated intracellular calcium will lead to mitochondrial dysfunction, activation of proteases, accumulation of reactive oxygen species and release of nitric oxide. Interruption of the cascades of glutamate-induced cell death during ischemia may provide a way to prevent, or at least reduce, the ischemic damage. Various therapeutic options are suggested interrupting the glutamatergic pathways, e.g., inhibiting the glutamate synthesis or release, increasing its clearance, blocking of its receptors or preventing the rise in intracellular calcium. Development of these strategies may provide future treatment options in the management of ischemic stroke.
Collapse
Affiliation(s)
- Botros B Kostandy
- Department of Pharmacology, Faculty of Medicine, University of Assiut, Assiut 71526, Egypt.
| |
Collapse
|
55
|
Gross NB, Duncker PC, Marshall JF. Cortical ionotropic glutamate receptor antagonism protects against methamphetamine-induced striatal neurotoxicity. Neuroscience 2011; 199:272-83. [PMID: 21946008 DOI: 10.1016/j.neuroscience.2011.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 09/05/2011] [Accepted: 09/07/2011] [Indexed: 01/13/2023]
Abstract
Binge administration of the psychostimulant drug, methamphetamine (mAMPH), produces long-lasting structural and functional abnormalities in the striatum. mAMPH binges produce nonexocytotic release of dopamine (DA), and mAMPH-induced activation of excitatory afferent inputs to cortex and striatum is evidenced by elevated extracellular glutamate (GLU) in both regions. The mAMPH-induced increases in DA and GLU neurotransmission are thought to combine to injure striatal DA nerve terminals of mAMPH-exposed brains. Systemic pretreatment with either competitive or noncompetitive N-methyl-D-aspartic acid (NMDA) antagonists protects against mAMPH-induced striatal DA terminal damage, but the locus of these antagonists' effects has not been determined. Here, we applied either the NMDA receptor antagonist, (dl)-amino-5-phosphonovaleric acid (AP5), or the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist, dinitroquinoxaline-2,3-dione (DNQX), directly to the dura mater over frontoparietal cortex to assess their effects on mAMPH-induced cortical and striatal immediate-early gene (c-fos) expression. In a separate experiment we applied AP5 or DNQX epidurally in the same cortical location of rats during a binge regimen of mAMPH and assessed mAMPH-induced striatal dopamine transporter (DAT) depletions 1 week later. Our results indicate that both ionotropic glutamate receptor antagonists reduced the mAMPH-induced Fos expression in cerebral cortex regions near the site of epidural application and reduced Fos immunoreactivity in striatal regions innervated by the affected cortical regions. Also, epidural application of the same concentration of either antagonist during a binge mAMPH regimen blunted the mAMPH-induced striatal DAT depletions with a topography similar to its effects on Fos expression. These findings demonstrate that mAMPH-induced dopaminergic injury depends upon cortical NMDA and AMPA receptor activation and suggest the involvement of the corticostriatal projections in mAMPH neurotoxicity.
Collapse
Affiliation(s)
- N B Gross
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | | | | |
Collapse
|
56
|
Morales P, Bustamante D, Espina-Marchant P, Neira-Peña T, Gutiérrez-Hernández MA, Allende-Castro C, Rojas-Mancilla E. Pathophysiology of perinatal asphyxia: can we predict and improve individual outcomes? EPMA J 2011. [PMID: 23199150 PMCID: PMC3405380 DOI: 10.1007/s13167-011-0100-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Perinatal asphyxia occurs still with great incidence whenever delivery is prolonged, despite improvements in perinatal care. After asphyxia, infants can suffer from short- to long-term neurological sequelae, their severity depend upon the extent of the insult, the metabolic imbalance during the re-oxygenation period and the developmental state of the affected regions. Significant progresses in understanding of perinatal asphyxia pathophysiology have achieved. However, predictive diagnostics and personalised therapeutic interventions are still under initial development. Now the emphasis is on early non-invasive diagnosis approach, as well as, in identifying new therapeutic targets to improve individual outcomes. In this review we discuss (i) specific biomarkers for early prediction of perinatal asphyxia outcome; (ii) short and long term sequelae; (iii) neurocircuitries involved; (iv) molecular pathways; (v) neuroinflammation systems; (vi) endogenous brain rescue systems, including activation of sentinel proteins and neurogenesis; and (vii) therapeutic targets for preventing or mitigating the effects produced by asphyxia.
Collapse
Affiliation(s)
- Paola Morales
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, PO Box 70.000, Santiago 7, Chile
| | - Diego Bustamante
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, PO Box 70.000, Santiago 7, Chile
| | - Pablo Espina-Marchant
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, PO Box 70.000, Santiago 7, Chile
| | - Tanya Neira-Peña
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, PO Box 70.000, Santiago 7, Chile
| | - Manuel A. Gutiérrez-Hernández
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, PO Box 70.000, Santiago 7, Chile
| | - Camilo Allende-Castro
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, PO Box 70.000, Santiago 7, Chile
| | - Edgardo Rojas-Mancilla
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, PO Box 70.000, Santiago 7, Chile
| |
Collapse
|
57
|
González-Ibarra FP, Varon J, López-Meza EG. Therapeutic hypothermia: critical review of the molecular mechanisms of action. Front Neurol 2011; 2:4. [PMID: 21331282 PMCID: PMC3035015 DOI: 10.3389/fneur.2011.00004] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 01/14/2011] [Indexed: 12/24/2022] Open
Abstract
Therapeutic hypothermia (TH) is nowadays one of the most important methods of neuroprotection. The events that occur after an episode of ischemia are multiple and hypothermia can affect the various steps of this cascade. The mechanisms of action of TH are varied and the possible explanation for the benefits of this therapy is probably the multiple mechanisms of action blocking the cascade of ischemia on many levels. TH can affect many metabolic pathways, reactions of inflammation, apoptosis processes, and promote neuronal integrity. To know the mechanisms of action of TH will allow a better understanding about the indications for this therapy and the possibility of searching for other therapies when used in conjunction with hypothermia will provide a therapeutic synergistic effect.
Collapse
|
58
|
Feasibility of Microdialysis to Determine Interstitial Rocuronium Concentration in the Muscle Tissue of Anesthetized Neurosurgical Patients. J Neurosurg Anesthesiol 2010; 22:163-9. [DOI: 10.1097/ana.0b013e3181c80a68] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
59
|
Neuroprotective treatment strategies for poststroke mood disorders: A minireview on atypical neuroleptic drugs and selective serotonin re-uptake inhibitors. Brain Res Bull 2009; 80:95-9. [DOI: 10.1016/j.brainresbull.2009.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 06/22/2009] [Accepted: 06/23/2009] [Indexed: 11/23/2022]
|
60
|
Ricci L, Valoti M, Sgaragli G, Frosini M. Protection by taurine of rat brain cortical slices against oxygen glucose deprivation- and reoxygenation-induced damage. Eur J Pharmacol 2009; 621:26-32. [PMID: 19695242 DOI: 10.1016/j.ejphar.2009.08.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 07/16/2009] [Accepted: 08/03/2009] [Indexed: 11/15/2022]
Abstract
Taurine neuroinhibitory features have suggested its potential for neuroprotection. The aim of the present study was to assess whether it prevents or counteracts brain ischemia and reperfusion-induced cell injury. Rat brain cortical slices were subjected to oxygen/glucose deprivation and reperfusion. Tissue damage was assessed by measuring the release of glutamate and lactate dehydrogenase (LDH) during reperfusion and by determining final tissue water gain, taken as an index of cell swelling. When added during the reperfusion period taurine did not significantly affect oxygen/glucose deprivation-induced LDH and glutamate release, while it antagonised tissue water gain in a concentration-dependent manner (IC(50)=46.5 microM). The latter effect was antagonised by 50% when a taurine transport inhibitor, 2-(guanidino)ethanesulphonic acid (GES), or a GABA(A) receptor antagonist, bicuculline, was added together with taurine, while it was completely abolished when both GES and bicuculline or the volume-sensitive outwardly rectifying (VSOR) Cl(-) channel blocker, 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), was used. On the contrary, when present throughout the entire experiment, taurine significantly reduced oxygen/glucose deprivation-induced LDH and glutamate release with a maximal effect (45% reduction) between 5 and 20 mM. Taurine antagonised also tissue water gain according to a "U-shaped" concentration-response curve, which was significant within the range of 0.01-1.0 mM concentration. This effect was partially counteracted by GES as well as by bicuculline and fully reverted by NPPB. In conclusion, since brain edema is a major contributing factor to morbidity and mortality in stroke, the present findings give the rational basis for assessing taurine efficacy in reducing brain edema in vivo.
Collapse
Affiliation(s)
- Lorenzo Ricci
- Department of Neuroscience, Unit of Pharmacology, Physiology and Toxicology, Siena, Italy
| | | | | | | |
Collapse
|
61
|
Noori HR, Jäger W. Neurochemical Oscillations in the Basal Ganglia. Bull Math Biol 2009; 72:133-47. [DOI: 10.1007/s11538-009-9441-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 06/12/2009] [Indexed: 12/26/2022]
|
62
|
Castri P, Busceti C, Battaglia G, Girardi F, Cavallari M, Orzi F, Fornai F. Protection by Apomorphine in Two Independent Models of Acute Inhibition of Oxidative Metabolism in Rodents. Clin Exp Hypertens 2009; 28:387-94. [PMID: 16833051 DOI: 10.1080/10641960600549827] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Apomorphine was administered by continuous infusion in the mouse following acute inhibition of oxidative metabolism induced by systemic administration of MPTP, and in the gerbil following transient occlusion of the carotid arteries. The dosage employed was comparable to the one used in the treatment of severe on-off fluctuations in Parkinson's disease. The results show that apomorphine significantly diminishes the striatal lesion caused by MPTP and the size of the infarct associated with the transient global ischemia. These data suggest that apomorphine is neuroprotective, probably by means of an antioxidant effect, at doses that are clinically used. The finding may be relevant to brain ischemia as well to chronic neurodegeneration.
Collapse
Affiliation(s)
- Paola Castri
- Department of Neurological Sciences, University of Roma, "La Sapienza", Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
63
|
Smith HAB, Fuchs DC, Pandharipande PP, Barr FE, Ely EW. Delirium: an emerging frontier in the management of critically ill children. Crit Care Clin 2009; 25:593-614, x. [PMID: 19576533 PMCID: PMC2793079 DOI: 10.1016/j.ccc.2009.05.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The objectives of this article are (1) to introduce pediatric delirium and provide understanding of acute brain dysfunction with its classification and clinical presentations (2) to understand how delirium is diagnosed and discuss current modes of delirium diagnosis in the critically ill adult population and translation to pediatrics (3) to understand the prevalence and prognostic significance of delirium in the adult and pediatric critically ill population (4) to discuss the pathophysiology of delirium as currently understood, and (5) to provide general management guidelines for delirium.
Collapse
Affiliation(s)
- Heidi A B Smith
- Pediatrics and Anesthesiology Division of Critical Care, Department of Pediatrics, 5121 Doctor's Office Tower, 2200 Children's Way, Nashville, TN 37232-9075, USA.
| | | | | | | | | |
Collapse
|
64
|
Neuroprotective effects of mebudipine and dibudipine on cerebral oxygen–glucose deprivation/reperfusion injury. Eur J Pharmacol 2009; 610:12-7. [DOI: 10.1016/j.ejphar.2009.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2009] [Revised: 02/25/2009] [Accepted: 03/03/2009] [Indexed: 01/09/2023]
|
65
|
Oja SS, Saransaari P. Release of Endogenous Amino Acids from the Hippocampus and Brain Stem from Developing and Adult Mice in Ischemia. Neurochem Res 2009; 34:1668-76. [DOI: 10.1007/s11064-009-9961-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 03/18/2009] [Indexed: 11/29/2022]
|
66
|
Hayashi N. Management of Pitfalls for the Successful Clinical Use of Hypothermia Treatment. J Neurotrauma 2009; 26:445-53. [DOI: 10.1089/neu.2008.0648] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Nariyuki Hayashi
- Advanced Research Institute for Science and Humanity, Department of Life Sciences, Nihon University, Tokyo, Japan
| |
Collapse
|
67
|
9. References. Acta Neurol Scand 2009. [DOI: 10.1111/j.1600-0404.1993.tb04165.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
68
|
Diaz-Ruiz A, Zavala C, Montes S, Ortiz-Plata A, Salgado-Ceballos H, Orozco-Suarez S, Nava-Ruiz C, Pérez-Neri I, Perez-Severiano F, Ríos C. Antioxidant, antiinflammatory and antiapoptotic effects of dapsone in a model of brain ischemia/reperfusion in rats. J Neurosci Res 2009; 86:3410-9. [PMID: 18615706 DOI: 10.1002/jnr.21775] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Although dapsone (4,4'-diaminodiphenylsulfone) has been described as a neuroprotective agent in occlusive focal ischemia in rats, its mechanism of action is still unknown. To explore this mechanism, oxidative, inflammatory and apoptotic processes were evaluated in the striatum of adult rats using a model of ischemia-reperfusion (I/R), either with or without dapsone treatment. Male Wistar rats were submitted to transient middle cerebral artery occlusion for 2 hr, followed by reperfusion. Rats were dosed either with dapsone (12.5 mg/kg i.p.) or vehicle 30 min before or 30 min after the ischemia onset. Lipid peroxidation (LP) and nitrotyrosine contents were measured 22 hr after reperfusion, and myeloperoxidase activity was evaluated 46 hr after I/R. Different markers for apoptosis and necrosis were also evaluated both at 24 and 72 hr after I/R experimental procedure. LP increased by 37% in ischemic animals vs controls, and this effect was reversed by dapsone treatments. A similar effect was observed regarding nitrotyrosine striatal contents. Myeloperoxidase activity, a marker of inflammatory response, increased 3.7-fold in ischemic animals vs. control rats, and dapsone treatment antagonized that effect. Although apoptosis was increased by the effect of ischemia at both evaluation times, dapsone antagonized that effect only at 72 hr after surgery. Dapsone antagonized all of the I/R end points measured, showing a remarkable ability to decrease markers of damage through antioxidant, antiinflammatory, and anti-apoptotic effects.
Collapse
Affiliation(s)
- Araceli Diaz-Ruiz
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez S.S.A., D.F. México, México
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Li Y, Lei Z, Xu ZC. Enhancement of inhibitory synaptic transmission in large aspiny neurons after transient cerebral ischemia. Neuroscience 2009; 159:670-81. [PMID: 19167464 DOI: 10.1016/j.neuroscience.2008.12.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 12/23/2008] [Accepted: 12/24/2008] [Indexed: 01/15/2023]
Abstract
Large aspiny neurons and most of the GABAergic interneurons survive transient cerebral ischemia while medium spiny neurons degenerate in 24 h. Expression of a long-term enhancement of excitatory transmission in medium spiny neurons but not in large aspiny neurons has been indicated to contribute to this selective vulnerability. Because neuronal excitability is determined by the counterbalance of excitation and inhibition, the present study examined inhibitory synaptic transmission in large aspiny neurons after ischemia in rats. Transient cerebral ischemia was induced for 22 min using the four-vessel occlusion method and whole-cell voltage-clamp recording was performed on striatal slices. The amplitudes of evoked inhibitory postsynaptic currents in large aspiny neurons were significantly increased at 3 and 24 h after ischemia, which was mediated by the increase of presynaptic release. Postsynaptic responses were depressed at 24 h after ischemia. Inhibitory postsynaptic currents could be evoked in large aspiny neurons at 24 h after ischemia, suggesting that they receive GABAergic inputs from the survived GABAergic interneurons. Muscimol, a GABA(A) receptor agonist, presynaptically facilitated inhibitory synaptic transmission at 24 h after ischemia. Such facilitation was dependent on the extracellular calcium and voltage-gated sodium channels. The present study demonstrates an enhancement of inhibitory synaptic transmission in large aspiny neurons after ischemia, which might reduce excitotoxicity and contribute, at least in part, to the survival of large aspiny neurons. Our data also suggest that large aspiny neurons might receive inhibitory inputs from GABAergic interneurons.
Collapse
Affiliation(s)
- Y Li
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS 507, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
70
|
Pharmacotherapy to enhance arousal: what is known and what is not. PROGRESS IN BRAIN RESEARCH 2009; 177:293-316. [PMID: 19818909 DOI: 10.1016/s0079-6123(09)17720-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Severe brain injury results in a disturbance among a wide range of critical neurotransmitter systems. Each neurotransmitter system places its own functional role while being interconnected to a multitude of other systems and functions. This chapter seeks to review the major neurotransmitter systems involved after severe acquired brain injury. While limited in their construct, animal models of brain injury have demonstrated agents that may assist in the recovery process and those that may further slow recovery. We review further the issue of laboratory evidence and what is transferable to the clinic. Lastly, this chapter reviews published clinical pharmacotherapy studies or trials in the arena of arousal for those with clinical severe brain injury. We discuss limitations as well as findings and present the available evidence in a table-based format. While no clear evidence exists to suggest a defined and rigid pharmacotherapeutic approach, interesting data does suggest that several medications have been associated with enhanced arousal. Several studies are underway or about to begin that will shed more light on the utility of such agents in improving function after severe brain injury. For now, clinicians must employ their own judgment and what has been learned from the limited literature to the care of a challenging group of persons.
Collapse
|
71
|
Pathoetiological model of delirium: a comprehensive understanding of the neurobiology of delirium and an evidence-based approach to prevention and treatment. Crit Care Clin 2008; 24:789-856, ix. [PMID: 18929943 DOI: 10.1016/j.ccc.2008.06.004] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Delirium is the most common complication found in the general hospital setting. Yet, we know relatively little about its actual pathophysiology. This article contains a summary of what we know to date and how different proposed intrinsic and external factors may work together or by themselves to elicit the cascade of neurochemical events that leads to the development delirium. Given how devastating delirium can be, it is imperative that we better understand the causes and underlying pathophysiology. Elaborating a pathoetiology-based cohesive model to better grasp the basic mechanisms that mediate this syndrome will serve clinicians well in aspiring to find ways to correct these cascades, instituting rational treatment modalities, and developing effective preventive techniques.
Collapse
|
72
|
Maldonado JR. Delirium in the acute care setting: characteristics, diagnosis and treatment. Crit Care Clin 2008; 24:657-722, vii. [PMID: 18929939 DOI: 10.1016/j.ccc.2008.05.008] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Delirium is a neurobehavioral syndrome caused by the transient disruption of normal neuronal activity secondary to systemic disturbances. It is also the most common psychiatric syndrome found in the general hospital setting, its prevalence surpassing better known psychiatric disorders. This article reviews the published literature on delirium and addresses the epidemiology, known etiologic factors, presentation and characteristics of delirium, while emphasizing what is known about treatment strategies and prevention. Given increasing evidence that delirium is not always reversible and the many sequelae associated with its development, physicians must do everything possible to prevent its occurrence or shorten its duration, by recognizing its symptoms early, correcting underlying contributing causes, and using treatment strategies proven to help recover functional status.
Collapse
Affiliation(s)
- José R Maldonado
- Department of Psychiatry, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
73
|
Zhang Y, Deng P, Ruan Y, Xu ZC. Dopamine D1-Like Receptors Depress Excitatory Synaptic Transmissions in Striatal Neurons After Transient Forebrain Ischemia. Stroke 2008; 39:2370-6. [DOI: 10.1161/strokeaha.107.506824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose—
Spiny neurons in the neostriatum are highly vulnerable to ischemia. Despite an enormous body of research suggesting that dopamine is involved in ischemia-induced neuronal loss in the striatum, it remains unclear how dopamine interacts with the glutamatergic excitotoxicity that is widely accepted as a major cause of ischemic cell death. Our study was designed to investigate the effects of dopamine D1 receptor (D1R) activation on excitatory neurotransmission in postischemic striatal neurons.
Methods—
We used the 4-vessel occlusion ischemia model and brain slice preparations. Whole-cell voltage-clamp recording was performed on striatal neurons to measure excitatory postsynaptic currents (EPSCs). Systemic administration of a D1R agonist after ischemia and hematoxylin/eosin staining were performed to evaluate the effects of D1R activation on ischemia-induced neuronal degeneration in the striatum.
Results—
D1R activation depressed EPSCs in postischemic striatal neurons. The depression was attributable to inhibition of presynaptic release. An activator of cAMP-dependent protein kinase A (PKA) mimicked the depressive effects of D1R activation. Bath application of a PKA inhibitor blocked the depression of EPSCs, whereas intracellular postsynaptic application of the PKA inhibitor had no effect. The D1R agonist failed to reduce EPSC amplitude in the presence of an adenosine A1 receptor antagonist. Systemic administration of a D1R agonist after ischemia significantly attenuated ischemia-induced cell death in the striatum.
Conclusions—
These results indicate that D1R activation presynaptically depresses excitatory synaptic transmission in striatal neurons after ischemia through activation of PKA and adenosine A1 receptors and thus demonstrate a novel mechanism of D1R-mediated protection against ischemia.
Collapse
Affiliation(s)
- Yuchun Zhang
- From the Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis
| | - Ping Deng
- From the Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis
| | - Yiwen Ruan
- From the Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis
| | - Zao C. Xu
- From the Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis
| |
Collapse
|
74
|
Sugimura M, Hirose Y, Hanamoto H, Okada K, Boku A, Morimoto Y, Taki K, Niwa H. Influence of acute progressive hypoxia on cardiovascular variability in conscious spontaneously hypertensive rats. Auton Neurosci 2008; 141:94-103. [PMID: 18599365 PMCID: PMC2941824 DOI: 10.1016/j.autneu.2008.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 05/21/2008] [Accepted: 05/23/2008] [Indexed: 11/30/2022]
Abstract
The purpose of this study is to examine the influence of acute progressive hypoxia on cardiovascular variability and striatal dopamine (DA) levels in conscious, spontaneously hypertensive rats (SHR) and Wistar Kyoto rats (WKY). After preparation for measurement, the inspired oxygen concentration of rats was decreased to 10% within 5 min (descent stage), maintained at 10% for 10 min (fixed stage), and then elevated back to 20% over 5 min (recovery stage). The systolic blood pressure (SBP) and heart rate (HR) variability at each stage was calculated to evaluate the autonomic nervous system response using the wavelet method. Striatal DA during each stage was measured using in vivo microdialysis. We found that SHR showed a more profound hemodynamic response to progressive hypoxia as compared to WKY. Cardiac parasympathetic activity in SHR was significantly inhibited by acute progressive hypoxia during all stages, as shown by the decrease in the high frequency band of HR variability (HR-HF), along with transient increase in sympathetic activity during the early hypoxic phase. This decrease in the HR-HF continued even when SBP was elevated. Striatal DA levels showed the transient similar elevation in both groups. These findings suggest that acute progressive hypoxic stress in SHR inhibits cardiac parasympathetic activity through reduction of baroreceptor reflex sensitivity, with potentially severe deleterious effects on circulation, in particular on HR and circulatory control. Furthermore, it is thought that the influence of acute progressive hypoxia on striatal DA levels is similar in SHR and WKY.
Collapse
Affiliation(s)
- Mitsutaka Sugimura
- Department of Dental Anesthesiology, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Fan Y, Deng P, Wang YC, Lu HC, Xu ZC, Schulz PE. Transient cerebral ischemia increases CA1 pyramidal neuron excitability. Exp Neurol 2008; 212:415-21. [PMID: 18559277 DOI: 10.1016/j.expneurol.2008.04.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 04/07/2008] [Accepted: 04/18/2008] [Indexed: 11/30/2022]
Abstract
In human and experimental animals, the hippocampal CA1 region is one of the most vulnerable areas of the brain to ischemia. Pyramidal neurons in this region die 2-3 days after transient cerebral ischemia whereas other neurons in the same region remain intact. The mechanisms underlying the selective and delayed neuronal death are unclear. We tested the hypothesis that there is an increase in post-synaptic intrinsic excitability of CA1 pyramidal neurons after ischemia that exacerbates glutamatergic excitotoxicity. We performed whole-cell patch-clamp recordings in brain slices obtained 24 h after in vivo transient cerebral ischemia. We found that the input resistance and membrane time constant of the CA1 pyramidal neurons were significantly increased after ischemia, indicating an increase in neuronal excitability. This increase was associated with a decrease in voltage sag, suggesting a reduction of the hyperpolarization-activated non-selective cationic current (I(h)). Moreover, after blocking I(h) with ZD7288, the input resistance of the control neurons increased to that of the post-ischemia neurons, suggesting that a decrease in I(h) contributes to increased excitability after ischemia. Finally, when lamotrigine, an enhancer of dendritic I(h), was applied immediately after ischemia, there was a significant attenuation of CA1 cell loss. These data suggest that an increase in CA1 pyramidal neuron excitability after ischemia may exacerbate cell loss. Moreover, this dendritic channelopathy may be amenable to treatment.
Collapse
Affiliation(s)
- Yuan Fan
- Department of Neurology, Baylor College of Medicine, 6501 Fannin Street, NB204, Houston, TX 77030, USA.
| | | | | | | | | | | |
Collapse
|
76
|
Deng P, Zhang Y, Xu ZC. Inhibition of Ih in striatal cholinergic interneurons early after transient forebrain ischemia. J Cereb Blood Flow Metab 2008; 28:939-47. [PMID: 18000510 DOI: 10.1038/sj.jcbfm.9600583] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Striatal cholinergic interneurons are relatively resistant to ischemic insults. These neurons express hyperpolarization-activated cation current (I(h)) that profoundly regulates neuronal excitability. Changes in neuronal excitability early after ischemia may be crucial for determining neuronal injury. Here we report that I(h) in cholinergic interneurons was decreased 3 h after transient forebrain ischemia, which was accompanied by a negative shift of the voltage dependence of activation. The inhibition of I(h) might be due to the tonic activation of adenosine A1 receptors, as blockade of A1 receptors significantly increased I(h) in postischemic neurons, but had no effect on control neurons. Consistent with the inhibition of I(h), postischemic neurons showed a reduction in both spontaneous firing and hyperpolarization-induced rebound depolarization. These findings indicate that I(h) may play excitatory roles in striatal cholinergic interneurons. Postischemic inhibition of I(h) might be a novel mechanism by which adenosine confers neuronal resistance to cerebral ischemia.
Collapse
Affiliation(s)
- Ping Deng
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
77
|
Zhang F, Li C, Wang R, Han D, Zhang QG, Zhou C, Yu HM, Zhang GY. Activation of GABA receptors attenuates neuronal apoptosis through inhibiting the tyrosine phosphorylation of NR2A by Src after cerebral ischemia and reperfusion. Neuroscience 2007; 150:938-49. [DOI: 10.1016/j.neuroscience.2007.09.070] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 09/26/2007] [Accepted: 10/05/2007] [Indexed: 10/22/2022]
|
78
|
Epsztein J, Ben-Ari Y, Represa A, Crépel V. Late-onset epileptogenesis and seizure genesis: lessons from models of cerebral ischemia. Neuroscientist 2007; 14:78-90. [PMID: 17914086 DOI: 10.1177/1073858407301681] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Patients surviving ischemic stroke often express delayed epileptic syndromes. Late poststroke seizures occur after a latency period lasting from several months to years after the insult. These seizures might result from ischemia-induced neuronal death and associated morphological and physiological changes that are only partly elucidated. This review summarizes the long-term morphofunctional alterations observed in animal models of both focal and global ischemia that could explain late-onset seizures and epileptogenesis. In particular, this review emphasizes the change in GABAergic and glutamatergic signaling leading to hyperexcitability and seizure genesis.
Collapse
Affiliation(s)
- Jérôme Epsztein
- Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale Unité 29, and Université de La Méditerranée, Marseille Cedex, France
| | | | | | | |
Collapse
|
79
|
Akiyama Y, Miwa S. Improvement of postischemic dopaminergic dysfunction by edaravone, a free radical scavenger. J Pharmacol Sci 2007; 104:99-102. [PMID: 17452805 DOI: 10.1254/jphs.sc0060259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Effects of a free radical scavenger, edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one), on ischemia/reperfusion-induced dysfunctions of rat striatal dopaminergic neurons were examined using in vivo brain microdialysis. During transient forebrain ischemia, dopamine levels in dialysates were elevated 140-fold above controls but rapidly recovered after reperfusion. The increase in dopamine levels induced by high K+ stimulation after reperfusion was far smaller than that of the controls. Pretreatment with edaravone but not post-treatment dose-dependently improved the response to high K+ but not the massive dopamine increase during ischemia. These results suggest that free radicals produced during ischemia play more important roles in ischemia/reperfusion-induced dysfunctions of dopaminergic neurons.
Collapse
Affiliation(s)
- Yoshinori Akiyama
- Department of Neurosurgery, Tenri Hospital, Nara, and Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | |
Collapse
|
80
|
Dunham CM, Ransom KJ, McAuley CE, Gruber BS, Mangalat D, Flowers LL. Severe brain injury ICU outcomes are associated with Cranial-Arterial Pressure Index and noninvasive Bispectral Index and transcranial oxygen saturation: a prospective, preliminary study. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2007; 10:R159. [PMID: 17105656 PMCID: PMC1794465 DOI: 10.1186/cc5097] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 10/19/2006] [Accepted: 11/14/2006] [Indexed: 12/02/2022]
Abstract
Introduction The purpose of this study was to determine if noninvasive transcranial oxygen saturation (StcO2) and Bispectral Index (BIS) correlate with severe traumatic brain injury intensive care unit (ICU) outcomes. Methods This is a prospective observational study. Values of intracranial pressure (ICP), mean arterial pressure (MAP), BIS, and StcO2 were recorded hourly for the first six, post-injury days in 18 patients with severe brain injury. Included in the analyses was the Cranial-Arterial Pressure (CAP) Index, which is ICP/(MAP - ICP). Results After 1,883 hours of data were analyzed, we found that StcO2 and BIS are associated with survival, good neurological outcome, ICP ≤20, cerebral perfusion pressure (CPP) ≥60, and CAP index ≤0.30 (p ≤ 0.001). Survival and good outcome are independently associated with BIS ≥60, StcO2 ≥70, and ICP ≤20 (p < 0.0001). BIS ≥60 or StcO2 ≥70 is associated with survival, good outcome, CPP ≥60, ICP ≤20, CAP index ≤0.30, and fewer ICP interventions (p < 0.0001). With BIS ≥60 or StcO2 ≥70, the rate of CPP ≥60 is 97.2% and the rate of ICP≤ 25 is 97.1%. An increased CAP index is associated with death, poor neurological outcome, and increased ICP interventions (p < 0.0001). With CAP index >0.25, MAP is not related to ICP (p = 0.16). Conclusion Numerous significant associations with ICU outcomes indicate that BIS and StcO2 are clinically relevant. The independent associations of BIS, StcO2, and ICP with outcomes suggest that noninvasive multi-modal monitoring may be beneficial. Future studies of patients with BIS ≥60 or StcO2 ≥70 will determine if select patients can be managed without ICP monitoring and whether marginal ICP can be observed. An increased CAP index is associated with poor outcome.
Collapse
Affiliation(s)
- C Michael Dunham
- Trauma/Critical Care Services, St Elizabeth Health Center, Youngstown, OH 44501, USA
| | - Kenneth J Ransom
- Trauma/Critical Care Services, St Elizabeth Health Center, Youngstown, OH 44501, USA
| | - Clyde E McAuley
- Trauma/Critical Care Services, St Elizabeth Health Center, Youngstown, OH 44501, USA
| | - Brian S Gruber
- Trauma/Critical Care Services, St Elizabeth Health Center, Youngstown, OH 44501, USA
| | - Dev Mangalat
- Trauma/Critical Care Services, St Elizabeth Health Center, Youngstown, OH 44501, USA
| | - Laurie L Flowers
- Trauma/Critical Care Services, St Elizabeth Health Center, Youngstown, OH 44501, USA
| |
Collapse
|
81
|
Yaka R, Biegon A, Grigoriadis N, Simeonidou C, Grigoriadis S, Alexandrovich AG, Matzner H, Schumann J, Trembovler V, Tsenter J, Shohami E. D‐cycloserine improves functional recovery and reinstates long‐term potentiation (LTP) in a mouse model of closed head injury. FASEB J 2007; 21:2033-41. [PMID: 17351125 DOI: 10.1096/fj.06-7856com] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Traumatic brain injury triggers a massive glutamate efflux, activation of NMDA receptor channels, and cell death. Recently, we reported that NMDA receptors in mice are down-regulated from hours to days following closed head injury (CHI), and treatment with NMDA improved recovery of motor and cognitive functions up to 14 d post-injury. Here we show that a single injection of a low dose of D-cycloserine (DCS), a partial NMDA receptor agonist, in CHI mice 24 h post-injury, resulted in a faster and greater recovery of motor and memory functions as assessed by neurological severity score and object recognition tests, respectively. Moreover, DCS treatment of CHI mice led to a significant improvement of hippocampal long-term potentiation (LTP) in the CA1 region that was completely blunted in CHI control mice. However, DCS did not improve CHI-induced impairment in synaptic glutamate release measured by paired pulse facilitation (PPF) ratio in hippocampal CA1 region. Finally, CHI-induced reduction of brain-derived neurotrophic factor (BDNF) was fully restored following DCS treatment. Since DCS is in clinical use for other indications, the present study offers a novel approach to treat human brain injury.
Collapse
Affiliation(s)
- Rami Yaka
- Department of Pharmacology, School of Pharmacy, The Hebrew University of Jerusalem, POB 12065, Jerusalem 91120, Israel.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Moy LY, Wang SP, Sonsalla PK. Mitochondrial stress-induced dopamine efflux and neuronal damage by malonate involves the dopamine transporter. J Pharmacol Exp Ther 2007; 320:747-56. [PMID: 17090704 DOI: 10.1124/jpet.106.110791] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Endogenous striatal dopamine (DA) overflow has been associated with neuropathological conditions resulting from ischemia, psychostimulants, and metabolic inhibition. Malonate, a reversible inhibitor of succinate dehydrogenase, models the effects of energy impairment in neurodegenerative disorders. We have previously reported that the striatal DA efflux and damage to DA nerve terminals resulting from intrastriatal malonate infusions is prevented by prior DA depletion, suggesting that DA plays a role in the neuronal damage. We presently report that the malonate-induced DA efflux is partially mediated by reverse transport of DA from the cytosol to the extracellular space via the DA transporter (DAT). Pharmacological blockade of the DAT with a series of structurally different inhibitors [cocaine, mazindol, 1-(2-(bis(4-fluophenyl methoxy) ethyl)-4-(3-(4-fluorophenyl)-propyl)piperazine) dimethane sulfonate (GBR 13098) and methyl(-)-3beta-(p-fluorophenyl)-1alphaH,5alphaH-tropane-2beta-carboxylate1,5-naphthalene (Win 35,428)] attenuated malonate-induced DA overflow in vivo and protected mice against subsequent damage to DA nerve terminals. Consistent with these findings, the DAT inhibitors prevented malonate-induced damage to DA neurons in mesencephalic cultures and also protected against the loss of GABA neurons in this system. The DAT inhibitors did not modify malonate-induced formation of reactive oxygen species or lactate production, indicating that the DAT inhibitors neither exert antioxidant effects nor interfere with the actions of malonate. Taken together, these findings provide direct evidence that mitochondrial impairment and metabolic stress cause striatal DA efflux via the DAT and suggest that disruptions in DA homeostasis resulting from energy impairment may contribute to the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Lily Y Moy
- Department of Neurology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
83
|
Shih AY, Erb H, Murphy TH. Dopamine activates Nrf2-regulated neuroprotective pathways in astrocytes and meningeal cells. J Neurochem 2007; 101:109-19. [PMID: 17394461 DOI: 10.1111/j.1471-4159.2006.04345.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The transcription factor Nrf2 controls inducible expression of multiple antioxidant/detoxification genes. We previously found that Nrf2-/- mice have increased sensitivity to in vivo mitochondrial stress and ischemia. Although Nrf2 regulated these forms of neuronal toxicity, it was unclear which injury-triggered signal(s) led to Nrf2 activation in vivo. In this study, we use primary cultures to test the hypothesis that excessive dopamine release can act as an endogenous Nrf2-inducing signal. We cultured two cell types that show increased Nrf2 activity during ischemia in vivo, astrocytes and meningeal cells. Cultures were infected with an adenovirus reporter of Nrf2 transcriptional activity. Dopamine-induced Nrf2 activity in both cell types by generating oxidative stressors, H2O2 and dopamine-quinones. Nrf2 activation in meningeal cells was significantly higher than astrocytes. The effect of dopamine was blocked by antioxidants, and by over-expression of either dominant-negative Nrf2 or Keap1. Nrf2 induction was specific to oxidative stress caused by catecholaminergic neurotransmitters as epinephrine also induced Nrf2, but the monoamine serotonin had no significant effect. These in vitro results suggest Nrf2 activity in astrocytes and meningeal cells link the neurotoxic actions of dopamine to neuroprotective pathways that may potentially modulate ischemic injury and neurodegeneration.
Collapse
Affiliation(s)
- Andy Y Shih
- Kinsmen Laboratory of Neurological Research, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
84
|
Biegon A, Gibbs A, Alvarado M, Ono M, Taylor S. In vitro and in vivo characterization of [3H]CNS-5161—A use-dependent ligand for theN-methyl-d-aspartate receptor in rat brain. Synapse 2007; 61:577-86. [PMID: 17455246 DOI: 10.1002/syn.20400] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the brain. Glutamate activation of the N-methyl-D-aspartate (NMDA) receptor subtype is thought to mediate important physiological and pathological processes, including memory formation and excitotoxicity. The goal of the present work was to characterize and validate a candidate agent for noninvasive positron emission tomography (PET) imaging of this receptor. [(3)H]-labeled N-[3-(3)H]-methyl-3-(thiomethylphenyl)cyanamide (CNS-5161) was incubated with rat brain homogenates at increasing concentrations, temperatures, and times to establish the binding kinetics and affinity of the ligand in vitro. Nonspecific binding was measured with 100 microM MK-801. The compound was also injected i.v. in rats pretreated with saline, NMDA, MK801, or a combination, and organ and brain regional uptake was assessed at various times after injection by autoradiography or dissection. Blood and brain samples were assayed for metabolites by high-performance liquid chromatography. CNS-5161 binds brain membranes with high affinity (K(d) < 4 nM) and fast association and dissociation kinetics. Specific binding increased in the presence of glutamate and glycine. Intravenous administration in control rats resulted in a heterogeneous brain distribution with hippocampus and cortex > thalamus > striatum > cerebellum, and a cortex/cerebellum ratio of 1.4. Pretreatment with NMDA increased the hippocampus-to-cerebellum ratio to 1.6-1.9 while MK801 abolished this increase, resulting in ratios close to 1. Thus, CNS-5161 binds preferentially to the activated state of the NMDA receptor channel in vitro and in vivo. The high affinity and fast kinetics make it compatible with PET imaging of a carbon-11 labeled CNS-5161.
Collapse
Affiliation(s)
- Anat Biegon
- Medical Department, Brookhaven National Laboratory, Upton, New York, USA.
| | | | | | | | | |
Collapse
|
85
|
Abstract
Fever is a common occurrence in patients following brain and spinal cord injury (SCI). In intensive care units, large numbers of patients demonstrate febrile periods during the first several days after injury. Over the last several years, experimental studies have reported the detrimental effects of fever in various models of central nervous system (CNS) injury. Small elevations in temperature during or following an insult have been shown to worsen histopathological and behavioral outcome. Thus, the control of fever after brain or SCI may improve outcome if more effective strategies for monitoring and treating hyperthermia were developed. Because of the clinical importance of fever as a potential secondary injury mechanism, mechanisms underlying the detrimental effects of mild hyperthermia after injury have been evaluated. To this end, studies have shown that mild hyperthermia (>37 degrees C) can aggravate multiple pathomechanisms, including excitotoxicity, free radical generation, inflammation, apoptosis, and genetic responses to injury. Recent data indicate that gender differences also play a role in the consequences of secondary hyperthermia in animal models of brain injury. The observation that dissociations between brain and body temperature often occur in head-injured patients has again emphasized the importance of controlling temperature fluctuations after injury. Thus, increased emphasis on the ability to monitor CNS temperature and prevent periods of fever has gained increased attention in the clinical literature. Cooling blankets, body vests, and endovascular catheters have been shown to prevent elevations in body temperature in some patient populations. This chapter will summarize evidence regarding hyperthermia and CNS injury.
Collapse
Affiliation(s)
- W Dalton Dietrich
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, FL 33136, USA.
| | | |
Collapse
|
86
|
DeLorenzo RJ, Sun DA, Deshpande LS. Erratum to "Cellular mechanisms underlying acquired epilepsy: the calcium hypothesis of the induction and maintenance of epilepsy." [Pharmacol. Ther. 105(3) (2005) 229-266]. Pharmacol Ther 2006; 111:288-325. [PMID: 16832874 DOI: 10.1016/j.pharmthera.2004.10.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Epilepsy is one of the most common neurological disorders. Although epilepsy can be idiopathic, it is estimated that up to 50% of all epilepsy cases are initiated by neurological insults and are called acquired epilepsy (AE). AE develops in 3 phases: (1) the injury [central nervous system (CNS) insult]. (2) epileptogenesis (latency), and (3) the chronic epileptic (spontaneous recurrent seizure) phases. Status epilepticus (SE), stroke, and traumatic brain injury (TBI) are 3 major examples of common brain injuries that can lead to the development of AE. It is especially important to understand the molecular mechanisms that cause AE because it may lead to innovative strategies to prevent or cure this common condition. Recent studies have offered new insights into the cause of AE and indicate that injury-induced alterations in intracellular calcium concentration levels ([Ca(2+)](i)) and calcium homeostatic mechanisms play a role in the development and maintenance of AE. The injuries that cause AE are different, but the share a common molecular mechanism for producing brain damage--an increase in extracellular glutamate and are exposed to increased [Ca(2+)](i) are the cellular substrates to develop epilepsy because dead cells do not seize. The neurons that survive injury sustain permanent long-term plasticity changes in [Ca(2+)](i) and calcium homeostatic mechanisms that are permanent and are a prominent feature of the epileptic phenotype. In the last several years, evidence has accumulated indicating that the prolonged alteration in neuronal calcium dynamics plays an important role in the induction and maintenance of the prolonged neuroplasticity changes underlying the epileptic phenotype. Understanding the role of calcium as a second messenger in the induction and maintenance of epilepsy may provide novel insights into therapeutic advances that will prevent and even cure AE.
Collapse
Affiliation(s)
- Robert J DeLorenzo
- Department of Neurology, Virginia Commonwealth University, School of Medicine, Richmond, 23298-0599, USA.
| | | | | |
Collapse
|
87
|
Yulug B, Yildiz A, Hüdaoglu O, Kilic E, Cam E, Schäbitz WR. Olanzapine attenuates brain damage after focal cerebral ischemia in vivo. Brain Res Bull 2006; 71:296-300. [PMID: 17113959 DOI: 10.1016/j.brainresbull.2006.09.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 09/19/2006] [Accepted: 09/20/2006] [Indexed: 11/21/2022]
Abstract
Atypical antipsychotic drugs are widely used in the treatment of schizophrenia. These agents are discovered to have some additional beneficial effects beyond their effectiveness as antipsychotic drugs. Among these initially unexpected effects are their potential effects as mood stabilizers in bipolar disorder and their efficacy in improving long-term outcome in schizophrenia. These effects recently raised the question whether these drugs may also have some neuroprotective effect in the brain. To examine this matter, in this study we evaluated the neuroprotective effect of olanzapine after permanent focal cerebral ischemia. Anaesthetized male C57BL/6j mice were submitted to permanent thread occlusion of the middle cerebral artery (MCA). Olanzapine (0.1 and 1 mg/kg) or vehicle was applied intraperitoneally just after permanent ischemia. Twenty-four hours after permanent ischemia, brain injury was evaluated by triphenyltetrazolium chloride staining (TTC). Olanzapine (0.1 and 1 mg/kg) showed significant neuroprotection after permanent focal cerebral ischemia.
Collapse
Affiliation(s)
- Burak Yulug
- Department of Neurology, University of Uludag Bursa, Turkey
| | | | | | | | | | | |
Collapse
|
88
|
Lin B, Globus MY, Dietrich WD, Busto R, Martinez E, Ginsberg MD. Differing Neurochemical and Morphological Sequelae of Global Ischemia: Comparison of Single- and Multiple-Insult Paradigms. J Neurochem 2006; 59:2213-23. [PMID: 1359018 DOI: 10.1111/j.1471-4159.1992.tb10113.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The purpose of this investigation was to investigate pathomechanisms responsible for the deleterious effects of repeated episodes of brief forebrain ischemia. Halothane-anesthetized male Wistar rats were subjected to either (a) a single 15-min period or (b) three 5-min periods (separated by 1 h) of global forebrain ischemia by bilateral carotid artery occlusions plus hypotension (50 mm Hg), followed by various periods of recirculation. Brain temperature was normothermic throughout. In one series of rats, extracellular levels of glutamate, glycine, and gamma-aminobutyric acid (GABA) were measured in the dorsolateral striatum (n = 6-8 per group) and lateral thalamus (n = 4-6 per group) by microdialysis and HPLC before and during ischemia and during 3-5 h of recirculation. In a parallel series of rats (n = 6 per group), ischemic cell change was quantified at 2 (dark neurons), 24, or 72 h following either single or multiple ischemic insults. A single 15-min ischemic period led to massive glutamate release (13-fold increase; p = 0.001), which returned to normal by 20-30 min of recirculation and remained normal thereafter. By contrast, in rats with three 5-min periods of ischemia, the glutamate level rise with each repeated insult (four- to 4.5-fold; p < or = 0.02) was smaller than that observed during the single 15-min insult, but a late sustained rise (five- to six-fold; p < 0.05) occurred at 2-3 h of recirculation. Brief ischemia-induced elevations of glycine and GABA levels were detected in both the single- and multiple-insult groups, with normalization during recirculation. In contrast, the excitotoxic index, a composite measure of neurotransmitter release ([glutamate] x [glycine]/[GABA]), differed markedly following single versus multiple insults (p = 0.002 by repeated-measures analysis of variance) and increased by seven- to 12-fold (p < 0.05) at 1-3 h following the third insult. The total amount of glutamate released was 3.3-fold higher in the multiple-insult than in the single-insult group (p < 0.02). At 2 h of recirculation, histopathological analysis of dorsolateral striatum showed a significantly greater frequency of dark neurons in the multiple- than in the single-insult group (p < 0.05 by analysis of variance). In the thalamus, a higher frequency of ischemic neurons was seen in the multiple-than in the single-insult group at all intervals studied. Thus, in rats with multiple ischemic insults, accelerated ischemic damage was found in the striatum, and severe ischemic injury was documented in the thalamus.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- B Lin
- Department of Neurology, University of Miami School of Medicine, FL 33101
| | | | | | | | | | | |
Collapse
|
89
|
Saransaari P, Oja SS. Taurine release in mouse brain stem slices under cell-damaging conditions. Amino Acids 2006; 32:439-46. [PMID: 16998716 DOI: 10.1007/s00726-006-0375-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 05/16/2006] [Indexed: 10/24/2022]
Abstract
Taurine has been thought to be essential for the development and survival of neural cells and to protect them under cell-damaging conditions. In the brain stem taurine regulates many vital functions, including cardiovascular control and arterial blood pressure. We have recently characterized the release of taurine in the adult and developing brain stem under normal conditions. Now we studied the properties of preloaded [3H]taurine release under various cell-damaging conditions (hypoxia, hypoglycemia, ischemia, the presence of metabolic poisons and free radicals) in slices prepared from the mouse brain stem from developing (7-day-old) and young adult (3-month-old) mice, using a superfusion system. Taurine release was greatly enhanced under these cell-damaging conditions, the only exception being the presence of free radicals in both age groups. The ischemia-induced release was characterized to consist of both Ca2+-dependent and -independent components. Moreover, the release was mediated by Na+-, Cl--dependent transporters operating outwards, particularly in the immature brain stem. Cl- channel antagonists reduced the release at both ages, indicating that a part of the release occurs through ion channels, and protein kinase C appeared to be involved. The release was also modulated by cyclic GMP second messenger systems, since inhibitors of soluble guanylyl cyclase and phosphodiesterases suppressed ischemic taurine release. The inhibition of phospholipases also reduced taurine release at both ages. This ischemia-induced taurine release could constitute an important mechanism against excitotoxicity, protecting the brain stem under cell-damaging conditions.
Collapse
Affiliation(s)
- P Saransaari
- Tampere Brain Research Center, Medical School, University of Tampere, and Centre for Laboratory Medicine, Tampere University Hospital, Finland.
| | | |
Collapse
|
90
|
Chen SH, Niu KC, Lin MT. CEREBROVASCULAR DYSFUNCTION IS AN ATTRACTIVE TARGET FOR THERAPY IN HEAT STROKE¶. Clin Exp Pharmacol Physiol 2006; 33:663-72. [PMID: 16895537 DOI: 10.1111/j.1440-1681.2006.04429.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. The aim of the present review is to summarize clinical observations and results of animal models that advance the knowledge of the attenuation of cerebrovascular dysfunction in the setting of heat stroke. It is a narrative review of selected published literature from Medline over the period 1959-2005. 2. All heat-stressed rodents, even under general anaesthesia, have hyperthermia, systemic inflammation, hypercoagulable state, arterial hypotension and tissue ischaemia and injury in multiple organs. These findings demonstrate that rodent heat stroke models can nearly mirror the full spectrum of human heat stroke. Experimental heat stroke fulfills the empirical triad used for the diagnosis of classical human heat stroke, namely hyperthermia, central nervous system alterations and a history of heat stress. 3. These physiological dysfunctions and survival during heat stroke can be improved by whole-body or brain cooling therapy adopted immediately after the onset of heat stroke. 4. However, in the absence of body or brain cooling, these heat stroke reactions can still be reduced by the following measures: (i) fluid replacement with 3% NaCl solution, 10% human albumin or hydroxyethyl starch; (ii) intravenous delivery of anti-inflammatory drugs, free radical scavengers or interleukin-1 receptor antagonists; (iii) hyperbaric oxygen therapy; or (iv) transplantation of human umbilical cord blood cells. 5. In addition, before initiation of heat stress, prior manipulations with one of the following measures was found to be able to protect against heat stroke reactions: (i) systemic delivery of alpha-tocopherol, mannitol, inducible nitric oxide synthase inhibitors, mu-opioid receptor antagonists, endothelin ETA receptor antagonists, serotoninergic nerve depletors or receptor antagonists, or glutamate receptor antagonists; or (ii) heat shock protein 72 preconditioning. 6. There is compelling evidence that cerebrovascular dysfunction is an attractive target for therapy in heat stroke.
Collapse
Affiliation(s)
- Sheng-Hsien Chen
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Taiwan
| | | | | |
Collapse
|
91
|
Duszczyk M, Gadamski R, Ziembowicz A, Lazarewicz JW. Antagonists of group I metabotropic glutamate receptors do not inhibit induction of ischemic tolerance in gerbil hippocampus. Neurochem Int 2006; 48:478-84. [PMID: 16524644 DOI: 10.1016/j.neuint.2005.12.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 12/19/2005] [Accepted: 12/22/2005] [Indexed: 10/24/2022]
Abstract
In this study we tested the effect of antagonists of two subtypes of the group I metabotropic glutamate receptors (mGluRs GI) on the induction of ischemic tolerance in relation to brain temperature. These experiments were prompted by indications that glutamate receptors may participate in the mechanisms of ischemic preconditioning. The role of NMDA receptors in the induction of ischemic tolerance has been debated while there is lack of information concerning the involvement of mGluRs GI in this phenomenon. The tolerance to injurious 3 min forebrain ischemia in Mongolian gerbils was induced 48 h earlier by 2 min preconditioning ischemia. Brain temperature was measured using telemetry equipment. EMQMCM and MTEP, antagonists of mGluR1 and mGluR5, respectively, were injected i.p. at a dose of 5 mg/kg. They were administered either before preconditioning ischemia in a single dose or after 2 min ischemia three times every 2 h. Both antagonists did not inhibit the induction of ischemic tolerance. Thus, our data indicate that group I metabotropic glutamate receptors do not play an essential role in the induction of ischemic tolerance.
Collapse
Affiliation(s)
- Malgorzata Duszczyk
- Department of Neurochemistry, Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland
| | | | | | | |
Collapse
|
92
|
Kobori N, Moore AN, Dash PK. GDNF abates serum deprivation-induced tyrosine hydroxylase Ser19 phosphorylation and activity. Brain Res 2006; 1086:142-51. [PMID: 16626642 DOI: 10.1016/j.brainres.2006.02.111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Revised: 01/20/2006] [Accepted: 02/26/2006] [Indexed: 10/24/2022]
Abstract
High dopamine levels can contribute to neuronal dysfunction, impair plasticity and be toxic to neuronal cells in pathological conditions. The synthesis of dopamine is regulated by phosphorylation of the rate-limiting enzyme tyrosine hydroxylase (TH) under physiological conditions, with the phosphorylation of Ser31 and Ser40 directly increasing TH activity. Although a third phosphorylation site, Ser19, does not appear to directly regulate TH activity in physiological conditions, its role in pathological conditions is poorly understood. In this study, we examined the effects of serum deprivation (to mimic loss of retrogradely/anterogradely transported target-derived neurotrophic factors following axonal injury) and glutamate receptor stimulation (to mimic excitotoxicity) on TH phosphorylation and activity in a cell line and in mesencephalic primary culture cells. In addition, we also tested whether glial cell line-derived neurotrophic factor (GDNF) can alter these changes. We demonstrate that serum-deprivation resulted in a sustained increase in Ser19 phosphorylation beginning at 3 h and lasting up to 10 h without any detectable change in Ser31 or Ser40 phosphorylation within this time frame. This increase in Ser19 phosphorylation was associated with enhanced TH activity and was due, in part, to glutamate-receptor-mediated calcium influx and possibly calcium/calmodulin-dependent protein kinase II (CaMKII) activation. Interestingly in this serum-deprivation model, GDNF blocked the increase in Ser19 phosphorylation and TH activity at the 10-h time point following serum deprivation. Furthermore, GDNF also blocked the glutamate-mediated increase in Ser19 phosphorylation in rat primary mesencephalic neuronal cultures. Taken together, these findings suggest that GDNF may reduce dopamine synthesis in pathological conditions.
Collapse
Affiliation(s)
- Nobuhide Kobori
- Department of Neurobiology and Anatomy, The Vivian L. Smith Center for Neurological Research, The University of Texas Medical School, PO Box 20708, Houston, 77255, USA
| | | | | |
Collapse
|
93
|
Dave KR, Lange-Asschenfeldt C, Raval AP, Prado R, Busto R, Saul I, Pérez-Pinzón MA. Ischemic preconditioning ameliorates excitotoxicity by shifting glutamate/gamma-aminobutyric acid release and biosynthesis. J Neurosci Res 2006; 82:665-73. [PMID: 16247804 DOI: 10.1002/jnr.20674] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Excitotoxicity is recognized to play a major role in cerebral ischemia-induced cell death. The main goal of the present study was to define whether our model of ischemic preconditioning (IPC) promotes a shift from excitatory to inhibitory neurotransmission during the test ischemia to diminish metabolic demand during the reperfusion phase. We also determined whether gamma-aminobutyric acid (GABA) played a role in IPC-induced neuroprotection. Ten minutes of cerebral ischemia was produced by tightening the carotid ligatures bilaterally following hypotension. Samples of microdialysis perfusate, representing extracellular fluid, were analyzed for amino acid content by HPLC. IPC promoted a robust release of GABA after lethal ischemia compared with control rats. We also observed that the activity of glutamate decarboxylase (the predominant pathway of GABA synthesis in the brain) was higher in the IPC group compared with control and ischemic groups. Because GABAA receptor up-regulation has been shown to occur following IPC, and GABAA receptor activation has been implicated in neuroprotection against ischemic insults, we tested the hypothesis that GABAA or GABAB receptor activation was neuroprotective during ischemia or early reperfusion by using an in vitro model (organotypic hippocampal slice culture). Administration of the GABAB agonist baclofen during test ischemia and for 1 hr of reperfusion provided significant neuroprotection. We concluded that increased GABA release in preconditioned animals after ischemia might be one of the factors responsible for IPC neuroprotection. Specific activation of GABAB receptor contributes significantly to neuroprotection against ischemia in organotypic hippocampal slices.
Collapse
Affiliation(s)
- Kunjan R Dave
- Cerebral Vascular Disease Research Center, Department of Neurology and Neuroscience, University of Miami School of Medicine, Miami, Florida 33101, USA
| | | | | | | | | | | | | |
Collapse
|
94
|
Yulug B, Yildiz A, Güzel O, Kilic E, Schäbitz WR, Kilic E. Risperidone attenuates brain damage after focal cerebral ischemia in vivo. Brain Res Bull 2006; 69:656-9. [PMID: 16716834 DOI: 10.1016/j.brainresbull.2006.03.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Revised: 03/11/2006] [Accepted: 03/20/2006] [Indexed: 11/24/2022]
Abstract
Since their introduction, atypical neuroleptic agents have been discovered to have some beneficial effects beyond their effectiveness as neuroleptic drugs. Among these initially unexpected effects are their potential effects as mood stabilizers in bipolar disorder and their efficacy in improving long-term outcome in schizophrenia. These effects recently raised the question whether these drugs may also have some neuroprotective effect in the brain. To examine this matter, in this study we evaluated the neuroprotective effect of risperidone after permanent focal cerebral ischemia. Anaesthetized male C57BL/6j mice were submitted to permanent thread occlusion of the middle cerebral artery (MCA). Risperidone (0.1, 1 or 10 mg/kg) or vehicle was applied intraperitoneally just after permanent ischemia. Twenty-four hours after permanent ischemia, brain injury was evaluated by triphenyltetrazolium chloride staining (TTC). Risperidone (0.1, 1 and 10 mg/kg) showed significant neuroprotection after permanent focal cerebral ischemia.
Collapse
Affiliation(s)
- Burak Yulug
- Department of Neurology, University of Uludag, Bursa, Turkey.
| | | | | | | | | | | |
Collapse
|
95
|
Lapchak PA. Memantine, an uncompetitive low affinity NMDA open-channel antagonist improves clinical rating scores in a multiple infarct embolic stroke model in rabbits. Brain Res 2006; 1088:141-7. [PMID: 16626666 DOI: 10.1016/j.brainres.2006.02.093] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Revised: 02/21/2006] [Accepted: 02/22/2006] [Indexed: 11/22/2022]
Abstract
The blockade of NMDA receptors has been pursued as a strategy to reduce the consequences of acute ischemic stroke (AIS) and NMDA receptors remain a valid therapeutic target to treat AIS. Because the pharmacological and toxicity profile of memantine in Alzheimer's disease patients appears to be good, we determined whether memantine would be effective at improving behavioral performance following embolic strokes in rabbits. For these studies, we used a rabbit multiple infarct ischemia model with a well-defined behavioral endpoint. In this study, memantine dissolved in PBS was given intravenously either as a bolus injection (over 1 min) or infused over 60 min. The P(50) of the control groups measured 24 h after embolization were 1.12 +/- 0.18 mg and 1.08 +/- 0.23 mg for the bolus injected and infused groups, respectively. Bolus injections of memantine at 1 mg/kg and 10 mg/kg were not effective at altering the P(50) value and memantine at a dose of 25 mg/kg was lethal. However, slowly infused memantine (25 mg/kg) significantly increased the P(50) value to 2.31 +/- 0.48 mg and 3.13 +/- 1.13 mg when given 5 and 60 min following embolization, respectively. Memantine administered 180 min following embolization also increased the P(50) value to 2.69 +/- 2.21 mg, but the response was variable. These results suggest that uncompetitive NMDA antagonists, more specifically open channel blockers, which may be alternatives to high affinity NMDA antagonists, may have substantial therapeutic benefit for the treatment of AIS and memantine or new dual activity analogs of memantine should be further pursued as a useful therapy to treat the behavioral deficits associated with multiple-infarct ischemia.
Collapse
Affiliation(s)
- Paul A Lapchak
- Department of Neuroscience, University of California-San Diego, 9500 Gilman Drive MTF316, La Jolla, CA 92093-0624, USA.
| |
Collapse
|
96
|
Zhong C, Zhao X, Van KC, Bzdega T, Smyth A, Zhou J, Kozikowski AP, Jiang J, O'Connor WT, Berman RF, Neale JH, Lyeth BG. NAAG peptidase inhibitor increases dialysate NAAG and reduces glutamate, aspartate and GABA levels in the dorsal hippocampus following fluid percussion injury in the rat. J Neurochem 2006; 97:1015-25. [PMID: 16606367 DOI: 10.1111/j.1471-4159.2006.03786.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Traumatic brain injury (TBI) produces a rapid and excessive elevation in extracellular glutamate that induces excitotoxic brain cell death. The peptide neurotransmitter N-acetylaspartylglutamate (NAAG) is reported to suppress neurotransmitter release through selective activation of presynaptic group II metabotropic glutamate receptors. Therefore, strategies to elevate levels of NAAG following brain injury could reduce excessive glutamate release associated with TBI. We hypothesized that the NAAG peptidase inhibitor, ZJ-43 would elevate extracellular NAAG levels and reduce extracellular levels of amino acid neurotransmitters following TBI by a group II metabotropic glutamate receptor (mGluR)-mediated mechanism. Dialysate levels of NAAG, glutamate, aspartate and GABA from the dorsal hippocampus were elevated after TBI as measured by in vivo microdialysis. Dialysate levels of NAAG were higher and remained elevated in the ZJ-43 treated group (50 mg/kg, i.p.) compared with control. ZJ-43 treatment also reduced the rise of dialysate glutamate, aspartate, and GABA levels. Co-administration of the group II mGluR antagonist, LY341495 (1 mg/kg, i.p.) partially blocked the effects of ZJ-43 on dialysate glutamate and GABA, suggesting that NAAG effects are mediated through mGluR activation. The results are consistent with the hypothesis that inhibition of NAAG peptidase may reduce excitotoxic events associated with TBI.
Collapse
Affiliation(s)
- Chunlong Zhong
- Department of Neurological Surgery, University of California at Davis, Davis, California 95616-8797, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Joh HD, Searles RV, Selmanoff M, Alkayed NJ, Koehler RC, Hurn PD, Murphy SJ. Estradiol alters only GAD67 mRNA levels in ischemic rat brain with no consequent effects on GABA. J Cereb Blood Flow Metab 2006; 26:518-26. [PMID: 16094313 PMCID: PMC1410818 DOI: 10.1038/sj.jcbfm.9600211] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The present study tested the hypothesis that estradiol reduces tissue infarction after middle cerebral artery occlusion (MCAO) in estradiol-deficient females by augmenting glutamic acid decarboxylase (GAD) expression and thus activity, leading to increases in gamma-amino-butyric acid (GABA) tissue levels. Glutamic acid decarboxylase is the principal enzyme for GABA synthesis and has two isoforms, GAD65 and GAD67, which differ in size and cellular distribution. Rats were ovariectomized 7 to 8 days before receiving no hormone, placebo, or 25 microg estradiol via subcutaneous implant 7 to 10 days before harvesting tissue in either ischemic cohorts after 2 h of MCAO (end-ischemia) or in nonischemic cohorts. Selected cortical and striatal regions were microdissected from harvested brains. GAD65/67 mRNA levels were determined by microlysate ribonuclease protection assay. End-ischemic GABA concentrations were determined by HPLC. Steroid treatment selectively decreased ischemic cortical GAD67 mRNA levels. In most brain regions evaluated, regional GABA concentrations increased with ischemia regardless of treatment. Estradiol blocked MCAO-induced increases in GABA concentration only in dorsomedial cortex. These data suggest that estradiol repletion in ischemic rat brain selectively decreases GAD67 mRNA levels but does not alter steady-state GABA concentrations. It may be that estradiol under ischemic conditions is attenuating GABA metabolism rather than enhancing synthesis or is augmenting other aspects of GABAergic transmission such as GABA transporters and receptors.
Collapse
Affiliation(s)
- Hung-Dong Joh
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Robin V Searles
- Department of Physiology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Michael Selmanoff
- Department of Physiology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Nabil J Alkayed
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Raymond C Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Patricia D Hurn
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Stephanie J Murphy
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon, USA
- Correspondence: Dr SJ Murphy, Oregon Health and Science University, Anesthesiology and Peri-Operative Medicine, 20000 NW Walker Road, Mail Code: OGI, Beaverton, OR 97006, USA. E-mail:
| |
Collapse
|
98
|
Zhang Y, Deng P, Li Y, Xu ZC. Enhancement of Excitatory Synaptic Transmission in Spiny Neurons After Transient Forebrain Ischemia. J Neurophysiol 2006; 95:1537-44. [PMID: 16354727 DOI: 10.1152/jn.01166.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spiny neurons in the neostriatum are highly vulnerable to ischemia. Enhancement of excitatory synaptic transmissions has been implicated in ischemia-induced excitotoxic neuronal death. Here we report that evoked excitatory postsynaptic currents in spiny neurons were potentiated after transient forebrain ischemia. The ischemia-induced potentiation in synaptic efficacy was associated with an enhancement of presynaptic release as demonstrated by an increase in the frequency of miniature excitatory postsynaptic currents (mEPSCs) and a decrease in the paired-pulse ratio. The amplitude of inward currents evoked by exogenous application of glutamate did not show significant changes after ischemia, suggesting that postsynaptic mechanism is not involved. The ischemia-induced increase in mEPSCs frequency was not affected by blockade of voltage-gated calcium channels, but it was eliminated in the absence of extracellular calcium. Bath application of ATP P2X receptor antagonist pyridoxal-phosphate-6-azophenyl-2′,4′-disulfonic acid (PPADS) significantly reduced mEPSC frequency in ischemic neurons but had no effects on the control ones. Furthermore, the inhibitory effect of PPADS on ischemic neurons was abolished in Ca2+-free external solution. These results indicate that excitatory synaptic transmissions in spiny neurons are potentiated after ischemia via presynaptic mechanisms. Activation of P2X receptors and the consequent Ca2+ influx might contribute to the ischemia-induced facilitation of glutamate release.
Collapse
Affiliation(s)
- Yuchun Zhang
- Dept. of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Dr., MS 507, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
99
|
Zhan RZ, Nadler JV, Schwartz-Bloom RD. Depressed responses to applied and synaptically-released GABA in CA1 pyramidal cells, but not in CA1 interneurons, after transient forebrain ischemia. J Cereb Blood Flow Metab 2006; 26:112-24. [PMID: 15959457 DOI: 10.1038/sj.jcbfm.9600171] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transient cerebral ischemia kills CA1 pyramidal cells of the hippocampus, whereas most CA1 interneurons survive. It has been proposed that calcium-binding proteins, neurotrophins, and/or inhibitory neuropeptides protect interneurons from ischemia. However, different synaptic responses early after reperfusion could also underlie the relative vulnerabilities to ischemia of pyramidal cells and interneurons. In this study, we used gramicidin perforated patch recording in ex vivo slices to investigate gamma-aminobutyric acid (GABA) synaptic function in CA1 pyramidal cells and interneurons 4 h after a bilateral carotid occlusion accompanied by hypovolemic hypotension. At this survival time, the amplitudes of both miniature inhibitory postsynaptic currents (mIPSCs) and GABA-evoked currents were reduced in CA1 pyramidal cells, but not in CA1 interneurons. In addition, the mean rise time of mIPSCs was reduced in pyramidal cells. The reversal potential for the GABA current (E(GABA)) did not shift toward depolarizing values in either cell type, indicating that the driving force for chloride was unchanged at this survival time. We conclude that early during reperfusion GABAergic neurotransmission is attenuated exclusively in pyramidal neurons. This is likely explained by reduced GABAA receptor sensitivity or clustering and possibly also reduced GABA release, rather than by an elevation of intracellular chloride. Impaired GABA function may contribute to ischemic neuronal death by enhancing the excitability of CA1 pyramidal cells and facilitating N-methyl-D-aspartic acid channel opening. Therefore, normalizing GABAergic function might be a useful pharmacological approach to counter excessive, and potentially excitotoxic, glutamatergic activity during the postischemic period.
Collapse
Affiliation(s)
- Ren-Zhi Zhan
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
100
|
Kouvelas D, Singewald N, Kaehler ST, Philippu A. Sinoaortic denervation abolishes blood pressure-induced GABA release in the locus coeruleus of conscious rats. Neurosci Lett 2006; 393:194-9. [PMID: 16233953 DOI: 10.1016/j.neulet.2005.09.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Revised: 09/22/2005] [Accepted: 09/26/2005] [Indexed: 10/25/2022]
Abstract
Male Sprague-Dawley rats underwent sinoaortic denervation (SAD) or sham operation. We examined changes in the release rates of GABA, glutamate and arginine in the locus coeruleus (LC) elicited by experimental blood pressure increases (i.v. noradrenaline infusion for 3 min, 4 microg kg(-1)min(-1)) or decreases (i.v. sodium nitroprusside infusion for 3 min, 150 microg kg(-1)min(-1)). The release of the neurotransmitters was monitored by the push-pull superfusion technique. Mean blood pressure did not differ between sham-operated and SAD rats but blood pressure lability was greatly enhanced in SAD rats and accompanied by increased basal release of glutamate in the LC. GABA release was not affected. A rise in blood pressure induced by noradrenaline enhanced GABA release in the LC of sham-operated rats. This effect was abolished by SAD. Glutamate release did not respond to hypertension either in SAD or in sham-operated rats. Nitroprusside led to a fall in blood pressure which was more pronounced and lasted longer in SAD than in sham-operated rats. In SAD rats, glutamate release was enhanced by nitroprusside. The depressor response had no effect on glutamate release in sham-operated rats. GABA release did not respond to this stimulus in either SAD or sham-operated rats. SAD and blood pressure changes did not influence the release rate of arginine. In conclusion, experimental hypertension increases GABAergic activity in the LC by stimulating peripheral baroreceptors. In SAD rats, augmented blood pressure lability seems to be at least partly due to elevated glutamate outflow within the LC.
Collapse
Affiliation(s)
- Dimitrios Kouvelas
- Department of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, P.O. Box 1532, 54006 Thessaloniki, Greece.
| | | | | | | |
Collapse
|