51
|
Beechey-Gradwell Z, Cooney L, Winichayakul S, Andrews M, Hea SY, Crowther T, Roberts N. Storing carbon in leaf lipid sinks enhances perennial ryegrass carbon capture especially under high N and elevated CO2. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2351-2361. [PMID: 31679036 PMCID: PMC7134912 DOI: 10.1093/jxb/erz494] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/29/2019] [Indexed: 05/22/2023]
Abstract
By modifying two genes involved in lipid biosynthesis and storage [cysteine oleosin (cys-OLE)/diacylglycerol O-acyltransferase (DGAT)], the accumulation of stable lipid droplets in perennial ryegrass (Lolium perenne) leaves was achieved. Growth, biomass allocation, leaf structure, gas exchange parameters, fatty acids, and water-soluble carbohydrates were quantified for a high-expressing cys-OLE/DGAT ryegrass transformant (HL) and a wild-type (WT) control grown under controlled conditions with 1-10 mM nitrogen (N) supply at ambient and elevated atmospheric CO2. A dramatic shift in leaf carbon (C) storage occurred in HL leaves, away from readily mobilizable carbohydrates and towards stable lipid droplets. HL exhibited an increased growth rate, mainly in non-photosynthetic organs, leading to a decreased leaf mass fraction. HL leaves, however, displayed an increased specific leaf area and photosynthetic rate per unit leaf area, delivering greater overall C capture and leaf growth at high N supply. HL also exhibited a greater photosynthesis response to elevated atmospheric CO2. We speculate that by behaving as uniquely stable microsinks for C, cys-OLE-encapsulated lipid droplets can reduce feedback inhibition of photosynthesis and drive greater C capture. Manipulation of many genes and gene combinations has been used to increase non-seed lipid content. However, the cys-OLE/DGAT technology remains the only reported case that increases plant biomass. We contrast cys-OLE/DGAT with other lipid accumulation strategies and discuss the implications of introducing lipid sinks into non-seed organs for plant energy homeostasis and growth.
Collapse
Affiliation(s)
- Zac Beechey-Gradwell
- Agresearch Grasslands, Tennent Drive, Fitzherbert, Palmerston North, New Zealand
- Faculty of Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Luke Cooney
- Agresearch Grasslands, Tennent Drive, Fitzherbert, Palmerston North, New Zealand
| | | | - Mitchell Andrews
- Faculty of Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Shen Y Hea
- Agresearch Grasslands, Tennent Drive, Fitzherbert, Palmerston North, New Zealand
| | - Tracey Crowther
- Agresearch Grasslands, Tennent Drive, Fitzherbert, Palmerston North, New Zealand
| | - Nick Roberts
- Agresearch Grasslands, Tennent Drive, Fitzherbert, Palmerston North, New Zealand
| |
Collapse
|
52
|
Xu XY, Akbar S, Shrestha P, Venugoban L, Devilla R, Hussain D, Lee J, Rug M, Tian L, Vanhercke T, Singh SP, Li Z, Sharp PJ, Liu Q. A Synergistic Genetic Engineering Strategy Induced Triacylglycerol Accumulation in Potato ( Solanum tuberosum) Leaf. FRONTIERS IN PLANT SCIENCE 2020; 11:215. [PMID: 32210994 PMCID: PMC7069356 DOI: 10.3389/fpls.2020.00215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/12/2020] [Indexed: 05/23/2023]
Abstract
Potato is the 4th largest staple food in the world currently. As a high biomass crop, potato harbors excellent potential to produce energy-rich compounds such as triacylglycerol as a valuable co-product. We have previously reported that transgenic potato tubers overexpressing WRINKLED1, DIACYLGLYCEROL ACYLTRANSFERASE 1, and OLEOSIN genes produced considerable levels of triacylglycerol. In this study, the same genetic engineering strategy was employed on potato leaves. The overexpression of Arabidopsis thaliana WRINKED1 under the transcriptional control of a senescence-inducible promoter together with Arabidopsis thaliana DIACYLGLYCEROL ACYLTRANSFERASE 1 and Sesamum indicum OLEOSIN driven by the Cauliflower Mosaic Virus 35S promoter and small subunit of Rubisco promoter respectively, resulted in an approximately 30- fold enhancement of triacylglycerols in the senescent transgenic potato leaves compared to the wild type. The increase of triacylglycerol in the transgenic potato leaves was accompanied by perturbations of carbohydrate accumulation, apparent in a reduction in starch content and increased total soluble sugars, as well as changes of polar membrane lipids at different developmental stages. Microscopic and biochemical analysis further indicated that triacylglycerols and lipid droplets could not be produced in chloroplasts, despite the increase and enlargement of plastoglobuli at the senescent stage. Possibly enhanced accumulation of fatty acid phytyl esters in the plastoglobuli were reflected in transgenic potato leaves relative to wild type. It is likely that the plastoglobuli may have hijacked some of the carbon as the result of WRINKED1 expression, which could be a potential factor restricting the effective accumulation of triacylglycerols in potato leaves. Increased lipid production was also observed in potato tubers, which may have affected the tuberization to a certain extent. The expression of transgenes in potato leaf not only altered the carbon partitioning in the photosynthetic source tissue, but also the underground sink organs which highly relies on the leaves in development and energy deposition.
Collapse
Affiliation(s)
- Xiao-yu Xu
- CSIRO Agriculture and Food, Canberra, ACT, Australia
- Plant Breeding Institute and Sydney Institute of Agriculture, School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - Sehrish Akbar
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | | | | | | | - Dawar Hussain
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Jiwon Lee
- Center for Advanced Microscopy, The Australian National University, Canberra, ACT, Australia
| | - Melanie Rug
- Center for Advanced Microscopy, The Australian National University, Canberra, ACT, Australia
| | - Lijun Tian
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | | | | | - Zhongyi Li
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Peter J. Sharp
- Plant Breeding Institute and Sydney Institute of Agriculture, School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - Qing Liu
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| |
Collapse
|
53
|
Pouvreau B, Blundell C, Vohra H, Zwart AB, Arndell T, Singh S, Vanhercke T. A Versatile High Throughput Screening Platform for Plant Metabolic Engineering Highlights the Major Role of ABI3 in Lipid Metabolism Regulation. FRONTIERS IN PLANT SCIENCE 2020; 11:288. [PMID: 32256511 PMCID: PMC7090168 DOI: 10.3389/fpls.2020.00288] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 02/26/2020] [Indexed: 05/16/2023]
Abstract
Traditional functional genetic studies in crops are time consuming, complicated and cannot be readily scaled up. The reason is that mutant or transformed crops need to be generated to study the effect of gene modifications on specific traits of interest. However, many crop species have a complex genome and a long generation time. As a result, it usually takes several months to over a year to obtain desired mutants or transgenic plants, which represents a significant bottleneck in the development of new crop varieties. To overcome this major issue, we are currently establishing a versatile plant genetic screening platform, amenable to high throughput screening in almost any crop species, with a unique workflow. This platform combines protoplast transformation and fluorescence activated cell sorting. Here we show that tobacco protoplasts can accumulate high levels of lipid if transiently transformed with genes involved in lipid biosynthesis and can be sorted based on lipid content. Hence, protoplasts can be used as a predictive tool for plant lipid engineering. Using this newly established strategy, we demonstrate the major role of ABI3 in plant lipid accumulation. We anticipate that this workflow can be applied to numerous highly valuable metabolic traits other than storage lipid accumulation. This new strategy represents a significant step toward screening complex genetic libraries, in a single experiment and in a matter of days, as opposed to years by conventional means.
Collapse
Affiliation(s)
- Benjamin Pouvreau
- Agriculture and Food, CSIRO, Canberra, ACT, Australia
- Synthetic Biology Future Science Platform, CSIRO, Canberra, ACT, Australia
- *Correspondence: Benjamin Pouvreau,
| | - Cheryl Blundell
- Agriculture and Food, CSIRO, Canberra, ACT, Australia
- Synthetic Biology Future Science Platform, CSIRO, Canberra, ACT, Australia
| | - Harpreet Vohra
- The John Curtin School of Medical Research, Australian National University College of Health and Medicine, Canberra, ACT, Australia
| | | | - Taj Arndell
- Agriculture and Food, CSIRO, Canberra, ACT, Australia
| | | | | |
Collapse
|
54
|
Yoon JS, Kim JY, Lee MB, Seo YW. Over-expression of the Brachypodium ASR gene, BdASR4, enhances drought tolerance in Brachypodium distachyon. PLANT CELL REPORTS 2019; 38:1109-1125. [PMID: 31134348 DOI: 10.1007/s00299-019-02429-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/21/2019] [Indexed: 05/13/2023]
Abstract
BdASR4 expression was up-regulated during abiotic stress and hormone treatments. Plants over-expressing BdASR4 improved drought tolerant. BdASR4 may regulate antioxidant activities and transcript levels of stress-related and abscisic acid-responsive genes. Abiotic stress conditions negatively affect plant growth and developmental processes, causing a reduction in crop productivity. The abscisic acid-, stress-, ripening-induced (ASR) proteins play important roles in the protection of plants from abiotic stress. Brachypodium distachyon L. is a well-studied monocot model plant. However, ASR proteins of Brachypodium have not been widely studied. In this study, five ASR genes of Brachypodium plant were cloned and characterized. The BdASR genes were expressed in response to various abiotic stresses and hormones. In particular, BdASR4 was shown to encode a protein containing a nuclear localization signal in its C-terminal region, which enabled protein localization in the nucleus. To further examine functions of BdASR4, transgenic Brachypodium plants harboring BdASR4 were generated. Over-expression of BdASR4 was associated with strong drought tolerance, and plants over-expressing BdASR4 preserved more water and displayed higher antioxidant enzyme activities than did the wild-type plants. The transcript levels of stress-responsive genes, reactive oxygen species scavenger-associated genes, and abscisic acid-responsive genes tended to be higher in transgenic plants than in WT plants. Moreover, plants over-expressing BdASR4 were hypersensitive to exogenous abscisic acid at the germination stage. Taken together, these findings suggest multiple roles for BdASR4 in the plant response to drought stress by regulating antioxidant enzymes and the transcription of stress- and abscisic acid-responsive genes.
Collapse
Affiliation(s)
- Jin Seok Yoon
- Department of Biosystems and Biotechnology, Korea University, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Jae Yoon Kim
- Department of Biosystems and Biotechnology, Korea University, Seongbuk-Gu, Seoul, 02841, Republic of Korea
- Department of Plant Resources, Kongju National University, Yesan, Chungnam, 32439, Republic of Korea
| | - Man Bo Lee
- Department of Biosystems and Biotechnology, Korea University, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Yong Weon Seo
- Department of Biosystems and Biotechnology, Korea University, Seongbuk-Gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
55
|
Chen K, Yin Y, Liu S, Guo Z, Zhang K, Liang Y, Zhang L, Zhao W, Chao H, Li M. Genome-wide identification and functional analysis of oleosin genes in Brassica napus L. BMC PLANT BIOLOGY 2019; 19:294. [PMID: 31272381 PMCID: PMC6610931 DOI: 10.1186/s12870-019-1891-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/18/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Rapeseed is the third largest oil seed crop in the world. The seeds of this plant store lipids in oil bodies, and oleosin is the most important structural protein in oil bodies. However, the function of oleosin in oil crops has received little attention. RESULTS In the present study, 48 oleosin sequences from the Brassica napus genome were identified and divided into four lineages (T, U, SH, SL). Synteny analysis revealed that most of the oleosin genes were conserved, and all of these genes experienced purifying selection during evolution. Three and four important oleosin genes from Arabidopsis and B. napus, respectively, were cloned and analyzed for function in Arabidopsis. Overexpression of these oleosin genes in Arabidopsis increased the seed oil content slightly, except for BnaOLE3. Further analysis revealed that the average oil body size of the transgenic seeds was slightly larger than that of the wild type (WT), except for BnaOLE1. The fatty acid profiles showed that the linoleic acid content (13.3% at most) increased and the peanut acid content (11% at most) decreased in the transgenic lines. In addition, the seed size and thousand-seed weight (TSW) also increased in the transgenic lines, which could lead to increased total lipid production. CONCLUSION We identified oleosin genes in the B. napus genome, and overexpression of oleosin in Arabidopsis seeds increased the seed weight and linoleic acid content (13.3% at most).
Collapse
Affiliation(s)
- Kang Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Yongtai Yin
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Si Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Zhenyi Guo
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Kai Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Yu Liang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Lina Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Weiguo Zhao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Hongbo Chao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, China
| |
Collapse
|
56
|
Wan X, Liu Q, Dong B, Vibhakaran Pillai S, Huang FH, Singh SP, Zhou XR. Molecular and biochemical analysis of the castor caruncle reveals a set of unique genes involved in oil accumulation in non-seed tissues. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:158. [PMID: 31249621 PMCID: PMC6589891 DOI: 10.1186/s13068-019-1496-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 06/11/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND With the increasing demand for vegetative oil and the approach of peak seed oil production, it is important to develop new oil production platforms from non-seed tissues. Castor bean (Ricinus communis) is one of the crops for vegetable oil for industrial applications with yield around 1.4 ton oil per hectare produced in seed. The castor caruncle is a non-seed tissue attached to seed. RESULTS Caruncle accumulates up to 40% oil by weight in the form of triacylglycerol (TAG), with a highly contrasting fatty acid composition when compared to the seed oil. Biochemical analysis indicated that the caruncle synthesizes TAGs independent of the seed. Such non-seed tissue has provided an excellent resource for understanding the mechanism of oil accumulation in tissues other than seeds. Transcriptome analysis revealed the key members of gene families involved in fatty acid synthesis and TAG assembly in the caruncle. A transient expression assay of these selected genes resulted in a 20-fold increased TAG accumulation in leaves. CONCLUSIONS Castor caruncle utilizes an independent system to synthesize TAGs. Results provide the possibility of exploiting caruncle gene set to engineer oil production in non-seed tissues or microbes.
Collapse
Affiliation(s)
- Xia Wan
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062 People’s Republic of China
- CSIRO Agriculture & Food, PO Box 1700, Canberra, ACT 2601 Australia
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062 People’s Republic of China
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan, 430062 People’s Republic of China
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, 430062 People’s Republic of China
| | - Qing Liu
- CSIRO Agriculture & Food, PO Box 1700, Canberra, ACT 2601 Australia
| | - Bei Dong
- CSIRO Agriculture & Food, PO Box 1700, Canberra, ACT 2601 Australia
| | | | - Feng-Hong Huang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062 People’s Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062 People’s Republic of China
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan, 430062 People’s Republic of China
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, 430062 People’s Republic of China
| | | | - Xue-Rong Zhou
- CSIRO Agriculture & Food, PO Box 1700, Canberra, ACT 2601 Australia
| |
Collapse
|
57
|
Lavell AA, Benning C. Cellular Organization and Regulation of Plant Glycerolipid Metabolism. PLANT & CELL PHYSIOLOGY 2019; 60:1176-1183. [PMID: 30690552 PMCID: PMC6553661 DOI: 10.1093/pcp/pcz016] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 01/14/2019] [Indexed: 05/07/2023]
Abstract
Great strides have been made in understanding how membranes and lipid droplets are formed and maintained in land plants, yet much more is to be learned given the complexity of plant lipid metabolism. A complicating factor is the multi-organellar presence of biosynthetic enzymes and unique compositional requirements of different membrane systems. This necessitates a rich network of transporters and transport mechanisms that supply fatty acids, membrane lipids and storage lipids to their final cellular destination. Though we know a large number of the biosynthetic enzymes involved in lipid biosynthesis and a few transport proteins, the regulatory mechanisms, in particular, coordinating expression and/or activity of the majority remain yet to be described. Plants undergoing stress alter their membranes' compositions, and lipids such as phosphatidic acid have been implicated in stress signaling. Additionally, lipid metabolism in chloroplasts supplies precursors for jasmonic acid (JA) biosynthesis, and perturbations in lipid homeostasis has consequences on JA signaling. In this review, several aspects of plant lipid metabolism are discussed that are currently under investigation: cellular transport of lipids, regulation of lipid biosynthesis, roles of lipids in stress signaling, and lastly the structural and oligomeric states of lipid enzymes.
Collapse
Affiliation(s)
- A A Lavell
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - C Benning
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Corresponding author: E-mail, ; Fax, 517-353-9168
| |
Collapse
|
58
|
Zhao Y, Kim JY, Karan R, Jung JH, Pathak B, Williamson B, Kannan B, Wang D, Fan C, Yu W, Dong S, Srivastava V, Altpeter F. Generation of a selectable marker free, highly expressed single copy locus as landing pad for transgene stacking in sugarcane. PLANT MOLECULAR BIOLOGY 2019; 100:247-263. [PMID: 30919152 DOI: 10.1007/s11103-019-00856-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 03/15/2019] [Indexed: 05/23/2023]
Abstract
A selectable marker free, highly expressed single copy locus flanked by insulators was created as landing pad for transgene stacking in sugarcane. These events displayed superior transgene expression compared to single-copy transgenic lines lacking insulators. Excision of the selectable marker gene from transgenic sugarcane lines was supported by FLPe/FRT site-specific recombination. Sugarcane, a tropical C4 grass in the genus Saccharum (Poaceae), accounts for nearly 80% of sugar produced worldwide and is also an important feedstock for biofuel production. Generating transgenic sugarcane with predictable and stable transgene expression is critical for crop improvement. In this study, we generated a highly expressed single copy locus as landing pad for transgene stacking. Transgenic sugarcane lines with stable integration of a single copy nptII expression cassette flanked by insulators supported higher transgene expression along with reduced line to line variation when compared to single copy events without insulators by NPTII ELISA analysis. Subsequently, the nptII selectable marker gene was efficiently excised from the sugarcane genome by the FLPe/FRT site-specific recombination system to create selectable marker free plants. This study provides valuable resources for future gene stacking using site-specific recombination or genome editing tools.
Collapse
Affiliation(s)
- Yang Zhao
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida - IFAS, Gainesville, FL, 32611, USA
| | - Jae Y Kim
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida - IFAS, Gainesville, FL, 32611, USA
- Department of Plant Resources, College of Industrial Science, Kongju National University, Yesan, 32439, Republic of Korea
| | - Ratna Karan
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida - IFAS, Gainesville, FL, 32611, USA
| | - Je H Jung
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida - IFAS, Gainesville, FL, 32611, USA
- Smart Farm Research Center, Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangwon-do, 25451, Republic of Korea
| | - Bhuvan Pathak
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida - IFAS, Gainesville, FL, 32611, USA
| | - Bruce Williamson
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida - IFAS, Gainesville, FL, 32611, USA
| | - Baskaran Kannan
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida - IFAS, Gainesville, FL, 32611, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Florida - IFAS, Gainesville, FL, 32611, USA
| | - Duoduo Wang
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida - IFAS, Gainesville, FL, 32611, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Florida - IFAS, Gainesville, FL, 32611, USA
| | - Chunyang Fan
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, 27709, USA
| | - Wenjin Yu
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, 27709, USA
| | - Shujie Dong
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, 27709, USA
| | - Vibha Srivastava
- Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Fredy Altpeter
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida - IFAS, Gainesville, FL, 32611, USA.
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Florida - IFAS, Gainesville, FL, 32611, USA.
| |
Collapse
|
59
|
Vanhercke T, Dyer JM, Mullen RT, Kilaru A, Rahman MM, Petrie JR, Green AG, Yurchenko O, Singh SP. Metabolic engineering for enhanced oil in biomass. Prog Lipid Res 2019; 74:103-129. [PMID: 30822461 DOI: 10.1016/j.plipres.2019.02.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 02/06/2023]
Abstract
The world is hungry for energy. Plant oils in the form of triacylglycerol (TAG) are one of the most reduced storage forms of carbon found in nature and hence represent an excellent source of energy. The myriad of applications for plant oils range across foods, feeds, biofuels, and chemical feedstocks as a unique substitute for petroleum derivatives. Traditionally, plant oils are sourced either from oilseeds or tissues surrounding the seed (mesocarp). Most vegetative tissues, such as leaves and stems, however, accumulate relatively low levels of TAG. Since non-seed tissues constitute the majority of the plant biomass, metabolic engineering to improve their low-intrinsic TAG-biosynthetic capacity has recently attracted significant attention as a novel, sustainable and potentially high-yielding oil production platform. While initial attempts predominantly targeted single genes, recent combinatorial metabolic engineering strategies have focused on the simultaneous optimization of oil synthesis, packaging and degradation pathways (i.e., 'push, pull, package and protect'). This holistic approach has resulted in dramatic, seed-like TAG levels in vegetative tissues. With the first proof of concept hurdle addressed, new challenges and opportunities emerge, including engineering fatty acid profile, translation into agronomic crops, extraction, and downstream processing to deliver accessible and sustainable bioenergy.
Collapse
Affiliation(s)
- Thomas Vanhercke
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia.
| | - John M Dyer
- USDA-ARS, US Arid-Land Agricultural Research Center, Maricopa, AZ, USA
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada
| | - Aruna Kilaru
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, USA
| | - Md Mahbubur Rahman
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, USA
| | - James R Petrie
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia; Folear, Goulburn, NSW, Australia
| | - Allan G Green
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
| | - Olga Yurchenko
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Surinder P Singh
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
| |
Collapse
|
60
|
Sadre R, Kuo P, Chen J, Yang Y, Banerjee A, Benning C, Hamberger B. Cytosolic lipid droplets as engineered organelles for production and accumulation of terpenoid biomaterials in leaves. Nat Commun 2019; 10:853. [PMID: 30787273 PMCID: PMC6382807 DOI: 10.1038/s41467-019-08515-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 01/14/2019] [Indexed: 01/18/2023] Open
Abstract
Cytosolic lipid droplets are endoplasmic reticulum-derived organelles typically found in seeds as reservoirs for physiological energy and carbon to fuel germination. Here, we report synthetic biology approaches to co-produce high-value sesqui- or diterpenoids together with lipid droplets in plant leaves. The formation of cytosolic lipid droplets is enhanced in the transient Nicotiana benthamiana system through ectopic production of WRINKLED1, a key regulator of plastid fatty acid biosynthesis, and a microalgal lipid droplet surface protein. Engineering of the pathways providing the universal C5-building blocks for terpenoids and installation of terpenoid biosynthetic pathways through direction of the enzymes to native and non-native compartments boost the production of target terpenoids. We show that anchoring of distinct biosynthetic steps onto the surface of lipid droplets leads to efficient production of terpenoid scaffolds and functionalized terpenoids. The co-produced lipid droplets "trap" the terpenoids in the cells.
Collapse
Affiliation(s)
- Radin Sadre
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA.
| | - Peiyen Kuo
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Jiaxing Chen
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Yang Yang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Aparajita Banerjee
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
| | - Christoph Benning
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Bjoern Hamberger
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
61
|
Vanhercke T, Belide S, Taylor MC, El Tahchy A, Okada S, Rolland V, Liu Q, Mitchell M, Shrestha P, Venables I, Ma L, Blundell C, Mathew A, Ziolkowski L, Niesner N, Hussain D, Dong B, Liu G, Godwin ID, Lee J, Rug M, Zhou X, Singh SP, Petrie JR. Up-regulation of lipid biosynthesis increases the oil content in leaves of Sorghum bicolor. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:220-232. [PMID: 29873878 PMCID: PMC6330533 DOI: 10.1111/pbi.12959] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/23/2018] [Accepted: 05/30/2018] [Indexed: 05/07/2023]
Abstract
Synthesis and accumulation of the storage lipid triacylglycerol in vegetative plant tissues has emerged as a promising strategy to meet the world's future need for vegetable oil. Sorghum (Sorghum bicolor) is a particularly attractive target crop given its high biomass, drought resistance and C4 photosynthesis. While oilseed-like triacylglycerol levels have been engineered in the C3 model plant tobacco, progress in C4 monocot crops has been lagging behind. In this study, we report the accumulation of triacylglycerol in sorghum leaf tissues to levels between 3 and 8.4% on a dry weight basis depending on leaf and plant developmental stage. This was achieved by the combined overexpression of genes encoding the Zea mays WRI1 transcription factor, Umbelopsis ramanniana UrDGAT2a acyltransferase and Sesamum indicum Oleosin-L oil body protein. Increased oil content was visible as lipid droplets, primarily in the leaf mesophyll cells. A comparison between a constitutive and mesophyll-specific promoter driving WRI1 expression revealed distinct changes in the overall leaf lipidome as well as transitory starch and soluble sugar levels. Metabolome profiling uncovered changes in the abundance of various amino acids and dicarboxylic acids. The results presented here are a first step forward towards the development of sorghum as a dedicated biomass oil crop and provide a basis for further combinatorial metabolic engineering.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qing Liu
- CSIRO Agriculture and FoodCanberraACTAustralia
| | | | | | | | - Lina Ma
- CSIRO Agriculture and FoodCanberraACTAustralia
| | | | - Anu Mathew
- CSIRO Agriculture and FoodCanberraACTAustralia
| | | | | | | | - Bei Dong
- CSIRO Agriculture and FoodCanberraACTAustralia
| | - Guoquan Liu
- School of Agriculture and Food SciencesUniversity of QueenslandBrisbaneQLDAustralia
| | - Ian D. Godwin
- School of Agriculture and Food SciencesUniversity of QueenslandBrisbaneQLDAustralia
| | - Jiwon Lee
- Centre for Advanced MicroscopyAustralian National UniversityCanberraACTAustralia
| | - Melanie Rug
- Centre for Advanced MicroscopyAustralian National UniversityCanberraACTAustralia
| | | | | | | |
Collapse
|
62
|
Xu X, Vanhercke T, Shrestha P, Luo J, Akbar S, Konik-Rose C, Venugoban L, Hussain D, Tian L, Singh S, Li Z, Sharp PJ, Liu Q. Upregulated Lipid Biosynthesis at the Expense of Starch Production in Potato ( Solanum tuberosum) Vegetative Tissues via Simultaneous Downregulation of ADP-Glucose Pyrophosphorylase and Sugar Dependent1 Expressions. FRONTIERS IN PLANT SCIENCE 2019; 10:1444. [PMID: 31781148 PMCID: PMC6861213 DOI: 10.3389/fpls.2019.01444] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/17/2019] [Indexed: 05/05/2023]
Abstract
Triacylglycerol is a major component of vegetable oil in seeds and fruits of many plants, but its production in vegetative tissues is rather limited. It would be intriguing and important to explore any possibility to expand current oil production platforms, for example from the plant vegetative tissues. By expressing a suite of transgenes involved in the triacylglycerol biosynthesis, we have previously observed substantial accumulation of triacylglycerol in tobacco (Nicotiana tabacum) leaf and potato (Solanum tuberosum) tuber. In this study, simultaneous RNA interference (RNAi) downregulation of ADP-glucose pyrophosphorylase (AGPase) and Sugar-dependent1 (SDP1), was able to increase the accumulation of triacylglycerol and other lipids in both wild type potato and the previously generated high oil potato line 69. Particularly, a 16-fold enhancement of triacylglycerol production was observed in the mature transgenic tubers derived from the wild type potato, and a two-fold increase in triacylglycerol was observed in the high oil potato line 69, accounting for about 7% of tuber dry weight, which is the highest triacylglycerol accumulation ever reported in potato. In addition to the alterations of lipid content and fatty acid composition, sugar accumulation, starch content of the RNAi potato lines in both tuber and leaf tissues were also substantially changed, as well as the tuber starch properties. Microscopic analysis further revealed variation of lipid droplet distribution and starch granule morphology in the mature transgenic tubers compared to their parent lines. This study reflects that the carbon partitioning between lipid and starch in both leaves and non-photosynthetic tuber tissues, respectively, are highly orchestrated in potato, and it is promising to convert low-energy starch to storage lipids via genetic manipulation of the carbon metabolism pathways.
Collapse
Affiliation(s)
- Xiaoyu Xu
- Research Program of Traits, CSIRO Agriculture and Food, Canberra, ACT, Australia
- Plant Breeding Institute and Sydney Institute of Agriculture, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Thomas Vanhercke
- Research Program of Traits, CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Pushkar Shrestha
- Research Program of Traits, CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Jixun Luo
- Research Program of Traits, CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Sehrish Akbar
- Research Program of Traits, CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Christine Konik-Rose
- Research Program of Traits, CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Lauren Venugoban
- Research Program of Traits, CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Dawar Hussain
- Research Program of Traits, CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Lijun Tian
- Research Program of Traits, CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Surinder Singh
- Research Program of Traits, CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Zhongyi Li
- Research Program of Traits, CSIRO Agriculture and Food, Canberra, ACT, Australia
- *Correspondence: Zhongyi Li, ; Peter J. Sharp, ; Qing Liu,
| | - Peter J. Sharp
- Plant Breeding Institute and Sydney Institute of Agriculture, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
- *Correspondence: Zhongyi Li, ; Peter J. Sharp, ; Qing Liu,
| | - Qing Liu
- Research Program of Traits, CSIRO Agriculture and Food, Canberra, ACT, Australia
- *Correspondence: Zhongyi Li, ; Peter J. Sharp, ; Qing Liu,
| |
Collapse
|
63
|
Stochasticity in transcriptional expression of a negative regulator of Arabidopsis ABA network. 3 Biotech 2019; 9:15. [PMID: 30622853 DOI: 10.1007/s13205-018-1542-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/16/2018] [Indexed: 10/27/2022] Open
Abstract
Stably heritable spatiotemporal co/over-expression of distinct transcriptional regulators across generations is a desired target as they signal traffic in the cell. Here, the stability and expression pattern of AtHB7 (Arabidopsis homeodomain-leucine zipper class I) cDNA was characterized in 220 random population of transformed tomato clones where no AtHB7 orthologous has been identified in to date. Integration of p35S::AtHB7 casette was tested by the amplification of the stretches (700/425 bp) in the target by NPT II/AtHB7 oligos. Transcriptional expression pattern for the amplicons of the specific transcripts in the leaf tissues of transformants were determined by qRT-PCR. Transgene copy number was negatively correlated with transgene expression level, yet a majority of transformants (78%) carried single-copy of transgene. About 1:3 of the lines containing two-copy inserts showed less transcript expression. Heterologous CaMV 35S promoter drove AtHB7, illuminated no penalty on transgene expression levels, stability or plant phenotype under drought stress. Integration and expression analysis of transcription factors is of great significance for reliable prediction of gene dosing/functions in plant genomes so as to sustain breeding under abiotic stress to guarantee food security.
Collapse
|
64
|
Delatte TL, Scaiola G, Molenaar J, de Sousa Farias K, Alves Gomes Albertti L, Busscher J, Verstappen F, Carollo C, Bouwmeester H, Beekwilder J. Engineering storage capacity for volatile sesquiterpenes in Nicotiana benthamiana leaves. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1997-2006. [PMID: 29682901 PMCID: PMC6230952 DOI: 10.1111/pbi.12933] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/19/2018] [Accepted: 04/02/2018] [Indexed: 05/18/2023]
Abstract
Plants store volatile compounds in specialized organs. The properties of these storage organs prevent precarious evaporation and protect neighbouring tissues from cytotoxicity. Metabolic engineering of plants is often carried out in tissues such as leaf mesophyll cells, which are abundant and easily accessible by engineering tools. However, these tissues are not suitable for the storage of volatile and hydrophobic compound such as sesquiterpenes and engineered volatiles are often lost into the headspace. In this study, we show that the seeds of Arabidopsis thaliana, which naturally contain lipid bodies, accumulate sesquiterpenes upon engineered expression. Subsequently, storage of volatile sesquiterpenes was achieved in Nicotiana benthamiana leaf tissue, by introducing oleosin-coated lipid bodies through metabolic engineering. Hereto, different combinations of genes encoding diacylglycerol acyltransferases (DGATs), transcription factors (WRINKL1) and oleosins (OLE1), from the oil seed-producing species castor bean (Ricinus communis) and Arabidopsis, were assessed for their suitability to promote lipid body formation. Co-expression of α-bisabolol synthase with Arabidopsis DGAT1 and WRINKL1 and OLE1 from castor bean promoted storage of α-bisabolol in N. benthamiana mesophyll tissue more than 17-fold. A clear correlation was found between neutral lipids and storage of sesquiterpenes, using synthases for α-bisabolol, (E)-β-caryophyllene and α-barbatene. The co-localization of neutral lipids and α-bisabolol was shown using microscopy. This work demonstrates that lipid bodies can be used as intracellular storage compartment for hydrophobic sesquiterpenes, also in the vegetative parts of plants, creating the possibility to improve yields of metabolic engineering strategies in plants.
Collapse
Affiliation(s)
| | - Giulia Scaiola
- Lab Plant PhysiolWageningen Univ & ResWageningenThe Netherlands
| | - Jamil Molenaar
- Lab Plant PhysiolWageningen Univ & ResWageningenThe Netherlands
| | | | | | | | | | - Carlos Carollo
- Lab Prod Nat & Espectrometria MassasUniv Fed Mato Grosso do SulCampo GrandeMSBrazil
| | - Harro Bouwmeester
- Lab Plant PhysiolWageningen Univ & ResWageningenThe Netherlands
- Present address:
Swammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | - Jules Beekwilder
- Wageningen Univ & ResWageningen Plant ResBiosciWageningenThe Netherlands
| |
Collapse
|
65
|
Xu Y, Caldo KMP, Pal-Nath D, Ozga J, Lemieux MJ, Weselake RJ, Chen G. Properties and Biotechnological Applications of Acyl-CoA:diacylglycerol Acyltransferase and Phospholipid:diacylglycerol Acyltransferase from Terrestrial Plants and Microalgae. Lipids 2018; 53:663-688. [PMID: 30252128 DOI: 10.1002/lipd.12081] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 12/14/2022]
Abstract
Triacylglycerol (TAG) is the major storage lipid in most terrestrial plants and microalgae, and has great nutritional and industrial value. Since the demand for vegetable oil is consistently increasing, numerous studies have been focused on improving the TAG content and modifying the fatty-acid compositions of plant seed oils. In addition, there is a strong research interest in establishing plant vegetative tissues and microalgae as platforms for lipid production. In higher plants and microalgae, TAG biosynthesis occurs via acyl-CoA-dependent or acyl-CoA-independent pathways. Diacylglycerol acyltransferase (DGAT) catalyzes the last and committed step in the acyl-CoA-dependent biosynthesis of TAG, which appears to represent a bottleneck in oil accumulation in some oilseed species. Membrane-bound and soluble forms of DGAT have been identified with very different amino-acid sequences and biochemical properties. Alternatively, TAG can be formed through acyl-CoA-independent pathways via the catalytic action of membrane-bound phospholipid:diacylglycerol acyltransferase (PDAT). As the enzymes catalyzing the terminal steps of TAG formation, DGAT and PDAT play crucial roles in determining the flux of carbon into seed TAG and thus have been considered as the key targets for engineering oil production. Here, we summarize the most recent knowledge on DGAT and PDAT in higher plants and microalgae, with the emphasis on their physiological roles, structural features, and regulation. The development of various metabolic engineering strategies to enhance the TAG content and alter the fatty-acid composition of TAG is also discussed.
Collapse
Affiliation(s)
- Yang Xu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta, T6G 2P5, Canada
| | - Kristian Mark P Caldo
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta, T6G 2P5, Canada
- Department of Biochemistry, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta, T6G 2H7, Canada
| | - Dipasmita Pal-Nath
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Jocelyn Ozga
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta, T6G 2P5, Canada
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta, T6G 2H7, Canada
| | - Randall J Weselake
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta, T6G 2P5, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta, T6G 2P5, Canada
| |
Collapse
|
66
|
Hirai MY, Shiraishi F. Using metabolome data for mathematical modeling of plant metabolic systems. Curr Opin Biotechnol 2018; 54:138-144. [PMID: 30195121 DOI: 10.1016/j.copbio.2018.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/08/2018] [Accepted: 08/12/2018] [Indexed: 12/12/2022]
Abstract
Plant metabolism is characterized by a wide diversity of metabolites, with systems far more complicated than those of microorganisms. Mathematical modeling is useful for understanding dynamic behaviors of plant metabolic systems for metabolic engineering. Time-series metabolome data has great potential for estimating kinetic model parameters to construct a genome-wide metabolic network model. However, data obtained by current metabolomics techniques does not meet the requirement for constructing accurate models. In this article, we highlight novel strategies and algorithms to handle the underlying difficulties and construct dynamic in vivo models for large-scale plant metabolic systems. The coarse but efficient modeling enables the prediction of unknown mechanisms regulating plant metabolism.
Collapse
Affiliation(s)
- Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | - Fumihide Shiraishi
- Section of Bio-Process Design, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, West #5 Bldg., Moto-oka 744, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
67
|
Pouvreau B, Vanhercke T, Singh S. From plant metabolic engineering to plant synthetic biology: The evolution of the design/build/test/learn cycle. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 273:3-12. [PMID: 29907306 DOI: 10.1016/j.plantsci.2018.03.035] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/19/2018] [Accepted: 03/28/2018] [Indexed: 05/21/2023]
Abstract
Genetic improvement of crops started since the dawn of agriculture and has continuously evolved in parallel with emerging technological innovations. The use of genome engineering in crop improvement has already revolutionised modern agriculture in less than thirty years. Plant metabolic engineering is still at a development stage and faces several challenges, in particular with the time necessary to develop plant based solutions to bio-industrial demands. However the recent success of several metabolic engineering approaches applied to major crops are encouraging and the emerging field of plant synthetic biology offers new opportunities. Some pioneering studies have demonstrated that synthetic genetic circuits or orthogonal metabolic pathways can be introduced into plants to achieve a desired function. The combination of metabolic engineering and synthetic biology is expected to significantly accelerate crop improvement. A defining aspect of both fields is the design/build/test/learn cycle, or the use of iterative rounds of testing modifications to refine hypotheses and develop best solutions. Several technological and technical improvements are now available to make a better use of each design, build, test, and learn components of the cycle. All these advances should facilitate the rapid development of a wide variety of bio-products for a world in need of sustainable solutions.
Collapse
Affiliation(s)
- Benjamin Pouvreau
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia.
| | - Thomas Vanhercke
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia
| | - Surinder Singh
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia
| |
Collapse
|
68
|
Shih PM. Towards a sustainable bio-based economy: Redirecting primary metabolism to new products with plant synthetic biology. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 273:84-91. [PMID: 29907312 PMCID: PMC6005202 DOI: 10.1016/j.plantsci.2018.03.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/28/2018] [Accepted: 03/10/2018] [Indexed: 05/23/2023]
Abstract
Humans have domesticated many plant species as indispensable sources of food, materials, and medicines. The dawning era of synthetic biology represents a means to further refine, redesign, and engineer crops to meet various societal and industrial needs. Current and future endeavors will utilize plants as the foundation of a bio-based economy through the photosynthetic production of carbohydrate feedstocks for the microbial fermentation of biofuels and bioproducts, with the end goal of decreasing our dependence on petrochemicals. As our technological capabilities improve, metabolic engineering efforts may expand the utility of plants beyond sugar feedstocks through the direct production of target compounds, including pharmaceuticals, renewable fuels, and commodity chemicals. However, relatively little work has been done to fully realize the potential in redirecting central carbon metabolism in plants for the engineering of novel bioproducts. Although our ability to rationally engineer and manipulate plant metabolism is in its infancy, I highlight some of the opportunities and challenges in applying synthetic biology towards engineering plant primary metabolism.
Collapse
Affiliation(s)
- Patrick M Shih
- Joint BioEnergy Institute, 5885 Hollis St, Emeryville, CA, 94608, United States; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Rd, Berkeley, CA, 94720, United States; Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, United States.
| |
Collapse
|
69
|
Hameed A, Zaidi SSEA, Shakir S, Mansoor S. Applications of New Breeding Technologies for Potato Improvement. FRONTIERS IN PLANT SCIENCE 2018; 9:925. [PMID: 30008733 PMCID: PMC6034203 DOI: 10.3389/fpls.2018.00925] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 06/11/2018] [Indexed: 05/17/2023]
Abstract
The first decade of genetic engineering primarily focused on quantitative crop improvement. With the advances in technology, the focus of agricultural biotechnology has shifted toward both quantitative and qualitative crop improvement, to deal with the challenges of food security and nutrition. Potato (Solanum tuberosum L.) is a solanaceous food crop having potential to feed the populating world. It can provide more carbohydrates, proteins, minerals, and vitamins per unit area of land as compared to other potential food crops, and is the major staple food in many developing countries. These aspects have driven the scientific attention to engineer potato for nutrition improvement, keeping the yield unaffected. Several studies have shown the improved nutritional value of potato tubers, for example by enhancing Amaranth Albumin-1 seed protein content, vitamin C content, β-carotene level, triacylglycerol, tuber methionine content, and amylose content, etc. Removal of anti-nutritional compounds like steroidal glycoalkaloids, acrylamide and food toxins is another research priority for scientists and breeders to improve potato tuber quality. Trait improvement using genetic engineering mostly involved the generation of transgenic products. The commercialization of these engineered products has been a challenge due to consumer preference and regulatory/ethical restrictions. In this context, new breeding technolgies like TALEN (transcription activator-like effector nucleases) and CRISPR/Cas9 (clustered regularly interspaced palindromic repeats/CRISPR-associated 9) have been employed to generate transgene-free products in a more precise, prompt and effective way. Moreover, the availability of potato genome sequence and efficient potato transformation systems have remarkably facilitated potato genetic engineering. Here we summarize the potato trait improvement and potential application of new breeding technologies (NBTs) to genetically improve the overall agronomic profile of potato.
Collapse
Affiliation(s)
- Amir Hameed
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Syed Shan-e-Ali Zaidi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Sara Shakir
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| |
Collapse
|
70
|
Basso MF, da Cunha BADB, Ribeiro AP, Martins PK, de Souza WR, de Oliveira NG, Nakayama TJ, Augusto das Chagas Noqueli Casari R, Santiago TR, Vinecky F, Cançado LJ, de Sousa CAF, de Oliveira PA, de Souza SACD, Cançado GMDA, Kobayashi AK, Molinari HBC. Improved Genetic Transformation of Sugarcane (Saccharum spp.) Embryogenic Callus Mediated by Agrobacterium tumefaciens. ACTA ACUST UNITED AC 2018; 2:221-239. [PMID: 31725972 DOI: 10.1002/cppb.20055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sugarcane (Saccharum spp.) is a monocotyledonous semi-perennial C4 grass of the Poaceae family. Its capacity to accumulate high content of sucrose and biomass makes it one of the most important crops for sugar and biofuel production. Conventional methods of sugarcane breeding have shown several limitations due to its complex polyploid and aneuploid genome. However, improvement by biotechnological engineering is currently the most promising alternative to introduce economically important traits. In this work, we present an improved protocol for Agrobacterium tumefaciens-mediated transformation of commercial sugarcane hybrids using immature top stalk-derived embryogenic callus cultures. The callus cultures are transformed with preconditioned A. tumefaciens carrying a binary vector that encodes expression cassettes for a gene of interest and the bialaphos resistance gene (bar confers resistance to glufosinate-ammonium herbicide). This protocol has been used to successfully transform a commercial sugarcane cultivar, SP80-3280, highlighting: (i) reduced recalcitrance and oxidation; (ii) high yield of embryogenic callus; (iii) improved selection; and (iv) shoot regeneration and rooting of the transformed plants. Altogether, these improvements generated a transformation efficiency of 2.2%. This protocol provides a reliable tool for a routine procedure for sugarcane improvement by genetic engineering. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Marcos Fernando Basso
- Genetics and Biotechnology Laboratory, National Center for Agroenergy Research (CNPAE), Brazilian Agricultural Research Corporation (EMBRAPA), Brasília, Distrito Federal, Brazil
| | - Bárbara Andrade Dias Brito da Cunha
- Genetics and Biotechnology Laboratory, National Center for Agroenergy Research (CNPAE), Brazilian Agricultural Research Corporation (EMBRAPA), Brasília, Distrito Federal, Brazil
| | - Ana Paula Ribeiro
- Genetics and Biotechnology Laboratory, National Center for Agroenergy Research (CNPAE), Brazilian Agricultural Research Corporation (EMBRAPA), Brasília, Distrito Federal, Brazil
| | - Polyana Kelly Martins
- Genetics and Biotechnology Laboratory, National Center for Agroenergy Research (CNPAE), Brazilian Agricultural Research Corporation (EMBRAPA), Brasília, Distrito Federal, Brazil
| | - Wagner Rodrigo de Souza
- Genetics and Biotechnology Laboratory, National Center for Agroenergy Research (CNPAE), Brazilian Agricultural Research Corporation (EMBRAPA), Brasília, Distrito Federal, Brazil
| | - Nelson Geraldo de Oliveira
- Genetics and Biotechnology Laboratory, National Center for Agroenergy Research (CNPAE), Brazilian Agricultural Research Corporation (EMBRAPA), Brasília, Distrito Federal, Brazil
| | - Thiago Jonas Nakayama
- Genetics and Biotechnology Laboratory, National Center for Agroenergy Research (CNPAE), Brazilian Agricultural Research Corporation (EMBRAPA), Brasília, Distrito Federal, Brazil
| | - Raphael Augusto das Chagas Noqueli Casari
- Genetics and Biotechnology Laboratory, National Center for Agroenergy Research (CNPAE), Brazilian Agricultural Research Corporation (EMBRAPA), Brasília, Distrito Federal, Brazil
| | - Thais Ribeiro Santiago
- Genetics and Biotechnology Laboratory, National Center for Agroenergy Research (CNPAE), Brazilian Agricultural Research Corporation (EMBRAPA), Brasília, Distrito Federal, Brazil
| | - Felipe Vinecky
- Genetics and Biotechnology Laboratory, National Center for Agroenergy Research (CNPAE), Brazilian Agricultural Research Corporation (EMBRAPA), Brasília, Distrito Federal, Brazil
| | - Letícia Jungmann Cançado
- Genetics and Biotechnology Laboratory, National Center for Agroenergy Research (CNPAE), Brazilian Agricultural Research Corporation (EMBRAPA), Brasília, Distrito Federal, Brazil
| | - Carlos Antônio Ferreira de Sousa
- Genetics and Biotechnology Laboratory, National Center for Agroenergy Research (CNPAE), Brazilian Agricultural Research Corporation (EMBRAPA), Brasília, Distrito Federal, Brazil
| | - Patricia Abrão de Oliveira
- Genetics and Biotechnology Laboratory, National Center for Agroenergy Research (CNPAE), Brazilian Agricultural Research Corporation (EMBRAPA), Brasília, Distrito Federal, Brazil
| | | | - Geraldo Magela de Almeida Cançado
- The Joint Research Unit for Genomics Applied to Climate Change (UMIP GenClima), National Center for Agricultural Informatics (CNPTIA), Brazilian Agricultural Research Corporation (EMBRAPA), Campinas, São Paulo, Brazil
| | - Adilson Kenji Kobayashi
- Genetics and Biotechnology Laboratory, National Center for Agroenergy Research (CNPAE), Brazilian Agricultural Research Corporation (EMBRAPA), Brasília, Distrito Federal, Brazil
| | - Hugo Bruno Correa Molinari
- Genetics and Biotechnology Laboratory, National Center for Agroenergy Research (CNPAE), Brazilian Agricultural Research Corporation (EMBRAPA), Brasília, Distrito Federal, Brazil
| |
Collapse
|
71
|
Chen G, Xu Y, Siloto RMP, Caldo KMP, Vanhercke T, Tahchy AE, Niesner N, Chen Y, Mietkiewska E, Weselake RJ. High-performance variants of plant diacylglycerol acyltransferase 1 generated by directed evolution provide insights into structure function. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:167-177. [PMID: 28755522 DOI: 10.1111/tpj.13652] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/27/2017] [Accepted: 07/24/2017] [Indexed: 05/08/2023]
Abstract
Diacylglycerol acyltransferase 1 (DGAT1) catalyzes the acyl-CoA-dependent biosynthesis of triacylglycerol, the predominant component of seed oil. In some oil crops, including Brassica napus, the level of DGAT1 activity can have a substantial effect on triacylglycerol production. Structure-function insights into DGAT1, however, remain limited because of the lack of a three-dimensional detailed structure for this membrane-bound enzyme. In this study, the amino acid residues governing B. napus DGAT1 (BnaDGAT1) activity were investigated via directed evolution, targeted mutagenesis, in vitro enzymatic assay, topological analysis, and transient expression of cDNA encoding selected enzyme variants in Nicotiana benthamiana. Directed evolution revealed that numerous amino acid residues were associated with increased BnaDGAT1 activity, and 67% of these residues were conserved among plant DGAT1s. The identified amino acid residue substitution sites occur throughout the BnaDGAT1 polypeptide, with 89% of the substitutions located outside the putative substrate binding or active sites. In addition, cDNAs encoding variants I447F or L441P were transiently overexpressed in N. benthamiana leaves, resulting in 33.2 or 70.5% higher triacylglycerol content, respectively, compared with native BnaDGAT1. Overall, the results provide novel insights into amino acid residues underlying plant DGAT1 function and performance-enhanced BnaDGAT1 variants for increasing vegetable oil production.
Collapse
Affiliation(s)
- Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton Alberta, Canada, T6G 2P5
| | - Yang Xu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton Alberta, Canada, T6G 2P5
| | - Rodrigo M P Siloto
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton Alberta, Canada, T6G 2P5
| | - Kristian Mark P Caldo
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton Alberta, Canada, T6G 2P5
| | | | | | | | - Yongyan Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton Alberta, Canada, T6G 2P5
| | - Elzbieta Mietkiewska
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton Alberta, Canada, T6G 2P5
| | - Randall J Weselake
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton Alberta, Canada, T6G 2P5
| |
Collapse
|
72
|
Yurchenko O, Shockey JM, Gidda SK, Silver MI, Chapman KD, Mullen RT, Dyer JM. Engineering the production of conjugated fatty acids in Arabidopsis thaliana leaves. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1010-1023. [PMID: 28083898 PMCID: PMC5506653 DOI: 10.1111/pbi.12695] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/28/2016] [Accepted: 01/05/2017] [Indexed: 05/23/2023]
Abstract
The seeds of many nondomesticated plant species synthesize oils containing high amounts of a single unusual fatty acid, many of which have potential usage in industry. Despite the identification of enzymes for unusual oxidized fatty acid synthesis, the production of these fatty acids in engineered seeds remains low and is often hampered by their inefficient exclusion from phospholipids. Recent studies have established the feasibility of increasing triacylglycerol content in plant leaves, which provides a novel approach for increasing energy density of biomass crops. Here, we determined whether the fatty acid composition of leaf oil could be engineered to accumulate unusual fatty acids. Eleostearic acid (ESA) is a conjugated fatty acid produced in seeds of the tung tree (Vernicia fordii) and has both industrial and nutritional end-uses. Arabidopsis thaliana lines with elevated leaf oil were first generated by transforming wild-type, cgi-58 or pxa1 mutants (the latter two of which contain mutations disrupting fatty acid breakdown) with the diacylglycerol acyltransferases (DGAT1 or DGAT2) and/or oleosin genes from tung. High-leaf-oil plant lines were then transformed with tung FADX, which encodes the fatty acid desaturase/conjugase responsible for ESA synthesis. Analysis of lipids in leaves revealed that ESA was efficiently excluded from phospholipids, and co-expression of tung FADX and DGAT2 promoted a synergistic increase in leaf oil content and ESA accumulation. Taken together, these results provide a new approach for increasing leaf oil content that is coupled with accumulation of unusual fatty acids. Implications for production of biofuels, bioproducts, and plant-pest interactions are discussed.
Collapse
Affiliation(s)
- Olga Yurchenko
- USDA‐ARSUS Arid‐Land Agricultural Research CenterMaricopaAZUSA
| | - Jay M. Shockey
- USDA‐ARSSouthern Regional Research CenterNew OrleansLAUSA
| | - Satinder K. Gidda
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphONCanada
| | - Maxwell I. Silver
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphONCanada
| | - Kent D. Chapman
- Department of Biological SciencesUniversity of North TexasDentonTXUSA
| | - Robert T. Mullen
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphONCanada
| | - John M. Dyer
- USDA‐ARSUS Arid‐Land Agricultural Research CenterMaricopaAZUSA
| |
Collapse
|
73
|
Huang H, Moreau RA, Powell MJ, Wang Z, Kannan B, Altpeter F, Grennan AK, Long SP, Singh V. Evaluation of the quantity and composition of sugars and lipid in the juice and bagasse of lipid producing sugarcane. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
74
|
Abstract
Lipids and oils derived from plant and algal photosynthesis constitute much of human daily caloric intake and provide the basis for high-energy bioproducts, chemical feedstocks for countless applications, and even fossil fuels over geological time scales. Sustainable production of high-energy compounds from plants is essential to preserving fossil fuel sources and ensuring the well-being of future generations. As a result of progress in basic research on plant and algal lipid metabolism, in combination with advances in synthetic biology, we can now tailor plant lipids for desirable biological, physical, and chemical properties. We highlight recent advances in plant lipid translational biology and discuss untapped areas of research that might expand the application of plant lipids.
Collapse
Affiliation(s)
- Patrick J Horn
- Michigan State University-U.S. Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Christoph Benning
- Michigan State University-U.S. Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA. Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
75
|
Liu Q, Guo Q, Akbar S, Zhi Y, El Tahchy A, Mitchell M, Li Z, Shrestha P, Vanhercke T, Ral J, Liang G, Wang M, White R, Larkin P, Singh S, Petrie J. Genetic enhancement of oil content in potato tuber (Solanum tuberosum L.) through an integrated metabolic engineering strategy. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:56-67. [PMID: 27307093 PMCID: PMC5253471 DOI: 10.1111/pbi.12590] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/09/2016] [Accepted: 06/12/2016] [Indexed: 05/06/2023]
Abstract
Potato tuber is a high yielding food crop known for its high levels of starch accumulation but only negligible levels of triacylglycerol (TAG). In this study, we evaluated the potential for lipid production in potato tubers by simultaneously introducing three transgenes, including WRINKLED 1 (WRI1), DIACYLGLYCEROL ACYLTRANSFERASE 1 (DGAT1) and OLEOSIN under the transcriptional control of tuber-specific (patatin) and constitutive (CaMV-35S) promoters. This coordinated metabolic engineering approach resulted in over a 100-fold increase in TAG accumulation to levels up to 3.3% of tuber dry weight (DW). Phospholipids and galactolipids were also found to be significantly increased in the potato tuber. The increase of lipids in these transgenic tubers was accompanied by a significant reduction in starch content and an increase in soluble sugars. Microscopic examination revealed that starch granules in the transgenic tubers had more irregular shapes and surface indentations when compared with the relatively smooth surfaces of wild-type starch granules. Ultrastructural examination of lipid droplets showed their close proximity to endoplasmic reticulum and mitochondria, which may indicate a dynamic interaction with these organelles during the processes of lipid biosynthesis and turnover. Increases in lipid levels were also observed in the transgenic potato leaves, likely due to the constitutive expression of DGAT1 and incomplete tuber specificity of the patatin promoter. This study represents an important proof-of-concept demonstration of oil increase in tubers and provides a model system to further study carbon reallocation during development of nonphotosynthetic underground storage organs.
Collapse
Affiliation(s)
- Qing Liu
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
| | - Qigao Guo
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
- College of Horticulture & Landscape ArchitectureSouthwest UniversityChongqingChina
| | - Sehrish Akbar
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
- National University of Science and Technology (NUST) IslamabadIslamabadPakistan
| | - Yao Zhi
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
| | - Anna El Tahchy
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
| | - Madeline Mitchell
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
| | - Zhongyi Li
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
| | - Pushkar Shrestha
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
| | - Thomas Vanhercke
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
| | - Jean‐Philippe Ral
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
| | - Guolu Liang
- College of Horticulture & Landscape ArchitectureSouthwest UniversityChongqingChina
| | - Ming‐Bo Wang
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
| | - Rosemary White
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
| | - Philip Larkin
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
| | - Surinder Singh
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
| | - James Petrie
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
| |
Collapse
|
76
|
Vanhercke T, Divi UK, El Tahchy A, Liu Q, Mitchell M, Taylor MC, Eastmond PJ, Bryant F, Mechanicos A, Blundell C, Zhi Y, Belide S, Shrestha P, Zhou XR, Ral JP, White RG, Green A, Singh SP, Petrie JR. Step changes in leaf oil accumulation via iterative metabolic engineering. Metab Eng 2017; 39:237-246. [PMID: 27993560 DOI: 10.1016/j.ymben.2016.12.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/16/2016] [Accepted: 12/13/2016] [Indexed: 10/20/2022]
Abstract
Synthesis and accumulation of plant oils in the entire vegetative biomass offers the potential to deliver yields surpassing those of oilseed crops. However, current levels still fall well short of those typically found in oilseeds. Here we show how transcriptome and biochemical analyses pointed to a futile cycle in a previously established Nicotiana tabacum line, accumulating up to 15% (dry weight) of the storage lipid triacylglycerol in leaf tissue. To overcome this metabolic bottleneck, we either silenced the SDP1 lipase or overexpressed the Arabidopsis thaliana LEC2 transcription factor in this transgenic background. Both strategies independently resulted in the accumulation of 30-33% triacylglycerol in leaf tissues. Our results demonstrate that the combined optimization of de novo fatty acid biosynthesis, storage lipid assembly and lipid turnover in leaf tissue results in a major overhaul of the plant central carbon allocation and lipid metabolism. The resulting further step changes in oil accumulation in the entire plant biomass offers the possibility of delivering yields that outperform current oilseed crops.
Collapse
Affiliation(s)
- Thomas Vanhercke
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia.
| | - Uday K Divi
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia
| | - Anna El Tahchy
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia
| | - Qing Liu
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia
| | - Madeline Mitchell
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia
| | - Matthew C Taylor
- CSIRO Land and Water, PO Box 1700, Canberra, ACT 2601, Australia
| | - Peter J Eastmond
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdomna Scholarship Council (CSC
| | - Fiona Bryant
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdomna Scholarship Council (CSC
| | - Anna Mechanicos
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia
| | - Cheryl Blundell
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia
| | - Yao Zhi
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Srinivas Belide
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia
| | - Pushkar Shrestha
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia
| | - Xue-Rong Zhou
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia
| | - Jean-Philippe Ral
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia
| | - Rosemary G White
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia
| | - Allan Green
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia
| | - Surinder P Singh
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia
| | - James R Petrie
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia
| |
Collapse
|
77
|
Mitchell M, Pritchard J, Okada S, Larroque O, Yulia D, Pettolino F, Szydlowski N, Singh S, Liu Q, Ral JP. Oil Accumulation in Transgenic Potato Tubers Alters Starch Quality and Nutritional Profile. FRONTIERS IN PLANT SCIENCE 2017; 8:554. [PMID: 28446916 PMCID: PMC5388768 DOI: 10.3389/fpls.2017.00554] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/27/2017] [Indexed: 05/07/2023]
Abstract
Plant storage compounds such as starch and lipids are important for human and animal nutrition as well as industry. There is interest in diverting some of the carbon stored in starch-rich organs (leaves, tubers, and cereal grains) into lipids in order to improve the energy density or nutritional properties of crops as well as providing new sources of feedstocks for food and manufacturing. Previously, we generated transgenic potato plants that accumulate up to 3.3% triacylglycerol (TAG) by dry weight in the tubers, which also led to changes in starch content, starch granule morphology and soluble sugar content. The aim of this study was to investigate how TAG accumulation affects the nutritional and processing properties of high oil potatoes with a particular focus on starch structure, physical and chemical properties. Overall, TAG accumulation was correlated with increased energy density, total nitrogen, amino acids, organic acids and inorganic phosphate, which could be of potential nutritional benefit. However, TAG accumulation had negative effects on starch quality as well as quantity. Starch from high oil potatoes had lower amylose and phosphate content, reduced peak viscosity and higher gelatinization temperature. Interestingly, starch pasting properties were disproportionately affected in lines accumulating the highest levels of TAG (>2.5%) compared to those accumulating only moderate levels (0.2-1.6%). These results indicate that optimized engineering of specialized crops for food, feed, fuel and chemical industries requires careful selection of traits, and an appropriate level of transgene expression, as well as a better understanding of starch structure and carbon partitioning in plant storage organs.
Collapse
Affiliation(s)
- Madeline Mitchell
- Commonwealth Scientific and Industrial Research OrganisationCanberra, ACT, Australia
- *Correspondence: Madeline Mitchell
| | - Jenifer Pritchard
- Commonwealth Scientific and Industrial Research OrganisationCanberra, ACT, Australia
| | - Shoko Okada
- Commonwealth Scientific and Industrial Research OrganisationCanberra, ACT, Australia
| | - Oscar Larroque
- Commonwealth Scientific and Industrial Research OrganisationCanberra, ACT, Australia
| | - Dina Yulia
- Commonwealth Scientific and Industrial Research OrganisationCanberra, ACT, Australia
| | - Filomena Pettolino
- Commonwealth Scientific and Industrial Research OrganisationCanberra, ACT, Australia
| | - Nicolas Szydlowski
- Univ. Lille, CNRS, USR 3290 - MSAP - Miniaturisation pour la Synthèse l'Analyse et la ProtéomiqueLille, France
| | - Surinder Singh
- Commonwealth Scientific and Industrial Research OrganisationCanberra, ACT, Australia
| | - Qing Liu
- Commonwealth Scientific and Industrial Research OrganisationCanberra, ACT, Australia
| | - Jean-Philippe Ral
- Commonwealth Scientific and Industrial Research OrganisationCanberra, ACT, Australia
| |
Collapse
|
78
|
An D, Kim H, Ju S, Go YS, Kim HU, Suh MC. Expression of Camelina WRINKLED1 Isoforms Rescue the Seed Phenotype of the Arabidopsis wri1 Mutant and Increase the Triacylglycerol Content in Tobacco Leaves. FRONTIERS IN PLANT SCIENCE 2017; 8:34. [PMID: 28174580 PMCID: PMC5258696 DOI: 10.3389/fpls.2017.00034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 01/06/2017] [Indexed: 05/04/2023]
Abstract
Triacylglycerol (TAG) is an energy-rich reserve in plant seeds that is composed of glycerol esters with three fatty acids. Since TAG can be used as a feedstock for the production of biofuels and bio-chemicals, producing TAGs in vegetative tissue is an alternative way of meeting the increasing demand for its usage. The WRINKLED1 (WRI1) gene is a well-established key transcriptional regulator involved in the upregulation of fatty acid biosynthesis in developing seeds. WRI1s from Arabidopsis and several other crops have been previously employed for increasing TAGs in seed and vegetative tissues. In the present study, we first identified three functional CsWRI1 genes (CsWRI1A. B, and C) from the Camelina oil crop and tested their ability to induce TAG synthesis in leaves. The amino acid sequences of CsWRI1s exhibited more than 90% identity with those of Arabidopsis WRI1. The transcript levels of the three CsWRI1 genes showed higher expression levels in developing seeds than in vegetative and floral tissues. When the CsWRI1A. B, or C was introduced into Arabidopsis wri1-3 loss-of-function mutant, the fatty acid content was restored to near wild-type levels and percentages of the wrinkled seeds were remarkably reduced in the transgenic lines relative to wri1-3 mutant line. In addition, the fluorescent signals of the enhanced yellow fluorescent protein (eYFP) fused to the CsWRI1 genes were observed in the nuclei of Nicotiana benthamiana leaf epidermal cells. Nile red staining indicated that the transient expression of CsWRI1A. B, or C caused an enhanced accumulation of oil bodies in N. benthamiana leaves. The levels of TAGs was higher by approximately 2.5- to 4.0-fold in N. benthamiana fresh leaves expressing CsWRI1 genes than in the control leaves. These results suggest that the three Camelina WRI1s can be used as key transcriptional regulators to increase fatty acids in biomass.
Collapse
Affiliation(s)
- Dahee An
- Department of Bioenergy Science and Technology, Chonnam National UniversityGwangju, South Korea
| | - Hyojin Kim
- Department of Bioenergy Science and Technology, Chonnam National UniversityGwangju, South Korea
| | - Seulgi Ju
- Department of Bioenergy Science and Technology, Chonnam National UniversityGwangju, South Korea
| | - Young Sam Go
- Department of Bioenergy Science and Technology, Chonnam National UniversityGwangju, South Korea
| | - Hyun Uk Kim
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong UniversitySeoul, South Korea
- *Correspondence: Hyun Uk Kim, Mi Chung Suh,
| | - Mi Chung Suh
- Department of Bioenergy Science and Technology, Chonnam National UniversityGwangju, South Korea
- *Correspondence: Hyun Uk Kim, Mi Chung Suh,
| |
Collapse
|
79
|
Huang H, Long SP, Clemente TE, Singh V. Technoeconomic Analysis of Biodiesel and Ethanol Production from Lipid-Producing Sugarcane and Sweet Sorghum. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1089/ind.2016.0013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Haibo Huang
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Stephen P. Long
- Department of Plant Biology and Crop Sciences, University of Illinois at Urbana Champaign, Urbana, IL
| | - Thomas E. Clemente
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE
| | - Vijay Singh
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana Champaign, Urbana, IL
| |
Collapse
|
80
|
Jung JH, Kannan B, Dermawan H, Moxley GW, Altpeter F. Precision breeding for RNAi suppression of a major 4-coumarate:coenzyme A ligase gene improves cell wall saccharification from field grown sugarcane. PLANT MOLECULAR BIOLOGY 2016; 92:505-517. [PMID: 27549390 DOI: 10.1007/s11103-016-0527-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 08/08/2016] [Indexed: 05/02/2023]
Abstract
Sugarcane (Saccharum spp. hybrids) is a major feedstock for commercial bioethanol production. The recent integration of conversion technologies that utilize lignocellulosic sugarcane residues as well as sucrose from stem internodes has elevated bioethanol yields. RNAi suppression of lignin biosynthetic enzymes is a successful strategy to improve the saccharification of lignocellulosic biomass. 4-coumarate:coenzyme A ligase (4CL) is a key enzyme in the biosynthesis of phenylpropanoid metabolites, such as lignin and flavonoids. Identifying a major 4CL involved in lignin biosynthesis among multiple isoforms with functional divergence is key to manipulate lignin biosynthesis. In this study, two full length 4CL genes (Sh4CL1 and Sh4CL2) were isolated and characterized in sugarcane. Phylogenetic, expression and RNA interference (RNAi) analysis confirmed that Sh4CL1 is a major lignin biosynthetic gene. An intragenic precision breeding strategy may facilitate the regulatory approval of the genetically improved events and was used for RNAi suppression of Sh4CL1. Both, the RNAi inducing cassette and the expression cassette for the mutated ALS selection marker consisted entirely of DNA sequences from sugarcane or the sexually compatible species Sorghum bicolor. Field grown sugarcane with intragenic RNAi suppression of Sh4CL1 resulted in reduction of the total lignin content by up to 16.5 % along with altered monolignol ratios without reduction in biomass yield. Mature, field grown, intragenic sugarcane events displayed 52-76 % improved saccharification efficiency of lignocellulosic biomass compared to wild type (WT) controls. This demonstrates for the first time that an intragenic approach can add significant value to lignocellulosic feedstocks for biofuel and biochemical production.
Collapse
Affiliation(s)
- Je Hyeong Jung
- Agronomy Department, IFAS, University of Florida, PO Box 110500, Gainesville, FL, 32611, USA
- Institute of Life Science and Natural Resources, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Baskaran Kannan
- Agronomy Department, IFAS, University of Florida, PO Box 110500, Gainesville, FL, 32611, USA
| | - Hugo Dermawan
- Agronomy Department, IFAS, University of Florida, PO Box 110500, Gainesville, FL, 32611, USA
| | | | - Fredy Altpeter
- Agronomy Department, IFAS, University of Florida, PO Box 110500, Gainesville, FL, 32611, USA.
- Plant Molecular and Cellular Biology Program, IFAS, University of Florida, PO Box 110300, Gainesville, FL, 32611, USA.
- University of Florida Genetics Institute, PO Box 103610, Gainesville, FL, 32610, USA.
| |
Collapse
|
81
|
Zhang M, Cao X, Jia Q, Ohlrogge J. FUSCA3 activates triacylglycerol accumulation in Arabidopsis seedlings and tobacco BY2 cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:95-107. [PMID: 27288837 DOI: 10.1111/tpj.13233] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 06/02/2016] [Accepted: 06/06/2016] [Indexed: 05/08/2023]
Abstract
Triacylglycerol (TAG) is the main storage lipid in plant seeds and the major form of plant oil used for food and, increasingly, for industrial and biofuel applications. Several transcription factors, including FUSCA3 (At3 g26790, FUS3), are associated with embryo maturation and oil biosynthesis in seeds. However, the ability of FUS3 to increase TAG biosynthesis in other tissues has not been quantitatively examined. Here, we evaluated the ability of FUS3 to activate TAG accumulation in non-seed tissues. Overexpression of FUS3 driven by an estradiol-inducible promoter increased oil contents in Arabidopsis seedlings up to 6% of dry weight; more than 50-fold over controls. Eicosenoic acid, a characteristic fatty acid of Arabidopsis seed oil, accumulated to over 20% of fatty acids in cotyledons and leaves. These large increases depended on added sucrose, although without sucrose TAG increased three- to four-fold. Inducing the expression of FUS3 in tobacco BY2 cells also increased TAG accumulation, and co-expression of FUS3 and diacylglycerol acyltransferase 1 (DGAT1) further increased TAG levels to 4% of dry weight. BY2 cell growth was not altered by FUS3 expression, although Arabidopsis seedling development was impaired, consistent with the ability of FUS3 to induce embryo characteristics in non-seed tissues. Microarrays of Arabidopsis seedlings revealed that FUS3 overexpression increased the expression of a higher proportion of genes involved in TAG biosynthesis than genes involved in fatty acid biosynthesis or other lipid pathways. Together these results provide additional insights into FUS3 functions in TAG metabolism and suggest complementary strategies for engineering vegetative oil accumulation.
Collapse
Affiliation(s)
- Meng Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA.
| | - Xia Cao
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| | - Qingli Jia
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - John Ohlrogge
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
82
|
Fatihi A, Boulard C, Bouyer D, Baud S, Dubreucq B, Lepiniec L. Deciphering and modifying LAFL transcriptional regulatory network in seed for improving yield and quality of storage compounds. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 250:198-204. [PMID: 27457996 DOI: 10.1016/j.plantsci.2016.06.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/16/2016] [Accepted: 06/18/2016] [Indexed: 05/11/2023]
Abstract
Increasing yield and quality of seed storage compounds in a sustainable way is a key challenge for our societies. Genome-wide analyses conducted in both monocot and dicot angiosperms emphasized drastic transcriptional switches that occur during seed development. In Arabidopsis thaliana, a reference species, genetic and molecular analyses have demonstrated the key role of LAFL (LEC1, ABI3, FUS3, and LEC2) transcription factors (TFs), in controlling gene expression programs essential to accomplish seed maturation and the accumulation of storage compounds. Here, we summarize recent progress obtained in the characterization of these LAFL proteins, their regulation, partners and target genes. Moreover, we illustrate how these evolutionary conserved TFs can be used to engineer new crops with altered seed compositions and point out the current limitations. Last, we discuss about the interest of investigating further the environmental and epigenetic regulation of this network for the coming years.
Collapse
Affiliation(s)
- Abdelhak Fatihi
- IJPB, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles Cedex, France.
| | - Céline Boulard
- IJPB, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles Cedex, France
| | - Daniel Bouyer
- Institut de Biologie de l'ENS, CNRS UMR8197, Ecole Normale Supérieure, 46 rue d'Ulm, 75230, Paris cedex 05, France
| | - Sébastien Baud
- IJPB, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles Cedex, France
| | - Bertrand Dubreucq
- IJPB, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles Cedex, France
| | - Loïc Lepiniec
- IJPB, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles Cedex, France.
| |
Collapse
|
83
|
Wu H, Acanda Y, Jia H, Wang N, Zale J. Biolistic transformation of Carrizo citrange (Citrus sinensis Osb. × Poncirus trifoliata L. Raf.). PLANT CELL REPORTS 2016; 35:1955-62. [PMID: 27277128 DOI: 10.1007/s00299-016-2010-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/01/2016] [Indexed: 05/21/2023]
Abstract
The development of transgenic citrus plants by the biolistic method. A protocol for the biolistic transformation of epicotyl explants and transgenic shoot regeneration of immature citrange rootstock, cv. Carrizo (Citrus sinensis Osb. × Poncirus trifoliata L. Raf.) and plant regeneration is described. Immature epicotyl explants were bombarded with a vector containing the nptII selectable marker and the gfp reporter. The number of independent, stably transformed tissues/total number of explants, recorded by monitoring GFP fluorescence 4 weeks after bombardment was substantial at 18.4 %, and some fluorescing tissues regenerated into shoots. Fluorescing GFP, putative transgenic shoots were micro-grafted onto immature Carrizo rootstocks in vitro, confirmed by PCR amplification of nptII and gfp coding regions, followed by secondary grafting onto older rootstocks grown in soil. Southern blot analysis indicated that all the fluorescing shoots were transgenic. Multiple and single copies of nptII integrations were confirmed in five regenerated transgenic lines. There is potential to develop a higher throughput biolistics transformation system by optimizing the tissue culture medium to improve shoot regeneration and narrowing the window for plant sampling. This system will be appropriate for transformation with minimal cassettes.
Collapse
Affiliation(s)
- Hao Wu
- Plant Pathology Department, Institute of Food and Agricultural Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA.
| | - Yosvanis Acanda
- Plant Pathology Department, Institute of Food and Agricultural Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA
| | - Hongge Jia
- Plant Pathology Department, Institute of Food and Agricultural Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA
| | - Nian Wang
- Plant Pathology Department, Institute of Food and Agricultural Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA
| | - Janice Zale
- Plant Pathology Department, Institute of Food and Agricultural Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA.
| |
Collapse
|
84
|
Manan S, Chen B, She G, Wan X, Zhao J. Transport and transcriptional regulation of oil production in plants. Crit Rev Biotechnol 2016; 37:641-655. [DOI: 10.1080/07388551.2016.1212185] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sehrish Manan
- National Key Laboratory for Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Beibei Chen
- National Key Laboratory for Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Guangbiao She
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Jian Zhao
- National Key Laboratory for Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
85
|
Shih PM, Liang Y, Loqué D. Biotechnology and synthetic biology approaches for metabolic engineering of bioenergy crops. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:103-17. [PMID: 27030440 DOI: 10.1111/tpj.13176] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 03/18/2016] [Accepted: 03/22/2016] [Indexed: 05/26/2023]
Abstract
The Green Revolution has fuelled an exponential growth in human population since the mid-20th century. Due to population growth, food and energy demands will soon surpass supply capabilities. To overcome these impending problems, significant improvements in genetic engineering will be needed to complement breeding efforts in order to accelerate the improvement of agronomical traits. The new field of plant synthetic biology has emerged in recent years and is expected to support rapid, precise, and robust engineering of plants. In this review, we present recent advances made in the field of plant synthetic biology, specifically in genome editing, transgene expression regulation, and bioenergy crop engineering, with a focus on traits related to lignocellulose, oil, and soluble sugars. Ultimately, progress and innovation in these fields may facilitate the development of beneficial traits in crop plants to meet society's bioenergy needs.
Collapse
Affiliation(s)
- Patrick M Shih
- Joint BioEnergy Institute, Emery Station East, 5885 Hollis St, 4th Floor, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Yan Liang
- Joint BioEnergy Institute, Emery Station East, 5885 Hollis St, 4th Floor, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Dominique Loqué
- Joint BioEnergy Institute, Emery Station East, 5885 Hollis St, 4th Floor, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Université Lyon 1, INSA de Lyon, CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, 10 rue Raphaël Dubois, F-69622, Villeurbanne, France
| |
Collapse
|
86
|
Tatsis EC, O'Connor SE. New developments in engineering plant metabolic pathways. Curr Opin Biotechnol 2016; 42:126-132. [PMID: 27132124 DOI: 10.1016/j.copbio.2016.04.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/10/2016] [Accepted: 04/11/2016] [Indexed: 11/27/2022]
Abstract
Plants contain countless metabolic pathways that are responsible for the biosynthesis of complex metabolites. Armed with new tools in sequencing and bioinformatics, the genes that encode these plant biosynthetic pathways have become easier to discover, putting us in an excellent position to fully harness the wealth of compounds and biocatalysts (enzymes) that plants provide. For overproduction and isolation of high-value plant-derived chemicals, plant pathways can be reconstituted in heterologous hosts. Alternatively, plant pathways can be modified in the native producer to confer new properties to the plant, such as better biofuel production or enhanced nutritional value. This perspective highlights a range of examples that demonstrate how the metabolic pathways of plants can be successfully harnessed with a variety of metabolic engineering approaches.
Collapse
Affiliation(s)
- Evangelos C Tatsis
- John Innes Centre, Department of Biological Chemistry, Norwich Research Park, Norwich NR4 7UH, UK
| | - Sarah E O'Connor
- John Innes Centre, Department of Biological Chemistry, Norwich Research Park, Norwich NR4 7UH, UK. sarah.o'
| |
Collapse
|
87
|
Xu C, Shanklin J. Triacylglycerol Metabolism, Function, and Accumulation in Plant Vegetative Tissues. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:179-206. [PMID: 26845499 DOI: 10.1146/annurev-arplant-043015-111641] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Oils in the form of triacylglycerols are the most abundant energy-dense storage compounds in eukaryotes, and their metabolism plays a key role in cellular energy balance, lipid homeostasis, growth, and maintenance. Plants accumulate oils primarily in seeds and fruits. Plant oils are used for food and feed and, increasingly, as feedstocks for biodiesel and industrial chemicals. Although plant vegetative tissues do not accumulate significant levels of triacylglycerols, they possess a high capacity for their synthesis, storage, and metabolism. The development of plants that accumulate oil in vegetative tissues presents an opportunity for expanded production of triacylglycerols as a renewable and sustainable bioenergy source. Here, we review recent progress in the understanding of triacylglycerol synthesis, turnover, storage, and function in leaves and discuss emerging genetic engineering strategies targeted at enhancing triacylglycerol accumulation in biomass crops. Such plants could potentially be modified to produce oleochemical feedstocks or nutraceuticals.
Collapse
Affiliation(s)
- Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973; ,
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973; ,
| |
Collapse
|
88
|
Allen DK. Assessing compartmentalized flux in lipid metabolism with isotopes. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1226-1242. [PMID: 27003250 DOI: 10.1016/j.bbalip.2016.03.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 03/13/2016] [Accepted: 03/14/2016] [Indexed: 12/28/2022]
Abstract
Metabolism in plants takes place across multiple cell types and within distinct organelles. The distributions equate to spatial heterogeneity; though the limited means to experimentally assess metabolism frequently involve homogenizing tissues and mixing metabolites from different locations. Most current isotope investigations of metabolism therefore lack the ability to resolve spatially distinct events. Recognition of this limitation has resulted in inspired efforts to advance metabolic flux analysis and isotopic labeling techniques. Though a number of these efforts have been applied to studies in central metabolism; recent advances in instrumentation and techniques present an untapped opportunity to make similar progress in lipid metabolism where the use of stable isotopes has been more limited. These efforts will benefit from sophisticated radiolabeling reports that continue to enrich our knowledge on lipid biosynthetic pathways and provide some direction for stable isotope experimental design and extension of MFA. Evidence for this assertion is presented through the review of several elegant stable isotope studies and by taking stock of what has been learned from radioisotope investigations when spatial aspects of metabolism were considered. The studies emphasize that glycerolipid production occurs across several locations with assembly of lipids in the ER or plastid, fatty acid biosynthesis occurring in the plastid, and the generation of acetyl-CoA and glycerol-3-phosphate taking place at multiple sites. Considering metabolism in this context underscores the cellular and subcellular organization that is important to enhanced production of glycerolipids in plants. An attempt is made to unify salient features from a number of reports into a diagrammatic model of lipid metabolism and propose where stable isotope labeling experiments and further flux analysis may help address questions in the field. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Collapse
Affiliation(s)
- Doug K Allen
- United States Department of Agriculture, Agricultural Research Service, 975 North Warson Road, St. Louis, MO 63132, United States; Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, United States.
| |
Collapse
|
89
|
Mattiello L, Riaño-Pachón DM, Martins MCM, da Cruz LP, Bassi D, Marchiori PER, Ribeiro RV, Labate MTV, Labate CA, Menossi M. Physiological and transcriptional analyses of developmental stages along sugarcane leaf. BMC PLANT BIOLOGY 2015; 15:300. [PMID: 26714767 PMCID: PMC4696237 DOI: 10.1186/s12870-015-0694-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/17/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Sugarcane is one of the major crops worldwide. It is cultivated in over 100 countries on 22 million ha. The complex genetic architecture and the lack of a complete genomic sequence in sugarcane hamper the adoption of molecular approaches to study its physiology and to develop new varieties. Investments on the development of new sugarcane varieties have been made to maximize sucrose yield, a trait dependent on photosynthetic capacity. However, detailed studies on sugarcane leaves are scarce. In this work, we report the first molecular and physiological characterization of events taking place along a leaf developmental gradient in sugarcane. RESULTS Photosynthetic response to CO2 indicated divergence in photosynthetic capacity based on PEPcase activity, corroborated by activity quantification (both in vivo and in vitro) and distinct levels of carbon discrimination on different segments along leaf length. Additionally, leaf segments had contrasting amount of chlorophyll, nitrogen and sugars. RNA-Seq data indicated a plethora of biochemical pathways differentially expressed along the leaf. Some transcription factors families were enriched on each segment and their putative functions corroborate with the distinct developmental stages. Several genes with higher expression in the middle segment, the one with the highest photosynthetic rates, were identified and their role in sugarcane productivity is discussed. Interestingly, sugarcane leaf segments had a different transcriptional behavior compared to previously published data from maize. CONCLUSION This is the first report of leaf developmental analysis in sugarcane. Our data on sugarcane is another source of information for further studies aiming to understand and/or improve C4 photosynthesis. The segments used in this work were distinct in their physiological status allowing deeper molecular analysis. Although limited in some aspects, the comparison to maize indicates that all data acquired on one C4 species cannot always be easily extrapolated to other species. However, our data indicates that some transcriptional factors were segment-specific and the sugarcane leaf undergoes through the process of suberizarion, photosynthesis establishment and senescence.
Collapse
Affiliation(s)
- Lucia Mattiello
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192, 13083-970, Campinas, SP, Brazil.
- Laboratório de Genoma Funcional, Instituto de Biologia, Universidade Estadual de Campinas Campinas, Caixa Postal 6109, Campinas, 13083-862, SP, Brazil.
| | - Diego Mauricio Riaño-Pachón
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192, 13083-970, Campinas, SP, Brazil.
| | - Marina Camara Mattos Martins
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192, 13083-970, Campinas, SP, Brazil.
| | - Larissa Prado da Cruz
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192, 13083-970, Campinas, SP, Brazil.
| | - Denis Bassi
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192, 13083-970, Campinas, SP, Brazil.
| | - Paulo Eduardo Ribeiro Marchiori
- Laboratório de Fisiologia de Plantas "Coaracy M. Franco", Centro de Pesquisa e Desenvolvimento em Ecofisiologia e Biofísica, Instituto Agronômico, Caixa Postal 28, Campinas, 13020-902, SP, Brazil.
| | - Rafael Vasconcelos Ribeiro
- Departamento de Biologia de Plantas, Universidade Estadual de Campinas, Caixa Postal 6109, Campinas, 13083-970, SP, Brazil.
| | - Mônica T Veneziano Labate
- Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Universidade de São Paulo, Caixa Postal 83, Piracicaba, 13400-970, SP, Brazil.
| | - Carlos Alberto Labate
- Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Universidade de São Paulo, Caixa Postal 83, Piracicaba, 13400-970, SP, Brazil.
| | - Marcelo Menossi
- Laboratório de Genoma Funcional, Instituto de Biologia, Universidade Estadual de Campinas Campinas, Caixa Postal 6109, Campinas, 13083-862, SP, Brazil.
| |
Collapse
|