51
|
Zymaroieva A, Bondarev D, Kunakh O, Svenning JC, Zhukov O. Young-of-the-year fish as bioindicators of eutrophication and temperature regime of water bodies. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:161. [PMID: 38231372 DOI: 10.1007/s10661-024-12313-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/05/2024] [Indexed: 01/18/2024]
Abstract
Young-of-the-year fish communities are widely used as bioindicators of various environmental disturbances. This study was conducted from 1997 to 2015 and aims to develop fish trait-based indices of changes in the temperature regime and eutrophication of water bodies in the Dnipro River basin. We identified fish traits that significantly correlate with both temperature and chlorophyll-a concentration optimum: reproduction habitat, oxygen tolerance, and toxicity tolerance. Compared to other ecological groups, lithophilic species exhibited the lowest degree of thermal and eutrophication optimum, indicating this species' greater vulnerability to environmental alteration. Fish species that are intolerant to water quality and low oxygen concentration were the most sensitive to changes in temperature regime and eutrophication level. Salinity preferences and water quality tolerance emerged as reliable predictors of temperature optimum. Freshwater fish had an average temperature optimum that was 4.5% higher than that of freshwater-brackish and freshwater-brackish-marine fish. Species tolerance to the temperature factors and nutrient loads correlated only with rheophily, with rheophilic species having an average 13.8% higher temperature tolerance than other fish species and a 10.4% higher chlorophyll-a concentration tolerance. The fish temperature index increased over time during the study period in all the studied water bodies, consistent with ongoing warming affecting all sites. In contrast, the Fish Eutrophication Index showed greater temporal heterogeneity in studied water bodies, indicating various adaptative potentials of fish communities to eutrophication. These indices can be relevant for assessing disturbed situations caused by changes in climatic and anthropogenic impacts on water bodies.
Collapse
Affiliation(s)
- Anastasiia Zymaroieva
- Polissia National University, Stary Boulevard 7, Zhytomyr, 10008, Ukraine.
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus University, C, DK-8000, Aarhus, Denmark.
| | - Dmytro Bondarev
- "Dnipro-Orylskiy" Nature Reserve, Obukhovka, Dnipropetrovsk region, 52030, Ukraine
| | - Olga Kunakh
- Oles Gonchar Dnipro National University, Gagarin av., 72, 49000, Dnipro, Ukraine
| | - Jens-Christian Svenning
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus University, C, DK-8000, Aarhus, Denmark
| | - Olexander Zhukov
- Bogdan Khmelnytskyi Melitopol State Pedagogical University, Hetmanska st., 20, Melitopol, 72318, Ukraine
| |
Collapse
|
52
|
Carrillo-Longoria JA, Gaylord G, Andrews L, Powell M. Effect of temperature on growth, survival, and chronic stress responses of Arctic Grayling juveniles. TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY 2024; 153:3-22. [PMID: 38854661 PMCID: PMC11156260 DOI: 10.1002/tafs.10453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/15/2023] [Indexed: 06/11/2024]
Abstract
Arctic Grayling Thymallus arcticus are Holarctically distributed, with a single native population in the conterminous United States occurring in the Big Hole River, Montana, where water temperatures can fluctuate throughout the year from 8 to 18 °C. A gradual increase in mean water temperature has been reported in this river over the past 20 years due to riparian habitat changes and climate change effects. We hypothesized that exposing Arctic Grayling to higher temperatures would result in lower survival, decreased growth, and increased stress responses. Over a 144-day trial, Arctic Grayling juveniles were subjected to water temperatures ranging from 8-26 °C to measure the effects on growth, survival, gene expression and antioxidant enzyme activity. Fish growth increased with increasing water temperature up to 18 °C, beyond which survival was reduced. Fish did not survive at temperatures above 22 °C. In response to temperatures above 16 °C, a 3-fold and 1.5-fold increase in gene expression was observed for superoxide dismutase (SOD) and glutathione peroxidase (GPx), respectively, but no changes were seen in the ratio of Heat Shock Protein 70 (HSP70) and heat shock protein 90 (HSP90) expression. Enzyme activities of SOD and GPx also rose at temperatures above 16 °C, indicating heightened oxidative stress. Catalase (CAT) gene expression and enzyme activity decreased with rising temperatures, suggesting a preference for the GPx pathway, as GPx could also be providing help with lipid peroxidation. An increase of Thiobarbituric acid reactive substances (TBARS) was also recorded, which corresponded with rising temperatures. Our findings thus underscore the vulnerability of Arctic Grayling to minor changes in water temperature. Further increases in mean water temperature could significantly compromise survival of Arctic Grayling in the Big Hole River.
Collapse
Affiliation(s)
- Javier-Alonso Carrillo-Longoria
- Aquaculture Research Institute, University of Idaho, Hagerman Fish Culture Experiment Station, 3059F National Fish Hatchery Rd, Hagerman, ID 83332, USA
| | - Gibson Gaylord
- U.S. Fish and Wildlife Service, Bozeman Fish Technology Center, Bozeman, MT, USA
| | - Lukas Andrews
- Idaho State University, 921 S. 8th Ave, Pocatello, ID 83209
| | - Madison Powell
- Aquaculture Research Institute, University of Idaho, Hagerman Fish Culture Experiment Station, 3059F National Fish Hatchery Rd, Hagerman, ID 83332, USA
| |
Collapse
|
53
|
Lee JW, Balasubramanian B. Impacts of Temperature on the Growth, Feed Utilization, Stress, and Hemato-Immune Responses of Cherry Salmon ( Oncorhynchus masou). Animals (Basel) 2023; 13:3870. [PMID: 38136907 PMCID: PMC10740505 DOI: 10.3390/ani13243870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Cherry salmon (Oncorhynchus masou) hold commercial value in aquaculture, and there is a need for controlled laboratory studies to isolate the specific effects of temperature on their growth, feeding, and well-being. We examined the effects of different temperatures (10 °C, 14 °C, 18 °C, and 22 °C) on juvenile cherry salmon (average mass 29.1 g) in triplicate tanks per treatment over eight weeks. The key parameters assessed included growth rate, feed efficiency, stress response, and hemato-immune responses. Our objectives were to determine the most and less favorable temperatures among the four designated temperatures and to assess the adverse effects associated with these less favorable temperatures. The results showed that body weight, growth rates, feed intake, and feed efficiency were significantly higher at 10 °C and 14 °C compared to 18 °C and 22 °C. Reduced appetite and feeding response were observed at 22 °C. Red blood cell parameters were significantly lower at 22 °C. At 10 °C, the results showed significantly increased plasma cortisol levels, gill Na+/K+-ATPase activity, body silvering, and decreased condition factors, suggesting potential smoltification. The potential smoltification decreased with increasing temperatures and disappeared at 22 °C. Furthermore, the plasma lysozyme concentrations significantly increased at 18 °C and 22 °C. In conclusion, our study identifies 10 °C and 14 °C as the temperatures most conducive to growth and feed performance in juvenile cherry salmon under these experimental conditions. However, temperatures of 22 °C or higher should be avoided to prevent compromised feeding, reduced health, disturbed immune responses, impaired growth, and feed performance.
Collapse
Affiliation(s)
- Jang-Won Lee
- Department of Integrative Biological Sciences and Industry, College of Life Science, Sejong University, Seoul 05006, Republic of Korea
| | | |
Collapse
|
54
|
Wang Y, Shen J, Li X, Lang H, Zhang L, Fang H, Yu Y. Higher temperature and daily fluctuations aggravate clothianidin toxicity towards Limnodrilus hoffmeisteri. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166655. [PMID: 37647951 DOI: 10.1016/j.scitotenv.2023.166655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
In nature, aquatic organisms may suffer from chemical pollution, together with thermal stress resulted from global warming. However, limited information is available on the combined effects of pesticide with climate change on aquatic organisms. In this study, the acute toxicity of clothianidin to Limnodrilus hoffmeisteri as well as its effect on the induction of oxidative stress under both constant temperature and daily temperature fluctuation (DTF) regimes was investigated. Results showed that clothianidin exhibited the minimal toxicity to L. hoffmeisteri at 25 °C, which was magnified by both increased or decreased temperatures and 10 °C DTF. At different temperatures (15 °C, 25 °C and 35 °C), clothianidin exposure led to the elevated reactive oxygen species (ROS) levels and activated the antioxidant enzymes to resist against the oxidative stress. However, the antioxidant response induced by clothianidin was overwhelmed at high temperature as evidenced by decreased glutathione (GSH) content. Significant elevation of catalase (CAT) and peroxidase (POD) activities but depletion of GSH was also observed in worms treated with clothianidin under DTF after 24 h. The results indicated that high temperature and DTF could aggravate the clothianidin-induced oxidative stress. Moreover, the critical thermal maximum (CTmax) of the worms decreased with the increasing clothianidin concentrations, suggesting that exposure to clothianidin could reduce the heat tolerance of L. hoffmeisteri. Our work highlights the crucial importance to integrate temperature changes into risk assessment of pesticides under global warming.
Collapse
Affiliation(s)
- Yingnan Wang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jiatao Shen
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xin Li
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hongbin Lang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Luqing Zhang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hua Fang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yunlong Yu
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
55
|
Alfonso S, Mente E, Fiocchi E, Manfrin A, Dimitroglou A, Papaharisis L, Barkas D, Toomey L, Boscarato M, Losasso C, Peruzzo A, Stefani A, Zupa W, Spedicato MT, Nengas I, Lembo G, Carbonara P. Growth performance, gut microbiota composition, health and welfare of European sea bass (Dicentrarchus labrax) fed an environmentally and economically sustainable low marine protein diet in sea cages. Sci Rep 2023; 13:21269. [PMID: 38042956 PMCID: PMC10693626 DOI: 10.1038/s41598-023-48533-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023] Open
Abstract
The large use of fish meal/fish oil in carnivorous fish feeds is the main concern regarding environmental sustainability of aquaculture. Here, we evaluated the effects of an innovative diet, designed to be (1) environmentally sustainable by lowering the marine protein content while being (2) cost effective by using sustainable alternative raw materials with acceptable cost and produced on an industrial scale, on growth performance, gut microbiota composition, health and welfare of European sea bass (Dicentrarchus labrax), a key species of the Mediterranean marine aquaculture, reared in sea cages. Results show that the specific growth rate of fish fed the low marine protein diet was significantly lower than those fed conventional diet (0.67% vs 0.69%). Fatty acid profile of fillets from fish fed a low marine protein diet presented significant lower n-6 and higher n-3 content when compared to conventional ones. Then, a significant increase in the abundance of Vibrio and reduction of Photobacterium were found in the gut of fish fed with the low marine protein diet but effects on sea bass health needs further investigation. Finally, no major health and welfare alterations for fish fed the low marine protein diet were observed, combined with a potential slight benefit related to humoral immunity. Overall, these results suggest that despite the low marine protein diet moderately affects growth performance, it nevertheless may enhance environmental and economic sustainability of the sea bass aquaculture.
Collapse
Affiliation(s)
| | - Elena Mente
- Laboratory of Ichthyology-Culture and Pathology of Aquatic Animals, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Eleonora Fiocchi
- National Reference Laboratory for Fish, Mollusc and Crustacean Diseases, Istituto Zooprofilattico Sperimentale delle Venezie, 35020, Legnaro, Italy
| | - Amedeo Manfrin
- National Reference Laboratory for Fish, Mollusc and Crustacean Diseases, Istituto Zooprofilattico Sperimentale delle Venezie, 35020, Legnaro, Italy
| | - Arkadios Dimitroglou
- Laboratory of Applied Hydrobiology, Department of Animal Science, Agricultural University of Athens, 11855, Athens, Greece
| | | | - Dimitris Barkas
- Department of Research and Development, AVRAMAR S.A., 19002, Paiania, Greece
| | | | - Marilena Boscarato
- National Reference Laboratory for Fish, Mollusc and Crustacean Diseases, Istituto Zooprofilattico Sperimentale delle Venezie, 35020, Legnaro, Italy
| | - Carmen Losasso
- Laboratory of Microbial Ecology and Genomics, Istituto Zooprofilattico Sperimentale delle Venezie, 35020, Legnaro, Italy
| | - Arianna Peruzzo
- Laboratory of Microbial Ecology and Genomics, Istituto Zooprofilattico Sperimentale delle Venezie, 35020, Legnaro, Italy
| | - Annalisa Stefani
- Laboratory Medicine Service, Istituto Zooprofilattico Sperimentale delle Venezie, 35020, Legnaro, Italy
| | | | | | - Ioannis Nengas
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), 19013, Anavyssos, Greece
| | | | | |
Collapse
|
56
|
Khieokhajonkhet A, Phoprakot M, Aeksiri N, Kaneko G, Phromkunthong W. Effects of thermal stress responses in goldfish (Carassius auratus): growth performance, total carotenoids and coloration, hematology, liver histology, and critical thermal maximum. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:1391-1407. [PMID: 37987934 DOI: 10.1007/s10695-023-01263-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023]
Abstract
The present study aimed to investigate the effect of thermal stress on growth, feed utilization, coloration, hematology, liver histology, and critical thermal maximum (CTmax) in goldfish (Carassius auratus) cultured at three different acclimation temperatures including 27 °C, 30 °C, and 34 °C for 10 weeks. Goldfish were assigned randomly to tanks with a quadruplicate setup, accommodating 20 fish per tank. The result showed that fish acclimated to different temperatures did not significantly differ in weight gain (WG) and specific growth rate (SGR). However, increasing temperature significantly decreased feed efficiency ratio (FER), protein efficiency ratio (PER), and protein productive value (PPV), but significantly increased feed conversion ratio (FCR) (P < 0.05). The coloration parameters significantly decreased by high temperature in the trunk region with increasing temperature (L* and a* at week 5; L*, a*, and b* at week 10; P < 0.05). Total carotenoid contents in serum, fin, muscle, and skin also significantly decreased with increasing temperature (P < 0.05). Total protein, albumin, and globulin levels exhibited a notable decrease, while the albumin: globulin ratio showed a slight insignificant increase, with increasing temperature. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), total cholesterol, and triglycerides significantly increased with increasing temperature (P < 0.05). While, high-density lipoprotein cholesterol (HDL-c) decreased linearly (P < 0.05). Glucose and cortisol levels linearly increased with increasing temperature, the highest levels being observed in the 34 °C group. Liver histology showed swollen hepatocytes, nuclei displacement, and infiltration of inflammation in fish cultured at 34 °C. Goldfish acclimated to 34 °C displayed a higher CTmax of 43.83 °C compared to other groups. The present study showed that temperature should be kept below 34 °C for goldfish culture to prevent high FCR, fading coloration, and liver damages.
Collapse
Affiliation(s)
- Anurak Khieokhajonkhet
- Department of Agricultural Science, Faculty of Agriculture, Natural Resources, and Environment, Naresuan University, 99 M. 1, T. Thapo, A. Muang, Phitsanulok, 65000, Thailand.
| | - Marisa Phoprakot
- Department of Agricultural Science, Faculty of Agriculture, Natural Resources, and Environment, Naresuan University, 99 M. 1, T. Thapo, A. Muang, Phitsanulok, 65000, Thailand
| | - Niran Aeksiri
- Department of Agricultural Science, Faculty of Agriculture, Natural Resources, and Environment, Naresuan University, 99 M. 1, T. Thapo, A. Muang, Phitsanulok, 65000, Thailand
| | - Gen Kaneko
- College of Natural and Applied Science, University of Houston-Victoria, 3007 N. Ben Wilson, Victoria, TX, 77901, USA
| | - Wutiporn Phromkunthong
- Kidchakan Supamattaya Aquatic Animal Health Research Center, Department of Aquatic Science, Faculty of Natural Resources, Prince of Songkla University, Songkhla, 90112, Thailand
| |
Collapse
|
57
|
Elgendy MY, Ali SE, Abbas WT, Algammal AM, Abdelsalam M. The role of marine pollution on the emergence of fish bacterial diseases. CHEMOSPHERE 2023; 344:140366. [PMID: 37806325 DOI: 10.1016/j.chemosphere.2023.140366] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Marine pollution and bacterial disease outbreaks are two closely related dilemmas that impact marine fish production from fisheries and mariculture. Oil, heavy metals, agrochemicals, sewage, medical wastes, plastics, algal blooms, atmospheric pollutants, mariculture-related pollutants, as well as thermal and noise pollution are the most threatening marine pollutants. The release of these pollutants into the marine aquatic environment leads to significant ecological degradation and a range of non-infectious disorders in fish. Marine pollutants trigger numerous fish bacterial diseases by increasing microbial multiplication in the aquatic environment and suppressing fish immune defense mechanisms. The greater part of these microorganisms is naturally occurring in the aquatic environment. Most disease outbreaks are caused by opportunistic bacterial agents that attack stressed fish. Some infections are more serious and occur in the absence of environmental stressors. Gram-negative bacteria are the most frequent causes of these epizootics, while gram-positive bacterial agents rank second on the critical pathogens list. Vibrio spp., Photobacterium damselae subsp. Piscicida, Tenacibaculum maritimum, Edwardsiella spp., Streptococcus spp., Renibacterium salmoninarum, Pseudomonas spp., Aeromonas spp., and Mycobacterium spp. Are the most dangerous pathogens that attack fish in polluted marine aquatic environments. Effective management strategies and stringent regulations are required to prevent or mitigate the impacts of marine pollutants on aquatic animal health. This review will increase stakeholder awareness about marine pollutants and their impacts on aquatic animal health. It will support competent authorities in developing effective management strategies to mitigate marine pollution, promote the sustainability of commercial marine fisheries, and protect aquatic animal health.
Collapse
Affiliation(s)
- Mamdouh Y Elgendy
- Department of Hydrobiology, Veterinary Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt.
| | - Shimaa E Ali
- Department of Hydrobiology, Veterinary Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt; WorldFish, Abbassa, Sharkia, Egypt
| | - Wafaa T Abbas
- Department of Hydrobiology, Veterinary Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Abdelazeem M Algammal
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Mohamed Abdelsalam
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| |
Collapse
|
58
|
Li L, Liu Z, Zhao G, Quan J, Sun J, Lu J. Nano-selenium Antagonizes Heat Stress-Induced Apoptosis of Rainbow Trout (Oncorhynchus mykiss) Hepatocytes by Activating the PI3K/AKT Pathway. Biol Trace Elem Res 2023; 201:5805-5815. [PMID: 36973607 DOI: 10.1007/s12011-023-03637-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
The cold-water fish rainbow trout (Oncorhynchus mykiss) shows poor resistance to heat, which is the main factor restricting their survival and yield. With the advancement of nanotechnology, nano-selenium (nano-Se) has emerged as a key nano-trace element, showing unique advantages, including high biological activity and low toxicity, for studying the response of animals to adverse environmental conditions. However, little is still known regarding the potential protective mechanisms of nano-Se against heat stress-induced cellular damage. Herein, we aimed to investigate the mechanism underlying the antagonistic effects of nano-Se on heat stress. Four groups were assessed: CG18 (0 μg/mL nano-Se, 18 °C), Se18 (5.0 μg/mL nano-Se, 18 °C), CG24 (0 μg/mL nano-Se, incubated at 18 °C for 24 h and then transferred to 24 °C culture), and Se24 (5.0 μg/mL nano-Se, incubated at 18 °C for 24 h and then transferred to 24 °C culture). We found that after heat treatment (CG24 group), T-AOC, GPx, and CAT activities in rainbow trout hepatocytes showed a decrease of 36%, 33%, and 19%, respectively, while ROS and MDA levels showed an increase of 67% and 93%, respectively (P < 0.05). Meanwhile, the mRNA levels of the apoptosis-related genes caspase3, caspase9, Cyt-c, Bax, and Bax/Bcl-2 in the CG24 group were 41%, 47%, 285%, 65%, and 151% higher than those in the CG18 group, respectively, while those of PI3K and AKT were 31% and 17% lower, respectively (P < 0.05). Besides, flow cytometry analysis showed an increase in the level of apoptotic cells after heat exposure. More importantly, we observed that nano-Se cotreatment (Se24 group) remarkably attenuated heat stress-induced effects (P < 0.05). We conclude that heat stress induces oxidative stress and apoptosis in rainbow trout hepatocytes. Nano-Se ameliorates heat stress-induced apoptosis by activating the PI3K/AKT pathway. Our results provide a new perspective to improve our understanding of the ability of nano-Se to confer heat stress resistance.
Collapse
Affiliation(s)
- Lanlan Li
- College of Animal Science & Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, Gansu Province, China
| | - Zhe Liu
- College of Animal Science & Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, Gansu Province, China.
| | - Guiyan Zhao
- College of Animal Science & Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, Gansu Province, China
| | - Jinqiang Quan
- College of Animal Science & Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, Gansu Province, China
| | - Jun Sun
- College of Animal Science & Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, Gansu Province, China
| | - Junhao Lu
- College of Animal Science & Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, Gansu Province, China
| |
Collapse
|
59
|
Alak G, Özgeriş FB, Uçar A, Parlak V, Kocaman EM, Özcan S, Atamanalp M. Effect of climate change on hematotoxicity/hepatoxicity oxidative stress, Oncorhynchus mykiss, under controlled conditions. PLoS One 2023; 18:e0294656. [PMID: 38032944 PMCID: PMC10688713 DOI: 10.1371/journal.pone.0294656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
Described as the 'main ecological factor', temperature, strongly affects the physiological stress responses of fish. In order to evaluate the effects of temperature variations on fish culture and food value chain, the present study was designed as a climate change model. Furthermore, the present study provides a theoretical basis for a better understanding of the mechanisms of the environmentally induced changes. In this direction, we examined the blood physiology and oxidative stress responses induced by temperature variation in the rainbow trout, a temperature-sensitive cold-water fish. The obtained results showed that climate changes promoted the inhibited activities' expressions and the development of potential tissue and hematological defense mechanisms against temperature-induced toxic damage. This study showed that climate change could be a subset of the studies on the stress physiology in aquaculture, which can be developed for new experimental designs and research collaborations. Furthermore, it highlights knowledge gaps to guide future research in this emerging field.
Collapse
Affiliation(s)
- Gonca Alak
- Department of Seafood Processing, Faculty of Fisheries, Atatürk University, Erzurum, Turkiye
| | - Fatma Betül Özgeriş
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Atatürk University, Erzurum, Turkiye
| | - Arzu Uçar
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, Erzurum, Turkiye
| | - Veysel Parlak
- Department of Basic Sciences, Faculty of Fisheries, Atatürk University, Erzurum, Turkiye
| | - Esat Mahmut Kocaman
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, Erzurum, Turkiye
| | - Sinan Özcan
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, Erzurum, Turkiye
| | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, Erzurum, Turkiye
| |
Collapse
|
60
|
Shen C, Feng G, Zhao F, Huang X, Wang M, Wang H. Integration of Transcriptomics and Proteomics Analysis Reveals the Molecular Mechanism of Eriocheir sinensis Gills Exposed to Heat Stress. Antioxidants (Basel) 2023; 12:2020. [PMID: 38136140 PMCID: PMC10740794 DOI: 10.3390/antiox12122020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
Heat stress is an increasingly concerning topic under global warming. Heat stress can induce organisms to produce excess reactive oxygen species, which will lead to cell damage and destroy the antioxidant defense of aquatic animals. Chinese mitten crab, Eriocheir sinensis, is sensitive to the change in water temperature, and parent crabs are more vulnerable during the breeding stage. In the present study, the multi-omics responses of parent E. sinensis gills to heat stress (24 h) were determined via transcriptome and proteome. The integrative analysis revealed that heat shock protein 70 (HSP70) and glutathione s-transferase (GST) were significantly up-regulated at gene and protein levels after heat stress, indicating that HSP70 and the antioxidant system participated in the regulatory mechanism of heat stress to resist oxidative damage. Moreover, the "Relaxin signaling pathway" was also activated at gene and protein levels under 30 °C stress, which implied that relaxin may be essential and responsible for reducing the oxidative damage of gills caused by extreme heat stress. These findings provided an understanding of the regulation mechanism in E. sinensis under heat stress at gene and protein levels. The mining of key functional genes, proteins, and pathways can also provide a basis for the cultivation of new varieties resistant to oxidative stress.
Collapse
Affiliation(s)
- Chenchen Shen
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (C.S.); (F.Z.); (X.H.); (M.W.)
- College of Fisheries and Life sciences, Shanghai Ocean University, Shanghai 200090, China
| | - Guangpeng Feng
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (C.S.); (F.Z.); (X.H.); (M.W.)
- College of Fisheries and Life sciences, Shanghai Ocean University, Shanghai 200090, China
- Jiangxi Institute for Fisheries Sciences, Poyang Lake Fisheries Research Centre of Jiangxi, Nanchang 330039, China;
| | - Feng Zhao
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (C.S.); (F.Z.); (X.H.); (M.W.)
| | - Xiaorong Huang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (C.S.); (F.Z.); (X.H.); (M.W.)
| | - Min Wang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (C.S.); (F.Z.); (X.H.); (M.W.)
| | - Haihua Wang
- Jiangxi Institute for Fisheries Sciences, Poyang Lake Fisheries Research Centre of Jiangxi, Nanchang 330039, China;
| |
Collapse
|
61
|
Lazado CC, Iversen M, Johansen LH, Brenne H, Sundaram AYM, Ytteborg E. Nasal responses to elevated temperature and Francisella noatunensis infection in Atlantic cod (Gadus morhua). Genomics 2023; 115:110735. [PMID: 37898334 DOI: 10.1016/j.ygeno.2023.110735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
We report the histological and transcriptomic changes in the olfactory organ of Atlantic cod exposed to Francisella noatunensis. Experimental infection was performed at either 12 °C or 17 °C. Infected fish presented the classic gross pathologies of francisellosis. Nasal morpho-phenotypic parameters were not significantly affected by elevated temperature and infection, except for the number of mucus cells in the 12 °C group seven weeks after the challenge. A higher number of genes were altered through time in the group reared at 17 °C. At termination, the nasal transcriptome of infected fish in both groups was similar to the control. When both infected groups were compared, 754 DEGs were identified, many of which were involved in signalling, defence, transmembrane and enzymatic processes. In conclusion, the study reveals that elevated temperature could trigger responses in the olfactory organ of Atlantic cod and shape the nasal response to F. noatunensis infection.
Collapse
Affiliation(s)
- Carlo C Lazado
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås 1431, Norway.
| | - Marianne Iversen
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Tromsø 9019, Norway
| | - Lill-Heidi Johansen
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Tromsø 9019, Norway
| | - Hanne Brenne
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Tromsø 9019, Norway
| | - Arvind Y M Sundaram
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Elisabeth Ytteborg
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås 1431, Norway
| |
Collapse
|
62
|
Ma F, Zhao L, Ma R, Wang J, Du L. FoxO signaling and mitochondria-related apoptosis pathways mediate tsinling lenok trout (Brachymystax lenok tsinlingensis) liver injury under high temperature stress. Int J Biol Macromol 2023; 251:126404. [PMID: 37597633 DOI: 10.1016/j.ijbiomac.2023.126404] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Tsinling lenok trout (Brachymystax lenok tsinlingensis) is a typical cold water fish. High temperature has been shown to damage the liver of fish. However, few studies have investigated the liver apoptosis induced by high temperature stress in fish from the perspective of gene expression and metabolic function. Therefore, we investigated the changes caused by high temperature stress (24 °C) on the liver tissue structure, antioxidant capacity, liver gene expression, and the metabolome of tsinling lenok trout. The transcriptomic results showed that genes associated with apoptosis, such as CASP8, CASP3, PERK, Bcl-6 and TRAIL, were upregulated under high temperature stress. Metabolomic analysis showed that the metabolic pathway of nucleotide synthesis was significantly downregulated, while that of oxygen radical synthesis was significantly upregulated. Integrated analysis showed that after high temperature stress, immune-related signaling pathways in trout were activated and their apoptosis level increased, which might be related to hepatopancreas injury. In addition, abnormalities in the tricarboxylic acid cycle and mitochondrial function were observed, suggesting that functional hypoxia caused by high temperature might be involved fish cell apoptosis. These results provide new insights into the process of cell apoptosis in fish under high temperature stress.
Collapse
Affiliation(s)
- Fang Ma
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, Tianshui, Gansu Province, PR China.
| | - Lei Zhao
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, Tianshui, Gansu Province, PR China
| | - Ruilin Ma
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, Tianshui, Gansu Province, PR China
| | - Jing Wang
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, Tianshui, Gansu Province, PR China
| | - Leqiang Du
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, Tianshui, Gansu Province, PR China
| |
Collapse
|
63
|
Bălbărău A, Ivanescu LM, Martinescu G, Rîmbu CM, Acatrinei D, Lazar M, Cocean I, Gurlui S, Cocean A, Miron L. Septicemic Outbreak in A Rainbow Trout Intensive Aquaculture System: Clinical Finds, Etiological Agents, and Predisposing Factors. Life (Basel) 2023; 13:2083. [PMID: 37895464 PMCID: PMC10607993 DOI: 10.3390/life13102083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
On the 23rd of September 2022, a small intensive aquaculture unit populated with rainbow trout (Oncorhynchus mykiss) reported increased mortality in adults and juvenile fish. The unit comprised 12 enclosed concrete basins with a capacity of ten cubic meters of water, populated with 150 kg of fish each. Fish were subjected to a clinical examination on the site, after which whole fish were harvested for a bacteriological and histopathological examination. Water quality parameters were examined using classic biochemical methods and Fourier Transform Infrared Spectroscopy in order to find out whether the environment in which the fish live is also a predisposing factor that could facilitate different pathogens and induce a state of disease in the fish. Real-time PCR was performed on strains of Aeromonas spp. sampled from the fish to accurately identify the pathogen species. The goal was to accurately identify the problems and predisposing factors that lead to disease outbreaks.
Collapse
Affiliation(s)
- Adrian Bălbărău
- Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” Iași University of Life Sciences, Aleea Mihail Sadoveanu nr. 8, 700489 Iaşi, Romania (C.M.R.); (D.A.); (L.M.)
| | - Larisa Maria Ivanescu
- Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” Iași University of Life Sciences, Aleea Mihail Sadoveanu nr. 8, 700489 Iaşi, Romania (C.M.R.); (D.A.); (L.M.)
| | - Gabriela Martinescu
- Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” Iași University of Life Sciences, Aleea Mihail Sadoveanu nr. 8, 700489 Iaşi, Romania (C.M.R.); (D.A.); (L.M.)
| | - Cristina Mihaela Rîmbu
- Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” Iași University of Life Sciences, Aleea Mihail Sadoveanu nr. 8, 700489 Iaşi, Romania (C.M.R.); (D.A.); (L.M.)
| | - Dumitru Acatrinei
- Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” Iași University of Life Sciences, Aleea Mihail Sadoveanu nr. 8, 700489 Iaşi, Romania (C.M.R.); (D.A.); (L.M.)
| | - Mircea Lazar
- Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” Iași University of Life Sciences, Aleea Mihail Sadoveanu nr. 8, 700489 Iaşi, Romania (C.M.R.); (D.A.); (L.M.)
| | - Iuliana Cocean
- Faculty of Physics, Atmosphere Optics, Spectroscopy and Laser Laboratory (LOASL), “Alexandru Ioan Cuza” University of Iasi, 11 Carol I Bld., 700506 Iasi, Romania
| | - Silviu Gurlui
- Faculty of Physics, Atmosphere Optics, Spectroscopy and Laser Laboratory (LOASL), “Alexandru Ioan Cuza” University of Iasi, 11 Carol I Bld., 700506 Iasi, Romania
| | - Alexandru Cocean
- Faculty of Physics, Atmosphere Optics, Spectroscopy and Laser Laboratory (LOASL), “Alexandru Ioan Cuza” University of Iasi, 11 Carol I Bld., 700506 Iasi, Romania
- Laboratory of Applied Meteorology and Climatology, A Building, Physics, Research Center with Integrated Techniques for Atmospheric Aerosol Investigation in Romania, RECENT AIR, “Alexandru Ioan Cuza” University of Iasi, 11 Carol I, 700506 Iasi, Romania
| | - Liviu Miron
- Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” Iași University of Life Sciences, Aleea Mihail Sadoveanu nr. 8, 700489 Iaşi, Romania (C.M.R.); (D.A.); (L.M.)
| |
Collapse
|
64
|
Marcoli R, Symonds JE, Walker SP, Battershill CN, Bird S. Characterising the Physiological Responses of Chinook Salmon ( Oncorhynchus tshawytscha) Subjected to Heat and Oxygen Stress. BIOLOGY 2023; 12:1342. [PMID: 37887052 PMCID: PMC10604766 DOI: 10.3390/biology12101342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023]
Abstract
In New Zealand, during the hottest periods of the year, some salmon farms in the Marlborough Sounds reach water temperatures above the optimal range for Chinook salmon. High levels of mortality are recorded during these periods, emphasising the importance of understanding thermal stress in this species. In this study, the responses of Chinook salmon (Oncorhynchus tshawytscha) to chronic, long-term changes in temperature and dissolved oxygen were investigated. This is a unique investigation due to the duration of the stress events the fish were exposed to. Health and haematological parameters were analysed alongside gene expression results to determine the effects of thermal stress on Chinook salmon. Six copies of heat shock protein 90 (HSP90) were discovered and characterised: HSP90AA1.1a, HSP90AA1.2a, HSP90AA1.1b, HSP90AA1.2b, HSP90AB1a and HSP90AB1b, as well as two copies of SOD1, named SOD1a and SOD1b. The amino acid sequences contained features similar to those found in other vertebrate HSP90 and SOD1 sequences, and the phylogenetic tree and synteny analysis provided conclusive evidence of their relationship to other vertebrate HSP90 and SOD1 genes. Primers were designed for qPCR to enable the expression of all copies of HSP90 and SOD1 to be analysed. The expression studies showed that HSP90 and SOD1 were downregulated in the liver and spleen in response to longer term exposure to high temperatures and lower dissolved oxygen. HSP90 was also downregulated in the gill; however, the results for SOD1 expression in the gill were not conclusive. This study provides important insights into the physiological and genetic responses of Chinook salmon to temperature and oxygen stress, which are critical for developing sustainable fish aquaculture in an era of changing global climates.
Collapse
Affiliation(s)
- Roberta Marcoli
- Centre for Sustainable Tropical Fisheries, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia;
- ARC Research Hub for Supercharging Tropical Aquaculture through Genetic Solutions, James Cook University, Townsville, QLD 4811, Australia
- School of Science, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand;
| | - Jane E. Symonds
- Cawthron Institute, Nelson 7010, New Zealand; (J.E.S.); (S.P.W.)
| | - Seumas P. Walker
- Cawthron Institute, Nelson 7010, New Zealand; (J.E.S.); (S.P.W.)
| | | | - Steve Bird
- School of Science, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand;
| |
Collapse
|
65
|
Holhorea PG, Naya-Català F, Belenguer Á, Calduch-Giner JA, Pérez-Sánchez J. Understanding how high stocking densities and concurrent limited oxygen availability drive social cohesion and adaptive features in regulatory growth, antioxidant defense and lipid metabolism in farmed gilthead sea bream ( Sparus aurata). Front Physiol 2023; 14:1272267. [PMID: 37869714 PMCID: PMC10586056 DOI: 10.3389/fphys.2023.1272267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
The study combined the use of biometric, behavioral, physiological and external tissue damage scoring systems to better understand how high stocking densities drive schooling behavior and other adaptive features during the finishing growing phase of farmed gilthead sea bream in the Western Mediterranean. Fish were grown at three different final stocking densities (LD, 8.5 kg/m3; MD, 17 kg/m3; HD, 25 kg/m3). Water oxygen concentration varied between 5 and 6 ppm in LD fish to 3-4 ppm in HD fish with the summer rise of water temperature from 19°C to 26°C (May-July). HD fish showed a reduction of feed intake and growth rates, but they also showed a reinforced social cohesion with a well-defined endogenous swimming activity rhythm with feeding time as a main synchronization factor. The monitored decrease of the breathing/swimming activity ratio by means of the AEFishBIT data-logger also indicated a decreased energy partitioning for growth in the HD environment with a limited oxygen availability. Plasma glucose and cortisol levels increased with the rise of stocking density, and the close association of glycaemia with the expression level of antioxidant enzymes (mn-sod, gpx4, prdx5) in liver and molecular chaperones (grp170, grp75) in skeletal muscle highlighted the involvement of glucose in redox processes via rerouting in the pentose-phosphate-pathway. Other adaptive features included the depletion of oxidative metabolism that favored lipid storage rather than fatty acid oxidation to decrease the oxygen demand as last electron acceptor in the mitochondrial respiratory chain. This was coincident with the metabolic readjustment of the Gh/Igf endocrine-growth cascade that promoted the regulation of muscle growth at the local level rather than a systemic action via the liver Gh/Igf axis. Moreover, correlation analyses within HD fish displayed negative correlations of hepatic transcripts of igf1 and igf2 with the data-logger measurements of activity and respiration, whereas the opposite was found for muscle igf2, ghr1 and ghr2. This was indicative of a growth-regulatory transition that supported a proactive instead of a reactive behavior in HD fish, which was considered adaptive to preserve an active and synchronized feeding behavior with a minimized risk of oxidative stress and epidermal skin damage.
Collapse
Affiliation(s)
| | | | | | | | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS, Spanish National Research Council (CSIC)), Castellón, Spain
| |
Collapse
|
66
|
Alfonso S, Houdelet C, Bessa E, Geffroy B, Sadoul B. Water temperature explains part of the variation in basal plasma cortisol level within and between fish species. JOURNAL OF FISH BIOLOGY 2023; 103:828-838. [PMID: 36756681 DOI: 10.1111/jfb.15342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Within the thermal tolerance range of fish, metabolism is known to escalate with warming. Rapid thermic changes also trigger a series of physiological responses, including activation of the stress axis, producing cortisol. Fish have adapted to their environment by producing a low level of plasmatic cortisol when unstressed (basal), so that thriving in their natural temperature should not impact their basal cortisol levels. Yet, surprisingly, little is known on how temperature affects cortisol within and between fish species. Here, we conducted a phylogenetic meta-analysis to (1) test whether temperature can explain the differences in basal cortisol between species and (2) evaluate the role of temperature on differences in cortisol levels between individuals of a same species. To do this, we retrieved basal plasma cortisol data from 126 studies, investigating 33 marine and freshwater fish species, and correlated it to water temperature. Intra-species variability in basal plasma cortisol levels was further investigated in two species: the European sea bass Dicentrarchus labrax and the Nile tilapia Oreochromis niloticus. Factors such as life stage, sex and weight were also considered in the analyses. Overall, our phylogenetic analysis revealed a clear positive correlation between basal cortisol level and the temperature at which the fish live. The role of temperature has also been confirmed within D. labrax, while it failed to be significant in O. niloticus. In this paper, the influence of habitat, life stage, sex and weight on basal plasma cortisol levels is also discussed. Since some abiotic parameters were not included in the analysis, our study is a call to encourage scientists to systematically report other key factors such as dissolved oxygen or salinity to fully depict the temperature-cortisol relationship in fishes.
Collapse
Affiliation(s)
| | - Camille Houdelet
- MARBEC, Universite Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Eduardo Bessa
- Graduate Program in Ecology, Life and Earth Sciences, University of Brasília, Brasília, Brazil
| | - Benjamin Geffroy
- MARBEC, Universite Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Bastien Sadoul
- DECOD, Ecosystem Dynamics and Sustainability, Institut Agro, Ifremer, INRAE, Rennes, France
| |
Collapse
|
67
|
Sandrelli RM, Gamperl AK. The upper temperature and hypoxia limits of Atlantic salmon (Salmo salar) depend greatly on the method utilized. J Exp Biol 2023; 226:jeb246227. [PMID: 37622446 PMCID: PMC10560559 DOI: 10.1242/jeb.246227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
In this study, Atlantic salmon were: (i) implanted with heart rate (fH) data storage tags (DSTs), pharmacologically stimulated to maximum fH, and warmed at 10°C h-1 (i.e. tested using a 'rapid screening protocol'); (ii) fitted with Doppler® flow probes, recovered in respirometers and given a critical thermal maximum (CTmax) test at 2°C h-1; and (iii) implanted with fH DSTs, recovered in a tank with conspecifics for 4 weeks, and had their CTmax determined at 2°C h-1. Fish in respirometers and those free-swimming were also exposed to a stepwise decrease in water oxygen level (100% to 30% air saturation) to determine the oxygen level at which bradycardia occurred. Resting fH was much lower in free-swimming fish than in those in respirometers (∼49 versus 69 beats min-1) and this was reflected in their scope for fH (∼104 versus 71 beats min-1) and CTmax (27.7 versus 25.9°C). Further, the Arrhenius breakpoint temperature and temperature at peak fH for free-swimming fish were considerably greater than for those tested in the respirometers and given a rapid screening protocol (18.4, 18.1 and 14.6°C; and 26.5, 23.2 and 20.2°C, respectively). Finally, the oxygen level at which bradycardia occurred was significantly higher in free-swimming salmon than in those in respirometers (∼62% versus 53% air saturation). These results: highlight the limitations of some lab-based methods of determining fH parameters and thermal tolerance in fishes; and suggest that scope for fH may be a more reliable and predictive measure of a fish's upper thermal tolerance than their peak fH.
Collapse
Affiliation(s)
- Rebeccah M. Sandrelli
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St John's, NL, Canada, A1C 5S7
| | - A. Kurt Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St John's, NL, Canada, A1C 5S7
| |
Collapse
|
68
|
Silveira MM, Donelson JM, McCormick MI, Araujo-Silva H, Luchiari AC. Impact of ocean warming on a coral reef fish learning and memory. PeerJ 2023; 11:e15729. [PMID: 37576501 PMCID: PMC10416774 DOI: 10.7717/peerj.15729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/18/2023] [Indexed: 08/15/2023] Open
Abstract
Tropical ectotherms are highly sensitive to environmental warming, especially coral reef fishes, which are negatively impacted by an increase of a few degrees in ocean temperature. However, much of our understanding on the thermal sensitivity of reef fish is focused on a few traits (e.g., metabolism, reproduction) and we currently lack knowledge on warming effects on cognition, which may endanger decision-making and survival. Here, we investigated the effects of warming on learning and memory in a damselfish species, Acanthochromis polyacanthus. Fish were held at 28-28.5 °C (control group), 30-30.5 °C (moderate warming group) or 31.5-32 °C (high warming group) for 2 weeks, and then trained to associate a blue tag (cue) to the presence of a conspecific (reward). Following 20 training trials (5 days), fish were tested for associative learning (on the following day) and memory storage (after a 5-days interval). The control group A. polyacanthus showed learning of the task and memory retention after five days, but increasing water temperature impaired learning and memory. A thorough understanding of the effects of heat stress, cognition, and fitness is urgently required because cognition may be a key factor determining animals' performance in the predicted scenario of climate changes. Knowing how different species respond to warming can lead to better predictions of future community dynamics, and because it is species specific, it could pinpoint vulnerable/resilience species.
Collapse
Affiliation(s)
- Mayara M. Silveira
- Department of Physiology and Behavior, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Jennifer M. Donelson
- ARC Centre of Excellence for Coral Reef Studies, James Cook University of North Queensland, Townville, Australia
| | | | - Heloysa Araujo-Silva
- Department of Physiology and Behavior, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Ana C. Luchiari
- Department of Physiology and Behavior, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
69
|
Magierecka A, Cooper B, Sloman KA, Metcalfe NB. Unpredictability of maternal environment shapes offspring behaviour without affecting stress-induced cortisol in an annual vertebrate. Horm Behav 2023; 154:105396. [PMID: 37399780 DOI: 10.1016/j.yhbeh.2023.105396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
Exposure of females to stressful conditions during pregnancy or oogenesis has a profound effect on the phenotype of their offspring. For example, offspring behavioural phenotype may show altered patterns in terms of the consistency of behavioural patterns and their average level of performance. Maternal stress can also affect the development of the stress axis in offspring leading to alterations in their physiological stress response. However, the majority of evidence comes from studies utilising acute stressors or exogenous glucocorticoids, and little is known about the effect of chronic maternal stress, particularly in the context of stress lasting throughout entire reproductive lifespan. To bridge this knowledge gap, we exposed female sticklebacks to stressful and unpredictable environmental conditions throughout the breeding season. We quantified the activity, sheltering and anxiety-like behaviour of offspring from three successive clutches of these females, and calculated Intra-class Correlation Coefficients for these behaviours in siblings and half-siblings. We also exposed offspring to an acute stressor and measured their peak cortisol levels. An unpredictable maternal environment had no modifying effect on inter-clutch acute stress responsivity, but resulted in diversification of offspring behaviour, indicated by an increased between-individual variability within families. This may represent a bet-hedging strategy, whereby females produce offspring differing in behavioural phenotype, to increase the chance that some of these offspring will be better at coping with the anticipated conditions.
Collapse
Affiliation(s)
- Agnieszka Magierecka
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, UK.
| | - Ben Cooper
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, UK
| | - Katherine A Sloman
- Institute for Biomedical and Environmental Health Research, University of the West of Scotland, Lanarkshire, UK
| | - Neil B Metcalfe
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, UK
| |
Collapse
|
70
|
Penman RJ, Bugg W, Rost-Komiya B, Earhart ML, Brauner CJ. Slow heating rates increase thermal tolerance and alter mRNA HSP expression in juvenile white sturgeon (Acipenser transmontanus). J Therm Biol 2023; 115:103599. [PMID: 37413754 DOI: 10.1016/j.jtherbio.2023.103599] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/13/2023] [Accepted: 05/14/2023] [Indexed: 07/08/2023]
Abstract
Freshwater fish such as white sturgeon (Acipenser transmontanus) are particularly vulnerable to the effects of anthropogenically induced global warming. Critical thermal maximum tests (CTmax) are often conducted to provide insight into the impacts of changing temperatures; however, little is known about how the rate of temperature increase in these assays affects thermal tolerance. To assess the effect of heating rate (0.3 °C/min, 0.03 °C/min, 0.003 °C/min) we measured thermal tolerance, somatic indices, and gill Hsp mRNA expression. Contrary to what has been observed in most other fish species, white sturgeon thermal tolerance was highest at the slowest heating rate of 0.003 °C/min (34.2 °C, and CTmax of 31.3 and 29.2 °C, for rates 0.03 and 0.3 °C/min, respectively) suggesting an ability to rapidly acclimate to slowly increasing temperatures. Hepatosomatic index decreased in all heating rates relative to control fish, indicative of the metabolic costs of thermal stress. At the transcriptional level, slower heating rates resulted in higher gill mRNA expression of Hsp90a, Hsp90b, and Hsp70. Hsp70 mRNA expression was increased in all heating rates relative to controls, whereas expression of Hsp90a and Hsp90b mRNA only increased in the two slower trials. Together these data indicate that white sturgeon have a very plastic thermal response, which is likely energetically costly to induce. Acute temperature changes may be more detrimental to sturgeon as they struggle to acclimate to rapid changes in their environment, however under slower warming rates they demonstrate strong thermal plasticity to warming.
Collapse
Affiliation(s)
- Rachael J Penman
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada.
| | - William Bugg
- Department of Biology, The University of Manitoba, Winnipeg, Manitoba, Canada
| | - Beatrice Rost-Komiya
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Madison L Earhart
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Colin J Brauner
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
71
|
Lagarde H, Lallias D, Patrice P, Dehaullon A, Prchal M, François Y, D'Ambrosio J, Segret E, Acin-Perez A, Cachelou F, Haffray P, Dupont-Nivet M, Phocas F. Genetic architecture of acute hyperthermia resistance in juvenile rainbow trout (Oncorhynchus mykiss) and genetic correlations with production traits. Genet Sel Evol 2023; 55:39. [PMID: 37308823 DOI: 10.1186/s12711-023-00811-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/11/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Selective breeding is a promising solution to reduce the vulnerability of fish farms to heat waves, which are predicted to increase in intensity and frequency. However, limited information about the genetic architecture of acute hyperthermia resistance in fish is available. Two batches of sibs from a rainbow trout commercial line were produced: the first (N = 1382) was phenotyped for acute hyperthermia resistance at nine months of age and the second (N = 1506) was phenotyped for main production traits (growth, body length, muscle fat content and carcass yield) at 20 months of age. Fish were genotyped on a 57 K single nucleotide polymorphism (SNP) array and their genotypes were imputed to high-density based on the parent's genotypes from a 665 K SNP array. RESULTS The heritability estimate of resistance to acute hyperthermia was 0.29 ± 0.05, confirming the potential of selective breeding for this trait. Since genetic correlations of acute hyperthermia resistance with the main production traits near harvest age were all close to zero, selecting for acute hyperthermia resistance should not impact the main production traits, and vice-versa. A genome-wide association study revealed that resistance to acute hyperthermia is a highly polygenic trait, with six quantitative trait loci (QTL) detected, but explaining less than 5% of the genetic variance. Two of these QTL, including the most significant one, may explain differences in acute hyperthermia resistance across INRAE isogenic lines of rainbow trout. Differences in mean acute hyperthermia resistance phenotypes between homozygotes at the most significant SNP was 69% of the phenotypic standard deviation, showing promising potential for marker-assisted selection. We identified 89 candidate genes within the QTL regions, among which the most convincing functional candidates are dnajc7, hsp70b, nkiras2, cdk12, phb, fkbp10, ddx5, cygb1, enpp7, pdhx and acly. CONCLUSIONS This study provides valuable insight into the genetic architecture of acute hyperthermia resistance in juvenile rainbow trout. We show that the selection potential for this trait is substantial and selection for this trait should not be too detrimental to improvement of other traits of interest. Identified functional candidate genes provide new knowledge on the physiological mechanisms involved in acute hyperthermia resistance, such as protein chaperoning, oxidative stress response, homeostasis maintenance and cell survival.
Collapse
Affiliation(s)
- Henri Lagarde
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Delphine Lallias
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Pierre Patrice
- SYSAAF, French Poultry, Aquaculture and Insect Breeders Association, 35042, Rennes, France
| | - Audrey Dehaullon
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Martin Prchal
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Yoannah François
- SYSAAF, French Poultry, Aquaculture and Insect Breeders Association, 35042, Rennes, France
| | - Jonathan D'Ambrosio
- SYSAAF, French Poultry, Aquaculture and Insect Breeders Association, 35042, Rennes, France
| | - Emilien Segret
- Viviers de Sarrance, Pisciculture Labedan, 64490, Sarrance, France
| | - Ana Acin-Perez
- Viviers de Sarrance, Pisciculture Labedan, 64490, Sarrance, France
| | | | - Pierrick Haffray
- SYSAAF, French Poultry, Aquaculture and Insect Breeders Association, 35042, Rennes, France
| | | | - Florence Phocas
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.
| |
Collapse
|
72
|
Morshed SM, Lee TH. The role of the microbiome on fish mucosal immunity under changing environments. FISH & SHELLFISH IMMUNOLOGY 2023:108877. [PMID: 37302678 DOI: 10.1016/j.fsi.2023.108877] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/13/2023]
Abstract
The environment is crucial for fish as their mucosal surfaces face continuous challenges in the water. Fish mucosal surfaces harbor the microbiome and mucosal immunity. Changes in the environment could affect the microbiome, thus altering mucosal immunity. Homeostasis between the microbiome and mucosal immunity is crucial for the overall health of fish. To date, very few studies have investigated mucosal immunity and its interaction with the microbiome in response to environmental changes. Based on the existing studies, we can infer that environmental factors can modulate the microbiome and mucosal immunity. However, we need to retrospectively examine the existing literature to investigate the possible interaction between the microbiome and mucosal immunity under specific environmental conditions. In this review, we summarize the existing literature on the effects of environmental changes on the fish microbiome and mucosal immunity. This review mainly focuses on temperature, salinity, dissolved oxygen, pH, and photoperiod. We also point out a gap in the literature and provide directions to go further in this research field. In-depth knowledge about mucosal immunity-microbiome interaction will also improve aquaculture practices by reducing loss during environmental stressful conditions.
Collapse
Affiliation(s)
- Syed Monzur Morshed
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Tsung-Han Lee
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
73
|
Quan J, Zhao G, Liu Z, Li L, Lu J, Song G, Kang Y. Competing endogenous RNA (ceRNA) in a non-model animal: Non-coding RNAs respond to heat stress in rainbow trout (Oncorhynchus mykiss) through ceRNA-regulated mechanisms. Int J Biol Macromol 2023; 239:124246. [PMID: 37003385 DOI: 10.1016/j.ijbiomac.2023.124246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 02/21/2023] [Accepted: 03/18/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Rainbow trout (Oncorhynchus mykiss) is a typical cold-water fish. With global warming and extreme heat, high summer temperatures are the biggest threat to rainbow trout farming. Rainbow trout initiate stress defense mechanisms in response to thermal stimuli, and competing endogenous RNA (ceRNA) regulation of target genes (mRNAs) mediated by non-coding RNAs (microRNAs [miRNAs], long non-coding RNAs) may be the main strategy for responding to thermal stimuli and enhancing adaptation. RESULTS We screened the LOC110485411-novel-m0007-5p-hsp90ab1 ceRNA relationship pairs for affect heat stress in rainbow trout and validated their targeting relationships and functions based on preliminary high-throughput sequencing analysis results. The transfection of exogenous novel-m0007-5p mimics and inhibitors into primary rainbow trout hepatocytes effectively bound and inhibited the target genes hsp90ab1 and LOC110485411 without significant effects on hepatocyte viability, proliferation, and apoptosis. The inhibitory effect of novel-m0007-5p overexpression on hsp90ab1 and LOC110485411 under heat stress was time-efficient. Similarly, small interfering RNAs (siRNAs) affected hsp90ab1 mRNA expression by silencing LOC110485411 expression time-efficiently. CONCLUSIONS In conclusion, we found that in rainbow trout, LOC110485411 and hsp90ab1 can bind competitively to novel-m0007-5p via 'sponge adsorption' and that interference with LOC110485411 affects hsp90ab1 expression. These results provide potential for anti-stress drug screening in rainbow trout.
Collapse
Affiliation(s)
- Jinqiang Quan
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Guiyan Zhao
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Zhe Liu
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Lanlan Li
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Junhao Lu
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Guolin Song
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Yujun Kang
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| |
Collapse
|
74
|
He J, Zhu Q, Han P, Zhou T, Li J, Wang X, Cheng J. Transcriptomic Networks Reveal the Tissue-Specific Cold Shock Responses in Japanese Flounder ( Paralichthys olivaceus). BIOLOGY 2023; 12:784. [PMID: 37372069 DOI: 10.3390/biology12060784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023]
Abstract
Low temperature is among the important factors affecting the distribution, survival, growth, and physiology of aquatic animals. In this study, coordinated transcriptomic responses to 10 °C acute cold stress were investigated in the gills, hearts, livers, and spleens of Japanese flounder (Paralichthys olivaceus), an important aquaculture species in east Asia. Histological examination suggested different levels of injury among P. olivaceus tissues after cold shock, mainly in the gills and livers. Based on transcriptome and weighted gene coexpression network analysis, 10 tissue-specific cold responsive modules (CRMs) were identified, revealing a cascade of cellular responses to cold stress. Specifically, five upregulated CRMs were enriched with induced differentially expressed genes (DEGs), mainly corresponding to the functions of "extracellular matrix", "cytoskeleton", and "oxidoreductase activity", indicating the induced cellular response to cold shock. The "cell cycle/division" and "DNA complex" functions were enriched in the downregulated CRMs for all four tissues, which comprised inhibited DEGs, suggesting that even with tissue-specific responses, cold shock may induce severely disrupted cellular functions in all tissues, reducing aquaculture productivity. Therefore, our results revealed the tissue-specific regulation of the cellular response to low-temperature stress, which warrants further investigation and provides more comprehensive insights for the conservation and cultivation of P. olivaceus in cold water.
Collapse
Affiliation(s)
- Jiayi He
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China
| | - Qing Zhu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China
| | - Ping Han
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China
| | - Tianyu Zhou
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China
| | - Juyan Li
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China
| | - Xubo Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, 169 Qixingnan Road, Ningbo 315832, China
| | - Jie Cheng
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 5 Yushan Road, Qingdao 266003, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China
- Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
75
|
Woo WS, Kang G, Kim KH, Son HJ, Sohn MY, Lee JH, Seo JS, Kwon MG, Park CI. Exploring the Efficacy and Safety of Levamisole Hydrochloride against Microcotyle sebastis in Korean Rockfish ( Sebastes schlegelii): An In Vitro and In Vivo Approach. Animals (Basel) 2023; 13:1791. [PMID: 37889686 PMCID: PMC10252069 DOI: 10.3390/ani13111791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 10/29/2023] Open
Abstract
Parasitic infections pose significant challenges in aquaculture, and the increasing resistance to conventional anthelmintics necessitates the exploration of alternative treatments. Levamisole hydrochloride (HCl) has demonstrated efficacy against monogenean infections in various fish species; however, research focused on Microcotyle sebastis infections in Korean rockfish (Sebastes schlegelii) remains limited. Therefore, this study aimed to evaluate the efficacy of levamisole HCl against M. sebastis infections in Korean rockfish with the goal of optimizing anthelmintic usage in aquaculture. In this study, we first assessed the susceptibility of M. sebastis to levamisole HCl in vitro. Subsequently, in vivo evaluations were conducted to assess the drug's efficacy, safety, and to identify optimal administration methods. In vitro experiments revealed concentration-dependent sensitivity of M. sebastis to levamisole HCl, with a minimum effective concentration (MEC) of 100 mg/L. In vivo experiments employed oral administration, intraperitoneal injection, and immersion treatments based on the MEC. Oral administration proved to be a safe method, yielding efficacy rates of 27.3% and 41.6% for 100 mg/kg and 200 mg/kg doses, respectively, in contrast to the immersion and injection methods, which induced symptoms of abnormal swimming, vomiting, and death. Biochemical analyses conducted to assess the safety of levamisole HCl revealed a transient, statistically significant elevation in the levels of glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) on day three post-administration at 20 °C. Following this, no substantial differences were observed. However, at 13 °C, the enzyme levels remained relatively consistent, emphasizing the role of water temperature conditions in influencing the action of levamisole HCl. Our research findings substantiate the efficacy of levamisole HCl against M. sebastis in Korean rockfish, underscoring its potential for safe oral administration. These results provide valuable insights for developing parasite control strategies involving levamisole HCl in Korean rockfish populations while minimizing adverse impacts on fish health and the environment. However, this study bears limitations due to its controlled setting and narrow focus. Future research should expand on these findings by testing levamisole HCl in diverse environments, exploring different administration protocols, and examining wider temperature ranges.
Collapse
Affiliation(s)
- Won-Sik Woo
- Department of Marine Biology & Aquaculture, Institute of Marine Industry, College of Marine Science, Gyeongsang National University, 2, Tongyeonghaean-ro, Tongyeong 53064, Republic of Korea
| | - Gyoungsik Kang
- Department of Marine Biology & Aquaculture, Institute of Marine Industry, College of Marine Science, Gyeongsang National University, 2, Tongyeonghaean-ro, Tongyeong 53064, Republic of Korea
| | - Kyung-Ho Kim
- Department of Marine Biology & Aquaculture, Institute of Marine Industry, College of Marine Science, Gyeongsang National University, 2, Tongyeonghaean-ro, Tongyeong 53064, Republic of Korea
| | - Ha-Jeong Son
- Department of Marine Biology & Aquaculture, Institute of Marine Industry, College of Marine Science, Gyeongsang National University, 2, Tongyeonghaean-ro, Tongyeong 53064, Republic of Korea
| | - Min-Young Sohn
- Department of Marine Biology & Aquaculture, Institute of Marine Industry, College of Marine Science, Gyeongsang National University, 2, Tongyeonghaean-ro, Tongyeong 53064, Republic of Korea
| | - Ji-Hoon Lee
- Aquatic Disease Control Division, National Fishery Products Quality Management Service, 216, Gijanghaean-ro, Gijang, Busan 46083, Republic of Korea
| | - Jung-Soo Seo
- Aquatic Disease Control Division, National Fishery Products Quality Management Service, 216, Gijanghaean-ro, Gijang, Busan 46083, Republic of Korea
| | - Mun-Gyeong Kwon
- Aquatic Disease Control Division, National Fishery Products Quality Management Service, 216, Gijanghaean-ro, Gijang, Busan 46083, Republic of Korea
| | - Chan-Il Park
- Department of Marine Biology & Aquaculture, Institute of Marine Industry, College of Marine Science, Gyeongsang National University, 2, Tongyeonghaean-ro, Tongyeong 53064, Republic of Korea
| |
Collapse
|
76
|
Yu H, Gao Q, Wang W, Liu D, He J, Tian Y. Comprehensive Analysis of YTH Domain-Containing Genes, Encoding m 6A Reader and Their Response to Temperature Stresses and Yersinia ruckeri Infection in Rainbow Trout ( Oncorhynchus mykiss). Int J Mol Sci 2023; 24:ijms24119348. [PMID: 37298300 DOI: 10.3390/ijms24119348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
YTH domain-containing genes are important readers of N6-methyladenosine (m6A) modifications with ability to directly affect the fates of distinct RNAs in organisms. Despite their importance, little is known about YTH domain-containing genes in teleosts until now. In the present study, a total of 10 YTH domain-containing genes have been systematically identified and functionally characterized in rainbow trout (Oncorhynchus mykiss). According to the phylogenetic tree, gene structure and syntenic analysis, these YTH domain-containing genes could be classified into three evolutionary subclades, including YTHDF, YTHDC1 and YTHDC2. Of them, the copy number of OmDF1, OmDF2, OmDF3, and OmDC1 were duplicated or even triplicated in rainbow trout due to the salmonid-specific whole-genome duplication event. The three-dimensional protein structure analysis revealed that there were similar structures and the same amino acid residues that were associated with cage formation between humans and rainbow trout, implying their similar manners in binding to m6A modification. Additionally, the results of qPCR experiment indicated that the expression patterns of a few YTH domain-containing genes, especially OmDF1b, OmDF3a and OmDF3b, were significantly different in liver tissue of rainbow trout under four different temperatures (7 °C, 11 °C, 15 °C, and 19 °C). The expression levels of OmDF1a, OmDF1b and OmDC1a were obviously repressed in spleen tissue of rainbow trout at 24 h after Yersinia ruckeri infection, while increased expression was detected in OmDF3b. This study provides a systemic overview of YTH domain-containing genes in rainbow trout and reveals their biological roles in responses to temperature stress and bacterial infection.
Collapse
Affiliation(s)
- Han Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Qinfeng Gao
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| | - Wen Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Dazhi Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Jinghong He
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Yuan Tian
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
77
|
Andrieux C, Marchand M, Larroquet L, Veron V, Biasutti S, Morisson M, Coustham V, Panserat S, Houssier M. Optimization of embryonic thermal programming confirms increased liver fattening in mule ducks and changes in lipid metabolism. Front Physiol 2023; 14:1142398. [PMID: 37275234 PMCID: PMC10233139 DOI: 10.3389/fphys.2023.1142398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction: The embryonic thermal programming (TM) in birds has been shown to impact several physiological parameters such as resistance to thermal stress, muscle growth or immunity. In mule ducks, it has recently been shown that TM can induce metabolic programming resulting in increased liver weight and fat storage after overfeeding. However, a decrease in hatchability and foie gras quality was also observed, suggesting that this technique needs to be optimized. Here, we tested a new thermal manipulation condition determined with the objective of avoiding negative impacts while maintaining or improving liver properties. Methods: The eggs of the control group were incubated at 37.6°C during the whole incubation period while those of the experimental group (TM group) were incubated at 39.3°C 16 h/24 h from the 11th day of incubation to the 21st. After hatching, all the animals were fed and raised under the same conditions until the age of 12 weeks. At this stage, one part of the animals was overfed and then slaughtered 2 h (to measure rapid changes in metabolism) or 10 h after the last meal (to obtain the best technological yields), while the other part was ration-fed and slaughtered 2 h after the last meal, at the same age. Results: An 8% increase in foie gras production was measured in the TM group compared to the control group without altering the quality of the final product (nor hatchability), confirming the successful optimization of the metabolic programming. Interestingly, these results allowed us not to reject the previously suggested hypothesis of a potential delay in metabolic processes involved in liver fattening in programmed animals, in particular by measuring a trend reversal regarding the amount of total hepatic lipids in both groups at 2 h and then 10 h after the last meal. Discussion: This study therefore validates the optimization of metabolic programming by embryonic thermal manipulation for duck liver fattening. The understanding of the mechanisms of embryonic thermal programming in birds remains today very incomplete and the search for epigenetic marks (main hypothesis of the concept of programming) at the origin of the observed phenotypes could be the next step of this work.
Collapse
Affiliation(s)
- C. Andrieux
- Univ Pau and Pays Adour, E2S UPPA, INRAE (Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement), NUMEA (Nutrition Métabolisme et Aquaculture), Mont de Marsan, France
| | - M. Marchand
- Univ Pau and Pays Adour, E2S UPPA, INRAE (Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement), NUMEA (Nutrition Métabolisme et Aquaculture), Mont de Marsan, France
| | - L. Larroquet
- Univ Pau and Pays Adour, E2S UPPA, INRAE (Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement), NUMEA (Nutrition Métabolisme et Aquaculture), Mont de Marsan, France
| | - V. Veron
- Univ Pau and Pays Adour, E2S UPPA, INRAE (Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement), NUMEA (Nutrition Métabolisme et Aquaculture), Mont de Marsan, France
| | - S. Biasutti
- Univ Pau and Pays Adour, E2S UPPA, IUT Génie Biologique, Mont de Marsan, France
| | - M. Morisson
- GenPhySE, Université de Toulouse, INRAE (Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement), ENVT (Ecole Nationale Vétérinaire de Toulouse), Castanet Tolosan, France
| | - V. Coustham
- Univ Pau and Pays Adour, E2S UPPA, INRAE (Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement), NUMEA (Nutrition Métabolisme et Aquaculture), Mont de Marsan, France
| | - S. Panserat
- Univ Pau and Pays Adour, E2S UPPA, INRAE (Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement), NUMEA (Nutrition Métabolisme et Aquaculture), Mont de Marsan, France
| | - M. Houssier
- Univ Pau and Pays Adour, E2S UPPA, INRAE (Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement), NUMEA (Nutrition Métabolisme et Aquaculture), Mont de Marsan, France
| |
Collapse
|
78
|
Wang Y, Bao X, Wang W, Xu X, Liu X, Li Z, Yang J, Yuan T. Exploration of anti-stress mechanisms in high temperature exposed juvenile golden cuttlefish ( Sepia esculenta) based on transcriptome profiling. Front Physiol 2023; 14:1189375. [PMID: 37234426 PMCID: PMC10206265 DOI: 10.3389/fphys.2023.1189375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Sepia esculenta is a cephalopod widely distributed in the Western Pacific Ocean, and there has been growing research interest due to its high economic and nutritional value. The limited anti-stress capacity of larvae renders challenges for their adaptation to high ambient temperatures. Exposure to high temperatures produces intense stress responses, thereby affecting survival, metabolism, immunity, and other life activities. Notably, the molecular mechanisms by which larval cuttlefish cope with high temperatures are not well understood. As such, in the present study, transcriptome sequencing of S. esculenta larvae was performed and 1,927 differentially expressed genes (DEGs) were identified. DEGs were subjected to functional enrichment analyses using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The top 20 terms of biological processes in GO and 20 high-temperature stress-related pathways in KEGG functional enrichment analysis were identified. A protein-protein interaction network was constructed to investigate the interaction between temperature stress-related genes. A total of 30 key genes with a high degree of participation in KEGG signaling pathways or protein-protein interactions were identified and subsequently validated using quantitative RT-PCR. Through a comprehensive analysis of the protein-protein interaction network and KEGG signaling pathway, the functions of three hub genes (HSP90AA1, PSMD6, and PSMA5), which belong to the heat shock protein family and proteasome, were explored. The present results can facilitate further understanding of the mechanism of high temperature resistance in invertebrates and provide a reference for the S. esculenta industry in the context of global warming.
Collapse
Affiliation(s)
- Yongjie Wang
- School of Agriculture, Ludong University, Yantai, China
| | - Xiaokai Bao
- School of Agriculture, Ludong University, Yantai, China
| | - Weijun Wang
- School of Agriculture, Ludong University, Yantai, China
| | - Xiaohui Xu
- School of Agriculture, Ludong University, Yantai, China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, China
| | - Zan Li
- School of Agriculture, Ludong University, Yantai, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai, China
| | - Tingzhu Yuan
- School of Agriculture, Ludong University, Yantai, China
- Marine Economy Promotion Center of Changdao County Marine Ecological Civilization Comprehensive Experimental Zone, Yantai, China
| |
Collapse
|
79
|
Zhou C, Gao P, Wang J. Comprehensive Analysis of Microbiome, Metabolome, and Transcriptome Revealed the Mechanisms of Intestinal Injury in Rainbow Trout under Heat Stress. Int J Mol Sci 2023; 24:ijms24108569. [PMID: 37239914 DOI: 10.3390/ijms24108569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Global warming is one of the most common environmental challenges faced by cold-water fish farming. Intestinal barrier function, gut microbiota, and gut microbial metabolites are significantly altered under heat stress, posing serious obstacles to the healthy artificial culture of rainbow trout. However, the molecular mechanisms underlying intestinal injury in rainbow trout under heat stress remain unclear. In the present study, the optimal growth temperature for rainbow trout (16 °C) was used for the control group, and the maximum temperature tolerated by rainbow trout (24 °C) was used for the heat stress group, which was subjected to heat stress for 21 days. The mechanism of intestinal injury in rainbow trout under heat stress was explored by combining animal histology, 16S rRNA gene amplicon sequencing, ultra-high performance liquid chromatography-mass spectrometry, and transcriptome sequencing. The results showed that the antioxidant capacity of rainbow trout was enhanced under heat stress, the levels of stress-related hormones were significantly increased, and the relative expression of genes related to heat stress proteins was significantly increased, indicating that the heat stress model of rainbow trout was successfully established. Secondly, the intestinal tract of rainbow trout showed inflammatory pathological characteristics under heat stress, with increased permeability, activation of the inflammatory factor signaling pathway, and increased relative expression of inflammatory factor genes, suggesting that the intestinal barrier function was impaired. Thirdly, heat stress caused an imbalance of intestinal commensal microbiota and changes in intestinal metabolites in rainbow trout, which participated in the stress response mainly by affecting lipid metabolism and amino acid metabolism. Finally, heat stress promoted intestinal injury in rainbow trout by activating the peroxisome proliferator-activated receptor-α signaling pathway. These results not only expand the understanding of fish stress physiology and regulation mechanisms, but also provide a scientific basis for healthy artificial culture and the reduction of rainbow trout production costs.
Collapse
Affiliation(s)
- Changqing Zhou
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Grassland Agriculture Engineering Center, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
- College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Pan Gao
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Grassland Agriculture Engineering Center, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Jianlin Wang
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Grassland Agriculture Engineering Center, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| |
Collapse
|
80
|
Jeong H, Byeon E, Kim DH, Maszczyk P, Lee JS. Heavy metals and metalloid in aquatic invertebrates: A review of single/mixed forms, combination with other pollutants, and environmental factors. MARINE POLLUTION BULLETIN 2023; 191:114959. [PMID: 37146547 DOI: 10.1016/j.marpolbul.2023.114959] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 05/07/2023]
Abstract
Heavy metals (HMs) and metalloid occur naturally and are found throughout the Earth's crust but they are discharged into aquatic environments at high concentrations by human activities, increasing heavy metal pollution. HMs can bioaccumulate in higher organisms through the food web and consequently affect humans. In an aquatic environment, various HMs mixtures can be present. Furthermore, HMs adsorb on other environmental pollutants, such as microplastics and persistent organic pollutants, causing a synergistic or antagonistic effect on aquatic organisms. Therefore, to understand the biological and physiological effects of HMs on aquatic organisms, it is important to evaluate the effects of exposure to combinations of complex HM mixtures and/or pollutants and other environmental factors. Aquatic invertebrates occupy an important niche in the aquatic food chain as the main energy link between higher and lower organisms. The distribution of heavy metals and the resulting toxic effects in aquatic invertebrates have been extensively studied, but few reports have dealt with the relationship between HMs, pollutants, and environmental factors in biological systems with regard to biological availability and toxicity. This review describes the overall properties of individual HM and their effects on aquatic invertebrates and comprehensively reviews physiological and biochemical endpoints in aquatic invertebrates depending on interactions among HMs, other pollutants, and environmental factors.
Collapse
Affiliation(s)
- Haksoo Jeong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Eunjin Byeon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Piotr Maszczyk
- Department of Hydrobiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
81
|
Desforges JE, Birnie-Gauvin K, Jutfelt F, Gilmour KM, Eliason EJ, Dressler TL, McKenzie DJ, Bates AE, Lawrence MJ, Fangue N, Cooke SJ. The ecological relevance of critical thermal maxima methodology for fishes. JOURNAL OF FISH BIOLOGY 2023; 102:1000-1016. [PMID: 36880500 DOI: 10.1111/jfb.15368] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/28/2023] [Indexed: 05/13/2023]
Abstract
Critical thermal maxima methodology (CTM) has been used to infer acute upper thermal tolerance in fishes since the 1950s, yet its ecological relevance remains debated. In this study, the authors synthesize evidence to identify methodological concerns and common misconceptions that have limited the interpretation of critical thermal maximum (CTmax ; value for an individual fish during one trial) in ecological and evolutionary studies of fishes. They identified limitations of, and opportunities for, using CTmax as a metric in experiments, focusing on rates of thermal ramping, acclimation regimes, thermal safety margins, methodological endpoints, links to performance traits and repeatability. Care must be taken when interpreting CTM in ecological contexts, because the protocol was originally designed for ecotoxicological research with standardized methods to facilitate comparisons within study individuals, across species and contexts. CTM can, however, be used in ecological contexts to predict impacts of environmental warming, but only if parameters influencing thermal limits, such as acclimation temperature or rate of thermal ramping, are taken into account. Applications can include mitigating the effects of climate change, informing infrastructure planning or modelling species distribution, adaptation and/or performance in response to climate-related temperature change. The authors' synthesis points to several key directions for future research that will further aid the application and interpretation of CTM data in ecological contexts.
Collapse
Affiliation(s)
- Jessica E Desforges
- Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| | - Kim Birnie-Gauvin
- Department of Ecology, Evolution & Marine Biology, University of California Santa Barbara, Santa Barbara, California, USA
- Section for Freshwater Fisheries and Ecology, National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Fredrik Jutfelt
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Erika J Eliason
- Section for Freshwater Fisheries and Ecology, National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Terra L Dressler
- Section for Freshwater Fisheries and Ecology, National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | | | - Amanda E Bates
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Michael J Lawrence
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nann Fangue
- Department of Wildlife, Fish, and Conservation Biology, University of California Davis, Davis, California, USA
| | - Steven J Cooke
- Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
82
|
Feugere L, Bates A, Emagbetere T, Chapman E, Malcolm LE, Bulmer K, Hardege J, Beltran-Alvarez P, Wollenberg Valero KC. Heat induces multiomic and phenotypic stress propagation in zebrafish embryos. PNAS NEXUS 2023; 2:pgad137. [PMID: 37228511 PMCID: PMC10205475 DOI: 10.1093/pnasnexus/pgad137] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/11/2023] [Indexed: 05/27/2023]
Abstract
Heat alters biology from molecular to ecological levels, but may also have unknown indirect effects. This includes the concept that animals exposed to abiotic stress can induce stress in naive receivers. Here, we provide a comprehensive picture of the molecular signatures of this process, by integrating multiomic and phenotypic data. In individual zebrafish embryos, repeated heat peaks elicited both a molecular response and a burst of accelerated growth followed by a growth slowdown in concert with reduced responses to novel stimuli. Metabolomes of the media of heat treated vs. untreated embryos revealed candidate stress metabolites including sulfur-containing compounds and lipids. These stress metabolites elicited transcriptomic changes in naive receivers related to immune response, extracellular signaling, glycosaminoglycan/keratan sulfate, and lipid metabolism. Consequently, non-heat-exposed receivers (exposed to stress metabolites only) experienced accelerated catch-up growth in concert with reduced swimming performance. The combination of heat and stress metabolites accelerated development the most, mediated by apelin signaling. Our results prove the concept of indirect heat-induced stress propagation toward naive receivers, inducing phenotypes comparable with those resulting from direct heat exposure, but utilizing distinct molecular pathways. Group-exposing a nonlaboratory zebrafish line, we independently confirm that the glycosaminoglycan biosynthesis-related gene chs1 and the mucus glycoprotein gene prg4a, functionally connected to the candidate stress metabolite classes sugars and phosphocholine, are differentially expressed in receivers. This hints at the production of Schreckstoff-like cues in receivers, leading to further stress propagation within groups, which may have ecological and animal welfare implications for aquatic populations in a changing climate.
Collapse
Affiliation(s)
- Lauric Feugere
- Department of Biological and Marine Sciences, University of Hull, Kingston upon Hull HU6 7RX, UK
| | - Adam Bates
- Department of Biological and Marine Sciences, University of Hull, Kingston upon Hull HU6 7RX, UK
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Timothy Emagbetere
- Department of Biological and Marine Sciences, University of Hull, Kingston upon Hull HU6 7RX, UK
| | - Emma Chapman
- Department of Biological and Marine Sciences, University of Hull, Kingston upon Hull HU6 7RX, UK
| | - Linsey E Malcolm
- Biomedical Institute for Multimorbidities, Centre for Biomedicine, Hull York Medical School, University of Hull, Kingston upon Hull HU6 7RX, UK
| | - Kathleen Bulmer
- Biomedical Institute for Multimorbidities, Centre for Biomedicine, Hull York Medical School, University of Hull, Kingston upon Hull HU6 7RX, UK
| | - Jörg Hardege
- Department of Biological and Marine Sciences, University of Hull, Kingston upon Hull HU6 7RX, UK
| | - Pedro Beltran-Alvarez
- Biomedical Institute for Multimorbidities, Centre for Biomedicine, Hull York Medical School, University of Hull, Kingston upon Hull HU6 7RX, UK
| | | |
Collapse
|
83
|
Houle C, Gossieaux P, Bernatchez L, Audet C, Garant D. Transgenerational effects on body size and survival in Brook charr ( Salvelinus fontinalis). Evol Appl 2023; 16:1061-1070. [PMID: 37216032 PMCID: PMC10197224 DOI: 10.1111/eva.13553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
Higher temperatures are now observed in several ecosystems and act as new selective agents that shape traits and fitness of individuals. Transgenerational effects may be important in modulating adaptation of future generations and buffering negative impacts of temperature changes. The potential for these effects may be important in freshwater fish species, as temperature is a key abiotic component of their environment. Yet, still, relatively few studies have assessed the presence and importance of transgenerational effects under natural conditions. The purpose of this study was to test how parental thermal conditions influenced offspring growth and survival following stocking in Brook charr (Salvelinus fontinalis). To do so, part of the breeders were exposed to a "cold" treatment while others were exposed to a "warm" treatment during the final steps of gonad maturation (constant 2°C difference between treatments along the seasonal temperature decrease). The impact on offspring of a selection treatment targeting production traits of interest (absence of sexual maturation at 1+, combined with increased growth) in breeders was also evaluated. After 7-8 months of growth in captivity, offspring were stocked in natural lakes. Their growth and survival were assessed about a year later. Offspring from "cold" breeders showed lower survival than those from "warm" breeders and the selection treatment had no effect on survival. However, the selection treatment was linked to lower Fulton's condition index, which, in turn, was positively correlated to survival in lakes. This study highlights the importance of working in ecological/industrial context to fully assess the different impacts of transgenerational effects on traits and survival. Our results also have important implications for stocking practices used to support the sport fishing industry.
Collapse
Affiliation(s)
- Carolyne Houle
- Département de BiologieUniversité de SherbrookeSherbrookeQuébecCanada
| | | | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébec CityQuébecCanada
| | - Céline Audet
- Institut des Sciences de la Mer de Rimouski (ISMER)Université du Québec à Rimouski (UQAR)RimouskiQuébecCanada
| | - Dany Garant
- Département de BiologieUniversité de SherbrookeSherbrookeQuébecCanada
| |
Collapse
|
84
|
Mitchell A, Hayes C, Booth DJ, Nagelkerken I. Future shock: Ocean acidification and seasonal water temperatures alter the physiology of competing temperate and coral reef fishes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163684. [PMID: 37100135 DOI: 10.1016/j.scitotenv.2023.163684] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 05/06/2023]
Abstract
Climate change can directly (physiology) and indirectly (novel species interactions) modify species responses to novel environmental conditions during the initial stages of range shifts. Whilst the effects of climate warming on tropical species at their cold-water leading ranges are well-established, it remains unclear how future seasonal temperature changes, ocean acidification, and novel species interactions will alter the physiology of range-shifting tropical and competing temperate fish in recipient ecosystems. Here we used a laboratory experiment to examine how ocean acidification, future summer vs winter temperatures, and novel species interactions could affect the physiology of competing temperate and range-extending coral reef fish to determine potential range extension outcomes. In future winters (20 °C + elevated pCO2) coral reef fish at their cold-water leading edges showed reduced physiological performance (lower body condition and cellular defence, and higher oxidative damage) compared to present-day summer (23 °C + control pCO2) and future summer conditions (26 °C + elevated pCO2). However, they showed a compensatory effect in future winters through increased long-term energy storage. Contrastingly, co-shoaling temperate fish showed higher oxidative damage, and reduced short-term energy storage and cellular defence in future summer than in future winter conditions at their warm-trailing edges. However, temperate fish benefitted from novel shoaling interactions and showed higher body condition and short-term energy storage when shoaling with coral reef fish compared to same-species shoaling. We conclude that whilst during future summers, ocean warming will likely benefit coral reef fishes extending their ranges, future winter conditions may still reduce coral reef fish physiological functioning, and may therefore slow their establishment at higher latitudes. In contrast, temperate fish species benefit from co-shoaling with smaller-sized tropical fishes, but this benefit may dissipate due to their reduced physiological functioning under future summer temperatures and increasing body sizes of co-shoaling tropical species.
Collapse
Affiliation(s)
- Angus Mitchell
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, DX 650 418, Adelaide, SA 5005, Australia
| | - Chloe Hayes
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, DX 650 418, Adelaide, SA 5005, Australia
| | - David J Booth
- School of the Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ivan Nagelkerken
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, DX 650 418, Adelaide, SA 5005, Australia.
| |
Collapse
|
85
|
Giareta EP, Hauser-Davis RA, Abilhoa V, Wosnick N. Carbonic anhydrase in elasmobranchs and implications of the current climate change scenario. Comp Biochem Physiol A Mol Integr Physiol 2023; 281:111435. [PMID: 37086909 DOI: 10.1016/j.cbpa.2023.111435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/24/2023]
Abstract
The enzyme carbonic anhydrase (CA) has well-known functions in acid-base balance, respiratory gas exchange, and osmoregulation in teleost fishes. However, studies concerning the role of CA in elasmobranchs are still scarce. Therefore, the aim of this study is to present the current status of CA studies in sharks and rays, as well as to identify gaps and emerging needs, in order to guide future studies. This review is organized according to the main roles of CA, with further considerations on climate change and CA effects indicated as paramount, as strategies in the face of climate change can be crucial for species response. The literature review revealed a reduction in publications on CA over the years. In addition, a historical research differentiation is noted, where the first assessments on the subject addressed investigations on basic CA functions, while the most recent studies present a comparative approach among species as well as interdisciplinary discussions, such as ecology and phylogeny. Considering that most elasmobranchs are threatened, future studies should prioritize non-lethal methodologies, in addition to expanding studies to climate change effects on CA.
Collapse
Affiliation(s)
| | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Vinícius Abilhoa
- Programa de Pós-Graduação em Zoologia, Universidade Federal do Paraná, Curitiba, Brazil
| | - Natascha Wosnick
- Programa de Pós-Graduação em Zoologia, Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
86
|
Samaras A. A Systematic Review and Meta-Analysis of Basal and Post-Stress Circulating Cortisol Concentration in an Important Marine Aquaculture Fish Species, European Sea Bass, Dicentrarchus labrax. Animals (Basel) 2023; 13:ani13081340. [PMID: 37106903 PMCID: PMC10135258 DOI: 10.3390/ani13081340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND European sea bass is a species characterized by high and dispersed cortisol levels. The aim of the present study was to analyze all published data on basal and post-acute stress cortisol levels in this species. METHODS For this systematic review and meta-analysis the Web of Science and Scopus databases were searched for papers reporting plasma or serum cortisol levels in E. sea bass, without language or date restrictions. Data were extracted directly for the reported results and were analyzed separately for basal and post-acute stress levels, as well their standardized mean differences (SMD) using random-effects meta-analyses. RESULTS Of 407 unique records identified, 69 were eligible. Basal cortisol levels had a pooled effect of 88.7 ng mL-1 (n = 57), while post-acute stress levels were 385.9 ng mL-1 (n = 34). The average SMD between basal and post-stress was calculated to be 3.02 (n = 22). All analyses had a high between-study heterogeneity. Results for basal and post-stress levels were affected by the assay type and anesthesia prior to blood sampling. CONCLUSIONS Cortisol levels in E. sea bass are higher than most studied fish species and display large heterogeneity. Application of stress led to elevated cortisol levels in all studies examined. In all cases, sources of between-studies heterogeneity were identified.
Collapse
|
87
|
Dias M, Paula JR, Pousão-Ferreira P, Casal S, Cruz R, Cunha SC, Rosa R, Marques A, Anacleto P, Maulvault AL. Combined effects of climate change and BDE-209 dietary exposure on the behavioural response of the white seabream, Diplodus sargus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163400. [PMID: 37054799 DOI: 10.1016/j.scitotenv.2023.163400] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 04/15/2023]
Abstract
Decabromodiphenyl-ether (BDE-209) is a persistent organic pollutant ubiquitously found in marine environments worldwide. Even though this emerging chemical contaminant is described as highly toxic, bioaccumulative and biomagnifiable, limited studies have addressed the ecotoxicological implications associated with its exposure in non-target marine organisms, particularly from a behavioural standpoint. Alongside, seawater acidification and warming have been intensifying their impacts on marine ecosystems over the years, compromising species welfare and survival. BDE-209 exposure as well as seawater acidification and warming are known to affect fish behaviour, but information regarding their interactive effects is not available. In this study, long-term effects of BDE-209 contamination, seawater acidification and warming were studied on different behavioural traits of Diplodus sargus juveniles. Our results showed that D. sargus exhibited a marked sensitivity in all the behaviour responses after dietary exposure to BDE-209. Fish exposed to BDE-209 alone revealed lower awareness of a risky situation, increased activity, less time spent within the shoal, and reversed lateralization when compared to fish from the Control treatment. However, when acidification and/or warming were added to the equation, behavioural patterns were overall altered. Fish exposed to acidification alone exhibited increased anxiety, being less active, spending more time within the shoal, while presenting a reversed lateralization. Finally, fish exposed to warming alone were more anxious and spent more time within the shoal compared to those of the Control treatment. These novel findings not only confirm the neurotoxicological attributes of brominated flame retardants (like BDE-209), but also highlight the relevance of accounting for the effects of abiotic variables (e.g. pH and seawater temperature) when investigating the impacts of environmental contaminants on marine life.
Collapse
Affiliation(s)
- Marta Dias
- UCIBIO - Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal; MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - José Ricardo Paula
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Infrastructure Network Associated Laboratory, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939 2750-374 Cascais, Portugal; Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Pedro Pousão-Ferreira
- IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal
| | - Susana Casal
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Rebeca Cruz
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Sara C Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Rui Rosa
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Infrastructure Network Associated Laboratory, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939 2750-374 Cascais, Portugal; Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - António Marques
- IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Patrícia Anacleto
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Infrastructure Network Associated Laboratory, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939 2750-374 Cascais, Portugal; IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Ana Luísa Maulvault
- UCIBIO - Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal; MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Infrastructure Network Associated Laboratory, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939 2750-374 Cascais, Portugal; IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal
| |
Collapse
|
88
|
Messina S, Costantini D, Eens M. Impacts of rising temperatures and water acidification on the oxidative status and immune system of aquatic ectothermic vertebrates: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161580. [PMID: 36646226 DOI: 10.1016/j.scitotenv.2023.161580] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/21/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Species persistence in the Anthropocene is dramatically threatened by global climate change. Large emissions of carbon dioxide (CO2) from human activities are driving increases in mean temperature, intensity of heatwaves, and acidification of oceans and freshwater bodies. Ectotherms are particularly sensitive to CO2-induced stressors, because the rate of their metabolic reactions, as well as their immunological performance, are affected by environmental temperatures and water pH. We reviewed and performed a meta-analysis of 56 studies, involving 1259 effect sizes, that compared oxidative status or immune function metrics between 42 species of ectothermic vertebrates exposed to long-term increased temperatures or water acidification (≥48 h), and those exposed to control parameters resembling natural conditions. We found that CO2-induced stressors enhance levels of molecular oxidative damages in ectotherms, while the activity of antioxidant enzymes was upregulated only at higher temperatures, possibly due to an increased rate of biochemical reactions dependent on the higher ambient temperature. Differently, both temperature and water acidification showed weak impacts on immune function, indicating different direction (increase or decrease) of responses among immune traits. Further, we found that the intensity of temperature treatments (Δ°C) and their duration, enhance the physiological response of ectotherms, pointing to stronger effects of prolonged extreme warming events (i.e., heatwaves) on the oxidative status. Finally, adult individuals showed weaker antioxidant enzymatic responses to an increase in water temperature compared to early life stages, suggesting lower acclimation capacity. Antarctic species showed weaker antioxidant response compared to temperate and tropical species, but level of uncertainty in the antioxidant enzymatic response of Antarctic species was high, thus pairwise comparisons were statistically non-significant. Overall, the results of this meta-analysis indicate that the regulation of oxidative status might be one key mechanism underlying thermal plasticity in aquatic ectothermic vertebrates.
Collapse
Affiliation(s)
- Simone Messina
- Behavioural Ecology & Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Department of Ecological and Biological Sciences, Tuscia University, Largo dell'Università s.n.c., 01100 Viterbo, Italy.
| | - David Costantini
- Department of Ecological and Biological Sciences, Tuscia University, Largo dell'Università s.n.c., 01100 Viterbo, Italy; Unité Physiologie Moléculaire et Adaptation, UMR 7221, Muséum National d'Histoire Naturelle, CNRS - 7 rue Cuvier, 75005 Paris, France
| | - Marcel Eens
- Behavioural Ecology & Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
89
|
Ishtiaq M, Mazhar MW, Maqbool M, Hussain T, Hussain SA, Casini R, Abd-ElGawad AM, Elansary HO. Seed Priming with the Selenium Nanoparticles Maintains the Redox Status in the Water Stressed Tomato Plants by Modulating the Antioxidant Defense Enzymes. PLANTS (BASEL, SWITZERLAND) 2023; 12:1556. [PMID: 37050182 PMCID: PMC10096850 DOI: 10.3390/plants12071556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
In the present research, selenium nanoparticles (SeNPs) were tested for their use as seed priming agents under field trials on tomatoes (Solanum lycopersicum L.) for their efficacy in conferring drought tolerance. Four different seed priming regimes of SeNPs were created, comprising 25, 50, 75, and 100 ppm, along with a control treatment of 0 ppm. Seeds were planted in split plots under two irrigation regimes comprising water and water stress. The results suggest that seed priming with SeNPs can improve tomato crop performance under drought stress. Plants grown with 75 ppm SeNPs-primed seeds had lower hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels by 39.3% and 28.9%, respectively. Seed priming with 75 ppm SeNPs further increased the superoxide dismutase (SOD) and catalase (CAT) functions by 34.9 and 25.4%, respectively. The same treatment increased the total carotenoids content by 13.5%, α-tocopherols content by 22.8%, total flavonoids content by 25.2%, total anthocyanins content by 19.6%, ascorbic acid content by 26.4%, reduced glutathione (GSH) content by 14.8%, and oxidized glutathione (GSSG) content by 13.12%. Furthermore, seed priming with SeNPs upregulated the functions of enzymes of ascorbate glutathione cycle. Seed priming with SeNPs is a smart application to sustain tomato production in arid lands.
Collapse
Affiliation(s)
- Muhammad Ishtiaq
- Department of Botany, Mirpur University of Science and Technology, Mirpur 10250, Pakistan
| | - Muhammad Waqas Mazhar
- Department of Botany, Mirpur University of Science and Technology, Mirpur 10250, Pakistan
| | - Mehwish Maqbool
- Department of Botany, Mirpur University of Science and Technology, Mirpur 10250, Pakistan
| | - Tanveer Hussain
- Department of Botany, Mirpur University of Science and Technology, Mirpur 10250, Pakistan
| | | | - Ryan Casini
- School of Public Health, University of California, Berkeley, 2121 Berkeley Way, Berkeley, CA 94704, USA
| | - Ahmed M. Abd-ElGawad
- Department of Plant Production, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Hosam O. Elansary
- Department of Plant Production, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|
90
|
Vera LM, de Alba G, Santos S, Szewczyk TM, Mackenzie SA, Sánchez-Vázquez FJ, Rey Planellas S. Circadian rhythm of preferred temperature in fish: Behavioural thermoregulation linked to daily photocycles in zebrafish and Nile tilapia. J Therm Biol 2023; 113:103544. [PMID: 37055103 DOI: 10.1016/j.jtherbio.2023.103544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/21/2023] [Accepted: 03/13/2023] [Indexed: 04/15/2023]
Abstract
Ectothermic vertebrates, e.g. fish, maintain their body temperature within a specific physiological range mainly through behavioural thermoregulation. Here, we characterise the presence of daily rhythms of thermal preference in two phylogenetically distant and well-studied fish species: the zebrafish (Danio rerio), an experimental model, and the Nile tilapia (Oreochromis niloticus), an aquaculture species. We created a non-continuous temperature gradient using multichambered tanks according to the natural environmental range for each species. Each species was allowed to freely choose their preferred temperature during the 24h cycle over a long-term period. Both species displayed strikingly consistent temporal daily rhythms of thermal preference with higher temperatures being selected during the second half of the light phase and lower temperatures at the end of the dark phase, with mean acrophases at Zeitgeber Time (ZT) 5.37 h (zebrafish) and ZT 12.5 h (tilapia). Interestingly, when moved to the experimental tank, only tilapia displayed consistent preference for higher temperatures and took longer time to establish the thermal rhythms. Our findings highlight the importance of integrating both light-driven daily rhythm and thermal choice to refine our understanding of fish biology and improve the management and welfare of the diversity of fish species used in research and food production.
Collapse
Affiliation(s)
- Luisa M Vera
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Gonzalo de Alba
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Silvere Santos
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Tim M Szewczyk
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK; The Scottish Association for Marine Science, SAMS, Dunbeg, Oban, Argyll, PA37 1QA, UK
| | - Simon A Mackenzie
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Francisco J Sánchez-Vázquez
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Sònia Rey Planellas
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| |
Collapse
|
91
|
Liu F, Zhang T, He Y, Zhan W, Xie Q, Lou B. Integration of transcriptome and proteome analyses reveals the regulation mechanisms of Larimichthys polyactis liver exposed to heat stress. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108704. [PMID: 36958506 DOI: 10.1016/j.fsi.2023.108704] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/11/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
Small yellow croaker (Larimichthys polyactis) is one of the most economically important marine fishery species. L. polyactis aquaculture has experienced stress response and the frequent occurrence of diseases, bringing huge losses to the aquaculture industry. Little is known about the regulation mechanism of heat stress response in L. polyactis. In this study, to provide an overview of the heat-tolerance mechanism of L. polyactis, the transcriptome and proteome of the liver of L. polyactis on the 6 h after high temperature (32 °C) treatment were analyzed using Illumina HiSeq 4000 platform and isobaric tag for relative and absolute quantitation (iTRAQ). A total of 3700 upregulated and 1628 downregulated genes (differentially expressed genes, DEGs) were identified after heat stress in L. polyactis. Also, 198 differentially expressed proteins (DEPs), including 117 upregulated and 81 downregulated proteins, were identified. Integrative analysis revealed that 72 genes were significantly differentially expressed at transcriptome and protein levels. Functional analysis showed that arginine biosynthesis, tyrosine metabolism, pentose phosphate pathway, starch and sucrose metabolism, and protein processing in the endoplasmic reticulum were the main pathways responding to heat stress. Among the pathways, protein processing in the endoplasmic reticulum was enriched by most DEGs/DEPs, which suggests that this pathway may play a more important role in the heat stress response. Further insights into the pathway revealed that transcripts and proteins, especially HSPs and PDIs, were differentially expressed in response to heat stress. These findings contribute to existing data describing the fish response to heat stress and provide information about protein levels, which are of great significance to a deeper understanding of the heat stress responding regulation mechanism in L. polyactis and other fish species.
Collapse
Affiliation(s)
- Feng Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Tianle Zhang
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Yu He
- College of Life Sciences, Huzhou Normal University, Huzhou, 313000, China
| | - Wei Zhan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Qingping Xie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Bao Lou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
92
|
Au A, Mojadadi A, Shao JY, Ahmad G, Witting PK. Physiological Benefits of Novel Selenium Delivery via Nanoparticles. Int J Mol Sci 2023; 24:ijms24076068. [PMID: 37047040 PMCID: PMC10094732 DOI: 10.3390/ijms24076068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Dietary selenium (Se) intake within the physiological range is critical to maintain various biological functions, including antioxidant defence, redox homeostasis, growth, reproduction, immunity, and thyroid hormone production. Chemical forms of dietary Se are diverse, including organic Se (selenomethionine, selenocysteine, and selenium-methyl-selenocysteine) and inorganic Se (selenate and selenite). Previous studies have largely investigated and compared the health impacts of dietary Se on agricultural stock and humans, where dietary Se has shown various benefits, including enhanced growth performance, immune functions, and nutritional quality of meats, with reduced oxidative stress and inflammation, and finally enhanced thyroid health and fertility in humans. The emergence of nanoparticles presents a novel and innovative technology. Notably, Se in the form of nanoparticles (SeNPs) has lower toxicity, higher bioavailability, lower excretion in animals, and is linked to more powerful and superior biological activities (at a comparable Se dose) than traditional chemical forms of dietary Se. As a result, the development of tailored SeNPs for their use in intensive agriculture and as candidate for therapeutic drugs for human pathologies is now being actively explored. This review highlights the biological impacts of SeNPs on growth and reproductive performances, their role in modulating heat and oxidative stress and inflammation and the varying modes of synthesis of SeNPs.
Collapse
Affiliation(s)
- Alice Au
- Redox Biology Group, Charles Perkins Centre, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Albaraa Mojadadi
- Redox Biology Group, Charles Perkins Centre, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jia-Ying Shao
- Redox Biology Group, Charles Perkins Centre, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Gulfam Ahmad
- Redox Biology Group, Charles Perkins Centre, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Andrology Department, Royal Women's and Children's Pathology, Carlton, VIC 3053, Australia
| | - Paul K Witting
- Redox Biology Group, Charles Perkins Centre, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
93
|
Horne LM, DeVries DR, Wright R, Irwin E, Staton BA, Abdelrahman HA, Stoeckel JA. Thermal performance of the electron transport system Complex III in seven Alabama fishes. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:153-162. [PMID: 36285344 DOI: 10.1002/jez.2667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/13/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022]
Abstract
Management of fish populations for conservation in thermally variable systems requires an understanding of the fish's underlying physiology and responses to thermal stress. Physiological research at the organismal level provides information on the overall effects of stressors such as extreme temperature fluctuations. While experiments with whole organisms provide information as to the overall effects of temperature fluctuations, biochemical assays of thermal stress provide direct results of exposure that are both sensitive and specific. Electron transport system (ETS; Complex III) assays quantify a rate-limiting step of respiratory enzymes. Parameters that can be estimated via this approach include optimum thermal temperature (Topt ) and optimal breadth of thermal performance (Tbreadth ), which can both be related to organismal-level temperature thresholds. We exposed enzymes of seven fish species (native fish chosen to represent a typical community in Alabama streams) to temperatures in the range 11-44°C. The resultant enzymatic thermal performance curves showed that Topt , the lower temperature for enzyme optimal thermal performance (Tlow ), the upper temperature for enzyme optimal thermal performance (Tup ), and Tbreadth differed among species. Relationships between enzymatic activity and temperature for all fish followed a pattern of steadily increasing enzyme activity to Topt before gradually decreasing with increasing temperature. A comparison of our enzyme optimum and upper-temperature limit results versus published critical thermal maxima values supports that ETS Complex III assays may be useful for assessing organismal-level thermal tolerance.
Collapse
Affiliation(s)
- Lindsay M Horne
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, Alabama, USA.,Department of Biology, School of Mathematics and Sciences, Lincoln Memorial University, Tennessee, Harrogate, USA
| | - Dennis R DeVries
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, Alabama, USA
| | - Russell Wright
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, Alabama, USA
| | - Elise Irwin
- U.S. Geological Survey, Cooperative Fish and Wildlife Research Units, Auburn, Alabama, USA
| | | | - Hisham A Abdelrahman
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, Alabama, USA.,Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - James A Stoeckel
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
94
|
Penny FM, Bugg WS, Kieffer JD, Jeffries KM, Pavey SA. Atlantic sturgeon and shortnose sturgeon exhibit highly divergent transcriptomic responses to acute heat stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 45:101058. [PMID: 36657229 DOI: 10.1016/j.cbd.2023.101058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
In comparison to most modern teleost fishes, sturgeons generally display muted stress responses. While a muted stress response appears to be ubiquitous across sturgeon species, the mechanisms unpinning this muted response have not been fully described. The objective of this study was to determine the patterns of hematological and transcriptomic change in muscle tissue following an acute high temperature stress (critical thermal maxima; CTmax) in two locally co-occurring but evolutionarily distant sturgeon species (Atlantic and shortnose sturgeon). The most striking pattern found was that Atlantic sturgeon launched a vigorous transcriptomic response at CTmax, whereas shortnose sturgeon did not. In contrast, shortnose sturgeon have significantly higher cortisol than Atlantics at CTmax, reconfirming that shortnose have a less muted cortisol stress response. Atlantic sturgeon downregulated a number of processes, included RNA creation/processing, methylation and immune processes. Furthermore, a number of genes related to heat shock proteins were differentially expressed at CTmax in Atlantic sturgeon but none of these genes were significantly changed in shortnose sturgeon. We also note that the majority of differentially expressed genes of both species are undescribed and have no known orthologues. These results suggest that, while sturgeons as a whole may show muted stress responses, individual sturgeon species likely use different inducible strategies to cope with acute high temperature stress.
Collapse
Affiliation(s)
- F M Penny
- Department of Biological Sciences and Canadian Rivers Institute (CRI Genomics), University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada.
| | - W S Bugg
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba R3T 2N2, Canada
| | - J D Kieffer
- Department of Biological Sciences (MADSAM Lab), University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada
| | - K M Jeffries
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba R3T 2N2, Canada
| | - S A Pavey
- Department of Biological Sciences and Canadian Rivers Institute (CRI Genomics), University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada
| |
Collapse
|
95
|
Mateus AP, Costa RA, Sadoul B, Bégout ML, Cousin X, Canario AV, Power DM. Thermal imprinting during embryogenesis modifies skin repair in juvenile European sea bass (Dicentrarchus labrax). FISH & SHELLFISH IMMUNOLOGY 2023; 134:108647. [PMID: 36842641 DOI: 10.1016/j.fsi.2023.108647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Fish skin is a multifunctional tissue that develops during embryogenesis, a developmental stage highly susceptible to epigenetic marks. In this study, the impact of egg incubation temperature on the regeneration of a cutaneous wound caused by scale removal in juvenile European sea bass was evaluated. Sea bass eggs were incubated at 11, 13.5 and 16 °C until hatching and then were reared at a common temperature until 9 months when the skin was damaged and sampled at 0, 1 and 3 days after scale removal and compared to the intact skin from the other flank. Skin damage elicited an immediate significant (p < 0.001) up-regulation of pcna in fish from eggs incubated at higher temperatures. In fish from eggs incubated at 11 °C there was a significant (p < 0.001) up-regulation of krt2 compared to fish from higher thermal backgrounds 1 day after skin damage. Damaged epidermis was regenerated after 3 days in all fish irrespective of the thermal background, but in fish from eggs incubated at 11 °C the epidermis was significantly (p < 0.01) thinner compared to other groups, had less goblet cells and less melanomacrophages. The thickness of the dermis increased during regeneration of wounded skin irrespective of the thermal background and by 3 days was significantly (p < 0.01) thicker than the dermis from the intact flank. The expression of genes for ECM remodelling (mmp9, colXα, col1α1, sparc, and angptl2b) and innate immunity (lyg1, lalba, sod1, csf-1r and pparγ) changed during regeneration but were not affected by egg thermal regime. Overall, the results indicate that thermal imprinting of eggs modifies the damage-repair response in juvenile sea bass skin.
Collapse
Affiliation(s)
- Ana Patrícia Mateus
- Centro de Ciências do Mar (CCMAR), Comparative Endocrinology and Integrative Biology, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal; Escola Superior de Saúde, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Rita A Costa
- Centro de Ciências do Mar (CCMAR), Comparative Endocrinology and Integrative Biology, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Bastien Sadoul
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, INRAE, 34250, Palavas-Les-Flots, France; DECOD, Ecosystem Dynamics and Sustainability, Institut Agro, Ifremer, INRAE, Rennes, France
| | - Marie-Laure Bégout
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, INRAE, 34250, Palavas-Les-Flots, France
| | - Xavier Cousin
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, INRAE, 34250, Palavas-Les-Flots, France
| | - Adelino Vm Canario
- Centro de Ciências do Mar (CCMAR), Comparative Endocrinology and Integrative Biology, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal; International Institution of Marine Science, Shanghai Ocean University, Shanghai, China
| | - Deborah M Power
- Centro de Ciências do Mar (CCMAR), Comparative Endocrinology and Integrative Biology, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal; International Institution of Marine Science, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
96
|
Diguță CF, Mihai C, Toma RC, Cîmpeanu C, Matei F. In Vitro Assessment of Yeasts Strains with Probiotic Attributes for Aquaculture Use. Foods 2022; 12:foods12010124. [PMID: 36613340 PMCID: PMC9818403 DOI: 10.3390/foods12010124] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
This study aimed to investigate in vitro the probiotic potential of three yeasts strains (BB06, OBT05, and MT07) isolated from agro-food natural sources. Screening was performed, including several functional, technological, and safety aspects of the yeast strains, in comparison to a reference Saccharomyces boulardii, to identify the ones with suitable probiotic attributes in aquaculture. The yeast strains were identified by 5.8S rDNA-ITS region sequencing as Metschnikowia pulcherrima OBT05, Saccharomyces cerevisiae BB06, and Torulaspora delbrueckii MT07. All yeast strains were tolerant to different temperatures, sodium chloride concentrations, and wide pH ranges. S. cerevisiae BB06 showed a strong and broad antagonistic activity. Moreover, the S. cerevisiae strain exhibited a high auto-aggregation ability (92.08 ± 1.49%) and good surface hydrophobicity to hexane as a solvent (53.43%). All of the yeast strains have excellent antioxidant properties (>55%). The high survival rate in the gastrointestinal tract (GIT) can promote yeast isolates as probiotics. All yeast strains presented a resistance pattern to the antibacterial antibiotics. Non-hemolytic activity was detected. Furthermore, freeze-drying with cryoprotective agents maintained a high survival rate of yeast strains, in the range of 74.95−97.85%. According to the results obtained, the S. cerevisiae BB06 strain was found to have valuable probiotic traits.
Collapse
Affiliation(s)
- Camelia Filofteia Diguță
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Blvd., District 1, 011464 Bucharest, Romania
| | - Constanța Mihai
- Faculty of Land Reclamation and Environmental Engineering, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Blvd., District 1, 011464 Bucharest, Romania
- Correspondence:
| | - Radu Cristian Toma
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Blvd., District 1, 011464 Bucharest, Romania
| | - Carmen Cîmpeanu
- Faculty of Land Reclamation and Environmental Engineering, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Blvd., District 1, 011464 Bucharest, Romania
| | - Florentina Matei
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Blvd., District 1, 011464 Bucharest, Romania
| |
Collapse
|
97
|
Pham LP, Nguyen MV, Jordal AEO, Rønnestad I. Metabolic rates, feed intake, appetite control, and gut transit of clownfish Amphiprion ocellaris exposed to increased temperature and limited feed availability. Comp Biochem Physiol A Mol Integr Physiol 2022; 274:111318. [PMID: 36115553 DOI: 10.1016/j.cbpa.2022.111318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 10/14/2022]
Abstract
Episodes of elevated temperature, combined with lower feed availability, are among the predicted scenarios of climate change representing a challenge for coral reef fish. We investigated the response of clownfish (Amphiprion ocellaris) to a scenario in which it received a single meal to satiety after 48 h fasting at 32 °C (climate change scenario) and 28 °C (control). We analysed the metabolic rate (MR), feed intake, gut transit, and expression of selected brain neuropeptides and one receptor believed to be involved in appetite control. Fish at 32 °C ingested 17.9% less feed and had a faster gut transit than did fish at 28 °C. MR in the unfed fish was 31% higher at 32 °C compared to 28 °C. In the fed fish, postprandial MR at 28 °C was 30% higher compared to that of unfed fish, while at 32 °C it was only 15% higher. The expression of agrp1 did not differ between unfed and refed fish. The levels of both pomca and mc4r increased immediately after the meal and subsequently declined, suggesting a possible anorexic role for these genes. Notably, this pattern was accelerated in fish kept at 32 °C compared with that in fish kept at 28 °C. The dynamics of these changes in expression correspond to a faster gut transition of ingested feed at elevated temperatures. For both agrp2 and pomcb there was an increase in expression following feeding in fish maintained at 32 °C, which was not observed in fish kept at 28 °C. These results suggest that low feed availability and elevated temperature stimulate anorexigenic pathways in clownfish, resulting in significantly lower feed intake despite the temperature-induced increase in metabolic rate. This may be a mechanism to ameliorate the decrease in aerobic scope that results from higher temperatures.
Collapse
Affiliation(s)
- Linh P Pham
- Institute of Aquaculture, Nha Trang University, Nha Trang, Viet Nam; Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Minh V Nguyen
- Institute of Aquaculture, Nha Trang University, Nha Trang, Viet Nam
| | | | - Ivar Rønnestad
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
| |
Collapse
|
98
|
Vilas D, Fletcher RJ, Siders ZA, Chagaris D. Understanding the temporal dynamics of estimated environmental niche hypervolumes for marine fishes. Ecol Evol 2022; 12:e9604. [PMID: 36523513 PMCID: PMC9748244 DOI: 10.1002/ece3.9604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/19/2022] [Indexed: 12/15/2022] Open
Abstract
Understanding how species respond to the environment is essential in ecology, evolution, and conservation. Abiotic factors can influence species responses and the multi-dimensional space of abiotic factors that allows a species to grow represents the environmental niche. While niches are often assumed to be constant and robust, they are most likely changing over time and estimation can be influenced by population biology, sampling intensity, and computation methodology. Here, we used a 12-year time series of survey data to fit annual ecological niche models (ENMs) for 10 marine fish species by using two regression and two machine learning algorithms to evaluate the variation and differentiation of environmental niches. Fitted ENMs were used to develop multi-dimensional annual and pooled hypervolumes that were evaluated over time and across ENM algorithms, species, and years by computing volume, distance, and dissimilarity metrics for each annual estimated niche. We then investigated potential drivers of estimated hypervolume dynamics including species abundance, species occurrence, sampling effort, salinity, red tides severity, and algorithm. Overall, our results revealed that estimated niches varied over time and across ENM, species, and algorithms. Niche estimation was influenced over time by multiple factors suggesting high complexity on niche dynamics interpretation. Species with high occurrence tended to have a closer representation of the pooled niche and years with higher abundance tended to produce niche expansion. ENM algorithm, sampling effort, seawater salinity, and red tides explained the deviations from the pooled niche. Greater sampling effort led to more comprehensive and complete estimates of species niches. High red tides severity triggered niche contraction. Our results emphasize the predictable effects of population, sampling, and environment on species niche estimation and interpretation, and that each should be considered when performing and interpreting ecological niche analyses. Our niche analysis approach may contribute to effectively quantifying and assessing niche dynamics.
Collapse
Affiliation(s)
- Daniel Vilas
- Fisheries and Aquatic Sciences Program, School of Forest, Fisheries, and Geomatics SciencesUniversity of FloridaGainesvilleFloridaUSA
- Nature Coast Biological Station, Institute of Food and Agricultural SciencesUniversity of FloridaCedar KeyFloridaUSA
| | - Robert J. Fletcher
- Department of Wildlife Ecology and ConservationUniversity of FloridaGainesvilleFloridaUSA
| | - Zachary A. Siders
- Fisheries and Aquatic Sciences Program, School of Forest, Fisheries, and Geomatics SciencesUniversity of FloridaGainesvilleFloridaUSA
| | - David Chagaris
- Fisheries and Aquatic Sciences Program, School of Forest, Fisheries, and Geomatics SciencesUniversity of FloridaGainesvilleFloridaUSA
- Nature Coast Biological Station, Institute of Food and Agricultural SciencesUniversity of FloridaCedar KeyFloridaUSA
| |
Collapse
|
99
|
Employing a novel hybrid of GA-ANFIS model to predict distribution of whiting fish larvae and juveniles from tropical estuaries in the context of climate change. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
100
|
McInturf AG, Zillig KW, Cook K, Fukumoto J, Jones A, Patterson E, Cocherell DE, Michel CJ, Caillaud D, Fangue NA. In hot water? Assessing the link between fundamental thermal physiology and predation of juvenile Chinook salmon. Ecosphere 2022. [DOI: 10.1002/ecs2.4264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Alexandra G. McInturf
- Department of Wildlife, Fish and Conservation Biology University of California Davis California USA
- Animal Behavior Graduate Group University of California Davis California USA
- Coastal Oregon Marine Experiment Station Oregon State University Newport Oregon USA
| | - Ken W. Zillig
- Department of Wildlife, Fish and Conservation Biology University of California Davis California USA
- Graduate Group in Ecology University of California Davis California USA
| | - Katherine Cook
- Department of Wildlife, Fish and Conservation Biology University of California Davis California USA
| | - Jacqueline Fukumoto
- Department of Wildlife, Fish and Conservation Biology University of California Davis California USA
| | - Anna Jones
- Department of Wildlife, Fish and Conservation Biology University of California Davis California USA
| | - Emily Patterson
- Department of Wildlife, Fish and Conservation Biology University of California Davis California USA
| | - Dennis E. Cocherell
- Department of Wildlife, Fish and Conservation Biology University of California Davis California USA
| | - Cyril J. Michel
- NOAA Southwest Fisheries Science Center, Fisheries Ecology Division Santa Cruz California USA
| | - Damien Caillaud
- Department of Anthropology University of California Davis California USA
| | - Nann A. Fangue
- Department of Wildlife, Fish and Conservation Biology University of California Davis California USA
| |
Collapse
|