51
|
The Transcriptome and Methylome of the Developing and Aging Brain and Their Relations to Gliomas and Psychological Disorders. Cells 2022; 11:cells11030362. [PMID: 35159171 PMCID: PMC8834030 DOI: 10.3390/cells11030362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
Mutually linked expression and methylation dynamics in the brain govern genome regulation over the whole lifetime with an impact on cognition, psychological disorders, and cancer. We performed a joint study of gene expression and DNA methylation of brain tissue originating from the human prefrontal cortex of individuals across the lifespan to describe changes in cellular programs and their regulation by epigenetic mechanisms. The analysis considers previous knowledge in terms of functional gene signatures and chromatin states derived from independent studies, aging profiles of a battery of chromatin modifying enzymes, and data of gliomas and neuropsychological disorders for a holistic view on the development and aging of the brain. Expression and methylation changes from babies to elderly adults decompose into different modes associated with the serial activation of (brain) developmental, learning, metabolic and inflammatory functions, where methylation in gene promoters mostly represses transcription. Expression of genes encoding methylome modifying enzymes is very diverse reflecting complex regulations during lifetime which also associates with the marked remodeling of chromatin between permissive and restrictive states. Data of brain cancer and psychotic disorders reveal footprints of pathophysiologies related to brain development and aging. Comparison of aging brains with gliomas supports the view that glioblastoma-like and astrocytoma-like tumors exhibit higher cellular plasticity activated in the developing healthy brain while oligodendrogliomas have a more stable differentiation hierarchy more resembling the aged brain. The balance and specific shifts between volatile and stable and between more irreversible and more plastic epigenomic networks govern the development and aging of healthy and diseased brain.
Collapse
|
52
|
Lussier AA, Bodnar TS, Weinberg J. Intersection of Epigenetic and Immune Alterations: Implications for Fetal Alcohol Spectrum Disorder and Mental Health. Front Neurosci 2021; 15:788630. [PMID: 34924946 PMCID: PMC8680672 DOI: 10.3389/fnins.2021.788630] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/02/2021] [Indexed: 01/15/2023] Open
Abstract
Prenatal alcohol exposure can impact virtually all body systems, resulting in a host of structural, neurocognitive, and behavioral abnormalities. Among the adverse impacts associated with prenatal alcohol exposure are alterations in immune function, including an increased incidence of infections and alterations in immune/neuroimmune parameters that last throughout the life-course. Epigenetic patterns are also highly sensitive to prenatal alcohol exposure, with widespread alcohol-related alterations to epigenetic profiles, including changes in DNA methylation, histone modifications, and miRNA expression. Importantly, epigenetic programs are crucial for immune system development, impacting key processes such as immune cell fate, differentiation, and activation. In addition to their role in development, epigenetic mechanisms are emerging as attractive candidates for the biological embedding of environmental factors on immune function and as mediators between early-life exposures and long-term health. Here, following an overview of the impact of prenatal alcohol exposure on immune function and epigenetic patterns, we discuss the potential role for epigenetic mechanisms in reprogramming of immune function and the consequences for health and development. We highlight a range of both clinical and animal studies to provide insights into the array of immune genes impacted by alcohol-related epigenetic reprogramming. Finally, we discuss potential consequences of alcohol-related reprogramming of immune/neuroimmune functions and their effects on the increased susceptibility to mental health disorders. Overall, the collective findings from animal models and clinical studies highlight a compelling relationship between the immune system and epigenetic pathways. These findings have important implications for our understanding of the biological mechanisms underlying the long-term and multisystem effects of prenatal alcohol exposure, laying the groundwork for possible novel interventions and therapeutic strategies to treat individuals prenatally exposed to alcohol.
Collapse
Affiliation(s)
- Alexandre A Lussier
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States.,Department of Psychiatry, Harvard Medical School, Boston, MA, United States.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Tamara S Bodnar
- Department of Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Joanne Weinberg
- Department of Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
53
|
Santos DS, Stein DJ, Medeiros HR, Dos Santos Pereira F, de Macedo IC, Fregni F, Caumo W, Torres ILS. Transcranial direct current stimulation alters anxious-like behavior and neural parameters in rats with chronic pain exposed to alcohol. J Psychiatr Res 2021; 144:369-377. [PMID: 34735841 DOI: 10.1016/j.jpsychires.2021.10.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/04/2021] [Accepted: 10/25/2021] [Indexed: 11/27/2022]
Abstract
The aim of this study was to evaluate the effects of transcranial direct current stimulation (tDCS) on anxiety-like behavior and neural parameters in rats with chronic pain exposed to alcohol. Thirty-six adult male Wistar rats were randomly assigned to control (CT), neuropathic pain (NP), NPtDCS, NP + alcohol (NPAL), or NPALtDCS groups, subjected to sciatic nerve chronic constriction injury (CCI) and exposed to alcohol (20% v/v solution, 4 g/kg) or vehicle by gavage for 15 days. Afterward, rats were treated using bimodal tDCS (0.5 mA/20 min/8 days) and tested in the open field. Rats were killed 24 h after the last behavioral assessment, and brain and spinal cord tissue samples were collected and processed for NPY immunohistochemistry, expression of Il1a and Il1b in the spinal cord, cerebellum, and hippocampus, and levels of IL-1α and IL-1β in the same brain structures and the striatum. tDCS reverted the anxiety-like behavior induced by CCI and alcohol, and the increased expression of Il1a in the spinal cord induced by alcohol, which increased the expression of Il1b in the cerebellum. In addition, tDCS modulated the hypothalamic NPY-immunoreactivity, increased the levels of IL-1α in the hippocampus (like NP and AL), and increased the expression of Il1b in the spinal cord (like AL). Thus, this study shows that tDCS changes NP and alcohol-induced anxiety-like behavior, possibly through its central modulatory effect of NPY and spinal cord expression of Il1a and Il1b, being considered a treatment option for alcohol and NP-induced anxiety symptoms.
Collapse
Affiliation(s)
- Daniela Silva Santos
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-007, Brazil; Postgraduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Dirson João Stein
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-007, Brazil; Postgraduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Helouise Richardt Medeiros
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-007, Brazil; Postgraduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fernanda Dos Santos Pereira
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-007, Brazil
| | - Isabel Cristina de Macedo
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-007, Brazil; Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Felipe Fregni
- Laboratory of Neuromodulation, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - Wolnei Caumo
- Postgraduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Iraci L S Torres
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-007, Brazil; Postgraduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
54
|
Doremus-Fitzwater TL, Deak T. Adolescent neuroimmune function and its interaction with alcohol. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 161:167-208. [PMID: 34801169 DOI: 10.1016/bs.irn.2021.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Adolescence is an evolutionarily conserved developmental period associated with behavioral change, including increased risk-taking and alcohol use. Experimentation with alcohol typically begins in adolescence and transitions to binge-like patterns of consumption. Alcohol exposure during adolescence can alter normative changes in brain structure and function. Understanding mechanisms by which ethanol impacts neurodevelopmental processes is important for preventing and ameliorating the deleterious consequences of adolescent alcohol abuse. This review focuses on the neuroimmune system as a key contributor to ethanol-induced changes in adolescent brain and behavior. After brief review of neuroimmune system development, acute and chronic effects of ethanol on adolescent neuroimmune functioning are addressed. Comparisons between stress/immunological challenges and ethanol on adolescent neuroimmunity are reviewed, as cross-sensitization is relevant during adolescence. The mechanisms by which ethanol alters neuroimmune functioning are then discussed, as they may portend development of neuropathological consequences and thus increase vulnerability to subsequent challenges and potentiate addictive behaviors.
Collapse
Affiliation(s)
- T L Doremus-Fitzwater
- Department of Psychology, Ithaca College, Ithaca, NY, United States; Developmental Exposure Alcohol Research Center (DEARC), Binghamton, NY, United States.
| | - T Deak
- Developmental Exposure Alcohol Research Center (DEARC), Binghamton, NY, United States; Binghamton University-SUNY, Binghamton, NY, United States
| |
Collapse
|
55
|
Comorbid Communicable Diseases of Substance Abuse in Thailand: A 5-Year Retrospective Study. INFECTIOUS DISEASES IN CLINICAL PRACTICE 2021. [DOI: 10.1097/ipc.0000000000001010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
56
|
Karoly HC, Skrzynski CJ, Moe EN, Bryan AD, Hutchison KE. Exploring relationships between alcohol consumption, inflammation, and brain structure in a heavy drinking sample. Alcohol Clin Exp Res 2021; 45:2256-2270. [PMID: 34523725 PMCID: PMC8642310 DOI: 10.1111/acer.14712] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/09/2021] [Accepted: 09/07/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Chronic alcohol consumption is associated with structural brain changes and increased inflammatory signaling throughout the brain and body. Increased inflammation in the brain has been associated with structural damage. Recent studies have also shown that neurofilament light polypeptide (NfL) is released into the systemic circulation following neuronal damage. Although NfL has thus been proposed as a biomarker for neurodegenerative diseases, its connection to alcohol use disorder has not been explored. For this secondary data analysis, we proposed a conceptual model linking alcohol consumption, the pro-inflammatory cytokine IL-6, brain structure, and NfL in heavy drinking participants. METHODS Of the 182 individuals enrolled in this study, 81 participants had usable data on gray matter (GM) thickness and 80 had usable data on white matter (WM) diffusivity. A subset of participants had NfL (n = 78) and IL-6 (n = 117) data. An estimate of GM thickness was extracted from middle frontal brain regions using FreeSurfer. Estimated mean WM diffusivity values were extracted from Tract Based Spatial Statistics. NfL and IL-6 were measured in blood. Regression models were used to test individual linkages in the conceptual model. Based on significant regression results, we created a simplified conceptual model, which we tested using path analysis. RESULTS In regressions, negative relationships emerged between GM and both drinks per drinking day (DPDD) (p = 0.018) and NfL (p = 0.004). A positive relationship emerged between WM diffusivity and DPDD (p = 0.033). IL-6 was not significantly associated with alcohol use, GM or WM. The final path model demonstrated adequate fit to the data and showed significant, negative associations between DPDD and middle frontal gyrus (MFG) thickness, and between MFG thickness and NfL, but the association between DPDD and NfL was not significant. CONCLUSIONS This is the first study to show that heavy drinking is associated with lower GM thickness and higher WM diffusivity and that lower GM thickness is associated with higher circulating NfL. The analyses also show that the effects of drinking do not involve the pro-inflammatory cytokine IL-6.
Collapse
Affiliation(s)
- Hollis C Karoly
- Institute for Cognitive Science, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Psychology, Colorado State University, Fort Collins, Colorado, USA
| | - Carillon J Skrzynski
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
| | - Erin N Moe
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Angela D Bryan
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
| | - Kent E Hutchison
- Institute for Cognitive Science, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
57
|
Cisneros IE, Cunningham KA. Covid-19 interface with drug misuse and substance use disorders. Neuropharmacology 2021; 198:108766. [PMID: 34454912 PMCID: PMC8388132 DOI: 10.1016/j.neuropharm.2021.108766] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/09/2021] [Accepted: 08/23/2021] [Indexed: 12/26/2022]
Abstract
The coronavirus disease 2019 (Covid-19) pandemic intensified the already catastrophic drug overdose and substance use disorder (SUD) epidemic, signaling a syndemic as social isolation, economic and mental health distress, and disrupted treatment services disproportionally impacted this vulnerable population. Along with these social and societal factors, biological factors triggered by intense stress intertwined with incumbent overactivity of the immune system and the resulting inflammatory outcomes may impact the functional status of the central nervous system (CNS). We review the literature concerning SARS-CoV2 infiltration and infection in the CNS and the prospects of synergy between stress, inflammation, and kynurenine pathway function during illness and recovery from Covid-19. Taken together, inflammation and neuroimmune signaling, a consequence of Covid-19 infection, may dysregulate critical pathways and underlie maladaptive changes in the CNS, to exacerbate the development of neuropsychiatric symptoms and in the vulnerability to develop SUD. This article is part of the special Issue on 'Vulnerabilities to Substance Abuse'.
Collapse
Affiliation(s)
- I E Cisneros
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA.
| | - K A Cunningham
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX, USA; Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
58
|
Montagud-Romero S, Miñarro J, Rodríguez-Arias M. Unravelling the Neuroinflammatory Mechanisms Underlying the Effects of Social Defeat Stress on Use of Drugs of Abuse. Curr Top Behav Neurosci 2021; 54:153-180. [PMID: 34628585 DOI: 10.1007/7854_2021_260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The immune system provides the first line of the organism's defenses, working to maintain homeostasis against external threats and respond also to internal danger signals. There is much evidence to suggest that modifications of inflammatory parameters are related to vulnerability to develop mental illnesses, such as depression, autism, schizophrenia, and substance use disorders. In addition, not only are inflammatory parameters related to these disorders, but stress also induces the activation of the immune system, as recent preclinical research demonstrates. Social stress activates the immune response in the central nervous system through a number of mechanisms; for example, by promoting microglial stimulation, modifying peripheral and brain cytokine levels, and altering the blood brain barrier, which allows monocytes to traffic into the brain. In this chapter, we will first deal with the most important short- and long-term consequences of social defeat (SD) stress on the neuroinflammatory response. SD experiences (brief episodes of social confrontations during adolescence and adulthood) induce functional modifications in the brain, which are accompanied by an increase in proinflammatory markers. Most importantly, inflammatory mechanisms play a significant role in mediating the process of adaptation in the face of adversity (resilience vs susceptibility), allowing us to understand individual differences in stress responses. Secondly, we will address the role of the immune system in the vulnerability and enhanced sensitivity to drugs of abuse after social stress. We will explore in depth the effects seen in the inflammatory system in response to social stress and how they enhance the rewarding effects of drugs such as alcohol or cocaine. To conclude, we will consider pharmacological and environmental interventions that seek to influence the inflammatory response to social stress and diminish increased drug intake, as well as the translational potential and future directions of this exciting new field of research.
Collapse
Affiliation(s)
- S Montagud-Romero
- Department of Psychology and Sociology, University of Zaragoza, Teruel, Spain
| | - J Miñarro
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - M Rodríguez-Arias
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain. .,Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain.
| |
Collapse
|
59
|
Baldari S, Manni I, Di Rocco G, Paolini F, Palermo B, Piaggio G, Toietta G. Reduction of Cell Proliferation by Acute C 2H 6O Exposure. Cancers (Basel) 2021; 13:4999. [PMID: 34638483 PMCID: PMC8508324 DOI: 10.3390/cancers13194999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/17/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022] Open
Abstract
Endogenous acetaldehyde production from the metabolism of ingested alcohol exposes hematopoietic progenitor cells to increased genotoxic risk. To develop possible therapeutic strategies to prevent or reverse alcohol abuse effects, it would be critical to determine the temporal progression of acute ethanol toxicity on progenitor cell numbers and proliferative status. We followed the variation of the cell proliferation rate in bone marrow and spleen in response to acute ethanol intoxication in the MITO-Luc mouse, in which NF-Y-dependent cell proliferation can be assessed in vivo by non-invasive bioluminescent imaging. One week after ethanol administration, bioluminescent signals in bone marrow and spleen decreased below the level corresponding to physiological proliferation, and they progressively resumed to pre-treatment values in approximately 4 weeks. Boosting acetaldehyde catabolism by administration of an aldehyde dehydrogenase activity activator or administration of polyphenols with antioxidant activity partially restored bone marrow cells' physiological proliferation. These results indicate that in this mouse model, bioluminescent alteration reflects the reduction of the physiological proliferation rate of bone marrow progenitor cells due to the toxic effect of aldehydes generated by alcohol oxidation. In summary, this study presents a novel view of the impact of acute alcohol intake on bone marrow cell proliferation in vivo.
Collapse
Affiliation(s)
- Silvia Baldari
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (S.B.); (F.P.); (B.P.)
| | - Isabella Manni
- Stabilimento Allevatore Fornitore Utilizzatore (SAFU), IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (I.M.); (G.P.)
| | - Giuliana Di Rocco
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Francesca Paolini
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (S.B.); (F.P.); (B.P.)
| | - Belinda Palermo
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (S.B.); (F.P.); (B.P.)
| | - Giulia Piaggio
- Stabilimento Allevatore Fornitore Utilizzatore (SAFU), IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (I.M.); (G.P.)
| | - Gabriele Toietta
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (S.B.); (F.P.); (B.P.)
| |
Collapse
|
60
|
Dietary Valine Ameliorated Gut Health and Accelerated the Development of Nonalcoholic Fatty Liver Disease of Laying Hens. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4704771. [PMID: 34484560 PMCID: PMC8410442 DOI: 10.1155/2021/4704771] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/21/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022]
Abstract
Valine is an important essential amino acid of laying hens. Dietary supplemented with BCAAs ameliorated gut microbiota, whereas elevated blood levels of BCAAs are positively associated with obesity, insulin resistance, and diabetes in both humans and rodents. General controlled nonrepressed (GCN2) kinase plays a crucial role in regulating intestinal inflammation and hepatic fatty acid homeostasis during amino acids deficiency, while GCN2 deficient results in enhanced intestinal inflammation and developed hepatic steatosis. However, how long-term dietary valine impacts gut health and the development of nonalcoholic fatty liver disease (NAFLD) remains unknown. Hence, in the present study, we elucidated the effects of dietary valine on intestinal barrier function, microbial homeostasis, and the development of NAFLD. A total of 960 healthy 33-weeks-old laying hens were randomly divided into five experimental groups and fed with valine at the following different levels in a feeding trial that lasted 8 weeks: 0.59, 0.64, 0.69, 0.74, and 0.79%, respectively. After 8 weeks of treatment, related tissues and cecal contents were obtained for further analysis. The results showed that diet supplemented with valine ameliorated gut health by improving intestinal villus morphology, enhancing intestinal barrier, decreasing cecum pathogenic bacteria abundances such as Fusobacteriota and Deferribacterota, and inhibiting inflammatory response mediated by GCN2. However, long-term intake of high levels of dietary valine (0.74 and 0.79%) accelerated the development of NAFLD of laying hens by promoting lipogenesis and inhibiting fatty acid oxidation mediated by GCN2-eIF2α-ATF4. Furthermore, NAFLD induced by high levels of dietary valine (0.74 and 0.79%) resulted in strengthening oxidative stress, ER stress, and inflammatory response. Our results revealed that high levels of valine are a key regulator of gut health and the adverse metabolic response to NAFLD and suggested reducing dietary valine as a new approach to preventing NAFLD of laying hens.
Collapse
|
61
|
Rossetto IMU, Cagnon VHA, Kido LA, Lizarte Neto FS, Tirapelli LF, Tirapelli DPDC, de Almeida Chuffa LG, Martinez FE, Martinez M. Caffeine consumption attenuates ethanol-induced inflammation through the regulation of adenosinergic receptors in the UChB rats cerebellum. Toxicol Res (Camb) 2021; 10:835-849. [PMID: 34484675 DOI: 10.1093/toxres/tfab067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/27/2021] [Accepted: 06/25/2021] [Indexed: 12/20/2022] Open
Abstract
Caffeine consumption is able to interfere in cellular processes related to inflammatory mechanisms by acting through the adenosinergic system. This study aimed to recognize alterations related to adenosinergic system and inflammatory process in the cerebellum of University of Chile Bibulous (UChB) rats after the consumption of ethanol and caffeine. UChB and Wistar rats, males at 5 months old, were divided into the groups (n = 15/group): (i) Control (Wistar rats receiving water); (ii) Ethanol group (UChB rats receiving ethanol solution at 10%) and (iii) Ethanol+caffeine group (UChB rats receiving ethanol solution at 10% added of 3 g/L of caffeine). The cerebellar tissue was collected and processed for immunohistochemistry, Reverse transcription polymerase chain reaction (RT-PCR) and western blotting techniques for the adenosinergic receptors A1 and A2a and inflammatory markers, including Nuclear factor kappa B (NFkB), TLR4, TLR2, MyD88, TNF-α, COX-2, iNOS and microglial marker Iba-1. Results showed ethanol and caffeine consumption differentially altering the immunolocalization of adenosinergic receptors and inflammatory markers in the cerebellar tissue. The A2a receptor was overexpressed in the Ethanol group and was evident in the glial cells. The Ethanol group had increased protein levels for NFκB and TLR4, expressively in Bergmann glia and Purkinje cells. Caffeine reduced the expression of these markers to levels similar to those found in the Control group. The A1 gene was upregulated the Ethanol group, but not its protein levels, suggesting post-transcriptional interference. In conclusion, caffeine seems to attenuate ethanol-induced inflammation in the cerebellum of UChB rats through the A1 and A2a modulation, playing a neuroprotective role in the chronic context of ethanol consumption.
Collapse
Affiliation(s)
- Isabela Maria Urra Rossetto
- Department of Structural and Functional Biology, University of Campinas (UNICAMP), 255 Monteiro Lobato St, Campinas, SP 13083-862, Brazil
| | - Valéria Helena Alves Cagnon
- Department of Structural and Functional Biology, University of Campinas (UNICAMP), 255 Monteiro Lobato St, Campinas, SP 13083-862, Brazil
| | - Larissa Akemi Kido
- Department of Food and Nutrition, University of Campinas (UNICAMP), 80 Monteiro Lobato St, Campinas, SP 13083-862, Brazil
| | - Fermino Sanches Lizarte Neto
- Department of Surgery and Anatomy, University of São Paulo (USP), 3900 Bandeirantes Ave, Ribeirão Preto, SP 14049-900, Brazil
| | - Luís Fernando Tirapelli
- Department of Surgery and Anatomy, University of São Paulo (USP), 3900 Bandeirantes Ave, Ribeirão Preto, SP 14049-900, Brazil
| | | | - Luiz Gustavo de Almeida Chuffa
- Department of Structural and Functional Biology, State University of São Paulo (UNESP), 250 Prof. Dr. Antônio Celso Wagner Zanin St, Botucatu, SP 18618-689, Brazil
| | - Francisco Eduardo Martinez
- Department of Structural and Functional Biology, State University of São Paulo (UNESP), 250 Prof. Dr. Antônio Celso Wagner Zanin St, Botucatu, SP 18618-689, Brazil
| | - Marcelo Martinez
- Department of Morphology and Pathology, Federal University of São Carlos (UFSCar), 13571 Biblioteca Comunitária Ave, São Carlos, SP 13565-905, Brazil
| |
Collapse
|
62
|
Choi W, Kang HJ, Kim JW, Kim HK, Kang HC, Lee JY, Kim SW, Stewart R, Kim JM. Predictive values of tumor necrosis factor-α for depression treatment outcomes: effect modification by hazardous alcohol consumption. Transl Psychiatry 2021; 11:450. [PMID: 34475376 PMCID: PMC8413287 DOI: 10.1038/s41398-021-01581-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/04/2021] [Accepted: 08/19/2021] [Indexed: 12/01/2022] Open
Abstract
Inflammation is potentially associated with poor antidepressant treatment outcomes. Pro-inflammatory cytokines are influenced by hazardous alcohol consumption. The aim of the present study was to investigate the effects of the serum tumor necrosis factor-α (sTNF-α) level on antidepressant treatment outcomes in terms of the 12-week and 12-month remission rates and 24-month relapse rate, and to investigate the potential modifying effects of alcohol consumption on these associations in patients with depressive disorders. At baseline, sTNF-α was measured and alcohol-related data from the Alcohol Use Disorders Identification Test (AUDIT) and consumption history were collected from 1094 patients. Patients received stepwise antidepressant treatment. Remission at 12 weeks and 12 months was defined as a Hamilton Depression Rating Scale (HAMD) score ≤ 7. Relapse (HAMD score ≥ 14) was identified until 24 months for those who had initially responded (HAMD score <14) at 12 weeks. Higher sTNF-α levels were found to have significant effects on the 12-week and 12-month non-remission and 24-month relapse rates. These effects were more prominent in those with low levels of alcohol consumption (AUDIT score ≤ 8 or no current alcohol consumption); the effects were not significant in those exhibiting hazardous alcohol consumption (AUDIT score > 8 or current drinking). Significant interactions were found for the 12-month non-remission and relapse rates, although the interaction was not statistically significant for 12-week remission. In conclusion, baseline sTNF-α levels may be a useful predictor for both short- and long-term antidepressant treatment outcomes, and the consideration of alcohol consumption status may increase predictability, in particular for long-term outcomes.
Collapse
Affiliation(s)
- Wonsuk Choi
- grid.411602.00000 0004 0647 9534Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - Hee-Ju Kang
- grid.14005.300000 0001 0356 9399Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Ju-Wan Kim
- grid.14005.300000 0001 0356 9399Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Hee Kyung Kim
- grid.411602.00000 0004 0647 9534Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - Ho-Cheol Kang
- grid.411602.00000 0004 0647 9534Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - Ju-Yeon Lee
- grid.14005.300000 0001 0356 9399Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Sung-Wan Kim
- grid.14005.300000 0001 0356 9399Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Robert Stewart
- grid.13097.3c0000 0001 2322 6764Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK ,grid.37640.360000 0000 9439 0839South London and Maudsley NHS Foundation Trust, London, UK
| | - Jae-Min Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea.
| |
Collapse
|
63
|
Chung DD, Pinson MR, Bhenderu LS, Lai MS, Patel RA, Miranda RC. Toxic and Teratogenic Effects of Prenatal Alcohol Exposure on Fetal Development, Adolescence, and Adulthood. Int J Mol Sci 2021; 22:ijms22168785. [PMID: 34445488 PMCID: PMC8395909 DOI: 10.3390/ijms22168785] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/08/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Prenatal alcohol exposure (PAE) can have immediate and long-lasting toxic and teratogenic effects on an individual’s development and health. As a toxicant, alcohol can lead to a variety of physical and neurological anomalies in the fetus that can lead to behavioral and other impairments which may last a lifetime. Recent studies have focused on identifying mechanisms that mediate the immediate teratogenic effects of alcohol on fetal development and mechanisms that facilitate the persistent toxic effects of alcohol on health and predisposition to disease later in life. This review focuses on the contribution of epigenetic modifications and intercellular transporters like extracellular vesicles to the toxicity of PAE and to immediate and long-term consequences on an individual’s health and risk of disease.
Collapse
|
64
|
Lanquetin A, Leclercq S, de Timary P, Segobin S, Naveau M, Coulbault L, Maccioni P, Lorrai I, Colombo G, Vivien D, Rubio M, Pitel AL. Role of inflammation in alcohol-related brain abnormalities: a translational study. Brain Commun 2021; 3:fcab154. [PMID: 34396111 PMCID: PMC8361421 DOI: 10.1093/braincomms/fcab154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/30/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022] Open
Abstract
Brain abnormalities observed in alcohol use disorder are highly heterogeneous in nature and severity, possibly because chronic alcohol consumption also affects peripheral organs leading to comorbidities that can result in exacerbated brain alterations. Despite numerous studies focussing on the effects of alcohol on the brain or liver, few studies have simultaneously examined liver function and brain damage in alcohol use disorder, and even fewer investigated the relationship between them except in hepatic encephalopathy. And yet, liver dysfunction may be a risk factor for the development of alcohol-related neuropsychological deficits and brain damage well before the development of liver cirrhosis, and potentially through inflammatory responses. The use of animal models enables a better understanding of the pathophysiological mechanisms underlying liver–brain relationships in alcohol use disorder, and more particularly of the inflammatory response at the tissue, cerebral and hepatic levels. The objective of this translational study was to investigate, both in alcohol use disorder patients and in a validated animal model of alcohol use disorder, the links between peripheral inflammation, liver damage and brain alterations. To do this, we conducted an in vivo neuroimaging examination and biological measures to evaluate brain volumes, liver fibrosis and peripheral cytokines in alcohol use disorder patients. In selectively bred Sardinian alcohol-preferring rats, we carried out ex vivo neuroimaging examination and immunohistochemistry to evaluate brain and liver inflammatory responses after chronic (50 consecutive weeks) alcohol drinking. In recently abstinent and non-cirrhotic alcohol use disorder patients, the score of liver fibrosis positively correlated with subcortical regions volumes (especially in right and left putamen) and level of circulating proinflammatory cytokines. In Sardinian alcohol-preferring rats, we found macrostructural brain damage and microstructural white matter abnormalities similar to those found in alcohol use disorder patients. In addition, in agreement with the results of peripheral inflammation observed in the patients, we revealed, in Sardinian alcohol-preferring rats, inflammatory responses in the brain and liver were caused by chronic alcohol consumption. Since the liver is the main source of cytokines in the human body, these results suggest a relationship between liver dysfunction and brain damage in alcohol use disorder patients, even in the absence of major liver disease. These findings encourage considering new therapeutic strategies aiming at treating peripheral organs to limit alcohol-related brain damage.
Collapse
Affiliation(s)
- Anastasia Lanquetin
- Normandie Univ, UNICAEN, INSERM, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000 Caen, France
| | - Sophie Leclercq
- Institute of Neuroscience and Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Philippe de Timary
- Institute of Neuroscience and Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Shailendra Segobin
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000 Caen, France
| | - Mikaël Naveau
- Normandie Univ UNICAEN, CNRS, UMS 3408, GIP Cyceron, Caen, France
| | - Laurent Coulbault
- Caen University Hospital, Biochemistry Department, Normandie University, UNICAEN, EA 4650, Caen, France
| | - Paola Maccioni
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, 09042 Monserrato, CA, Italy
| | - Irene Lorrai
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, 09042 Monserrato, CA, Italy
| | - Giancarlo Colombo
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, 09042 Monserrato, CA, Italy
| | - Denis Vivien
- Normandie Univ, UNICAEN, INSERM, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000 Caen, France.,Department of Clinical Research, CHU Côte de Nacre, Caen 14000, France
| | - Marina Rubio
- Normandie Univ, UNICAEN, INSERM, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000 Caen, France
| | - Anne-Lise Pitel
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000 Caen, France.,Institut Universitaire de France (IUF), Paris 75231, France
| |
Collapse
|
65
|
Klyne DM, Barbe MF, James G, Hodges PW. Does the Interaction between Local and Systemic Inflammation Provide a Link from Psychology and Lifestyle to Tissue Health in Musculoskeletal Conditions? Int J Mol Sci 2021; 22:ijms22147299. [PMID: 34298917 PMCID: PMC8304860 DOI: 10.3390/ijms22147299] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 01/02/2023] Open
Abstract
Musculoskeletal conditions are known to involve biological, psychological, social and, often, lifestyle elements. However, these domains are generally considered in isolation from each other. This siloed approach is unlikely to be adequate to understand the complexity of these conditions and likely explains a major component of the disappointing effects of treatment. This paper presents a hypothesis that aims to provide a foundation to understand the interaction and integration between these domains. We propose a hypothesis that provides a plausible link between psychology and lifestyle factors with tissue level effects (such as connective tissue dysregulation/accumulation) in musculoskeletal conditions that is founded on understanding the molecular basis for interaction between systemic and local inflammation. The hypothesis provides plausible and testable links between mind and body, for which empirical evidence can be found for many aspects. We present this hypothesis from the perspective of connective tissue biology and pathology (fibrosis), the role of inflammation locally (tissue level), and how this inflammation is shaped by systemic inflammation through bidirectional pathways, and various psychological and lifestyle factors via their influence on systemic inflammation. This hypothesis provides a foundation for new consideration of the development and refinement of personalized multidimensional treatments for individuals with musculoskeletal conditions.
Collapse
Affiliation(s)
- David M. Klyne
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane 4072, Australia; (G.J.); (P.W.H.)
- Correspondence: ; Tel.: +61-7-3365-4569
| | - Mary F. Barbe
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Greg James
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane 4072, Australia; (G.J.); (P.W.H.)
| | - Paul W. Hodges
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane 4072, Australia; (G.J.); (P.W.H.)
| |
Collapse
|
66
|
Acetaldehyde exposure underlies functional defects in monocytes induced by excessive alcohol consumption. Sci Rep 2021; 11:13690. [PMID: 34211048 PMCID: PMC8249592 DOI: 10.1038/s41598-021-93086-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/18/2021] [Indexed: 12/19/2022] Open
Abstract
Increased intestinal permeability and hepatic macrophage activation by endotoxins are involved in alcohol-induced liver injury pathogenesis. Long-term alcohol exposure conversely induces endotoxin immune tolerance; however, the precise mechanism and reversibility are unclear. Seventy-two alcohol-dependent patients with alcohol dehydrogenase-1B (ADH1B, rs1229984) and aldehyde dehydrogenase-2 (ALDH2, rs671) gene polymorphisms admitted for alcohol abstinence were enrolled. Blood and fecal samples were collected on admission and 4 weeks after alcohol cessation and were sequentially analyzed. Wild-type and ALDH2*2 transgenic mice were used to examine the effect of acetaldehyde exposure on liver immune responses. The productivity of inflammatory cytokines of peripheral CD14+ monocytes in response to LPS stimulation was significantly suppressed in alcohol dependent patients on admission relative to that in healthy controls, which was partially restored by alcohol abstinence with little impact on the gut microbiota composition. Notably, immune suppression was associated with ALDH2/ADH1B gene polymorphisms, and patients with a combination of ALDH2*1/*2 and ADH1B*2 genotypes, the most acetaldehyde-exposed group, demonstrated a deeply suppressed phenotype, suggesting a direct role of acetaldehyde. In vitro LPS and malondialdehyde-acetaldehyde adducted protein stimulation induced direct cytotoxicity on monocytes derived from healthy controls, and a second LPS stimulation suppressed the inflammatory cytokines production. Consistently, hepatic macrophages of ethanol-administered ALDH2*2 transgenic mice exhibited suppressed inflammatory cytokines production in response to LPS compared to that in wild-type mice, reinforcing the contribution of acetaldehyde to liver macrophage function. These results collectively provide new perspectives on the systemic influence of excessive alcohol consumption based on alcohol-metabolizing enzyme genetic polymorphisms.
Collapse
|
67
|
Santos DS, Medeiros LF, Stein DJ, De Macedo IC, Da Silva Rios DE, De Oliveira C, Toledo RS, Fregni F, Caumo W, Torres ILS. Bimodal transcranial direct current stimulation reduces alcohol consumption and induces long-term neurochemical changes in rats with neuropathic pain. Neurosci Lett 2021; 759:136014. [PMID: 34111512 DOI: 10.1016/j.neulet.2021.136014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/17/2021] [Accepted: 06/03/2021] [Indexed: 10/21/2022]
Abstract
This study aimed to evaluate the effects of repeated bimodal transcranial direct current stimulation (tDCS) on alcohol consumption and immunohistological and neurochemical parameters in nerve-injured rats. Forty-eight adult male Wistar rats were distributed into six groups: control, neuropathic pain (NP) + sham-tDCS, NP + alcohol + sham-tDCS, alcohol + sham-tDCS, alcohol + tDCS, and NP + alcohol + tDCS. NP is induced by chronic sciatic nerve constriction (CCI). The rats were exposed to a 10% alcohol solution by voluntary consumption for 14 days. From the 16th day after surgery, bimodal tDCS was applied for 20 min/day for 8 days. Brain structures were collected to evaluate the number of neuropeptide Y (NPY)-positive neurons, neurites, and argyrophilic grains by immunohistochemistry, and brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), interleukin (IL)-6, and IL-10 by ELISA. Nerve-injured rats showed a progressive increase in alcohol consumption compared to the non-injured rats. In addition, there was a reduction in voluntary alcohol consumption over time induced by tDCS. Alcohol exposure, chronic pain, and tDCS treatment modulated the central NPY immunoreactivity. tDCS increased the cerebellar levels of IL-6 and IL-10, and CCI and/or tDCS reduced striatal BDNF levels. The current data suggest that tDCS could be a promising non-pharmacological adjuvant to treat patients with chronic pain who use alcohol to relieve their symptoms.
Collapse
Affiliation(s)
- Daniela Silva Santos
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Postgraduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Liciane Fernandes Medeiros
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Postgraduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Postgraduate Program in Health and Human Development, Universidade La Salle, Canoas, RS, Brazil
| | - Dirson João Stein
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Postgraduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Isabel Cristina De Macedo
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Diego Evandro Da Silva Rios
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Carla De Oliveira
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Roberta Ströher Toledo
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Felipe Fregni
- Laboratoryof Neuromodulation, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - Wolnei Caumo
- Postgraduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Iraci L S Torres
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Postgraduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratoryof Neuromodulation, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard University, Boston, MA, USA.
| |
Collapse
|
68
|
Altered levels of interleukins and neurotrophic growth factors in mood disorders and suicidality: an analysis from periphery to central nervous system. Transl Psychiatry 2021; 11:341. [PMID: 34078872 PMCID: PMC8171230 DOI: 10.1038/s41398-021-01452-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 11/08/2022] Open
Abstract
Interleukins and neurotrophins levels are altered in the periphery of patients with major depression and suicidal behavior, however it is not clear if similar abnormalities occur in the central nervous system. Our objective was to examine the association of IL-6, IL-1β, BDNF, and GDNF levels between postmortem plasma, cerebrospinal fluid (CSF), and brain tissue in a heterogeneous diagnostic subject groups including normal controls, mood disorders only, mood disorders with AUD/SUD (alcohol abuse disorder, substance abuse disorder), and AUD/SUD without mood disorders. To address these questions we collected postmortem plasma (n = 29), CSF (n = 28), and brain (BA10) (n = 57) samples from individuals with mood disorder, mood disorder with AUD/SUD, AUD/SUD and normal controls. These samples were analyzed using a multiplex based luminex assay with a customized 4-plex cytokine/interleukins- IL-6, IL-1β, BDNF, and GDNF human acute phase based on xMAP technology platform. Protein levels were determined using a Luminex 200 instrument equipped with Xponent-analyzing software. We observed IL-6 (p = 2.1e-07), and GDNF (p = 0.046) were significantly correlated between brain and CSF. In addition, IL-6 (p = 0.031), were significantly correlated between brain and plasma. Overall diagnostic group analysis showed a significant difference with brain GDNF, p = 0.0106. Pairwise comparisons showed that GDNF level is-39.9 ± 12 pg/ml, p = 0.0106, was significantly higher than in the brains derived from mood disorders compared to normal controls, -23.8 ± 5.5 pg/ml, p = 0.034. Brain BDNF was higher in suicide (p = 0.0023), males compared to females (p = 0.017), and psychiatric medication treated vs. non-treated (p = 0.005) individuals. Overall, we demonstrate that blood IL-6, GDNF and BDNF could be informative peripheral biomarkers of brain biology associated with mood disorders, substance disorders, and suicide.
Collapse
|
69
|
Pairing Binge Drinking and a High-Fat Diet in Adolescence Modulates the Inflammatory Effects of Subsequent Alcohol Consumption in Mice. Int J Mol Sci 2021; 22:ijms22105279. [PMID: 34067897 PMCID: PMC8157004 DOI: 10.3390/ijms22105279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/08/2021] [Accepted: 05/15/2021] [Indexed: 12/12/2022] Open
Abstract
Alcohol binge drinking (BD) and poor nutritional habits are two frequent behaviors among many adolescents that alter gut microbiota in a pro-inflammatory direction. Dysbiotic changes in the gut microbiome are observed after alcohol and high-fat diet (HFD) consumption, even before obesity onset. In this study, we investigate the neuroinflammatory response of adolescent BD when combined with a continuous or intermittent HFD and its effects on adult ethanol consumption by using a self-administration (SA) paradigm in mice. The inflammatory biomarkers IL-6 and CX3CL1 were measured in the striatum 24 h after BD, 3 weeks later and after the ethanol (EtOH) SA. Adolescent BD increased alcohol consumption in the oral SA and caused a greater motivation to seek the substance. Likewise, mice with intermittent access to HFD exhibited higher EtOH consumption, while the opposite effect was found in mice with continuous HFD access. Biochemical analyses showed that after BD and three weeks later, striatal levels of IL-6 and CX3CL1 were increased. In addition, in saline-treated mice, CX3CL1 was increased after continuous access to HFD. After oral SA procedure, striatal IL-6 was increased only in animals exposed to BD and HFD. In addition, striatal CX3CL1 levels were increased in all BD- and HFD-exposed groups. Overall, our findings show that adolescent BD and intermittent HFD increase adult alcohol intake and point to neuroinflammation as an important mechanism modulating this interaction.
Collapse
|
70
|
Lee YR. Management of Patients with Chronic Liver Disease: The Era of the COVID-19 Pandemic. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2021. [DOI: 10.4166/kjg.2021.402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yu Rim Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|
71
|
Rambaran S, Naidoo K, Lewis L, Hassan-Moosa R, Govender D, Samsunder N, Scriba TJ, Padayatchi N, Sivro A. Effect of Inflammatory Cytokines/Chemokines on Pulmonary Tuberculosis Culture Conversion and Disease Severity in HIV-Infected and -Uninfected Individuals From South Africa. Front Immunol 2021; 12:641065. [PMID: 33868272 PMCID: PMC8047115 DOI: 10.3389/fimmu.2021.641065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/19/2021] [Indexed: 12/14/2022] Open
Abstract
Novel tuberculosis (TB) prevention and control strategies are urgently required. Utilising specimens from the Improving Retreatment Success (NCT02114684) trial we assessed the associations between inflammatory markers, measured during active TB, with treatment response and disease severity in HIV-infected and uninfected individuals. Multiplex immunoassays and ELISA were used to measure plasma expression of 24 cytokines/chemokines. Cytokines were log transformed to adjust for skewness. We conducted a nested, un-matched, case (n= 31) - control (n=101) study with cases defined as those participants who failed to sputum culture convert within 8-weeks of TB treatment initiation. Additionally, we examined the association between the measured cytokines and time to culture conversion and presence of lung cavitation using cox proportional hazards and logistic regression models, respectively. Multivariable analyses adjusted for a wide range of baseline clinical and demographic variables. IP-10 expression during active TB was associated with increased odds of sputum culture conversion by 8-weeks overall (aOR 4.255, 95% CI 1.025 – 17.544, p=0.046)) and among HIV-infected individuals (OR 10.204, 95% CI 1.247 – 83.333, p=0.030). Increased MCP-3 (aHR 1.723, 95% CI 1.040 – 2.855, p=0.035) and IL-6 (aHR 1.409, 95% CI 1.045 – 1.899, p=0.024) expression was associated with a shorter time to culture conversion in the total cohort. Higher plasma expression of IL-6 (aHR 1.783, 95% CI 1.128 – 2.820, p=0.013), IL-1RA (aHR 2.595, 95% CI 1.136 – 5.926, p=0.024), IP-10 (aHR 2.068, 95% CI 1.034 – 4.137, p=0.040) and IL-1α (aHR 2.008, 95% CI 1.053 – 3.831, p=0.035) were significantly associated with shorter time to culture conversion among HIV-infected individuals. Increased IL-6 and IL-1RA expression was significantly associated with the presence of lung cavitation during active TB in the total cohort (OR 2.543, 95% CI 1.254 – 5.160, p=0.010), (OR 4.639, 95% CI 1.203 – 21.031, p=0.047) and in HIV-infected individuals (OR 2.644, 95% CI 1.062 – 6.585, p=0.037), (OR 7.795, 95% CI 1.177 – 51.611, p=0.033) respectively. Our results indicate that inflammatory cytokines/chemokines play an important role in TB disease outcome. Importantly, the observed associations were stronger in multivariable models highlighting the impact of behavioural and clinical variables on the expression of immune markers as well as their potential effects on TB outcome.
Collapse
Affiliation(s)
- Santhuri Rambaran
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| | - Kogieleum Naidoo
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa.,MRC-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Lara Lewis
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| | - Razia Hassan-Moosa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa.,MRC-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Dhineshree Govender
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| | - Natasha Samsunder
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| | - Thomas J Scriba
- Department of Pathology, South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Nesri Padayatchi
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa.,MRC-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Aida Sivro
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa.,Department of Medical Microbiology, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
72
|
Anti-inflammatory Effects of Alcohol Are Associated with JNK-STAT3 Downregulation in an In Vitro Inflammation Model in HepG2 Cells. DISEASE MARKERS 2021; 2021:6622701. [PMID: 33791043 PMCID: PMC7997757 DOI: 10.1155/2021/6622701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/18/2021] [Accepted: 03/04/2021] [Indexed: 12/11/2022]
Abstract
Background In several preclinical and in vitro models of acute inflammation, alcohol (ethanol, EtOH) has been described as an immunomodulatory agent. Similarly, in different pathologies, clinical observations have confirmed either pro- or anti-inflammatory effects of EtOH. The liver plays an important role in immunity and alcohol metabolism; therefore, we analysed dose- and time-dependent effects of EtOH on the inflammatory response of human liver cells in an in vitro model of acute inflammation. Methods HepG2 cells were stimulated with IL-1β and subsequently exposed to EtOH in a low or high dose (85 mM, LoD or 170 mM, HiD) for 1 h (acute exposure) or 72 h (prolonged exposure). IL-6 and TNF-α release was determined by ELISA. Cell viability, adhesion of isolated neutrophils to HepG2 monolayers, their ICAM-1 expression, and the activation of stress-induced protein kinase/c-Jun N-terminal kinase (SAPK/JNK) or signal transducer and activator of transcription 3 (STAT3) were analysed. Results In this experimental design, EtOH did not markedly change the cell viability. Acute and prolonged exposure to EtOH significantly reduced dose-independent IL-1β-induced IL-6 and TNF-α release, as well as adhesion capacity to pretreated HepG2 cells. Acute exposure to EtOH significantly decreased the percentage of ICAM-1-expressing cells. IL-1β stimulation notably increased the activation of SAPK/JNK. However, low-dose EtOH exposure reduced this activation considerably, in contradiction to high-dose EtOH exposure. Acute exposure to LoD EtOH significantly diminished the IL-1β-induced STAT3 activation, whereas an acute exposure of cells to either HiD EtOH or in a prolonged setting showed no effects on STAT3 activation. Conclusion EtOH exerts anti-inflammatory potential in this in vitro model of hepatic inflammation. These effects are associated with the reduced activation of JNK/STAT3 by EtOH, particularly in the condition of acute exposure to low-dose EtOH.
Collapse
|
73
|
Salavrakos M, Leclercq S, De Timary P, Dom G. Microbiome and substances of abuse. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110113. [PMID: 32971216 DOI: 10.1016/j.pnpbp.2020.110113] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022]
Abstract
There is a growing amount of evidence showing a reciprocal relation between the gut microbiota and the brain. Substance use disorders (SUD), which are a major cause of preventable morbidity and mortality worldwide, have an influence on the gut microbiota and on the gut-brain axis. The communication between the microbiota and the brain exists through different pathways: (1) the immune response elicited by bacterial products, coupled with alterations of the intestinal barrier allowing these products to enter the bloodstream, (2) the direct and indirect effects of bacterial metabolites such as short chain fatty acids (SCFAs) or tryptophan on the brain, (3) and the hypothalamic-pituitary-adrenal (HPA) axis, whose peripheral afferents can be influenced by the microbiota, and can in turn activate microglia. Among substances of abuse, alcohol has been the subject of the greatest number of studies in this field. In some but not all patients suffering from alcohol-use-disorder (AUD), alcohol alters the composition of the gut microbiota and the permeability of the intestinal barrier, directly and through dysbiosis. It has also been well demonstrated that alcohol induces a peripheral inflammation; it is still unclear whether it induces a central inflammation, as there are contradictory results in human studies. In animal studies, it has been shown that neuroinflammation increases during alcohol withdrawal. Literature on opioids and stimulants is less numerous. Chronic morphine intake induces dysbiosis, increased intestinal permeability and a probable neuroinflammation, which could explain symptoms such as tolerance, hyperalgesia and deficit in reward behavior. Cocaine induces a dysbiosis and conversely the microbiome can modulate the behavioral response to stimulant drugs. Tobacco cessation is associated with an increase in microbiota diversity. Taken together, the findings of our narrative literature review suggest a bidirectional influence in the pathogenesis of substance use disorders.
Collapse
Affiliation(s)
- M Salavrakos
- Target Journal Progress in Neuropsychopharmacology and Biological Psychiatry, Belgium
| | - S Leclercq
- Target Journal Progress in Neuropsychopharmacology and Biological Psychiatry, Belgium
| | - P De Timary
- Target Journal Progress in Neuropsychopharmacology and Biological Psychiatry, Belgium
| | - G Dom
- Target Journal Progress in Neuropsychopharmacology and Biological Psychiatry, Belgium.
| |
Collapse
|
74
|
Marjot T, Moon AM, Cook JA, Abd-Elsalam S, Aloman C, Armstrong MJ, Pose E, Brenner EJ, Cargill T, Catana MA, Dhanasekaran R, Eshraghian A, García-Juárez I, Gill US, Jones PD, Kennedy J, Marshall A, Matthews C, Mells G, Mercer C, Perumalswami PV, Avitabile E, Qi X, Su F, Ufere NN, Wong YJ, Zheng MH, Barnes E, Barritt AS, Webb GJ. Outcomes following SARS-CoV-2 infection in patients with chronic liver disease: An international registry study. J Hepatol 2021; 74:567-577. [PMID: 33035628 PMCID: PMC7536538 DOI: 10.1016/j.jhep.2020.09.024] [Citation(s) in RCA: 383] [Impact Index Per Article: 95.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Chronic liver disease (CLD) and cirrhosis are associated with immune dysregulation, leading to concerns that affected patients may be at risk of adverse outcomes following SARS-CoV-2 infection. We aimed to determine the impact of COVID-19 on patients with pre-existing liver disease, which currently remains ill-defined. METHODS Between 25th March and 8th July 2020, data on 745 patients with CLD and SARS-CoV-2 (including 386 with and 359 without cirrhosis) were collected by 2 international registries and compared to data on non-CLD patients with SARS-CoV-2 from a UK hospital network. RESULTS Mortality was 32% in patients with cirrhosis compared to 8% in those without (p <0.001). Mortality in patients with cirrhosis increased according to Child-Pugh class (A [19%], B [35%], C [51%]) and the main cause of death was from respiratory failure (71%). After adjusting for baseline characteristics, factors associated with death in the total CLD cohort were age (odds ratio [OR] 1.02; 1.01-1.04), Child-Pugh A (OR 1.90; 1.03-3.52), B (OR 4.14; 2.4-7.65), or C (OR 9.32; 4.80-18.08) cirrhosis and alcohol-related liver disease (OR 1.79; 1.03-3.13). Compared to patients without CLD (n = 620), propensity-score-matched analysis revealed significant increases in mortality in those with Child-Pugh B (+20.0% [8.8%-31.3%]) and C (+38.1% [27.1%-49.2%]) cirrhosis. Acute hepatic decompensation occurred in 46% of patients with cirrhosis, of whom 21% had no respiratory symptoms. Half of those with hepatic decompensation had acute-on-chronic liver failure. CONCLUSIONS In the largest such cohort to date, we demonstrate that baseline liver disease stage and alcohol-related liver disease are independent risk factors for death from COVID-19. These data have important implications for the risk stratification of patients with CLD across the globe during the COVID-19 pandemic. LAY SUMMARY This international registry study demonstrates that patients with cirrhosis are at increased risk of death from COVID-19. Mortality from COVID-19 was particularly high among patients with more advanced cirrhosis and those with alcohol-related liver disease.
Collapse
Affiliation(s)
- Thomas Marjot
- Oxford Liver Unit, Translational Gastroenterology Unit, Oxford University Hospitals NHS Foundation Trust, University of Oxford, Oxford, UK.
| | - Andrew M Moon
- Division of Gastroenterology and Hepatology, University of North Carolina, North Carolina, USA
| | - Jonathan A Cook
- Centre for Statistics in Medicine, University of Oxford, Oxford, UK
| | - Sherief Abd-Elsalam
- Tropical Medicine and Infectious diseases Department, Tanta University, Tanta, Egypt
| | - Costica Aloman
- Department of Medicine, Section of Hepatology, Rush University Medical Center, Chicago, Illinois, USA
| | | | - Elisa Pose
- Liver Unit, Hospital Clínic, Barcelona, Spain Institut d'Investigacions Biomèdiques, August Pi i Sunyer, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain
| | - Erica J Brenner
- Division of Pediatric Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Tamsin Cargill
- Oxford Liver Unit, Translational Gastroenterology Unit, Oxford University Hospitals NHS Foundation Trust, University of Oxford, Oxford, UK
| | - Maria-Andreea Catana
- Division of Gastroenterology/Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Renumathy Dhanasekaran
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Palo Alto, California, USA
| | - Ahad Eshraghian
- Shiraz Transplant Center, Abu-Ali Sina Hospital, Shiraz, Iran
| | - Ignacio García-Juárez
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Upkar S Gill
- Barts Liver Centre, Barts Health NHS Trust & Barts & The London School of Medicine & Dentistry, QMUL, London, UK
| | - Patricia D Jones
- Division of Digestive Health and Liver Diseases, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - James Kennedy
- Oxford Liver Unit, Translational Gastroenterology Unit, Oxford University Hospitals NHS Foundation Trust, University of Oxford, Oxford, UK
| | | | - Charmaine Matthews
- Department of Gastroenterology and Hepatology, Royal Liverpool Hospital, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - George Mells
- Cambridge Liver Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK
| | - Carolyn Mercer
- Oxford Liver Unit, Translational Gastroenterology Unit, Oxford University Hospitals NHS Foundation Trust, University of Oxford, Oxford, UK
| | - Ponni V Perumalswami
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Emma Avitabile
- Liver Unit, Hospital Clínic, Barcelona, Spain Institut d'Investigacions Biomèdiques, August Pi i Sunyer, Barcelona, Spain
| | - Xialong Qi
- CHESS Center, Institute of Portal Hypertension, The First Hospital of Lanzhou University, Lanzhou, China
| | - Feng Su
- Division of Gastroenterology, University of Washington, Seattle, WA, USA
| | - Nneka N Ufere
- Liver Center, Gastrointestinal Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yu Jun Wong
- Department of Gastroenterology & Hepatology, Changi General Hospital Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease, Zhejiang Province, Wenzhou, Zhejiang, China
| | - Eleanor Barnes
- Oxford Liver Unit, Translational Gastroenterology Unit, Oxford University Hospitals NHS Foundation Trust, University of Oxford, Oxford, UK
| | - Alfred S Barritt
- Division of Gastroenterology and Hepatology, University of North Carolina, North Carolina, USA
| | - Gwilym J Webb
- Oxford Liver Unit, Translational Gastroenterology Unit, Oxford University Hospitals NHS Foundation Trust, University of Oxford, Oxford, UK; Cambridge Liver Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK
| |
Collapse
|
75
|
Ngo MHT, Jeng HY, Kuo YC, Nanda JD, Brahmadhi A, Ling TY, Chang TS, Huang YH. The Role of IGF/IGF-1R Signaling in Hepatocellular Carcinomas: Stemness-Related Properties and Drug Resistance. Int J Mol Sci 2021; 22:ijms22041931. [PMID: 33669204 PMCID: PMC7919800 DOI: 10.3390/ijms22041931] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
Insulin-like Growth Factor (IGF)/IGF-1 Receptor (IGF-1R) signaling is known to regulate stem cell pluripotency and differentiation to trigger cell proliferation, organ development, and tissue regeneration during embryonic development. Unbalanced IGF/IGF-1R signaling can promote cancer cell proliferation and activate cancer reprogramming in tumor tissues, especially in the liver. Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death, with a high incidence and mortality rate in Asia. Most patients with advanced HCC develop tyrosine kinase inhibitor (TKI)-refractoriness after receiving TKI treatment. Dysregulation of IGF/IGF-1R signaling in HCC may activate expression of cancer stemness that leads to TKI refractoriness and tumor recurrence. In this review, we summarize the evidence for dysregulated IGF/IGF-1R signaling especially in hepatitis B virus (HBV)-associated HCC. The regulation of cancer stemness expression and drug resistance will be highlighted. Current clinical treatments and potential therapies targeting IGF/IGF-1R signaling for the treatment of HCC will be discussed.
Collapse
Affiliation(s)
- Mai-Huong Thi Ngo
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (M.-H.T.N.); (J.D.N.); (A.B.)
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Han-Yin Jeng
- Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.J.); (Y.-C.K.)
| | - Yung-Che Kuo
- Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.J.); (Y.-C.K.)
| | - Josephine Diony Nanda
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (M.-H.T.N.); (J.D.N.); (A.B.)
| | - Ageng Brahmadhi
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (M.-H.T.N.); (J.D.N.); (A.B.)
| | - Thai-Yen Ling
- Department and Graduate Institute of Pharmacology, National Taiwan University, Taipei 11031, Taiwan
- Correspondence: (T.-Y.L.); (T.-S.C.); (Y.-H.H.); Tel.: +886-2-2312-3456 (ext. 8-8322) (T.-Y.L.); +886-5-3621-000 (ext. 2242) (T.-S.C.); +886-2-2736-1661 (ext. 3150) (Y.-H.H.)
| | - Te-Sheng Chang
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33382, Taiwan
- Division of Internal Medicine, Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
- Correspondence: (T.-Y.L.); (T.-S.C.); (Y.-H.H.); Tel.: +886-2-2312-3456 (ext. 8-8322) (T.-Y.L.); +886-5-3621-000 (ext. 2242) (T.-S.C.); +886-2-2736-1661 (ext. 3150) (Y.-H.H.)
| | - Yen-Hua Huang
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (M.-H.T.N.); (J.D.N.); (A.B.)
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.J.); (Y.-C.K.)
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Comprehensive Cancer Center, Taipei Medical University, Taipei 11031, Taiwan
- Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (T.-Y.L.); (T.-S.C.); (Y.-H.H.); Tel.: +886-2-2312-3456 (ext. 8-8322) (T.-Y.L.); +886-5-3621-000 (ext. 2242) (T.-S.C.); +886-2-2736-1661 (ext. 3150) (Y.-H.H.)
| |
Collapse
|
76
|
Helbig M, Vesper AS, Beyer I, Fehm T. Does Nutrition Affect Endometriosis? Geburtshilfe Frauenheilkd 2021; 81:191-199. [PMID: 33574623 PMCID: PMC7870287 DOI: 10.1055/a-1207-0557] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/24/2020] [Indexed: 02/08/2023] Open
Abstract
Endometriosis is a hormone-related, chronic inflammation in women of childbearing age. The aetiology and pathogenesis of endometriosis are not yet fully understood. For other illnesses classed as lifestyle diseases, the link between nutrition and pathogenesis has already been researched and proven. With regard to these findings, the question continues to arise as to whether and how a specific diet and lifestyle could also influence pathogenesis and the progression of endometriosis. The aim of this review is to examine the data and determine what influence nutrition has on the development of endometriosis or on existing disease. The study results currently available do not permit a clear, scientific recommendation or indicate a detailed diet. In summary, it can be said that fish oil capsules in combination with vitamin B 12 have been associated with a positive effect on endometriosis symptoms (particularly of dysmenorrhoea). Alcohol and increased consumption of red meat and trans fats are associated with a negative effect. The results of the studies listed with regard to fruit and vegetables, dairy products, unsaturated fats, fibre, soy products and coffee are not clear. Therefore, the general recommendations for a balanced and varied diet in line with the guidelines of the Deutsche Gesellschaft für Ernährung e. V. [German Nutrition Society] apply, along with the recommendation to cut out alcohol. In order to be able to derive more concrete recommendations, we require further studies to investigate the influence of nutrition on endometriosis.
Collapse
Affiliation(s)
- Martina Helbig
- Klinik für Geburtshilfe und Frauenheilkunde, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Anne-Sophie Vesper
- Klinik für Geburtshilfe und Frauenheilkunde, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Ines Beyer
- Klinik für Geburtshilfe und Frauenheilkunde, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Tanja Fehm
- Klinik für Geburtshilfe und Frauenheilkunde, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
77
|
Dos Santos LC, Junqueira Ayres DD, de Sousa Pinto ÍA, Silveira MA, Albino MDC, Holanda VAD, Lima RH, André E, Padovan CM, Gavioli EC, de Paula Soares V. Early and late behavioral consequences of ethanol withdrawal: focus on brain indoleamine 2,3 dioxygenase activity. Alcohol 2021; 90:1-9. [PMID: 33031882 DOI: 10.1016/j.alcohol.2020.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 09/15/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022]
Abstract
Anxiety and depression are symptoms associated with ethanol withdrawal that lead individuals to relapse. In the kynurenine pathway, the enzyme indoleamine 2,3 dioxygenase (IDO) is responsible for the conversion of tryptophan to kynurenine, and dysregulation of this pathway has been associated with psychiatric disorders, such as anxiety and depression. The present study evaluated the early and late behavioral and biochemical effects of ethanol withdrawal in rats. Male Wistar rats were submitted to increasing concentrations of ethanol in drinking water during 21 days. In experiment 1, both control and withdrawal groups were submitted to a battery of behavioral tests 3, 5, 10, 19, and 21 days following ethanol removal. In experiment 2, animals were euthanized 3 days (short-term) or 21 days (long-term) after withdrawal, and the brains were dissected altogether, following kynurenine concentration analysis in prefrontal cortex, hippocampus, and striatum. Short-term ethanol withdrawal decreased the exploration of the open arms in the elevated plus-maze. In the forced swimming test, long-term ethanol-withdrawn rats displayed higher immobility time than control animals. Ethanol withdrawal altered neither locomotion nor motor coordination of rats. In experiment 2, kynurenine concentrations were increased in the prefrontal cortex after a long-term period of withdrawal. In conclusion, short-term ethanol withdrawal produced anxiety-like behaviors, while long-term withdrawal favored depressive-like behaviors. Long-term ethanol withdrawal elevated kynurenine levels, specifically in the prefrontal cortex, suggesting that the depressive-like responses observed after long-term withdrawal might be related to the increased IDO activity.
Collapse
Affiliation(s)
- Luana Carla Dos Santos
- Laboratory of Psychopharmacology, Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Décio Dutra Junqueira Ayres
- Laboratory of Behavioral Pharmacology, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Ícaro Aleksei de Sousa Pinto
- Laboratory of Psychopharmacology, Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Marana Ali Silveira
- Laboratory of Psychopharmacology, Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Maryelle de Cássia Albino
- Laboratory of Psychopharmacology, Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Victor Anastácio Duarte Holanda
- Laboratory of Behavioral Pharmacology, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Ramón Hypolito Lima
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute for Neuroscience, Macaiba, RN, Brazil
| | - Eunice André
- Department of Pharmacology, Federal University of Parana, Curitiba, PR, Brazil
| | - Cláudia Maria Padovan
- Department of Psychology, Faculty of Philosophy Science and Letters of Ribeirão Preto, University of São Paulo, SP, Brazil
| | - Elaine Cristina Gavioli
- Laboratory of Behavioral Pharmacology, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Vanessa de Paula Soares
- Laboratory of Psychopharmacology, Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
78
|
García-Baos A, Alegre-Zurano L, Cantacorps L, Martín-Sánchez A, Valverde O. Role of cannabinoids in alcohol-induced neuroinflammation. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110054. [PMID: 32758518 DOI: 10.1016/j.pnpbp.2020.110054] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/13/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
Alcohol is a psychoactive substance highly used worldwide, whose harmful use might cause a broad range of mental and behavioural disorders. Underlying brain impact, the neuroinflammatory response induced by alcohol is recognised as a key contributing factor in the progression of other neuropathological processes, such as neurodegeneration. These sequels are determined by multiple factors, including age of exposure. Strikingly, it seems that the endocannabinoid system modulation could regulate the alcohol-induced neuroinflammation. Although direct CB1 activation can worsen alcohol consequences, targeting other components of the expanded endocannabinoid system may counterbalance the pro-inflammatory response. Indeed, specific modulations of the expanded endocannabinoid system have been proved to exert anti-inflammatory effects, primarily through the CB2 and PPARγ signalling. Among them, some endo- and exogeneous cannabinoids can block certain pro-inflammatory mediators, such as NF-κB, thereby neutralizing the neuroinflammatory intracellular cascades. Furthermore, a number of cannabinoids are able to activate complementary anti-inflammatory pathways, which are necessary for the transition from chronically overactivated microglia to a regenerative microglial phenotype. Thus, cannabinoid modulation provides cooperative anti-inflammatory mechanisms that may be advantageous to resolve a pathological neuroinflammation in an alcohol-dependent context.
Collapse
Affiliation(s)
- Alba García-Baos
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Laia Alegre-Zurano
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Lídia Cantacorps
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ana Martín-Sánchez
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Programme, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Programme, IMIM-Hospital del Mar Research Institute, Barcelona, Spain.
| |
Collapse
|
79
|
Salehi E, Mashayekh M, Taheri F, Gholami M, Motaghinejad M, Safari S, Sepehr A. Curcumin Can be Acts as Effective agent for Prevent or Treatment of Alcohol-induced Toxicity in Hepatocytes: An Illustrated Mechanistic Review. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:418-436. [PMID: 34400970 PMCID: PMC8170768 DOI: 10.22037/ijpr.2020.112852.13985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Previous studies have shown that alcohol abuse can cause serious liver damage and cirrhosis. The main pathway for these types of hepatocellular cell neurodegeneration is mitochondrial dysfunction, which causes lipid peroxidation and dysfunction of the glutathione ring and the defect of antioxidant enzymes in alcoholic hepatic cells. Alcohol can also initiate malicious inflammatory pathways and trigger the initiation and activation of intestinal and extrinsic apoptosis pathways in hepatocellular tissues that lead to cirrhosis. Previous studies have shown that curcumin may inhibit lipid peroxidation, glutathione dysfunction and restore antioxidant enzymes. Curcumin also modulates inflammation and the production of alcohol-induced biomarkers. Curcumin has been shown to play a critical role in the survival of alcoholic hepatocellular tissue. It has been shown that curcumin can induce and trigger mitochondrial biogenesis and, by this mechanism, prevent the occurrence of both intrinsic and extrinsic apoptosis pathways in liver cells that have been impaired by alcohol. According to this mechanism, curcumin may protect hepatocellular tissue from alcohol-induced cell degeneration and may therefore survive alcoholic hepatocellular tissue. . Based on these mechanisms, the protective functions of curcumin against alcohol-induced cell degeneration due to oxidative stress, inflammation, and apoptosis events in hepatocellular tissue have been recorded. Hence, in this research, we have attempted to evaluate and analyze the main contribution mechanism of curcumin cell defense properties against alcohol-induced hepatocellular damage, according to previous experimental and clinical studies, and in this way we report findings from major studies.
Collapse
Affiliation(s)
- Elham Salehi
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University (IUAPS), Tehran, Iran.
| | - Mohammad Mashayekh
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University (IUAPS), Tehran, Iran.
| | - Fereshteh Taheri
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Mina Gholami
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Majid Motaghinejad
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Sepideh Safari
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Afrah Sepehr
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
80
|
Frank K, Abeynaike S, Nikzad R, Patel RR, Roberts AJ, Roberto M, Paust S. Alcohol dependence promotes systemic IFN-γ and IL-17 responses in mice. PLoS One 2020; 15:e0239246. [PMID: 33347446 PMCID: PMC7751976 DOI: 10.1371/journal.pone.0239246] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
Alcohol use disorder (AUD) is a chronic relapsing disorder characterized by an impaired ability to stop or control alcohol use despite adverse social, occupational, or health consequences. AUD is associated with a variety of physiological changes and is a substantial risk factor for numerous diseases. We aimed to characterize systemic alterations in immune responses using a well-established mouse model of chronic intermittent alcohol exposure to induce alcohol dependence. We exposed mice to chronic intermittent ethanol vapor for 4 weeks and analyzed the expression of cytokines IFN-γ, IL-4, IL-10, IL-12 and IL-17 by different immune cells in the blood, spleen and liver of alcohol dependent and non-dependent control mice through multiparametric flow cytometry. We found increases in IFN-γ and IL-17 expression in a cell type- and organ-specific manner. Often, B cells and neutrophils were primary contributors to increased IFN-γ and IL-17 levels while other cell types played a secondary role. We conclude that chronic alcohol exposure promotes systemic pro-inflammatory IFN-γ and IL-17 responses in mice. These responses are likely important in the development of alcohol-related diseases, but further characterization is necessary to understand the initiation and effects of systemic inflammatory responses to chronic alcohol exposure.
Collapse
Affiliation(s)
- Kayla Frank
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Shawn Abeynaike
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Rana Nikzad
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Reesha R. Patel
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Amanda J. Roberts
- Animal Models Core, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Silke Paust
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States of America
- * E-mail:
| |
Collapse
|
81
|
Hoffman J, Yu J, Kirstein C, Kindy MS. Combined Effects of Repetitive Mild Traumatic Brain Injury and Alcohol Drinking on the Neuroinflammatory Cytokine Response and Cognitive Behavioral Outcomes. Brain Sci 2020; 10:brainsci10110876. [PMID: 33228251 PMCID: PMC7699568 DOI: 10.3390/brainsci10110876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 12/22/2022] Open
Abstract
The relationship between alcohol consumption and traumatic brain injury (TBI) often focuses on alcohol consumption increasing the likelihood of incurring a TBI, rather than alcohol use outcomes after TBI. However, patients without a history of an alcohol use disorder can also show increased problem drinking after single or multiple TBIs. Alcohol and mild TBI share diffuse deleterious neurological impacts and cognitive impairments; therefore, the purpose of these studies was to determine if an interaction on brain and behavior outcomes occurs when alcohol is consumed longitudinally after TBI. To examine the impact of mild repetitive TBI (rmTBI) on voluntary alcohol consumption, mice were subjected to four mild TBI or sham procedures over a 2 week period, then offered alcohol (20% v/v) for 2 weeks using the two-bottle choice, drinking in the dark protocol. Following the drinking period, mice were evaluated for neuroinflammatory cytokine response or tested for cognitive and behavioral deficits. Results indicate no difference in alcohol consumption or preference following rmTBI as compared to sham; however, increases in the neuroinflammatory cytokine response due to alcohol consumption and some mild cognitive behavioral deficits after rmTBI and alcohol consumption were observed. These data suggest that the cytokine response to alcohol drinking and rmTBI + alcohol drinking is not necessarily aggregate, but the combination does result in an exacerbation of cognitive behavioral outcomes.
Collapse
Affiliation(s)
- Jessica Hoffman
- Department of Psychiatry, Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Correspondence: (J.H.); (M.S.K.); Tel.: +1-919-843-4389 (J.H.)
| | - Jin Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA;
| | - Cheryl Kirstein
- Department of Psychology, College of Arts and Sciences, University of South Florida, Tampa, FL 33612, USA;
| | - Mark S. Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA;
- James A. Haley VA Medical Center, Tampa, FL 33612, USA
- Shriners Hospital for Children, Tampa, FL 33612, USA
- Correspondence: (J.H.); (M.S.K.); Tel.: +1-919-843-4389 (J.H.)
| |
Collapse
|
82
|
Darbinian N, Darbinyan A, Merabova N, Bajwa A, Tatevosian G, Martirosyan D, Zhao H, Selzer ME, Goetzl L. Ethanol-mediated alterations in oligodendrocyte differentiation in the developing brain. Neurobiol Dis 2020; 148:105181. [PMID: 33189883 DOI: 10.1016/j.nbd.2020.105181] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/21/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Alterations of white matter integrity and subsequent white matter structural deficits are consistent findings in Fetal Alcohol Syndrome (FAS), but knowledge regarding the molecular mechanisms underlying these abnormalities is incomplete. Experimental rodent models of FAS have shown dysregulation of cytokine expression leading to apoptosis of oligodendrocyte precursor cells (OPCs) and altered oligodendrocyte (OL) differentiation, but whether this is representative of human FAS pathogenesis has not been determined. METHODS Fetal brain tissue (12.2-21.4 weeks gestation) from subjects undergoing elective termination of pregnancy was collected according to an IRB-approved protocol. Ethanol (EtOH) exposure status was classified based on a detailed face-to-face questionnaire adapted from the National Institute on Alcohol Abuse and Alcoholism Prenatal Alcohol and Sudden Infant Death Syndrome and Stillbirth (PASS) study. Twenty EtOH-exposed fetuses were compared with 20 gestational age matched controls. Cytokine and OPC marker mRNA expression was quantified by Real-Time Polymerase chain reaction (qRT-PCR). Patterns of protein expression of OPC markers and active Capase-3 were studied by Fluorescence Activated Cell Sorting (FACS). RESULTS EtOH exposure was associated with reduced markers of cell viability, OPC differentiation, and OL maturation, while early OL differentiation markers were unchanged or increased. Expression of mRNAs for proteins specific to more mature forms of OL lineage (platelet-derived growth factor α (PDGFRα) and myelin basic protein (MBP) was lower in the EtOH group than in controls. Expression of the multifunctional growth and differentiation-promoting growth factor IGF-1, which is essential for normal development, also was reduced. Reductions were not observed for markers of early stages of OL differentiation, including Nuclear transcription factor NK-2 homeobox locus 2 (Nkx2.2). Expression of mRNAs for the proinflammatory cytokine, tumor necrosis factor-α (TNFα), and several proinflammatory chemokines was higher in the EtOH group compared to controls, including: Growth regulated protein alpha/chemokine (C-X-C motif) ligand 1 (GRO-α/CXCL1), Interleukin 8/chemokine (C-X-C motif) ligand 8 (IL8/CXCL8), Chemokine (C-X-C motif) ligand 6/Granulocyte chemotactic protein 2 (CXCL16/GCP2), epithelial-derived neutrophil-activating protein 78/chemokine (C-X-C motif) ligand 5 (ENA-78/CXCL5), monocyte chemoattractant protein-1 (MCP-1). EtOH exposure also was associated with an increase in the proportion of cells expressing markers of early stage OPCs, such as A2B5 and NG2. Finally, apoptosis (measured by caspase-3 activation) was increased substantially in the EtOH group compared to controls. CONCLUSION Prenatal EtOH exposure is associated with excessive OL apoptosis and/or delayed OL maturation in human fetal brain. This is accompanied by markedly dysregulated expression of several chemokines and cytokines, in a pattern predictive of increased OL cytotoxicity and reduced OL differentiation. These findings are consistent with findings in animal models of FAS.
Collapse
Affiliation(s)
- Nune Darbinian
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States of America.
| | - Armine Darbinyan
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, United States of America.
| | - Nana Merabova
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States of America.
| | - Ahsun Bajwa
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States of America.
| | - Gabriel Tatevosian
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States of America.
| | - Diana Martirosyan
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States of America.
| | - Huaqing Zhao
- Department of Clinical Sciences (Biostatistics and Epidemiology), Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States of America.
| | - Michael E Selzer
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, United States of America.
| | - Laura Goetzl
- Department of Obstetrics & Gynecology, University of Texas, Houston, TX 77030, United States of America.
| |
Collapse
|
83
|
Wadhwa R, Paudel KR, Mehta M, Shukla SD, Sunkara K, Prasher P, Panth N, Goyal R, Chellappan DK, Gupta G, Hansbro PM, Aljabali AAA, Tambuwala MM, Dua K. Beyond the Obvious: Smoking and Respiratory Infection Implications on Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:698-708. [PMID: 33109069 DOI: 10.2174/1871527319999200817112427] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 11/22/2022]
Abstract
Tobacco smoke is not only a leading cause for chronic obstructive pulmonary disease, cardiovascular disorders, and lung and oral cancers, but also causes neurological disorders such as Alzheimer 's disease. Tobacco smoke consists of more than 4500 toxic chemicals, which form free radicals and can cross blood-brain barrier resulting in oxidative stress, an extracellular amyloid plaque from the aggregation of amyloid β (Aβ) peptide deposition in the brain. Further, respiratory infections such as Chlamydia pneumoniae, respiratory syncytial virus have also been involved in the induction and development of the disease. The necessary information collated on this review has been gathered from various literature published from 1995 to 2019. The review article sheds light on the role of smoking and respiratory infections in causing oxidative stress and neuroinflammation, resulting in Alzheimer's disease (AD). This review will be of interest to scientists and researchers from biological and medical science disciplines, including microbiology, pharmaceutical sciences and the translational researchers, etc. The increasing understanding of the relationship between chronic lung disease and neurological disease is two-fold. First, this would help to identify the risk factors and possible therapeutic interventions to reduce the development and progression of both diseases. Second, this would help to reduce the probable risk of development of AD in the population prone to chronic lung diseases.
Collapse
Affiliation(s)
- Ridhima Wadhwa
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute, Sydney, New South Wales, Australia
| | - Meenu Mehta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Shakti D Shukla
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Krishna Sunkara
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Dehradun 248007, India
| | - Nisha Panth
- Centre for Inflammation, Centenary Institute, Sydney, New South Wales, Australia
| | - Rohit Goyal
- School of Pharmaceutical Sciences, Shoolini University, Bajhol, Sultanpur, Solan, Himachal Pradesh, 173 229, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Gaurav Gupta
- School of Phamacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, New South Wales, Australia
| | - Alaa A A Aljabali
- Yarmouk University, Irbid 21163, Jordan, Pharmaceutical Sciences, Irbid 21163, Jordan
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County, Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo NSW 2007, Australia
| |
Collapse
|
84
|
Boettler T, Marjot T, Newsome PN, Mondelli MU, Maticic M, Cordero E, Jalan R, Moreau R, Cornberg M, Berg T. Impact of COVID-19 on the care of patients with liver disease: EASL-ESCMID position paper after 6 months of the pandemic. JHEP Rep 2020; 2:100169. [PMID: 32835190 PMCID: PMC7402276 DOI: 10.1016/j.jhepr.2020.100169] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 02/06/2023] Open
Abstract
During the early stages of the coronavirus disease 2019 (COVID-19) pandemic, EASL and ESCMID published a position paper to provide guidance for physicians involved in the care of patients with chronic liver disease. While some healthcare systems are returning to a more normal routine, many countries and healthcare systems have been, or still are, overwhelmed by the pandemic, which is significantly impacting on the care of these patients. In addition, many studies have been published focusing on how COVID-19 may affect the liver and how pre-existing liver diseases might influence the clinical course of COVID-19. While many aspects remain poorly understood, it has become increasingly evident that pre-existing liver diseases and liver injury during the disease course must be kept in mind when caring for patients with COVID-19. This review should serve as an update on the previous position paper, summarising the evidence for liver disease involvement during COVID-19 and providing recommendations on how to return to routine care wherever possible.
Collapse
Key Words
- ACE2, angiotensin-converting enzyme 2
- ACLF, acute-on-chronic liver failure
- COVID-19
- COVID-19, coronavirus disease 2019
- Cancer
- Cirrhosis
- ERC, endoscopic retrograde cholangiography
- HCC, hepatocellular carcinoma
- IL-6, interleukin-6
- LT, liver transplant
- Liver
- MELD, model for end-stage liver disease
- NAFLD
- NAFLD, non-alcoholic fatty liver disease
- NASH, non-alcoholic steatohepatitis
- OGD, oesophagogastroduodenoscopy
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- Telemedicine
- Transplantation
- ULN, upper limit of normal
Collapse
Affiliation(s)
- Tobias Boettler
- Department of Medicine II, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Marjot
- Oxford Liver Unit, Translational Gastroenterology Unit, Oxford University Hospitals NHS Foundation Trust, University of Oxford, UK
| | - Philip N. Newsome
- National Institute for Health Research, Birmingham Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Centre for Liver & Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Mario U. Mondelli
- Division of Infectious Diseases and Immunology, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Mojca Maticic
- Clinic for Infectious Diseases and Febrile Illnesses, University Medical Centre Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Slovenia
| | - Elisa Cordero
- Department of Medicine, University of Seville, Clinical Unit of Infectious Diseases University Hospital Virgen del Rocio, Institute of Biomedicine, Sevilla, CSIC, Spain
| | - Rajiv Jalan
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, London, UK
| | - Richard Moreau
- Inserm, Université de Paris, U1149, Centre de Recherche sur l'Inflammation (CRI), UMRS1149, Paris, France
- Service d'Hépatologie, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- Centre for Individualised Infection Medicine (CIIM), Hannover, Germany
| | - Thomas Berg
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| |
Collapse
|
85
|
Socodato R, Henriques JF, Portugal CC, Almeida TO, Tedim-Moreira J, Alves RL, Canedo T, Silva C, Magalhães A, Summavielle T, Relvas JB. Daily alcohol intake triggers aberrant synaptic pruning leading to synapse loss and anxiety-like behavior. Sci Signal 2020; 13:13/650/eaba5754. [PMID: 32963013 DOI: 10.1126/scisignal.aba5754] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Alcohol abuse adversely affects the lives of millions of people worldwide. Deficits in synaptic transmission and in microglial function are commonly found in human alcohol abusers and in animal models of alcohol intoxication. Here, we found that a protocol simulating chronic binge drinking in male mice resulted in aberrant synaptic pruning and substantial loss of excitatory synapses in the prefrontal cortex, which resulted in increased anxiety-like behavior. Mechanistically, alcohol intake increased the engulfment capacity of microglia in a manner dependent on the kinase Src, the subsequent activation of the transcription factor NF-κB, and the consequent production of the proinflammatory cytokine TNF. Pharmacological blockade of Src activation or of TNF production in microglia, genetic ablation of Tnf, or conditional ablation of microglia attenuated aberrant synaptic pruning, thereby preventing the neuronal and behavioral effects of the alcohol. Our data suggest that aberrant pruning of excitatory synapses by microglia may disrupt synaptic transmission in response to alcohol abuse.
Collapse
Affiliation(s)
- Renato Socodato
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Joana F Henriques
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Camila C Portugal
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Tiago O Almeida
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Joana Tedim-Moreira
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Renata L Alves
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Teresa Canedo
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.,Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Cátia Silva
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana Magalhães
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Teresa Summavielle
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
| | - João B Relvas
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal. .,Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
86
|
de Almeida JM, Pazmino VFC, Novaes VCN, Bomfim SRM, Nagata MJH, Oliveira FLP, Matheus HR, Ervolino E. Chronic consumption of alcohol increases alveolar bone loss. PLoS One 2020; 15:e0232731. [PMID: 32817640 PMCID: PMC7446912 DOI: 10.1371/journal.pone.0232731] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/22/2020] [Indexed: 02/04/2023] Open
Abstract
This study evaluated the effects of the chronic consumption of different concentrations of alcohol on the experimental periodontitis (EP). 160 rats were divided into 4 groups: (EP-NT) rats with EP and no alcohol exposure; (EP-A14) rats with EP exposed to 14% alcohol; (EP-A25) rats with EP exposed to 25% alcohol; (EP-A36) rats with EP exposed to 36% alcohol. The animals from the EP-A14, EP-A25 and EP-A36 groups were subjected to different concentrations of alcohol 30 days before EP induction. The histological characteristics, percentage of bone in the furcation (PBF) and bone metabolism in the furcation region were evaluated. The PBF and tartrate-resistant acid phosphatase (TRAP) data were subjected to statistical analysis. The EP-A14, EP-A25 and EP-A36 groups had lower PBFs compared with the EP-NT group. A more severe inflammatory process and a greater number of TRAP+ cells were also observed. In the EP-A14, EP-A25 and EP-A36 groups, the inflammatory process became more severe as the ingested alcoholic concentration increased. An increase in RANKL immunolabeling and a significantly higher number of TRAP+ cells were also observed. We conclude that chronic alcohol consumption increases the severity of experimental periodontitis in a dose-dependent manner by increasing the magnitude of local inflammatory responses and stimulating alveolar bone resorption.
Collapse
Affiliation(s)
- Juliano Milanezi de Almeida
- Department of Diagnosis and Surgery—Division of Periodontics, São Paulo State University (Unesp), School of Dentistry, Araçatuba, SP, Brazil
- * E-mail:
| | - Victor Fabrizio Cabrera Pazmino
- Department of Diagnosis and Surgery—Division of Periodontics, São Paulo State University (Unesp), School of Dentistry, Araçatuba, SP, Brazil
| | - Vivian Cristina Noronha Novaes
- Department of Diagnosis and Surgery—Division of Periodontics, São Paulo State University (Unesp), School of Dentistry, Araçatuba, SP, Brazil
| | - Suely Regina Mogami Bomfim
- Department of Clinic, Surgery and Animal Reproduction, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, SP, Brazil
| | - Maria José Hitomi Nagata
- Department of Diagnosis and Surgery—Division of Periodontics, São Paulo State University (Unesp), School of Dentistry, Araçatuba, SP, Brazil
| | - Fred Lucas Pinto Oliveira
- Department of Diagnosis and Surgery—Division of Periodontics, São Paulo State University (Unesp), School of Dentistry, Araçatuba, SP, Brazil
| | - Henrique Rinald Matheus
- Department of Diagnosis and Surgery—Division of Periodontics, São Paulo State University (Unesp), School of Dentistry, Araçatuba, SP, Brazil
| | - Edilson Ervolino
- Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, Araçatuba, SP, Brazil
| |
Collapse
|
87
|
Rao R, Topiwala A. Alcohol use disorders and the brain. Addiction 2020; 115:1580-1589. [PMID: 32112474 DOI: 10.1111/add.15023] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/11/2020] [Accepted: 02/25/2020] [Indexed: 12/15/2022]
Abstract
A diagnosis of alcohol use disorder is associated with a higher risk of dementia, but a dose-response relationship between alcohol intake consumption and cognitive impairment remains unclear. Alcohol is associated with a range of effects on the central nervous system at different doses and acts on a number of receptors. Acute disorders include Wernicke's encephalopathy (WE), traumatic brain injury, blackouts, seizures, stroke and hepatic encephalopathy. The most common manifestations of chronic alcohol consumption are Korsakoff's syndrome (KS) and alcohol-related dementia (ARD). There is limited evidence for benefit from memantine in the treatment of ARD, but stronger evidence for the use of high-dose parenteral thiamine in the progression of neuropsychiatric symptoms for WE. Accumulating evidence exists for pharmacological treatment in the prevention of hepatic encephalopathy. Rehabilitation of people with ARD may take several years, and requires an approach that addresses physical and psychosocial factors.
Collapse
Affiliation(s)
- Rahul Rao
- Institute of Psychiatry, Psychology and Neuroscience, Department of Old Age Psychiatry, London, UK.,South London and Maudsley NHS Foundation Trust, Psychological Medicine and Older Adults Directorate, London, UK
| | - Anya Topiwala
- University of Oxford, Big Data Institute, Nuffield Department of Population Health
| |
Collapse
|
88
|
Testino G. Are Patients With Alcohol Use Disorders at Increased Risk for Covid-19 Infection? Alcohol Alcohol 2020; 55:344-346. [PMID: 32400858 PMCID: PMC7239257 DOI: 10.1093/alcalc/agaa037] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/09/2020] [Accepted: 04/17/2020] [Indexed: 01/01/2023] Open
Affiliation(s)
- Gianni Testino
- Unit of Addiction and Hepatology, Alcohological Regional Centre, ASL3 c/o Polyclinic San Martino Hospital, Padiglione 10, Piazzale R Benzi 10, 16132 Genova, Italy
| |
Collapse
|
89
|
Gamma oryzanol impairs alcohol-induced anxiety-like behavior in mice via upregulation of central monoamines associated with Bdnf and Il-1β signaling. Sci Rep 2020; 10:10677. [PMID: 32606350 PMCID: PMC7326911 DOI: 10.1038/s41598-020-67689-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
Adolescent alcohol exposure may increase anxiety-like behaviors by altering central monoaminergic functions and other important neuronal pathways. The present study was designed to investigate the anxiolytic effect of 0.5% γ-oryzanol (GORZ) and its neurochemical and molecular mechanisms under chronic 10% ethanol consumption. Five-week-old ICR male mice received either control (14% casein, AIN 93 M) or GORZ (14% casein, AIN 93 M + 0.5% GORZ) diets in this study. We showed that GORZ could potentially attenuate alcohol-induced anxiety-like behaviors by significantly improving the main behavioral parameters measured by the elevated plus maze test. Moreover, GORZ treatment significantly restored the alcohol-induced downregulation of 5-hydroxytryptophan and 5-hydroxyindole acetic acid in the hippocampus and improved homovanillic acid levels in the cerebral cortex. Furthermore, a recovery increase in the level of 3-methoxy-4-hydroxyphenylglycol both in the hippocampus and cerebral cortex supported the anxiolytic effect of GORZ. The significant elevation and reduction in the hippocampus of relative mRNA levels of brain-derived neurotrophic factor and interleukin 1β, respectively, also showed the neuroprotective role of GORZ in ethanol-induced anxiety. Altogether, these results suggest that 0.5% GORZ is a promising neuroprotective drug candidate with potential anxiolytic, neurogenic, and anti-neuroinflammatory properties for treating adolescent alcohol exposure.
Collapse
|
90
|
Durazzo TC, Nguyen LC, Meyerhoff DJ. Medical Conditions Linked to Atherosclerosis Are Associated With Magnified Cortical Thinning in Individuals With Alcohol Use Disorders. Alcohol Alcohol 2020; 55:382-390. [PMID: 32445335 PMCID: PMC7307314 DOI: 10.1093/alcalc/agaa034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/19/2020] [Accepted: 04/09/2020] [Indexed: 01/21/2023] Open
Abstract
AIMS Magnetic resonance imaging (MRI) studies report widespread cortical thinning in individuals with alcohol use disorder (AUD), but did not consider potential effects of pro-atherogenic conditions such as hypertension, type 2 diabetes mellitus, hepatitis C seropositivity and hyperlipidemia on cortical thickness. The conditions are associated with regional cortical thinning in those without AUD. We predicted that individuals with concurrent AUD and pro-atherogenic conditions demonstrate the greatest regional cortical thinning in areas most vulnerable to decreased perfusion. METHODS Treatment-seeking individuals with AUD (n = 126) and healthy controls (CON; n = 49) completed a 1.5 T MRI study. Regional cortical thickness was quantitated via FreeSurfer. Individuals with AUD and pro-atherogenic conditions (Atherogenic+), AUD without pro-atherogenic conditions (Atherogenic-) and CON were compared on regional cortical thickness. RESULTS Individuals with AUD showed significant bilateral cortical thinning compared to CON, but Atherogenic+ demonstrated the most widespread and greatest magnitude of regional thinning, while Atherogenic- had reduced thickness primarily in anterior frontal and posterior parietal lobes. Atherogenic+ also showed a thinner cortex than Atherogenic- in lateral orbitofrontal and dorso/dorsolateral frontal cortex, mesial and lateral temporal and inferior parietal regions. CONCLUSIONS Our results demonstrate significant bilateral cortical thinning in individuals with AUD relative to CON, but the distribution and magnitude were influenced by comorbid pro-atherogenic conditions. The magnitude of cortical thinning in Atherogenic+ strongly corresponded to cortical watershed areas susceptible to decreased perfusion, which may result in morphometric abnormalities. The findings indicate that pro-atherogenic conditions may contribute to cortical thinning in those seeking treatment for AUD.
Collapse
Affiliation(s)
- Timothy C Durazzo
- Mental Illness Research and Education Clinical Centers, VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Linh-Chi Nguyen
- Mental Illness Research and Education Clinical Centers, VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Dieter J Meyerhoff
- Center for Imaging of Neurodegenerative Diseases (CIND), San Francisco VA Medical Center, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| |
Collapse
|
91
|
Zuluaga P, Sanvisens A, Teniente-Serra A, El Ars O, Fuster D, Quirant-Sánchez B, Martínez-Cáceres E, Muga R. Loss of naive T lymphocytes is associated with advanced liver fibrosis in alcohol use disorder. Drug Alcohol Depend 2020; 213:108046. [PMID: 32485655 DOI: 10.1016/j.drugalcdep.2020.108046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/16/2020] [Accepted: 04/22/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Alcohol use disorder (AUD) is associated with changes in cellular immunity. The objective of the present study was to analyze the contribution of AUD to the differentiation of T cells and associations with advanced liver fibrosis (ALF). METHODS This cross-sectional study included patients admitted for treatment of AUD between 2013 and 2016. T cell immune-phenotyping defined four profiles of cellular differentiation according to the expression of CCR7 and CD45RA: naive T cells, central memory (TCM) cells, effector memory (TEM) cells, and terminal effector (TEMRA) cells. CD4+ memory cells were subdivided into Th1, Th2, and Th17 according to the expression of CXCR3 and CCR6. The stages of cellular differentiation were compared to healthy controls. ALF was defined as FIB-4 > 3.25. RESULTS Seventy-nine patients (81% men) with a median age of 50 years (IQR: 45-56 years) and median ethanol consumption of 150 g/day (IQR: 100-200 g/day) were included in the study. Compared to healthy controls, patients with AUD had fewer CD4+ naive cells (p < 0.001), more TCM and TEM cells (p = 0.003 and p = 0.050, respectively), and larger Th2 populations (p = 0.03). Among CD8+ cells, the percentage of TCM, TEM, and TEMRA were higher in patients with AUD than in the healthy controls (p < 0.05). Patients with ALF had fewer CD4+ and CD8+ naive cells (p < 0.05) and more CD4+ memory cells than patients without ALF. CONCLUSIONS Altered lymphocyte differentiation in AUD patients suggests immunosenescence. An increase in memory cells and decrease in naive cells is associated with ALF.
Collapse
Affiliation(s)
- Paola Zuluaga
- Department of Internal Medicine, Hospital Universitari Germans Trias i Pujol-IGTP, Universitat Autònoma de Barcelona, Spain.
| | - Arantza Sanvisens
- Department of Internal Medicine, Hospital Universitari Germans Trias i Pujol-IGTP, Universitat Autònoma de Barcelona, Spain.
| | - Aina Teniente-Serra
- Department of Immunology, Hospital Universitari Germans Trias i Pujol-IGTP, Universitat Autònoma de Barcelona, Spain.
| | - Oumaima El Ars
- Department of Internal Medicine, Hospital Universitari Germans Trias i Pujol-IGTP, Universitat Autònoma de Barcelona, Spain.
| | - Daniel Fuster
- Department of Internal Medicine, Hospital Universitari Germans Trias i Pujol-IGTP, Universitat Autònoma de Barcelona, Spain.
| | - Bibiana Quirant-Sánchez
- Department of Immunology, Hospital Universitari Germans Trias i Pujol-IGTP, Universitat Autònoma de Barcelona, Spain.
| | - Eva Martínez-Cáceres
- Department of Immunology, Hospital Universitari Germans Trias i Pujol-IGTP, Universitat Autònoma de Barcelona, Spain.
| | - Roberto Muga
- Department of Internal Medicine, Hospital Universitari Germans Trias i Pujol-IGTP, Universitat Autònoma de Barcelona, Spain.
| |
Collapse
|
92
|
Islam A, Islam MS, Uddin MN, Hasan MMI, Akanda MR. The potential health benefits of the isoflavone glycoside genistin. Arch Pharm Res 2020; 43:395-408. [PMID: 32253713 DOI: 10.1007/s12272-020-01233-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/03/2020] [Indexed: 12/11/2022]
Abstract
Genistin is a type of isoflavone glycoside and has a broad range of health benefits. It is found in a variety of dietary plants, such as soybean, kudzu (Japanese arrowroot), and other plant-based products. Genistin has been described to have several beneficial health impacts, such as decreasing the risk of osteoporosis and post-menopausal symptoms, as well as anti-cancer, anti-oxidative, cardioprotective, anti-apoptotic, neuroprotective, hepatoprotective, and anti-microbial activities. It may also assist individuals with metabolic syndrome. This review summarizes some of the molecular impacts and prospective roles of genistin in maintaining and treatment of health disorders. The review could help to develop novel genistin medicine with significant health benefits for application in the nutraceutical and pharmaceutical fields.
Collapse
Affiliation(s)
- Anowarul Islam
- College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, South Korea
| | - Md Sadikul Islam
- College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, South Korea
| | - Md Nazim Uddin
- Department of Livestock Production and Management, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Mir Md Iqbal Hasan
- Department of Physiology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Md Rashedunnabi Akanda
- Department of Pharmacology and Toxicology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
| |
Collapse
|
93
|
The Microbiota-Gut-Brain Axis Heart Shunt Part I: The French Paradox, Heart Disease and the Microbiota. Microorganisms 2020; 8:microorganisms8040490. [PMID: 32235574 PMCID: PMC7232195 DOI: 10.3390/microorganisms8040490] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/04/2020] [Accepted: 03/09/2020] [Indexed: 12/16/2022] Open
Abstract
It has been well established that a vegetarian and polyphenol-rich diet, including fruits, vegetables, teas, juices, wine, indigestible fiber and whole grains, provide health-promoting phytochemicals and phytonutrients that are beneficial for the heart and brain. What is not well-characterized is the affect these foods have when co-metabolized within our dynamic gut and its colonizing flora. The concept of a heart shunt within the microbiota-gut-brain axis underscores the close association between brain and heart health and the so-called “French paradox” offers clues for understanding neurodegenerative and cerebrovascular diseases. Moreover, oxidation-redox reactions and redox properties of so-called brain and heart-protective foods are underappreciated as to their enhanced or deleterious mechanisms of action. Focusing on prodromal stages, and common mechanisms underlying heart, cerebrovascular and neurodegenerative diseases, we may unmask and understanding the means to better treat these related diseases.
Collapse
|
94
|
Silva CB, Gómez JP, do Vale GT, Simplicio JA, Gonzaga NA, Tirapelli CR. Interleukin-10 limits the initial steps of the cardiorenal damage induced by ethanol consumption. Life Sci 2020; 242:117239. [DOI: 10.1016/j.lfs.2019.117239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/17/2019] [Accepted: 12/26/2019] [Indexed: 10/25/2022]
|
95
|
Wiegmann C, Mick I, Brandl EJ, Heinz A, Gutwinski S. Alcohol and Dementia - What is the Link? A Systematic Review. Neuropsychiatr Dis Treat 2020; 16:87-99. [PMID: 32021202 PMCID: PMC6957093 DOI: 10.2147/ndt.s198772] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/22/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Dementia is a globally increasing health issue and since no cure is currently available, prevention is crucial. The consumption of alcohol is a controversially discussed risk factor for dementia. While many previously published epidemiological studies reported a risk reduction by light to moderate alcohol consumption, there is no persuasive model of an underlying biochemical mechanism. The purpose of this article is to review current models on alcohol neurotoxicity and dementia and to analyze and compare studies focusing on the epidemiological link between alcohol consumption and the risk of dementia. METHODS The electronic database Pubmed was searched for studies published between 1994 and 2019 concerning the topic. RESULTS Available epidemiological studies are not sufficient to verify a protective effect of alcohol on dementia development.
Collapse
Affiliation(s)
- Caspar Wiegmann
- Department of Psychiatry and Psychotherapy, Psychiatric Hospital of Charité at St. Hedwig Hospital, Berlin, Germany
| | - Inge Mick
- Department of Psychiatry and Psychotherapy, Psychiatric Hospital of Charité at St. Hedwig Hospital, Berlin, Germany
| | - Eva J Brandl
- Department of Psychiatry and Psychotherapy, Psychiatric Hospital of Charité at St. Hedwig Hospital, Berlin, Germany
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Psychiatric Hospital of Charité at St. Hedwig Hospital, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité University Medicine Berlin, Berlin, Germany
| | - Stefan Gutwinski
- Department of Psychiatry and Psychotherapy, Psychiatric Hospital of Charité at St. Hedwig Hospital, Berlin, Germany
| |
Collapse
|
96
|
Petralia MC, Mazzon E, Mangano K, Fagone P, Di Marco R, Falzone L, Basile MS, Nicoletti F, Cavalli E. Transcriptomic analysis reveals moderate modulation of macrophage migration inhibitory factor superfamily genes in alcohol use disorders. Exp Ther Med 2020; 19:1755-1762. [PMID: 32104230 PMCID: PMC7026954 DOI: 10.3892/etm.2020.8410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/14/2019] [Indexed: 12/20/2022] Open
Abstract
Alcohol use disorder (AUD) is a primary, chronic and relapsing disease of brain reward, motivation and memory, which is associated with several comorbidities, including major depression and post-traumatic stress disorder. It has been revealed that Ibudilast (IBUD), a dual inhibitor of phosphodiesterase-4 and −10 and of macrophage migration inhibitory factor (MIF), exerts beneficial effects on AUD in rodent models and human patients. Therefore, IBUD has attracted increasing interest, with research focusing on the elucidation of the pathogenic role of MIF and its homologue, D-dopachrome tautomerase (DDT), in the pathogenesis and maintenance of AUD. By using DNA microarray analysis, the current study performed a transcriptomic expression analysis of MIF, DDT and their co-receptors, including CD74, C-X-C chemokine receptor (CXCR)2, CXCR4 and CXCR7 in patients with AUD. The results revealed that the transcriptomic levels of MIF, DDT and their receptors were superimposable in the prefrontal cortex of rodents and patients with AUD and human patients. Furthermore, peripheral blood cells from heavy drinkers exhibited a moderate increase in MIF and DDT levels, both at the baseline and following exposure to alcohol-associated cues, based on individual situations that included alcohol-related stimuli resulting in subsequent alcohol use (buying alcohol and being at a bar, watching others drink alcohol). Considering the overlapping effects of MIF and DDT, the inverse Fisher's χ2 test was performed on unadjusted P-values to evaluate the combined effect of MIF and DDT. The results revealed a significant increase in these cytokines in heavy drinkers compared with controls (moderate drinkers). To the best of our knowledge, the present study demonstrated for the first time that MIF and DDT expression was upregulated in the blood of patients with AUD. These results therefore warrant further study to evaluate the role of MIF and DDT in the development and maintenance of AUD, to evaluate their use as biomarkers to predict the psychotherapeutic and pharmacological response of patients with AUD and for use as therapeutic targets.
Collapse
Affiliation(s)
- Maria Cristina Petralia
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | - Emanuela Mazzon
- IRCCS (Scientific Institute for Research, Hospitalization and Healthcare) Centro Neurolesi 'Bonino-Pulejo', I-98124 Messina, Italy
| | - Katia Mangano
- IRCCS (Scientific Institute for Research, Hospitalization and Healthcare) Centro Neurolesi 'Bonino-Pulejo', I-98124 Messina, Italy
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | - Roberto Di Marco
- Department of Medicine and Health Sciences 'Vincenzo Tiberio', University of Molise, I-86100 Campobasso, Italy
| | - Luca Falzone
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | - Maria Sofia Basile
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | - Eugenio Cavalli
- IRCCS (Scientific Institute for Research, Hospitalization and Healthcare) Centro Neurolesi 'Bonino-Pulejo', I-98124 Messina, Italy
| |
Collapse
|
97
|
Archer M, Niemelä O, Luoto K, Kultti J, Hämäläinen M, Moilanen E, Koivukangas A, Leinonen E, Kampman O. Status of inflammation and alcohol use in a 6-month follow-up study of patients with major depressive disorder. Alcohol 2019; 81:21-26. [PMID: 30769022 DOI: 10.1016/j.alcohol.2019.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/16/2019] [Accepted: 02/05/2019] [Indexed: 11/17/2022]
Abstract
INTRODUCTION The studies on the relationship between alcohol consumption, the status of inflammation, and depression have produced conflicting results. In this study, we followed patients with major depressive disorders by monitoring biomarkers of inflammation together with biomarkers of heavy alcohol use. METHOD The levels of IL-6 (interleukin-6), IL-8 (interleukin-8), hs-CRP (high sensitivity C-reactive protein), YKL-40 (also known as Chitinase-3-like protein 1 or CHI3L1), and biomarkers of alcohol consumption and liver status (GT, CDT, ALT, alkaline phosphatase) were measured at baseline and after 6 months of psychiatric treatment from 242 patients suffering from current major depressive disorder (MDD) with (n = 99) or without (n = 143) alcohol use disorder (AUD). RESULTS At baseline, the patients with MDD + AUD showed higher levels of inflammatory biomarkers IL-6 (p < 0.001), hs-CRP (p < 0.01), YKL-40 (p < 0.05), and biomarkers of alcohol consumption, than the corresponding group of non-AUD patients. These differences disappeared during follow-up and recovery from depression. The level of IL-8 decreased significantly in both AUD (p < 0.05) and non-AUD (p < 0.05) patients. During follow-up, the biomarkers of alcohol consumption, GT and CDT, in AUD patients were found to decrease in parallel with serum YKL-40 levels. CONCLUSIONS Alcohol consumption appears to modulate the status of inflammation in depressive patients. A more systematic use of biomarkers of inflammation together with biomarkers of alcohol consumption and liver status may prove to be of value in a more comprehensive assessment and treatment of patients with depression.
Collapse
Affiliation(s)
- Mari Archer
- University of Tampere, Faculty of Medicine and Life Sciences and Tampere University Hospital, Department of Psychiatry, 33014 University of Tampere, Tampere, Finland.
| | - Onni Niemelä
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital and University of Tampere, 60220 Seinäjoki, Finland
| | - Kaisa Luoto
- University of Tampere, Faculty of Medicine and Life Sciences, 33014 University of Tampere, Finland and Seinäjoki Central Hospital, Department of Psychiatry, 60220 Seinäjoki, Finland
| | - Johanna Kultti
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital and University of Tampere, 60220 Seinäjoki, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, University of Tampere, Faculty of Medicine and Life Sciences and Tampere University Hospital, 33014 University of Tampere, Tampere, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, University of Tampere, Faculty of Medicine and Life Sciences and Tampere University Hospital, 33014 University of Tampere, Tampere, Finland
| | - Antti Koivukangas
- University of Tampere, Faculty of Medicine and Life Sciences, 33014 University of Tampere, Finland and Seinäjoki Central Hospital, Department of Psychiatry, 60220 Seinäjoki, Finland
| | - Esa Leinonen
- University of Tampere, Faculty of Medicine and Life Sciences and Tampere University Hospital, Department of Psychiatry, 33014 University of Tampere, Tampere, Finland
| | - Olli Kampman
- University of Tampere, Faculty of Medicine and Life Sciences, 33014 University of Tampere, Finland and Seinäjoki Central Hospital, Department of Psychiatry, 60220 Seinäjoki, Finland
| |
Collapse
|
98
|
Sanchez-Alavez M, Nguyen W, Mori S, Wills DN, Otero D, Aguirre CA, Singh M, Ehlers CL, Conti B. Time Course of Blood and Brain Cytokine/Chemokine Levels Following Adolescent Alcohol Exposure and Withdrawal in Rats. Alcohol Clin Exp Res 2019; 43:2547-2558. [PMID: 31589333 PMCID: PMC6904424 DOI: 10.1111/acer.14209] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 10/01/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Adolescence is a critical period for neural development, and alcohol exposure during adolescence can lead to an elevated risk for health consequences as well as alcohol use disorders. Clinical and experimental data suggest that chronic alcohol exposure may produce immunomodulatory effects that can lead to the activation of pro-inflammatory cytokine pathways as well as microglial markers. The present study evaluated, in brain and blood, the effects of adolescent alcohol exposure and withdrawal on microglia and on the most representative pro- and anti-inflammatory cytokines and major chemokines that can contribute to the establishing of a neuroinflammatory environment. METHODS Wistar rats (males, n = 96) were exposed to ethanol (EtOH) vapors, or air control, for 5 weeks over adolescence (PD22-PD58). Brains and blood samples were collected at 3 time points: (i) after 35 days of vapor/air exposure (PD58); (ii) after 1 day of withdrawal (PD59), and (iii) 28 days after withdrawal (PD86). The ionized calcium-binding adapter molecule 1 (Iba-1) was used to index microglial activation, and cytokine/chemokine responses were analyzed using magnetic bead panels. RESULTS After 35 days of adolescent vapor exposure, a significant increase in Iba-1 immunoreactivity was seen in amygdala, frontal cortex, hippocampus, and substantia nigra. However, Iba-1 density returned to control levels at both 1 day and 28 days of withdrawal except in the hippocampus where Iba-1 density was significantly lower than controls. In serum, adolescent EtOH exposure induced a reduction in IL-13 and an increase in fractalkine at day 35. After 1 day of withdrawal, IL-18 was reduced, and IP-10 was elevated, whereas both IP-10 and IL-10 were elevated at 28 days following withdrawal. In the frontal cortex, adolescent EtOH exposure induced an increase in IL-1β at day 35, and 28 days of withdrawal, and IL-10 was increased after 28 days of withdrawal. CONCLUSION These data demonstrate that EtOH exposure during adolescence produces significant microglial activation; however, inflammatory markers seen in the blood appear to differ from those observed in the brain.
Collapse
Affiliation(s)
| | - William Nguyen
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Simone Mori
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Derek N Wills
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Dennis Otero
- Infectious and Inflammatory Disease Center and National Cancer Institute (NCI)-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Research Institute, La Jolla, California
| | - Carlos A Aguirre
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California
| | - Mona Singh
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California
| | - Cindy L Ehlers
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Bruno Conti
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
99
|
Giménez-Gómez P, Pérez-Hernández M, O'Shea E, Caso JR, Martín-Hernandez D, Cervera LA, Centelles MLGL, Gutiérrez-Lopez MD, Colado MI. Changes in brain kynurenine levels via gut microbiota and gut-barrier disruption induced by chronic ethanol exposure in mice. FASEB J 2019; 33:12900-12914. [PMID: 31509716 DOI: 10.1096/fj.201900491rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammatory processes have been shown to modify tryptophan (Trp) metabolism. Gut microbiota appears to play a significant role in the induction of peripheral and central inflammation. Ethanol (EtOH) exposure alters gut permeability, but its effects on Trp metabolism and the involvement of gut microbiota have not been studied. We analyzed several parameters of gut-barrier and of peripheral and central Trp metabolism following 2 different EtOH consumption patterns in mice, the binge model, drinking in the dark (DID), and the chronic intermittent (CI) consumption paradigm. Antibiotic treatment was used to evaluate gut microbiota involvement in the CI model. Mice exposed to CI EtOH intake, but not DID, show bacterial translocation and increased plasma LPS immediately after EtOH removal. Gut-barrier permeability to FITC-dextran is increased by CI, and, furthermore, intestinal epithelial tight-junction (TJ) disruption is observed (decreased expression of zonula occludens 1 and occludin) associated with increased matrix metalloproteinase (MMP)-9 activity and iNOS expression. CI EtOH, but not DID, increases kynurenine (Kyn) levels in plasma and limbic forebrain. Intestinal bacterial decontamination prevents the LPS increase but not the permeability to FITC-dextran, TJ disruption, or the increase in MMP-9 activity and iNOS expression. Although plasma Kyn levels are not affected by antibiotic treatment, the elevation of Kyn in brain is prevented, pointing to an involvement of microbiota in CI EtOH-induced changes in brain Trp metabolism. Additionally, CI EtOH produces depressive-like symptoms of anhedonia, which are prevented by the antibiotic treatment thus pointing to an association between anhedonia and the increase in brain Kyn and to the involvement of gut microbiota.-Giménez-Gómez, P., Pérez-Hernández, M., O'Shea, E., Caso, J. R., Martín-Hernández, D., Cervera, L. A., Centelles. M. L. G.-L., Gutiérrez-Lopez, M. D., Colado, M. I. Changes in brain kynurenine levels via gut microbiota and gut-barrier disruption induced by chronic ethanol exposure in mice.
Collapse
Affiliation(s)
- Pablo Giménez-Gómez
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain.,Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain.,Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Mercedes Pérez-Hernández
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain.,Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain.,Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Esther O'Shea
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain.,Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain.,Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Javier R Caso
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain.,Centro de Investigación Biomédica en Salud Mental (CIBERSAM), Madrid, Spain
| | - David Martín-Hernandez
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain.,Centro de Investigación Biomédica en Salud Mental (CIBERSAM), Madrid, Spain
| | - Luis Alou Cervera
- Área de Microbiología, Departamento de Medicina, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | | | - María Dolores Gutiérrez-Lopez
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain.,Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain.,Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Maria Isabel Colado
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain.,Red de Trastornos Adictivos del Instituto de Salud Carlos III, Madrid, Spain.,Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| |
Collapse
|
100
|
Cholinergic system and exploratory behavior are changed after weekly-binge ethanol exposure in zebrafish. Pharmacol Biochem Behav 2019; 186:172790. [PMID: 31499145 DOI: 10.1016/j.pbb.2019.172790] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/28/2022]
Abstract
Binge drinking is characterized by excessive alcohol consumption in a short period of time and is associated with a poor quality of life. Zebrafish are commonly used to investigate neurochemical, behavioral, and genetic parameters associated with ethanol (EtOH) exposure. However, few studies have used zebrafish as a model to investigate binge EtOH exposure. In order to elucidate the potential neurobehavioral impairments evoked by binge EtOH exposure in zebrafish, animals were immersed in 1.4% EtOH for 30 min three consecutive times with intervals of one week. Neurobehavioral parameters were analyzed immediately following the third exposure, as well as 2 and 9 days later. Brain choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) activities were reduced 9 days after the treatment. Thiobarbituric acid-reactive species and dichlorodihydrofluorescein levels were increased immediately after the treatment, but both returned to normal levels 2 days after the treatment. Catalase and glutathione reductase were impaired 2 and 9 days after the treatment. No alteration was observed in superoxide dismutase and glutathione peroxidase activities. EtOH treatment did not alter brain expression of inflammatory genes such as il-1β, il-10, and tnf-α. Zebrafish displayed anxiolytic-like behavior immediately after the last exposure, though there was no behavioral alteration observed 9 days after the treatment. Therefore, binge EtOH exposure in zebrafish leads to long lasting brain cholinergic alteration, probably related to oxidative stress immediately after the exposure, which is independent of classical inflammatory markers.
Collapse
|