51
|
Lee K, Ben Amara H, Lee SC, Leesungbok R, Chung MA, Koo KT, Lee SW. Chemical Regeneration of Wound Defects: Relevance to the Canine Palatal Mucosa and Cell Cycle Up-Regulation in Human Gingival Fibroblasts. Tissue Eng Regen Med 2019; 16:675-684. [PMID: 31824829 DOI: 10.1007/s13770-019-00227-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 12/12/2022] Open
Abstract
Background Trichloroacetic acid (TCA) is an agent widely applied in dermatology for skin regeneration. To test whether TCA can offer an advantage for the regeneration of oral soft tissue defects, the cellular events following TCA application were explored in vitro and its influence on the oral soft tissue wound healing was evaluated in a canine palate model. Methods The cytotoxicity and growth factor gene expression in human gingival fibroblasts were tested in vitro following the application of TCA at four concentrations (0.005%, 0.05%, 0.5% and 1%) with different time intervals (0, 3, 9 and 21 h). One concentration of TCA was selected to screen the genes differentially expressed using DNA microarray and the associated pathways were explored. TCA was injected in open wound defects of the palatal mucosa from beagle dogs (n = 3) to monitor their healing and regeneration up to day 16-post-administration. Results While the 0.5-1% concentration induced the cytoxicity, a significantly higher expression of growth factor genes was observed after 3 and 9 h following the 0.5% TCA application in comparison to other groups. DNA microarray analysis in 0.5% TCA group showed 417 genes with a significant 1.5-fold differential expression, involving pathways of cell cycle, FoxO signaling, p53 signaling, ubiquitin mediated proteolysis and cAMP signaling. In vivo results showed a faster reepithelialization of TCA-treated wounds as compared to spontaneous healing. Conclusion TCA promoted the healing and regeneration of oral soft tissue wound defects by up-regulating the cell cycle progression, cell growth, and cell viability, particularly at a concentration of 0.5%.
Collapse
Affiliation(s)
- Kyungho Lee
- 1Department of Dentistry, Graduate School, Kyung Hee University, 892 Dongnam-ro, Gangdong-gu, Seoul, 05278 Republic of Korea
| | - Heithem Ben Amara
- 2Department of Periodontology and Dental Research Institute, Translational Research Laboratory for Tissue Engineering (TTE), School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
| | - Sang Cheon Lee
- 3Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Gangdong-gu, Seoul, 02447 Republic of Korea
| | - Richard Leesungbok
- 4Department of Biomaterials and Prosthodontics, Kyung Hee University Hospital at Gangdong, Institute of Oral Biology, School of Dentistry, Kyung Hee University, 892 Dongnam-ro, Gangdong-gu, Seoul, 05278 Republic of Korea
| | - Min Ah Chung
- 1Department of Dentistry, Graduate School, Kyung Hee University, 892 Dongnam-ro, Gangdong-gu, Seoul, 05278 Republic of Korea
| | - Ki-Tae Koo
- 2Department of Periodontology and Dental Research Institute, Translational Research Laboratory for Tissue Engineering (TTE), School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
| | - Suk Won Lee
- 4Department of Biomaterials and Prosthodontics, Kyung Hee University Hospital at Gangdong, Institute of Oral Biology, School of Dentistry, Kyung Hee University, 892 Dongnam-ro, Gangdong-gu, Seoul, 05278 Republic of Korea
| |
Collapse
|
52
|
Li X, Guo L, Yang X, Wang J, Hou Y, Zhu S, Du J, Feng J, Xie Y, Zhuang L, He X, Liu Y. TGF-β1-induced connexin43 promotes scar formation via the Erk/MMP-1/collagen III pathway. J Oral Rehabil 2019; 47 Suppl 1:99-106. [PMID: 31175668 DOI: 10.1111/joor.12829] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/07/2019] [Accepted: 05/26/2019] [Indexed: 12/11/2022]
Abstract
Wound healing can be divided into different phases, and timely initiation and cessation of these stages is key to successful wound healing; otherwise, scar tissue forms in the wounded area. Connexins (Cxs) were confirmed to influence scar formation, and Cx43, an indispensable member of the Cx family, was shown to be involved in this process. Our study investigated the regulatory role of Cx43 in scar formation and the possible cell signalling pathways. We established oral mucosa and skin wound healing models in C57BL/6J mice. RT-PCR, western blotting, immunohistochemistry and immunofluorescence were used to examine the expression of ECM components and key proteins in cell signalling pathways (TGF-β1, Smad2/3, Cx43, Erk1/2 MMP-1 and collagen III). After injury, buccal mucosa wounds healed with no scar, whereas skin wounds healed with an evident scar. Nevertheless, TGF-β1 expression gradually increased by the 5th day after injury; Cx43 expression showed a similar response, with a progressive increase in the skin and a peak on day 14. In contrast, TGF-β1 and Cx43 expression in the oral mucosa remained low. The high level of TGF-β1 increased p-Smad2/3 levels and then induced Cx43, whereas increased expression of Cx43 antagonised the phosphorylation of Erk1/2, a protein downstream of Cx43, which affected MMP-1 synthesis. MMP-1 deficiency led to collagen III accumulation and facilitated scar formation. We demonstrated that TGF-β1-induced Cx43 promotes scar formation via the Erk/MMP-1/collagen III pathway.
Collapse
Affiliation(s)
- Xiaoyan Li
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Lijia Guo
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Xiaohui Yang
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Jingyi Wang
- School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yanan Hou
- Department of Orthodontics the Third Dental Center, Peking University School of Stomatology, Beijing, China
| | - Siying Zhu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Jie Feng
- Department of General Dentistry, School of Stomatology, Capital Medical University, Beijing, China
| | - Yongmei Xie
- Department of General Dentistry, School of Stomatology, Capital Medical University, Beijing, China
| | - Li Zhuang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Xin He
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
53
|
Contreras A, Raxworthy MJ, Wood S, Schiffman JD, Tronci G. Photodynamically Active Electrospun Fibers for Antibiotic-Free Infection Control. ACS APPLIED BIO MATERIALS 2019; 2:4258-4270. [PMID: 35021441 DOI: 10.1021/acsabm.9b00543] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Antimicrobial biomaterials are critical to aid in the regeneration of oral soft tissue and prevent or treat localized bacterial infections. With the rising trend in antibiotic resistance, there is a pressing clinical need for new antimicrobial chemistries and biomaterial design approaches enabling on-demand activation of antibiotic-free antimicrobial functionality following an infection that are environment-friendly, flexible and commercially viable. This study explores the feasibility of integrating a bioresorbable electrospun polymer scaffold with localized antimicrobial photodynamic therapy (aPDT) capability. To enable aPDT, we encapsulated a photosensitizer (PS) in polyester fibers in the PS inert state, so that the antibacterial function would be activated on-demand via a visible light source. Fibrous scaffolds were successfully electrospun from FDA-approved polyesters, either poly(ε-caprolactone (PCL) or poly[(rac-lactide)-co-glycolide] (PLGA), with encapsulated PS (either methylene blue (MB) or erythrosin B (ER)). These were prepared and characterized with regards to their loading efficiency (UV-vis spectroscopy), microarchitecture (SEM, porometry, and BET (Brunauer-Emmett-Teller) analysis), tensile properties, hydrolytic behavior (contact angle, dye release capability, degradability), and aPDT effect. The electrospun fibers achieved an ∼100 wt % loading efficiency of PS, which significantly increased their tensile modulus and reduced their average fiber diameter and pore size with respect to PS-free controls. In vitro, PS release varied between a burst release profile to limited release within 100 h, depending on the selected scaffold formulation, while PLGA scaffolds displayed significant macroscopic shrinkage and fiber merging, following incubation in phosphate buffered saline solution. Exposure of PS-encapsulated PCL fibers to visible light successfully led to at least a 1 log reduction in Escherichia coli viability after 60 min of light exposure, whereas PS-free electrospun controls did not inactive microbes. This study successfully demonstrates the significant potential of PS-encapsulated electrospun fibers as photodynamically active biomaterial for antibiotic-free infection control.
Collapse
Affiliation(s)
- Amy Contreras
- Institute of Medical and Biological Engineering, University of Leeds, Leeds, LS2 9JT U.K
| | - Michael J Raxworthy
- Institute of Medical and Biological Engineering, University of Leeds, Leeds, LS2 9JT U.K.,Neotherix Ltd., The Hiscox Building, Peasholme Green, York, YO1 7PR U.K
| | - Simon Wood
- School of Dentistry, University of Leeds, Leeds, LS2 9JT U.K
| | - Jessica D Schiffman
- Department of Chemical Engineering, University of Massachusetts Amherst, 240 Thatcher Road, Amherst Massachusetts 01003-9364, United States
| | - Giuseppe Tronci
- School of Dentistry, University of Leeds, Leeds, LS2 9JT U.K.,School of Design, University of Leeds, Leeds, LS2 9JT U.K
| |
Collapse
|
54
|
Iglesias-Bartolome R, Uchiyama A, Molinolo AA, Abusleme L, Brooks SR, Callejas-Valera JL, Edwards D, Doci C, Asselin-Labat ML, Onaitis MW, Moutsopoulos NM, Gutkind JS, Morasso MI. Transcriptional signature primes human oral mucosa for rapid wound healing. Sci Transl Med 2019; 10:10/451/eaap8798. [PMID: 30045979 DOI: 10.1126/scitranslmed.aap8798] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 02/13/2018] [Accepted: 06/20/2018] [Indexed: 12/15/2022]
Abstract
Oral mucosal wound healing has long been regarded as an ideal system of wound resolution. However, the intrinsic characteristics that mediate optimal healing at mucosal surfaces are poorly understood, particularly in humans. We present a unique comparative analysis between human oral and cutaneous wound healing using paired and sequential biopsies during the repair process. Using molecular profiling, we determined that wound-activated transcriptional networks are present at basal state in the oral mucosa, priming the epithelium for wound repair. We show that oral mucosal wound-related networks control epithelial cell differentiation and regulate inflammatory responses, highlighting fundamental global mechanisms of repair and inflammatory responses in humans. The paired comparative analysis allowed for the identification of differentially expressed SOX2 (sex-determining region Y-box 2) and PITX1 (paired-like homeodomain 1) transcriptional regulators in oral versus skin keratinocytes, conferring a unique identity to oral keratinocytes. We show that SOX2 and PITX1 transcriptional function has the potential to reprogram skin keratinocytes to increase cell migration and improve wound resolution in vivo. Our data provide insights into therapeutic targeting of chronic and nonhealing wounds based on greater understanding of the biology of healing in human mucosal and cutaneous environments.
Collapse
Affiliation(s)
- Ramiro Iglesias-Bartolome
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, USA.,Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA
| | - Akihiko Uchiyama
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, USA
| | - Alfredo A Molinolo
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA.,Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Loreto Abusleme
- Oral Immunity and Inflammation Unit, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA
| | - Stephen R Brooks
- Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, USA
| | - Juan Luis Callejas-Valera
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA.,Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dean Edwards
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA
| | - Colleen Doci
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA
| | | | - Mark W Onaitis
- Moores Cancer Center, University California, San Diego, La Jolla, CA 92093, USA
| | - Niki M Moutsopoulos
- Oral Immunity and Inflammation Unit, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA
| | - J S Gutkind
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA. .,Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maria I Morasso
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, USA.
| |
Collapse
|
55
|
Early Wound Healing Score (EHS): An Intra- and Inter-Examiner Reliability Study. Dent J (Basel) 2019; 7:dj7030086. [PMID: 31480586 PMCID: PMC6784738 DOI: 10.3390/dj7030086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/15/2019] [Accepted: 08/29/2019] [Indexed: 01/26/2023] Open
Abstract
The early wound healing score (EHS) was introduced to assess early wound healing of periodontal soft tissues after surgical incision. The purpose of this study is to evaluate the intra- and inter-examiner reliability of the EHS. Six examiners with different levels of training and clinical focus were enrolled. Each examiner was trained on the use of the EHS before starting the study. Thereafter, 63 photographs of three different types of surgical incisions taken at day 1, 3 or 7 post-operatively were independently evaluated according to the proposed assessment method. A two-way random intra-class correlation coefficient (ICC) and 95% confidence interval (CI) were used to analyze the intra- and inter-examiner reliability for the EHS. The inter-examiner reliability for the EHS was 0.828 (95% CI: 0.767–0.881). The intra-examiner reliability ranged between 0.826 (95% CI: 0.728–0.891) and 0.915 (95% CI: 0.856–0.950). The results therefore show an “almost perfect agreement” for intra- and inter-examiner reliability. The EHS provides a system for reproducible repeated ratings for the early healing assessment of incisions of periodontal soft tissues. Even when used by examiners with different clinical experience and specialty, it shows a high correlation coefficient.
Collapse
|
56
|
Fazekas R, Molnár B, Kőhidai L, Láng O, Molnár E, Gánti B, Michailovits G, Windisch P, Vág J. Blood flow kinetics of a xenogeneic collagen matrix following a vestibuloplasty procedure in the human gingiva-An explorative study. Oral Dis 2019; 25:1780-1788. [PMID: 31336001 DOI: 10.1111/odi.13163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 05/24/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVES The aim of the present study was to investigate temporal and spatial blood flow patterns following vestibuloplasty procedures using a collagen matrix (CM) to get an insight into the timing and direction of neovascularization in the CM. METHODS Five patients were treated using a modified apically repositioned flap combined with a CM. Intraoral photographs and blood flow measurements by laser speckle contrast imaging were taken for 12 months. Thirty regions of interest in the graft and the surrounding mucosa were evaluated. The clinical parameters were assessed after 6 and 12 months. VEGF expression was analyzed in the wound fluid on days 2 and 4. RESULTS At 6 months, the mean width of keratinized gingiva increased, but the thickness was unchanged. Scar formation was observed in all cases. Perfusion in the graft began to increase at the lateral and coronal edges and then spread concentrically toward the center. The apical side showed a significant delay in perfusion, the highest VEGF expression, and wound fluid production as well as the most abundant scar formation. CONCLUSIONS Neovascularization occurs mainly from the lateral and coronal edges, which may limit the extent of the surgical area. Abundant scar formation may be explained by increased VEGF expression induced by prolonged ischemia in this area.
Collapse
Affiliation(s)
- Réka Fazekas
- Department of Conservative Dentistry, Faculty of Dentistry, Semmelweis University, Budapest, Hungary
| | - Bálint Molnár
- Department of Periodontology, Faculty of Dentistry, Semmelweis University, Budapest, Hungary
| | - László Kőhidai
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Orsolya Láng
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Eszter Molnár
- Department of Conservative Dentistry, Faculty of Dentistry, Semmelweis University, Budapest, Hungary
| | - Bernadett Gánti
- Department of Conservative Dentistry, Faculty of Dentistry, Semmelweis University, Budapest, Hungary
| | - Georgina Michailovits
- Department of Periodontology, Faculty of Dentistry, Semmelweis University, Budapest, Hungary
| | - Péter Windisch
- Department of Periodontology, Faculty of Dentistry, Semmelweis University, Budapest, Hungary
| | - János Vág
- Department of Conservative Dentistry, Faculty of Dentistry, Semmelweis University, Budapest, Hungary
| |
Collapse
|
57
|
Chen L, Simões A, Chen Z, Zhao Y, Wu X, Dai Y, DiPietro LA, Zhou X. Overexpression of the Oral Mucosa-Specific microRNA-31 Promotes Skin Wound Closure. Int J Mol Sci 2019; 20:ijms20153679. [PMID: 31357577 PMCID: PMC6696114 DOI: 10.3390/ijms20153679] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 02/06/2023] Open
Abstract
Wounds within the oral mucosa are known to heal more rapidly than skin wounds. Recent studies suggest that differences in the microRNAome profiles may underlie the exceptional healing that occurs in oral mucosa. Here, we test whether skin wound-healing can be accelerating by increasing the levels of oral mucosa-specific microRNAs. A panel of 57 differentially expressed high expresser microRNAs were identified based on our previously published miR-seq dataset of paired skin and oral mucosal wound-healing [Sci. Rep. (2019) 9:7160]. These microRNAs were further grouped into 5 clusters based on their expression patterns, and their differential expression was confirmed by TaqMan-based quantification of LCM-captured epithelial cells from the wound edges. Of these 5 clusters, Cluster IV (consisting of 8 microRNAs, including miR-31) is most intriguing due to its tissue-specific expression pattern and temporal changes during wound-healing. The in vitro functional assays show that ectopic transfection of miR-31 consistently enhanced keratinocyte proliferation and migration. In vivo, miR-31 mimic treatment led to a statistically significant acceleration of wound closure. Our results demonstrate that wound-healing can be enhanced in skin through the overexpression of microRNAs that are highly expressed in the privileged healing response of the oral mucosa.
Collapse
Affiliation(s)
- Lin Chen
- Center for Wound Healing & Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Alyne Simões
- Center for Wound Healing & Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA
- Oral Biology Laboratory, Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Zujian Chen
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Yan Zhao
- Center for Wound Healing & Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Xinming Wu
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Yang Dai
- Department of Bioengineering, College of Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- Graduate College, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Luisa A DiPietro
- Center for Wound Healing & Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA.
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA.
- Graduate College, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Xiaofeng Zhou
- Center for Wound Healing & Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA.
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA.
- Graduate College, University of Illinois at Chicago, Chicago, IL 60607, USA.
- UIC Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
58
|
Regeneration of Dermis: Scarring and Cells Involved. Cells 2019; 8:cells8060607. [PMID: 31216669 PMCID: PMC6627856 DOI: 10.3390/cells8060607] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/12/2019] [Accepted: 06/15/2019] [Indexed: 12/31/2022] Open
Abstract
There are many studies on certain skin cell specifications and their contribution to wound healing. In this review, we provide an overview of dermal cell heterogeneity and their participation in skin repair, scar formation, and in the composition of skin substitutes. The papillary, reticular, and hair follicle associated fibroblasts differ not only topographically, but also functionally. Human skin has a number of particular characteristics that are different from murine skin. This should be taken into account in experimental procedures. Dermal cells react differently to skin wounding, remodel the extracellular matrix in their own manner, and convert to myofibroblasts to different extents. Recent studies indicate a special role of papillary fibroblasts in the favorable outcome of wound healing and epithelial-mesenchyme interactions. Neofolliculogenesis can substantially reduce scarring. The role of hair follicle mesenchyme cells in skin repair and possible therapeutic applications is discussed. Participation of dermal cell types in wound healing is described, with the addition of possible mechanisms underlying different outcomes in embryonic and adult tissues in the context of cell population characteristics and extracellular matrix composition and properties. Dermal white adipose tissue involvement in wound healing is also overviewed. Characteristics of myofibroblasts and their activity in scar formation is extensively discussed. Cellular mechanisms of scarring and possible ways for its prevention are highlighted. Data on keloid cells are provided with emphasis on their specific characteristics. We also discuss the contribution of tissue tension to the scar formation as well as the criteria and effectiveness of skin substitutes in skin reconstruction. Special attention is given to the properties of skin substitutes in terms of cell composition and the ability to prevent scarring.
Collapse
|
59
|
Simões A, Chen L, Chen Z, Zhao Y, Gao S, Marucha PT, Dai Y, DiPietro LA, Zhou X. Differential microRNA profile underlies the divergent healing responses in skin and oral mucosal wounds. Sci Rep 2019; 9:7160. [PMID: 31073224 PMCID: PMC6509259 DOI: 10.1038/s41598-019-43682-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/27/2019] [Indexed: 12/31/2022] Open
Abstract
Oral mucosal wounds heal faster than skin wounds, yet the role of microRNAs in this differential healing has never been examined. To delineate the role of microRNAs in this site-specific injury response, we first compared the microRNAome of uninjured skin and oral mucosa in mice. A total of 53 tissue-specific microRNAs for skin and oral mucosa epithelium were identified. The most striking difference was the high abundance of miR-10a/b in skin (accounting for 21.10% of the skin microRNAome) as compared to their low expression in oral mucosa (2.87%). We further examined the dynamic changes of microRNAome throughout the time course of skin and oral mucosal wound healing. More differentially expressed microRNAs were identified in skin wounds than oral wounds (200 and 33, respectively). More specifically, miR-10a/b was significantly down-regulated in skin but not oral wounds. In contrast, up-regulation of miR-21 was observed in both skin and oral wounds. The therapeutic potential of miR-10b and miR-21 in accelerating wound closure was demonstrated in in vitro assays and in a murine skin wound model. Thus, we provided the first site-specific microRNA profile of skin and oral mucosal wound healing, and demonstrate the feasibility of a microRNA-based therapy for promoting wound closure.
Collapse
Affiliation(s)
- Alyne Simões
- Center for Wound Healing & Tissue Regeneration, Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA.,Oral Biology Laboratory, Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo, São Paulo, SP, Brazil
| | - Lin Chen
- Center for Wound Healing & Tissue Regeneration, Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Zujian Chen
- Center for Molecular Biology of Oral Diseases, Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Yan Zhao
- Center for Wound Healing & Tissue Regeneration, Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Shang Gao
- Department of Bioengineering, College of Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Phillip T Marucha
- Center for Wound Healing & Tissue Regeneration, Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA.,College of Dentistry, Oregon Health and Sciences University, Portland, OR, USA
| | - Yang Dai
- Department of Bioengineering, College of Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Luisa A DiPietro
- Center for Wound Healing & Tissue Regeneration, Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA. .,Graduate College, University of Illinois at Chicago, Chicago, IL, USA.
| | - Xiaofeng Zhou
- Center for Wound Healing & Tissue Regeneration, Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA. .,Center for Molecular Biology of Oral Diseases, Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA. .,Graduate College, University of Illinois at Chicago, Chicago, IL, USA. .,UIC Cancer Center, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
60
|
Rodrigues Neves C, Buskermolen J, Roffel S, Waaijman T, Thon M, Veerman E, Gibbs S. Human saliva stimulates skin and oral wound healing in vitro. J Tissue Eng Regen Med 2019; 13:1079-1092. [PMID: 30968584 PMCID: PMC6593997 DOI: 10.1002/term.2865] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 03/25/2019] [Accepted: 04/03/2019] [Indexed: 12/13/2022]
Abstract
Despite continuous exposure to environmental pathogens, injured mucosa within the oral cavity heals faster and almost scar free compared with skin. Saliva is thought to be one of the main contributing factors. Saliva may possibly also stimulate skin wound healing. If so, it would provide a novel therapy for treating skin wounds, for example, burns. This study aims to investigate the therapeutic wound healing potential of human saliva in vitro. Human saliva from healthy volunteers was filter sterilized before use. Two different in vitro wound models were investigated: (a) open wounds represented by 2D skin and gingiva cultures were used to assess fibroblast and keratinocyte migration and proliferation and (b) blister wounds represented by introducing freeze blisters into organotypic reconstructed human skin and gingiva. Re‐epithelialization and differentiation (keratin K10, K13, K17 expression) under the blister and inflammatory wound healing mediator secretion was assessed. Saliva‐stimulated migration of skin and oral mucosa fibroblasts and keratinocytes, but only fibroblast proliferation. Topical saliva application to the blister wound on reconstructed skin did not stimulate re‐epithelization because the blister wound contained a dense impenetrable dead epidermal layer. Saliva did promote an innate inflammatory response (increased CCL20, IL‐6, and CXCL‐8 secretion) when applied topically to the flanking viable areas of both wounded reconstructed human skin and oral mucosa without altering the skin specific keratin differentiation profile. Our results show that human saliva can stimulate oral and skin wound closure and an inflammatory response. Saliva is therefore a potential novel therapeutic for treating open skin wounds.
Collapse
Affiliation(s)
- Charlotte Rodrigues Neves
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - Jeroen Buskermolen
- Department of Oral Cell Biology Academic Center For Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Sanne Roffel
- Department of Oral Cell Biology Academic Center For Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Taco Waaijman
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - Maria Thon
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - Enno Veerman
- Department of Oral Biochemistry Academic Center For Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Susan Gibbs
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands.,Department of Oral Cell Biology Academic Center For Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
61
|
Chen L, Wang J, Li S, Yu Z, Liu B, Song B, Su Y. The clinical dynamic changes of macrophage phenotype and function in different stages of human wound healing and hypertrophic scar formation. Int Wound J 2019; 16:360-369. [PMID: 30440110 PMCID: PMC7948805 DOI: 10.1111/iwj.13041] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/23/2018] [Accepted: 10/28/2018] [Indexed: 02/02/2023] Open
Abstract
The pathogenesis of hypertrophic scar (HS) is still poorly understood. Macrophages, especially the polarisation of that to M1 or M2, play a pivotal role in control of the degree of scar formation. Profiling of macrophage phenotypes in human specimens during long-term period of wound healing and HS formation may provide valuable clinical evidence for understanding the pathology of human scars. Human wound and HS specimens were collected, the macrophage phenotype was identified by immunofluorescence, and biomarkers and cytokines associated with M1 and M2 macrophages were detected by RT-PCR. The correlation between the macrophage phenotype and HS characteristics was analysed by linear regression analyses. We found excessive and persistent infiltration by M1 macrophages around the blood vessels in the superficial layer of the dermis at early wound tissues, whereas M2 macrophages predominated in later wound tissues and the proliferative phase of HS and were scattered throughout the dermis. The density of M1 macrophages was positively correlated with mRNA expression levels of tumour necrosis factor-alpha (TNF-α) and IL-6. The density of M2 macrophages was positively correlated with ARG1 and negatively correlated with the duration of HS. The sequential infiltration by M1 macrophage and M2 macrophages in human wound and HS tissues was confirmed.
Collapse
Affiliation(s)
- Lin Chen
- Department of Plastic and Reconstructive Surgery, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Jianzhang Wang
- Department of Plastic and Reconstructive Surgery, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Shengxu Li
- Department of Plastic and Reconstructive Surgery, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Zhou Yu
- Department of Plastic and Reconstructive Surgery, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Bei Liu
- Department of Plastic and Reconstructive Surgery, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Baoqiang Song
- Department of Plastic and Reconstructive Surgery, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Yingjun Su
- Department of Plastic and Reconstructive Surgery, Xijing HospitalFourth Military Medical UniversityXi'anChina
| |
Collapse
|
62
|
desJardins-Park HE, Mascharak S, Chinta MS, Wan DC, Longaker MT. The Spectrum of Scarring in Craniofacial Wound Repair. Front Physiol 2019; 10:322. [PMID: 30984020 PMCID: PMC6450464 DOI: 10.3389/fphys.2019.00322] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 03/11/2019] [Indexed: 12/11/2022] Open
Abstract
Fibrosis is intimately linked to wound healing and is one of the largest causes of wound-related morbidity. While scar formation is the normal and inevitable outcome of adult mammalian cutaneous wound healing, scarring varies widely between different anatomical sites. The spectrum of craniofacial wound healing spans a particularly diverse range of outcomes. While most craniofacial wounds heal by scarring, which can be functionally and aesthetically devastating, healing of the oral mucosa represents a rare example of nearly scarless postnatal healing in humans. In this review, we describe the typical wound healing process in both skin and the oral cavity. We present clinical correlates and current therapies and discuss the current state of research into mechanisms of scarless healing, toward the ultimate goal of achieving scarless adult skin healing.
Collapse
Affiliation(s)
- Heather E. desJardins-Park
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Shamik Mascharak
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Malini S. Chinta
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Derrick C. Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
63
|
Chuang AH, Bordlemay J, Goodin JL, McPherson JC. Effect of Sodium Lauryl Sulfate (SLS) on Primary Human Gingival Fibroblasts in an In Vitro Wound Healing Model. Mil Med 2019; 184:97-101. [PMID: 30901402 DOI: 10.1093/milmed/usy332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/19/2018] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVES Sodium lauryl sulfate (SLS) is a surfactant used to decrease the surface tension of water. Most commercially available dentifrices contain 0.5-2.0% SLS. This study investigated the potential effect of SLS on oral wound healing using primary human gingival fibroblasts (HGFs). METHODS HGFs cells were grown in12-well culture plates in DMEM medium. A 3 mm wound was created on confluent HGFs. The cells were challenged with 0 (the control group), 0.01, 0.02, 0.03, 0.04, or 0.05% SLS-containing media once daily for 2 minutes. The cells were stained on day 0, 2, 4, 6 and 8. The percent of wound fill area was measured. RESULTS On day 2, 4, 6, and 8, the wound fill of the control group (0% SLS) was 15, 35, 67 and 98%, respectively; at 0.01% SLS, it was 10, 20, 65 and 84%; at 0.02%, it was 7, 10, 15 and 25%; at 0.03% SLS, it was only 5% and 8% on day 2 and 4. CONCLUSION Our results showed a dose- and time-dependent inhibition on HGFs wound fill by SLS; however, future in vivo studies are needed to validate if our in vitro findings using SLS-free dentifrices to avoid the potential delay of wound healing.
Collapse
Affiliation(s)
- Augustine H Chuang
- Department of Clinical Investigation, Dwight D. Eisenhower Army Medical Center, 7 Ave. Bldg 38705, Fort Gordon, GA
| | - Justin Bordlemay
- Department of Clinical Investigation, Dwight D. Eisenhower Army Medical Center, 7 Ave. Bldg 38705, Fort Gordon, GA
| | - Jeremy L Goodin
- Department of Clinical Investigation, Dwight D. Eisenhower Army Medical Center, 7 Ave. Bldg 38705, Fort Gordon, GA
| | - James C McPherson
- Department of Clinical Investigation, Dwight D. Eisenhower Army Medical Center, 7 Ave. Bldg 38705, Fort Gordon, GA
| |
Collapse
|
64
|
Garner J, Davidson DD, Barwinska D, Eckert GJ, Tholpady SS, Park K, Barco CT. Reshapable hydrogel tissue expander for ridge augmentation: Results of a series of successive insertions at the same intraoral site. J Periodontol 2019; 90:718-727. [PMID: 30632606 DOI: 10.1002/jper.18-0629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/04/2019] [Accepted: 01/05/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Oral mucosa expansion before ridge augmentation is a procedure to reduce soft tissue exposure and to improve bone graft density and volume after augmentation. This study explored a novel, shapeable hydrogel tissue expander (HTE) in intraoral sites that had undergone previous expansion and surgery. METHODS Nine beagle dogs had all premolar teeth extracted and adjacent alveolar bone reduced. After at least 3 months healing hydrogels were placed at 4 sites in each dog: maxilla and mandible, right and left. After 6 weeks of expansion, the hydrogels were removed and measured for volume expansion and physical condition. Punch biopsies were taken of the expanded oral mucosa. After 3 months, a second hydrogel insertion was performed at each of the same sites. After this second expansion cycle, volume and hydrogel condition were recorded. Three dogs received ultrasound imaging of the hydrogels during the second expansion. Necropsy specimens were taken of both expanded and non-expanded oral mucosa. RESULTS Within 2 weeks after HTE insertion in both first and second insertions, blood flow returned to the pre-insertion level. The first and second insertions resulted in linear oral mucosa gain of 8.13 mm, and 6.44 mm, respectively. First and second insertion hydrogels erupted from 4% of the first expansion sites, and 3% of the second expansion sites. There was no directional migration of the expanding hydrogel at any site. Histology found little inflammatory reaction to any hydrogel implant. CONCLUSION Oral mucosa can be consistently and successfully expanded before bone graft for ridge augmentation even at sites with a history of prior surgeries.
Collapse
Affiliation(s)
| | - Darrell D Davidson
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, Indiana
| | - Daria Barwinska
- Department of Medicine, Indiana University, Indianapolis, Indiana
| | - George J Eckert
- Department of Biostatistics, Indiana University, Indianapolis, Indiana
| | - Sunil S Tholpady
- Plastic Surgery Division, Richard L. Roudebush Veteran Affairs Medical Center, Indianapolis, Indiana
| | - Kinam Park
- Akina, Inc., West Lafayette, Indiana.,Department of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Clark T Barco
- Dental Service, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| |
Collapse
|
65
|
Naung NY, Duncan W, Silva RD, Coates D. Localization and characterization of human palatal periosteum stem cells in serum-free, xeno-free medium for clinical use. Eur J Oral Sci 2019; 127:99-111. [DOI: 10.1111/eos.12603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Noel Ye Naung
- Faculty of Dentistry; Sir John Walsh, Research Institute; University of Otago; Dunedin New Zealand
- Division of Oral and Maxillofacial Surgery; University of Kentucky; Lexington KY USA
| | - Warwick Duncan
- Faculty of Dentistry; Sir John Walsh, Research Institute; University of Otago; Dunedin New Zealand
| | - Rohana De Silva
- Faculty of Dentistry; Sir John Walsh, Research Institute; University of Otago; Dunedin New Zealand
| | - Dawn Coates
- Faculty of Dentistry; Sir John Walsh, Research Institute; University of Otago; Dunedin New Zealand
| |
Collapse
|
66
|
Bucur M, Constantin C, Neagu M, Zurac S, Dinca O, Vladan C, Cioplea M, Popp C, Nichita L, Ionescu E. Alveolar blood clots and platelet-rich fibrin induce in vitro fibroblast proliferation and migration. Exp Ther Med 2018; 17:982-989. [PMID: 30679963 PMCID: PMC6327514 DOI: 10.3892/etm.2018.7063] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 09/26/2018] [Indexed: 12/23/2022] Open
Abstract
Wound healing process comprises a complex network of cells and molecules that are regulated in order to pursue tissue regeneration. Our study focused on the capacity of alveolar blood clots (ABCs), platelet-rich fibrin (PRF) and plasma rich in growth factors (PRGF) to induce in vitro fibroblasts proliferation and migration as a measure of alveolar regeneration. Using cellular impedance with xCELLigence technology we quantified the proliferation and the migration capacity of L929 fibroblast standard cell line in the presence of 4 different ABCs and 3 different PRFs harvested from healthy individuals during standard tooth extraction. We obtained a clear cellular proliferation induced by the compounds mainly after 24 h of cultivation, in a dose-dependent manner. After 48 h of cultivation we registered activated proliferation, but slightly decreased compared to the 24 h profile. Our data confirm that the presence of the blood clot is involved in the regenerative processes. The migratory capacity of fibroblasts was statistically activated by the PL compounds while not affected by the tested PRFs. The chemical mediators present within the blood clot, either produced by inflammatory cells captive within, or by endothelial or mesenchymal cells induced fibroblastic proliferation and subsequent collagen deposition.
Collapse
Affiliation(s)
- Mihai Bucur
- Faculty of Dental Medicine, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania.,Department of Oro-Maxillofacial Surgery, 'Prof. Dr. Dan Theodorescu' Clinical Hospital of Oro-Maxillofacial Surgery, 101022 Bucharest, Romania
| | - Carolina Constantin
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania.,Department of Immunology, 'Victor Babeş' National Institute of Pathology, 050096 Bucharest, Romania
| | - Monica Neagu
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania.,Department of Immunology, 'Victor Babeş' National Institute of Pathology, 050096 Bucharest, Romania.,Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Sabina Zurac
- Faculty of Dental Medicine, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania.,Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Octavian Dinca
- Faculty of Dental Medicine, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania.,Department of Oro-Maxillofacial Surgery, 'Prof. Dr. Dan Theodorescu' Clinical Hospital of Oro-Maxillofacial Surgery, 101022 Bucharest, Romania
| | - Cristian Vladan
- Faculty of Dental Medicine, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania.,Department of Oro-Maxillofacial Surgery, 'Prof. Dr. Dan Theodorescu' Clinical Hospital of Oro-Maxillofacial Surgery, 101022 Bucharest, Romania
| | - Mirela Cioplea
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Cristiana Popp
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Luciana Nichita
- Faculty of Dental Medicine, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania.,Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Ecaterina Ionescu
- Faculty of Dental Medicine, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania.,Ambulatory of Orthodontics, 'Prof. Dr. Dan Theodorescu' Clinical Hospital of Oro-Maxillofacial Surgery, 010221 Bucharest, Romania
| |
Collapse
|
67
|
Bucur M, Dinca O, Vladan C, Popp C, Nichita L, Cioplea M, Stînga P, Mustatea P, Zurac S, Ionescu E. Variation in Expression of Inflammation-Related Signaling Molecules with Profibrotic and Antifibrotic Effects in Cutaneous and Oral Mucosa Scars. J Immunol Res 2018; 2018:5196023. [PMID: 30622976 PMCID: PMC6304192 DOI: 10.1155/2018/5196023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 10/06/2018] [Accepted: 10/11/2018] [Indexed: 01/08/2023] Open
Abstract
Wound healing is a complex biologic process evolving in three phases: inflammation, proliferation, and tissue remodeling controlled by numerous growth factors and cytokines. Oral mucosa wounds heal with significantly less important scars with less numerous macrophages and mast cells and more numerous myofibroblasts than cutaneous counterparts. We analyzed 32 cutaneous and 32 oral mucosa scars for TGFbeta1, TGFbeta2, TGFbeta3, TNFalpha, PDGF BB and FGF1 expression in mesenchymal cells, endothelial cells, macrophages, and multinucleated giant cells. We identified differences in the expression of profibrotic and antifibrotic factors in oral mucosa and skin scars; TGFbeta2 was positive in cutaneous multinucleated giant cells, TNFalpha was positive in cutaneous macrophages, and both were negative in oral mucosa while TGFbeta3 was positive in oral macrophages and mostly negative in cutaneous ones. PDGF BB and FGF1 were positive in oral endothelial cells and oral macrophages and negative in macrophages with opposite positivity pattern in cutaneous scars. Based on these findings, macrophage seems to be the key player in modulating pro- and antifibrotic processes in wound regeneration.
Collapse
Affiliation(s)
- Mihai Bucur
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
- Department of OroMaxilloFacial Surgery, Clinical Hospital of OroMaxilloFacial Surgery Prof. Dr. Dan Theodorescu, 17 Calea Plevnei, 010221 Bucharest, Romania
| | - Octavian Dinca
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
- Department of OroMaxilloFacial Surgery, Clinical Hospital of OroMaxilloFacial Surgery Prof. Dr. Dan Theodorescu, 17 Calea Plevnei, 010221 Bucharest, Romania
| | - Cristian Vladan
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
- Department of OroMaxilloFacial Surgery, Clinical Hospital of OroMaxilloFacial Surgery Prof. Dr. Dan Theodorescu, 17 Calea Plevnei, 010221 Bucharest, Romania
| | - Cristiana Popp
- Department of Pathology, Colentina University Hospital, 21 Stefan cel Mare, 020125 Bucharest, Romania
| | - Luciana Nichita
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
- Department of Pathology, Colentina University Hospital, 21 Stefan cel Mare, 020125 Bucharest, Romania
| | - Mirela Cioplea
- Department of Pathology, Colentina University Hospital, 21 Stefan cel Mare, 020125 Bucharest, Romania
| | - Patricia Stînga
- Department of Pathology, Colentina University Hospital, 21 Stefan cel Mare, 020125 Bucharest, Romania
| | - Petronel Mustatea
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
- Department of Surgery, Clinical Hospital “Dr. Ion Cantacuzino”, 5 Ioan Movila, 020475 Bucharest, Romania
| | - Sabina Zurac
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
- Department of Pathology, Colentina University Hospital, 21 Stefan cel Mare, 020125 Bucharest, Romania
| | - Ecaterina Ionescu
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
- Ambulatory of Orthodontics, Clinical Hospital of OroMaxilloFacial Surgery Prof. Dr. Dan Theodorescu, 17 Calea Plevnei, 010221 Bucharest, Romania
| |
Collapse
|
68
|
Kaur M, Sharma RK, Tewari S, Narula SC. Influence of mouth breathing on outcome of scaling and root planing in chronic periodontitis. BDJ Open 2018; 4:17039. [PMID: 30425839 PMCID: PMC6226516 DOI: 10.1038/s41405-018-0007-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/26/2018] [Accepted: 08/07/2018] [Indexed: 11/20/2022] Open
Abstract
Introduction Dryness is known to be associated with inflammatory diseases such as dry eye disease and atopic dermatitis. There is significant water loss from the oral cavity during mouth breathing. This study is conducted to estimate the influence of mouth breathing on the outcome of scaling and root planing (SRP) in chronic periodontitis (CP). Materials and methods CP patients comprising of 33 mouth breathers (MBs) and 33 nose breathers (NBs) were recruited. Thirty patients in each group completed the study. At baseline, plaque index (PI), gingival index (GI), bleeding on probing (BOP), probing depth (PD), and clinical attachment level (CAL) were measured. SRP was done in both groups. At the 4th, 8th, and 12th week, PI, GI, and BOP were recorded. PD and CAL were also assessed at the 12th week. Results At the 12th week, there was significantly less improvement in GI at palatal sites of maxillary anterior and maxillary posterior teeth in MB group. Sixty-nine percent of BOP positive sites with PD >4 mm were converted into BOP negative sites with PD ≤4 mm in maxillary posterior palatal sites in NB. This success was 38% in MB. Conclusion Control of periodontal inflammation by SRP in CP patients is affected at palatal sites of mouth breathers.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Periodontics and Oral Implantology, Post Graduate Institute of Dental Sciences, Rohtak, Haryana India
| | - Rajinder Kumar Sharma
- Department of Periodontics and Oral Implantology, Post Graduate Institute of Dental Sciences, Rohtak, Haryana India
| | - Shikha Tewari
- Department of Periodontics and Oral Implantology, Post Graduate Institute of Dental Sciences, Rohtak, Haryana India
| | - Satish Chander Narula
- Department of Periodontics and Oral Implantology, Post Graduate Institute of Dental Sciences, Rohtak, Haryana India
| |
Collapse
|
69
|
Fujihara C, Kanai Y, Masumoto R, Kitagaki J, Matsumoto M, Yamada S, Kajikawa T, Murakami S. Fibroblast growth factor‐2 inhibits CD40‐mediated periodontal inflammation. J Cell Physiol 2018; 234:7149-7160. [DOI: 10.1002/jcp.27469] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/30/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Chiharu Fujihara
- Department of Periodontology Osaka University Graduate School of Dentistry Osaka Japan
| | - Yu Kanai
- Department of Periodontology Osaka University Graduate School of Dentistry Osaka Japan
| | - Risa Masumoto
- Department of Periodontology Osaka University Graduate School of Dentistry Osaka Japan
| | - Jirouta Kitagaki
- Department of Periodontology Osaka University Graduate School of Dentistry Osaka Japan
| | - Masahiro Matsumoto
- Department of Periodontology Osaka University Graduate School of Dentistry Osaka Japan
| | - Satoru Yamada
- Division of Periodontology and Endodontology Tohoku University Graduate School of Dentistry Miyagi Japan
| | - Tetsuhiro Kajikawa
- Department of Periodontology Osaka University Graduate School of Dentistry Osaka Japan
| | - Shinya Murakami
- Department of Periodontology Osaka University Graduate School of Dentistry Osaka Japan
| |
Collapse
|
70
|
Regulation of connexin 43 expression in human gingival fibroblasts. Exp Cell Res 2018; 371:238-249. [PMID: 30118696 DOI: 10.1016/j.yexcr.2018.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/31/2018] [Accepted: 08/13/2018] [Indexed: 12/22/2022]
Abstract
AIMS Abundance of connexin 43 (Cx43), a transmembrane protein that forms hemichannels (HCs) and gap junctions (GJs), is dynamically regulated in human gingival fibroblasts (GFBLs) during wound healing. This may be important for fast and scarless gingival wound healing as Cx43 is involved in key cell functions important during this process. Our aim was to uncover the factors that regulate Cx43 expression and abundance in GFBLs. We hypothesized that cytokines and growth factors released during wound healing coordinately regulate Cx43 abundance in GFBLs. RESULTS TGF-β1, -β2, -β3, PGE2 and IL-1β significantly upregulated, while TNF-α and IFN-γ downregulated Cx43 in cultured GFBLs. TGF-β1, -β2, -β3, IL-1β and IFN-γ modulated Cx43 abundance at both mRNA and protein levels, while TNF-α and PGE2 regulated only Cx43 protein abundance, suggesting involvement of distinct transcriptional/post-transcriptional and translational/post-translational mechanisms, respectively. TGF-β1-induced upregulation of Cx43 was mediated by TGFβRI (ALK5) and SMAD2/3 signaling, and this was potently suppressed by PGE2, IL-1β, TNF-α and IFN-γ that inhibited SMAD2/3 phosphorylation. CONCLUSION Regulation of Cx43 abundance in GFBLs involves transcriptional/post-transcriptional and translational/post-translational mechanisms that are distinctly modulated by an interplay between TGF-β isoforms and PGE2, IL-1β, TNF-α and IFN-γ.
Collapse
|
71
|
Isaac J, Nassif A, Asselin A, Taïhi I, Fohrer-Ting H, Klein C, Gogly B, Berdal A, Robert B, Fournier BP. Involvement of neural crest and paraxial mesoderm in oral mucosal development and healing. Biomaterials 2018; 172:41-53. [PMID: 29715594 DOI: 10.1016/j.biomaterials.2018.04.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/15/2018] [Indexed: 01/21/2023]
Abstract
Tissue engineering therapies using adult stem cells derived from neural crest have sought accessible tissue sources of these cells because of their potential pluripotency. In this study, the gingiva and oral mucosa and their associated stem cells were investigated. Biopsies of these tissues produce neither scarring nor functional problems and are relatively painless, and fresh tissue can be obtained readily during different chairside dental procedures. However, the embryonic origin of these cells needs to be clarified, as does their evolution from the perinatal period to adulthood. In this study, the embryonic origin of gingival fibroblasts were determined, including gingival stem cells. To do this, transgenic mouse models were used to track neural crest derivatives as well as cells derived from paraxial mesoderm, spanning from embryogenesis to adulthood. These cells were compared with ones derived from abdominal dermis and facial dermis. Our results showed that gingival fibroblasts are derived from neural crest, and that paraxial mesoderm is involved in the vasculogenesis of oral tissues during development. Our in vitro studies revealed that the neuroectodermal origin of gingival fibroblasts (or gingival stem cells) endows them with multipotential properties as well as a specific migratory and contractile phenotype which may participate to the scar-free properties of the oral mucosa. Together, these results illustrate the high regenerative potential of neural crest-derived stem cells of the oral mucosa, including the gingiva, and strongly support their use in cell therapy to regenerate tissues with impaired healing.
Collapse
Affiliation(s)
- Juliane Isaac
- Cordeliers Research Center, Laboratory of Molecular Oral Physiopathology, INSERM UMRS 1138, 15 rue de l'école de médecine, 75006 Paris, France; Paris-Descartes and Paris-Diderot Universities, UFR Odontology, 75006 Paris, France; Institut Pasteur, URA CNRS 2578, 25 Rue Du Docteur Roux, Paris, F-75724, France
| | - Ali Nassif
- Cordeliers Research Center, Laboratory of Molecular Oral Physiopathology, INSERM UMRS 1138, 15 rue de l'école de médecine, 75006 Paris, France; Paris-Descartes and Paris-Diderot Universities, UFR Odontology, 75006 Paris, France; AP-HP, Bretonneau Hospital, Dental Department, Paris 75018, France; Institut Pasteur, URA CNRS 2578, 25 Rue Du Docteur Roux, Paris, F-75724, France
| | - Audrey Asselin
- Cordeliers Research Center, Laboratory of Molecular Oral Physiopathology, INSERM UMRS 1138, 15 rue de l'école de médecine, 75006 Paris, France; Paris-Descartes and Paris-Diderot Universities, UFR Odontology, 75006 Paris, France
| | - Ihsène Taïhi
- Cordeliers Research Center, Laboratory of Molecular Oral Physiopathology, INSERM UMRS 1138, 15 rue de l'école de médecine, 75006 Paris, France; Paris-Descartes and Paris-Diderot Universities, UFR Odontology, 75006 Paris, France; AP-HP, Hospital Complex Henri-Mondor Albert-Chenevier, CIC-BT-504, 94000 Creteil, France
| | - Hélène Fohrer-Ting
- Cell Imaging and Flow Cytometry Platform (CICC), Center de Recherche des Cordeliers, Paris, France
| | - Christophe Klein
- Cell Imaging and Flow Cytometry Platform (CICC), Center de Recherche des Cordeliers, Paris, France
| | - Bruno Gogly
- Cordeliers Research Center, Laboratory of Molecular Oral Physiopathology, INSERM UMRS 1138, 15 rue de l'école de médecine, 75006 Paris, France; Paris-Descartes and Paris-Diderot Universities, UFR Odontology, 75006 Paris, France; AP-HP, Hospital Complex Henri-Mondor Albert-Chenevier, CIC-BT-504, 94000 Creteil, France
| | - Ariane Berdal
- Cordeliers Research Center, Laboratory of Molecular Oral Physiopathology, INSERM UMRS 1138, 15 rue de l'école de médecine, 75006 Paris, France; Paris-Descartes and Paris-Diderot Universities, UFR Odontology, 75006 Paris, France; Reference Center for Dental Rare Disease, Rothschild Hospital, 75012 Paris, France
| | - Benoît Robert
- Institut Pasteur, URA CNRS 2578, 25 Rue Du Docteur Roux, Paris, F-75724, France
| | - Benjamin P Fournier
- Cordeliers Research Center, Laboratory of Molecular Oral Physiopathology, INSERM UMRS 1138, 15 rue de l'école de médecine, 75006 Paris, France; Paris-Descartes and Paris-Diderot Universities, UFR Odontology, 75006 Paris, France; Reference Center for Dental Rare Disease, Rothschild Hospital, 75012 Paris, France.
| |
Collapse
|
72
|
Wang W, Li G, Yang H. Role of Mitogen-Activated Protein Kinases in the Formation of Hypertrophic Scar with Model of Lipopolysaccharide Stimulated Skin Fibroblast Cells. Pak J Med Sci 2018; 34:215-220. [PMID: 29643910 PMCID: PMC5857016 DOI: 10.12669/pjms.341.13636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Objective: Hypertrophic scar is common in burn patients, but treating result could not meet the expectation of the patients and doctors. We have found that certain concentration level of lipopolysaccharide (LPS) stimulated normal fibroblast cells have statistically similar with fibroblast cells from hypertrophic scar on the phenotype level, and with this work we are trying to figure out which Mitogen-Activated Protein Kinase (MAPK) is affected and how it is affected. Methods: Experiments were conducted in May, 2017 at the first affiliated hospital of the Chinese PLA General Hospital, Beijing, China. We have cultured the cell line of human skin fibroblast cells and randomly divided cells into four groups: control group and three stimulation groups. We have rebuilt the LPS stimulated model of skin fibroblast cells in hypertrophic scar based on our previous work. Experimental groups were stimulated with 0.1ug/mL LPS concentration for 24 hours, 48 hours, and 72 hours, respectively. Then we performed western blot analysis of Erk, p-Erk, JNK, p-JNK, p38 and p-p38. We performed statistical analysis with SPSS 15.0. Results: LPS can up regulate the MAPK/p38 pathway (p<0.05) and down regulate the MAPK/Erk and MAPK/JNK pathways (p<0.05). The changes of phosphorylated protein are time-related, with longer stimulation duration, significant difference is increased (p<0.05). Conclusion: MAPKs can play an important role in the formation of hypertrophic scar in the skin. Early intervention through the MAPKs could be a promising target in the prevention of the formation of hypertrophic scar.
Collapse
Affiliation(s)
- Weidong Wang
- Dr. Weidong Wang, Chinese PLA Medical School, Beijing, China
| | - Guanglei Li
- Dr. Guanglei Li, Chinese PLA Medical School, Beijing, China
| | - Hongming Yang
- Dr. Hongming Yang, The First Affiliated Hospital of the Chinese PLA General Hospital, Fucheng Rd No. 51, Haidian District, Beijing, China
| |
Collapse
|
73
|
Connexin 43 regulates the expression of wound healing-related genes in human gingival and skin fibroblasts. Exp Cell Res 2018; 367:150-161. [PMID: 29596891 DOI: 10.1016/j.yexcr.2018.03.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 12/21/2022]
Abstract
Fibroblasts are the most abundant connective tissue cells and play an important role in wound healing. It is possible that faster and scarless wound healing in oral mucosal gingiva relative to skin may relate to the distinct phenotype of the fibroblasts residing in these tissues. Connexin 43 (Cx43) is the most ubiquitous Cx in skin (SFBLs) and gingival fibroblasts (GFBLs), and assembles into hemichannels (HCs) and gap junctions (GJs) on the cell membrane. We hypothesized that SFBLs and GFBLs display distinct expression or function of Cx43, and that this may partly underlie the different wound healing outcomes in skin and gingiva. Here we show that Cx43 distinctly formed Cx43 GJs and HCs in human skin and gingiva in vivo. However, in SFBLs, in contrast to GFBLs, only a small proportion of total Cx43 assembled into HC plaques. Using an in vivo-like 3D culture model, we further show that the GJ, HC, and channel-independent functions of Cx43 distinctly regulated wound healing-related gene expression in GFBLs and SFBLs. Therefore, the distinct wound healing outcomes in skin and gingiva may partly relate to the inherently different assembly and function of Cx43 in the resident fibroblasts.
Collapse
|
74
|
Moore AL, Marshall CD, Barnes LA, Murphy MP, Ransom RC, Longaker MT. Scarless wound healing: Transitioning from fetal research to regenerative healing. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2018; 7:10.1002/wdev.309. [PMID: 29316315 PMCID: PMC6485243 DOI: 10.1002/wdev.309] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 09/07/2017] [Accepted: 10/27/2017] [Indexed: 01/08/2023]
Abstract
Since the discovery of scarless fetal skin wound healing, research in the field has expanded significantly with the hopes of advancing the finding to adult human patients. There are several differences between fetal and adult skin that have been exploited to facilitate scarless healing in adults including growth factors, cytokines, and extracellular matrix substitutes. However, no one therapy, pathway, or cell subtype is sufficient to support scarless wound healing in adult skin. More recently, products that contain or mimic fetal and adult uninjured dermis were introduced to the wound healing market with promising clinical outcomes. Through our review of the major experimental targets of fetal wound healing, we hope to encourage research in areas that may have a significant clinical impact. Additionally, we will investigate therapies currently in clinical use and evaluate whether they represent a legitimate advance in regenerative medicine or a vulnerary agent. WIREs Dev Biol 2018, 7:e309. doi: 10.1002/wdev.309 This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration Plant Development > Cell Growth and Differentiation Adult Stem Cells, Tissue Renewal, and Regeneration > Environmental Control of Stem Cells.
Collapse
Affiliation(s)
- Alessandra L. Moore
- Department of Surgery, Brigham and Women’s Hospital, Boston, Massachusetts
- Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Clement D. Marshall
- Department of Surgery, Brigham and Women’s Hospital, Boston, Massachusetts
- Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Leandra A. Barnes
- Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Matthew P. Murphy
- Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Ryan C. Ransom
- Department of Surgery, Stanford University School of Medicine, Stanford, California
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
| | - Michael T. Longaker
- Department of Surgery, Stanford University School of Medicine, Stanford, California
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
| |
Collapse
|
75
|
Marshall CD, Hu MS, Leavitt T, Barnes LA, Lorenz HP, Longaker MT. Cutaneous Scarring: Basic Science, Current Treatments, and Future Directions. Adv Wound Care (New Rochelle) 2018; 7:29-45. [PMID: 29392092 DOI: 10.1089/wound.2016.0696] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/01/2016] [Indexed: 12/12/2022] Open
Abstract
Significance: Scarring of the skin from burns, surgery, and injury constitutes a major burden on the healthcare system. Patients affected by major scars, particularly children, suffer from long-term functional and psychological problems. Recent Advances: Scarring in humans is the end result of the wound healing process, which has evolved to rapidly repair injuries. Wound healing and scar formation are well described on the cellular and molecular levels, but truly effective molecular or cell-based antiscarring treatments still do not exist. Recent discoveries have clarified the role of skin stem cells and fibroblasts in the regeneration of injuries and formation of scar. Critical Issues: It will be important to show that new advances in the stem cell and fibroblast biology of scarring can be translated into therapies that prevent and reduce scarring in humans without major side effects. Future Directions: Novel therapies involving the use of purified human cells as well as agents that target specific cells and modulate the immune response to injury are currently undergoing testing. In the basic science realm, researchers continue to refine our understanding of the role that particular cell types play in the development of scar.
Collapse
Affiliation(s)
- Clement D. Marshall
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Michael S. Hu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Tripp Leavitt
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Leandra A. Barnes
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - H. Peter Lorenz
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Michael T. Longaker
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
76
|
Yoon SH, Lee JH. The Reliability of the Transconjunctival Approach for Orbital Exposure: Measurement of Positional Changes in the Lower Eyelid. Arch Craniofac Surg 2018; 18:249-254. [PMID: 29349049 PMCID: PMC5759661 DOI: 10.7181/acfs.2017.18.4.249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 11/25/2022] Open
Abstract
Background Lower eyelid incisions are widely used for the orbital approach in periorbital trauma and aesthetic surgery. In general, the subciliary approach is known to cause disposition of the lower eyelid by scarring the anterior lamella in some cases. On the other hand, many surgeons believe that a transconjunctival approach usually does not result in such complications and is a reliable method. We measured positional changes in the lower eyelid in blowout fracture repair since entropion is one of the most serious complications of the transconjunctival orbital approach. Methods To measure the positional changes in the lower eyelids, we analyzed preoperative and postoperative photographs over various time intervals. In the analysis of the photographs, marginal reflex distance 2 (MRD2) and eyelash angle were used as an index of eyelid position. Statistical analyses were performed to identify the significance in the positional changes. All patients underwent orbital reconstruction through a transconjunctival incision by a single plastic surgeon. Results In 42 blowout fracture patients, there was no statistical significant difference in the MRD2 and eyelash angle. Furthermore, there were no clinical complications, such as infection, hematoma, bleeding, or implant protrusion, during the follow-up periods. Conclusion The advantages of the transconjunctival approach for orbital access include minimal scarring and a lower risk of eyelid displacement compared with other approaches. Based on these results, we recommend the transconjunctival approach for orbital exposure as a safe and reliable method.
Collapse
Affiliation(s)
- Sung Ho Yoon
- Department of Plastic and Reconstructive Surgery, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Jin Hoon Lee
- Department of Plastic and Reconstructive Surgery, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| |
Collapse
|
77
|
Kurgan S, Kantarci A. Molecular basis for immunohistochemical and inflammatory changes during progression of gingivitis to periodontitis. Periodontol 2000 2017; 76:51-67. [DOI: 10.1111/prd.12146] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2016] [Indexed: 12/22/2022]
|
78
|
Sathasivam HP, Davies GR, Boyd NM. Predictive factors for osteoradionecrosis of the jaws: A retrospective study. Head Neck 2017; 40:46-54. [PMID: 29149496 DOI: 10.1002/hed.24907] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/05/2017] [Accepted: 07/06/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Osteoradionecrosis of the jaw (ORNJ) is a well-recognized complication of radiotherapy. The purpose of this study was to assess predictive factors for the development of ORNJ. METHODS A retrospective study of 325 patients with head and neck squamous cell carcinoma (HNSCC) treated at one institution between January 1, 1999, and December 31, 2008, was conducted. Outcome measure was the presence/absence of ORNJ. Time to event was recorded and Cox proportional hazard regression analysis was used to determine statistically significant predictive factors. RESULTS Fifty-nine patients had ORNJ. Statistical analysis using Cox regression analysis identified several statistically significant variables: dentoalveolar surgery; peri-resective surgery of the jaw; continued tobacco usage after radiotherapy, diabetes mellitus type 2 (DM2); and total radiation dose. CONCLUSION Patients at greater risk of developing ORNJ can be identified and measures can be instituted to reduce its incidence and expedite management when it does occur.
Collapse
Affiliation(s)
- Hans P Sathasivam
- University of Western Australia, 35 Stirling Highway Crawley WA 6009, Perth, Australia.,Dental Department, Sultan Ismail Hospital, 81100 Johor Bahru, Malaysia.,School of Dental Sciences, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4BW
| | - Gareth R Davies
- University of Western Australia, 35 Stirling Highway Crawley WA 6009, Perth, Australia
| | - Nicholas M Boyd
- University of Western Australia, 35 Stirling Highway Crawley WA 6009, Perth, Australia
| |
Collapse
|
79
|
Tarzemany R, Jiang G, Jiang JX, Larjava H, Häkkinen L. Connexin 43 Hemichannels Regulate the Expression of Wound Healing-Associated Genes in Human Gingival Fibroblasts. Sci Rep 2017; 7:14157. [PMID: 29074845 PMCID: PMC5658368 DOI: 10.1038/s41598-017-12672-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/18/2017] [Indexed: 02/01/2023] Open
Abstract
Connexin 43 (Cx43) is the most ubiquitous connexin in various cells, and presents as hemichannels (HCs) and gap junctions (GJs) on the cell membrane. We have recently shown that Cx43 abundance was strongly reduced in fibroblasts of human gingival wounds, and blocking Cx43 function in cultured human gingival fibroblasts (GFBLs) strongly regulated the expression of wound healing-related genes. However, it is not known whether these responses involved Cx43 HCs or GJs. Here we show that Cx43 assembled into distinct GJ and HC plaques in GFBLs both in vivo and in vitro. Specific blockage of Cx43 HC function by TAT-Gap19, a Cx43 mimetic peptide, significantly upregulated the expression of several MMPs, TGF-β signaling molecules, Tenascin-C, and VEGF-A, while pro-fibrotic molecules, including several extracellular matrix proteins and myofibroblast and cell contractility-related molecules, were significantly downregulated. These changes were linked with TAT-Gap19-induced suppression of ATP signaling and activation of the ERK1/2 signaling pathway. Collectively, our data suggest that reduced Cx43 HC function could promote fast and scarless gingival wound healing. Thus, selective suppression of Cx43 HCs may provide a novel target to modulate wound healing.
Collapse
Affiliation(s)
- Rana Tarzemany
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Guoqiao Jiang
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Jean X Jiang
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas, 78229-3900, USA
| | - Hannu Larjava
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Lari Häkkinen
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
80
|
Abdallah MN, Badran Z, Ciobanu O, Hamdan N, Tamimi F. Strategies for Optimizing the Soft Tissue Seal around Osseointegrated Implants. Adv Healthc Mater 2017; 6. [PMID: 28960892 DOI: 10.1002/adhm.201700549] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/12/2017] [Indexed: 12/20/2022]
Abstract
Percutaneous and permucosal devices such as catheters, infusion pumps, orthopedic, and dental implants are commonly used in medical treatments. However, these useful devices breach the soft tissue barrier that protects the body from the outer environment, and thus increase bacterial infections resulting in morbidity and mortality. Such associated infections can be prevented if these devices are effectively integrated with the surrounding soft tissue, and thus creating a strong seal from the surrounding environment. However, so far, there are no percutaneous/permucosal medical devices able to prevent infection by achieving strong integration at the soft tissue-device interface. This review gives an insight into the current status of research into soft tissue-implant interface and the challenges associated with these interfaces. Biological soft/hard tissue interfaces may provide insights toward engineering better soft tissue interfaces around percutaneous devices. In this review, focus is put on the history and current findings as well as recent progress of the strategies aiming to develop a strong soft tissue seal around osseointegrated implants, such as orthopedic and dental implants.
Collapse
Affiliation(s)
- Mohamed-Nur Abdallah
- Division of Biomedical Sciences; Faculty of Dentistry; McGill University; Montreal H3A 1G1 QC Canada
- Division of Orthodontics; Faculty of Dentistry; Toronto University; Toronto M5G 1G6 ON Canada
| | - Zahi Badran
- Division of Biomedical Sciences; Faculty of Dentistry; McGill University; Montreal H3A 1G1 QC Canada
- Department of Periodontology (CHU/Rmes Inserm U1229/UIC11); Faculty of Dental Surgery; University of Nantes; Nantes 44042 France
| | - Ovidiu Ciobanu
- Division of Biomedical Sciences; Faculty of Dentistry; McGill University; Montreal H3A 1G1 QC Canada
| | - Nader Hamdan
- Department of Dental Clinical Sciences; Faculty of Dentistry; Dalhousie University; Halifax B3H 4R2 NS Canada
| | - Faleh Tamimi
- Division of Biomedical Sciences; Faculty of Dentistry; McGill University; Montreal H3A 1G1 QC Canada
| |
Collapse
|
81
|
Biocomposite nanofiber matrices to support ECM remodeling by human dermal progenitors and enhanced wound closure. Sci Rep 2017; 7:10291. [PMID: 28860484 PMCID: PMC5579010 DOI: 10.1038/s41598-017-10735-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/14/2017] [Indexed: 01/14/2023] Open
Abstract
Cell-based therapies have recently been the focus of much research to enhance skin wound healing. An important challenge will be to develop vehicles for cell delivery that promote survival and uniform distribution of cells across the wound bed. These systems should be stiff enough to facilitate handling, whilst soft enough to limit damage to newly synthesized wound tissue and minimize patient discomfort. Herein, we developed several novel modifiable nanofibre scaffolds comprised of Poly (ε-caprolactone) (PCL) and gelatin (GE). We asked whether they could be used as a functional receptacle for adult human Skin-derived Precursor Cells (hSKPs) and how naked scaffolds impact endogenous skin wound healing. PCL and GE were electrospun in a single facile solvent to create composite scaffolds and displayed unique morphological and mechanical properties. After seeding with adult hSKPs, deposition of extracellular matrix proteins and sulphated glycosaminoglycans was found to be enhanced in composite grafts. Moreover, composite scaffolds exhibited significantly higher cell proliferation, greater cell spreading and integration within the nanofiber mats. Transplantation of acellular scaffolds into wounds revealed scaffolds exhibited improvement in dermal-epidermal thickness, axonal density and collagen deposition. These results demonstrate that PCL-based nanofiber scaffolds show promise as a cell delivery system for wound healing.
Collapse
|
82
|
Mucosal Perfusion Preservation by a Novel Shapeable Tissue Expander for Oral Reconstruction. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2017; 5:e1449. [PMID: 28894668 PMCID: PMC5585441 DOI: 10.1097/gox.0000000000001449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 06/27/2017] [Indexed: 12/02/2022]
Abstract
Background: There are few methods for expanding oral mucosa, and these often cause complications such as tissue necrosis and expander eruption. This study examines mucosal blood perfusion following insertion of a novel shapeable hydrogel tissue expander (HTE). The canine model used subgingival insertion of HTE following tooth extraction and alveolar bone reduction. The primary goal of this study was to gain understanding of epithelial perfusion and reparative responses of gingival mucosa during HTE expansion. Methods: Nine Beagle dogs underwent bilateral premolar maxillary and mandibular tooth extraction. Three to four months later, HTE-contoured inserts were implanted submucosally under the buccal surface of the alveolar ridge. After removal and following a 6- to 7-month period of healing, new HTE implants were inserted at the same sites. The area was assessed weekly for tissue perfusion and volume of expansion. Biopsies for histological analysis were performed at the time of expander removal. Results: Within 2 weeks following the second insertion, blood flow returned to baseline (defined as the values of perfusion measurements at the presurgery assessment) and remained normal until hydrogel full expansion and removal. Volume expansion analysis revealed that the hydrogel doubled in volume. Histological assessment showed no macrophage or inflammatory infiltration of the mucosa. No superficial fibrosis, decreased vascularity, or mucosal change was seen. Conclusion: Maintenance of adequate tissue perfusion is a clinically important aspect of tissue expander performance to reduce risk of device loss or injury to the patient, particularly for areas with a history of previous surgeries.
Collapse
|
83
|
Vescarelli E, Pilloni A, Dominici F, Pontecorvi P, Angeloni A, Polimeni A, Ceccarelli S, Marchese C. Autophagy activation is required for myofibroblast differentiation during healing of oral mucosa. J Clin Periodontol 2017. [PMID: 28646601 DOI: 10.1111/jcpe.12767] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AIM It is known that periodontal tissues heal faster that skin, and gingiva in particular heal without scar formation. The mechanisms regulating this behaviour are still unclear. The aim of our work was to compare wound healing in oral mucosa and gingiva, investigating the role of α-smooth muscle actin (αSMA)-expressing myofibroblasts and autophagy. MATERIALS AND METHODS Biopsies were obtained from seven patients immediately before and 24 hr after vertical releasing incision in oral mucosa and attached gingiva. Both whole biopsies and primary cultures of fibroblasts derived from the same tissues were subjected to immunofluorescence, Western blot and quantitative real-time PCR analyses. RESULTS We demonstrated that in oral mucosa, characterized by partially fibrotic outcome during repair, the activation of autophagy determined an increase in αSMA and collagen 1a1 production. Conversely, wound healing did not stimulate autophagy in attached gingiva, and subsequently, no increase in myofibroblast differentiation and collagen deposition could be seen, thus justifying its scarless outcome. CONCLUSIONS The elucidation of the differential regulation of autophagy in periodontal tissues and its correlation with myofibroblast differentiation and fibrotic outcome could allow the identification of new molecules involved in periodontal healing and the development of new surgical approaches for periodontal treatment that could improve the outcome of postoperative wounds.
Collapse
Affiliation(s)
- Enrica Vescarelli
- Department of Experimental Medicine, Sapienza University of Rome, Roma, Italy
| | - Andrea Pilloni
- Section of Periodontology, Sapienza University of Rome, Roma, Italy
| | | | - Paola Pontecorvi
- Department of Experimental Medicine, Sapienza University of Rome, Roma, Italy
| | - Antonio Angeloni
- Department of Molecular Medicine, Sapienza University of Rome, Roma, Italy
| | | | - Simona Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome, Roma, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University of Rome, Roma, Italy
| |
Collapse
|
84
|
Thorlakson HH, Engen SA, Schreurs O, Schenck K, Blix IJS. Lysophosphatidic acid induces expression of genes in human oral keratinocytes involved in wound healing. Arch Oral Biol 2017; 80:153-159. [DOI: 10.1016/j.archoralbio.2017.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 10/19/2022]
|
85
|
Mah W, Jiang G, Olver D, Gallant-Behm C, Wiebe C, Hart DA, Koivisto L, Larjava H, Häkkinen L. Elevated CD26 Expression by Skin Fibroblasts Distinguishes a Profibrotic Phenotype Involved in Scar Formation Compared to Gingival Fibroblasts. THE AMERICAN JOURNAL OF PATHOLOGY 2017. [PMID: 28641076 DOI: 10.1016/j.ajpath.2017.04.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Compared to skin, wound healing in oral mucosa is faster and produces less scarring, but the mechanisms involved are incompletely understood. Studies in mice have linked high expression of CD26 to a profibrotic fibroblast phenotype, but this has not been tested in models more relevant for humans. We hypothesized that CD26 is highly expressed by human skin fibroblasts (SFBLs), and this associates with a profibrotic phenotype distinct from gingival fibroblasts (GFBLs). We compared CD26 expression in human gingiva and skin and in gingival and hypertrophic-like scar-forming skin wound healing in a pig model, and used three-dimensional cultures of human GFBLs and SFBLs. In both humans and pigs, nonwounded skin contained abundantly CD26-positive fibroblasts, whereas in gingiva they were rare. During skin wound healing, CD26-positive cells accumulated over time and persisted in forming hypertrophic-like scars, whereas few CD26-positive cells were present in the regenerated gingival wounds. Cultured human SFBLs displayed significantly higher levels of CD26 than GFBLs. This was associated with an increased expression of profibrotic genes and transforming growth factor-β signaling in SFBLs. The profibrotic phenotype of SFBLs partially depended on expression of CD26, but was independent of its catalytic activity. Thus, a CD26-positive fibroblast population that is abundant in human skin but not in gingiva may drive the profibrotic response leading to excessive scarring.
Collapse
Affiliation(s)
- Wesley Mah
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guoqiao Jiang
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dylan Olver
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Colin Wiebe
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - David A Hart
- Department of Surgery, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Leeni Koivisto
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hannu Larjava
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lari Häkkinen
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
86
|
Abstract
Mucosal wounds tend to heal more rapidly than skin wounds and with minimal to no scar formation and hence have a minimal impact on function or aesthetics. This is likely due to differences in the magnitude and timing of the various factors that contribute to wound healing. Some examples of these differences are fibroblast proliferation, transforming growth factor-β, macrophages, neutrophils, and T cells. Other factors, such as the moist environment, contribute to the favorable wound-healing characteristics of mucosa.
Collapse
Affiliation(s)
- Erik William Evans
- Division of Oral and Maxillofacial Surgery, University of Cincinnati Medical Center, Veterans Affairs Medical Center, Cincinnati Children's Hospital Medical Center, 200 Albert Sabin Way, ML 0461, Cincinnati, OH 45219, USA.
| |
Collapse
|
87
|
Sader F, Denis JF, Roy S. Tissue regeneration in dentistry: Can salamanders provide insight? Oral Dis 2017; 24:509-517. [DOI: 10.1111/odi.12674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 12/13/2022]
Affiliation(s)
- F Sader
- Department of Biochemistry and Molecular Medicine; Faculty of Medicine; Université de Montréal; Montreal QC Canada
| | - J-F Denis
- Department of Biochemistry and Molecular Medicine; Faculty of Medicine; Université de Montréal; Montreal QC Canada
| | - S Roy
- Department of Biochemistry and Molecular Medicine; Faculty of Medicine; Université de Montréal; Montreal QC Canada
- Department of Stomatology; Faculty of Dentistry; Université de Montréal; Montreal QC Canada
| |
Collapse
|
88
|
Yannas IV, Tzeranis DS, So PTC. Regeneration of injured skin and peripheral nerves requires control of wound contraction, not scar formation. Wound Repair Regen 2017; 25:177-191. [PMID: 28370669 PMCID: PMC5520812 DOI: 10.1111/wrr.12516] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/24/2017] [Accepted: 02/02/2017] [Indexed: 01/05/2023]
Abstract
We review the mounting evidence that regeneration is induced in wounds in skin and peripheral nerves by a simple modification of the wound healing process. Here, the process of induced regeneration is compared to the other two well-known processes by which wounds close, i.e., contraction and scar formation. Direct evidence supports the hypothesis that the mechanical force of contraction (planar in skin wounds, circumferential in nerve wounds) is the driver guiding the orientation of assemblies of myofibroblasts (MFB) and collagen fibers during scar formation in untreated wounds. We conclude that scar formation depends critically on wound contraction and is, therefore, a healing process secondary to contraction. Wound contraction and regeneration did not coincide during healing in a number of experimental models of spontaneous (untreated) regeneration described in the literature. Furthermore, in other studies in which an efficient contraction-blocker, a collagen scaffold named dermis regeneration template (DRT), and variants of it, were grafted on skin wounds or peripheral nerve wounds, regeneration was systematically observed in the absence of contraction. We conclude that contraction and regeneration are mutually antagonistic processes. A dramatic change in the phenotype of MFB was observed when the contraction-blocking scaffold DRT was used to treat wounds in skin and peripheral nerves. The phenotype change was directly observed as drastic reduction in MFB density, dispersion of MFB assemblies and loss of alignment of the long MFB axes. These observations were explained by the evidence of a surface-biological interaction of MFB with the scaffold, specifically involving binding of MFB integrins α1 β1 and α2 β1 to ligands GFOGER and GLOGER naturally present on the surface of the collagen scaffold. In summary, we show that regeneration of wounded skin and peripheral nerves in the adult mammal can be induced simply by appropriate control of wound contraction, rather than of scar formation.
Collapse
Affiliation(s)
- Ioannis V Yannas
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Dimitrios S Tzeranis
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Peter T C So
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
89
|
Wang Y, Tatakis DN. Human gingiva transcriptome during wound healing. J Clin Periodontol 2017; 44:394-402. [PMID: 28005267 DOI: 10.1111/jcpe.12669] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2016] [Indexed: 12/19/2022]
Abstract
OBJECTIVES To investigate the gene expression profile of human gingiva following surgical wounding. METHODS Ten volunteers had one side of the palate wounded. Five days later, biopsies were harvested from both wounded (healing gingiva) and contra-lateral site (normal gingiva). Tissue samples were processed for gene expression (RNA-Seq, real-time PCR) and immunohistochemistry. Gene set enrichment/pathway analysis was also performed. RESULTS Seven hundred genes were significantly differentially expressed in healing gingiva. Among genes with >twofold change (FC) in expression, 399 genes were up-regulated and 88 down-regulated, several not previously reported expressed in gingiva. Most increased in expression (≥30-FC) were MMP1, CCL18, SPP1, MUC21, CTHRC1, MMP10, and SERPINE1; most decreased (≥7-FC) were COCH, SIAH3, MT4, IGFL3, KY, and SYT16. Real-time PCR confirmed significantly changed mRNA levels for selective genes tested. Gene set enrichment analysis revealed several significantly enriched biological pathways. Immunohistochemistry confirmed protein expression of MUC21, CTHRC1, CTGF, and SYT16 in normal and healing gingiva. CONCLUSIONS This first comprehensive analysis of the human gingival transcriptome during surgical wound healing offers novel insights into the participating molecular and biological mechanisms. The present results could serve as basis for future investigations into gingival wound healing following surgical, traumatic, or other type of injury.
Collapse
Affiliation(s)
- Yun Wang
- Division of Periodontology, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Dimitris N Tatakis
- Division of Periodontology, College of Dentistry, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
90
|
Moore AL, Marshall CD, Longaker MT. Minimizing Skin Scarring through Biomaterial Design. J Funct Biomater 2017; 8:jfb8010003. [PMID: 28117733 PMCID: PMC5371876 DOI: 10.3390/jfb8010003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/03/2017] [Accepted: 01/16/2017] [Indexed: 12/14/2022] Open
Abstract
Wound healing continues to be a major burden to patients, though research in the field has expanded significantly. Due to an aging population and increasing comorbid conditions, the cost of chronic wounds is expected to increase for patients and the U.S. healthcare system alike. With this knowledge, the number of engineered products to facilitate wound healing has also increased dramatically, with some already in clinical use. In this review, the major biomaterials used to facilitate skin wound healing will be examined, with particular attention allocated to the science behind their development. Experimental therapies will also be evaluated.
Collapse
Affiliation(s)
- Alessandra L Moore
- Division of General and Gastrointestinal Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA.
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Clement D Marshall
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Michael T Longaker
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
91
|
Rahimnejad M, Derakhshanfar S, Zhong W. Biomaterials and tissue engineering for scar management in wound care. BURNS & TRAUMA 2017; 5:4. [PMID: 28127573 PMCID: PMC5251275 DOI: 10.1186/s41038-017-0069-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 01/12/2017] [Indexed: 04/24/2023]
Abstract
Scars are a natural and unavoidable result from most wound repair procedures and the body's physiological healing response. However, they scars can cause considerable functional impairment and emotional and social distress. There are different forms of treatments that have been adopted to manage or eliminate scar formation. This review covers the latest research in the past decade on using either natural agents or synthetic biomaterials in treatments for scar reduction.
Collapse
Affiliation(s)
| | | | - Wen Zhong
- University of Manitoba, Winnipeg, MB Canada
| |
Collapse
|
92
|
Nagaraja S, Chen L, Zhou J, Zhao Y, Fine D, DiPietro LA, Reifman J, Mitrophanov AY. Predictive Analysis of Mechanistic Triggers and Mitigation Strategies for Pathological Scarring in Skin Wounds. THE JOURNAL OF IMMUNOLOGY 2016; 198:832-841. [DOI: 10.4049/jimmunol.1601273] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/15/2016] [Indexed: 12/17/2022]
|
93
|
Lin SL, Wu SL, Tsai CC, Ko SY, Chiang WF, Yang JW. The Use of Solid-Phase Concentrated Growth Factors for Surgical Defects in the Treatment of Dysplastic Lesions of the Oral Mucosa. J Oral Maxillofac Surg 2016; 74:2549-2556. [DOI: 10.1016/j.joms.2016.06.183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/23/2016] [Accepted: 06/23/2016] [Indexed: 10/21/2022]
|
94
|
Pourgonabadi S, Müller HD, Mendes JR, Gruber R. Saliva initiates the formation of pro-inflammatory macrophages in vitro. Arch Oral Biol 2016; 73:295-301. [PMID: 27825074 DOI: 10.1016/j.archoralbio.2016.10.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/26/2016] [Accepted: 10/14/2016] [Indexed: 01/12/2023]
Abstract
OBJECTIVES Saliva can support oral wound healing, a process that requires a temporary inflammatory reaction. We have reported previously that saliva provokes a strong inflammatory response in oral fibroblasts. Bone marrow cells also give rise to macrophages, a heterogeneous subset of cell population involved in wound healing. Lipopolysaccharide (LPS) and interleukin 4 (IL-4) induce activation of pro-(M1), and anti-(M2) inflammatory macrophages, respectively. Yet, the impact of saliva on programming bone marrow cells into either M1 or M2 macrophages remains unclear . DESIGN Herein, we examined whether sterile saliva affects the in vitro process of macrophage polarization based on murine bone marrow cultures and RAW264.7 mouse macrophages. RESULTS We report that sterile saliva, similar to lipopolysaccharides, provoked a robust activation of the M1 phenotype which is characterized by a strong increase of the respective genes IL-12 and IL-6, based on a real-time gene expression analysis, and for IL-6 with immunoassay. Arginase-1 and Ym1, both genes characteristic for the M2 phenotype, were not considerably modulated by saliva. Inhibition of TLR4 signaling with TAK-242, blocking NFκB signaling with Bay 11-7085, but also autoclaving saliva greatly reduced the development of the M1 phenotype. CONCLUSION These data suggest that saliva activates the TLR4 dependent polarization into pro-inflammatory M1 macrophages in vitro.
Collapse
Affiliation(s)
- Solmaz Pourgonabadi
- Department of Oral Biology, Dental School, Medical University of Vienna, Austria
| | - Heinz-Dieter Müller
- Department of Oral Biology, Dental School, Medical University of Vienna, Austria; Department of Preventive, Restorative and Pediatric Dentistry, School of Dental Medicine, University of Bern, Switzerland
| | - João Rui Mendes
- Department of Oral Biology, Dental School, Medical University of Vienna, Austria
| | - Reinhard Gruber
- Department of Oral Biology, Dental School, Medical University of Vienna, Austria; Department of Preventive, Restorative and Pediatric Dentistry, School of Dental Medicine, University of Bern, Switzerland; Austrian Cluster for Tissue Regeneration, Austria.
| |
Collapse
|
95
|
Pritchard MT, McCracken JM. Identifying Novel Targets for Treatment of Liver Fibrosis: What Can We Learn from Injured Tissues which Heal Without a Scar? Curr Drug Targets 2016; 16:1332-46. [PMID: 26302807 DOI: 10.2174/1389450116666150825111439] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 08/08/2015] [Indexed: 02/07/2023]
Abstract
The liver is unique in that it is able to regenerate. This regeneration occurs without formation of a scar in the case of non-iterative hepatic injury. However, when the liver is exposed to chronic liver injury, the purely regenerative process fails and excessive extracellular matrix proteins are deposited in place of normal liver parenchyma. While much has been discovered in the past three decades, insights into fibrotic mechanisms have not yet lead to effective therapies; liver transplant remains the only cure for advanced liver disease. In an effort to broaden the collection of possible therapeutic targets, this review will compare and contrast the liver wound healing response to that found in two types of wound healing: scarless wound healing of fetal skin and oral mucosa and scar-forming wound healing found in adult skin. This review will examine wound healing in the liver and the skin in relation to the role of humoral and cellular factors, as well as the extracellular matrix, in this process. While several therapeutic targets are similar between fibrotic liver and adult skin wound healing, others are unique and represent novel areas for hepatic anti-fibrotic research. In particular, investigations into the role of hyaluronan in liver fibrosis and fibrosis resolution are warranted.
Collapse
Affiliation(s)
- Michele T Pritchard
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66161, USA.
| | | |
Collapse
|
96
|
Tomasi C, Tessarolo F, Caola I, Piccoli F, Wennström JL, Nollo G, Berglundh T. Early healing of peri-implant mucosa in man. J Clin Periodontol 2016; 43:816-24. [PMID: 27329966 DOI: 10.1111/jcpe.12591] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2016] [Indexed: 12/24/2022]
Abstract
AIM To analyse (i) cellular and vascular densities in the connective tissue interface portion of the peri-implant mucosa and (ii) tissue interactions with the titanium surface during early stages of healing. MATERIALS AND METHODS Circumferential biopsies of peri-implant soft tissues were retrieved together with custom-made abutments at 27 implants in 21 patients after 2, 4, 6, 8 and 12 weeks of healing. Following fixation, the peri-implant soft tissue was separated from the abutments, divided into four units and embedded in paraffin. Sections were produced and prepared for immunohistochemical analysis. The abutments were examined by SEM. RESULTS T and B cells occurred in clusters with a decreasing cell density from 4 to 8 weeks of healing in the connective tissue lateral of the abutment. Macrophages were evenly distributed in the connective tissue along the abutment/tissue interface, while polymorphonuclear (PMN) cells were confined to the tissue portion lateral to the junctional epithelium. Vascular structures showed a decrease in density from 2 to 8 weeks of healing. SEM analyses of the abutments revealed an increased presence of tissue remnants attached to the surface with increasing healing time. A biofilm was consistently observed in a supra-mucosal position, apical of which a "clear zone" occurred that separated the tissue remnants and the biofilm. CONCLUSION Onset and resolution of inflammation together with increasing tissue attachment to the implant characterize healing of peri-implant mucosa.
Collapse
Affiliation(s)
- Cristiano Tomasi
- Department of Periodontology, Institute of Odontology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | - Francesco Tessarolo
- Department of Industrial Engineering, University of Trento, Trento, Italy.,Healthcare Research and Innovation Program (IRCS), Bruno Kessler Foundation, Trento, Italy
| | - Iole Caola
- Section of Electron Microscopy, Azienda Provinciale per i Servizi Sanitari di Trento, Trento, Italy
| | - Federico Piccoli
- Section of Electron Microscopy, Azienda Provinciale per i Servizi Sanitari di Trento, Trento, Italy
| | - Jan L Wennström
- Department of Periodontology, Institute of Odontology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Giandomenico Nollo
- Department of Industrial Engineering, University of Trento, Trento, Italy.,Healthcare Research and Innovation Program (IRCS), Bruno Kessler Foundation, Trento, Italy
| | - Tord Berglundh
- Department of Periodontology, Institute of Odontology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
97
|
Cousins FL, Kirkwood PM, Murray AA, Collins F, Gibson DA, Saunders PTK. Androgens regulate scarless repair of the endometrial “wound” in a mouse model of menstruation. FASEB J 2016; 30:2802-11. [DOI: 10.1096/fj.201600078r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/12/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Fiona L. Cousins
- Medical Research Council (MRC) Centre for Inflammation ResearchThe University of Edinburgh, Queen's Medical Research InstituteEdinburghUnited Kingdom
| | - Phoebe M. Kirkwood
- Medical Research Council (MRC) Centre for Inflammation ResearchThe University of Edinburgh, Queen's Medical Research InstituteEdinburghUnited Kingdom
| | - Alison A. Murray
- MRC Centre for Reproductive HealthThe University of Edinburgh, Queen's Medical Research InstituteEdinburghUnited Kingdom
| | - Frances Collins
- Medical Research Council (MRC) Centre for Inflammation ResearchThe University of Edinburgh, Queen's Medical Research InstituteEdinburghUnited Kingdom
| | - Douglas A. Gibson
- Medical Research Council (MRC) Centre for Inflammation ResearchThe University of Edinburgh, Queen's Medical Research InstituteEdinburghUnited Kingdom
| | - Philippa T. K. Saunders
- Medical Research Council (MRC) Centre for Inflammation ResearchThe University of Edinburgh, Queen's Medical Research InstituteEdinburghUnited Kingdom
| |
Collapse
|
98
|
Morand DN, Davideau JL, Clauss F, Jessel N, Tenenbaum H, Huck O. Cytokines during periodontal wound healing: potential application for new therapeutic approach. Oral Dis 2016; 23:300-311. [PMID: 26945691 DOI: 10.1111/odi.12469] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/12/2016] [Accepted: 03/01/2016] [Indexed: 12/15/2022]
Abstract
Regeneration of periodontal tissues is one of the main goals of periodontal therapy. However, current treatment, including surgical approach, use of membrane to allow maturation of all periodontal tissues, or use of enamel matrix derivatives, presents limitations in their indications and outcomes leading to the development of new tissue engineering strategies. Several cytokines are considered as key molecules during periodontal destruction process. However, their role during each phase of periodontal wound healing remains unclear. Control and modulation of the inflammatory response and especially, release of cytokines or activation/inhibition in a time- and spatial-controlled manner may be a potential perspective for periodontal tissue engineering. The aim of this review was to summarize the specific role of several cytokines during periodontal wound healing and the potential therapeutic interest of inflammatory modulation for periodontal regeneration especially related to the expression sequence of cytokines.
Collapse
Affiliation(s)
- D N Morand
- INSERM (French National Institute of Health and Medical Research), UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine Laboratory, Faculté de Médecine de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.,Department of periodontology, Dental Faculty, University of Strasbourg, Strasbourg, France
| | - J-L Davideau
- INSERM (French National Institute of Health and Medical Research), UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine Laboratory, Faculté de Médecine de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.,Department of periodontology, Dental Faculty, University of Strasbourg, Strasbourg, France
| | - F Clauss
- INSERM (French National Institute of Health and Medical Research), UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine Laboratory, Faculté de Médecine de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.,Department of periodontology, Dental Faculty, University of Strasbourg, Strasbourg, France
| | - N Jessel
- INSERM (French National Institute of Health and Medical Research), UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine Laboratory, Faculté de Médecine de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - H Tenenbaum
- INSERM (French National Institute of Health and Medical Research), UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine Laboratory, Faculté de Médecine de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.,Department of periodontology, Dental Faculty, University of Strasbourg, Strasbourg, France
| | - O Huck
- INSERM (French National Institute of Health and Medical Research), UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine Laboratory, Faculté de Médecine de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.,Department of periodontology, Dental Faculty, University of Strasbourg, Strasbourg, France
| |
Collapse
|
99
|
Zhao Y, Bao L, Chan LS, DiPietro LA, Chen L. Aberrant Wound Healing in an Epidermal Interleukin-4 Transgenic Mouse Model of Atopic Dermatitis. PLoS One 2016; 11:e0146451. [PMID: 26752054 PMCID: PMC4709197 DOI: 10.1371/journal.pone.0146451] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/17/2015] [Indexed: 01/13/2023] Open
Abstract
Wound healing in a pre-existing Th2-dominated skin milieu was assessed by using an epidermal specific interleukin-4 (IL-4) transgenic (Tg) mouse model, which develops a pruritic inflammatory skin condition resembling human atopic dermatitis. Our results demonstrated that IL-4 Tg mice had delayed wound closure and re-epithelialization even though these mice exhibited higher degrees of epithelial cell proliferation. Wounds in IL-4 Tg mice also showed a marked enhancement in expression of inflammatory cytokines/chemokines, elevated infiltration of inflammatory cells including neutrophils, macrophages, CD3+ lymphocytes, and epidermal dendritic T lymphocytes. In addition, these mice exhibited a significantly higher level of angiogenesis as compared to wild type mice. Furthermore, wounds in IL-4 Tg mice presented with larger amounts of granulation tissue, but had less expression and deposition of collagen. Taken together, an inflamed skin condition induced by IL-4 has a pronounced negative influence on the healing process. Understanding more about the pathogenesis of wound healing in a Th2- dominated environment may help investigators explore new potential therapeutic strategies.
Collapse
Affiliation(s)
- Yan Zhao
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Lei Bao
- Departments of Dermatology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Lawrence S. Chan
- Departments of Dermatology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Departments of Immunology and Microbiology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Medicine Service, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, United States of America
| | - Luisa A. DiPietro
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Lin Chen
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
100
|
Walmsley GG, Maan ZN, Hu MS, Atashroo DA, Whittam AJ, Duscher D, Tevlin R, Marecic O, Lorenz HP, Gurtner GC, Longaker MT. Murine Dermal Fibroblast Isolation by FACS. J Vis Exp 2016. [PMID: 26780559 DOI: 10.3791/53430] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Fibroblasts are the principle cell type responsible for secreting extracellular matrix and are a critical component of many organs and tissues. Fibroblast physiology and pathology underlie a spectrum of clinical entities, including fibroses in multiple organs, hypertrophic scarring following burns, loss of cardiac function following ischemia, and the formation of cancer stroma. However, fibroblasts remain a poorly characterized type of cell, largely due to their inherent heterogeneity. Existing methods for the isolation of fibroblasts require time in cell culture that profoundly influences cell phenotype and behavior. Consequently, many studies investigating fibroblast biology rely upon in vitro manipulation and do not accurately capture fibroblast behavior in vivo. To overcome this problem, we developed a FACS-based protocol for the isolation of fibroblasts from the dorsal skin of adult mice that does not require cell culture, thereby preserving the physiologic transcriptional and proteomic profile of each cell. Our strategy allows for exclusion of non-mesenchymal lineages via a lineage negative gate (Lin(-)) rather than a positive selection strategy to avoid pre-selection or enrichment of a subpopulation of fibroblasts expressing specific surface markers and be as inclusive as possible across this heterogeneous cell type.
Collapse
Affiliation(s)
- Graham G Walmsley
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine
| | - Zeshaan N Maan
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine
| | - Michael S Hu
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine; Department of Surgery, John A. Burns School of Medicine, University of Hawai'i
| | - David A Atashroo
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine
| | - Alexander J Whittam
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine
| | - Dominik Duscher
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine
| | - Ruth Tevlin
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine
| | - Owen Marecic
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine
| | - H Peter Lorenz
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine
| | - Geoffrey C Gurtner
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine
| | - Michael T Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine;
| |
Collapse
|