51
|
Wu T, Fu M, Valkonen M, Täubel M, Xu Y, Boor BE. Particle Resuspension Dynamics in the Infant Near-Floor Microenvironment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1864-1875. [PMID: 33450149 DOI: 10.1021/acs.est.0c06157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Carpet dust contains microbial and chemical material that can impact early childhood health. Infants may be exposed to greater quantities of resuspended dust, given their close proximity to floor surfaces. Chamber experiments with a robotic infant were integrated with a material balance model to provide new fundamental insights into the size-dependency of infant crawling-induced particle resuspension and exposure. The robotic infant was exposed to resuspended particle concentrations from 105 to 106 m-3 in the near-floor (NF) microzone during crawling, with concentrations generally decreasing following vacuum cleaning of the carpets. A pronounced vertical variation in particle concentrations was observed between the NF microzone and bulk air. Resuspension fractions for crawling are similar to those for adult walking, with values ranging from 10-6 to 10-1 and increasing with particle size. Meaningful amounts of dust are resuspended during crawling, with emission rates of 0.1 to 2 × 104 μg h-1. Size-resolved inhalation intake fractions ranged from 5 to 8 × 103 inhaled particles per million resuspended particles, demonstrating that a significant fraction of resuspended particles can be inhaled. A new exposure metric, the dust-to-breathing zone transport efficiency, was introduced to characterize the overall probability of a settled particle being resuspended and delivered to the respiratory airways. Values ranged from less than 0.1 to over 200 inhaled particles per million settled particles, increased with particle size, and varied by over 2 orders of magnitude among 12 carpet types.
Collapse
Affiliation(s)
- Tianren Wu
- Lyles School of Civil Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Ray W. Herrick Laboratories, Center for High Performance Buildings, Purdue University, West Lafayette, Indiana 47907, United States
| | - Manjie Fu
- Ray W. Herrick Laboratories, Center for High Performance Buildings, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Maria Valkonen
- Environmental Health Unit, Finnish Institute for Health and Welfare, Kuopio 70701, Finland
| | - Martin Täubel
- Environmental Health Unit, Finnish Institute for Health and Welfare, Kuopio 70701, Finland
| | - Ying Xu
- Department of Building Science, Tsinghua University, Beijing 100084, China
| | - Brandon E Boor
- Lyles School of Civil Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Ray W. Herrick Laboratories, Center for High Performance Buildings, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
52
|
Rai S, Singh DK, Kumar A. Microbial, environmental and anthropogenic factors influencing the indoor microbiome of the built environment. J Basic Microbiol 2021; 61:267-292. [PMID: 33522603 DOI: 10.1002/jobm.202000575] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/03/2021] [Accepted: 01/10/2021] [Indexed: 12/25/2022]
Abstract
A built environment is a human-made environment providing surroundings for human occupancy, activities, and settlement. It is supposed to safeguard humans from all undesirable and harmful pollutants; however, indoor concentrations of some pollutants are much greater than that of the outdoors. Bioaerosols infiltrate from the outdoors in addition to many indoor sources of bioaerosols including the use of various chemicals as well as activities like cooking, smoking, cleaning, or even normal movement. They are also associated with a number of serious health concerns. Various ecological factors associated with the generation, the persistence as well as the dispersal of these microbial components of indoor bioaerosols, are discussed in this review, that have not been considered all together till now. The factors like microbial taxa, environmental factors, and anthropogenic activities (human occupancy, activities, and impact of urbanization) are addressed in the review. Effects of both indoor environmental factors like architectural design, lighting, ventilation, temperature, humidity, indoor/outdoor ratio, particulate matter, indoor chemistry as well as outdoor environmental factors like geography, seasons, and meteorology on the microbial concentrations have been discussed. Efforts are underway to design selective pressures for microbes to create a healthy symbiotic built microbiome as the "right" indoor microbiome is a "healthy" indoor microbiome.
Collapse
Affiliation(s)
- Sandhya Rai
- Department of Zoology, Deshbandhu College, University of Delhi, New Delhi, India
| | - Dileep K Singh
- Department of Zoology, University of Delhi, Delhi, India
| | - Amod Kumar
- Department of Zoology, Kirori Mal College, University of Delhi, Delhi, India
| |
Collapse
|
53
|
Mahnert A, Verseux C, Schwendner P, Koskinen K, Kumpitsch C, Blohs M, Wink L, Brunner D, Goessler T, Billi D, Moissl-Eichinger C. Microbiome dynamics during the HI-SEAS IV mission, and implications for future crewed missions beyond Earth. MICROBIOME 2021; 9:27. [PMID: 33487169 PMCID: PMC7831191 DOI: 10.1186/s40168-020-00959-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/06/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Human health is closely interconnected with its microbiome. Resilient microbiomes in, on, and around the human body will be key for safe and successful long-term space travel. However, longitudinal dynamics of microbiomes inside confined built environments are still poorly understood. Herein, we used the Hawaii Space Exploration Analog and Simulation IV (HI-SEAS IV) mission, a 1 year-long isolation study, to investigate microbial transfer between crew and habitat, in order to understand adverse developments which may occur in a future outpost on the Moon or Mars. RESULTS Longitudinal 16S rRNA gene profiles, as well as quantitative observations, revealed significant differences in microbial diversity, abundance, and composition between samples of the built environment and its crew. The microbiome composition and diversity associated with abiotic surfaces was found to be rather stable, whereas the microbial skin profiles of individual crew members were highly dynamic, resulting in an increased microbiome diversity at the end of the isolation period. The skin microbiome dynamics were especially pronounced by a regular transfer of the indicator species Methanobrevibacter between crew members within the first 200 days. Quantitative information was used to track the propagation of antimicrobial resistance in the habitat. Together with functional and phenotypic predictions, quantitative and qualitative data supported the observation of a delayed longitudinal microbial homogenization between crew and habitat surfaces which was mainly caused by a malfunctioning sanitary facility. CONCLUSIONS This study highlights main routes of microbial transfer, interaction of the crew, and origins of microbial dynamics in an isolated environment. We identify key targets of microbial monitoring, and emphasize the need for defined baselines of microbiome diversity and abundance on surfaces and crew skin. Targeted manipulation to counteract adverse developments of the microbiome could be a highly important strategy to ensure safety during future space endeavors. Video abstract.
Collapse
Affiliation(s)
- Alexander Mahnert
- Interactive Microbiome Research, Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Cyprien Verseux
- Laboratory of Applied Space Microbiology, Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, Am Fallturm 2, 28359 Bremen, Germany
| | - Petra Schwendner
- University of Florida, Space Life Sciences Lab, 505 Odyssey Way, Exploration Park, N. Merritt Island, FL 32953 USA
| | - Kaisa Koskinen
- Interactive Microbiome Research, Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Christina Kumpitsch
- Interactive Microbiome Research, Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Marcus Blohs
- Interactive Microbiome Research, Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Lisa Wink
- Interactive Microbiome Research, Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Daniela Brunner
- Interactive Microbiome Research, Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Theodora Goessler
- Interactive Microbiome Research, Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Daniela Billi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica s.n.c, 00133 Rome, Italy
| | - Christine Moissl-Eichinger
- Interactive Microbiome Research, Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
54
|
Yang S, Bekö G, Wargocki P, Williams J, Licina D. Human Emissions of Size-Resolved Fluorescent Aerosol Particles: Influence of Personal and Environmental Factors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:509-518. [PMID: 33337850 DOI: 10.1021/acs.est.0c06304] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Human emissions of fluorescent aerosol particles (FAPs) can influence the biological burden of indoor air. Yet, quantification of FAP emissions from human beings remains limited, along with a poor understanding of the underlying emission mechanisms. To reduce the knowledge gap, we characterized human emissions of size-segregated FAPs (1-10 μm) and total particles in a climate chamber with low-background particle levels. We probed the influence of several personal factors (clothing coverage and age) and environmental parameters (level of ozone, air temperature, and relative humidity) on particle emissions from human volunteers. A material-balance model showed that the mean emission rate ranged 5.3-16 × 106 fluorescent particles per person-h (0.30-1.2 mg per person-h), with a dominant size mode within 3-5 μm. Volunteers wearing long-sleeve shirts and pants produced 40% more FAPs relative to those wearing t-shirts and shorts. Particle emissions varied across the age groups: seniors (average age 70.5 years) generated 50% fewer FAPs compared to young adults (25.0 years) and teenagers (13.8 years). While we did not observe a measurable influence of ozone (0 vs 40 ppb) on human FAP emissions, there was a strong influence of relative humidity (34 vs 62%), with FAP emissions decreasing by 30-60% at higher humidity.
Collapse
Affiliation(s)
- Shen Yang
- Human-Oriented Built Environment Lab, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Gabriel Bekö
- International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Pawel Wargocki
- International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Jonathan Williams
- Max Planck Institute for Chemistry, Hahn-Meitner Weg 1, 55128 Mainz, Germany
- Energy, Environment and Water Research Center, The Cyprus Institute, 2121 Nicosia, Cyprus
| | - Dusan Licina
- Human-Oriented Built Environment Lab, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
55
|
Viegas C, Dias M, Monteiro A, Faria T, Lage J, Carolino E, Caetano LA, Gomes AQ, Almeida SM, Verde SC, Belo J, Canha N. Bioburden in sleeping environments from Portuguese dwellings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116417. [PMID: 33465652 DOI: 10.1016/j.envpol.2020.116417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/20/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
A wider characterization of indoor air quality during sleep is still lacking in the literature. This study intends to assess bioburden before and after sleeping periods in Portuguese dwellings through active methods (air sampling) coupled with passive methods, such as electrostatic dust cloths (EDC); and investigate associations between before and after sleeping and bioburden. In addition, and driven by the lack of information regarding fungi azole-resistance in Portuguese dwellings, a screening with supplemented media was also performed. The most prevalent genera of airborne bacteria identified in the indoor air of the bedrooms were Micrococcus (41%), Staphylococcus (15%) and Neisseria (9%). The major indoor bacterial species isolated in all ten studied bedrooms were Micrococcus luteus (30%), Staphylococcus aureus (13%) and Micrococcus varians (11%). Our results highlight that our bodies are the source of the majority of the bacteria found in the indoor air of our homes. Regarding air fungal contamination, Chrysosporium spp. presented the highest prevalence both in after the sleeping period (40.8%) and before the sleeping period (28.8%) followed by Penicillium spp. (23.47% morning; 23.6% night) and Chrysonilia spp. (12.4% morning; 20.3% night). Several Aspergillus sections were identified in air and EDC samples. However, none of the fungal species/strains (Aspergillus sections Fumigati, Flavi, Nidulantes and Circumdati) were amplified by qPCR in the analyzed EDC. The correlations observed suggest reduced susceptibility to antifungal drugs of some fungal species found in sleeping environments. Toxigenic fungal species and indicators of harmful fungal contamination were observed in sleeping environments.
Collapse
Affiliation(s)
- Carla Viegas
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de, Lisboa, Portugal; NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de, Lisboa, Portugal; Comprehensive Health Research Center (CHRC), Portugal.
| | - Marta Dias
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de, Lisboa, Portugal
| | - Ana Monteiro
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de, Lisboa, Portugal
| | - Tiago Faria
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela-LRS, Portugal
| | - Joana Lage
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela-LRS, Portugal
| | - Elisabete Carolino
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de, Lisboa, Portugal
| | - Liliana Aranha Caetano
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de, Lisboa, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Anita Quintal Gomes
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de, Lisboa, Portugal; University of Lisbon Institute of Molecular Medicine, Faculty of Medicine, Lisbon, Portugal
| | - Susana Marta Almeida
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela-LRS, Portugal
| | - Sandra Cabo Verde
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela-LRS, Portugal
| | - Joana Belo
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de, Lisboa, Portugal; Integrated Pathophysiological Mechanisms Research Group (CEDOC) - NMS-UNL, Lisboa, Portugal
| | - Nuno Canha
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela-LRS, Portugal; Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
56
|
Grydaki N, Colbeck I, Mendes L, Eleftheriadis K, Whitby C. Bioaerosols in the Athens Metro: Metagenetic insights into the PM 10 microbiome in a naturally ventilated subway station. ENVIRONMENT INTERNATIONAL 2021; 146:106186. [PMID: 33126062 DOI: 10.1016/j.envint.2020.106186] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/30/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
To date, few studies have examined the aerosol microbial content in Metro transportation systems. Here we characterised the aerosol microbial abundance, diversity and composition in the Athens underground railway system. PM10 filter samples were collected from the naturally ventilated Athens Metro Line 3 station "Nomismatokopio". Quantitative PCR of the 16S rRNA gene and high throughput amplicon sequencing of the 16S rRNA gene and internal transcribed spacer (ITS) region was performed on DNA extracted from PM10 samples. Results showed that, despite the bacterial abundance (mean = 2.82 × 105 16S rRNA genes/m3 of air) being, on average, higher during day-time and weekdays, compared to night-time and weekends, respectively, the differences were not statistically significant. The average PM10 mass concentration on the platform was 107 μg/m3. However, there was no significant correlation between 16S rRNA gene abundance and overall PM10 levels. The Athens Metro air microbiome was mostly dominated by bacterial and fungal taxa of environmental origin (e.g. Paracoccus, Sphingomonas, Cladosporium, Mycosphaerella, Antrodia) with a lower contribution of human commensal bacteria (e.g. Corynebacterium, Staphylococcus). This study highlights the importance of both outdoor air and commuters as sources in shaping aerosol microbial communities. To our knowledge, this is the first study to characterise the mycobiome diversity in the air of a Metro environment based on amplicon sequencing of the ITS region. In conclusion, this study presents the first microbial characterisation of PM10 in the Athens Metro, contributing to the growing body of microbiome exploration within urban transit networks. Moreover, this study shows the vulnerability of public transport to airborne disease transmission.
Collapse
Affiliation(s)
- N Grydaki
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ Essex, UK
| | - I Colbeck
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ Essex, UK
| | - L Mendes
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety - Environmental Radioactivity Laboratory, N.C.S.R. "Demokritos", Aghia Paraskevi, 15310 Athens, Greece
| | - K Eleftheriadis
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety - Environmental Radioactivity Laboratory, N.C.S.R. "Demokritos", Aghia Paraskevi, 15310 Athens, Greece
| | - C Whitby
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ Essex, UK.
| |
Collapse
|
57
|
Franco Ortega S, Ferrocino I, Adams I, Silvestri S, Spadaro D, Gullino ML, Boonham N. Monitoring and Surveillance of Aerial Mycobiota of Rice Paddy through DNA Metabarcoding and qPCR. J Fungi (Basel) 2020; 6:jof6040372. [PMID: 33348656 PMCID: PMC7766667 DOI: 10.3390/jof6040372] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 01/16/2023] Open
Abstract
The airborne mycobiota has been understudied in comparison with the mycobiota present in other agricultural environments. Traditional, culture-based methods allow the study of a small fraction of the organisms present in the atmosphere, thus missing important information. In this study, the aerial mycobiota in a rice paddy has been examined during the cropping season (from June to September 2016) using qPCRs for two important rice pathogens (Pyricularia oryzae and Bipolaris oryzae) and by using DNA metabarcoding of the fungal ITS region. The metabarcoding results demonstrated a higher alpha diversity (Shannon–Wiener diversity index H′ and total number of observed species) at the beginning of the trial (June), suggesting a higher level of community complexity, compared with the end of the season. The main taxa identified by HTS analysis showed a shift in their relative abundance that drove the cluster separation as a function of time and temperature. The most abundant OTUs corresponded to genera such as Cladosporium, Alternaria, Myrothecium, or Pyricularia. Changes in the mycobiota composition were clearly dependent on the average air temperature with a potential impact on disease development in rice. In parallel, oligotyping analysis was performed to obtain a sub-OTU identification which revealed the presence of several oligotypes of Pyricularia and Bipolaris with relative abundance changing during monitoring.
Collapse
Affiliation(s)
- Sara Franco Ortega
- Centre of Competence for the Innovation in the Agro-Environmental Sector—AGROINNOVA, University of Turin, Via Paolo Braccini 2, I-10095 Grugliasco (TO), Italy; (S.F.O.); (M.L.G.)
| | - Ilario Ferrocino
- Department of Agricultural, Forestry and Food Sciences (DiSAFA), University of Torino, Via Paolo Braccini 2, I-10095 Grugliasco (TO), Italy;
| | - Ian Adams
- FERA, National Agri-Food Innovation Campus, Sand Hutton, York YO41 1LZ, UK;
| | - Simone Silvestri
- Ente Nazionale per la Risicultura (ENTERISI), Strada per Ceretto 4, 27030 Castello d’Agogna (PV), Italy;
| | - Davide Spadaro
- Centre of Competence for the Innovation in the Agro-Environmental Sector—AGROINNOVA, University of Turin, Via Paolo Braccini 2, I-10095 Grugliasco (TO), Italy; (S.F.O.); (M.L.G.)
- Department of Agricultural, Forestry and Food Sciences (DiSAFA), University of Torino, Via Paolo Braccini 2, I-10095 Grugliasco (TO), Italy;
- Correspondence:
| | - Maria Lodovica Gullino
- Centre of Competence for the Innovation in the Agro-Environmental Sector—AGROINNOVA, University of Turin, Via Paolo Braccini 2, I-10095 Grugliasco (TO), Italy; (S.F.O.); (M.L.G.)
- Department of Agricultural, Forestry and Food Sciences (DiSAFA), University of Torino, Via Paolo Braccini 2, I-10095 Grugliasco (TO), Italy;
| | - Neil Boonham
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
| |
Collapse
|
58
|
Madjunkov M, Dviri M, Librach C. A comprehensive review of the impact of COVID-19 on human reproductive biology, assisted reproduction care and pregnancy: a Canadian perspective. J Ovarian Res 2020; 13:140. [PMID: 33246480 PMCID: PMC7694590 DOI: 10.1186/s13048-020-00737-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022] Open
Abstract
Currently, the world is in the seventh month of the COVID-19 pandemic. Globally, infections with novel SARS-CoV-2 virus are continuously rising with mounting numbers of deaths. International and local public health responses, almost in synchrony, imposed restrictions to minimize spread of the virus, overload of health system capacity, and deficit of personal protective equipment (PPE). Although in most cases the symptoms are mild or absent, SARS-CoV-2 infection can lead to serious acute respiratory disease and multisystem failure. The research community responded to this new disease with a high level of transparency and data sharing; with the aim to better understand the origin, pathophysiology, epidemiology and clinical manifestations. The ultimate goal of this research is to develop vaccines for prevention, mitigation strategies, as well as potential therapeutics.The aim of this review is to summarize current knowledge regarding the novel SARS CoV-2, including its pathophysiology and epidemiology, as well as, what is known about the potential impact of COVID-19 on reproduction, fertility care, pregnancy and neonatal outcome. This summary also evaluates the effects of this pandemic on reproductive care and research, from Canadian perspective, and discusses future implications.In summary, reported data on pregnant women is limited, suggesting that COVID-19 symptoms and severity of the disease during pregnancy are similar to those in non-pregnant women, with pregnancy outcomes closely related to severity of maternal disease. Evidence of SARS-CoV-2 effects on gametes is limited. Human reproduction societies have issued guidelines for practice during COVID-19 pandemic that include implementation of mitigation practices and infection control protocols in fertility care units. In Canada, imposed restrictions at the beginning of the pandemic were successful in containing spread of the infection, allowing for eventual resumption of assisted reproductive treatments under new guidelines for practice. Canada dedicated funds to support COVID-19 research including a surveillance study to monitor outcomes of COVID-19 during pregnancy and assisted reproduction. Continuous evaluation of new evidence must be in place to carefully adjust recommendations on patient management during assisted reproductive technologies (ART) and in pregnancy.
Collapse
Affiliation(s)
- Mitko Madjunkov
- CReATe Fertility Centre, 790 Bay Street, Suite 1100, Toronto, M5G1N8, Canada.
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Canada.
| | - Michal Dviri
- CReATe Fertility Centre, 790 Bay Street, Suite 1100, Toronto, M5G1N8, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Canada
| | - Clifford Librach
- CReATe Fertility Centre, 790 Bay Street, Suite 1100, Toronto, M5G1N8, Canada.
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, Canada.
- Department of Physiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
59
|
van Tilburg Bernardes E, Gutierrez MW, Arrieta MC. The Fungal Microbiome and Asthma. Front Cell Infect Microbiol 2020; 10:583418. [PMID: 33324573 PMCID: PMC7726317 DOI: 10.3389/fcimb.2020.583418] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
Asthma is a group of inflammatory conditions that compromises the airways of a continuously increasing number of people around the globe. Its complex etiology comprises both genetic and environmental aspects, with the intestinal and lung microbiomes emerging as newly implicated factors that can drive and aggravate asthma. Longitudinal infant cohort studies combined with mechanistic studies in animal models have identified microbial signatures causally associated with subsequent asthma risk. The recent inclusion of fungi in human microbiome surveys has revealed that microbiome signatures associated with asthma risk are not limited to bacteria, and that fungi are also implicated in asthma development in susceptible individuals. In this review, we examine the unique properties of human-associated and environmental fungi, which confer them the ability to influence immune development and allergic responses. The important contribution of fungi to asthma development and exacerbations prompts for their inclusion in current and future asthma studies in humans and animal models.
Collapse
Affiliation(s)
- Erik van Tilburg Bernardes
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Mackenzie W Gutierrez
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Marie-Claire Arrieta
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
60
|
Marotz C, Belda-Ferre P, Ali F, Das P, Huang S, Cantrell K, Jiang L, Martino C, Diner RE, Rahman G, McDonald D, Armstrong G, Kodera S, Donato S, Ecklu-Mensah G, Gottel N, Garcia MCS, Chiang LY, Salido RA, Shaffer JP, Bryant M, Sanders K, Humphrey G, Ackermann G, Haiminen N, Beck KL, Kim HC, Carrieri AP, Parida L, Vázquez-Baeza Y, Torriani FJ, Knight R, Gilbert JA, Sweeney DA, Allard SM. Microbial context predicts SARS-CoV-2 prevalence in patients and the hospital built environment. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.11.19.20234229. [PMID: 33236030 PMCID: PMC7685343 DOI: 10.1101/2020.11.19.20234229] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Synergistic effects of bacteria on viral stability and transmission are widely documented but remain unclear in the context of SARS-CoV-2. We collected 972 samples from hospitalized ICU patients with coronavirus disease 2019 (COVID-19), their health care providers, and hospital surfaces before, during, and after admission. We screened for SARS-CoV-2 using RT-qPCR, characterized microbial communities using 16S rRNA gene amplicon sequencing, and contextualized the massive microbial diversity in this dataset in a meta-analysis of over 20,000 samples. Sixteen percent of surfaces from COVID-19 patient rooms were positive, with the highest prevalence in floor samples next to patient beds (39%) and directly outside their rooms (29%). Although bed rail samples increasingly resembled the patient microbiome throughout their stay, SARS-CoV-2 was less frequently detected there (11%). Despite surface contamination in almost all patient rooms, no health care workers providing COVID-19 patient care contracted the disease. SARS-CoV-2 positive samples had higher bacterial phylogenetic diversity across human and surface samples, and higher biomass in floor samples. 16S microbial community profiles allowed for high classifier accuracy for SARS-CoV-2 status in not only nares, but also forehead, stool and floor samples. Across these distinct microbial profiles, a single amplicon sequence variant from the genus Rothia was highly predictive of SARS-CoV-2 across sample types, and had higher prevalence in positive surface and human samples, even when comparing to samples from patients in another intensive care unit prior to the COVID-19 pandemic. These results suggest that bacterial communities contribute to viral prevalence both in the host and hospital environment.
Collapse
Affiliation(s)
- Clarisse Marotz
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Pedro Belda-Ferre
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
| | - Farhana Ali
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Promi Das
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Shi Huang
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
| | - Kalen Cantrell
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
- Department of Computer Science and Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
| | - Lingjing Jiang
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
- Division of Biostatistics, University of California, San Diego, La Jolla, California, USA
| | - Cameron Martino
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
- Bioinformatics and Systems Biology Program, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
| | - Rachel E Diner
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Gibraan Rahman
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Bioinformatics and Systems Biology Program, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
| | - Daniel McDonald
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - George Armstrong
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
- Bioinformatics and Systems Biology Program, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
| | - Sho Kodera
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Sonya Donato
- Microbiome Core, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Gertrude Ecklu-Mensah
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Neil Gottel
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Mariana C Salas Garcia
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Leslie Y Chiang
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Rodolfo A Salido
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Justin P Shaffer
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - MacKenzie Bryant
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Karenina Sanders
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Greg Humphrey
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Gail Ackermann
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Niina Haiminen
- IBM, T.J Watson Research Center, Yorktown Heights, New York, USA
| | - Kristen L Beck
- AI and Cognitive Software, IBM Research-Almaden, San Jose, California, USA
| | - Ho-Cheol Kim
- AI and Cognitive Software, IBM Research-Almaden, San Jose, California, USA
| | | | - Laxmi Parida
- AI and Cognitive Software, IBM Research-Almaden, San Jose, California, USA
| | - Yoshiki Vázquez-Baeza
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
| | - Francesca J Torriani
- Infection Prevention and Clinical Epidemiology Unit at UC San Diego Health, Division of Infectious Diseases and Global Public Health, Department of Medicine, UC San Diego, San Diego CA, USA
| | - Rob Knight
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
- Department of Computer Science and Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Jack A Gilbert
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
| | - Daniel A Sweeney
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of California San Diego, La Jolla, California, USA
| | - Sarah M Allard
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
61
|
Effectiveness and Eco-Costs of Air Cleaners in Terms of Improving Fungal Air Pollution in Dwellings Located in Southern Poland—A Preliminary Study. ATMOSPHERE 2020. [DOI: 10.3390/atmos11111255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Epidemiological evidence shows that air pollution is responsible for several million premature deaths per year. By virtue of being responsible for these deaths, economic evidence shows that air pollution also imposes a so-called economic cost to society of several trillion dollars per year. The diseases caused by biological air pollutants are of primary global concern for both social and economic reasons, and given that people may spend more than 90% of their time in enclosed spaces, the investigation into methods to remove indoor air pollutants is of paramount importance. One of the methods to improve indoor air quality (IAQ) is to use air cleaners (ACLs) with high-efficiency particulate air filters (HEPA) that remove biological indoor air pollutants from indoor environments. This work presents the results of a study of fungal aerosol samples collected during the summer season from inside two dwellings (DG1 and DG2) before and after starting the use of ACLs. The fungal aerosol samples collected from each of the six stages of the sampler were incubated on agar plates at 26 °C, and the colony forming units (CFU) were manually counted and statistically corrected. The concentration of living airborne fungi was expressed as the CFU in the volume of air (CFU·m−3). The average concentration of fungal aerosol decreased the most when the ACLs were active for 24 min. The reduction was from 474 CFU·m−3 to 306 CFU·m−3, and from 582 CFU·m−3 to 338 CFU·m−3 in DG1 and DG2, respectively. The use of ACLs was assessed by the life cycle assessment (LCA) methodology. This study highlights the benefits of controlling biological air pollutants in order to keep occupants of buildings happy and healthy.
Collapse
|
62
|
Kim JE, Kim HE, Cho H, Park JI, Kwak MJ, Kim BY, Yang SH, Lee JP, Kim DK, Joo KW, Kim YS, Kim BS, Lee H. Effect of the similarity of gut microbiota composition between donor and recipient on graft function after living donor kidney transplantation. Sci Rep 2020; 10:18881. [PMID: 33144672 PMCID: PMC7641223 DOI: 10.1038/s41598-020-76072-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/14/2020] [Indexed: 12/19/2022] Open
Abstract
Graft outcomes of unrelated donor kidney transplant are comparable with those of related donor kidney transplant despite their genetic distance. This study aimed to identify whether the similarity of donor–recipient gut microbiota composition affects early transplant outcomes. Stool samples from 67 pairs of kidney transplant recipients and donors were collected. Gut microbiota differences between donors and recipients were determined using weighted UniFrac distance. Among the donor–recipient pairs, 30 (44.8%) pairs were related, while 37 (55.2%) were unrelated. The unrelated pairs, especially spousal pairs, had similar microbial composition, and they more frequently shared their meals than related pairs did. The weighted UniFrac distance showed an inverse correlation with the 6-month allograft function (p = 0.034); the correlation was significant in the unrelated pairs (p = 0.003). In the unrelated pairs, the microbial distance showed an excellent accuracy in predicting the estimated glomerular filtration rate of < 60 mL/min/1.73 m2 at 6-months post-transplantation and was better than human leukocyte antigen incompatibility and rejection. The incidence of infection within 6 months post-transplantation increased in the recipients having dissimilar microbiota with donors compared to the other recipients. Thus, pre-transplantation microbial similarity in unrelated donors and recipients may be associated with 6-month allograft function.
Collapse
Affiliation(s)
- Ji Eun Kim
- Department of Internal Medicine, Seoul National University Hospital, 103 Daehakro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Internal Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Hyo-Eun Kim
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyunjeong Cho
- Department of Internal Medicine, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Ji In Park
- Department of Internal Medicine, Kangwon National University Hospital, Chuncheon, Republic of Korea
| | | | | | - Seung Hee Yang
- Kidney Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Jung Pyo Lee
- Department of Internal Medicine, Seoul National University Boramae Hospital, Seoul, Republic of Korea
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University Hospital, 103 Daehakro, Jongno-gu, Seoul, 03080, Republic of Korea.,Kidney Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Kwon Wook Joo
- Department of Internal Medicine, Seoul National University Hospital, 103 Daehakro, Jongno-gu, Seoul, 03080, Republic of Korea.,Kidney Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Yon Su Kim
- Department of Internal Medicine, Seoul National University Hospital, 103 Daehakro, Jongno-gu, Seoul, 03080, Republic of Korea.,Kidney Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Bong-Soo Kim
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon, Republic of Korea
| | - Hajeong Lee
- Department of Internal Medicine, Seoul National University Hospital, 103 Daehakro, Jongno-gu, Seoul, 03080, Republic of Korea. .,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
63
|
Versoza M, Heo J, Ko S, Kim M, Park D. Solid Oxygen-Purifying (SOP) Filters: A Self-Disinfecting Filters to Inactivate Aerosolized Viruses. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E7858. [PMID: 33120940 PMCID: PMC7662992 DOI: 10.3390/ijerph17217858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/14/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022]
Abstract
Normal heating, ventilation, and air conditioning (HVAC) systems typically use high-efficiency particulate air (HEPA) filters, which can filter dust, various pollutants, and even bacteria and viruses from indoor air. However, since HEPA filters cannot not clean themselves and due to the nature of these microbes which can survive for long periods of time, changing these filters improperly could transmit pathogenic bacteria or viruses, and could even lead to new infections. This study indicated that these manufactured Solid Oxygen-purifying (SOP) filters have the potential to self-disinfect, filter, and inactivate aerosolized viruses. MS2 bacteriophage was used as a model virus in two different experiments. The first experiment involved aerosolization of the virus, while the second were a higher viral load using a soaking method. The SOP filters inactivated up to 99.8% of the virus particles in both experiments, provided that the density of the SOP filter was high. Thus, SOP filters could self-clean, which led to protection against airborne and aerosolized viruses by inactivating them on contact. Furthermore, SOP filters could be potentially use or addition in HVAC systems and face masks to prevent the transmission of airborne and aerosolized viruses.
Collapse
Affiliation(s)
- Michael Versoza
- Transportation Environmental Research Team, Korea Railroad Research Institute, Uiwang City 16105, Korea; (M.V.); (J.H.); (S.K.); (M.K.)
- Railway System Engineering, University of Science and Technology, Daejeon City 34113, Korea
| | - Jaeseok Heo
- Transportation Environmental Research Team, Korea Railroad Research Institute, Uiwang City 16105, Korea; (M.V.); (J.H.); (S.K.); (M.K.)
- Railway System Engineering, University of Science and Technology, Daejeon City 34113, Korea
| | - Sangwon Ko
- Transportation Environmental Research Team, Korea Railroad Research Institute, Uiwang City 16105, Korea; (M.V.); (J.H.); (S.K.); (M.K.)
| | - Minjeong Kim
- Transportation Environmental Research Team, Korea Railroad Research Institute, Uiwang City 16105, Korea; (M.V.); (J.H.); (S.K.); (M.K.)
| | - Duckshin Park
- Transportation Environmental Research Team, Korea Railroad Research Institute, Uiwang City 16105, Korea; (M.V.); (J.H.); (S.K.); (M.K.)
- Railway System Engineering, University of Science and Technology, Daejeon City 34113, Korea
| |
Collapse
|
64
|
Li S, Yang Z, Hu D, Cao L, He Q. Understanding building-occupant-microbiome interactions toward healthy built environments: A review. FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING 2020; 15:65. [PMID: 33145119 PMCID: PMC7596174 DOI: 10.1007/s11783-020-1357-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/30/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Built environments, occupants, and microbiomes constitute a system of ecosystems with extensive interactions that impact one another. Understanding the interactions between these systems is essential to develop strategies for effective management of the built environment and its inhabitants to enhance public health and well-being. Numerous studies have been conducted to characterize the microbiomes of the built environment. This review summarizes current progress in understanding the interactions between attributes of built environments and occupant behaviors that shape the structure and dynamics of indoor microbial communities. In addition, this review also discusses the challenges and future research needs in the field of microbiomes of the built environment that necessitate research beyond the basic characterization of microbiomes in order to gain an understanding of the causal mechanisms between the built environment, occupants, and microbiomes, which will provide a knowledge base for the development of transformative intervention strategies toward healthy built environments. The pressing need to control the transmission of SARS-CoV-2 in indoor environments highlights the urgency and significance of understanding the complex interactions between the built environment, occupants, and microbiomes, which is the focus of this review.
Collapse
Affiliation(s)
- Shuai Li
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996 USA
| | - Zhiyao Yang
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN 47907 USA
| | - Da Hu
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996 USA
| | - Liu Cao
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996 USA
| | - Qiang He
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996 USA
- Institute for a Secure & Sustainable Environment, University of Tennessee, Knoxville, TN 37996 USA
| |
Collapse
|
65
|
Zhou Y, Lai Y, Tong X, Leung MHY, Tong JCK, Ridley IA, Lee PKH. Airborne Bacteria in Outdoor Air and Air of Mechanically Ventilated Buildings at City Scale in Hong Kong across Seasons. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11732-11743. [PMID: 32852192 DOI: 10.1021/acs.est.9b07623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Studies of the indoor airborne microbiome have mostly been confined to a single location and time point. Here, we characterized, over the course of a year, the geographic variation, building-function dependence, and dispersal characteristics of indoor and outdoor airborne microbiomes (bacterial members only) of eight mechanically ventilated commercial buildings. Based on the Sloan neutral model, airborne microbiomes were randomly dispersed in the respective indoor and outdoor environments and between the two environments during each season. The dominant taxa in the indoor and outdoor environments showed minor variations at each location among seasons. The airborne microbiomes displayed weak seasonality for both indoor and outdoor environments, while a weak geographic variation was found only for the indoor environments. Source tracking results show that outdoor air and occupant skin were major contributors to the indoor airborne microbiomes, but the extent of the contribution from each source varied within and among buildings over the seasons, which suggests variations in local building use. Based on 32 cases of indoor airborne microbiome data, we determined that the indoor/outdoor (I/O) ratio of PM2.5 was not a robust indicator of the sources found indoors. Alternatively, the indoor concentration of carbon dioxide was more closely correlated with the major sources of the indoor airborne microbiome in mechanically ventilated environments.
Collapse
Affiliation(s)
- You Zhou
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Yonghang Lai
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Xinzhao Tong
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Marcus H Y Leung
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Jimmy C K Tong
- Building Sustainability Group, Arup, Kowloon, Hong Kong SAR, China
| | - Ian A Ridley
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Patrick K H Lee
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
66
|
Prediction Model for Airborne Microorganisms Using Particle Number Concentration as Surrogate Markers in Hospital Environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17197237. [PMID: 33022969 PMCID: PMC7579480 DOI: 10.3390/ijerph17197237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 11/28/2022]
Abstract
Indoor microbiological air quality, including airborne bacteria and fungi, is associated with hospital-acquired infections (HAIs) and emerging as an environmental issue in hospital environment. Many studies have been carried out based on culture-based methods to evaluate bioaerosol level. However, conventional biomonitoring requires laborious process and specialists, and cannot provide data quickly. In order to assess the concentration of bioaerosol in real-time, particles were subdivided according to the aerodynamic diameter for surrogate measurement. Particle number concentration (PNC) and meteorological conditions selected by analyzing the correlation with bioaerosol were included in the prediction model, and the forecast accuracy of each model was evaluated by the mean absolute percentage error (MAPE). The prediction model for airborne bacteria demonstrated highly accurate prediction (R2 = 0.804, MAPE = 8.5%) from PNC1-3, PNC3-5, and PNC5-10 as independent variables. Meanwhile, the fungal prediction model showed reasonable, but weak, prediction results (R2 = 0.489, MAPE = 42.5%) with PNC3-5, PNC5-10, PNC > 10, and relative humidity. As a result of external verification, even when the model was applied in a similar hospital environment, the bioaerosol concentration could be sufficiently predicted. The prediction model constructed in this study can be used as a pre-assessment method for monitoring microbial contamination in indoor environments.
Collapse
|
67
|
You HS, Ok YJ, Lee SH, Lee SL, Lee YJ, Lee MH, Hyun SH. Qualitative and Quantitative Analysis for Microbiome Data Matching between Objects. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2020. [DOI: 10.15324/kjcls.2020.52.3.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Hee Sang You
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University, Dajeon, Korea
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon, Korea
| | - Yeon Jeong Ok
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University, Dajeon, Korea
| | - Song Hee Lee
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University, Dajeon, Korea
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon, Korea
| | - So Lip Lee
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University, Dajeon, Korea
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon, Korea
| | - Young Ju Lee
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University, Dajeon, Korea
| | - Min Ho Lee
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon, Korea
- Department of Food Science and Service, College of Bio-Convergence, Eulji University, Seongnam, Korea
| | - Sung Hee Hyun
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University, Dajeon, Korea
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon, Korea
| |
Collapse
|
68
|
Sultan ZM, Pantelic J, Tham KW. Infiltration of fine particles in urban daycares. INDOOR AIR 2020; 30:955-965. [PMID: 32304116 DOI: 10.1111/ina.12679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 03/16/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Singapore is a tropical country with a high density of day-care facilities whose indoor environments may be adversely affected by outdoor fine particle (PM2.5 ) air pollution. To reduce this problem requires effective, evidence-based exposure-reduction strategies. Little information is available on the penetration of outdoor PM2.5 into day-care environments. Our study attempted to address the following objectives: to measure indoor infiltration factor (Finf ) of PM2.5 from outdoor PM2.5 and to determine the building parameters that modify the indoor PM2.5 . We collected indoor/outdoor 1-min PM2.5 from 50 day-care classrooms. We noted mean Finf ± SD of 0.65 ± 0.22 in day-care rooms which are naturally ventilated and lower Finf ± SD values of 0.47 ± 0.18 for those that are air-conditioned: values which are lower than those reported in Singapore residences. The air exchange rates were higher in naturally ventilated rooms (1.47 vs 0.86 h-1 ). However, fine particle deposition rates were lower for naturally ventilated rooms (0.67 ± 0.43 h-1 ) compared with air-conditioned ones (1.03 ± 0.55 h-1 ) presumably due to composite rates linked to the filters within the split unit air-conditioners, higher recirculation rates, and interior surfaces in the latter. Our findings indicate that children remaining indoor in daycares where air-conditioning is used can reduce their PM2.5 exposures during outdoor pollution episodes.
Collapse
Affiliation(s)
- Zuraimi M Sultan
- Berkeley Education Alliance for Research in Singapore (BEARS) Limited, Singapore, Singapore
| | - Jovan Pantelic
- Center for the Built Environment, University of California Berkeley, Berkeley, CA, USA
| | - Kwok Wai Tham
- Department of Building, National University of Singapore, Singapore, Singapore
| |
Collapse
|
69
|
Haines SR, Siegel JA, Dannemiller KC. Modeling microbial growth in carpet dust exposed to diurnal variations in relative humidity using the "Time-of-Wetness" framework. INDOOR AIR 2020; 30:978-992. [PMID: 32403157 PMCID: PMC7496831 DOI: 10.1111/ina.12686] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/24/2020] [Accepted: 05/02/2020] [Indexed: 06/11/2023]
Abstract
Resuspension of microbes in floor dust and subsequent inhalation by human occupants is an important source of human microbial exposure. Microbes in carpet dust grow at elevated levels of relative humidity, but rates of this growth are not well established, especially under changing conditions. The goal of this study was to model fungal growth in carpet dust based on indoor diurnal variations in relative humidity utilizing the time-of-wetness framework. A chamber study was conducted on carpet and dust collected from 19 homes in Ohio, USA and exposed to varying moisture conditions of 50%, 85%, and 100% relative humidity. Fungal growth followed the two activation regime model, while bacterial growth could not be evaluated using the framework. Collection site was a stronger driver of species composition (P = 0.001, R2 = 0.461) than moisture conditions (P = 0.001, R2 = 0.021). Maximum moisture condition was associated with species composition within some individual sites (P = 0.001-0.02, R2 = 0.1-0.33). Aspergillus, Penicillium, and Wallemia were common fungal genera found among samples at elevated moisture conditions. These findings can inform future studies of associations between dampness/mold in homes and health outcomes and allow for prediction of microbial growth in the indoor environment.
Collapse
Affiliation(s)
- Sarah R. Haines
- Environmental Science Graduate ProgramOhio State UniversityColumbusOhioUSA
- Department of Civil, Environmental & Geodetic EngineeringCollege of EngineeringOhio State UniversityColumbusOhioUSA
- Division of Environmental Health SciencesCollege of Public HealthOhio State UniversityColumbusOhioUSA
| | - Jeffrey A. Siegel
- Department of Civil and Mineral EngineeringUniversity of TorontoTorontoONCanada
| | - Karen C. Dannemiller
- Department of Civil, Environmental & Geodetic EngineeringCollege of EngineeringOhio State UniversityColumbusOhioUSA
- Division of Environmental Health SciencesCollege of Public HealthOhio State UniversityColumbusOhioUSA
- Sustainability InstituteOhio State UniversityColumbusOhioUSA
| |
Collapse
|
70
|
Li J, Wan MP, Schiavon S, Tham KW, Zuraimi S, Xiong J, Fang M, Gall E. Size-resolved dynamics of indoor and outdoor fluorescent biological aerosol particles in a bedroom: A one-month case study in Singapore. INDOOR AIR 2020; 30:942-954. [PMID: 32363587 DOI: 10.1111/ina.12678] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/06/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
This study evaluated the interrelations between indoor and outdoor bioaerosols in a bedroom under a living condition. Two wideband integrated bioaerosol sensors were utilized to measure indoor and outdoor particulate matter (PM) and fluorescent biological airborne particles (FBAPs), which were within a size range of 0.5-20 μm. Throughout this one-month case study, the median proportion of FBAPs in PM by number was 19% (5%; the interquartile range, hereafter) and 17% (3%) for indoors and outdoors, respectively, and those by mass were 78% (12%) and 55% (9%). According to the size-resolved data, FBAPs dominated above 2 and 3.5 μm indoors and outdoors, respectively. Comparing indoor upon outdoor ratios among occupancy and window conditions, the indoor FBAPs larger than 3.16 μm were dominated by indoor sources, while non-FBAPs were mainly from outdoors. The occupant dominated the indoor source of both FBAPs and non-FBAPs. Under awake and asleep, count- and mass-based mean emission rates were 45.9 and 18.7 × 106 #/h and 5.02 and 2.83 mg/h, respectively. Based on indoor activities and local outdoor air quality in Singapore, this study recommended opening the window when awake and closing it during sleep to lower indoor bioaerosol exposure.
Collapse
Affiliation(s)
- Jiayu Li
- Berkeley Education Alliance for Research in Singapore, Singapore
| | - Man Pun Wan
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Stefano Schiavon
- Center for the Built Environment, UC Berkeley, Berkeley, CA, USA
| | - Kwok Wai Tham
- Department of Building, School of Design and Environment, National University of Singapore, Singapore, Singapore
| | - Sultan Zuraimi
- Berkeley Education Alliance for Research in Singapore, Singapore
| | - Jinwen Xiong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
| | - Elliott Gall
- Mechanical and Materials Engineering, Portland State University, Portland, OR, USA
| |
Collapse
|
71
|
Challenges in Human Skin Microbial Profiling for Forensic Science: A Review. Genes (Basel) 2020; 11:genes11091015. [PMID: 32872386 PMCID: PMC7564248 DOI: 10.3390/genes11091015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
The human microbiome is comprised of the microbes that live on and within an individual, as well as immediately surrounding them. Microbial profiling may have forensic utility in the identification or association of individuals with criminal activities, using microbial signatures derived from a personal microbiome. This review highlights some important aspects of recent studies, many of which have revealed issues involving the effect of contamination of microbial samples from both technical and environmental sources and their impacts on microbiome research and the potential forensic applications of microbial profiling. It is imperative that these challenges be discussed and evaluated within a forensic context to better understand the future directions and potential applications of microbial profiling for human identification. It is necessary that the limitations identified be resolved prior to the adoption of microbial profiling, or, at a minimum, acknowledged by those applying this new approach.
Collapse
|
72
|
Cryopreservation and IVF in the time of Covid-19: what is the best good tissue practice (GTP)? J Assist Reprod Genet 2020; 37:2393-2398. [PMID: 32748306 PMCID: PMC7398282 DOI: 10.1007/s10815-020-01904-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/24/2020] [Indexed: 10/30/2022] Open
Abstract
Examine good tissue practices as relates to in vitro fertilization, biopsying, and vitrificationto compare current knowledge of ova, sperm, and embryos as vectors for disease transmission as it relates to our current knowledge regarding the SARS-CoV-2 virus.Unknown risks relating to the SARS-CoV-2 virus and sperm, ova, and embryos necessitate a reexamining of how human IVF is performed. Over the last decade, improvements in cryosurvival and live birth outcomes have been associated with zona pellucida breaching procedures (e.g., blastocyst collapsing and biopsying). In turn, today embryos are generally no longer protected by an intact zona pellucida when vitrified and in cryostorage. Additionally, high security storage containers have proven to be resilient to potential cross-contamination and reliable for routine human sperm freezing and embryo vitrification.Several options to current IVF practices are presented that can effectively mitigate the risks of cross-contamination and infection due to the current Covid-19 pandemic or other viral exposures. The question remains; is heightened security and change warranted where the risks of disease transmission likely remain negligible?
Collapse
|
73
|
Current Progression: Application of High-Throughput Sequencing Technique in Space Microbiology. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4094191. [PMID: 32685480 PMCID: PMC7327617 DOI: 10.1155/2020/4094191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/01/2020] [Indexed: 11/17/2022]
Abstract
During a spaceflight, astronauts need to live in a spacecraft on orbit for a long time, and the relationship between humans and microorganisms in the closed environment of space is not the same as on the ground. The dynamic study of microorganisms in confined space shows that with the extension of the isolation time, harmful bacteria gradually accumulate. Monitoring and controlling microbial pollution in a confined environment system are very important for crew health and the sustainable operation of a space life support system. Culture-based assays have been used traditionally to assess the microbial loads in a spacecraft, and uncultured-based techniques are already under way according to the NASA global exploration roadmap. High-throughput sequencing technology has been used generally to study the communities of the environment and human on the ground and shows its broad prospects applied onboard. We here review the recent application of high-throughput sequencing on space microbiology and analyze its feasibility and potential as an on-orbit detection technology.
Collapse
|
74
|
Krishnamoorthy S, Muthalagu A, Priyamvada H, Akkal S, Valsan AE, Raghunathan R, Kanawade VP, Gunthe SS. On distinguishing the natural and human-induced sources of airborne pathogenic viable bioaerosols: characteristic assessment using advanced molecular analysis. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2965-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
|
75
|
Guo J, Xiong Y, Shi C, Liu C, Li H, Qian H, Sun Z, Qin C. Characteristics of airborne bacterial communities in indoor and outdoor environments during continuous haze events in Beijing: Implications for health care. ENVIRONMENT INTERNATIONAL 2020; 139:105721. [PMID: 32305743 DOI: 10.1016/j.envint.2020.105721] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
There is solid evidence that haze pollution threatens human health owing to the abiotic pollutants it contains. However, the characteristics of airborne bacterial communities in indoor and outdoor environments exhibiting haze occurrence are still unknown. Thus, we examined variations in both indoor and outdoor airborne bacterial communities in Beijing from December 9-27, 2016, a period which included three haze events. The outdoor airborne bacterial communities were clustered into two main groups (Groups I and II), and they shifted between two typical bacterial communities regardless of the haze event. The Chao1, Shannon, and phylogenetic diversity indexes and abundance of dominant classes changed significantly, as did airborne bacterial community type. The indoor airborne bacterial community closely tracked the outdoor bacterial community type, forming two obvious groups supported by Adonis analysis, changes in dominant classes, and bacterial diversity compared to the outdoor group. Furthermore, we found that the airborne bacterial community type could affect the morbidity of respiratory diseases. Daily pneumonia cases were significantly higher in Group I (p = 0.035), whereas daily amygdalitis cases were significantly higher in Group II (p = 0.025). Interestingly, the enriched classes in the indoor environment were quite different from those in the typical airborne bacterial community environment, except for Clostridia, which had significantly higher abundance in both indoor environments. In conclusion, we found that the two indoor and outdoor airborne bacterial community types changed independently of haze events, and the special airborne bacterial community type was closely related to the incidence of pneumonia in the heavy haze season.
Collapse
Affiliation(s)
- Jianguo Guo
- NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences, CAMS&PUMC), Beijing 100021, China; Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China
| | - Yi Xiong
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Changhua Shi
- NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences, CAMS&PUMC), Beijing 100021, China; Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China
| | - Ce Liu
- Department of Infectious Disease, Beijing Chuiyangliu Hospital, Affiliated with Tsinghua University, Beijing 100022, China
| | - Hongwei Li
- NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences, CAMS&PUMC), Beijing 100021, China; Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China
| | - Hua Qian
- School of Energy and Environment, Southeast University, Nanjing 211189, China
| | - Zongke Sun
- National Institute of Environmental Health, China CDC, Beijing 100021, China
| | - Chuan Qin
- NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences, CAMS&PUMC), Beijing 100021, China; Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China.
| |
Collapse
|
76
|
Nastasi N, Haines SR, Xu L, da Silva H, Divjan A, Barnes MA, Rappleye CA, Perzanowski MS, Green BJ, Dannemiller KC. Morphology and quantification of fungal growth in residential dust and carpets. BUILDING AND ENVIRONMENT 2020; 174:10.1016/j.buildenv.2020.106774. [PMID: 33897093 PMCID: PMC8064739 DOI: 10.1016/j.buildenv.2020.106774] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Mold growth indoors is associated with negative human health effects, and this growth is limited by moisture availability. Dust deposited in carpet is an important source of human exposure due to potential elevated resuspension compared to hard floors. However, we need an improved understanding of fungal growth in dust and carpet to better estimate human exposure. The goal of this study was to compare fungal growth quantity and morphology in residential carpet under different environmental conditions, including equilibrium relative humidity (ERH) (50%, 85%, 90%, 95%, 100%), carpet fiber material (nylon, olefin, wool) and presence/absence of dust. We analyzed incubated carpet and dust samples from three Ohio homes for total fungal DNA, fungal allergen Alt a 1, and fungal morphology. Dust presence and elevated ERH (≥85%) were the most important variables that increased fungal growth. Elevated ERH increased mean fungal DNA concentration (P < 0.0001), for instance by approximately 1000 times at 100% compared to 50% ERH after two weeks. Microscopy also revealed more fungal growth at higher ERH. Fungal concentrations were up to 100 times higher in samples containing house dust compared to no dust. For fiber type, olefin had the least total fungal growth, and nylon had the most total fungi and A. alternata growth in unaltered dust. Increased ERH conditions were associated with increased Alt a 1 allergen concentration. The results of this study demonstrate that ERH, presence/absence of house dust, and carpet fiber type influence fungal growth and allergen production in residential carpet, which has implications for human exposure.
Collapse
Affiliation(s)
- Nicholas Nastasi
- Department of Civil, Environmental, and Geodetic Engineering, Ohio State University, Columbus, OH, USA
- Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH, USA
- Environmental Science Graduate Program, Ohio State University, Columbus, OH, USA
| | - Sarah R. Haines
- Department of Civil, Environmental, and Geodetic Engineering, Ohio State University, Columbus, OH, USA
- Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH, USA
- Environmental Science Graduate Program, Ohio State University, Columbus, OH, USA
| | - Lingyi Xu
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA
| | - Hadler da Silva
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Adnan Divjan
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Mark A. Barnes
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Chad A. Rappleye
- Department of Microbiology, College of Arts and Sciences, Ohio State University, Columbus, OH, USA
| | - Matthew S. Perzanowski
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Brett J. Green
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Karen C. Dannemiller
- Department of Civil, Environmental, and Geodetic Engineering, Ohio State University, Columbus, OH, USA
- Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH, USA
| |
Collapse
|
77
|
Diversity and dynamics of the bacterial population resident in books from a public library. Arch Microbiol 2020; 202:1663-1668. [PMID: 32277254 DOI: 10.1007/s00203-020-01880-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/19/2020] [Accepted: 04/01/2020] [Indexed: 10/24/2022]
Abstract
Bacteria presence in books proved to be a source of concern in dissemination of pathogens, and books are considered important vectors of diseases. We used high-throughput sequencing and culture-depending approaches to survey the bacterial diversity of books from a public library over 3 months (July, August and September). Antibiogram and pathogenicity tests were also done. We found differences between bacterial communities, both in their numbers and in their diversity. Gammaproteobacteria dominate the samples of August and September and Bacilli dominates the July sampling. Bacillus sp. is the predominant genus in July sampling; Staphylococcus sp. dominates August sampling and Acinetobacter sp. and Burkholderia sp. dominate September sampling. The nine isolated bacteria were resistant to antibiotics and four have pathogenic factors, including Bacillus cereus and Klebsiella pneumoniae. The data shown here suggest that the dynamics of the bacterial community present in books is complex and may be a fertile field for future research.The implications of these findings were discussed.
Collapse
|
78
|
Tang Q, Huang K, Liu J, Shen D, Dai P, Li Y, Li C. Seasonal variations of microbial assemblage in fine particulate matter from a nursery pig house. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:134921. [PMID: 31771854 DOI: 10.1016/j.scitotenv.2019.134921] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
The microorganisms contained in PM2.5 from livestock houses can spread over long distances through airborne transmission. As such, the potential bacterial pathogens and fungal allergens within can pose a formidable threat to nearby residents' health and the overall environment. However, little is known about the microbial assemblage contained in PM2.5 from pig houses. In this study, 16S and 18S rRNA gene sequencing was employed to analyze the bacterial and fungal assemblage contained in PM2.5 from a nursery pig house across four seasons, respectively. The results showed that alpha diversity was higher in summer and autumn compared to the spring and winter. The bacterial and fungal assemblage varied according to season. At the phylum level, the dominant bacteria and fungi were Firmicutes and Basidiomycota, respectively, across the four seasons. At the genus level, a total of five potential bacterial pathogen and 20 potential fungal allergen genera were identified across the samples. The most abundant bacterial pathogen and fungal allergen genera were observed in summer and autumn, respectively, but neither had a significant correlation with PM2.5 concentration. Moreover, microbial diversity and the relative abundance of fungal allergen genera were positively correlated with temperature and relative humidity. It can be concluded that microbial diversity and assemblage varied significantly among the seasons in a nursery pig house, and this can be useful in exploring the potential risks of PM2.5 from pig houses across all four seasons.
Collapse
Affiliation(s)
- Qian Tang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Huang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Junze Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Dan Shen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Pengyuan Dai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yansen Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunmei Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
79
|
Fakunle AG, Olusola B, Jafta N, Faneye A, Heederik D, Smit LA, Naidoo RN. Home Assessment of Indoor Microbiome (HAIM) in Relation to Lower Respiratory Tract Infections among Under-Five Children in Ibadan, Nigeria: The Study Protocol. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17061857. [PMID: 32183028 PMCID: PMC7143126 DOI: 10.3390/ijerph17061857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/22/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022]
Abstract
The association between household air pollution and lower respiratory tract infections (LRTI) among children under five years of age has been well documented; however, the extent to which the microbiome within the indoor environment contributes to this association is uncertain. The home assessment of indoor microbiome (HAIM) study seeks to assess the abundance of indoor microbiota (IM) in the homes of under-five children (U-5Cs) with and without LRTI. HAIM is a hospital- and community-based study involving 200 cases and 200 controls recruited from three children’s hospitals in Ibadan, Nigeria. Cases will be hospital-based patients with LRTI confirmed by a pediatrician, while controls will be community-based participants, matched to cases on the basis of sex, geographical location, and age (±3 months) without LRTI. The abundance of IM in houses of cases and controls will be investigated using active and passive air sampling techniques and analyzed by qualitative detection of bacterial 16SrRNA gene (V3–V4), fungal ITS1 region, and viral RNA sequencing. HAIM is expected to elucidate the relationship between exposure to IM and incidence of LRTI among U-5Cs and ultimately provide evidence base for strategic interventions to curtail the burgeoning burden of LRTI on the subcontinent.
Collapse
Affiliation(s)
- Adekunle G. Fakunle
- Discipline of Occupational and Environmental Health, University of KwaZulu-Natal, 321 George Campbell Building Howard College Campus, Durban 4041, South Africa;
- Department of Environmental Health Sciences, Faculty of Public Health, University of Ibadan, Ibadan 200212, Nigeria
- Correspondence: (A.G.F.); (R.N.N.); Tel.: +234-90-9395-6165 (A.G.F.); +27-824-379-333 (R.N.N.)
| | - Babatunde Olusola
- Department of Virology, College of Medicine, University of Ibadan, Ibadan 200212, Nigeria; (B.O.); (A.F.)
| | - Nkosana Jafta
- Discipline of Occupational and Environmental Health, University of KwaZulu-Natal, 321 George Campbell Building Howard College Campus, Durban 4041, South Africa;
| | - Adedayo Faneye
- Department of Virology, College of Medicine, University of Ibadan, Ibadan 200212, Nigeria; (B.O.); (A.F.)
| | - Dick Heederik
- Institute for Risk Assessment Sciences, Environmental Epidemiology Division (IRAS-EEPI), Utrecht University, 80177 Utrecht, The Netherlands; (D.H.)
| | - Lidwien A.M. Smit
- Institute for Risk Assessment Sciences, Environmental Epidemiology Division (IRAS-EEPI), Utrecht University, 80177 Utrecht, The Netherlands; (D.H.)
| | - Rajen N. Naidoo
- Discipline of Occupational and Environmental Health, University of KwaZulu-Natal, 321 George Campbell Building Howard College Campus, Durban 4041, South Africa;
- Correspondence: (A.G.F.); (R.N.N.); Tel.: +234-90-9395-6165 (A.G.F.); +27-824-379-333 (R.N.N.)
| |
Collapse
|
80
|
van Tilburg Bernardes E, Gutierrez MW, Arrieta MC. The Fungal Microbiome and Asthma. Front Cell Infect Microbiol 2020. [PMID: 33324573 DOI: 10.3389/fcimb.2020.583418/full] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Asthma is a group of inflammatory conditions that compromises the airways of a continuously increasing number of people around the globe. Its complex etiology comprises both genetic and environmental aspects, with the intestinal and lung microbiomes emerging as newly implicated factors that can drive and aggravate asthma. Longitudinal infant cohort studies combined with mechanistic studies in animal models have identified microbial signatures causally associated with subsequent asthma risk. The recent inclusion of fungi in human microbiome surveys has revealed that microbiome signatures associated with asthma risk are not limited to bacteria, and that fungi are also implicated in asthma development in susceptible individuals. In this review, we examine the unique properties of human-associated and environmental fungi, which confer them the ability to influence immune development and allergic responses. The important contribution of fungi to asthma development and exacerbations prompts for their inclusion in current and future asthma studies in humans and animal models.
Collapse
Affiliation(s)
- Erik van Tilburg Bernardes
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Mackenzie W Gutierrez
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Marie-Claire Arrieta
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
81
|
Li Y, Ge Y, Wu C, Guan D, Liu J, Wang F. Assessment of culturable airborne bacteria of indoor environments in classrooms, dormitories and dining hall at university: a case study in China. AEROBIOLOGIA 2020; 36:313-324. [PMID: 32421086 PMCID: PMC7223800 DOI: 10.1007/s10453-020-09633-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 02/21/2020] [Indexed: 05/05/2023]
Abstract
University students' health may be adversely affected by exposure to indoor bacterial contaminants on their campuses. This study aims (1) to quantify culturable bacterial concentrations in three indoor environments at a university, (2) to investigate the influence of meteorological factors and gender, to assess the relationship between indoor and outdoor, and (3) to estimate the bacterial dose for university students in different indoor environments. Airborne bacteria samples were collected in 12 classrooms, in 12 living rooms and four bathrooms in two dormitory buildings, and in a dining hall. The results showed that the microenvironment in the female dormitory had the highest mean bacterial concentration (2847 CFU/m3), whereas the lowest mean bacterial concentration was observed in classrooms (162 CFU/m3). Indoor bacterial concentrations in male dormitories were significantly lower than in female dormitories probably because of crowding and increased ventilation. Outdoor weather conditions were associated with the indoor concentrations with regard to insufficient ventilation and varying outdoor concentration. The occupants' activity level was also more closely related to the indoor bacteria concentration in the residential setting. Students experienced about four times higher dose of airborne bacteria in the dormitories than in the classrooms and dining hall.
Collapse
Affiliation(s)
- Yanju Li
- School of Energy and Safety Engineering, Tianjin Chengjian University, Tianjin, China
| | - Yanhui Ge
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, China
| | - Chunbin Wu
- School of Energy and Safety Engineering, Tianjin Chengjian University, Tianjin, China
| | - Dexing Guan
- School of Energy and Safety Engineering, Tianjin Chengjian University, Tianjin, China
| | - Jinbao Liu
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, China
| | - Fuyang Wang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, China
| |
Collapse
|
82
|
Gohli J, Bøifot KO, Moen LV, Pastuszek P, Skogan G, Udekwu KI, Dybwad M. The subway microbiome: seasonal dynamics and direct comparison of air and surface bacterial communities. MICROBIOME 2019; 7:160. [PMID: 31856911 PMCID: PMC6924074 DOI: 10.1186/s40168-019-0772-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/20/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Mass transit environments, such as subways, are uniquely important for transmission of microbes among humans and built environments, and for their ability to spread pathogens and impact large numbers of people. In order to gain a deeper understanding of microbiome dynamics in subways, we must identify variables that affect microbial composition and those microorganisms that are unique to specific habitats. METHODS We performed high-throughput 16S rRNA gene sequencing of air and surface samples from 16 subway stations in Oslo, Norway, across all four seasons. Distinguishing features across seasons and between air and surface were identified using random forest classification analyses, followed by in-depth diversity analyses. RESULTS There were significant differences between the air and surface bacterial communities, and across seasons. Highly abundant groups were generally ubiquitous; however, a large number of taxa with low prevalence and abundance were exclusively present in only one sample matrix or one season. Among the highly abundant families and genera, we found that some were uniquely so in air samples. In surface samples, all highly abundant groups were also well represented in air samples. This is congruent with a pattern observed for the entire dataset, namely that air samples had significantly higher within-sample diversity. We also observed a seasonal pattern: diversity was higher during spring and summer. Temperature had a strong effect on diversity in air but not on surface diversity. Among-sample diversity was also significantly associated with air/surface, season, and temperature. CONCLUSIONS The results presented here provide the first direct comparison of air and surface bacterial microbiomes, and the first assessment of seasonal variation in subways using culture-independent methods. While there were strong similarities between air and surface and across seasons, we found both diversity and the abundances of certain taxa to differ. This constitutes a significant step towards understanding the composition and dynamics of bacterial communities in subways, a highly important environment in our increasingly urbanized and interconnect world. Video abstract.
Collapse
Affiliation(s)
- Jostein Gohli
- Norwegian Defence Research Establishment, P.O. Box 25, NO-2027, Kjeller, Norway.
| | - Kari Oline Bøifot
- Norwegian Defence Research Establishment, P.O. Box 25, NO-2027, Kjeller, Norway
- Department of Analytics, Environmental & Forensic Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Line Victoria Moen
- Norwegian Defence Research Establishment, P.O. Box 25, NO-2027, Kjeller, Norway
| | - Paulina Pastuszek
- Department of Molecular Biosciences, Stockholm University, SE 10691, Stockholm, Sweden
| | - Gunnar Skogan
- Norwegian Defence Research Establishment, P.O. Box 25, NO-2027, Kjeller, Norway
| | - Klas I Udekwu
- SoS BIOs Sweden, Tiundagatan 41, SE 752 30, Uppsala, Sweden
| | - Marius Dybwad
- Norwegian Defence Research Establishment, P.O. Box 25, NO-2027, Kjeller, Norway
- Department of Analytics, Environmental & Forensic Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| |
Collapse
|
83
|
Haines SR, Adams RI, Boor BE, Bruton TA, Downey J, Ferro AR, Gall E, Green BJ, Hegarty B, Horner E, Jacobs DE, Lemieux P, Misztal PK, Morrison G, Perzanowski M, Reponen T, Rush RE, Virgo T, Alkhayri C, Bope A, Cochran S, Cox J, Donohue A, May AA, Nastasi N, Nishioka M, Renninger N, Tian Y, Uebel-Niemeier C, Wilkinson D, Wu T, Zambrana J, Dannemiller KC. Ten questions concerning the implications of carpet on indoor chemistry and microbiology. BUILDING AND ENVIRONMENT 2019; 170:1-16. [PMID: 32055099 PMCID: PMC7017391 DOI: 10.1016/j.buildenv.2019.106589] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Carpet and rugs currently represent about half of the United States flooring market and offer many benefits as a flooring type. How carpets influence our exposure to both microorganisms and chemicals in indoor environments has important health implications but is not well understood. The goal of this manuscript is to consolidate what is known about how carpet impacts indoor chemistry and microbiology, as well as to identify the important research gaps that remain. After describing the current use of carpet indoors, questions focus on five specific areas: 1) indoor chemistry, 2) indoor microbiology, 3) resuspension and exposure, 4) current practices and future needs, and 5) sustainability. Overall, it is clear that carpet can influence our exposures to particles and volatile compounds in the indoor environment by acting as a direct source, as a reservoir of environmental contaminants, and as a surface supporting chemical and biological transformations. However, the health implications of these processes are not well known, nor how cleaning practices could be optimized to minimize potential negative impacts. Current standards and recommendations focus largely on carpets as a primary source of chemicals and on limiting moisture that would support microbial growth. Future research should consider enhancing knowledge related to the impact of carpet in the indoor environment and how we might improve the design and maintenance of this common material to reduce our exposure to harmful contaminants while retaining the benefits to consumers.
Collapse
Affiliation(s)
- Sarah R. Haines
- Department of Civil, Environmental & Geodetic Engineering, College of Engineering, Environmental Health Sciences, College of Public Health, and Environmental Sciences Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Rachel I. Adams
- Plant & Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Brandon E. Boor
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | | | - John Downey
- Cleaning Industry Research Institute, Granville, OH, 43023, USA
| | - Andrea R. Ferro
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, NY, 13699, USA
| | - Elliott Gall
- Department of Mechanical and Materials Engineering, Portland State University, Portland, OR, 97201, USA
| | - Brett J. Green
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, 26505, USA
| | - Bridget Hegarty
- Civil and Environmental Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Elliott Horner
- UL Environment and Sustainability, Marietta, GA, 30067, USA
| | - David E. Jacobs
- National Center for Healthy Housing, Columbia, MD, 21044, USA
| | - Paul Lemieux
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Pawel K. Misztal
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Glenn Morrison
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Matthew Perzanowski
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Tiina Reponen
- Division of Environmental and Industrial Hygiene, Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH, 45220, USA
| | - Rachael E. Rush
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, 26505, USA
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, 26506, USA
| | - Troy Virgo
- Shaw Industries, Inc., Dalton, GA, 30722-2128, USA
| | - Celine Alkhayri
- Department of Civil, Environmental & Geodetic Engineering, College of Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Ashleigh Bope
- Department of Civil, Environmental & Geodetic Engineering, College of Engineering, Environmental Health Sciences, College of Public Health, and Environmental Sciences Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Samuel Cochran
- Department of Civil, Environmental & Geodetic Engineering, College of Engineering, Environmental Health Sciences, College of Public Health, and Environmental Sciences Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Jennie Cox
- Division of Environmental and Industrial Hygiene, Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH, 45220, USA
| | - Allie Donohue
- Department of Civil, Environmental & Geodetic Engineering, College of Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Andrew A. May
- Department of Civil, Environmental & Geodetic Engineering, College of Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Nicholas Nastasi
- Department of Civil, Environmental & Geodetic Engineering, College of Engineering, Environmental Health Sciences, College of Public Health, and Environmental Sciences Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Marcia Nishioka
- Department of Civil, Environmental & Geodetic Engineering, College of Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Nicole Renninger
- Department of Civil, Environmental & Geodetic Engineering, College of Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Yilin Tian
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, 94720, USA
| | - Christina Uebel-Niemeier
- Division of Environmental and Industrial Hygiene, Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH, 45220, USA
| | | | - Tianren Wu
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Jordan Zambrana
- Indoor Environments Division, Office of Air and Radiation, U.S. Environmental Protection Agency, Washington, DC, 20460, USA
| | - Karen C. Dannemiller
- Department of Civil, Environmental & Geodetic Engineering, College of Engineering, and Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
84
|
Basińska M, Michałkiewicz M, Ratajczak K. Impact of physical and microbiological parameters on proper indoor air quality in nursery. ENVIRONMENT INTERNATIONAL 2019; 132:105098. [PMID: 31434053 DOI: 10.1016/j.envint.2019.105098] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/08/2019] [Accepted: 08/11/2019] [Indexed: 06/10/2023]
Abstract
Although the evaluation of air quality in the residential and office rooms has been significantly developed in recent decades, the issues associated with securing the air quality requirements in nurseries are still not well recognised. This study presents the results of tests regarding the physical and microbiological properties of air in selected rooms of a nursery, including the alternatively variable way of rooms ventilation. The experiment was conducted in four different rooms from the 20th of November 2017 to the 16th of April 2018. The constant measurements of basic parameters of physical air quality in rooms and outside as well as the measurements of microbiological and particulate matter contaminations were conducted in the chosen days of the analysis. The results have confirmed the unsatisfactory air quality in the rooms dedicated to small children. Modernisation of the ventilation system, from a natural one to the supply-exhaust ventilation, has lead to an improvement of physical property of the air, but it did not significantly improve its microbiological quality. Our research indicates that the controlled air flow, method of cleaning the premise and health condition of the children may have a great influence on the physical and microbiological quality of the air.
Collapse
Affiliation(s)
- Małgorzata Basińska
- Institute of Environmental Engineering, Poznan University of Technology, Berdychowo 4, 61131 Poznan, Poland.
| | - Michał Michałkiewicz
- Institute of Environmental Engineering, Poznan University of Technology, Berdychowo 4, 61131 Poznan, Poland
| | - Katarzyna Ratajczak
- Institute of Environmental Engineering, Poznan University of Technology, Berdychowo 4, 61131 Poznan, Poland
| |
Collapse
|
85
|
Impact of microbial air quality in preschools on paediatric respiratory health. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1306-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
86
|
Quantitative evaluation of bioaerosols in different particle size fractions in dust collected on the International Space Station (ISS). Appl Microbiol Biotechnol 2019; 103:7767-7782. [PMID: 31388730 DOI: 10.1007/s00253-019-10053-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/17/2019] [Accepted: 07/26/2019] [Indexed: 12/20/2022]
Abstract
Exposure to bioaerosols can adversely influence human health through respiratory tract, eye, and skin irritation. Bioaerosol composition is unique on the International Space Station (ISS), where the size distribution of particles in the air differs from those on Earth. This is due to the lack of gravitational settling and sources of biological particles. However, we do not understand how microbes are influenced by particle size in this environment. We analyzed two types of samples from the ISS: (1) vacuum bag debris which had been sieved into five different size fractions and (2) passively collected particles on a tape substrate with a passive aerosol sampler. Using quantitative polymerase chain reaction (qPCR), the highest concentration of fungal spores was found in the 106-150 μm-sized sieved dust particles, while the highest concentration of bacterial cells was found in the 150-250 μm-sized sieved dust particles. Illumina MiSeq DNA sequencing revealed that particle size was associated with bacterial and fungal communities and statistically significant (p = 0.035, p = 0.036 respectively). Similar fungal and bacterial species were found within the passive aerosol sample and the sieved dust samples. The most abundant fungal species identified in the aerosol and sieved samples are commonly found in food and plant material. Abundant bacterial species were most associated with the oral microbiome and human upper respiratory tract. One limitation to this study was the suboptimal storage conditions of the sieved samples prior to analysis. Overall, our results indicate that microbial exposure in space may depend on particle size. This has implications for ventilation and filtration system design for future space vehicles and habitats.
Collapse
|
87
|
Microbial Similarity between Students in a Common Dormitory Environment Reveals the Forensic Potential of Individual Microbial Signatures. mBio 2019; 10:mBio.01054-19. [PMID: 31363029 PMCID: PMC6667619 DOI: 10.1128/mbio.01054-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Humans leave behind a microbial trail, regardless of intention. This may allow for the identification of individuals based on the “microbial signatures” they shed in built environments. In a shared living environment, these trails intersect, and through interaction with common surfaces may become homogenized, potentially confounding our ability to link individuals to their associated microbiota. We sought to understand the factors that influence the mixing of individual signatures and how best to process sequencing data to best tease apart these signatures. The microbiota of the built environment is an amalgamation of both human and environmental sources. While human sources have been examined within single-family households or in public environments, it is unclear what effect a large number of cohabitating people have on the microbial communities of their shared environment. We sampled the public and private spaces of a college dormitory, disentangling individual microbial signatures and their impact on the microbiota of common spaces. We compared multiple methods for marker gene sequence clustering and found that minimum entropy decomposition (MED) was best able to distinguish between the microbial signatures of different individuals and was able to uncover more discriminative taxa across all taxonomic groups. Further, weighted UniFrac- and random forest-based graph analyses uncovered two distinct spheres of hand- or shoe-associated samples. Using graph-based clustering, we identified spheres of interaction and found that connection between these clusters was enriched for hands, implicating them as a primary means of transmission. In contrast, shoe-associated samples were found to be freely interacting, with individual shoes more connected to each other than to the floors they interact with. Individual interactions were highly dynamic, with groups of samples originating from individuals clustering freely with samples from other individuals, while all floor and shoe samples consistently clustered together.
Collapse
|
88
|
des Ligneris E, Dumée LF, Al-Attabi R, Castanet E, Schütz J, Kong L. Mixed Matrix Poly(Vinyl Alcohol)-Copper Nanofibrous Anti-Microbial Air-Microfilters. MEMBRANES 2019; 9:membranes9070087. [PMID: 31319526 PMCID: PMC6681029 DOI: 10.3390/membranes9070087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/02/2022]
Abstract
Membranes decorated with biocide materials have shown great potential for air sanitization but can suffer from biocide agent leaching by dissolution in water. In order to tackle the diffusion of biocide metal ions from the fiber matrix, composite nanofiber membranes of poly(vinyl alcohol) (PVA) cross-linked with copper (II) acetate have been successfully engineered via sol–gel electrospinning, providing a stable mean for air bactericidal microfiltration. The novelty lies in the bonding strength and homogeneous distribution of the fiber surface biocide, where biocide metals are incorporated as a sol within a polymer matrix. The electrospinning of bead-free composite nanofibers offered over 99.5% filtration efficiency for PM2.5, with a theoretical permeance above 98%. The PVA/copper nanofiber membranes also showed satisfactory anti-bacterial performance against the gram-negative Escherichia coli within 24 h, making them promising materials for the remediation of airborne bacteria. The mechanical and chemical stability of the engineered nanocomposite electrospun nanofiber webs added to the natural biodegradability of the materials, by offering ideal low-cost sanitary solutions for the application of air disinfection in both indoor and outdoor fitting a circular economy strategy where advanced materials are redesigned to be sustainable.
Collapse
Affiliation(s)
- Elise des Ligneris
- Institute for Frontier Materials, Deakin University, Waurn Ponds 3008, Victoria, Australia.
| | - Ludovic F Dumée
- Institute for Frontier Materials, Deakin University, Waurn Ponds 3008, Victoria, Australia
| | - Riyadh Al-Attabi
- Institute for Frontier Materials, Deakin University, Waurn Ponds 3008, Victoria, Australia
| | - Erwan Castanet
- Institute for Frontier Materials, Deakin University, Waurn Ponds 3008, Victoria, Australia
| | - Jürg Schütz
- Commonwealth Scientific and Industrial Research Organization CSIRO, Waurn Ponds 3008, Victoria, Australia
| | - Lingxue Kong
- Institute for Frontier Materials, Deakin University, Waurn Ponds 3008, Victoria, Australia
| |
Collapse
|
89
|
Abstract
Airborne microorganisms are very difficult to assess accurately under field conditions owing to differences in the sample collection efficiency of the selected sampler and variations in DNA extraction efficiencies. Consequently, bioaerosol abundance and biodiversity can be underestimated, making it more difficult to link specific bioaerosol components to diseases and human health risk. Owing to the low biomass in air samples, it remains a challenge to obtain a representative microbiological sample to recover sufficient DNA for downstream analyses. Improved sampling methods are particularly crucial, especially for investigating viral communities, owing to the extremely low biomass of viral particles in the air compared with other environments. Without detailed information about sampling, characterization and enumeration techniques, interpretation of exposure level is very difficult. Despite this, bioaerosol research has been enhanced by molecular tools, especially next-generation sequencing approaches that have allowed faster and more detailed characterization of air samples.
Collapse
|
90
|
Rivas I, Fussell JC, Kelly FJ, Querol X. Indoor Sources of Air Pollutants. INDOOR AIR POLLUTION 2019. [DOI: 10.1039/9781788016179-00001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
People spend an average of 90% of their time in indoor environments. There is a long list of indoor sources that can contribute to increased pollutant concentrations, some of them related to human activities (e.g. people's movement, cooking, cleaning, smoking), but also to surface chemistry reactions with human skin and building and furniture surfaces. The result of all these emissions is a heterogeneous cocktail of pollutants with varying degrees of toxicity, which makes indoor air quality a complex system. Good characterization of the sources that affect indoor air pollution levels is of major importance for quantifying (and reducing) the associated health risks. This chapter reviews some of the more significant indoor sources that can be found in the most common non-occupational indoor environments.
Collapse
|
91
|
Richardson M, Gottel N, Gilbert JA, Gordon J, Gandhi P, Reboulet R, Hampton-Marcell JT. Concurrent measurement of microbiome and allergens in the air of bedrooms of allergy disease patients in the Chicago area. MICROBIOME 2019; 7:82. [PMID: 31159879 PMCID: PMC6547563 DOI: 10.1186/s40168-019-0695-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 05/09/2019] [Indexed: 05/05/2023]
Abstract
The particulate and biological components of indoor air have a substantial impact on human health, especially immune respiratory conditions such as asthma. To better explore the relationship between allergens, the microbial community, and the indoor living environment, we sampled the bedrooms of 65 homes in the Chicago area using 23the patient-friendly Inspirotec electrokinetic air sampling device, which collects airborne particles for characterization of both allergens and microbial DNA. The sampling device captured sufficient microbial material to enable 16S rRNA amplicon sequencing data to be generated for every sample in the study. Neither the presence of HEPA filters nor the height at which the air sampling device was placed had any influence on the microbial community profile. A core microbiota of 31 OTUs was present in more than three quarters of the samples, comprising around 45% of the relative sequence counts in each bedroom. The most abundant single organisms were Staphylococcus, with other core taxa both human and outdoor-associated. Bacterial alpha diversity was significantly increased in bedrooms that reported having open windows, those with flowering plants in the vicinity, and those in homes occupied by dogs. Porphyromonas, Moraxella, Sutterella, and Clostridium, along with family Neisseraceae, were significantly enriched in homes with dogs; interestingly, cats did not show a significant impact on microbial diversity or relative abundance. While dog allergen load was significantly correlated with bacterial alpha diversity, the taxa that significantly correlated with allergen burden did not exclusively overlap with those enriched in homes with dogs. Alternaria allergen load was positively correlated with bacterial alpha diversity, while Aspergillus allergen load was negatively correlated. The Alternaria allergen load was also significantly correlated with open windows. Microbial communities were significantly differentiated between rural, suburban, and urban homes and houses that were physically closer to each other maintained significantly more similar microbiota. We have demonstrated that it is possible to determine significant associations between allergen burden and the microbiota in air from the same sample and that these associations relate to the characteristics of the home and neighborhoods.
Collapse
Affiliation(s)
- Miles Richardson
- Department of Systems Biology, Columbia University, New York, NY, 10032, USA.
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY, 10032, USA.
- The Microbiome Center, Department of Surgery, University of Chicago, Chicago, IL, 60637, USA.
| | - Neil Gottel
- The Microbiome Center, Department of Surgery, University of Chicago, Chicago, IL, 60637, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
- BioScience Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Jack A Gilbert
- The Microbiome Center, Department of Surgery, University of Chicago, Chicago, IL, 60637, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
- BioScience Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Julian Gordon
- Inspirotec Inc, 332 S. Michigan Avenue, Suite 10 32 #1248, Chicago, IL, 60604, USA
| | - Prasanthi Gandhi
- Inspirotec Inc, 332 S. Michigan Avenue, Suite 10 32 #1248, Chicago, IL, 60604, USA
| | - Rachel Reboulet
- Inspirotec Inc, 332 S. Michigan Avenue, Suite 10 32 #1248, Chicago, IL, 60604, USA
| | - Jarrad T Hampton-Marcell
- The Microbiome Center, Department of Surgery, University of Chicago, Chicago, IL, 60637, USA
- BioScience Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| |
Collapse
|
92
|
Kwan SE, Peccia J, Simonds J, Haverinen-Shaughnessy U, Shaughnessy RJ. Comparing bacterial, fungal, and human cell concentrations with rapid adenosine triphosphate measurements for indicating microbial surface contamination. Am J Infect Control 2019; 47:671-676. [PMID: 30584018 DOI: 10.1016/j.ajic.2018.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 11/17/2022]
Abstract
BACKGROUND The goal of this study was to test for associations between adenosine triphosphate (ATP) content and microbial concentrations on desk surfaces in school classrooms. METHODS ATP bioluminescence and quantitative polymerase chain reaction (qPCR) techniques were employed to measure total bacterial, fungal, and human cell concentrations on 66 high-traffic desks spread across 9 schools: 3 in Connecticut (CT) and 6 in Oklahoma (OK). In CT, 6 samples were taken from each desk, 1 precleaning and 5 postcleaning (after 30 minutes, 1 day, 3 days, 7 days, and 21 days). In OK, samples were taken immediately before and after cleaning each desk. RESULTS Based on simple linear regression analyses, ATP values were good predictors of microbial concentrations (r = 0.8, P = .003) in both CT school postcleaning samples and OK pre- and postcleaning samples (r = 0.7, P = .00002). However, biomass reductions measured after cleaning were 1.5-2 times greater when measured by ATP than by qPCR (P = .007). CONCLUSIONS Overall, ATP bioluminescence measurements correlate with qPCR-based surface measurements on school desks but may overestimate the physical removal of bacteria and fungi due to cleaning.
Collapse
Affiliation(s)
- Sarah E Kwan
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT
| | - Jordan Peccia
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT
| | - Jonathan Simonds
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT
| | | | - Richard J Shaughnessy
- Indoor Air Program, Department of Chemical Engineering, University of Tulsa, Tulsa, OK.
| |
Collapse
|
93
|
Licina D, Morrison GC, Bekö G, Weschler CJ, Nazaroff WW. Clothing-Mediated Exposures to Chemicals and Particles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:5559-5575. [PMID: 31034216 DOI: 10.1021/acs.est.9b00272] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A growing body of evidence identifies clothing as an important mediator of human exposure to chemicals and particles, which may have public health significance. This paper reviews and critically assesses the state of knowledge regarding how clothing, during wear, influences exposure to molecular chemicals, abiotic particles, and biotic particles, including microbes and allergens. The underlying processes that govern the acquisition, retention, and transmission of clothing-associated contaminants and the consequences of these for subsequent exposures are explored. Chemicals of concern have been identified in clothing, including byproducts of their manufacture and chemicals that adhere to clothing during use and care. Analogously, clothing acts as a reservoir for biotic and abiotic particles acquired from occupational and environmental sources. Evidence suggests that while clothing can be protective by acting as a physical or chemical barrier, clothing-mediated exposures can be substantial in certain circumstances and may have adverse health consequences. This complex process is influenced by the type and history of the clothing; the nature of the contaminant; and by wear, care, and storage practices. Future research efforts are warranted to better quantify, predict, and control clothing-related exposures.
Collapse
Affiliation(s)
- Dusan Licina
- Human-Oriented Built Environment Lab, School of Architecture, Civil and Environmental Engineering , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Glenn C Morrison
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Gabriel Bekö
- International Centre for Indoor Environment and Energy, Department of Civil Engineering , Technical University of Denmark , Lyngby 2800 , Denmark
| | - Charles J Weschler
- International Centre for Indoor Environment and Energy, Department of Civil Engineering , Technical University of Denmark , Lyngby 2800 , Denmark
- Environmental and Occupational Health Sciences Institute , Rutgers University , Piscataway , New Jersey 08901 , United States
| | - William W Nazaroff
- Department of Civil and Environmental Engineering , University of California , Berkeley , California 94720-1710 , United States
| |
Collapse
|
94
|
Mbareche H, Veillette M, Teertstra W, Kegel W, Bilodeau GJ, Wösten HAB, Duchaine C. Recovery of Fungal Cells from Air Samples: a Tale of Loss and Gain. Appl Environ Microbiol 2019; 85:e02941-18. [PMID: 30824432 PMCID: PMC6495771 DOI: 10.1128/aem.02941-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/15/2019] [Indexed: 12/25/2022] Open
Abstract
There are limitations in establishing a direct link between fungal exposure and health effects due to the methodology used, among other reasons. Culture methods ignore the nonviable/uncultivable fraction of airborne fungi. Molecular methods allow for a better understanding of the environmental health impacts of microbial communities. However, there are challenges when applying these techniques to bioaerosols, particularly to fungal cells. This study reveals that there is a loss of fungal cells when samples are recovered from air using wet samplers and aimed to create and test an improved protocol for concentrating mold spores via filtration prior to DNA extraction. Results obtained using the new technique showed that up to 3 orders of magnitude more fungal DNA was retrieved from the samples using quantitative PCR. A sequencing approach with MiSeq revealed a different diversity profile depending on the methodology used. Specifically, 8 fungal families out of 19 families tested were highlighted to be differentially abundant in centrifuged and filtered samples. An experiment using laboratory settings showed the same spore loss during centrifugation for Aspergillus niger and Penicillium roquefortii strains. We believe that this work helped identify and address fungal cell loss during processing of air samples, including centrifugation steps, and propose an alternative method for a more accurate evaluation of fungal exposure and diversity.IMPORTANCE This work shed light on a significant issue regarding the loss of fungal spores when recovered from air samples using liquid medium and centrifugation to concentrate air particles before DNA extraction. We provide proof that the loss affects the overall fungal diversity of aerosols and that some taxa are differentially more affected than others. Furthermore, a laboratory experiment confirmed the environmental results obtained during field sampling. The filtration protocol described in this work offers a better description of the fungal diversity of aerosols and should be used in fungal aerosol studies.
Collapse
Affiliation(s)
- Hamza Mbareche
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, Quebec, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, Quebec, Canada
| | - Marc Veillette
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, Quebec, Canada
| | - Wieke Teertstra
- Microbiology, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Willem Kegel
- Department of Physical and Colloid Chemistry, Utrecht University, Utrecht, The Netherlands
| | - Guillaume J Bilodeau
- Pathogen Identification Research Laboratory, Canadian Food Inspection Agency (CFIA), Ottawa, Canada
| | - Han A B Wösten
- Microbiology, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Caroline Duchaine
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, Quebec, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
95
|
Givehchi R, Maestre JP, Bi C, Wylie D, Xu Y, Kinney KA, Siegel JA. Quantitative filter forensics with residential HVAC filters to assess indoor concentrations. INDOOR AIR 2019; 29:390-402. [PMID: 30624800 DOI: 10.1111/ina.12536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/19/2018] [Accepted: 12/12/2018] [Indexed: 06/09/2023]
Abstract
Analysis of the dust from heating, ventilation, and air conditioning (HVAC) filters is a promising long-term sampling method to characterize airborne particle-bound contaminants. This filter forensics (FF) approach provides valuable insights about differences between buildings, but does not allow for an estimation of indoor concentrations. In this investigation, FF is extended to quantitative filter forensics (QFF) by using measurements of the volume of air that passes through the filter and the filter efficiency, to assess the integrated average airborne concentrations of total fungal and bacterial DNA, 36 fungal species, endotoxins, phthalates, and organophosphate esters (OPEs) based on dust extracted from HVAC filters. Filters were collected from 59 homes located in central Texas, USA, after 1 month of deployment in each summer and winter. Results showed considerable differences in the concentrations of airborne particle-bound contaminants in studied homes. The airborne concentrations for most of the analytes are comparable with those reported in the literature. In this sample of homes, the HVAC characterization measurements varied much less between homes than the variation in the filter dust concentration of each analyte, suggesting that even in the absence of HVAC data, FF can provide insight about concentration differences for homes with similar HVAC systems.
Collapse
Affiliation(s)
- Raheleh Givehchi
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Juan P Maestre
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, Texas
| | - Chenyang Bi
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, Texas
| | - Dennis Wylie
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, Texas
| | - Ying Xu
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, Texas
| | - Kerry A Kinney
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, Texas
| | - Jeffrey A Siegel
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
96
|
Checinska Sielaff A, Urbaniak C, Mohan GBM, Stepanov VG, Tran Q, Wood JM, Minich J, McDonald D, Mayer T, Knight R, Karouia F, Fox GE, Venkateswaran K. Characterization of the total and viable bacterial and fungal communities associated with the International Space Station surfaces. MICROBIOME 2019; 7:50. [PMID: 30955503 PMCID: PMC6452512 DOI: 10.1186/s40168-019-0666-x] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 03/14/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND The International Space Station (ISS) is a closed system inhabited by microorganisms originating from life support systems, cargo, and crew that are exposed to unique selective pressures such as microgravity. To date, mandatory microbial monitoring and observational studies of spacecraft and space stations have been conducted by traditional culture methods, although it is known that many microbes cannot be cultured with standard techniques. To fully appreciate the true number and diversity of microbes that survive in the ISS, molecular and culture-based methods were used to assess microbial communities on ISS surfaces. Samples were taken at eight pre-defined locations during three flight missions spanning 14 months and analyzed upon return to Earth. RESULTS The cultivable bacterial and fungal population ranged from 104 to 109 CFU/m2 depending on location and consisted of various bacterial (Actinobacteria, Firmicutes, and Proteobacteria) and fungal (Ascomycota and Basidiomycota) phyla. Amplicon sequencing detected more bacterial phyla when compared to the culture-based analyses, but both methods identified similar numbers of fungal phyla. Changes in bacterial and fungal load (by culture and qPCR) were observed over time but not across locations. Bacterial community composition changed over time, but not across locations, while fungal community remained the same between samplings and locations. There were no significant differences in community composition and richness after propidium monoazide sample treatment, suggesting that the analyzed DNA was extracted from intact/viable organisms. Moreover, approximately 46% of intact/viable bacteria and 40% of intact/viable fungi could be cultured. CONCLUSIONS The results reveal a diverse population of bacteria and fungi on ISS environmental surfaces that changed over time but remained similar between locations. The dominant organisms are associated with the human microbiome and may include opportunistic pathogens. This study provides the first comprehensive catalog of both total and intact/viable bacteria and fungi found on surfaces in closed space systems and can be used to help develop safety measures that meet NASA requirements for deep space human habitation. The results of this study can have significant impact on our understanding of other confined built environments on the Earth such as clean rooms used in the pharmaceutical and medical industries.
Collapse
Affiliation(s)
- Aleksandra Checinska Sielaff
- Jet Propulsion Laboratory, California Institute of Technology, Biotechnology and Planetary Protection Group,, Pasadena, CA, USA
- Washington State University Extension - Youth and Families Program Unit, Washington State University, Pullman, WA, USA
| | - Camilla Urbaniak
- Jet Propulsion Laboratory, California Institute of Technology, Biotechnology and Planetary Protection Group,, Pasadena, CA, USA
| | - Ganesh Babu Malli Mohan
- Jet Propulsion Laboratory, California Institute of Technology, Biotechnology and Planetary Protection Group,, Pasadena, CA, USA
| | - Victor G Stepanov
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Quyen Tran
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Jason M Wood
- Jet Propulsion Laboratory, California Institute of Technology, Biotechnology and Planetary Protection Group,, Pasadena, CA, USA
| | - Jeremiah Minich
- Marine Biology Research Division, Scripps Institute of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Daniel McDonald
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Teresa Mayer
- Jet Propulsion Laboratory, California Institute of Technology, Biotechnology and Planetary Protection Group,, Pasadena, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Fathi Karouia
- NASA Ames Research Center, Space Bioscience Division, Moffett Field, Mountain View, CA, USA
- Research Center, Moffett Field, Mountain View, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - George E Fox
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Kasthuri Venkateswaran
- Jet Propulsion Laboratory, California Institute of Technology, Biotechnology and Planetary Protection Group,, Pasadena, CA, USA.
| |
Collapse
|
97
|
Application of Airborne Microorganism Indexes in Offices, Gyms, and Libraries. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9061101] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The determination of microbiological air quality in sporting and working environments requires the quantification of airborne microbial contamination. The number and types of microorganisms, detected in a specific site, offer a useful index for air quality valuation. An assessment of contamination levels was carried out using three evaluation indices for microbiological pollution: the global index of microbiological contamination per cubic meter (GIMC/m3), the index of mesophilic bacterial contamination (IMC), and the amplification index (AI). These indices have the advantage of considering several concomitant factors in the formation of a microbial aerosol. They may also detect the malfunction of an air treatment system due to the increase of microbes in aeraulic ducts, or inside a building compared to the outdoor environment. In addition, they highlight the low efficiency of a ventilation system due to the excessive number of people inside a building or to insufficient air renewal. This study quantified the levels of microorganisms present in the air in different places such as offices, gyms, and libraries. The air contamination was always higher in gyms that in the other places. All examined environments are in Northern Italy.
Collapse
|
98
|
Weiss H, Hertzberg VS, Dupont C, Espinoza JL, Levy S, Nelson K, Norris S, The FlyHealthy Research Team. The Airplane Cabin Microbiome. MICROBIAL ECOLOGY 2019; 77:87-95. [PMID: 29876609 PMCID: PMC6318343 DOI: 10.1007/s00248-018-1191-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/11/2018] [Indexed: 05/07/2023]
Abstract
Serving over three billion passengers annually, air travel serves as a conduit for infectious disease spread, including emerging infections and pandemics. Over two dozen cases of in-flight transmissions have been documented. To understand these risks, a characterization of the airplane cabin microbiome is necessary. Our study team collected 229 environmental samples on ten transcontinental US flights with subsequent 16S rRNA sequencing. We found that bacterial communities were largely derived from human skin and oral commensals, as well as environmental generalist bacteria. We identified clear signatures for air versus touch surface microbiome, but not for individual types of touch surfaces. We also found large flight-to-flight beta diversity variations with no distinguishing signatures of individual flights, rather a high between-flight diversity for all touch surfaces and particularly for air samples. There was no systematic pattern of microbial community change from pre- to post-flight. Our findings are similar to those of other recent studies of the microbiome of built environments. In summary, the airplane cabin microbiome has immense airplane to airplane variability. The vast majority of airplane-associated microbes are human commensals or non-pathogenic, and the results provide a baseline for non-crisis-level airplane microbiome conditions.
Collapse
Affiliation(s)
- Howard Weiss
- School of Mathematics, The Georgia Institute of Technology, 686 Cherry St. NW, Atlanta, GA 30313 USA
| | - Vicki Stover Hertzberg
- Nell Hodgson Woodruff School of Nursing, Emory University, 1520 Clifton Rd. NE, Atlanta, GA 30322 USA
| | - Chris Dupont
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA 92037 USA
| | - Josh L. Espinoza
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA 92037 USA
| | - Shawn Levy
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806 USA
| | - Karen Nelson
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD 20850 USA
| | - Sharon Norris
- Boeing Health Services, The Boeing Company, 3156 160th Ave. NE, Bellevue, WA 98008-2245 USA
| | - The FlyHealthy Research Team
- School of Mathematics, The Georgia Institute of Technology, 686 Cherry St. NW, Atlanta, GA 30313 USA
- Nell Hodgson Woodruff School of Nursing, Emory University, 1520 Clifton Rd. NE, Atlanta, GA 30322 USA
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA 92037 USA
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806 USA
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD 20850 USA
- Boeing Health Services, The Boeing Company, 3156 160th Ave. NE, Bellevue, WA 98008-2245 USA
| |
Collapse
|
99
|
Stephens B, Azimi P, Thoemmes MS, Heidarinejad M, Allen JG, Gilbert JA. Microbial Exchange via Fomites and Implications for Human Health. CURRENT POLLUTION REPORTS 2019; 5:198-213. [PMID: 34171005 PMCID: PMC7149182 DOI: 10.1007/s40726-019-00123-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
PURPOSE OF REVIEW Fomites are inanimate objects that become colonized with microbes and serve as potential intermediaries for transmission to/from humans. This review summarizes recent literature on fomite contamination and microbial survival in the built environment, transmission between fomites and humans, and implications for human health. RECENT FINDINGS Applications of molecular sequencing techniques to analyze microbial samples have increased our understanding of the microbial diversity that exists in the built environment. This growing body of research has established that microbial communities on surfaces include substantial diversity, with considerable dynamics. While many microbial taxa likely die or lay dormant, some organisms survive, including those that are potentially beneficial, benign, or pathogenic. Surface characteristics also influence microbial survival and rates of transfer to and from humans. Recent research has combined experimental data, mechanistic modeling, and epidemiological approaches to shed light on the likely contributors to microbial exchange between fomites and humans and their contributions to adverse (and even potentially beneficial) human health outcomes. SUMMARY In addition to concerns for fomite transmission of potential pathogens, new analytical tools have uncovered other microbial matters that can be transmitted indirectly via fomites, including entire microbial communities and antibiotic-resistant bacteria. Mathematical models and epidemiological approaches can provide insight on human health implications. However, both are subject to limitations associated with study design, and there is a need to better understand appropriate input model parameters. Fomites remain an important mechanism of transmission of many microbes, along with direct contact and short- and long-range aerosols.
Collapse
Affiliation(s)
- Brent Stephens
- Department of Civil, Architectural, and Environmental Engineering, Illinois Institute of Technology, Alumni Memorial Hall 228E, 3201 South Dearborn Street, Chicago, IL 60616 USA
| | - Parham Azimi
- Environmental Health Department, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Megan S. Thoemmes
- Department of Pediatrics, University of California San Diego School of Medicine, San Diego, CA USA
| | - Mohammad Heidarinejad
- Department of Civil, Architectural, and Environmental Engineering, Illinois Institute of Technology, Alumni Memorial Hall 228E, 3201 South Dearborn Street, Chicago, IL 60616 USA
| | - Joseph G. Allen
- Environmental Health Department, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Jack A. Gilbert
- Department of Pediatrics, University of California San Diego School of Medicine, San Diego, CA USA
| |
Collapse
|
100
|
Mahnert A, Haratani M, Schmuck M, Berg G. Enriching Beneficial Microbial Diversity of Indoor Plants and Their Surrounding Built Environment With Biostimulants. Front Microbiol 2018; 9:2985. [PMID: 30568641 PMCID: PMC6290261 DOI: 10.3389/fmicb.2018.02985] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/19/2018] [Indexed: 11/13/2022] Open
Abstract
Microbial diversity is suggested as the key for plant and human health. However, how microbial diversity can be enriched is largely unknown but of great interest for health issues. Biostimulants offer the way to directly augment our main living areas by the healthy microbiome of indoor plants. Here, we investigated shifts of the microbiome on leaves of spider plants (Chlorophytum comosum) and its surrounding abiotic surfaces in the built environment after irrigation with a vermicompost-based biostimulant for 12 weeks. The biostimulant could not only promote plant growth, but changed the composition of the microbiome and abundance of intact microbial cells on plant leaves and even stronger on abiotic surfaces in close vicinity under constant conditions of the microclimate. Biostimulant treatments stabilized microbial diversity and resulted in an increase of Bacteroidetes and a surprising transient emerge of new phyla, e.g., Verrucomicrobia, Acidobacteria, and Thaumarchaeota. The proportion of potentially beneficial microorganisms like Brevibacillus, Actinoallomurus, Paenibacillus, Sphaerisporangium increased relatively; microbial diversity was stabilized, and the built environment became more plant-like. Detected metabolites like indole-3-acetic acid in the biostimulant were potentially contributed by species of Pseudomonas. Overall, effects of the biostimulant on the composition of the microbiome could be predicted with an accuracy of 87%. This study shows the potential of biostimulants not only for the plant itself, but also for other living holobionts like humans in the surrounding environment.
Collapse
Affiliation(s)
- Alexander Mahnert
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | | | | | | |
Collapse
|