51
|
Wreden CC, Meng JL, Feng W, Chi W, Marshall ZD, Heckscher ES. Temporal Cohorts of Lineage-Related Neurons Perform Analogous Functions in Distinct Sensorimotor Circuits. Curr Biol 2017; 27:1521-1528.e4. [PMID: 28502656 DOI: 10.1016/j.cub.2017.04.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/21/2017] [Accepted: 04/13/2017] [Indexed: 11/18/2022]
Abstract
Neuronal stem cell lineages are the fundamental developmental units of the brain, and neuronal circuits are the fundamental functional units of the brain. Determining lineage-circuitry relationships is essential for deciphering the developmental logic of circuit assembly. While the spatial distribution of lineage-related neurons has been investigated in a few brain regions [1-9], an important, but unaddressed question is whether temporal information that diversifies neuronal progeny within a single lineage also impacts circuit assembly. Circuits in the sensorimotor system (e.g., spinal cord) are thought to be assembled sequentially [10-14], making this an ideal brain region for investigating the circuit-level impact of temporal patterning within a lineage. Here, we use intersectional genetics, optogenetics, high-throughput behavioral analysis, single-neuron labeling, connectomics, and calcium imaging to determine how a set of bona fide lineage-related interneurons contribute to sensorimotor circuitry in the Drosophila larva. We show that Even-skipped lateral interneurons (ELs) are sensory processing interneurons. Late-born ELs contribute to a proprioceptive body posture circuit, whereas early-born ELs contribute to a mechanosensitive escape circuit. These data support a model in which a single neuronal stem cell can produce a large number of interneurons with similar functional capacity that are distributed into different circuits based on birth timing. In summary, these data establish a link between temporal specification of neuronal identity and circuit assembly at the single-cell level.
Collapse
Affiliation(s)
- Christopher C Wreden
- Department of Molecular Genetics and Cell Biology, University of Chicago, 920 East 58(th) Street, Chicago, IL 60637, USA
| | - Julia L Meng
- Program in Cell and Molecular Biology, University of Chicago, 920 East 58(th) Street, Chicago, IL 60637, USA
| | - Weidong Feng
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, 920 East 58(th) Street, Chicago, IL 60637, USA
| | - Wanhao Chi
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, 920 East 58(th) Street, Chicago, IL 60637, USA
| | - Zarion D Marshall
- Department of Molecular Genetics and Cell Biology, University of Chicago, 920 East 58(th) Street, Chicago, IL 60637, USA
| | - Ellie S Heckscher
- Department of Molecular Genetics and Cell Biology, University of Chicago, 920 East 58(th) Street, Chicago, IL 60637, USA; Program in Cell and Molecular Biology, University of Chicago, 920 East 58(th) Street, Chicago, IL 60637, USA; Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, 920 East 58(th) Street, Chicago, IL 60637, USA; Committee on Genetics, Genomics, and Systems Biology, University of Chicago, 920 East 58(th) Street, Chicago, IL 60637, USA.
| |
Collapse
|
52
|
Abstract
The proper construction of neural circuits requires the generation of diverse cell types, their distribution to defined regions, and their specific and appropriate wiring. A major objective in neurobiology has been to understand the molecular determinants that link neural birth to terminal specification and functional connectivity, a task that is especially daunting in the case of cortical interneurons. Considerable evidence supports the idea that an interplay of intrinsic and environmental signalling is crucial to the sequential steps of interneuron specification, including migration, selection of a settling position, morphogenesis and synaptogenesis. However, when and how these influences merge to support the appropriate terminal differentiation of different classes of interneurons remains uncertain. In this Review, we discuss a wealth of recent findings that have advanced our understanding of the developmental mechanisms that contribute to the diversification of interneurons and suggest areas of particular promise for further investigation.
Collapse
|
53
|
Woodworth MB, Girskis KM, Walsh CA. Building a lineage from single cells: genetic techniques for cell lineage tracking. Nat Rev Genet 2017; 18:230-244. [PMID: 28111472 PMCID: PMC5459401 DOI: 10.1038/nrg.2016.159] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Resolving lineage relationships between cells in an organism is a fundamental interest of developmental biology. Furthermore, investigating lineage can drive understanding of pathological states, including cancer, as well as understanding of developmental pathways that are amenable to manipulation by directed differentiation. Although lineage tracking through the injection of retroviral libraries has long been the state of the art, a recent explosion of methodological advances in exogenous labelling and single-cell sequencing have enabled lineage tracking at larger scales, in more detail, and in a wider range of species than was previously considered possible. In this Review, we discuss these techniques for cell lineage tracking, with attention both to those that trace lineage forwards from experimental labelling, and those that trace backwards across the life history of an organism.
Collapse
Affiliation(s)
- Mollie B Woodworth
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Departments of Neurology and Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, USA
| | - Kelly M Girskis
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Departments of Neurology and Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Departments of Neurology and Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
54
|
Ontogenetic establishment of order-specific nuclear organization in the mammalian thalamus. Nat Neurosci 2017; 20:516-528. [PMID: 28250409 PMCID: PMC5374008 DOI: 10.1038/nn.4519] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 01/25/2017] [Indexed: 12/11/2022]
Abstract
The thalamus connects the cortex with other brain regions and supports sensory perception, movement, and cognitive function via numerous distinct nuclei. However, the mechanisms underlying the development and organization of diverse thalamic nuclei remain largely unknown. Here we report an intricate ontogenetic logic of mouse thalamic structures. Individual radial glial progenitors in the developing thalamus actively divide and produce a cohort of neuronal progeny that shows striking spatial configuration and nuclear occupation related to functionality. Whereas the anterior clonal cluster displays relatively more tangential dispersion and contributes predominantly to nuclei with cognitive functions, the medial ventral posterior clonal cluster forms prominent radial arrays and contributes mostly to nuclei with sensory- or motor-related activities. Moreover, the first-order and higher-order sensory and motor nuclei across different modalities are largely segregated clonally. Notably, sonic hedgehog signaling activity influences clonal spatial distribution. Our study reveals lineage relationship to be a critical regulator of nonlaminated thalamus development and organization.
Collapse
|
55
|
Schröter M, Paulsen O, Bullmore ET. Micro-connectomics: probing the organization of neuronal networks at the cellular scale. Nat Rev Neurosci 2017; 18:131-146. [PMID: 28148956 DOI: 10.1038/nrn.2016.182] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Defining the organizational principles of neuronal networks at the cellular scale, or micro-connectomics, is a key challenge of modern neuroscience. In this Review, we focus on graph theoretical parameters of micro-connectome topology, often informed by economical principles that conceptually originated with Ramón y Cajal's conservation laws. First, we summarize results from studies in intact small organisms and in samples from larger nervous systems. We then evaluate the evidence for an economical trade-off between biological cost and functional value in the organization of neuronal networks. Various results suggest that many aspects of neuronal network organization are indeed the outcome of competition between these two fundamental selection pressures.
Collapse
Affiliation(s)
- Manuel Schröter
- Department of Psychiatry and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0SZ, UK.,Department of Biosystems Science and Engineering, Bio Engineering Laboratory, ETH Zurich, Mattenstrasse 26, Basel CH-4058, Switzerland
| | - Ole Paulsen
- Department of Physiology, Development and Neuroscience, University of Cambridge, Physiological Laboratory, Downing Street, Cambridge CB2 3EG, UK
| | - Edward T Bullmore
- Department of Psychiatry and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0SZ, UK.,ImmunoPsychiatry, Immuno-Inflammation Therapeutic Area Unit, GlaxoSmithKline R&D, Stevenage SG1 2NY, UK.,Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge Road, Fulbourn, Cambridge CB21 5HH, UK
| |
Collapse
|
56
|
Ansen-Wilson LJ, Lipinski RJ. Gene-environment interactions in cortical interneuron development and dysfunction: A review of preclinical studies. Neurotoxicology 2017; 58:120-129. [PMID: 27932026 PMCID: PMC5328258 DOI: 10.1016/j.neuro.2016.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 12/03/2016] [Accepted: 12/03/2016] [Indexed: 12/26/2022]
Abstract
Cortical interneurons (cINs) are a diverse group of locally projecting neurons essential to the organization and regulation of neural networks. Though they comprise only ∼20% of neurons in the neocortex, their dynamic modulation of cortical activity is requisite for normal cognition and underlies multiple aspects of learning and memory. While displaying significant morphological, molecular, and electrophysiological variability, cINs collectively function to maintain the excitatory-inhibitory balance in the cortex by dampening hyperexcitability and synchronizing activity of projection neurons, primarily through use of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). Disruption of the excitatory-inhibitory balance is a common pathophysiological feature of multiple seizure and neuropsychiatric disorders, including epilepsy, schizophrenia, and autism. While most studies have focused on genetic disruption of cIN development in these conditions, emerging evidence indicates that cIN development is exquisitely sensitive to teratogenic disruption. Here, we review key aspects of cIN development, including specification, migration, and integration into neural circuits. Additionally, we examine the mechanisms by which prenatal exposure to common chemical and environmental agents disrupt these events in preclinical models. Understanding how genetic and environmental factors interact to disrupt cIN development and function has tremendous potential to advance prevention and treatment of prevalent seizure and neuropsychiatric illnesses.
Collapse
Affiliation(s)
- Lydia J Ansen-Wilson
- Department of Comparative Biosciences School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI, 53706, USA; Comparative Biomedical Sciences Graduate Program, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI, 53706, USA.
| | - Robert J Lipinski
- Department of Comparative Biosciences School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI, 53706, USA; Comparative Biomedical Sciences Graduate Program, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI, 53706, USA; Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, 1010B McArdle Building, 1400 University Avenue, Madison, WI, 53706, USA.
| |
Collapse
|
57
|
Cortical interneuron specification: the juncture of genes, time and geometry. Curr Opin Neurobiol 2016; 42:17-24. [PMID: 27889625 DOI: 10.1016/j.conb.2016.10.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/20/2016] [Accepted: 10/28/2016] [Indexed: 01/23/2023]
Abstract
A fundamental question in developmental neuroscience is how hundreds of diverse cell types are generated to form specialized brain regions. The ganglionic eminences (GEs) are embryonic brain structures located in the ventral telencephalon that produce many inhibitory GABA (γ-Aminobutyric acid)-ergic cell types, including long-range projection neurons and local interneurons (INs), which disperse widely throughout the brain. While much has been discovered about the origin and wiring of these cells, a major question remains: how do neurons originating in the GEs become specified during development as one differentiated subtype versus another? This review will cover recent work that has advanced our knowledge of the mechanisms governing cortical interneuron subtype specification, particularly progenitors' spatial origin, birthdates, lineage, and mode of division.
Collapse
|
58
|
He M, Tucciarone J, Lee S, Nigro MJ, Kim Y, Levine JM, Kelly SM, Krugikov I, Wu P, Chen Y, Gong L, Hou Y, Osten P, Rudy B, Huang ZJ. Strategies and Tools for Combinatorial Targeting of GABAergic Neurons in Mouse Cerebral Cortex. Neuron 2016; 91:1228-1243. [PMID: 27618674 PMCID: PMC5223593 DOI: 10.1016/j.neuron.2016.08.021] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 06/30/2016] [Accepted: 08/06/2016] [Indexed: 11/23/2022]
Abstract
Systematic genetic access to GABAergic cell types will facilitate studying the function and development of inhibitory circuitry. However, single gene-driven recombinase lines mark relatively broad and heterogeneous cell populations. Although intersectional approaches improve precision, it remains unclear whether they can capture cell types defined by multiple features. Here we demonstrate that combinatorial genetic and viral approaches target restricted GABAergic subpopulations and cell types characterized by distinct laminar location, morphology, axonal projection, and electrophysiological properties. Intersectional embryonic transcription factor drivers allow finer fate mapping of progenitor pools that give rise to distinct GABAergic populations, including laminar cohorts. Conversion of progenitor fate restriction signals to constitutive recombinase expression enables viral targeting of cell types based on their lineage and birth time. Properly designed intersection, subtraction, conversion, and multi-color reporters enhance the precision and versatility of drivers and viral vectors. These strategies and tools will facilitate studying GABAergic neurons throughout the mouse brain.
Collapse
Affiliation(s)
- Miao He
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Jason Tucciarone
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Program in Neuroscience and Medical Scientist Training Program, Stony Brook University, Stony Brook, NY 11790, USA
| | - SooHyun Lee
- New York University Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA
| | - Maximiliano José Nigro
- New York University Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA
| | - Yongsoo Kim
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jesse Maurica Levine
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Program in Neuroscience and Medical Scientist Training Program, Stony Brook University, Stony Brook, NY 11790, USA
| | - Sean Michael Kelly
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Program in Neuroscience and Medical Scientist Training Program, Stony Brook University, Stony Brook, NY 11790, USA
| | - Illya Krugikov
- New York University Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA
| | - Priscilla Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Yang Chen
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Ling Gong
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Yongjie Hou
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Pavel Osten
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Bernardo Rudy
- New York University Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA
| | - Z Josh Huang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
59
|
Rushing G, Ihrie RA. Neural stem cell heterogeneity through time and space in the ventricular-subventricular zone. FRONTIERS IN BIOLOGY 2016; 11:261-284. [PMID: 28367160 PMCID: PMC5371406 DOI: 10.1007/s11515-016-1407-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND The origin and classification of neural stem cells (NSCs) has been a subject of intense investigation for the past two decades. Efforts to categorize NSCs based on their location, function and expression have established that these cells are a heterogeneous pool in both the embryonic and adult brain. The discovery and additional characterization of adult NSCs has introduced the possibility of using these cells as a source for neuronal and glial replacement following injury or disease. To understand how one could manipulate NSC developmental programs for therapeutic use, additional work is needed to elucidate how NSCs are programmed and how signals during development are interpreted to determine cell fate. OBJECTIVE This review describes the identification, classification and characterization of NSCs within the large neurogenic niche of the ventricular-subventricular zone (V-SVZ). METHODS A literature search was conducted using Pubmed including the keywords "ventricular-subventricular zone," "neural stem cell," "heterogeneity," "identity" and/or "single cell" to find relevant manuscripts to include within the review. A special focus was placed on more recent findings using single-cell level analyses on neural stem cells within their niche(s). RESULTS This review discusses over 20 research articles detailing findings on V-SVZ NSC heterogeneity, over 25 articles describing fate determinants of NSCs, and focuses on 8 recent publications using distinct single-cell analyses of neural stem cells including flow cytometry and RNA-seq. Additionally, over 60 manuscripts highlighting the markers expressed on cells within the NSC lineage are included in a chart divided by cell type. CONCLUSIONS Investigation of NSC heterogeneity and fate decisions is ongoing. Thus far, much research has been conducted in mice however, findings in human and other mammalian species are also discussed here. Implications of NSC heterogeneity established in the embryo for the properties of NSCs in the adult brain are explored, including how these cells may be redirected after injury or genetic manipulation.
Collapse
Affiliation(s)
- Gabrielle Rushing
- Program in Neuroscience, Vanderbilt University, Nashville, TN 37232, USA
| | - Rebecca A. Ihrie
- Departments of Cancer Biology and Neurological Surgery, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
60
|
Vascular Influence on Ventral Telencephalic Progenitors and Neocortical Interneuron Production. Dev Cell 2016; 36:624-38. [PMID: 27003936 DOI: 10.1016/j.devcel.2016.02.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/21/2016] [Accepted: 02/23/2016] [Indexed: 12/12/2022]
Abstract
The neocortex contains glutamatergic excitatory neurons and γ-aminobutyric acid (GABA)ergic inhibitory interneurons. Extensive studies have revealed substantial insights into excitatory neuron production. However, our knowledge of the generation of GABAergic interneurons remains limited. Here we show that periventricular blood vessels selectively influence neocortical interneuron progenitor behavior and neurogenesis. Distinct from those in the dorsal telencephalon, radial glial progenitors (RGPs) in the ventral telencephalon responsible for producing neocortical interneurons progressively grow radial glial fibers anchored to periventricular vessels. This progenitor-vessel association is robust and actively maintained as RGPs undergo interkinetic nuclear migration and divide at the ventricular zone surface. Disruption of this association by selective removal of INTEGRIN β1 in RGPs leads to a decrease in progenitor division, a loss of PARVALBUMIN and SOMATOSTATIN-expressing interneurons, and defective synaptic inhibition in the neocortex. These results highlight a prominent interaction between RGPs and periventricular vessels important for proper production and function of neocortical interneurons.
Collapse
|
61
|
A restricted period for formation of outer subventricular zone defined by Cdh1 and Trnp1 levels. Nat Commun 2016; 7:11812. [PMID: 27264089 PMCID: PMC4897765 DOI: 10.1038/ncomms11812] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/03/2016] [Indexed: 01/11/2023] Open
Abstract
The outer subventricular zone (OSVZ) is a germinal layer playing key roles in the development of the neocortex, with particular relevance in gyrencephalic species such as human and ferret, where it contains abundant basal radial glia cells (bRGCs) that promote cortical expansion. Here we identify a brief period in ferret embryonic development when apical RGCs generate a burst of bRGCs that become founders of the OSVZ. After this period, bRGCs in the OSVZ proliferate and self-renew exclusively locally, thereby forming a self-sustained lineage independent from the other germinal layers. The time window for the brief period of OSVZ bRGC production is delineated by the coincident downregulation of Cdh1 and Trnp1, and their upregulation reduces bRGC production and prevents OSVZ seeding. This mechanism in cortical development may have key relevance in brain evolution and disease. The outer subventricular zone (OSVZ) contains basal radial glial cells (bRGC) involved in cortical expansion in gyrencephalic mammals. Here the authors identify a developmental time window with marked production of bRGCs required to found the OSVZ that is dependent on coincident downregulation of Cdh1 and Trnp1.
Collapse
|
62
|
Prenatal phencyclidine treatment induces behavioral deficits through impairment of GABAergic interneurons in the prefrontal cortex. Psychopharmacology (Berl) 2016; 233:2373-81. [PMID: 27095448 DOI: 10.1007/s00213-016-4288-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 04/01/2016] [Indexed: 10/21/2022]
Abstract
RATIONALE We previously reported that prenatal treatment with phencyclidine (PCP) induces glutamatergic dysfunction in the prefrontal cortex (PFC), leading to schizophrenia-like behavioral deficits in adult mice. However, little is known about the prenatal effect of PCP treatment on other types of neurons. OBJECTIVES We focused on γ-aminobutyric acid (GABA)-ergic interneurons and evaluated the effect of prenatal PCP exposure on the neurodevelopment of GABAergic interneurons in the PFC. METHODS PCP was administered at the dose of 10 mg/kg/day to pregnant dams from embryonic day 6.5 to 18.5. After the pups were reared to adult, we analyzed their GABAergic system in the PFC using immunohistological, biochemical, and behavioral analyses in adulthood. RESULTS The prenatal PCP treatment decreased the density of parvalbumin-positive cells and reduced the expression level of glutamic acid decarboxylase 67 (GAD67) and GABA content of the PFC in adults. Additionally, prenatal PCP treatment induced behavioral deficits in adult mice, such as hypersensitivity to PCP and prepulse inhibition (PPI) deficits. These behavioral deficits were ameliorated by pretreatment with the GABAB receptor agonist baclofen. Furthermore, the density of c-Fos-positive cells was decreased after the PPI test in the PFC of mice treated with PCP prenatally, and this effect was ameliorated by pretreatment with baclofen. CONCLUSIONS These findings suggest that prenatal treatment with PCP induced GABAergic dysfunction in the PFC, which caused behavioral deficits.
Collapse
|
63
|
Lin CW, Chen B, Huang KL, Dai YS, Teng HL. Inhibition of Autophagy by Estradiol Promotes Locomotor Recovery after Spinal Cord Injury in Rats. Neurosci Bull 2016; 32:137-44. [PMID: 26924807 DOI: 10.1007/s12264-016-0017-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 11/25/2015] [Indexed: 12/31/2022] Open
Abstract
17β-estradiol (E2) has been shown to have neuroprotective effects in different central nervous system diseases. The mechanisms underlying estrogen neuroprotection in spinal cord injury (SCI) remain unclear. Previous studies have shown that autophagy plays a crucial role in the course of nerve injury. In this study, we showed that E2 treatment improved the restoration of locomotor function and decreased the loss of motor neurons in SCI rats. Real-time PCR and western blot analysis revealed that the protective function of E2 was related to the suppression of LC3II and beclin-1 expression. Immunohistochemical study further confirmed that the immunoreactivity of LC3 in the motor neurons was down-regulated when treated with E2. In vitro studies demonstrated similar results that E2 pretreatment decreased the autophagic activity induced by rapamycin (autophagy sensitizer) and increased viability in a PC12 cell model. These results indicated that the neuroprotective effects of E2 in SCI are partly related to the suppression of excessive autophagy.
Collapse
Affiliation(s)
- Chao-Wei Lin
- Department of Spine Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Bi Chen
- Department of Spine Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Ke-Lun Huang
- Department of Spine Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yu-Sen Dai
- Department of Spine Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Hong-Lin Teng
- Department of Spine Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
64
|
Xie YF, Jiang XH, Sessle BJ, Yu XM. Development of regional specificity of spinal and medullary dorsal horn neurons. World J Biol Chem 2016; 7:138-145. [PMID: 26981202 PMCID: PMC4768117 DOI: 10.4331/wjbc.v7.i1.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 01/07/2016] [Indexed: 02/05/2023] Open
Abstract
Extensive studies have focused on the development and regionalization of neurons in the central nervous system (CNS). Many genes, which play crucial roles in the development of CNS neurons, have been identified. By using the technique “direct reprogramming”, neurons can be produced from multiple cell sources such as fibroblasts. However, understanding the region-specific regulation of neurons in the CNS is still one of the biggest challenges in the research field of neuroscience. Neurons located in the trigeminal subnucleus caudalis (Vc) and in the spinal dorsal horn (SDH) play crucial roles in pain and sensorimotor functions in the orofacial and other somatic body regions, respectively. Anatomically, Vc represents the most caudal component of the trigeminal system, and is contiguous with SDH. This review is focused on recent data dealing with the regional specificity involved in the development of neurons in Vc and SDH.
Collapse
|
65
|
Joyner AL. From Cloning Neural Development Genes to Functional Studies in Mice, 30 Years of Advancements. Curr Top Dev Biol 2016; 116:501-15. [PMID: 26970637 DOI: 10.1016/bs.ctdb.2015.11.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The invention of new mouse molecular genetics techniques, initiated in the 1980s, has repeatedly expanded our ability to tackle exciting developmental biology problems. The brain is the most complex organ, and as such the more sophisticated the molecular genetics technique, the more impact they have on uncovering new insights into how our brain functions. I provide a general time line for the introduction of new techniques over the past 30 years and give examples of new discoveries in the neural development field that emanated from them. I include a look to what the future holds and argue that we are at the dawn of a very exciting age for young scientists interested in studying how the nervous system is constructed and functions with such precision.
Collapse
Affiliation(s)
- Alexandra L Joyner
- Developmental Biology Program, Sloan Kettering Institute, New York, USA.
| |
Collapse
|
66
|
HATANAKA Y, ZHU Y, TORIGOE M, KITA Y, MURAKAMI F. From migration to settlement: the pathways, migration modes and dynamics of neurons in the developing brain. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2016; 92:1-19. [PMID: 26755396 PMCID: PMC4880546 DOI: 10.2183/pjab.92.1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/08/2015] [Indexed: 06/05/2023]
Abstract
Neuronal migration is crucial for the construction of the nervous system. To reach their correct destination, migrating neurons choose pathways using physical substrates and chemical cues of either diffusible or non-diffusible nature. Migrating neurons extend a leading and a trailing process. The leading process, which extends in the direction of migration, determines navigation, in particular when a neuron changes its direction of migration. While most neurons simply migrate radially, certain neurons switch their mode of migration between radial and tangential, with the latter allowing migration to destinations far from the neurons' site of generation. Consequently, neurons with distinct origins are intermingled, which results in intricate neuronal architectures and connectivities and provides an important basis for higher brain function. The trailing process, in contrast, contributes to the late stage of development by turning into the axon, thus contributing to the formation of neuronal circuits.
Collapse
Affiliation(s)
- Yumiko HATANAKA
- Division of Cerebral Circuitry, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Yan ZHU
- Division of Brain Function, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Makio TORIGOE
- Lab Dev Gene Regulation, RIKEN, BSI, Wako, Saitama, Japan
| | - Yoshiaki KITA
- Lab Mol Mech Thalamus Dev, RIKEN BSI, Wako, Saitama, Japan
| | - Fujio MURAKAMI
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
67
|
Gil-Sanz C, Müller U. A New Chapter in the Life of Cajal's Short-Axon Neurons: Separation of Interneuron Siblings after Birth. Neuron 2015; 87:909-11. [PMID: 26335637 DOI: 10.1016/j.neuron.2015.08.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Interneurons are critical components of the neocortical circuitry but the mechanisms that regulate their distribution in the neocortex are unclear. In this issue of Neuron, Harwell et al. (2015) and Mayer et al. (2015) use barcoded retroviruses to demonstrate widespread clonal dispersion of interneuron siblings in the brain.
Collapse
Affiliation(s)
- Cristina Gil-Sanz
- Dorris Neuroscience Center, Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Ulrich Müller
- Dorris Neuroscience Center, Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
68
|
Reiner O, Karzbrun E, Kshirsagar A, Kaibuchi K. Regulation of neuronal migration, an emerging topic in autism spectrum disorders. J Neurochem 2015; 136:440-56. [PMID: 26485324 DOI: 10.1111/jnc.13403] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/04/2015] [Accepted: 10/09/2015] [Indexed: 12/14/2022]
Abstract
Autism spectrum disorders (ASD) encompass a group of neurodevelopmental diseases that demonstrate strong heritability, however, the inheritance is not simple and many genes have been associated with these disorders. ASD is regarded as a neurodevelopmental disorder, and abnormalities at different developmental stages are part of the disease etiology. This review provides a general background on neuronal migration during brain development and discusses recent advancements in the field connecting ASD and aberrant neuronal migration. We propose that neuronal migration impairment may be an important common pathophysiology in autism spectrum disorders (ASD). This review provides a general background on neuronal migration during brain development and discusses recent advancements in the field connecting ASD and aberrant neuronal migration.
Collapse
Affiliation(s)
- Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal Karzbrun
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Aditya Kshirsagar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Showa, Nagoya, Japan
| |
Collapse
|
69
|
Petros TJ, Bultje RS, Ross ME, Fishell G, Anderson SA. Apical versus Basal Neurogenesis Directs Cortical Interneuron Subclass Fate. Cell Rep 2015; 13:1090-1095. [PMID: 26526999 DOI: 10.1016/j.celrep.2015.09.079] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 08/19/2015] [Accepted: 09/25/2015] [Indexed: 11/15/2022] Open
Abstract
Fate determination in the mammalian telencephalon, with its diversity of neuronal subtypes and relevance to neuropsychiatric disease, remains a critical area of study in neuroscience. Most studies investigating this topic focus on the diversity of neural progenitors within spatial and temporal domains along the lateral ventricles. Often overlooked is whether the location of neurogenesis within a fate-restricted domain is associated with, or instructive for, distinct neuronal fates. Here, we use in vivo fate mapping and the manipulation of neurogenic location to demonstrate that apical versus basal neurogenesis influences the fate determination of major subgroups of cortical interneurons derived from the subcortical telencephalon. Somatostatin-expressing interneurons arise mainly from apical divisions along the ventricular surface, whereas parvalbumin-expressing interneurons originate predominantly from basal divisions in the subventricular zone. As manipulations that shift neurogenic location alter interneuron subclass fate, these results add an additional dimension to the spatial-temporal determinants of neuronal fate determination.
Collapse
Affiliation(s)
- Timothy J Petros
- Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, NY 10065, USA; NYU Neuroscience Institute, Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, New York, NY 10016, USA
| | - Ronald S Bultje
- Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, NY 10065, USA
| | - M Elizabeth Ross
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | - Gord Fishell
- NYU Neuroscience Institute, Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, New York, NY 10016, USA
| | - Stewart A Anderson
- Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, NY 10065, USA; Department of Psychiatry, Children's Hospital of Philadelphia and UPenn School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
70
|
Abstract
The neocortex is the part of the brain responsible for execution of higher-order brain functions, including cognition, sensory perception, and sophisticated motor control. During evolution, the neocortex has developed an unparalleled neuronal diversity, which still remains partly unclassified and unmapped at the functional level. Here, we broadly review the structural blueprint of the neocortex and discuss the current classification of its neuronal diversity. We then cover the principles and mechanisms that build neuronal diversity during cortical development and consider the impact of neuronal class-specific identity in shaping cortical connectivity and function.
Collapse
Affiliation(s)
- Simona Lodato
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138; ,
| | - Paola Arlotta
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138; ,
| |
Collapse
|
71
|
Abstract
The neocortex is the part of the brain responsible for execution of higher-order brain functions, including cognition, sensory perception, and sophisticated motor control. During evolution, the neocortex has developed an unparalleled neuronal diversity, which still remains partly unclassified and unmapped at the functional level. Here, we broadly review the structural blueprint of the neocortex and discuss the current classification of its neuronal diversity. We then cover the principles and mechanisms that build neuronal diversity during cortical development and consider the impact of neuronal class-specific identity in shaping cortical connectivity and function.
Collapse
Affiliation(s)
- Simona Lodato
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138; ,
| | - Paola Arlotta
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138; ,
| |
Collapse
|
72
|
García-Moreno F, Molnár Z. Subset of early radial glial progenitors that contribute to the development of callosal neurons is absent from avian brain. Proc Natl Acad Sci U S A 2015; 112:E5058-67. [PMID: 26305942 PMCID: PMC4568669 DOI: 10.1073/pnas.1506377112] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The classical view of mammalian cortical development suggests that pyramidal neurons are generated in a temporal sequence, with all radial glial cells (RGCs) contributing to both lower and upper neocortical layers. A recent opposing proposal suggests there is a subgroup of fate-restricted RGCs in the early neocortex, which generates only upper-layer neurons. Little is known about the existence of fate restriction of homologous progenitors in other vertebrate species. We investigated the lineage of selected Emx2+ [vertebrate homeobox gene related to Drosophila empty spiracles (ems)] RGCs in mouse neocortex and chick forebrain and found evidence for both sequential and fate-restricted programs only in mouse, indicating that these complementary populations coexist in the developing mammalian but not avian brain. Among a large population of sequentially programmed RGCs in the mouse brain, a subset of self-renewing progenitors lack neurogenic potential during the earliest phase of corticogenesis. After a considerable delay, these progenitors generate callosal upper-layer neurons and glia. On the other hand, we found no homologous delayed population in any sectors of the chick forebrain. This finding suggests that neurogenic delay of selected RGCs may be unique to mammals and possibly associated with the evolution of the corpus callosum.
Collapse
Affiliation(s)
- Fernando García-Moreno
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3QX, United Kingdom
| | - Zoltán Molnár
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3QX, United Kingdom
| |
Collapse
|
73
|
Stouffer MA, Golden JA, Francis F. Neuronal migration disorders: Focus on the cytoskeleton and epilepsy. Neurobiol Dis 2015; 92:18-45. [PMID: 26299390 DOI: 10.1016/j.nbd.2015.08.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 08/05/2015] [Accepted: 08/12/2015] [Indexed: 01/28/2023] Open
Abstract
A wide spectrum of focal, regional, or diffuse structural brain abnormalities, collectively known as malformations of cortical development (MCDs), frequently manifest with intellectual disability (ID), epilepsy, and/or autistic spectrum disorder (ASD). As the acronym suggests, MCDs are perturbations of the normal architecture of the cerebral cortex and hippocampus. The pathogenesis of these disorders remains incompletely understood; however, one area that has provided important insights has been the study of neuronal migration. The amalgamation of human genetics and experimental studies in animal models has led to the recognition that common genetic causes of neurodevelopmental disorders, including many severe epilepsy syndromes, are due to mutations in genes regulating the migration of newly born post-mitotic neurons. Neuronal migration genes often, though not exclusively, code for proteins involved in the function of the cytoskeleton. Other cellular processes, such as cell division and axon/dendrite formation, which similarly depend on cytoskeletal functions, may also be affected. We focus here on how the susceptibility of the highly organized neocortex and hippocampus may be due to their laminar organization, which involves the tight regulation, both temporally and spatially, of gene expression, specialized progenitor cells, the migration of neurons over large distances and a birthdate-specific layering of neurons. Perturbations in neuronal migration result in abnormal lamination, neuronal differentiation defects, abnormal cellular morphology and circuit formation. Ultimately this results in disorganized excitatory and inhibitory activity leading to the symptoms observed in individuals with these disorders.
Collapse
Affiliation(s)
- Melissa A Stouffer
- INSERM UMRS 839, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, Paris, France; Institut du Fer à Moulin, Paris, France
| | - Jeffrey A Golden
- Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Fiona Francis
- INSERM UMRS 839, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, Paris, France; Institut du Fer à Moulin, Paris, France.
| |
Collapse
|
74
|
Harwell CC, Fuentealba LC, Gonzalez-Cerrillo A, Parker PRL, Gertz CC, Mazzola E, Garcia MT, Alvarez-Buylla A, Cepko CL, Kriegstein AR. Wide Dispersion and Diversity of Clonally Related Inhibitory Interneurons. Neuron 2015; 87:999-1007. [PMID: 26299474 DOI: 10.1016/j.neuron.2015.07.030] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/28/2015] [Accepted: 07/27/2015] [Indexed: 12/11/2022]
Abstract
The mammalian neocortex is composed of two major neuronal cell types with distinct origins: excitatory pyramidal neurons and inhibitory interneurons, generated in dorsal and ventral progenitor zones of the embryonic telencephalon, respectively. Thus, inhibitory neurons migrate relatively long distances to reach their destination in the developing forebrain. The role of lineage in the organization and circuitry of interneurons is still not well understood. Utilizing a combination of genetics, retroviral fate mapping, and lineage-specific retroviral barcode labeling, we find that clonally related interneurons can be widely dispersed while unrelated interneurons can be closely clustered. These data suggest that migratory mechanisms related to the clustering of interneurons occur largely independent of their clonal origin.
Collapse
Affiliation(s)
- Corey C Harwell
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| | - Luis C Fuentealba
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA 94143, USA
| | | | - Phillip R L Parker
- Gladstone Institute for Neurological Disease, San Francisco, CA 94158, USA
| | - Caitlyn C Gertz
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA 94143, USA
| | - Emanuele Mazzola
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA
| | | | - Arturo Alvarez-Buylla
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA 94143, USA
| | - Constance L Cepko
- Departments of Genetics and Ophthalmology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Arnold R Kriegstein
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA 94143, USA
| |
Collapse
|
75
|
Clonally Related Forebrain Interneurons Disperse Broadly across Both Functional Areas and Structural Boundaries. Neuron 2015; 87:989-98. [PMID: 26299473 DOI: 10.1016/j.neuron.2015.07.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/29/2015] [Accepted: 07/15/2015] [Indexed: 02/06/2023]
Abstract
The medial ganglionic eminence (MGE) gives rise to the majority of mouse forebrain interneurons. Here, we examine the lineage relationship among MGE-derived interneurons using a replication-defective retroviral library containing a highly diverse set of DNA barcodes. Recovering the barcodes from the mature progeny of infected progenitor cells enabled us to unambiguously determine their respective lineal relationship. We found that clonal dispersion occurs across large areas of the brain and is not restricted by anatomical divisions. As such, sibling interneurons can populate the cortex, hippocampus striatum, and globus pallidus. The majority of interneurons appeared to be generated from asymmetric divisions of MGE progenitor cells, followed by symmetric divisions within the subventricular zone. Altogether, our findings uncover that lineage relationships do not appear to determine interneuron allocation to particular regions. As such, it is likely that clonally related interneurons have considerable flexibility as to the particular forebrain circuits to which they can contribute.
Collapse
|
76
|
Peyre E, Silva CG, Nguyen L. Crosstalk between intracellular and extracellular signals regulating interneuron production, migration and integration into the cortex. Front Cell Neurosci 2015; 9:129. [PMID: 25926769 PMCID: PMC4396449 DOI: 10.3389/fncel.2015.00129] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/19/2015] [Indexed: 11/29/2022] Open
Abstract
During embryogenesis, cortical interneurons are generated by ventral progenitors located in the ganglionic eminences of the telencephalon. They travel along multiple tangential paths to populate the cortical wall. As they reach this structure they undergo intracortical dispersion to settle in their final destination. At the cellular level, migrating interneurons are highly polarized cells that extend and retract processes using dynamic remodeling of microtubule and actin cytoskeleton. Different levels of molecular regulation contribute to interneuron migration. These include: (1) Extrinsic guidance cues distributed along migratory streams that are sensed and integrated by migrating interneurons; (2) Intrinsic genetic programs driven by specific transcription factors that grant specification and set the timing of migration for different subtypes of interneurons; (3) Adhesion molecules and cytoskeletal elements/regulators that transduce molecular signalings into coherent movement. These levels of molecular regulation must be properly integrated by interneurons to allow their migration in the cortex. The aim of this review is to summarize our current knowledge of the interplay between microenvironmental signals and cell autonomous programs that drive cortical interneuron porduction, tangential migration, and intergration in the developing cerebral cortex.
Collapse
Affiliation(s)
- Elise Peyre
- GIGA-Neurosciences, University of Liège Liège, Belgium ; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège Liège, Belgium
| | - Carla G Silva
- GIGA-Neurosciences, University of Liège Liège, Belgium ; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège Liège, Belgium
| | - Laurent Nguyen
- GIGA-Neurosciences, University of Liège Liège, Belgium ; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège Liège, Belgium ; Wallon Excellence in Lifesciences and Biotechnology, University of Liège Liège, Belgium
| |
Collapse
|
77
|
Gao P, Postiglione MP, Krieger TG, Hernandez L, Wang C, Han Z, Streicher C, Papusheva E, Insolera R, Chugh K, Kodish O, Huang K, Simons BD, Luo L, Hippenmeyer S, Shi SH. Deterministic progenitor behavior and unitary production of neurons in the neocortex. Cell 2015; 159:775-88. [PMID: 25417155 PMCID: PMC4225456 DOI: 10.1016/j.cell.2014.10.027] [Citation(s) in RCA: 299] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/22/2014] [Accepted: 10/10/2014] [Indexed: 12/03/2022]
Abstract
Radial glial progenitors (RGPs) are responsible for producing nearly all neocortical neurons. To gain insight into the patterns of RGP division and neuron production, we quantitatively analyzed excitatory neuron genesis in the mouse neocortex using Mosaic Analysis with Double Markers, which provides single-cell resolution of progenitor division patterns and potential in vivo. We found that RGPs progress through a coherent program in which their proliferative potential diminishes in a predictable manner. Upon entry into the neurogenic phase, individual RGPs produce ∼8–9 neurons distributed in both deep and superficial layers, indicating a unitary output in neuronal production. Removal of OTX1, a transcription factor transiently expressed in RGPs, results in both deep- and superficial-layer neuron loss and a reduction in neuronal unit size. Moreover, ∼1/6 of neurogenic RGPs proceed to produce glia. These results suggest that progenitor behavior and histogenesis in the mammalian neocortex conform to a remarkably orderly and deterministic program. Radial glial progenitors (RGPs) progress through a coherent proliferation program Individual RGPs produce a unitary output of neurons during the neurogenic phase OTX1 deletion in RGPs leads to a reduction in neuronal unit size A defined fraction of about one in six RGPs proceeds to gliogenesis after neurogenesis
Collapse
Affiliation(s)
- Peng Gao
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Graduate Program in Neuroscience, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Maria Pia Postiglione
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Teresa G Krieger
- Cavendish Laboratory, Department of Physics, J.J. Thomson Avenue, University of Cambridge, Cambridge CB3 0HE, UK; Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Luisirene Hernandez
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Graduate Program in Neuroscience, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Chao Wang
- Departments of Biomedical Informatics and Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Zhi Han
- College of Software, Nankai University, 94 Weijin Road, Tianjin 300071, P.R.C
| | - Carmen Streicher
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Ekaterina Papusheva
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Ryan Insolera
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Graduate Program in Neuroscience, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Kritika Chugh
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Oren Kodish
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Kun Huang
- Departments of Biomedical Informatics and Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Benjamin D Simons
- Cavendish Laboratory, Department of Physics, J.J. Thomson Avenue, University of Cambridge, Cambridge CB3 0HE, UK; Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| | - Liqun Luo
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
| | - Song-Hai Shi
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Graduate Program in Neuroscience, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
78
|
Azzarelli R, Hardwick LJA, Philpott A. Emergence of neuronal diversity from patterning of telencephalic progenitors. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:197-214. [PMID: 25619507 DOI: 10.1002/wdev.174] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 12/02/2014] [Accepted: 12/14/2014] [Indexed: 01/03/2023]
Abstract
During central nervous system (CNS) development, hundreds of distinct neuronal subtypes are generated from a single layer of multipotent neuroepithelial progenitor cells. Within the rostral CNS, initial regionalization of the telencephalon marks the territories where the cerebral cortex and the basal ganglia originate. Subsequent refinement of the primary structures determines the formation of domains of differential gene expression, where distinct fate-restricted progenitors are located. To understand how diversification of neural progenitors and neurons is achieved in the telencephalon, it is important to address early and late patterning events in this context. In particular, important questions include: How does the telencephalon become specified and regionalized along the major spatial axes? Within each region, are the differences in neuronal subtypes established at the progenitor level or at the postmitotic stage? If distinct progenitors exist that are committed to subtype-specific neuronal lineages, how does the diversification emerge? What is the contribution of positional and temporal cues and how is this information integrated into the intrinsic programs of cell identity? WIREs For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Roberta Azzarelli
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, UK
| | | | | |
Collapse
|
79
|
Croizier S, Chometton S, Fellmann D, Risold PY. Characterization of a mammalian prosencephalic functional plan. Front Neuroanat 2015; 8:161. [PMID: 25610375 PMCID: PMC4285092 DOI: 10.3389/fnana.2014.00161] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/09/2014] [Indexed: 11/13/2022] Open
Abstract
Hypothalamic organizational concepts have greatly evolved as the primary hypothalamic pathways have been systematically investigated. In the present review, we describe how the hypothalamus arises from a molecularly heterogeneous region of the embryonic neural tube but is first differentiated as a primary neuronal cell cord (earliest mantle layer). This structure defines two axes that align onto two fundamental components: a longitudinal tractus postopticus(tpoc)/retinian component and a transverse supraoptic tract(sot)/olfactory component. We then discuss how these two axonal tracts guide the formation of all major tracts that connect the telencephalon with the hypothalamus/ventral midbrain, highlighting the existence of an early basic plan in the functional organization of the prosencephalic connectome.
Collapse
Affiliation(s)
- Sophie Croizier
- EA 3922, SFR FED 4234, UFR Sciences Médicales et Pharmaceutiques, Université de Franche-Comté Besançon, France
| | - Sandrine Chometton
- EA 3922, SFR FED 4234, UFR Sciences Médicales et Pharmaceutiques, Université de Franche-Comté Besançon, France
| | - Dominique Fellmann
- EA 3922, SFR FED 4234, UFR Sciences Médicales et Pharmaceutiques, Université de Franche-Comté Besançon, France
| | - Pierre-Yves Risold
- EA 3922, SFR FED 4234, UFR Sciences Médicales et Pharmaceutiques, Université de Franche-Comté Besançon, France
| |
Collapse
|
80
|
Development of cortical interneurons. Neuropsychopharmacology 2015; 40:16-23. [PMID: 25103177 PMCID: PMC4262895 DOI: 10.1038/npp.2014.171] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/16/2014] [Accepted: 06/26/2014] [Indexed: 01/15/2023]
Abstract
Inhibitory local circuit neurons (LCNs), often called interneurons, have vital roles in the development and function of cortical networks. Their inhibitory influences regulate both the excitability of cortical projection neurons on the level of individual cells, and the synchronous activity of projection neuron ensembles that appear to be a neural basis for major aspects of cognitive processing. Dysfunction of LCNs has been associated with neurological and psychiatric diseases, such as epilepsy, schizophrenia, and autism. Here we review progress in understanding LCN fate determination, their nonradial migration to the cortex, their maturation within the cortex, and the contribution of LCN dysfunction to neuropsychiatric disorders.
Collapse
|
81
|
Ebina T, Sohya K, Imayoshi I, Yin ST, Kimura R, Yanagawa Y, Kameda H, Hioki H, Kaneko T, Tsumoto T. 3D clustering of GABAergic neurons enhances inhibitory actions on excitatory neurons in the mouse visual cortex. Cell Rep 2014; 9:1896-1907. [PMID: 25464846 DOI: 10.1016/j.celrep.2014.10.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/09/2014] [Accepted: 10/22/2014] [Indexed: 10/24/2022] Open
Abstract
Neocortical neurons with similar functional properties assemble into spatially coherent circuits, but it remains unclear how inhibitory interneurons are organized. We applied in vivo two-photon functional Ca(2+) imaging and whole-cell recording of synaptic currents to record visual responses of cortical neurons and analyzed their spatial arrangements. GABAergic interneurons were clustered in the 3D space of the mouse visual cortex, and excitatory neurons located within the clusters (insiders) had a lower amplitude and sharper orientation tuning of visual responses than outsiders. Inhibitory synaptic currents recorded from the insiders were larger than those of the outsiders. Single, isolated interneurons did not show such a location-tuning/amplitude relationship. The two principal subtypes of interneurons, parvalbumin- and somatostatin-expressing neurons, also formed clusters with only slightly overlapping each other and exhibited a different location-tuning relationship. These findings suggest that GABAergic interneurons and their subgroups form clusters to make their inhibitory function more effective than isolated interneurons.
Collapse
Affiliation(s)
- Teppei Ebina
- Brain Science Institute, RIKEN, Wako 351-0198, Japan
| | - Kazuhiro Sohya
- Brain Science Institute, RIKEN, Wako 351-0198, Japan; PRESTO, Japan Science and Technology Agency, Tokyo 102-0075, Japan
| | - Itaru Imayoshi
- PRESTO, Japan Science and Technology Agency, Tokyo 102-0075, Japan; The Hakubi Center, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Shu-Ting Yin
- Brain Science Institute, RIKEN, Wako 351-0198, Japan
| | - Rui Kimura
- Brain Science Institute, RIKEN, Wako 351-0198, Japan
| | - Yuchio Yanagawa
- Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Hiroshi Kameda
- Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Hiroyuki Hioki
- Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Takeshi Kaneko
- Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | | |
Collapse
|
82
|
Nakamoto KT, Mellott JG, Killius J, Storey-Workley ME, Sowick CS, Schofield BR. Ultrastructural characterization of GABAergic and excitatory synapses in the inferior colliculus. Front Neuroanat 2014; 8:108. [PMID: 25400551 PMCID: PMC4212260 DOI: 10.3389/fnana.2014.00108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 09/12/2014] [Indexed: 01/13/2023] Open
Abstract
In the inferior colliculus (IC) cells integrate inhibitory input from the brainstem and excitatory input from both the brainstem and auditory cortex. In order to understand how these inputs are integrated by IC cells identification of their synaptic arrangements is required. We used electron microscopy to characterize GABAergic synapses in the dorsal cortex, central nucleus, and lateral cortex of the IC (ICd, ICc, and IClc) of guinea pigs. Throughout the IC, GABAergic synapses are characterized by pleomorphic vesicles and symmetric junctions. Comparisons of GABAergic synapses with excitatory synapses revealed differences (in some IC subdivisions) between the distributions of these synapse types onto IC cells. For excitatory cells in the IClc and ICd GABAergic synapses are biased toward the somas and large dendrites, whereas the excitatory boutons are biased toward spines and small dendrites. This arrangement could allow for strong inhibitory gating of excitatory inputs. Such differences in synaptic distributions were not observed in the ICc, where the two classes of bouton have similar distributions along the dendrites of excitatory cells. Interactions between excitatory and GABAergic inputs on the dendrites of excitatory ICc cells may be more restricted (i.e., reflecting local dendritic processing) than in the other IC subdivisions. Comparisons across IC subdivisions revealed evidence for two classes of GABAergic boutons, a small GABAergic (SG) class that is present throughout the IC and a large GABAergic (LG) class that is almost completely restricted to the ICc. In the ICc, LG, and SG boutons differ in their targets. SG boutons contact excitatory dendritic shafts most often, but also contact excitatory spines and somas (excitatory and GABAergic). LG synapses make comparatively fewer contacts on excitatory shafts, and make comparatively more contacts on excitatory spines and on somas (excitatory and GABAergic). LG boutons likely have a lemniscal origin.
Collapse
Affiliation(s)
- Kyle T Nakamoto
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University Rootstown, OH, USA
| | - Jeffrey G Mellott
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University Rootstown, OH, USA
| | - Jeanette Killius
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University Rootstown, OH, USA
| | - Megan E Storey-Workley
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University Rootstown, OH, USA
| | - Colleen S Sowick
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University Rootstown, OH, USA
| | - Brett R Schofield
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University Rootstown, OH, USA
| |
Collapse
|
83
|
Cortical neurogenesis in the absence of centrioles. Nat Neurosci 2014; 17:1528-35. [PMID: 25282615 PMCID: PMC4213237 DOI: 10.1038/nn.3831] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 09/09/2014] [Indexed: 12/14/2022]
Abstract
Neuronal production in the mammalian cortex depends on extensive mitoses of radial glial progenitors (RGPs) residing in the ventricular zone (VZ). Here, we examine the function of centrioles in RGPs during cortical neurogenesis in mice by conditional removal of SAS-4, a protein required for centriole biogenesis. SAS-4 deletion leads to a progressive loss of centrioles, accompanied by RGP detachment from the VZ. Delocalized RGPs do not become outer subventricular zone RGPs (oRGs). While remaining proliferative, ectopic RGPs, as well as those in the VZ with a centrosomal deficit exhibit prolonged mitosis, p53 up-regulation and apoptosis, resulting in neuronal loss and microcephaly. Simultaneous removal of p53 fully rescues RGP death and microcephaly, but not RGP delocalization and randomized mitotic spindle orientation. Our findings define centriolar functions in anchoring RGPs in the VZ and ensuring their efficient mitoses, and also reveal the remarkable adaptability of RGPs in the developing cortex.
Collapse
|
84
|
Abstract
The mammalian neocortex gives rise to a wide range of mental activities and consists of a constellation of interconnected areas that are built from a set of basic circuit templates. Major obstacles to understanding cortical architecture include the diversity of cell types, their highly recurrent local and global connectivity, dynamic circuit operations, and a convoluted developmental assembly process rooted in the genome. With our increasing knowledge of gene expression and developmental genetic principles, it is now feasible to launch a program of genetic dissection of cortical circuits through systematic targeting of cell types and fate mapping of neural progenitors. Strategic design of even a modest number of mouse driver lines will facilitate efforts to compile a cell type parts list, build a Cortical Cell Atlas, establish experimental access to modern tools, integrate studies across levels, and provide coordinates for tracing developmental trajectory from circuit assembly to functional operation.
Collapse
Affiliation(s)
- Z Josh Huang
- Cold Spring Harbor Laboratory, New York, NY 11724, USA.
| |
Collapse
|
85
|
Xu HT, Han Z, Gao P, He S, Li Z, Shi W, Kodish O, Shao W, Brown KN, Huang K, Shi SH. Distinct lineage-dependent structural and functional organization of the hippocampus. Cell 2014; 157:1552-64. [PMID: 24949968 DOI: 10.1016/j.cell.2014.03.067] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 02/21/2014] [Accepted: 03/29/2014] [Indexed: 12/21/2022]
Abstract
The hippocampus, as part of the cerebral cortex, is essential for memory formation and spatial navigation. Although it has been extensively studied, especially as a model system for neurophysiology, the cellular processes involved in constructing and organizing the hippocampus remain largely unclear. Here, we show that clonally related excitatory neurons in the developing hippocampus are progressively organized into discrete horizontal, but not vertical, clusters in the stratum pyramidale, as revealed by both cell-type-specific retroviral labeling and mosaic analysis with double markers (MADM). Moreover, distinct from those in the neocortex, sister excitatory neurons in the cornu ammonis 1 region of the hippocampus rarely develop electrical or chemical synapses with each other. Instead, they preferentially receive common synaptic input from nearby fast-spiking (FS), but not non-FS, interneurons and exhibit synchronous synaptic activity. These results suggest that shared inhibitory input may specify horizontally clustered sister excitatory neurons as functional units in the hippocampus.
Collapse
Affiliation(s)
- Hua-Tai Xu
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Zhi Han
- College of Software, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Peng Gao
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Graduate Program in Neuroscience, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Shuijin He
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Zhizhong Li
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Wei Shi
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Graduate Program in Neuroscience, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Oren Kodish
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Wei Shao
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Graduate Program in Biochemistry and Structural Biology, Cell and Developmental Biology, and Molecular Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Keith N Brown
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Graduate Program in Neuroscience, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Kun Huang
- Department of Biomedical Informatics, The Ohio State University, 333 West 10(th) Avenue, Columbus, OH 43210, USA
| | - Song-Hai Shi
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Graduate Program in Neuroscience, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA; Graduate Program in Biochemistry and Structural Biology, Cell and Developmental Biology, and Molecular Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
86
|
Steinecke A, Gampe C, Nitzsche F, Bolz J. DISC1 knockdown impairs the tangential migration of cortical interneurons by affecting the actin cytoskeleton. Front Cell Neurosci 2014; 8:190. [PMID: 25071449 PMCID: PMC4086047 DOI: 10.3389/fncel.2014.00190] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 06/20/2014] [Indexed: 12/29/2022] Open
Abstract
Disrupted-in-Schizophrenia 1 (DISC1) is a risk gene for a spectrum of major mental disorders. It has been shown to regulate radial migration as well as dendritic arborization during neurodevelopment and corticogenesis. In a previous study we demonstrated through in vitro experiments that DISC1 also controls the tangential migration of cortical interneurons originating from the medial ganglionic eminence (MGE). Here we first show that DISC1 is necessary for the proper tangential migration of cortical interneurons in the intact brain. Expression of EGFP under the Lhx6 promotor allowed us to analyze exclusively interneurons transfected in the MGE after in utero electroporation. After 3 days in utero, DISC1 deficient interneurons displayed prolonged leading processes and, compared to control, fewer neurons reached the cortex. Time-lapse video microscopy of cortical feeder-layers revealed a decreased migration velocity due to a reduction of soma translocations. Immunostainings indicated that DISC1 is co-localized with F-actin in the growth cone-like structure of the leading process. DISC1 knockdown reduced F-actin levels whereas the overall actin level was not altered. Moreover, DISC1 knockdown also decreased levels of phosphorylated Girdin, which cross-links F-actin, as well as the Girdin-activator pAkt. In contrast, using time-lapse video microscopy of fluorescence-tagged tubulin and EB3 in fibroblasts, we found no effects on microtubule polymerization when DISC1 was reduced. However, DISC1 affected the acetylation of microtubules in the leading processes of MGE-derived cortical interneurons. Together, our results provide a mechanism how DISC1 might contribute to interneuron migration thereby explaining the reduced number of specific classes of cortical interneurons in some DISC1 mouse models.
Collapse
Affiliation(s)
- André Steinecke
- Universität Jena, Institut für Allgemeine Zoologie und Tierphysiologie Jena, Germany
| | - Christin Gampe
- Universität Jena, Institut für Allgemeine Zoologie und Tierphysiologie Jena, Germany
| | - Falk Nitzsche
- Universität Jena, Institut für Allgemeine Zoologie und Tierphysiologie Jena, Germany
| | - Jürgen Bolz
- Universität Jena, Institut für Allgemeine Zoologie und Tierphysiologie Jena, Germany
| |
Collapse
|
87
|
Kröcher T, Röckle I, Diederichs U, Weinhold B, Burkhardt H, Yanagawa Y, Gerardy-Schahn R, Hildebrandt H. A crucial role for polysialic acid in developmental interneuron migration and the establishment of interneuron densities in the mouse prefrontal cortex. Development 2014; 141:3022-32. [PMID: 24993945 DOI: 10.1242/dev.111773] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Polysialic acid (polySia) is a unique glycan modification of the neural cell adhesion molecule NCAM and a major determinant of brain development. Polysialylation of NCAM is implemented by the two polysialyltransferases (polySTs) ST8SIA2 and ST8SIA4. Dysregulation of the polySia-NCAM system and variation in ST8SIA2 has been linked to schizophrenia and other psychiatric disorders. Here, we show reduced interneuron densities in the medial prefrontal cortex (mPFC) of mice with either partial or complete loss of polySia synthesizing capacity by ablation of St8sia2, St8sia4, or both. Cells positive for parvalbumin and perineuronal nets as well as somatostatin-positive cells were reduced in the mPFC of all polyST-deficient lines, whereas calretinin-positive cells and the parvalbumin-negative fraction of calbindin-positive cells were unaffected. Reduced interneuron numbers were corroborated by analyzing polyST-deficient GAD67-GFP knock-in mice. The accumulation of precursors in the ganglionic eminences and reduced numbers of tangentially migrating interneurons in the pallium were observed in polyST-deficient embryos. Removal of polySia by endosialidase treatment of organotypic slice cultures led to decreased entry of GAD67-GFP-positive interneurons from the ganglionic eminences into the pallium. Moreover, the acute loss of polySia caused significant reductions in interneuron velocity and leading process length. Thus, attenuation of polySia interferes with the developmental migration of cortical interneurons and causes pathological changes in specific interneuron subtypes. This provides a possible link between genetic variation in polyST genes, neurodevelopmental alterations and interneuron dysfunction in neuropsychiatric disease.
Collapse
Affiliation(s)
- Tim Kröcher
- Institute of Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany Center for Systems Neuroscience Hannover (ZSN), 30559 Hannover, Germany
| | - Iris Röckle
- Institute of Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Ute Diederichs
- Institute of Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Birgit Weinhold
- Institute of Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Hannelore Burkhardt
- Institute of Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine and CREST, 3-39-22 Showa-machi, Maebashi 371-8511, Japan
| | - Rita Gerardy-Schahn
- Institute of Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany Center for Systems Neuroscience Hannover (ZSN), 30559 Hannover, Germany
| | - Herbert Hildebrandt
- Institute of Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany Center for Systems Neuroscience Hannover (ZSN), 30559 Hannover, Germany
| |
Collapse
|
88
|
Postiglione MP, Hippenmeyer S. Monitoring neurogenesis in the cerebral cortex: an update. FUTURE NEUROLOGY 2014. [DOI: 10.2217/fnl.14.18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ABSTRACT: The cerebral cortex, the seat of our cognitive abilities, is composed of an intricate network of billions of excitatory projection and inhibitory interneurons. Postmitotic cortical neurons are generated by a diverse set of neural stem cell progenitors within dedicated zones and defined periods of neurogenesis during embryonic development. Disruptions in neurogenesis can lead to alterations in the neuronal cytoarchitecture, which is thought to represent a major underlying cause for several neurological disorders, including microcephaly, autism and epilepsy. Although a number of signaling pathways regulating neurogenesis have been described, the precise cellular and molecular mechanisms regulating the functional neural stem cell properties in cortical neurogenesis remain unclear. Here, we discuss the most up-to-date strategies to monitor the fundamental mechanistic parameters of neuronal progenitor proliferation, and recent advances deciphering the logic and dynamics of neurogenesis.
Collapse
Affiliation(s)
- Maria Pia Postiglione
- IST Austria (Institute of Science & Technology Austria), Am Campus 1, A-3400 Klosterneuburg, Austria
| | - Simon Hippenmeyer
- IST Austria (Institute of Science & Technology Austria), Am Campus 1, A-3400 Klosterneuburg, Austria
| |
Collapse
|
89
|
Cai Y, Zhang Y, Shen Q, Rubenstein JLR, Yang Z. A subpopulation of individual neural progenitors in the mammalian dorsal pallium generates both projection neurons and interneurons in vitro. Stem Cells 2014; 31:1193-201. [PMID: 23417928 DOI: 10.1002/stem.1363] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 02/01/2013] [Indexed: 01/27/2023]
Abstract
There are two major classes of neurons in nervous systems: projection neurons and interneurons. During Drosophila nervous system development, a subpopulation of individual stem/progenitor cells gives rise to both motor neurons and interneurons. However, it remains unknown whether individual stem/progenitor cells in the mammalian brain also have the potential to give rise to both projection neurons and interneurons. Here we present evidence that single mouse neocortical progenitors generated both projection neurons and GABAergic interneurons based on studies using fluorescence-activated cell sorting (to obtain individual progenitors) and in vitro clonal analysis using time-lapse video microscopy and immunostaining. We determined that a subpopulation of individual dorsal pallial progenitors from E11.5 Dlx5/6-cre-IRES-EGFP and GAD67-GFP mice can generate both GFP-negative/Tbr1-positive (GFP(-) /Tbr1+)/Tuj1+ cells and GFP+/Sp8+/calretinin+/Tuj1+ cells. The GFP(-) /Tbr1+/Tuj1+ cells had morphological features of cultured projection neurons. Quantitative analysis of the reconstructed lineage trees derived from single progenitors showed that the projection neuron lineage appeared earlier than the interneuron lineage; however, more interneuron-like cells were produced than projection neuron-like cells. Thus, our results provide direct in vitro evidence that individual progenitors of the mammalian dorsal pallium can generate both projection neurons and interneurons.
Collapse
Affiliation(s)
- Yuqun Cai
- Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
90
|
García-Moreno F, Vasistha NA, Begbie J, Molnár Z. CLoNe is a new method to target single progenitors and study their progeny in mouse and chick. Development 2014; 141:1589-98. [PMID: 24644261 PMCID: PMC3957378 DOI: 10.1242/dev.105254] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 02/02/2014] [Indexed: 01/20/2023]
Abstract
Cell lineage analysis enables us to address pivotal questions relating to: the embryonic origin of cells and sibling cell relationships in the adult body; the contribution of progenitors activated after trauma or disease; and the comparison across species in evolutionary biology. To address such fundamental questions, several techniques for clonal labelling have been developed, each with its shortcomings. Here, we report a novel method, CLoNe that is designed to work in all vertebrate species and tissues. CLoNe uses a cocktail of labelling, targeting and transposition vectors that enables targeting of specific subpopulations of progenitor types with a combination of fluorophores resulting in multifluorescence that describes multiple clones per specimen. Furthermore, transposition into the genome ensures the longevity of cell labelling. We demonstrate the robustness of this technique in mouse and chick forebrain development, and show evidence that CLoNe will be broadly applicable to study clonal relationships in different tissues and species.
Collapse
Affiliation(s)
- Fernando García-Moreno
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Navneet A. Vasistha
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Jo Begbie
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| |
Collapse
|
91
|
Ciceri G, Dehorter N. [Organization of interneurons lineages in the cerebral cortex]. Med Sci (Paris) 2014; 30:144-6. [PMID: 24572111 DOI: 10.1051/medsci/20143002010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Gabriele Ciceri
- Instituto de Neurociencias de Alicante, CSIC-Universidad Miguel Hernández, Campus de Sant Joan, 03550 Sant Joan d'Alacant, Espagne
| | - Nathalie Dehorter
- Instituto de Neurociencias de Alicante, CSIC-Universidad Miguel Hernández, Campus de Sant Joan, 03550 Sant Joan d'Alacant, Espagne
| |
Collapse
|
92
|
Inan M, Anderson SA. The chandelier cell, form and function. Curr Opin Neurobiol 2014; 26:142-8. [PMID: 24556285 DOI: 10.1016/j.conb.2014.01.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 01/20/2014] [Accepted: 01/20/2014] [Indexed: 10/25/2022]
Abstract
Among γ-aminobutyric acid (GABA) interneurons, the chandelier cell (ChC) has captured the interest of neuroscientists for a very long time as a subtype not described by Ramon y Cajal. ChCs feature an axonal arborization that selectively innervates the axon initial segments of pyramidal cells. Recent studies involving transgenic mice have identified intriguing features of ChCs, including a remarkably specific spatial and temporal origins, their capacity to have either excitatory or inhibitory influences on pyramidal neurons, and their synaptic alterations in schizophrenia. This review explores these and other developmental and functional aspects of this fascinating cortical neuronal subtype.
Collapse
Affiliation(s)
- Melis Inan
- Weill Cornell Medical College, New York, NY, United States
| | - Stewart A Anderson
- Children's Hospital of Philadelphia/University of Pennsylvania, School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
93
|
Marín O, Müller U. Lineage origins of GABAergic versus glutamatergic neurons in the neocortex. Curr Opin Neurobiol 2014; 26:132-41. [PMID: 24549207 DOI: 10.1016/j.conb.2014.01.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/17/2014] [Accepted: 01/22/2014] [Indexed: 01/11/2023]
Abstract
Neocortical circuits are assembled from subtypes of glutamatergic excitatory and GABAergic inhibitory neurons with divergent anatomical and molecular signatures and unique physiological properties. Excitatory neurons derive from progenitors in the pallium, whereas inhibitory neurons originate from progenitors in the subpallium. Both classes of neurons subsequently migrate along well-defined routes to their final target area, where they integrate into common neuronal circuits. Recent findings show that neuronal diversity within the lineages of excitatory and inhibitory neurons is in part already established at the level of progenitor cells before migration. This poses challenges for our understanding of how radial units of interconnected excitatory and inhibitory neurons are assembled from progenitors that are spatially segregated and diverse in nature.
Collapse
Affiliation(s)
- Oscar Marín
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain.
| | - Ulrich Müller
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
94
|
Sultan KT, Shi W, Shi SH. Clonal origins of neocortical interneurons. Curr Opin Neurobiol 2014; 26:125-31. [PMID: 24531366 DOI: 10.1016/j.conb.2014.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/13/2014] [Accepted: 01/20/2014] [Indexed: 12/01/2022]
Abstract
Once referred to as 'short-axon' neurons by Cajal, GABA (gamma-amino butyric acid)-ergic interneurons are essential components of the neocortex. They are distributed throughout the cortical laminae and are responsible for shaping circuit output through a rich array of inhibitory mechanisms. Numerous fate-mapping and transplantation studies have examined the embryonic origins of the diversity of interneurons that are defined along various parameters such as morphology, neurochemical marker expression and physiological properties, and have been extensively reviewed elsewhere. Here, we focus on discussing two recent studies that have, for the first time, examined the production and organization of neocortical interneurons originated from individual progenitors, that is, with clonal resolution, and provided important new insights into the cellular processes underlying the development of inhibitory interneurons in the neocortex.
Collapse
Affiliation(s)
- Khadeejah T Sultan
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, United States; Graduate Program in Neuroscience, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, United States
| | - Wei Shi
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, United States; Graduate Program in Neuroscience, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, United States
| | - Song-Hai Shi
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, United States; Graduate Program in Neuroscience, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, United States.
| |
Collapse
|
95
|
Kepecs A, Fishell G. Interneuron cell types are fit to function. Nature 2014; 505:318-26. [PMID: 24429630 PMCID: PMC4349583 DOI: 10.1038/nature12983] [Citation(s) in RCA: 731] [Impact Index Per Article: 73.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 11/25/2013] [Indexed: 12/26/2022]
Abstract
Understanding brain circuits begins with an appreciation of their component parts - the cells. Although GABAergic interneurons are a minority population within the brain, they are crucial for the control of inhibition. Determining the diversity of these interneurons has been a central goal of neurobiologists, but this amazing cell type has so far defied a generalized classification system. Interneuron complexity within the telencephalon could be simplified by viewing them as elaborations of a much more finite group of developmentally specified cardinal classes that become further specialized as they mature. Our perspective emphasizes that the ultimate goal is to dispense with classification criteria and directly define interneuron types by function.
Collapse
Affiliation(s)
- Adam Kepecs
- Cold Spring Harbor Laboratory, Marks Building, New York 11724, USA
| | - Gordon Fishell
- NYU Langone Medical Center, First Avenue, Smilow Research Building, New York 10016, USA
| |
Collapse
|
96
|
Kessaris N, Magno L, Rubin AN, Oliveira MG. Genetic programs controlling cortical interneuron fate. Curr Opin Neurobiol 2014; 26:79-87. [PMID: 24440413 PMCID: PMC4082532 DOI: 10.1016/j.conb.2013.12.012] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/17/2013] [Accepted: 12/19/2013] [Indexed: 11/04/2022]
Abstract
Cortical interneurons originate in the embryonic subcortical telencephalon. Spatial and temporal control of progenitor differentiation generates diversity. Genetic pathways of interneuron cell fate specification. Intrinsic pathways and extrinsic cues interplay in interneuron specification.
The origins of cortical interneurons in rodents have been localized to the embryonic subcortical telencephalon where distinct neuroepithelial precursors generate defined interneuron subsets. A swathe of research activity aimed at identifying molecular determinants of subtype identity has uncovered a number of transcription factors that function at different stages of interneuron development. Pathways that lead to the acquisition of mature interneuron traits are therefore beginning to emerge. As genetic programs are influenced by external factors the search continues not only into genetic determinants but also extrinsic influences and the interplay between the two in cell fate specification.
Collapse
Affiliation(s)
- Nicoletta Kessaris
- Wolfson Institute for Biomedical Research and Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Lorenza Magno
- Wolfson Institute for Biomedical Research and Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Anna Noren Rubin
- Wolfson Institute for Biomedical Research and Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Marcio Guiomar Oliveira
- Wolfson Institute for Biomedical Research and Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
97
|
Decision making during interneuron migration in the developing cerebral cortex. Trends Cell Biol 2014; 24:342-51. [PMID: 24388877 DOI: 10.1016/j.tcb.2013.12.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/02/2013] [Accepted: 12/03/2013] [Indexed: 01/06/2023]
Abstract
Appropriate interneuron migration and distribution is essential for the construction of functional neuronal circuitry and the maintenance of excitatory/inhibitory balance in the brain. Gamma-aminobutyric acid (GABA)ergic interneurons originating from the ventral telencephalon choreograph a complex pattern of migration to reach their target destinations within the developing brain. This review examines the cellular and molecular underpinnings of the major decision-making steps involved in this process of oriental navigation of cortical interneurons.
Collapse
|
98
|
Tsui D, Voronova A, Gallagher D, Kaplan DR, Miller FD, Wang J. CBP regulates the differentiation of interneurons from ventral forebrain neural precursors during murine development. Dev Biol 2014; 385:230-41. [DOI: 10.1016/j.ydbio.2013.11.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/31/2013] [Accepted: 11/07/2013] [Indexed: 11/30/2022]
|
99
|
O'Leary C, Cole SJ, Langford M, Hewage J, White A, Cooper HM. RGMa regulates cortical interneuron migration and differentiation. PLoS One 2013; 8:e81711. [PMID: 24312340 PMCID: PMC3842424 DOI: 10.1371/journal.pone.0081711] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 10/23/2013] [Indexed: 11/24/2022] Open
Abstract
The etiology of neuropsychiatric disorders, including schizophrenia and autism, has been linked to a failure to establish the intricate neural network comprising excitatory pyramidal and inhibitory interneurons during neocortex development. A large proportion of cortical inhibitory interneurons originate in the medial ganglionic eminence (MGE) of the ventral telencephalon and then migrate through the ventral subventricular zone, across the corticostriatal junction, into the embryonic cortex. Successful navigation of newborn interneurons through the complex environment of the ventral telencephalon is governed by spatiotemporally restricted deployment of both chemorepulsive and chemoattractive guidance cues which work in concert to create a migratory corridor. Despite the expanding list of interneuron guidance cues, cues responsible for preventing interneurons from re-entering the ventricular zone of the ganglionic eminences have not been well characterized. Here we provide evidence that the chemorepulsive axon guidance cue, RGMa (Repulsive Guidance Molecule a), may fulfill this function. The ventricular zone restricted expression of RGMa in the ganglionic eminences and the presence of its receptor, Neogenin, in the ventricular zone and on newborn and maturing MGE-derived interneurons implicates RGMa-Neogenin interactions in interneuron differentiation and migration. Using an in vitro approach, we show that RGMa promotes interneuron differentiation by potentiating neurite outgrowth. In addition, using in vitro explant and migration assays, we provide evidence that RGMa is a repulsive guidance cue for newborn interneurons migrating out of the ganglionic eminence ventricular zone. Intriguingly, the alternative Neogenin ligand, Netrin-1, had no effect on migration. However, we observed complete abrogation of RGMa-induced chemorepulsion when newborn interneurons were simultaneously exposed to RGMa and Netrin-1 gradients, suggesting a novel mechanism for the tight regulation of RGMa-guided interneuron migration. We propose that during peak neurogenesis, repulsive RGMa-Neogenin interactions drive interneurons into the migratory corridor and prevent re-entry into the ventricular zone of the ganglionic eminences.
Collapse
Affiliation(s)
- Conor O'Leary
- The University of Queensland, Queensland Brain Institute, Brisbane, Queensland, Australia
| | | | | | | | | | | |
Collapse
|
100
|
Sebe JY, Looke-Stewart E, Dinday MT, Alvarez-Buylla A, Baraban SC. Neocortical integration of transplanted GABA progenitor cells from wild type and GABA(B) receptor knockout mouse donors. Neurosci Lett 2013; 561:52-7. [PMID: 24291697 DOI: 10.1016/j.neulet.2013.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 10/17/2013] [Accepted: 11/10/2013] [Indexed: 10/26/2022]
Abstract
Most cortical interneurons originate in a region of the embryonic subpallium called the medial ganglionic eminence (MGE). When MGE cells are transplanted into cerebral cortex, these progenitors migrate extensively and differentiate into functional inhibitory neurons. Although MGE progenitors have therapeutic potential following transplantation, it is unknown precisely how these cells distribute within neocortical lamina of the recipient brain. Here we transplanted mouse embryonic day 12.5 MGE progenitors into postnatal neocortex and evaluated laminar distribution of interneuron subtypes using double- and triple-label immunohistochemistry. Studies were performed using wild type (WT) or donor mice lacking a metabotropic GABA(B) receptor subunit (GABA(B1)R KO). MGE-derived neurons from WT and GABA(B1)R KO mice preferentially and densely distributed in neocortical layers 2/3, 5 and 6. As expected, MGE-derived neurons differentiated into parvalbumin+ and somatostatin+ interneurons within these neocortical lamina. Our findings provide insights into the anatomical integration of MGE-derived interneurons following transplantation.
Collapse
Affiliation(s)
- Joy Y Sebe
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, United States.
| | - Elizabeth Looke-Stewart
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, United States
| | - Matthew T Dinday
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, United States
| | - Arturo Alvarez-Buylla
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, United States; Graduate Program in Neuroscience, University of California, San Francisco, San Francisco, CA 941432, United States; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, United States
| | - Scott C Baraban
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, United States; Graduate Program in Neuroscience, University of California, San Francisco, San Francisco, CA 941432, United States; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, United States
| |
Collapse
|