51
|
Xue X, Wang J, Shukla D, Cheung LS, Chen LQ. When SWEETs Turn Tweens: Updates and Perspectives. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:379-403. [PMID: 34910586 DOI: 10.1146/annurev-arplant-070621-093907] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sugar translocation between cells and between subcellular compartments in plants requires either plasmodesmata or a diverse array of sugar transporters. Interactions between plants and associated microorganisms also depend on sugar transporters. The sugars will eventually be exported transporter (SWEET) family is made up of conserved and essential transporters involved in many critical biological processes. The functional significance and small size of these proteins have motivated crystallographers to successfully capture several structures of SWEETs and their bacterial homologs in different conformations. These studies together with molecular dynamics simulations have provided unprecedented insights into sugar transport mechanisms in general and into substrate recognition of glucose and sucrose in particular. This review summarizes our current understanding of the SWEET family, from the atomic to the whole-plant level. We cover methods used for their characterization, theories about their evolutionary origins, biochemical properties, physiological functions, and regulation. We also include perspectives on the future work needed to translate basic research into higher crop yields.
Collapse
Affiliation(s)
- Xueyi Xue
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
| | - Jiang Wang
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Lily S Cheung
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Li-Qing Chen
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
| |
Collapse
|
52
|
Sugar Transporters in Plasmodiophora brassicae: Genome-Wide Identification and Functional Verification. Int J Mol Sci 2022; 23:ijms23095264. [PMID: 35563657 PMCID: PMC9099952 DOI: 10.3390/ijms23095264] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 01/19/2023] Open
Abstract
Plasmodiophora brassicae, an obligate intracellular pathogen, can hijack the host’s carbohydrates for survival. When the host plant is infected by P. brassicae, a large amount of soluble sugar accumulates in the roots, especially glucose, which probably facilitates the development of this pathogen. Although a complete glycolytic and tricarboxylic acid cycle (TCA) cycle existed in P. brassicae, very little information about the hexose transport system has been reported. In this study, we screened 17 putative sugar transporters based on information about their typical domains. The structure of these transporters showed a lot of variation compared with that of other organisms, especially the number of transmembrane helices (TMHs). Phylogenetic analysis indicated that these sugar transporters were far from the evolutionary relationship of other organisms and were unique in P. brassicae. The hexose transport activity assay indicated that eight transporters transported glucose or fructose and could restore the growth of yeast strain EBY.VW4000, which was deficient in hexose transport. The expression level of these glucose transporters was significantly upregulated at the late inoculation time when resting spores and galls were developing and a large amount of energy was needed. Our study provides new insights into the mechanism of P. brassicae survival in host cells by hijacking and utilizing the carbohydrates of the host.
Collapse
|
53
|
Wen Z, Li M, Meng J, Li P, Cheng T, Zhang Q, Sun L. Genome-wide identification of the SWEET gene family mediating the cold stress response in Prunus mume. PeerJ 2022; 10:e13273. [PMID: 35529486 PMCID: PMC9074862 DOI: 10.7717/peerj.13273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/23/2022] [Indexed: 01/13/2023] Open
Abstract
The Sugars Will Eventually be Exported Transporter (SWEET) gene family encodes a family of sugar transporters that play essential roles in plant growth, reproduction, and biotic and abiotic stresses. Prunus mume is a considerable ornamental wood plant with high edible and medicinal values; however, its lack of tolerance to low temperature has severely limited its geographical distribution. To investigate whether this gene family mediates the response of P. mume to cold stress, we identified that the P. mume gene family consists of 17 members and divided the family members into four groups. Sixteen of these genes were anchored on six chromosomes, and one gene was anchored on the scaffold with four pairs of segmental gene duplications and two pairs of tandem gene duplications. Cis-acting regulatory element analysis indicated that the PmSWEET genes are potentially involved in P. mume development, including potentially regulating roles in procedure, such as circadian control, abscisic acid-response and light-response, and responses to numerous stresses, such as low-temperature and drought. We performed low-temperature treatment in the cold-tolerant cultivar 'Songchun' and cold-sensitive cultivar 'Zaolve' and found that the expression of four of 17 PmSWEETs was either upregulated or downregulated with prolonged treatment times. This finding indicates that these family members may potentially play a role in cold stress responses in P. mume. Our study provides a basis for further investigation of the role of SWEET proteins in the development of P. mume and its responses to cold stress.
Collapse
|
54
|
Morin A, Maurousset L, Vriet C, Lemoine R, Doidy J, Pourtau N. Carbon fluxes and environmental interactions during legume development, with a specific focus on Pisum sativum. PHYSIOLOGIA PLANTARUM 2022; 174:e13729. [PMID: 35662039 PMCID: PMC9328368 DOI: 10.1111/ppl.13729] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/25/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Grain legumes are major food crops cultivated worldwide for their seeds with high nutritional content. To answer the growing concern about food safety and protein autonomy, legume cultivation must increase in the coming years. In parallel, current agricultural practices are facing environmental challenges, including global temperature increase and more frequent and severe episodes of drought stress. Crop yield directly relies on carbon allocation and is particularly affected by these global changes. We review the current knowledge on source-sink relationships and carbon resource allocation at all developmental stages, from germination to vegetative growth and seed production in grain legumes, focusing on pea (Pisum sativum). We also discuss how these source-sink relationships and carbon fluxes are influenced by biotic and abiotic factors. Major agronomic traits, including seed yield and quality, are particularly impacted by drought, temperatures, salinity, waterlogging, or pathogens and can be improved through the promotion of beneficial soil microorganisms or through optimized plant carbon resource allocation. Altogether, our review highlights the need for a better understanding of the cellular and molecular mechanisms regulating carbon fluxes from source leaves to sink organs, roots, and seeds. These advancements will further improve our understanding of yield stability and stress tolerance and contribute to the selection of climate-resilient crops.
Collapse
Affiliation(s)
- Amélie Morin
- Université de Poitiers, UMR CNRS 7267, EBI "Ecologie et Biologie des Interactions"PoitiersFrance
| | - Laurence Maurousset
- Université de Poitiers, UMR CNRS 7267, EBI "Ecologie et Biologie des Interactions"PoitiersFrance
| | - Cécile Vriet
- Université de Poitiers, UMR CNRS 7267, EBI "Ecologie et Biologie des Interactions"PoitiersFrance
| | - Rémi Lemoine
- Université de Poitiers, UMR CNRS 7267, EBI "Ecologie et Biologie des Interactions"PoitiersFrance
| | - Joan Doidy
- Université de Poitiers, UMR CNRS 7267, EBI "Ecologie et Biologie des Interactions"PoitiersFrance
| | - Nathalie Pourtau
- Université de Poitiers, UMR CNRS 7267, EBI "Ecologie et Biologie des Interactions"PoitiersFrance
| |
Collapse
|
55
|
Tang F, Gao X, Peng J. The dynamics of carbohydrate and associated gene expression in the stems and roots of upland cotton (Gossypiumhirsutum L.) during carbon remobilization. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 178:125-136. [PMID: 35298944 DOI: 10.1016/j.plaphy.2022.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/17/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Carbohydrates remobilization in non-leaf organs has a potential association with the formation of cotton yield. However, our understanding of the physiological and molecular mechanisms regulating carbon remobilization during flowering is still limited. The objectives of the study were to: i) evaluate the potential of carbohydrate remobilization in stems and roots to yield formation; ii) unravel the carbon metabolism and transport associated gene expression patterns regulating carbon remobilization. Two cotton lines 4003-6 and 4003-10 were employed to examine leaf photosynthesis, reproductive biomass accumulation, and carbon dynamics in stems and roots during reproductive growth. The results showed that decreasing leaf photosynthetic capacity combined with rapidly increasing reproductive biomass and leaf area index is accompanied by the initiation of carbohydrate remobilization during first flowering to peak flowering. The proportion of sucrose to total nonstructural carbohydrate was also decreased at that period. The upper and lower of stem recorded higher soluble sugars and starch concentrations, respectively compared to the two others. The gross contribution rate of carbon remobilization to seed cotton yield ranged from 2.83% to 7.12%. Key genes and sugar transporters related to starch and sucrose metabolism in the lower stem exhibited significant up- or down-regulated expressions indicating their important roles in carbon reserves remobilization. Three pivotal sugar transporters SWEET1, TMT2, and ERLD5 presented higher transcript levels at peak flowering suggesting more active sugar movement occurring at that stage. The present study provides potential target genes for engineering carbohydrate metabolism and transport to improve the remobilization efficiency of nonstructural carbohydrates.
Collapse
Affiliation(s)
- Feiyu Tang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, College of Agronomy, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Xin Gao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, College of Agronomy, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jinjian Peng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, College of Agronomy, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| |
Collapse
|
56
|
Wu P, Zhang L, Zhang K, Yin Y, Liu A, Zhu Y, Fu Y, Sun F, Zhao S, Feng K, Xu X, Chen X, Cheng F, Li L. The adaptive evolution of Euryale ferox to the aquatic environment through paleo-hexaploidization. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:627-645. [PMID: 35218099 PMCID: PMC9314984 DOI: 10.1111/tpj.15717] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/24/2022] [Accepted: 02/20/2022] [Indexed: 05/25/2023]
Abstract
Occupation of living space is one of the main driving forces of adaptive evolution, especially for aquatic plants whose leaves float on the water surface and thus have limited living space. Euryale ferox, from the angiosperm basal family Nymphaeaceae, develops large, rapidly expanding leaves to compete for space on the water surface. Microscopic observation found that the cell proliferation of leaves is almost completed underwater, while the cell expansion occurs rapidly after they grow above water. To explore the mechanism underlying the specific development of leaves, we performed sequences assembly and analyzed the genome and transcriptome dynamics of E. ferox. Through reconstruction of the three sub-genomes generated from the paleo-hexaploidization event in E. ferox, we revealed that one sub-genome was phylogenetically closer to Victoria cruziana, which also exhibits gigantic floating leaves. Further analysis revealed that while all three sub-genomes promoted the evolution of the specific leaf development in E. ferox, the genes from the sub-genome closer to V. cruziana contributed more to this adaptive evolution. Moreover, we found that genes involved in cell proliferation and expansion, photosynthesis, and energy transportation were over-retained and showed strong expression association with the leaf development stages, such as the expression divergence of SWEET orthologs as energy uploaders and unloaders in the sink and source leaf organs of E. ferox. These findings provide novel insights into the genome evolution through polyploidization, as well as the adaptive evolution regarding the leaf development accomplished through biased gene retention and expression sub-functionalization of multi-copy genes in E. ferox.
Collapse
Affiliation(s)
- Peng Wu
- School of Horticulture and Plant ProtectionYangzhou UniversityYangzhou225000China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino‐Dutch Joint Laboratory of Horticultural GenomicsBeijing100081China
| | - Lingkui Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino‐Dutch Joint Laboratory of Horticultural GenomicsBeijing100081China
| | - Kang Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino‐Dutch Joint Laboratory of Horticultural GenomicsBeijing100081China
| | - Yulai Yin
- Suzhou Academy of Agricultural ScienceSuzhou215000China
| | - Ailian Liu
- School of Horticulture and Plant ProtectionYangzhou UniversityYangzhou225000China
| | - Yue Zhu
- School of Horticulture and Plant ProtectionYangzhou UniversityYangzhou225000China
| | - Yu Fu
- School of Horticulture and Plant ProtectionYangzhou UniversityYangzhou225000China
| | - Fangfang Sun
- Suzhou Academy of Agricultural ScienceSuzhou215000China
| | - Shuping Zhao
- School of Horticulture and Plant ProtectionYangzhou UniversityYangzhou225000China
| | - Kai Feng
- School of Horticulture and Plant ProtectionYangzhou UniversityYangzhou225000China
| | - Xuewen Xu
- School of Horticulture and Plant ProtectionYangzhou UniversityYangzhou225000China
| | - Xuehao Chen
- School of Horticulture and Plant ProtectionYangzhou UniversityYangzhou225000China
| | - Feng Cheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino‐Dutch Joint Laboratory of Horticultural GenomicsBeijing100081China
| | - Liangjun Li
- School of Horticulture and Plant ProtectionYangzhou UniversityYangzhou225000China
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of ChinaYangzhou UniversityYangzhou225000China
| |
Collapse
|
57
|
La HV, Chu HD, Tran CD, Nguyen KH, Le QTN, Hoang CM, Cao BP, Pham ATC, Nguyen BD, Nguyen TQ, Van Nguyen L, Ha CV, Le HT, Le HH, Le TD, Tran LSP. Insights into the gene and protein structures of the CaSWEET family members in chickpea (Cicer arietinum), and their gene expression patterns in different organs under various stress and abscisic acid treatments. Gene 2022; 819:146210. [PMID: 35104577 DOI: 10.1016/j.gene.2022.146210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 12/21/2021] [Accepted: 01/13/2022] [Indexed: 11/30/2022]
Abstract
'Sugars Will Eventually be Exported Transporters' (SWEETs) are a group of sugar transporters that play crucial roles in various biological processes, particularly plant stress responses. However, no information is available yet for the CaSWEET family in chickpea. Here, we identified all putative CaSWEET members in chickpea, and obtained their major characteristics, including physicochemical patterns, chromosomal distribution, subcellular localization, gene organization, conserved motifs and three-dimensional protein structures. Subsequently, we explored available transcriptome data to compare spatiotemporal transcript abundance of CaSWEET genes in various major organs. Finally, we studied the changes in their transcript levels in leaves and/or roots following dehydration and exogenous abscisic acid treatments using RT-qPCR to obtain valuable information underlying their potential roles in chickpea responses to water-stress conditions. Our results provide the first insights into the characteristics of the CaSWEET family members and a foundation for further functional characterizations of selected candidate genes for genetic engineering of chickpea.
Collapse
Affiliation(s)
- Hong Viet La
- Faculty of Biology and Agricultural Technology, Hanoi Pedagogical University 2, Phuc Yen City, Vinh Phuc Province 280000, Viet Nam
| | - Ha Duc Chu
- Faculty of Agricultural Technology, University of Engineering and Technology, Vietnam National University Hanoi, Xuan Thuy Road, Cau Giay District, Hanoi City 122300, Viet Nam.
| | - Cuong Duy Tran
- Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Pham Van Dong Road, North Tu Liem District, Hanoi City 122300, Viet Nam
| | - Kien Huu Nguyen
- Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Pham Van Dong Road, North Tu Liem District, Hanoi City 122300, Viet Nam
| | - Quynh Thi Ngoc Le
- Faculty of Chemistry and Environment, Thuy loi University, Dong Da District, Hanoi City 122300, Viet Nam
| | - Chinh Minh Hoang
- Vietnam National University of Agriculture, Ngo Xuan Quang Road, Gia Lam District, Hanoi City 122300, Viet Nam
| | - Bang Phi Cao
- Hung Vuong University, Phu Tho Province 35000, Viet Nam
| | - Anh Tuyen Cong Pham
- Vietnam National University of Agriculture, Ngo Xuan Quang Road, Gia Lam District, Hanoi City 122300, Viet Nam
| | - Bach Duc Nguyen
- Vietnam National University of Agriculture, Ngo Xuan Quang Road, Gia Lam District, Hanoi City 122300, Viet Nam
| | - Trung Quoc Nguyen
- Vietnam National University of Agriculture, Ngo Xuan Quang Road, Gia Lam District, Hanoi City 122300, Viet Nam
| | - Loc Van Nguyen
- Vietnam National University of Agriculture, Ngo Xuan Quang Road, Gia Lam District, Hanoi City 122300, Viet Nam
| | - Chien Van Ha
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Hien Thi Le
- Faculty of Agricultural Technology, University of Engineering and Technology, Vietnam National University Hanoi, Xuan Thuy Road, Cau Giay District, Hanoi City 122300, Viet Nam
| | - Ham Huy Le
- Faculty of Agricultural Technology, University of Engineering and Technology, Vietnam National University Hanoi, Xuan Thuy Road, Cau Giay District, Hanoi City 122300, Viet Nam; Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Pham Van Dong Road, North Tu Liem District, Hanoi City 122300, Viet Nam
| | - Thao Duc Le
- Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Pham Van Dong Road, North Tu Liem District, Hanoi City 122300, Viet Nam.
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA; Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Viet Nam.
| |
Collapse
|
58
|
Zeng Z, Lyu T, Jia X, Chen Y, Lyu Y. Expression Patterns of Sugar Transporter Genes in the Allocation of Assimilates and Abiotic Stress in Lily. Int J Mol Sci 2022; 23:ijms23084319. [PMID: 35457135 PMCID: PMC9029133 DOI: 10.3390/ijms23084319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 02/05/2023] Open
Abstract
During the growth cycle of lilies, assimilates undergo a process of accumulation, consumption and reaccumulation in bulbs and are transported and allocated between aboveground and underground organs and tissues. The sink-source relationship changes with the allocation of assimilates, affecting the vegetative growth and morphological establishment of lilies. In this study, the carbohydrate contents in different tissues of five critical stages during lily development were measured to observe the assimilates allocation. The results showed bulbs acted as the main source to provide energy before the budding stage (S3); after the flowering stage (S4), bulbs began to accumulate assimilates as a sink organ again. During the period when the plant height was 30cm with leaf-spread (S2), leaves mainly accumulated assimilates from bulbs through the symplastic pathway, while when leaves were fully expanded, it transformed to export carbohydrates. At the S4 stage, flowers became a new active sink with assimilates influx. To further understand the allocation of assimilates, 16 genes related to sugar transport and metabolism (ST genes) were identified and categorized into different subfamilies based on the phylogenetic analysis, and their protein physicochemical properties were also predicted. Tissue-specific analysis showed that most of the genes were highly expressed in stems and petals, and it was mainly the MST (monosaccharide transporter) genes that were obviously expressed in petals during the S4 stage, suggesting that they may be associated with the accumulation of carbohydrates in flowers and thus affect flower development process. LoSWEET14 (the Sugar will eventually be exported transporters) was significantly correlated with starch in scales and with soluble sugar in leaves. Sugar transporters LoHXT6 and LoSUT1 were significantly correlated with soluble sugar and sucrose in leaves, suggesting that these genes may play key roles in the accumulation and transportation of assimilates in lilies. In addition, we analyzed the expression patterns of ST genes under different abiotic stresses, and the results showed that all genes were significantly upregulated. This study lays a solid foundation for further research on molecular mechanism of sink-source change and response to abiotic stresses in lilies.
Collapse
Affiliation(s)
- Zhen Zeng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, China National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (Z.Z.); (X.J.); (Y.C.)
| | - Tong Lyu
- Beijing Flower Engineering Technology Research Center, Plant Institute, Management Department of Beijing Botanical Garden, Beijing 100094, China;
| | - Xin Jia
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, China National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (Z.Z.); (X.J.); (Y.C.)
| | - Yue Chen
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, China National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (Z.Z.); (X.J.); (Y.C.)
| | - Yingmin Lyu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, China National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (Z.Z.); (X.J.); (Y.C.)
- Correspondence:
| |
Collapse
|
59
|
Dinant S, Le Hir R. Delving deeper into the link between sugar transport, sugar signaling, and vascular system development. PHYSIOLOGIA PLANTARUM 2022; 174:e13684. [PMID: 35396718 DOI: 10.1111/ppl.13684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Plant growth and development rely on the transport and use of sugars produced during photosynthesis. Sugars have a dual function as nutrients and signal molecules in the cell. Many factors maintaining sugar homeostasis and signaling are now identified, but our understanding of the mechanisms involved in coordinating intracellular and intercellular sugar translocation is still limited. We also know little about the interplay between sugar transport and signaling and the formation of the vascular system, which controls long-distance sugar translocation. Sugar signaling has been proposed to play a role; however, evidence to support this hypothesis is still limited. Here, we exploited recent transcriptomics datasets produced in aerial organs of Arabidopsis to identify genes coding for sugar transporters or signaling components expressed in the vascular cells. We identified genes belonging to sugar transport and signaling for which no information is available regarding a role in vasculature development. In addition, the transcriptomics datasets obtained from sugar-treated Arabidopsis seedlings were used to assess the sugar-responsiveness of known genes involved in vascular differentiation. Interestingly, several key regulators of vascular development were found to be regulated by either sucrose or glucose. Especially CLE41, which controls the procambial cell fate, was oppositely regulated by sucrose or glucose in these datasets. Even if more experimental data are necessary to confirm these findings, this survey supports a link between sugar transport/signaling and vascular system development.
Collapse
Affiliation(s)
- Sylvie Dinant
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Rozenn Le Hir
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| |
Collapse
|
60
|
Genome-wide in silico analysis indicates the involvement of OsSWEET transporters in abiotic and heavy metal (loid) stress responses in rice. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01022-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
61
|
Identification, Analysis and Gene Cloning of the SWEET Gene Family Provide Insights into Sugar Transport in Pomegranate ( Punica granatum). Int J Mol Sci 2022; 23:ijms23052471. [PMID: 35269614 PMCID: PMC8909982 DOI: 10.3390/ijms23052471] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 01/04/2023] Open
Abstract
Members of the sugars will eventually be exported transporter (SWEET) family regulate the transport of different sugars through the cell membrane and control the distribution of sugars inside and outside the cell. The SWEET gene family also plays important roles in plant growth and development and physiological processes. So far, there are no reports on the SWEET family in pomegranate. Meanwhile, pomegranate is rich in sugar, and three published pomegranate genome sequences provide resources for the study of the SWEET gene family. 20 PgSWEETs from pomegranate and the known Arabidopsis and grape SWEETs were divided into four clades (Ⅰ, Ⅱ, Ⅲ and Ⅳ) according to the phylogenetic relationships. PgSWEETs of the same clade share similar gene structures, predicting their similar biological functions. RNA-Seq data suggested that PgSWEET genes have a tissue-specific expression pattern. Foliar application of tripotassium phosphate significantly increased the total soluble sugar content of pomegranate fruits and leaves and significantly affected the expression levels of PgSWEETs. The plant growth hormone regulator assay also significantly affected the PgSWEETs expression both in buds of bisexual and functional male flowers. Among them, we selected PgSWEET17a as a candidate gene that plays a role in fructose transport in leaves. The 798 bp CDS sequence of PgSWEET17a was cloned, which encodes 265 amino acids. The subcellular localization of PgSWEET17a showed that it was localized to the cell membrane, indicating its involvement in sugar transport. Transient expression results showed that tobacco fructose content was significantly increased with the up-regulation of PgSWEET17a, while both sucrose and glucose contents were significantly down-regulated. The integration of the PgSWEET phylogenetic tree, gene structure and RNA-Seq data provide a genome-wide trait and expression pattern. Our findings suggest that tripotassium phosphate and plant exogenous hormone treatments could alter PgSWEET expression patterns. These provide a reference for further functional verification and sugar metabolism pathway regulation of PgSWEETs.
Collapse
|
62
|
Ji P, Liang C, Yang Y, Wang R, Wang Y, Yuan M, Qiu Z, Cheng Y, Liu J, Li D. Comparisons of Anatomical Characteristics and Transcriptomic Differences between Heterografts and Homografts in Pyrus L. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11050580. [PMID: 35270050 PMCID: PMC8912356 DOI: 10.3390/plants11050580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 06/06/2023]
Abstract
Pear (Pyrus L.) is an important temperate fruit worldwide, and grafting is widely used in pear vegetative propagation. However, the mechanisms of graft healing or incompatibility remain poorly understood in Pyrus. To study the differences in graft healing in Pyrus, the homograft "Qingzhen D1/Qingzhen D1" and the heterograft "QAUP-1/Qingzhen D1" as compatibility and incompatibility combinations were compared. Anatomical differences indicated the healing process was faster in homografts than in heterografts. During the healing process, four critical stages in graft union formation were identified in the two types of grafts. The expression of the genes associated with hormone signaling (auxin and cytokinins), and lignin biosynthesis was delayed in the healing process of heterografts. In addition, the PbBglu13 gene, encoded β-glucosidase, was more highly up-regulated in heterografts than in homografts to promote healing. Meanwhile, the most of DEGs related starch and sucrose metabolism were found to be up-regulated in heterografts; those results indicated that cellulose and sugar signals were also involved in graft healing. The results of this study improved the understanding of the differences in the mechanisms of graft healing between homografts and heterografts.
Collapse
Affiliation(s)
- Piyu Ji
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (P.J.); (Y.Y.); (R.W.); (Y.W.); (M.Y.); (Z.Q.); (Y.C.); (J.L.)
| | - Chenglin Liang
- Haidu College, Qingdao Agricultural University, Laiyang 265200, China;
| | - Yingjie Yang
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (P.J.); (Y.Y.); (R.W.); (Y.W.); (M.Y.); (Z.Q.); (Y.C.); (J.L.)
| | - Ran Wang
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (P.J.); (Y.Y.); (R.W.); (Y.W.); (M.Y.); (Z.Q.); (Y.C.); (J.L.)
| | - Yue Wang
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (P.J.); (Y.Y.); (R.W.); (Y.W.); (M.Y.); (Z.Q.); (Y.C.); (J.L.)
| | - Meitong Yuan
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (P.J.); (Y.Y.); (R.W.); (Y.W.); (M.Y.); (Z.Q.); (Y.C.); (J.L.)
| | - Zhiyun Qiu
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (P.J.); (Y.Y.); (R.W.); (Y.W.); (M.Y.); (Z.Q.); (Y.C.); (J.L.)
| | - Yuanyuan Cheng
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (P.J.); (Y.Y.); (R.W.); (Y.W.); (M.Y.); (Z.Q.); (Y.C.); (J.L.)
| | - Jianlong Liu
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (P.J.); (Y.Y.); (R.W.); (Y.W.); (M.Y.); (Z.Q.); (Y.C.); (J.L.)
| | - Dingli Li
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (P.J.); (Y.Y.); (R.W.); (Y.W.); (M.Y.); (Z.Q.); (Y.C.); (J.L.)
| |
Collapse
|
63
|
Chen LQ. Low sugar, under pressure? NATURE PLANTS 2022; 8:102-103. [PMID: 35194204 DOI: 10.1038/s41477-021-01034-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Li-Qing Chen
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
64
|
Kumawat S, Sharma Y, Vats S, Sudhakaran S, Sharma S, Mandlik R, Raturi G, Kumar V, Rana N, Kumar A, Sonah H, Deshmukh R. Understanding the role of SWEET genes in fruit development and abiotic stress in pomegranate (Punica granatum L.). Mol Biol Rep 2022; 49:1329-1339. [PMID: 34855106 DOI: 10.1007/s11033-021-06961-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND The Sugar Will Eventually Be Exported Transporters (SWEET), consisting of the MtN3 and salvia domain, are sugar transporters having an active role in diverse activities in plants such as pollen nutrition, phloem loading, nectar secretion, reproductive tissue development, and plant-pathogen interaction. The SWEET genes have been characterized only in a few fruit crop species. METHODS AND RESULTS In this study, a total of 15 SWEET genes were identified in the pomegranate (Punica granatum) genome. The gene structure, transmembrane (TM) helices, domain architecture, and phylogenetic relationships of these genes were evaluated using computational approaches. Genes were further classified as Semi-SWEETs or SWEETs based on the TM domains. Similarly, pomegranate, Arabidopsis, rice, and soybean SWEETs were studied together to classify into major groups. In addition, analysis of RNAseq transcriptome data was performed to study SWEEET gene expression dynamics in different tissue. The expression suggests that SWEETs are mostly expressed in pomegranate peel. In addition, PgSWEET13 was found to be differentially expressed under high salinity stress in pomegranate. Further, quantitative PCR analysis confirmed the expression of four candidate genes in leaf and stem tissues. CONCLUSION The information provided here will help to understand the role of SWEET genes in fruit development and under abiotic stress conditions in pomegranate.
Collapse
Affiliation(s)
- Surbhi Kumawat
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Yogesh Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Sanskriti Vats
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Sreeja Sudhakaran
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Shivani Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Rushil Mandlik
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Gaurav Raturi
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Virender Kumar
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Nitika Rana
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Amit Kumar
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Sector 80, SAS Nagar, Mohali, Punjab, 140306, India.
| |
Collapse
|
65
|
Zhang M, Zhong X, Li M, Yang X, Abou Elwafa SF, Albaqami M, Tian H. Genome-wide analyses of the Nodulin-like gene family in bread wheat revealed its potential roles during arbuscular mycorrhizal symbiosis. Int J Biol Macromol 2022; 201:424-436. [PMID: 35041884 DOI: 10.1016/j.ijbiomac.2022.01.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 11/05/2022]
Abstract
Nodulin-like (NL) genes are involved in transporting of various substances and may play key roles during the establishment of symbiosis in legumes plants. However, basic biological information of NL genes in the wheat genome is still largely unknown. Here, we identified and characterized NL genes in wheat via integrating genomic information, collinearity analysis, co-expression network analysis (WGCNA) and transcriptome analysis. In addition, we analyzed the polymorphisms and the roles of NL genes during arbuscular mycorrhizal (AM) symbiosis using a large wheat panel consists of 259 wheat genotypes. We identified 181 NL genes in the wheat genome, which were classified into SWEET, Early Nodulin-Like (ENODL), Major Facilitator Superfamily-Nodulin (MFS), Vacuolar Iron Transporter (VIT) and Early nodulin 93 (ENOD93) subfamily. The expansion of NL genes was mainly driven by segmental duplication. The bHLH genes are potential unrecognized transcription factors regulating NL genes. Moreover, two NL genes were more sensitive than other NL genes to AM colonization. The polymorphisms of NL genes are mainly due to random drift, and the natural mutation of NL genes led to significant differences in the mycorrhizal dependence of wheat in phosphorus uptake. The results concluded that NL genes potentially play important roles during AM symbiosis with wheat.
Collapse
Affiliation(s)
- Mingming Zhang
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiong Zhong
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengjiao Li
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiuming Yang
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Salah F Abou Elwafa
- Agronomy department, Faculty of Agriculture, Assiut University, 71526 Assiut, Egypt
| | - Mohammed Albaqami
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Hui Tian
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
66
|
Viet La H, Duc Chu H, Thi Ha Q, Huyen Tran TT, Van Tong H, Van Tran T, Ngoc Le QT, Thu Bui HT, Bang Cao P. SWEET Gene Family in Sugar Beet ( Beta vulgaris): Genome-Wide Survey, Phylogeny and Expression Analysis. Pak J Biol Sci 2022; 25:387-395. [PMID: 35638508 DOI: 10.3923/pjbs.2022.387.395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
<b>Background and Objective:</b> The SWEET (Sugars Will Eventually be Exported Transporter) proteins play important roles in modulating the growth and development processes in plants. However, little information is available on the SWEET family in sugar beet (<i>Beta vulgaris</i>). The objectives of this present study were to genome-wide identify and characterize the BvSWEET family in sugar beet. <b>Materials and Methods:</b> Based on the available genome, proteome and transcriptome databases of sugar beet, various computational tools have been used to analyze the nucleotide and full-length protein sequences of members of the BvSWEET family. <b>Results:</b> A total of 16 members of the BvSWEET family has been identified in sugar beet at the genome-wide scale. Structural analysis indicated that the BvSWEET family exhibited variable characteristics. Furthermore, the BvSWEET family in sugar beet could be categorized into four distinct groups like in other plant species. Of our interest, we found that some <i>BvSWEET</i> genes exhibited strongly preferential expression in major organs/tissues under adverse environmental stimuli. <b>Conclusion:</b> The results provided a comprehensive foundation for further functional characterization of the <i>BvSWEET </i>gene family.
Collapse
|
67
|
Ankit A, Singh A, Kumar S, Singh A. Morphophysiological and transcriptome analysis reveal that reprogramming of metabolism, phytohormones and root development pathways governs the potassium (K +) deficiency response in two contrasting chickpea cultivars. FRONTIERS IN PLANT SCIENCE 2022; 13:1054821. [PMID: 36714783 PMCID: PMC9875034 DOI: 10.3389/fpls.2022.1054821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/05/2022] [Indexed: 05/10/2023]
Abstract
Potassium (K+) is an essential macronutrient for plant growth and development. K+ deficiency hampers important plant processes, such as enzyme activation, protein synthesis, photosynthesis and stomata movement. Molecular mechanism of K+ deficiency tolerance has been partly understood in model plants Arabidopsis, but its knowledge in legume crop chickpea is missing. Here, morphophysiological analysis revealed that among five high yielding desi chickpea cultivars, PUSA362 shows stunted plant growth, reduced primary root growth and low K+ content under K+ deficiency. In contrast, PUSA372 had negligible effect on these parameters suggesting that PUSA362 is K+ deficiency sensitive and PUSA372 is a K+ deficiency tolerant chickpea cultivar. RNA-seq based transcriptome analysis under K+ deficiency revealed a total of 820 differential expressed genes (DEG's) in PUSA362 and 682 DEGs in PUSA372. These DEGs belongs to different functional categories, such as plant metabolism, signal transduction components, transcription factors, ion/nutrient transporters, phytohormone biosynthesis and signalling, and root growth and development. RNA-seq expression of randomly selected 16 DEGs was validated by RT-qPCR. Out of 16 genes, 13 showed expression pattern similar to RNA-seq expression, that verified the RNA-seq expression data. Total 258 and 159 genes were exclusively up-regulated, and 386 and 347 genes were down-regulated, respectively in PUSA362 and PUSA372. 14 DEGs showed contrasting expression pattern as they were up-regulated in PUSA362 and down-regulated in PUSA372. These include somatic embryogenesis receptor-like kinase 1, thaumatin-like protein, ferric reduction oxidase 2 and transcription factor bHLH93. Nine genes which were down-regulated in PUSA362 found to be up-regulated in PUSA372, including glutathione S-transferase like, putative calmodulin-like 19, high affinity nitrate transporter 2.4 and ERF17-like protein. Some important carbohydrate metabolism related genes, like fructose-1,6-bisphosphatase and sucrose synthase, and root growth related Expansin gene were exclusively down-regulated, while an ethylene biosynthesis gene 1-aminocyclopropane-1-carboxylate oxidase 1 (ACO1) was up-regulated in PUSA362. Interplay of these and several other genes related to hormones (auxin, cytokinin, GA etc.), signal transduction components (like CBLs and CIPKs), ion transporters and transcription factors might underlie the contrasting response of two chickpea cultivars to K+ deficiency. In future, some of these key genes will be utilized in genetic engineering and breeding programs for developing chickpea cultivars with improved K+ use efficiency (KUE) and K+ deficiency tolerance traits.
Collapse
|
68
|
Hu X, Li S, Lin X, Fang H, Shi Y, Grierson D, Chen K. Transcription Factor CitERF16 Is Involved in Citrus Fruit Sucrose Accumulation by Activating CitSWEET11d. FRONTIERS IN PLANT SCIENCE 2021; 12:809619. [PMID: 35003195 PMCID: PMC8733390 DOI: 10.3389/fpls.2021.809619] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/30/2021] [Indexed: 06/12/2023]
Abstract
Sugars are the primary products of photosynthesis and play an important role in plant growth and development. They contribute to sweetness and flavor of fleshy fruits and are pivotal to fruit quality, and their translocation and allocation are mainly dependent on sugar transporters. Genome-wide characterization of Satsuma mandarin identified eighteen SWEET family members that encode transporters which facilitate diffusion of sugar across cell membranes. Analysis of the expression profiles in tissues of mandarin fruit at different developmental stages showed that CitSWEET11d transcripts were significantly correlated with sucrose accumulation. Further studies indicated that overexpression of CitSWEET11d in citrus callus and tomato fruit showed a higher sucrose level compared to wild-type, suggesting that CitSWEET11d could enhance sucrose accumulation. In addition, we identified an ERF transcription factor CitERF16 by yeast one-hybrid screening assay which could directly bind to the DRE cis-element on the promoter of CitSWEET11d. Overexpression of CitERF16 in citrus callus significantly induced CitSWEET11d expression and elevated sucrose content, suggesting that CitERF16 acts as a positive regulator to promote sucrose accumulation via trans-activation of CitSWEET11d expression.
Collapse
Affiliation(s)
- Xiaobo Hu
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Shaojia Li
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Xiahui Lin
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Heting Fang
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Yanna Shi
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Donald Grierson
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Kunsong Chen
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| |
Collapse
|
69
|
Zárate‐Chaves CA, Gómez de la Cruz D, Verdier V, López CE, Bernal A, Szurek B. Cassava diseases caused by Xanthomonas phaseoli pv. manihotis and Xanthomonas cassavae. MOLECULAR PLANT PATHOLOGY 2021; 22:1520-1537. [PMID: 34227737 PMCID: PMC8578842 DOI: 10.1111/mpp.13094] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/04/2021] [Accepted: 05/04/2021] [Indexed: 05/27/2023]
Abstract
Xanthomonas phaseoli pv. manihotis (Xpm) and X. cassavae (Xc) are two bacterial pathogens attacking cassava. Cassava bacterial blight (CBB) is a systemic disease caused by Xpm, which might have dramatic effects on plant growth and crop production. Cassava bacterial necrosis is a nonvascular disease caused by Xc with foliar symptoms similar to CBB, but its impacts on the plant vigour and the crop are limited. In this review, we describe the epidemiology and ecology of the two pathogens, the impacts and management of the diseases, and the main research achievements for each pathosystem. Because Xc data are sparse, our main focus is on Xpm and CBB.
Collapse
Affiliation(s)
| | | | - Valérie Verdier
- PHIMUniversité MontpellierCIRADINRAeIRDInstitut AgroMontpellierFrance
| | - Camilo E. López
- Manihot Biotec, Departamento de BiologíaUniversidad Nacional de ColombiaBogotáColombia
| | - Adriana Bernal
- Laboratorio de Interacciones Moleculares de Microorganismos AgrícolasDepartamento de Ciencias BásicasUniversidad de los AndesBogotáColombia
| | - Boris Szurek
- PHIMUniversité MontpellierCIRADINRAeIRDInstitut AgroMontpellierFrance
| |
Collapse
|
70
|
Anjali A, Fatima U, Senthil-Kumar M. The ins and outs of SWEETs in plants: Current understanding of the basics and their prospects in crop improvement. J Biosci 2021. [DOI: 10.1007/s12038-021-00227-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
71
|
Bantis F, Tsiolas G, Mouchtaropoulou E, Tsompanoglou I, Polidoros AN, Argiriou A, Koukounaras A. Comparative Transcriptome Analysis in Homo- and Hetero-Grafted Cucurbit Seedlings. FRONTIERS IN PLANT SCIENCE 2021; 12:691069. [PMID: 34777405 PMCID: PMC8582762 DOI: 10.3389/fpls.2021.691069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Watermelon (Citrullus lanatus) is a valuable horticultural crop with nutritional benefits grown worldwide. It is almost exclusively cultivated as grafted scions onto interspecific squash rootstock (Cucurbita maxima × Cucurbita moschata) to improve the growth and yield and to address the problems of soilborne diseases and abiotic stress factors. This study aimed to examine the effect of grafting (homo- and hetero-grafting) on the transcriptome level of the seedlings. Therefore, we compared homo-grafted watermelon (WW) with non-grafted watermelon control (W), homo-grafted squash (SS) with non-grafted squash control (S), hetero-grafted watermelon onto squash (WS) with SS, and WS with WW. Different numbers of differentially expressed genes (DEGs) were identified in each comparison. In total, 318 significant DEGs were detected between the transcriptomes of hetero-grafts and homo-grafts at 16 h after grafting. Overall, a significantly higher number of downregulated transcripts was detected among the DEGs. Only one gene showing increased expression related to the cytokinin synthesis was common in three out of four comparisons involving WS, SS, and S. The highest number of differentially expressed (DE) transcripts (433) was detected in the comparison between SS and S, followed by the 127 transcripts between WW and W. The study provides a description of the transcriptomic nature of homo- and hetero-grafted early responses, while the results provide a start point for the elucidation of the molecular mechanisms and candidate genes for the functional analyses of hetero-graft and homo-graft systems in Cucurbitaceae and generally in the plants.
Collapse
Affiliation(s)
- Filippos Bantis
- School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George Tsiolas
- Centre for Research and Technology Hellas, Institute of Applied Biosciences, Thessaloniki, Greece
| | | | - Ioanna Tsompanoglou
- School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alexios N. Polidoros
- School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anagnostis Argiriou
- Centre for Research and Technology Hellas, Institute of Applied Biosciences, Thessaloniki, Greece
- Department of Food Science and Nutrition, University of the Aegean, Myrina, Greece
| | | |
Collapse
|
72
|
Tripodi P, Soler S, Campanelli G, Díez MJ, Esposito S, Sestili S, Figàs MR, Leteo F, Casanova C, Platani C, Soler E, Bertone A, Pereira-Dias L, Palma D, Burguet R, Pepe A, Rosa-Martínez E, Prohens J, Cardi T. Genome wide association mapping for agronomic, fruit quality, and root architectural traits in tomato under organic farming conditions. BMC PLANT BIOLOGY 2021; 21:481. [PMID: 34686145 PMCID: PMC8532347 DOI: 10.1186/s12870-021-03271-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/11/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Opportunity and challenges of the agriculture scenario of the next decades will face increasing demand for secure food through approaches able to minimize the input to cultivations. Large panels of tomato varieties represent a valuable resource of traits of interest under sustainable cultivation systems and for genome-wide association studies (GWAS). For mapping loci controlling the variation of agronomic, fruit quality, and root architecture traits, we used a heterogeneous set of 244 traditional and improved tomato accessions grown under organic field trials. Here we report comprehensive phenotyping and GWAS using over 37,300 SNPs obtained through double digest restriction-site associated DNA (dd-RADseq). RESULTS A wide range of phenotypic diversity was observed in the studied collection, with highly significant differences encountered for most traits. A variable level of heritability was observed with values up to 69% for morphological traits while, among agronomic ones, fruit weight showed values above 80%. Genotype by environment analysis highlighted the strongest genotypic effect for aboveground traits compared to root architecture, suggesting that the hypogeal part of tomato plants has been a minor objective for breeding activities. GWAS was performed by a compressed mixed linear model leading to 59 significantly associated loci, allowing the identification of novel genes related to flower and fruit characteristics. Most genomic associations fell into the region surrounding SUN, OVATE, and MYB gene families. Six flower and fruit traits were associated with a single member of the SUN family (SLSUN31) on chromosome 11, in a region involved in the increase of fruit weight, locules number, and fruit fasciation. Furthermore, additional candidate genes for soluble solids content, fruit colour and shape were found near previously reported chromosomal regions, indicating the presence of synergic and multiple linked genes underlying the variation of these traits. CONCLUSIONS Results of this study give new hints on the genetic basis of traits in underexplored germplasm grown under organic conditions, providing a framework for the development of markers linked to candidate genes of interest to be used in genomics-assisted breeding in tomato, in particular under low-input and organic cultivation conditions.
Collapse
Affiliation(s)
- Pasquale Tripodi
- CREA Research Centre for Vegetable and Ornamental Crops, Via dei Cavalleggeri 25, 84098, Pontecagnano Faiano, SA, Italy.
| | - Salvador Soler
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Gabriele Campanelli
- CREA Research Centre for Vegetable and Ornamental Crops, Monsampolo del Tronto, AP, Italy
| | - María José Díez
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Salvatore Esposito
- CREA Research Centre for Vegetable and Ornamental Crops, Via dei Cavalleggeri 25, 84098, Pontecagnano Faiano, SA, Italy
| | - Sara Sestili
- CREA Research Centre for Vegetable and Ornamental Crops, Monsampolo del Tronto, AP, Italy
| | - Maria R Figàs
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Fabrizio Leteo
- CREA Research Centre for Vegetable and Ornamental Crops, Monsampolo del Tronto, AP, Italy
| | - Cristina Casanova
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Cristiano Platani
- CREA Research Centre for Vegetable and Ornamental Crops, Monsampolo del Tronto, AP, Italy
| | - Elena Soler
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Aldo Bertone
- CREA Research Centre for Vegetable and Ornamental Crops, Monsampolo del Tronto, AP, Italy
| | - Leandro Pereira-Dias
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Daniela Palma
- CREA Research Centre for Vegetable and Ornamental Crops, Monsampolo del Tronto, AP, Italy
| | - Resurrección Burguet
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Andrea Pepe
- CREA Research Centre for Vegetable and Ornamental Crops, Monsampolo del Tronto, AP, Italy
| | - Elena Rosa-Martínez
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022, Valencia, Spain.
| | - Teodoro Cardi
- CREA Research Centre for Vegetable and Ornamental Crops, Via dei Cavalleggeri 25, 84098, Pontecagnano Faiano, SA, Italy
| |
Collapse
|
73
|
Kang JN, Kim JS, Lee SM, Won SY, Seo MS, Kwon SJ. Analysis of Phenotypic Characteristics and Sucrose Metabolism in the Roots of Raphanus sativus L. FRONTIERS IN PLANT SCIENCE 2021; 12:716782. [PMID: 34745157 PMCID: PMC8566945 DOI: 10.3389/fpls.2021.716782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 10/04/2021] [Indexed: 05/17/2023]
Abstract
The taproot of radish (Raphanus sativus L.) is an important sink organ; it is morphologically diverse and contains large amounts of secondary metabolites. Sucrose metabolism is believed to be important in the development of sink organs. We measured the amounts of glucose, fructose, and sucrose in the roots of sixty three radish accessions and analyzed the association between the sugar content and the root phenotype. Fructose content correlated with the root color and length characteristics, glucose was the most abundant sugar in the roots, and the sucrose content was very low, compared to that of the hexoses in most of the accessions. Expression analysis of the genes involved in sucrose metabolism, transportation, starch synthesis, and cell wall synthesis was performed through RNA sequencing. The genes encoding sucrose synthases (SUSY) and the enzymes involved in the synthesis of cellulose were highly expressed, indicating that SUSY is involved in cell wall synthesis in radish roots. The positive correlation coefficient (R) between the sucrose content and the expression of cell wall invertase and sugar transporter proteins suggest that hexose accumulation could occur through the apoplastic pathway in radish roots. A positive R score was also obtained when comparing the expression of genes encoding SUSY and fructokinase (FK), suggesting that the fructose produced by SUSY is mostly phosphorylated by FK. In addition, we concluded that sucrose was the most metabolized sugar in radish roots.
Collapse
|
74
|
Hu Z, Tang Z, Zhang Y, Niu L, Yang F, Zhang D, Hu Y. Rice SUT and SWEET Transporters. Int J Mol Sci 2021; 22:11198. [PMID: 34681858 PMCID: PMC8540626 DOI: 10.3390/ijms222011198] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 11/17/2022] Open
Abstract
Sugar transporters play important or even indispensable roles in sugar translocation among adjacent cells in the plant. They are mainly composed of sucrose-proton symporter SUT family members and SWEET family members. In rice, 5 and 21 members are identified in these transporter families, and some of their physiological functions have been characterized on the basis of gene knockout or knockdown strategies. Existing evidence shows that most SUT members play indispensable roles, while many SWEET members are seemingly not so critical in plant growth and development regarding whether their mutants display an aberrant phenotype or not. Generally, the expressions of SUT and SWEET genes focus on the leaf, stem, and grain that represent the source, transport, and sink organs where carbohydrate production, allocation, and storage take place. Rice SUT and SWEET also play roles in both biotic and abiotic stress responses in addition to plant growth and development. At present, these sugar transporter gene regulation mechanisms are largely unclear. In this review, we compare the expressional profiles of these sugar transporter genes on the basis of chip data and elaborate their research advances. Some suggestions concerning future investigation are also proposed.
Collapse
Affiliation(s)
- Zhi Hu
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Z.H.); (Z.T.)
| | - Zhenjia Tang
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Z.H.); (Z.T.)
| | - Yanming Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; (Y.Z.); (L.N.); (F.Y.)
| | - Liping Niu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; (Y.Z.); (L.N.); (F.Y.)
| | - Fang Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; (Y.Z.); (L.N.); (F.Y.)
| | - Dechun Zhang
- Bio-Technology Research Center, China Three Gorges University, Yichang 443002, China
| | - Yibing Hu
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Z.H.); (Z.T.)
| |
Collapse
|
75
|
Rodenburg SYA, Seidl MF, de Ridder D, Govers F. Uncovering the Role of Metabolism in Oomycete-Host Interactions Using Genome-Scale Metabolic Models. Front Microbiol 2021; 12:748178. [PMID: 34707596 PMCID: PMC8543037 DOI: 10.3389/fmicb.2021.748178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/10/2021] [Indexed: 12/17/2022] Open
Abstract
Metabolism is the set of biochemical reactions of an organism that enables it to assimilate nutrients from its environment and to generate building blocks for growth and proliferation. It forms a complex network that is intertwined with the many molecular and cellular processes that take place within cells. Systems biology aims to capture the complexity of cells, organisms, or communities by reconstructing models based on information gathered by high-throughput analyses (omics data) and prior knowledge. One type of model is a genome-scale metabolic model (GEM) that allows studying the distributions of metabolic fluxes, i.e., the "mass-flow" through the network of biochemical reactions. GEMs are nowadays widely applied and have been reconstructed for various microbial pathogens, either in a free-living state or in interaction with their hosts, with the aim to gain insight into mechanisms of pathogenicity. In this review, we first introduce the principles of systems biology and GEMs. We then describe how metabolic modeling can contribute to unraveling microbial pathogenesis and host-pathogen interactions, with a specific focus on oomycete plant pathogens and in particular Phytophthora infestans. Subsequently, we review achievements obtained so far and identify and discuss potential pitfalls of current models. Finally, we propose a workflow for reconstructing high-quality GEMs and elaborate on the resources needed to advance a system biology approach aimed at untangling the intimate interactions between plants and pathogens.
Collapse
Affiliation(s)
- Sander Y. A. Rodenburg
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, Netherlands
- Bioinformatics Group, Wageningen University & Research, Wageningen, Netherlands
| | - Michael F. Seidl
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, Netherlands
- Theoretical Biology & Bioinformatics group, Department of Biology, Utrecht University, Wageningen, Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University & Research, Wageningen, Netherlands
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
76
|
Wu D, Wang L, Zhang Y, Bai L, Yu F. Emerging roles of pathogen-secreted host mimics in plant disease development. Trends Parasitol 2021; 37:1082-1095. [PMID: 34627670 DOI: 10.1016/j.pt.2021.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 11/19/2022]
Abstract
Plant pathogens and parasites use multiple virulence factors to successfully infect plants. While most plant-pathogen interaction studies focus on pathogen effectors and their functions in suppressing plant immunity or interfering with normal cellular processes, other virulence factors likely also contribute. Here we highlight another important strategy used by pathogens to promote virulence: secretion of mimics of host molecules, including peptides, phytohormones, and small RNAs, which play diverse roles in plant development and stress responses. Pathogen-secreted mimics hijack the host endogenous signaling pathways, thereby modulating host cellular functions to the benefit of the pathogen and promoting infection. Understanding the mechanisms of pathogen-secreted host mimics will expand our knowledge of host-pathogen coevolution and interactions, while providing new targets for plant disease control.
Collapse
Affiliation(s)
- Dousheng Wu
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, China
| | - Lifeng Wang
- Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Yong Zhang
- College of Resources and Environment, Southwest University, Beibei, Chongqing, 400715, China
| | - Lianyang Bai
- Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
| | - Feng Yu
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, China.
| |
Collapse
|
77
|
Pinto VB, Ferreira PG, Vidigal PMP, de Oliveira Mendes TA, Dal-Bianco M, de Magalhaes JV, Viana JMS. Uncovering the transcriptional response of popcorn (Zea mays L. var. everta) under long-term aluminum toxicity. Sci Rep 2021; 11:19644. [PMID: 34608228 PMCID: PMC8490451 DOI: 10.1038/s41598-021-99097-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 09/20/2021] [Indexed: 11/21/2022] Open
Abstract
To date, the investigation of genes involved in Al resistance has focused mainly on microarrays and short periods of Al exposure. We investigated genes involved in the global response under Al stress by tracking the expression profile of two inbred popcorn lines with different Al sensitivity during 72 h of Al stress. A total of 1003 differentially expressed genes were identified in the Al-sensitive line, and 1751 were identified in the Al-resistant line, of which 273 were shared in both lines. Genes in the category of "response to abiotic stress" were present in both lines, but there was a higher number in the Al-resistant line. Transcription factors, genes involved in fatty acid biosynthesis, and genes involved in cell wall modifications were also detected. In the Al-resistant line, GST6 was identified as one of the key hub genes by co-expression network analysis, and ABC6 may play a role in the downstream regulation of CASP-like 5. In addition, we suggest a class of SWEET transporters that might be involved in the regulation of vacuolar sugar storage and may serve as mechanisms for Al resistance. The results and conclusions expand our understanding of the complex mechanisms involved in Al toxicity and provide a platform for future functional analyses and genomic studies of Al stress in popcorn.
Collapse
Affiliation(s)
- Vitor Batista Pinto
- Departamento de Biologia Geral and Laboratório de Bioquímica Genética de Plantas/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil.
| | - Priscila Gonçalves Ferreira
- Laboratório de Biologia Sintética e Modelagem de Sistemas Biológicos, Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil
| | - Pedro Marcus Pereira Vidigal
- Núcleo de Análise de Biomoléculas (NuBioMol), Centro de Ciências Biológicas, Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil
| | - Tiago Antônio de Oliveira Mendes
- Laboratório de Biologia Sintética e Modelagem de Sistemas Biológicos, Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil
| | - Maximiller Dal-Bianco
- Laboratório de Bioquímica Genética de Plantas/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil
| | | | | |
Collapse
|
78
|
Kanojia A, Shrestha DK, Dijkwel PP. Primary metabolic processes as drivers of leaf ageing. Cell Mol Life Sci 2021; 78:6351-6364. [PMID: 34279698 PMCID: PMC8558203 DOI: 10.1007/s00018-021-03896-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 12/26/2022]
Abstract
Ageing in plants is a highly coordinated and complex process that starts with the birth of the plant or plant organ and ends with its death. A vivid manifestation of the final stage of leaf ageing is exemplified by the autumn colours of deciduous trees. Over the past decades, technological advances have allowed plant ageing to be studied on a systems biology level, by means of multi-omics approaches. Here, we review some of these studies and argue that these provide strong support for basic metabolic processes as drivers for ageing. In particular, core cellular processes that control the metabolism of chlorophyll, amino acids, sugars, DNA and reactive oxygen species correlate with leaf ageing. However, while multi-omics studies excel at identifying correlative processes and pathways, molecular genetic approaches can provide proof that such processes and pathways control ageing, by means of knock-out and ectopic expression of predicted regulatory genes. Therefore, we also review historic and current molecular evidence to directly test the hypotheses unveiled by the systems biology approaches. We found that the molecular genetic approaches, by and large, confirm the multi-omics-derived hypotheses with notable exceptions, where there is scant evidence that chlorophyll and DNA metabolism are important drivers of leaf ageing. We present a model that summarises the core cellular processes that drive leaf ageing and propose that developmental processes are tightly linked to primary metabolism to inevitably lead to ageing and death.
Collapse
Affiliation(s)
- Aakansha Kanojia
- Center of Plant Systems Biology and Biotechnology, Ruski 139 Blvd., Plovdiv, 4000, Bulgaria
| | - Deny K Shrestha
- School of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Paul P Dijkwel
- School of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand.
| |
Collapse
|
79
|
Zhang J, Lu Z, Ren T, Cong R, Lu J, Li X. Metabolomic and Transcriptomic Changes Induced by Potassium Deficiency During Sarocladium oryzae Infection Reveal Insights into Rice Sheath Rot Disease Resistance. RICE (NEW YORK, N.Y.) 2021; 14:81. [PMID: 34533651 PMCID: PMC8448798 DOI: 10.1186/s12284-021-00524-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/09/2021] [Indexed: 05/31/2023]
Abstract
Rice sheath rot disease caused by Sarocladium oryzae (S. oryzae) infection is an emerging disease, and infection can cause yield losses of 20-85%. Adequate potassium (K) application is a feasible strategy for rice tolerance to S. oryzae infection. However, little is known about the metabolic mechanisms regulated by K that allow rice to cope better with S. oryzae infection. The present study performed a comparative metabolome and transcriptome analysis of rice with different K nutrition statuses before and upon S. oryzae infection. Sarocladium oryzae infection triggered a hydrogen peroxide (H2O2) burst, and K starvation aggravated the accumulation of H2O2 in the flag leaf sheath (FLS), which resulted in lipid peroxidation. Likewise, K deficiency altered the lipid homeostasis of the host plants by hyperaccumulation of 1-alkyl-2-acylglycerophosphoethanolamine. K starvation decreased the content of glycoglycerolipids including monogalactosyldiacyglycerol and digalactosyldoacylglycerol during S. oryzae infection, which destroyed the stability of bilayer membranes. In contrast, sufficient K supply increased antioxidant-related transcript expression (for example, the genes related to glutathione-S-transferase biosynthesis were upregulated), which activated the antioxidant systems. Additionally, upon S. oryzae infection, K starvation amplified the negative impacts of S. oryzae infection on flag leaf photosynthetic potential. These results provide new insight into the role of K in alleviating S. oryzae infection. Adequate K supply decreased the negative impacts of sheath rot disease on rice growth by alleviating lipid peroxidation and maintaining lipid homeostasis.
Collapse
Affiliation(s)
- Jianglin Zhang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, People’s Republic of China, Wuhan, 430070 China
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070 China
| | - Zhifeng Lu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, People’s Republic of China, Wuhan, 430070 China
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070 China
| | - Tao Ren
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, People’s Republic of China, Wuhan, 430070 China
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070 China
| | - Rihuan Cong
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, People’s Republic of China, Wuhan, 430070 China
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jianwei Lu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, People’s Republic of China, Wuhan, 430070 China
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070 China
| | - Xiaokun Li
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, People’s Republic of China, Wuhan, 430070 China
| |
Collapse
|
80
|
Li H, Ghoto K, Wei MY, Gao CH, Liu YL, Ma DN, Zheng HL. Unraveling hydrogen sulfide-promoted lateral root development and growth in mangrove plant Kandelia obovata: insight into regulatory mechanism by TMT-based quantitative proteomic approaches. TREE PHYSIOLOGY 2021; 41:1749-1766. [PMID: 33580961 DOI: 10.1093/treephys/tpab025] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 01/31/2021] [Indexed: 05/26/2023]
Abstract
Mangroves are the main intertidal ecosystems with varieties of root types along the tropical and subtropical coastlines around the world. The typical characteristics of mangrove habitats, including the abundant organic matter and nutrients, as well as the strong reductive environment, are favor for the production of hydrogen sulfide (H2S). H2S, as a pivotal signaling molecule, has been evidenced in a wide variety of plant physiological and developmental processes. However, whether H2S functions in the mangrove root system establishment is not clear yet. Here, we reported the possible role of H2S in regulation of Kandelia obovata root development and growth by tandem mass tag (TMT)-based quantitative proteomic approaches coupled with bioinformatic methods. The results showed that H2S could induce the root morphogenesis of K. obovata in a dose-dependent manner. The proteomic results successfully identified 8075 proteins, and 697 were determined as differentially expressed proteins. Based on the functional enrichment analysis, we demonstrated that H2S could promote the lateral root development and growth by predominantly regulating the proteins associated with carbohydrate metabolism, sulfur metabolism, glutathione metabolism and other antioxidant associated proteins. In addition, transcriptional regulation and brassinosteroid signal transduction associated proteins also act as important roles in lateral root development. The protein-protein interaction analysis further unravels a complicated regulation network of carbohydrate metabolism, cellular redox homeostasis, protein metabolism, secondary metabolism, and amino acid metabolism in H2S-promoted root development and growth of K. obovata. Overall, our results revealed that H2S could contribute to the morphogenesis of the unique root system of mangrove plant K. obovata, and play a positive role in the adaption of mangrove plants to intertidal habitats.
Collapse
Affiliation(s)
- Huan Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Kabir Ghoto
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Ming-Yue Wei
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Chang-Hao Gao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Yi-Ling Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Dong-Na Ma
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Hai-Lei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, P.R. China
| |
Collapse
|
81
|
Duy PN, Lan DT, Pham Thu H, Thi Thu HP, Nguyen Thanh H, Pham NP, Auguy F, Bui Thi Thu H, Manh TB, Cunnac S, Pham XH. Improved bacterial leaf blight disease resistance in the major elite Vietnamese rice cultivar TBR225 via editing of the OsSWEET14 promoter. PLoS One 2021; 16:e0255470. [PMID: 34499670 PMCID: PMC8428762 DOI: 10.1371/journal.pone.0255470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 07/17/2021] [Indexed: 12/05/2022] Open
Abstract
TBR225 is one of the most popular commercial rice varieties in Northern Vietnam. However, this variety is highly susceptible to bacterial leaf blight (BLB), a disease caused by Xanthomonas oryzae pv. oryzae (Xoo) which can lead to important yield losses. OsSWEET14 belongs to the SWEET gene family that encodes sugar transporters. Together with other Clade III members, it behaves as a susceptibility (S) gene whose induction by Asian Xoo Transcription-Activator-Like Effectors (TALEs) is absolutely necessary for disease. In this study, we sought to introduce BLB resistance in the TBR225 elite variety. First, two Vietnamese Xoo strains were shown to up-regulate OsSWEET14 upon TBR225 infection. To investigate if this induction is connected with disease susceptibility, nine TBR225 mutant lines with mutations in the AvrXa7, PthXo3 or TalF TALEs DNA target sequences of the OsSWEET14 promoter were obtained using the CRISPR/Cas9 editing system. Genotyping analysis of T0 and T1 individuals showed that mutations were stably inherited. None of the examined agronomic traits of three transgene-free T2 edited lines were significantly different from those of wild-type TBR225. Importantly, one of these T2 lines, harboring the largest homozygous 6-bp deletion, displayed decreased OsSWEET14 expression as well as a significantly reduced susceptibility to a Vietnamese Xoo strains and complete resistance to another one. Our findings indicate that CRISPR/Cas9 editing conferred an improved BLB resistance to a Vietnamese commercial elite rice variety.
Collapse
Affiliation(s)
- Phuong Nguyen Duy
- Department of Molecular Pathology, Institute of Agricultural Genetics, Vietnam Academy of Agricultural Sciences, Hanoi, Vietnam
| | - Dai Tran Lan
- Department of Molecular Pathology, Institute of Agricultural Genetics, Vietnam Academy of Agricultural Sciences, Hanoi, Vietnam
- Faculty of Natural Sciences, Department of Applied Biology and Agriculture, Quynhon University, Quynhon, Vietnam
| | - Hang Pham Thu
- Department of Molecular Pathology, Institute of Agricultural Genetics, Vietnam Academy of Agricultural Sciences, Hanoi, Vietnam
| | - Huong Phung Thi Thu
- Department of Molecular Pathology, Institute of Agricultural Genetics, Vietnam Academy of Agricultural Sciences, Hanoi, Vietnam
| | - Ha Nguyen Thanh
- Department of Molecular Pathology, Institute of Agricultural Genetics, Vietnam Academy of Agricultural Sciences, Hanoi, Vietnam
| | - Ngoc Phuong Pham
- Department of Molecular Pathology, Institute of Agricultural Genetics, Vietnam Academy of Agricultural Sciences, Hanoi, Vietnam
| | - Florence Auguy
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | | | | | - Sebastien Cunnac
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Xuan Hoi Pham
- Department of Molecular Pathology, Institute of Agricultural Genetics, Vietnam Academy of Agricultural Sciences, Hanoi, Vietnam
| |
Collapse
|
82
|
Xuan C, Lan G, Si F, Zeng Z, Wang C, Yadav V, Wei C, Zhang X. Systematic Genome-Wide Study and Expression Analysis of SWEET Gene Family: Sugar Transporter Family Contributes to Biotic and Abiotic Stimuli in Watermelon. Int J Mol Sci 2021; 22:8407. [PMID: 34445115 PMCID: PMC8395094 DOI: 10.3390/ijms22168407] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/01/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022] Open
Abstract
The SWEET (Sugars Will Eventually be Exported Transporter) proteins are a novel family of sugar transporters that play key roles in sugar efflux, signal transduction, plant growth and development, plant-pathogen interactions, and stress tolerance. In this study, 22 ClaSWEET genes were identified in Citrullus lanatus (Thunb.) through homology searches and classified into four groups by phylogenetic analysis. The genes with similar structures, conserved domains, and motifs were clustered into the same groups. Further analysis of the gene promoter regions uncovered various growth, development, and biotic and abiotic stress responsive cis-regulatory elements. Tissue-specific analysis showed most of the genes were highly expressed in male flowers and the roots of cultivated varieties and wild cultivars. In addition, qRT-PCR results further imply that ClaSWEET proteins might be involved in resistance to Fusarium oxysporum infection. Moreover, a significantly higher expression level of these genes under various abiotic stresses suggests its multifaceted role in mediating plant responses to drought, salt, and low-temperature stress. The genome-wide characterization and phylogenetic analysis of ClaSWEET genes, together with the expression patterns in different tissues and stimuli, lays a solid foundation for future research into their molecular function in watermelon developmental processes and responses to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Changqing Xuan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China; (C.X.); (G.L.); (F.S.); (Z.Z.); (C.W.); (V.Y.)
| | - Guangpu Lan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China; (C.X.); (G.L.); (F.S.); (Z.Z.); (C.W.); (V.Y.)
| | - Fengfei Si
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China; (C.X.); (G.L.); (F.S.); (Z.Z.); (C.W.); (V.Y.)
| | - Zhilong Zeng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China; (C.X.); (G.L.); (F.S.); (Z.Z.); (C.W.); (V.Y.)
| | - Chunxia Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China; (C.X.); (G.L.); (F.S.); (Z.Z.); (C.W.); (V.Y.)
| | - Vivek Yadav
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China; (C.X.); (G.L.); (F.S.); (Z.Z.); (C.W.); (V.Y.)
| | - Chunhua Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China; (C.X.); (G.L.); (F.S.); (Z.Z.); (C.W.); (V.Y.)
| | - Xian Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China; (C.X.); (G.L.); (F.S.); (Z.Z.); (C.W.); (V.Y.)
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin 300384, China
| |
Collapse
|
83
|
Hosni H, Diallo A, Morcillo F, Vaissayre V, Collin M, Tranchant-Dubreuil C, Dussert S, Joët T, Castaño F, Marquínez X, Stauffer FW, Hodel DR, Castillo Mont JJ, Adam H, Jouannic S, Tregear JW. Redox-related gene expression and sugar accumulation patterns are altered in the edible inflorescence produced by the cultivated form of pacaya palm (Chamaedorea tepejilote). ANNALS OF BOTANY 2021; 128:231-240. [PMID: 33978714 PMCID: PMC8324030 DOI: 10.1093/aob/mcab060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/07/2021] [Indexed: 05/23/2023]
Abstract
BACKGROUND AND AIMS The pacaya palm is a dioecious neotropical palm species that is exploited in Latin America for its male inflorescence, which is edible when immature. It is cultivated, in a non-intensive manner, in Guatemala, where a morphotype occurs that produces much larger, more highly branched inflorescences compared with wild palms. We sought to identify molecular factors underlying this phenotypic divergence, which is likely to be a product of domestication. METHODS We performed RNA-seq-based studies on immature pacaya palm male inflorescences in order to identify genes that might be directly or indirectly affected in their expression in relation to domestication. We also measured the accumulation of a range of soluble sugar molecules to provide information on the biochemical status of the two different types of material. KEY RESULTS A total of 408 genes were found to display significantly different expression levels between the wild and cultivated morphotypes. Three different functional categories were found to be enriched in the gene set that was upregulated in the cultivated morphotype: redox balance; secondary metabolism; and transport. Several sugars were found to accumulate at higher levels in inflorescences of the cultivated morphotype, in particular myo-inositol, fructose and glucose. CONCLUSIONS The observed upregulation of redox-related genes in the cultivated morphotype is corroborated by the observation of higher myo-inositol accumulation, which has been shown to be associated with enhanced scavenging of reactive oxygen species in other plants and which may affect meristem activity.
Collapse
Affiliation(s)
- Hanene Hosni
- Institut de Recherche pour le Développement (IRD), UMR DIADE, Université de Montpellier, Montpellier, France
| | - Abdoulaye Diallo
- Institut de Recherche pour le Développement (IRD), UMR DIADE, Université de Montpellier, Montpellier, France
| | - Fabienne Morcillo
- CIRAD, DIADE, Montpellier, France
- DIADE, Université de Montpellier, Institut de Recherche pour le Développement, Montpellier, France
| | - Virginie Vaissayre
- Institut de Recherche pour le Développement (IRD), UMR DIADE, Université de Montpellier, Montpellier, France
| | - Myriam Collin
- Institut de Recherche pour le Développement (IRD), UMR DIADE, Université de Montpellier, Montpellier, France
| | | | - Stéphane Dussert
- Institut de Recherche pour le Développement (IRD), UMR DIADE, Université de Montpellier, Montpellier, France
| | - Thierry Joët
- Institut de Recherche pour le Développement (IRD), UMR DIADE, Université de Montpellier, Montpellier, France
| | - Felipe Castaño
- Universidad Industrial de Santander, Escuela de Biología, Calle, Bucaramanga, Colombia
| | - Xavier Marquínez
- Universidad Nacional de Colombia, Departamento de Biología, Carrera, Bogotá, Colombia
| | - Fred W Stauffer
- Conservatoire et Jardin botaniques de la Ville de Genève, Université de Genève, Laboratoire de Systématique Végétale et Biodiversité, Chambésy, Switzerland
| | - Donald R Hodel
- University of California, Cooperative Extension, Alhambra, CA, USA
| | | | - Hélène Adam
- Institut de Recherche pour le Développement (IRD), UMR DIADE, Université de Montpellier, Montpellier, France
| | - Stefan Jouannic
- Institut de Recherche pour le Développement (IRD), UMR DIADE, Université de Montpellier, Montpellier, France
| | - James W Tregear
- Institut de Recherche pour le Développement (IRD), UMR DIADE, Université de Montpellier, Montpellier, France
- For correspondence. E-mail
| |
Collapse
|
84
|
Xu Q, Liesche J. Sugar export from Arabidopsis leaves: actors and regulatory strategies. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5275-5284. [PMID: 34037757 DOI: 10.1093/jxb/erab241] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
Plant acclimation and stress responses depend on the dynamic optimization of carbon balance between source and sink organs. This optimization also applies to the leaf export rate of photosynthetically produced sugars. So far, investigations into the molecular mechanisms of how the rate is controlled have focused on sugar transporters responsible for loading sucrose into the phloem sieve element-companion cell complex of leaf veins. Here, we take a broader view of the various proteins with potential direct influence on the leaf sugar export rate in the model plant Arabidopsis thaliana, helped by the cell type-specific transcriptome data that have recently become available. Furthermore, we integrate current information on the regulation of these potential target proteins. Our analysis identifies putative control points and units of transcriptionally and post-transcriptionally co-regulated genes. Most notable is the potential regulatory unit of sucrose transporters (SUC2, SWEET11, SWEET12, and SUC4) and proton pumps (AHA3 and AVP1). Our analysis can guide future research aimed at understanding the regulatory network controlling leaf sugar export by providing starting points for characterizing regulatory strategies and identifying regulatory factors that link sugar export rate to the major signaling pathways.
Collapse
Affiliation(s)
- Qiyu Xu
- College of Life Sciences, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- Biomass Energy Center for Arid and Semiarid Lands, Northwest A&F University, Yangling, China
| | - Johannes Liesche
- College of Life Sciences, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- Biomass Energy Center for Arid and Semiarid Lands, Northwest A&F University, Yangling, China
- Institute for Molecular Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
85
|
Lin Q, Zhong Q, Zhang Z. Identification and functional analysis of SWEET gene family in Averrhoa carambola L. fruits during ripening. PeerJ 2021; 9:e11404. [PMID: 34131516 PMCID: PMC8174149 DOI: 10.7717/peerj.11404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 04/14/2021] [Indexed: 11/25/2022] Open
Abstract
Sugar Will Eventually be Exported Transporters (SWEETs), a type of sugar efflux transporters, have been extensively researched upon due to their role in phloem loading for distant sugar transport, fruit development, and stress regulation, etc. Several plant species are known to possess the SWEET genes; however, little is known about their presence in Averrhoa Carambola L. (Oxalidaceae), an evergreen fruit crop (star fruit) in tropical and subtropical regions of Southeast Asia. In this study, we established an Averrhoa Carambola L. unigenes library from fruits of ‘XianMiyangtao’ (XM) by RNA sequencing (RNA-seq). A total of 99,319 unigenes, each longer than 200 bp with a total length was 72.00 Mb, were identified. A total of 51,642 unigenes (52.00%) were annotated. Additionally, 10 AcSWEET genes from the Averrhoa Carambola L. unigenes library were identified and classified, followed by a comprehensive analysis of their structures and conserved motif compositions, and evolutionary relationships. Moreover, the expression patterns of AcSWEETs in ‘XM’ cultivars during fruit ripening were confirmed using quantitative real-time PCR (qRT-PCR), combined with the soluble sugar and titratable acids content during ripening, showed that AcSWEET2a/2b and AcSWEET16b might participate in sugar transport during fruit ripening. This work presents a general profile of the AcSWEET gene family in Averrhoa Carambola L., which can be used to perform further studies on elucidating the functional roles of AcSWEET genes.
Collapse
Affiliation(s)
- Qihua Lin
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Qiuzhen Zhong
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Zehuang Zhang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| |
Collapse
|
86
|
Esparza-Reynoso S, Ruíz-Herrera LF, Pelagio-Flores R, Macías-Rodríguez LI, Martínez-Trujillo M, López-Coria M, Sánchez-Nieto S, Herrera-Estrella A, López-Bucio J. Trichoderma atroviride-emitted volatiles improve growth of Arabidopsis seedlings through modulation of sucrose transport and metabolism. PLANT, CELL & ENVIRONMENT 2021; 44:1961-1976. [PMID: 33529396 DOI: 10.1111/pce.14014] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Plants host a diverse microbiome and differentially react to the fungal species living as endophytes or around their roots through emission of volatiles. Here, using divided Petri plates for Arabidopsis-T. atroviride co-cultivation, we show that fungal volatiles increase endogenous sugar levels in shoots, roots and root exudates, which improve Arabidopsis root growth and branching and strengthen the symbiosis. Tissue-specific expression of three sucrose phosphate synthase-encoding genes (AtSPS1F, AtSPS2F and AtSPS3F), and AtSUC2 and SWEET transporters revealed that the gene expression signatures differ from those of the fungal pathogens Fusarium oxysporum and Alternaria alternata and that AtSUC2 is largely repressed either by increasing carbon availability or by perception of the fungal volatile 6-pentyl-2H-pyran-2-one. Our data point to Trichoderma volatiles as chemical signatures for sugar biosynthesis and exudation and unveil specific modulation of a critical, long-distance sucrose transporter in the plant.
Collapse
Affiliation(s)
- Saraí Esparza-Reynoso
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - León Francisco Ruíz-Herrera
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Ramón Pelagio-Flores
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | | | | | - Montserrat López-Coria
- Departamento de Bioquímica, Facultad de Bioquímica, Conjunto E, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Sobeida Sánchez-Nieto
- Departamento de Bioquímica, Facultad de Bioquímica, Conjunto E, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| |
Collapse
|
87
|
Zhang L, Wang L, Zhang J, Song C, Li Y, Li J, Lu M. Expression and localization of SWEETs in Populus and the effect of SWEET7 overexpression in secondary growth. TREE PHYSIOLOGY 2021; 41:882-899. [PMID: 33147625 DOI: 10.1093/treephys/tpaa145] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
In trees, wood formation needs carbon import from the photosynthetic source tissues. Sugar transporters play important roles in carbohydrate transport into wood-forming cells. Sugars will eventually be exported transporters (SWEETs) play essential roles in many physiological processes. However, the roles of this family in the growth and development of woody plants have not been systematically investigated. In this study, 27 SWEET genes were identified in the Populus trichocarpa genome. These SWEET genes were classified into four clades based on their phylogenetic relationships, gene structures, conserved motifs and chromosomal locations. Representative SWEET members from each clade were selected for further studies. The PagSWEETs of Populus alba × Populus glandulosa were localized to plasma membrane, vacuolar, endoplasmic reticulum or Golgi. Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) analysis showed that PagSWEETs have distinct expression patterns in various tissues, and PagSWEET5, 7, 10b, 10c, 15b, 17a and 17c exhibited high expression levels in stems. PagSWEET7 is localized to the cytoplasmic membrane and specifically expressed in the phloem as detected by histochemical GUS ($\beta $ - glucuronidase) assays. Xylem production and xylem sugar content were greater in developing wood of PagSWEET7 overexpression than wild-type lines. Collectively, these results provide valuable information for further investigating functions of PagSWEET genes, and identify PagSWEET7 as a candidate gene for using biotechnology to modify the wood formation in poplar.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- College of Agricultural and Biological engineering, Heze University, Heze, Shandong 274015, China
| | - Lijuan Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Jin Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- State Key Laboratory of Subtropical Forestry, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Cai Song
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory of Non-wood Forest Product of State Forestry Administration, School of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yu Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Jianbo Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Mengzhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- State Key Laboratory of Subtropical Forestry, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| |
Collapse
|
88
|
Chen X, Liu P, Mei L, He X, Chen L, Liu H, Shen S, Ji Z, Zheng X, Zhang Y, Gao Z, Zeng D, Qian Q, Ma B. Xa7, a new executor R gene that confers durable and broad-spectrum resistance to bacterial blight disease in rice. PLANT COMMUNICATIONS 2021; 2:100143. [PMID: 34027390 PMCID: PMC8132130 DOI: 10.1016/j.xplc.2021.100143] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/02/2021] [Accepted: 01/07/2021] [Indexed: 05/03/2023]
Abstract
Bacterial blight (BB) is a globally devastating rice disease caused by Xanthomonas oryzae pv. oryzae (Xoo). The use of disease resistance (R) genes in rice breeding is an effective and economical strategy for the control of this disease. Nevertheless, a majority of R genes lack durable resistance for long-term use under global warming conditions. Here, we report the isolation of a novel executor R gene, Xa7, that confers extremely durable, broad-spectrum, and heat-tolerant resistance to Xoo. The expression of Xa7 was induced by incompatible Xoo strains that secreted the transcription activator-like effector (TALE) AvrXa7 or PthXo3, which recognized effector binding elements (EBEs) in the Xa7 promoter. Furthermore, Xa7 induction was faster and stronger under high temperatures. Overexpression of Xa7 or co-transformation of Xa7 with avrXa7 triggered a hypersensitive response in plants. Constitutive expression of Xa7 activated a defense response in the absence of Xoo but inhibited the growth of transgenic rice plants. In addition, analysis of over 3000 rice varieties showed that the Xa7 locus was found primarily in the indica and aus subgroups. A variation consisting of an 11-bp insertion and a base substitution (G to T) was found in EBEAvrXa7 in the tested varieties, resulting in a loss of Xa7 BB resistance. Through a decade of effort, we have identified an important BB resistance gene and characterized its distinctive interaction with Xoo strains; these findings will greatly facilitate research on the molecular mechanism of Xa7-mediated resistance and promote the use of this valuable gene in breeding.
Collapse
Affiliation(s)
- Xifeng Chen
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Pengcheng Liu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Le Mei
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xiaoling He
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Long Chen
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
- China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Hui Liu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Shurong Shen
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Zhandong Ji
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xixi Zheng
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yuchen Zhang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Zhenyu Gao
- China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Dali Zeng
- China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Qian Qian
- China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Bojun Ma
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
- Corresponding author
| |
Collapse
|
89
|
Michonneau P, Fleurat-Lessard P, Cantereau A, Crépin A, Roblin G, Berjeaud JM. Implication of actin in the uptake of sucrose and valine in the tap root and leaf of sugar beet. PHYSIOLOGIA PLANTARUM 2021; 172:218-232. [PMID: 33421161 DOI: 10.1111/ppl.13322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Actin microfilaments (F-actin) are major components of the cytoskeleton essential for many cellular dynamic processes (vesicle trafficking, cytoplasmic streaming, organelle movements). The aim of this study was to examine whether cortical actin microfilaments might be implicated in the regulation of nutrient uptake in root and leaf cells of Beta vulgaris. Using antibodies raised against actin and the AtSUC1 sucrose transporter, immunochemical assays demonstrated that the expression of actin and a sucrose transporter showed different characteristics, when detected on plasma membrane vesicles (PMVs) purified from roots and from leaves. The in situ immunolabeling of actin and AtSUC1 sites in PMVs and tissues showed their close proximity to the plasma membrane. Using co-labeling in protoplasts, actin and sucrose transporters were localized along the internal border and in the outermost part of the plasma membrane, respectively. This respective membrane co-localization was confirmed on PMVs and in tissues using transmission electronic microscopy. The possible functional role of actin in sucrose uptake (and valine uptake, comparatively) by PMVs and tissues from roots and leaves was examined using the pharmacological inhibitors, cytochalasin B (CB), cytochalasin D (CD), and phalloidin (PH). CB and CD inhibited the sucrose and valine uptake by root tissues in a concentration-dependent manner above 1 μM, whereas PH had no such effect. Comparatively, the toxins inhibited the sucrose and valine uptake in leaf discs to a lesser extent. The inhibition was not due to a hindering of the proton pumping and H+ -ATPase catalytic activity determined in PMVs incubated in presence of these toxins.
Collapse
Affiliation(s)
- Philippe Michonneau
- Pôle Agronomie Innovation Services, SCARA, Villette-sur-Aube, France
- Laboratoire EBI (Ecologie et Biologie des Interactions, Université de Poitiers, Poitiers, France
| | | | - Anne Cantereau
- Plateforme ImageUP, Signalisation & Transports Ioniques Membranaires CNRS 6187, Poitiers, France
| | - Alexandre Crépin
- Laboratoire EBI (Ecologie et Biologie des Interactions, Université de Poitiers, Poitiers, France
| | - Gabriel Roblin
- Laboratoire EBI (Ecologie et Biologie des Interactions, Université de Poitiers, Poitiers, France
| | - Jean-Marc Berjeaud
- Laboratoire EBI (Ecologie et Biologie des Interactions, Université de Poitiers, Poitiers, France
| |
Collapse
|
90
|
Nida H, Girma G, Mekonen M, Tirfessa A, Seyoum A, Bejiga T, Birhanu C, Dessalegn K, Senbetay T, Ayana G, Tesso T, Ejeta G, Mengiste T. Genome-wide association analysis reveals seed protein loci as determinants of variations in grain mold resistance in sorghum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1167-1184. [PMID: 33452894 DOI: 10.1007/s00122-020-03762-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
GWAS analysis revealed variations at loci harboring seed storage, late embryogenesis abundant protein, and a tannin biosynthesis gene associated with sorghum grain mold resistance. Grain mold is the most important disease of sorghum [Sorghum bicolor (L.) Moench]. It starts at the early stages of grain development due to concurrent infection by multiple fungal species. The genetic architecture of resistance to grain mold is poorly understood. Using a diverse set of 635 Ethiopian sorghum accessions, we conducted a multi-stage disease rating for resistance to grain mold under natural infestation in the field. Through genome-wide association analyses with 173,666 SNPs and multiple models, two novel loci were identified that were consistently associated with grain mold resistance across environments. Sequence variation at new loci containing sorghum KAFIRIN gene encoding a seed storage protein affecting seed texture and LATE EMBRYOGENESIS ABUNDANT 3 (LEA3) gene encoding a protein that accumulates in seeds, previously implicated in stress tolerance, were significantly associated with grain mold resistance. The KAFIRIN and LEA3 loci were also significant factors in grain mold resistance in accessions with non-pigmented grains. Moreover, we consistently detected the known SNP (S4_62316425) in TAN1 gene, a regulator of tannin accumulation in sorghum grain to be significantly associated with grain mold resistance. Identification of loci associated with new mechanisms of resistance provides fresh insight into genetic control of the trait, while the highly resistant accessions can serve as sources of resistance genes for breeding. Overall, our association data suggest the critical role of loci harboring seed protein genes and implicate grain chemical and physical properties in sorghum grain mold resistance.
Collapse
Affiliation(s)
- Habte Nida
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Gezahegn Girma
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Moges Mekonen
- Ethiopian Institute of Agricultural Research, P.O. Box 2003, Addis Ababa, Ethiopia
| | - Alemu Tirfessa
- Ethiopian Institute of Agricultural Research, P.O. Box 2003, Addis Ababa, Ethiopia
| | - Amare Seyoum
- Ethiopian Institute of Agricultural Research, P.O. Box 2003, Addis Ababa, Ethiopia
| | - Tamirat Bejiga
- Ethiopian Institute of Agricultural Research, P.O. Box 2003, Addis Ababa, Ethiopia
| | - Chemeda Birhanu
- Oromia Agricultural Research Institute, P.O. Box 81265, Addis Ababa, Ethiopia
| | - Kebede Dessalegn
- Oromia Agricultural Research Institute, P.O. Box 81265, Addis Ababa, Ethiopia
| | - Tsegau Senbetay
- Ethiopian Institute of Agricultural Research, P.O. Box 2003, Addis Ababa, Ethiopia
| | - Getachew Ayana
- Ethiopian Institute of Agricultural Research, P.O. Box 2003, Addis Ababa, Ethiopia
| | - Tesfaye Tesso
- Department of Agronomy, Kansas State University, 3007 Throckmorton PSC, 1712 Claflin Road, Manhattan, KS, 66506, USA
| | - Gebisa Ejeta
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
91
|
Mathan J, Singh A, Ranjan A. Sucrose transport in response to drought and salt stress involves ABA-mediated induction of OsSWEET13 and OsSWEET15 in rice. PHYSIOLOGIA PLANTARUM 2021; 171:620-637. [PMID: 32940908 DOI: 10.1111/ppl.13210] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/14/2020] [Accepted: 09/07/2020] [Indexed: 05/27/2023]
Abstract
Abiotic stresses, including drought and salinity, negatively affect plant development and physiology at molecular and metabolic levels. Sucrose transport, mediating distribution of photosynthates in plant, is a key physiological process impacted by drought and salinity stresses, as sucrose is a prime energy and signaling molecule as well as an osmolyte. Therefore, understanding the effects of abiotic stresses on sucrose transport and transporters, and underlying genetic and molecular mechanisms, is imperative to maintain sugar homeostasis in plants under stress. Here, we investigated the effects of drought and salinity stresses on sucrose transport and distribution, and on expression levels of genes encoding Sugars Will Eventually be Exported Transporters (SWEETs), along with a potential transcription factor regulating SWEET expression in rice. We observed that drought and salinity stresses increased the sucrose content in leaf and root tissues and in phloem sap of rice indica varieties. Expression analyses of SWEET genes and histochemical analysis of β-glucuronidase-reporter transgenic plants suggested that OsSWEET13 and OsSWEET15 are major SWEET transporters regulating the sucrose transport and levels in response to the abiotic stresses. Transactivation analyses showed that an abscisic acid (ABA)-responsive transcription factor OsbZIP72 directly binds to the promoters of OsSWEET13 and OsSWEET15 and activates their expression. Taken together, the results showed that the higher expressions of OsSWEET13 and OsSWEET15 genes, induced by binding of an ABA-responsive transcription factor OsbZIP72 to the promoters, potentially modulate sucrose transport and distribution in response to the abiotic stresses. The mechanism could possibly be targeted for maintaining sugar homeostasis in rice under drought and salinity stresses.
Collapse
Affiliation(s)
| | - Anuradha Singh
- National Institute of Plant Genome Research, New Delhi, India
| | - Aashish Ranjan
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
92
|
Jiang L, Song C, Zhu X, Yang J. SWEET Transporters and the Potential Functions of These Sequences in Tea ( Camellia sinensis). Front Genet 2021; 12:655843. [PMID: 33868386 PMCID: PMC8044585 DOI: 10.3389/fgene.2021.655843] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/15/2021] [Indexed: 01/04/2023] Open
Abstract
Tea (Camellia sinensis) is an important economic beverage crop. Its flowers and leaves could be used as healthcare tea for its medicinal value. SWEET proteins were recently identified in plants as sugar transporters, which participate in diverse physiological processes, including pathogen nutrition, seed filling, nectar secretion, and phloem loading. Although SWEET genes have been characterized and identified in model plants, such as Arabidopsis thaliana and Oryza sativa, there is very little knowledge of these genes in C. sinensis. In this study, 28 CsSWEETs were identified in C. sinensis and further phylogenetically divided into four subfamilies with A. thaliana. These identified CsSWEETs contained seven transmembrane helixes (TMHs) which were generated by an ancestral three-TMH unit with an internal duplication experience. Microsynteny analysis revealed that the large-scale duplication events were the main driving forces for members from CsSWEET family expansion in C. sinensis. The expression profiles of the 28 CsSWEETs revealed that some genes were highly expressed in reproductive tissues. Among them, CsSWEET1a might play crucial roles in the efflux of sucrose, and CsSWEET17b could control fructose content as a hexose transporter in C. sinensis. Remarkably, CsSWEET12 and CsSWEET17c were specifically expressed in flowers, indicating that these two genes might be involved in sugar transport during flower development. The expression patterns of all CsSWEETs were differentially regulated under cold and drought treatments. This work provided a systematic understanding of the members from the CsSWEET gene family, which would be helpful for further functional studies of CsSWEETs in C. sinensis.
Collapse
Affiliation(s)
- Lan Jiang
- Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Cheng Song
- College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, China
| | - Xi Zhu
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Jianke Yang
- School of Preclinical Medicine, Wannan Medical College, Wuhu, China
| |
Collapse
|
93
|
Meisrimler C, Allan C, Eccersall S, Morris RJ. Interior design: how plant pathogens optimize their living conditions. THE NEW PHYTOLOGIST 2021; 229:2514-2524. [PMID: 33098094 PMCID: PMC7898814 DOI: 10.1111/nph.17024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
Pathogens use effectors to suppress host defence mechanisms, promote the derivation of nutrients, and facilitate infection within the host plant. Much is now known about effectors that target biotic pathways, particularly those that interfere with plant innate immunity. By contrast, an understanding of how effectors manipulate nonimmunity pathways is only beginning to emerge. Here, we focus on exciting new insights into effectors that target abiotic stress adaptation pathways, tampering with key functions within the plant to promote colonization. We critically assess the role of various signalling agents in linking different pathways upon perturbation by pathogen effectors. Additionally, this review provides a summary of currently known bacterial, fungal, and oomycete pathogen effectors that induce biotic and abiotic stress responses in the plant, as a first step towards establishing a comprehensive picture for linking effector targets to pathogenic lifestyles.
Collapse
Affiliation(s)
| | - Claudia Allan
- School of Biological ScienceUniversity of CanterburyPrivate Bag 4800Christchurch8041New Zealand
| | - Sophie Eccersall
- School of Biological ScienceUniversity of CanterburyPrivate Bag 4800Christchurch8041New Zealand
| | - Richard J Morris
- Computational and Systems BiologyJohn Innes CentreNorwichNR4 7UHUK
| |
Collapse
|
94
|
van den Herik B, Bergonzi S, Bachem CWB, ten Tusscher K. Modelling the physiological relevance of sucrose export repression by an Flowering Time homolog in the long-distance phloem of potato. PLANT, CELL & ENVIRONMENT 2021; 44:792-806. [PMID: 33314152 PMCID: PMC7986384 DOI: 10.1111/pce.13977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 05/31/2023]
Abstract
Yield of harvestable plant organs depends on photosynthetic assimilate production in source leaves, long-distance sucrose transport and sink-strength. While photosynthesis optimization has received considerable interest for optimizing plant yield, the potential for improving long-distance sucrose transport has received far less attention. Interestingly, a recent potato study demonstrates that the tuberigen StSP6A binds to and reduces activity of the StSWEET11 sucrose exporter. While the study suggested that reducing phloem sucrose efflux may enhance tuber yield, the precise mechanism and physiological relevance of this effect remained an open question. Here, we develop the first mechanistic model for sucrose transport, parameterized for potato plants. The model incorporates SWEET-mediated sucrose export, SUT-mediated sucrose retrieval from the apoplast and StSP6A-StSWEET11 interactions. Using this model, we were able to substantiate the physiological relevance of the StSP6A-StSWEET11 interaction in the long-distance phloem for potato tuber yield, as well as to show the non-linear nature of this effect.
Collapse
Affiliation(s)
- Bas van den Herik
- Computational Developmental BiologyUtrecht UniversityUtrechtThe Netherlands
| | - Sara Bergonzi
- Plant BreedingWageningen University & ResearchWageningenThe Netherlands
| | | | | |
Collapse
|
95
|
Yadav B, Jogawat A, Lal SK, Lakra N, Mehta S, Shabek N, Narayan OP. Plant mineral transport systems and the potential for crop improvement. PLANTA 2021; 253:45. [PMID: 33483879 DOI: 10.1007/s00425-020-03551-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/22/2020] [Indexed: 05/09/2023]
Abstract
Nutrient transporter genes could be a potential candidate for improving crop plants, with enhanced nutrient uptake leading to increased crop yield by providing tolerance against different biotic and abiotic stresses. The world's food supply is nearing a crisis in meeting the demands of an ever-growing global population, and an increase in both yield and nutrient value of major crops is vitally necessary to meet the increased population demand. Nutrients play an important role in plant metabolism as well as growth and development, and nutrient deficiency results in retarded plant growth and leads to reduced crop yield. A variety of cellular processes govern crop plant nutrient absorption from the soil. Among these, nutrient membrane transporters play an important role in the acquisition of nutrients from soil and transport of these nutrients to their target sites. In addition, as excess nutrient delivery has toxic effects on plant growth, these membrane transporters also play a significant role in the removal of excess nutrients in the crop plant. The key function provided by membrane transporters is the ability to supply the crop plant with an adequate level of tolerance against environmental stresses, such as soil acidity, alkalinity, salinity, drought, and pathogen attack. Membrane transporter genes have been utilized for the improvement of crop plants, with enhanced nutrient uptake leading to increased crop yield by providing tolerance against different biotic and abiotic stresses. Further understanding of the basic mechanisms of nutrient transport in crop plants could facilitate the advanced design of engineered plant crops to achieve increased yield and improve nutrient quality through the use of genetic technologies as well as molecular breeding. This review is focused on nutrient toxicity and tolerance mechanisms in crop plants to aid in understanding and addressing the anticipated global food demand.
Collapse
Affiliation(s)
- Bindu Yadav
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Abhimanyu Jogawat
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Shambhu Krishan Lal
- ICAR- Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Nita Lakra
- Department of Biotechnology, CCS HAU, Hisar, India
| | - Sahil Mehta
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Nitzan Shabek
- Department of Plant Biology, University of California, Davis, CA, USA
| | | |
Collapse
|
96
|
RNA-Seq Provides New Insights into the Molecular Events Involved in "Ball-Skin versus Bladder Effect" on Fruit Cracking in Litchi. Int J Mol Sci 2021; 22:ijms22010454. [PMID: 33466443 PMCID: PMC7796454 DOI: 10.3390/ijms22010454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022] Open
Abstract
Fruit cracking is a disorder of fruit development in response to internal or external cues, which causes a loss in the economic value of fruit. Therefore, exploring the mechanism underlying fruit cracking is of great significance to increase the economic yield of fruit trees. However, the molecular mechanism underlying fruit cracking is still poorly understood. Litchi, as an important tropical and subtropical fruit crop, contributes significantly to the gross agricultural product in Southeast Asia. One important agricultural concern in the litchi industry is that some famous varieties with high economic value such as ‘Nuomici’ are susceptible to fruit cracking. Here, the cracking-susceptible cultivar ‘Nuomici’ and cracking-resistant cultivar ‘Huaizhi’ were selected, and the samples including pericarp and aril during fruit development and cracking were collected for RNA-Seq analysis. Based on weighted gene co-expression network analysis (WGCNA) and the “ball-skin versus bladder effect” theory (fruit cracking occurs upon the aril expanding pressure exceeds the pericarp strength), it was found that seven co-expression modules genes (1733 candidate genes) were closely associated with fruit cracking in ‘Nuomici’. Importantly, we propose that the low expression level of genes related to plant hormones (Auxin, Gibberellins, Ethylene), transcription factors, calcium transport and signaling, and lipid synthesis might decrease the mechanical strength of pericarp in ‘Nuomici’, while high expression level of genes associated with plant hormones (Auxin and abscisic acid), transcription factors, starch/sucrose metabolism, and sugar/water transport might increase the aril expanding pressure, thereby resulting in fruit cracking in ‘Nuomici’. In conclusion, our results provide comprehensive molecular events involved in the “ball-skin versus bladder effect” on fruit cracking in litchi.
Collapse
|
97
|
Sáez C, Flores-León A, Montero-Pau J, Sifres A, Dhillon NPS, López C, Picó B. RNA-Seq Transcriptome Analysis Provides Candidate Genes for Resistance to Tomato Leaf Curl New Delhi Virus in Melon. FRONTIERS IN PLANT SCIENCE 2021; 12:798858. [PMID: 35116050 PMCID: PMC8805612 DOI: 10.3389/fpls.2021.798858] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/29/2021] [Indexed: 05/10/2023]
Abstract
Tomato leaf curl New Delhi virus (ToLCNDV) emerged in the Mediterranean Basin in 2012 as the first DNA bipartite begomovirus (Geminiviridae family), causing severe yield and economic losses in cucurbit crops. A major resistance locus was identified in the wild melon accession WM-7 (Cucumis melo kachri group), but the mechanisms involved in the resistant response remained unknown. In this work, we used RNA-sequencing to identify disease-associated genes that are differentially expressed in the course of ToLCNDV infection and could contribute to resistance. Transcriptomes of the resistant WM-7 genotype and the susceptible cultivar Piñonet Piel de Sapo (PS) (C. melo ibericus group) in ToLCNDV and mock inoculated plants were compared at four time points during infection (0, 3, 6, and 12 days post inoculation). Different gene expression patterns were observed over time in the resistant and susceptible genotypes in comparison to their respective controls. Differentially expressed genes (DEGs) in ToLCNDV-infected plants were classified using gene ontology (GO) terms, and genes of the categories transcription, DNA replication, and helicase activity were downregulated in WM-7 but upregulated in PS, suggesting that reduced activity of these functions reduces ToLCNDV replication and intercellular spread and thereby contributes to resistance. DEGs involved in the jasmonic acid signaling pathway, photosynthesis, RNA silencing, transmembrane, and sugar transporters entail adverse consequences for systemic infection in the resistant genotype, and lead to susceptibility in PS. The expression levels of selected candidate genes were validated by qRT-PCR to corroborate their differential expression upon ToLCNDV infection in resistant and susceptible melon. Furthermore, single nucleotide polymorphism (SNPs) with an effect on structural functionality of DEGs linked to the main QTLs for ToLCNDV resistance have been identified. The obtained results pinpoint cellular functions and candidate genes that are differentially expressed in a resistant and susceptible melon line in response to ToLCNDV, an information of great relevance for breeding ToLCNDV-resistant melon cultivars.
Collapse
Affiliation(s)
- Cristina Sáez
- Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València, Valencia, Spain
- *Correspondence: Cristina Sáez,
| | - Alejandro Flores-León
- Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València, Valencia, Spain
| | - Javier Montero-Pau
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Universitat de València, Valencia, Spain
| | - Alicia Sifres
- Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València, Valencia, Spain
| | - Narinder P. S. Dhillon
- World Vegetable Center, East and Southeast Asia, Research and Training Station, Kasetsart University, Nakhon Pathom, Thailand
| | - Carmelo López
- Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València, Valencia, Spain
- Carmelo López,
| | - Belén Picó
- Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València, Valencia, Spain
- Belén Picó,
| |
Collapse
|
98
|
Desrut A, Moumen B, Thibault F, Le Hir R, Coutos-Thévenot P, Vriet C. Beneficial rhizobacteria Pseudomonas simiae WCS417 induce major transcriptional changes in plant sugar transport. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7301-7315. [PMID: 32860502 DOI: 10.1093/jxb/eraa396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 08/27/2020] [Indexed: 05/21/2023]
Abstract
Plants live in close relationships with complex populations of microorganisms, including rhizobacterial species commonly referred to as plant growth-promoting rhizobacteria (PGPR). PGPR are able to improve plant productivity, but the molecular mechanisms involved in this process remain largely unknown. Using an in vitro experimental system, the model plant Arabidopsis thaliana, and the well-characterized PGPR strain Pseudomonas simiae WCS417r (PsWCS417r), we carried out a comprehensive set of phenotypic and gene expression analyses. Our results show that PsWCS417r induces major transcriptional changes in sugar transport and in other key biological processes linked to plant growth, development, and defense. Notably, we identified a set of 13 genes of the SWEET and ERD6-like sugar transporter gene families whose expression is up- or down-regulated in response to seedling root inoculation with the PGPR or exposure to their volatile compounds. Using a reverse genetic approach, we demonstrate that SWEET11 and SWEET12 are functionally involved in the interaction and its plant growth-promoting effects, possibly by controlling the amount of sugar transported from the shoot to the root and to the PGPR. Altogether, our study reveals that PGPR-induced beneficial effects on plant growth and development are associated with changes in plant sugar transport.
Collapse
Affiliation(s)
- Antoine Desrut
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers Cedex, France
| | - Bouziane Moumen
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers Cedex, France
| | - Florence Thibault
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers Cedex, France
| | - Rozenn Le Hir
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Pierre Coutos-Thévenot
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers Cedex, France
| | - Cécile Vriet
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers Cedex, France
| |
Collapse
|
99
|
Sugar and Hormone Dynamics and the Expression Profiles of SUT/SUC and SWEET Sweet Sugar Transporters during Flower Development in Petunia axillaris. PLANTS 2020; 9:plants9121770. [PMID: 33327497 PMCID: PMC7764969 DOI: 10.3390/plants9121770] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022]
Abstract
Flowering is the first committed step of plant sexual reproduction. While the developing flower is a strong sink requiring large quantity of sugars from photosynthetic source tissues, this process is under-temper-spatially controlled via hormone signaling pathway and nutrient availability. Sugar transporters SUT/SUC and SWEET mediate sugars movement across membranes and play a significant role in various physiological processes, including reproductive organ development. In Petunia axillaris, a model ornamental plant, 5 SUT/SUC and 36 SWEET genes are identified in the current version of the genome. Analysis of their gene structure and chromosomal locations reveal that SWEET family is moderately expanded. Most of the transporter genes are abundantly expressed in the flower than in other organs. During the five flower developmental stages, transcript levels of PaSUT1, PaSUT3, PaSWEET13c, PaSWEET9a, PaSWEET1d, PaSWEET5a and PaSWEET14a increase with the maturation of the flower and reach their maximum in the fully open flowers. PaSWEET9c, the nectar-specific PhNEC1 orthologous, is expressed in matured and fully opened flowers. Moreover, determination of sugar concentrations and phytohormone dynamics in flowers at the five developmental stages shows that glucose is the predominant form of sugar in young flowers at the early stage but depletes at the later stage, whereas sucrose accumulates only in maturated flowers prior to the corolla opening. On the other hand, GA3 content and to a less extent IAA and zeatin decreases with the flower development; however, JA, SA and ABA display a remarkable peak at mid- or later flower developmental stage.
Collapse
|
100
|
Gyimesi G, Hediger MA. Sequence Features of Mitochondrial Transporter Protein Families. Biomolecules 2020; 10:E1611. [PMID: 33260588 PMCID: PMC7761412 DOI: 10.3390/biom10121611] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 02/08/2023] Open
Abstract
Mitochondrial carriers facilitate the transfer of small molecules across the inner mitochondrial membrane (IMM) to support mitochondrial function and core cellular processes. In addition to the classical SLC25 (solute carrier family 25) mitochondrial carriers, the past decade has led to the discovery of additional protein families with numerous members that exhibit IMM localization and transporter-like properties. These include mitochondrial pyruvate carriers, sideroflexins, and mitochondrial cation/H+ exchangers. These transport proteins were linked to vital physiological functions and disease. Their structures and transport mechanisms are, however, still largely unknown and understudied. Protein sequence analysis per se can often pinpoint hotspots that are of functional or structural importance. In this review, we summarize current knowledge about the sequence features of mitochondrial transporters with a special focus on the newly included SLC54, SLC55 and SLC56 families of the SLC solute carrier superfamily. Taking a step further, we combine sequence conservation analysis with transmembrane segment and secondary structure prediction methods to extract residue positions and sequence motifs that likely play a role in substrate binding, binding site gating or structural stability. We hope that our review will help guide future experimental efforts by the scientific community to unravel the transport mechanisms and structures of these novel mitochondrial carriers.
Collapse
Affiliation(s)
- Gergely Gyimesi
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension, and Department of Biomedical Research, Inselspital, University of Bern, Kinderklinik, Freiburgstrasse 15, CH-3010 Bern, Switzerland;
| | | |
Collapse
|