51
|
Luzzatto L. A Journey from Blood Cells to Genes and Back. Annu Rev Genomics Hum Genet 2023; 24:1-33. [PMID: 37217201 DOI: 10.1146/annurev-genom-101022-105018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
I was attracted to hematology because by combining clinical findings with the use of a microscope and simple laboratory tests, one could often make a diagnosis. I was attracted to genetics when I learned about inherited blood disorders, at a time when we had only hints that somatic mutations were also important. It seemed clear that if we understood not only what genetic changes caused what diseases but also the mechanisms through which those genetic changes contribute to cause disease, we could improve management. Thus, I investigated many aspects of the glucose-6-phosphate dehydrogenase system, including cloning of the gene, and in the study of paroxysmal nocturnal hemoglobinuria (PNH), I found that it is a clonal disorder; subsequently, we were able to explain how a nonmalignant clone can expand, and I was involved in the first trial of PNH treatment by complement inhibition. I was fortunate to do clinical and research hematology in five countries; in all of them, I learned from mentors, from colleagues, and from patients.
Collapse
Affiliation(s)
- Lucio Luzzatto
- Department of Hematology and Blood Transfusion, Muhimbili University of Health and Allied Sciences, Dar es Salaam, United Republic of Tanzania
- University of Florence, Florence, Italy;
| |
Collapse
|
52
|
Abstract
Admixed populations constitute a large portion of global human genetic diversity, yet they are often left out of genomics analyses. This exclusion is problematic, as it leads to disparities in the understanding of the genetic structure and history of diverse cohorts and the performance of genomic medicine across populations. Admixed populations have particular statistical challenges, as they inherit genomic segments from multiple source populations-the primary reason they have historically been excluded from genetic studies. In recent years, however, an increasing number of statistical methods and software tools have been developed to account for and leverage admixture in the context of genomics analyses. Here, we provide a survey of such computational strategies for the informed consideration of admixture to allow for the well-calibrated inclusion of mixed ancestry populations in large-scale genomics studies, and we detail persisting gaps in existing tools.
Collapse
Affiliation(s)
- Taotao Tan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA;
| | - Elizabeth G Atkinson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA;
| |
Collapse
|
53
|
Cullina S, Wojcik GL, Shemirani R, Klarin D, Gorman BR, Sorokin EP, Gignoux CR, Belbin GM, Pyarajan S, Asgari S, Tsao PS, Damrauer SM, Abul-Husn NS, Kenny EE. Admixture mapping of peripheral artery disease in a Dominican population reveals a putative risk locus on 2q35. Front Genet 2023; 14:1181167. [PMID: 37600667 PMCID: PMC10432698 DOI: 10.3389/fgene.2023.1181167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
Peripheral artery disease (PAD) is a form of atherosclerotic cardiovascular disease, affecting ∼8 million Americans, and is known to have racial and ethnic disparities. PAD has been reported to have a significantly higher prevalence in African Americans (AAs) compared to non-Hispanic European Americans (EAs). Hispanic/Latinos (HLs) have been reported to have lower or similar rates of PAD compared to EAs, despite having a paradoxically high burden of PAD risk factors; however, recent work suggests prevalence may differ between sub-groups. Here, we examined a large cohort of diverse adults in the BioMe biobank in New York City. We observed the prevalence of PAD at 1.7% in EAs vs. 8.5% and 9.4% in AAs and HLs, respectively, and among HL sub-groups, the prevalence was found at 11.4% and 11.5% in Puerto Rican and Dominican populations, respectively. Follow-up analysis that adjusted for common risk factors demonstrated that Dominicans had the highest increased risk for PAD relative to EAs [OR = 3.15 (95% CI 2.33-4.25), p < 6.44 × 10-14]. To investigate whether genetic factors may explain this increased risk, we performed admixture mapping by testing the association between local ancestry and PAD in Dominican BioMe participants (N = 1,813) separately from European, African, and Native American (NAT) continental ancestry tracts. The top association with PAD was an NAT ancestry tract at chromosome 2q35 [OR = 1.96 (SE = 0.16), p < 2.75 × 10-05) with 22.6% vs. 12.9% PAD prevalence in heterozygous NAT tract carriers versus non-carriers, respectively. Fine-mapping at this locus implicated tag SNP rs78529201 located within a long intergenic non-coding RNA (lincRNA) LINC00607, a gene expression regulator of key genes related to thrombosis and extracellular remodeling of endothelial cells, suggesting a putative link of the 2q35 locus to PAD etiology. Efforts to reproduce the signal in other Hispanic cohorts were unsuccessful. In summary, we showed how leveraging health system data helped understand nuances of PAD risk across HL sub-groups and admixture mapping approaches elucidated a putative risk locus in a Dominican population.
Collapse
Affiliation(s)
- Sinead Cullina
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Genevieve L. Wojcik
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Ruhollah Shemirani
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Derek Klarin
- VA Palo Alto Healthcare System, Palo Alto, CA, United States
- Division of Vascular Surgery, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Bryan R. Gorman
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, United States
- Booz Allen Hamilton, McLean, VA, United States
| | - Elena P. Sorokin
- Department of Genetics, Stanford University, Stanford, CA, United States
| | - Christopher R. Gignoux
- Human Medical Genetics and Genomics Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Colorado Center for Personalized Medicine, Aurora, CO, United States
| | - Gillian M. Belbin
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Division of General Internal Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Saiju Pyarajan
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, United States
- Department of Medicine, Brigham Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Samira Asgari
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Philip S. Tsao
- VA Palo Alto Healthcare System, Palo Alto, CA, United States
| | - Scott M. Damrauer
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, United States
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Noura S. Abul-Husn
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Division of Genomic Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Eimear E. Kenny
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Division of General Internal Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Division of Genomic Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
54
|
Trajanoska K, Bhérer C, Taliun D, Zhou S, Richards JB, Mooser V. From target discovery to clinical drug development with human genetics. Nature 2023; 620:737-745. [PMID: 37612393 DOI: 10.1038/s41586-023-06388-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/29/2023] [Indexed: 08/25/2023]
Abstract
The substantial investments in human genetics and genomics made over the past three decades were anticipated to result in many innovative therapies. Here we investigate the extent to which these expectations have been met, excluding cancer treatments. In our search, we identified 40 germline genetic observations that led directly to new targets and subsequently to novel approved therapies for 36 rare and 4 common conditions. The median time between genetic target discovery and drug approval was 25 years. Most of the genetically driven therapies for rare diseases compensate for disease-causing loss-of-function mutations. The therapies approved for common conditions are all inhibitors designed to pharmacologically mimic the natural, disease-protective effects of rare loss-of-function variants. Large biobank-based genetic studies have the power to identify and validate a large number of new drug targets. Genetics can also assist in the clinical development phase of drugs-for example, by selecting individuals who are most likely to respond to investigational therapies. This approach to drug development requires investments into large, diverse cohorts of deeply phenotyped individuals with appropriate consent for genetically assisted trials. A robust framework that facilitates responsible, sustainable benefit sharing will be required to capture the full potential of human genetics and genomics and bring effective and safe innovative therapies to patients quickly.
Collapse
Affiliation(s)
- Katerina Trajanoska
- Canada Excellence Research Chair in Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Quebec, Canada
| | - Claude Bhérer
- Canada Excellence Research Chair in Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Quebec, Canada
| | - Daniel Taliun
- Canada Excellence Research Chair in Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Quebec, Canada
| | - Sirui Zhou
- Canada Excellence Research Chair in Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Quebec, Canada
| | - J Brent Richards
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
- Department of Epidemiology and Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Vincent Mooser
- Canada Excellence Research Chair in Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
55
|
Bocher O, Gilly A, Park YC, Zeggini E, Morris AP. Bridging the diversity gap: Analytical and study design considerations for improving the accuracy of trans-ancestry genetic prediction. HGG ADVANCES 2023; 4:100214. [PMID: 37448981 PMCID: PMC10336686 DOI: 10.1016/j.xhgg.2023.100214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Genetic prediction of common complex disease risk is an essential component of precision medicine. Currently, genome-wide association studies (GWASs) are mostly composed of European-ancestry samples and resulting polygenic scores (PGSs) have been shown to poorly transfer to other ancestries partly due to heterogeneity of allelic effects between populations. Fixed-effects (FETA) and random-effects (RETA) trans-ancestry meta-analyses do not model such ancestry-related heterogeneity, while ancestry-specific (AS) scores may suffer from low power due to low sample sizes. In contrast, trans-ancestry meta-regression (TAMR) builds ancestry-aware PGS that account for more complex trans-ancestry architectures. Here, we examine the predictive performance of these four PGSs under multiple genetic architectures and ancestry configurations. We show that the predictive performance of FETA and RETA is strongly affected by cross-ancestry genetic heterogeneity, while AS PGS performance decreases in under-represented target populations. TAMR PGS is also impacted by heterogeneity but maintains good prediction performance in most situations, especially in ancestry-diverse scenarios. In simulations of human complex traits, TAMR scores currently explain 25% more phenotypic variance than AS in triglyceride levels and 33% more phenotypic variance than FETA in type 2 diabetes in most non-European populations. Importantly, a high proportion of non-European-ancestry individuals is needed to reach prediction levels that are comparable in those populations to the one observed in European-ancestry studies. Our results highlight the need to rebalance the ancestral composition of GWAS to enable accurate prediction in non-European-ancestry groups, and demonstrate the relevance of meta-regression approaches for compensating some of the current population biases in GWAS.
Collapse
Affiliation(s)
| | | | | | - Eleftheria Zeggini
- ITG, Helmholtz Zentrum München, Munich, Germany
- Technical University of Munich, Munich, Germany
- Klinikum Rechts der Isar, Munich, Germany
| | - Andrew P. Morris
- ITG, Helmholtz Zentrum München, Munich, Germany
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, University of Manchester, Manchester, UK
| |
Collapse
|
56
|
Tuncay IO, DeVries D, Gogate A, Kaur K, Kumar A, Xing C, Goodspeed K, Seyoum-Tesfa L, Chahrour MH. The genetics of autism spectrum disorder in an East African familial cohort. CELL GENOMICS 2023; 3:100322. [PMID: 37492102 PMCID: PMC10363748 DOI: 10.1016/j.xgen.2023.100322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/09/2023] [Accepted: 04/16/2023] [Indexed: 07/27/2023]
Abstract
Autism spectrum disorder (ASD) is a group of complex neurodevelopmental conditions affecting communication and social interaction in 2.3% of children. Studies that demonstrated its complex genetic architecture have been mainly performed in populations of European ancestry. We investigate the genetics of ASD in an East African cohort (129 individuals) from a population with higher prevalence (5%). Whole-genome sequencing identified 2.13 million private variants in the cohort and potentially pathogenic variants in known ASD genes (including CACNA1C, CHD7, FMR1, and TCF7L2). Admixture analysis demonstrated that the cohort comprises two ancestral populations, African and Eurasian. Admixture mapping discovered 10 regions that confer ASD risk on the African haplotypes, containing several known ASD genes. The increased ASD prevalence in this population suggests decreased heterogeneity in the underlying genetic etiology, enabling risk allele identification. Our approach emphasizes the power of African genetic variation and admixture analysis to inform the architecture of complex disorders.
Collapse
Affiliation(s)
- Islam Oguz Tuncay
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Darlene DeVries
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ashlesha Gogate
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kiran Kaur
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ashwani Kumar
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kimberly Goodspeed
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Maria H Chahrour
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
57
|
Lehmann B, Mackintosh M, McVean G, Holmes C. Optimal strategies for learning multi-ancestry polygenic scores vary across traits. Nat Commun 2023; 14:4023. [PMID: 37419925 PMCID: PMC10328935 DOI: 10.1038/s41467-023-38930-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/22/2023] [Indexed: 07/09/2023] Open
Abstract
Polygenic scores (PGSs) are individual-level measures that aggregate the genome-wide genetic predisposition to a given trait. As PGS have predominantly been developed using European-ancestry samples, trait prediction using such European ancestry-derived PGS is less accurate in non-European ancestry individuals. Although there has been recent progress in combining multiple PGS trained on distinct populations, the problem of how to maximize performance given a multiple-ancestry cohort is largely unexplored. Here, we investigate the effect of sample size and ancestry composition on PGS performance for fifteen traits in UK Biobank. For some traits, PGS estimated using a relatively small African-ancestry training set outperformed, on an African-ancestry test set, PGS estimated using a much larger European-ancestry only training set. We observe similar, but not identical, results when considering other minority-ancestry groups within UK Biobank. Our results emphasise the importance of targeted data collection from underrepresented groups in order to address existing disparities in PGS performance.
Collapse
Affiliation(s)
- Brieuc Lehmann
- Department of Statistical Science, University College London, London, UK.
| | | | - Gil McVean
- Big Data Institute, University of Oxford, Oxford, UK
| | - Chris Holmes
- The Alan Turing Institute, London, UK
- Big Data Institute, University of Oxford, Oxford, UK
- Department of Statistics, University of Oxford, Oxford, UK
| |
Collapse
|
58
|
Williams AE, Esezobor CI, Lane BM, Gbadegesin RA. Hiding in plain sight: genetics of childhood steroid-resistant nephrotic syndrome in Sub-Saharan Africa. Pediatr Nephrol 2023; 38:2003-2012. [PMID: 36459247 PMCID: PMC10416081 DOI: 10.1007/s00467-022-05831-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022]
Abstract
Steroid-resistant nephrotic syndrome (SRNS) is the most severe form of childhood nephrotic syndrome with an increased risk of progression to chronic kidney disease stage 5. Research endeavors to date have identified more than 80 genes that are associated with SRNS. Most of these genes regulate the structure and function of the podocyte, the visceral epithelial cells of the glomerulus. Although individuals of African ancestry have the highest prevalence of SRNS, especially those from Sub-Saharan Africa (SSA), with rates as high as 30-40% of all cases of nephrotic syndrome, studies focusing on the characterization and understanding of the genetic basis of SRNS in the region are negligible compared with Europe and North America. Therefore, it remains unclear if some of the variants in SRNS genes that are deemed pathogenic for SRNS are truly disease causing, and if the leading causes of monogenic nephrotic syndrome in other populations are the same for children in SSA with SRNS. Other implications of this lack of genetic data for SRNS in the region include the exclusion of children from the region from clinical trials aimed at identifying potential novel therapeutic agents for this severe form of nephrotic syndrome. This review underlines a need for concerted efforts to advance the genetic basis of SRNS in children in SSA. Such endeavors will complement global efforts at understanding the genetic basis of nephrotic syndrome.
Collapse
Affiliation(s)
- Anna Elizabeth Williams
- Department of Pediatrics, Division of Nephrology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Christopher I Esezobor
- Department of Pediatrics, Faculty of Clinical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Brandon M Lane
- Department of Pediatrics, Division of Nephrology, Duke University Medical Center, Durham, NC, 27710, USA
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Rasheed A Gbadegesin
- Department of Pediatrics, Division of Nephrology, Duke University Medical Center, Durham, NC, 27710, USA.
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA.
| |
Collapse
|
59
|
Fiziev PP, McRae J, Ulirsch JC, Dron JS, Hamp T, Yang Y, Wainschtein P, Ni Z, Schraiber JG, Gao H, Cable D, Field Y, Aguet F, Fasnacht M, Metwally A, Rogers J, Marques-Bonet T, Rehm HL, O'Donnell-Luria A, Khera AV, Farh KKH. Rare penetrant mutations confer severe risk of common diseases. Science 2023; 380:eabo1131. [PMID: 37262146 DOI: 10.1126/science.abo1131] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/16/2023] [Indexed: 06/03/2023]
Abstract
We examined 454,712 exomes for genes associated with a wide spectrum of complex traits and common diseases and observed that rare, penetrant mutations in genes implicated by genome-wide association studies confer ~10-fold larger effects than common variants in the same genes. Consequently, an individual at the phenotypic extreme and at the greatest risk for severe, early-onset disease is better identified by a few rare penetrant variants than by the collective action of many common variants with weak effects. By combining rare variants across phenotype-associated genes into a unified genetic risk model, we demonstrate superior portability across diverse global populations compared with common-variant polygenic risk scores, greatly improving the clinical utility of genetic-based risk prediction.
Collapse
Affiliation(s)
- Petko P Fiziev
- Artificial Intelligence Laboratory, Illumina, Inc., San Diego, CA 92122, USA
| | - Jeremy McRae
- Artificial Intelligence Laboratory, Illumina, Inc., San Diego, CA 92122, USA
| | - Jacob C Ulirsch
- Artificial Intelligence Laboratory, Illumina, Inc., San Diego, CA 92122, USA
| | - Jacqueline S Dron
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tobias Hamp
- Artificial Intelligence Laboratory, Illumina, Inc., San Diego, CA 92122, USA
| | - Yanshen Yang
- Artificial Intelligence Laboratory, Illumina, Inc., San Diego, CA 92122, USA
| | - Pierrick Wainschtein
- Artificial Intelligence Laboratory, Illumina, Inc., San Diego, CA 92122, USA
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Zijian Ni
- Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Joshua G Schraiber
- Artificial Intelligence Laboratory, Illumina, Inc., San Diego, CA 92122, USA
| | - Hong Gao
- Artificial Intelligence Laboratory, Illumina, Inc., San Diego, CA 92122, USA
| | - Dylan Cable
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02142, USA
| | - Yair Field
- Artificial Intelligence Laboratory, Illumina, Inc., San Diego, CA 92122, USA
| | - Francois Aguet
- Artificial Intelligence Laboratory, Illumina, Inc., San Diego, CA 92122, USA
| | - Marc Fasnacht
- Artificial Intelligence Laboratory, Illumina, Inc., San Diego, CA 92122, USA
| | - Ahmed Metwally
- Artificial Intelligence Laboratory, Illumina, Inc., San Diego, CA 92122, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), 08003 Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Heidi L Rehm
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Anne O'Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Amit V Khera
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Verve Therapeutics, Cambridge, MA 02215, USA
| | - Kyle Kai-How Farh
- Artificial Intelligence Laboratory, Illumina, Inc., San Diego, CA 92122, USA
| |
Collapse
|
60
|
Araujo DS, Nguyen C, Hu X, Mikhaylova AV, Gignoux C, Ardlie K, Taylor KD, Durda P, Liu Y, Papanicolaou G, Cho MH, Rich SS, Rotter JI, Im HK, Manichaikul A, Wheeler HE. Multivariate adaptive shrinkage improves cross-population transcriptome prediction for transcriptome-wide association studies in underrepresented populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527747. [PMID: 36798214 PMCID: PMC9934635 DOI: 10.1101/2023.02.09.527747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Transcriptome prediction models built with data from European-descent individuals are less accurate when applied to different populations because of differences in linkage disequilibrium patterns and allele frequencies. We hypothesized methods that leverage shared regulatory effects across different conditions, in this case, across different populations may improve cross-population transcriptome prediction. To test this hypothesis, we made transcriptome prediction models for use in transcriptome-wide association studies (TWAS) using different methods (Elastic Net, Joint-Tissue Imputation (JTI), Matrix eQTL, Multivariate Adaptive Shrinkage in R (MASHR), and Transcriptome-Integrated Genetic Association Resource (TIGAR)) and tested their out-of-sample transcriptome prediction accuracy in population-matched and cross-population scenarios. Additionally, to evaluate model applicability in TWAS, we integrated publicly available multi-ethnic genome-wide association study (GWAS) summary statistics from the Population Architecture using Genomics and Epidemiology Study (PAGE) and Pan-UK Biobank with our developed transcriptome prediction models. In regard to transcriptome prediction accuracy, MASHR models performed better or the same as other methods in both population-matched and cross-population transcriptome predictions. Furthermore, in multi-ethnic TWAS, MASHR models yielded more discoveries that replicate in both PAGE and PanUKBB across all methods analyzed, including loci previously mapped in GWAS and new loci previously not found in GWAS. Overall, our study demonstrates the importance of using methods that benefit from different populations' effect size estimates in order to improve TWAS for multi-ethnic or underrepresented populations.
Collapse
Affiliation(s)
- Daniel S. Araujo
- Program in Bioinformatics, Loyola University Chicago, Chicago, IL, 60660, USA
| | - Chris Nguyen
- Department of Biology, Loyola University Chicago, Chicago, IL, 60660, USA
| | - Xiaowei Hu
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, 22908, USA
| | - Anna V. Mikhaylova
- Department of Biostatistics, University of Washington, Seattle, WA, 98195, USA
| | - Chris Gignoux
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, UC Denver Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kristin Ardlie
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Kent D. Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Peter Durda
- Laboratory for Clinical Biochemistry Research, University of Vermont, Colchester, VT, 05446, USA
| | - Yongmei Liu
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - George Papanicolaou
- Epidemiology Branch, Division of Cardiovascular Sciences, National Heart, Lung and Blood Institute, Bethesda, MD, 20892, USA
| | - Michael H. Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, 02115, USA
| | - Stephen S. Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, 22908, USA
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | | | - Hae Kyung Im
- Section of Genetic Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Ani Manichaikul
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, 22908, USA
| | - Heather E. Wheeler
- Program in Bioinformatics, Loyola University Chicago, Chicago, IL, 60660, USA
- Department of Biology, Loyola University Chicago, Chicago, IL, 60660, USA
| |
Collapse
|
61
|
Tomofuji Y, Sonehara K, Kishikawa T, Maeda Y, Ogawa K, Kawabata S, Nii T, Okuno T, Oguro-Igashira E, Kinoshita M, Takagaki M, Yamamoto K, Kurakawa T, Yagita-Sakamaki M, Hosokawa A, Motooka D, Matsumoto Y, Matsuoka H, Yoshimura M, Ohshima S, Nakamura S, Inohara H, Kishima H, Mochizuki H, Takeda K, Kumanogoh A, Okada Y. Reconstruction of the personal information from human genome reads in gut metagenome sequencing data. Nat Microbiol 2023:10.1038/s41564-023-01381-3. [PMID: 37188815 DOI: 10.1038/s41564-023-01381-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/12/2023] [Indexed: 05/17/2023]
Abstract
Human DNA present in faecal samples can result in a small number of human reads in gut shotgun metagenomic sequencing data. However, it is presently unclear how much personal information can be reconstructed from such reads, and this has not been quantitatively evaluated. Such a quantitative evaluation is necessary to clarify the ethical concerns related to data sharing and to enable efficient use of human genetic information in stool samples, such as for research and forensics. Here we used genomic approaches to reconstruct personal information from the faecal metagenomes of 343 Japanese individuals with associated human genotype data. Genetic sex could be accurately predicted based on the sequencing depth of sex chromosomes for 97.3% of the samples. Individuals could be re-identified from the matched genotype data based on human reads recovered from the faecal metagenomic data with 93.3% sensitivity using a likelihood score-based method. This method also enabled us to predict the ancestries of 98.3% of the samples. Finally, we performed ultra-deep shotgun metagenomic sequencing of five faecal samples as well as whole-genome sequencing of blood samples. Using genotype-calling approaches, we demonstrated that the genotypes of both common and rare variants could be reconstructed from faecal samples. This included clinically relevant variants. Our approach can be used to quantify personal information contained within gut metagenome data.
Collapse
Affiliation(s)
- Yoshihiko Tomofuji
- Department of Statistical Genetics, Graduate School of Medicine, Osaka University, Suita, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan.
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
| | - Kyuto Sonehara
- Department of Statistical Genetics, Graduate School of Medicine, Osaka University, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshihiro Kishikawa
- Department of Statistical Genetics, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Yuichi Maeda
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Kotaro Ogawa
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Shuhei Kawabata
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Takuro Nii
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Tatsusada Okuno
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Eri Oguro-Igashira
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Makoto Kinoshita
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Masatoshi Takagaki
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Kenichi Yamamoto
- Department of Statistical Genetics, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
- Laboratory of Statistical Immunology, WPI Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
| | - Takashi Kurakawa
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Mayu Yagita-Sakamaki
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Akiko Hosokawa
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Neurology, Suita Municipal Hospital, Suita, Japan
| | - Daisuke Motooka
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Yuki Matsumoto
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Hidetoshi Matsuoka
- Department of Rheumatology and Allergology, NHO Osaka Minami Medical Center, Kawachinagano, Japan
| | - Maiko Yoshimura
- Department of Rheumatology and Allergology, NHO Osaka Minami Medical Center, Kawachinagano, Japan
| | - Shiro Ohshima
- Department of Rheumatology and Allergology, NHO Osaka Minami Medical Center, Kawachinagano, Japan
| | - Shota Nakamura
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Japan
| | - Hidenori Inohara
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Japan
- WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Atsushi Kumanogoh
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Graduate School of Medicine, Osaka University, Suita, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan.
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
- Laboratory of Statistical Immunology, WPI Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan.
- Center for Infectious Disease Education and Research, Osaka University, Suita, Japan.
| |
Collapse
|
62
|
Baine-Savanhu F, Macaulay S, Louw N, Bollweg A, Flynn K, Molatoli M, Nevondwe P, Seymour H, Carstens N, Krause A, Lombard Z. Identifying the genetic causes of developmental disorders and intellectual disability in Africa: a systematic literature review. Front Genet 2023; 14:1137922. [PMID: 37234869 PMCID: PMC10208355 DOI: 10.3389/fgene.2023.1137922] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/12/2023] [Indexed: 05/28/2023] Open
Abstract
Objective: Genetic variants cause a significant portion of developmental disorders and intellectual disabilities (DD/ID), but clinical and genetic heterogeneity makes identification challenging. Compounding the issue is a lack of ethnic diversity in studies into the genetic aetiology of DD/ID, with a dearth of data from Africa. This systematic review aimed to comprehensively describe the current knowledge from the African continent on this topic. Method: Applicable literature published up until July 2021 was retrieved from PubMed, Scopus and Web of Science databases, following PRISMA guidelines, focusing on original research reports on DD/ID where African patients were the focus of the study. The quality of the dataset was assessed using appraisal tools from the Joanna Briggs Institute, whereafter metadata was extracted for analysis. Results: A total of 3,803 publications were extracted and screened. After duplicate removal, title, abstract and full paper screening, 287 publications were deemed appropriate for inclusion. Of the papers analysed, a large disparity was seen between work emanating from North Africa compared to sub-Saharan Africa, with North Africa dominating the publications. Representation of African scientists on publications was poorly balanced, with most research being led by international researchers. There are very few systematic cohort studies, particularly using newer technologies, such as chromosomal microarray and next-generation sequencing. Most of the reports on new technology data were generated outside Africa. Conclusion: This review highlights how the molecular epidemiology of DD/ID in Africa is hampered by significant knowledge gaps. Efforts are needed to produce systematically obtained high quality data that can be used to inform appropriate strategies to implement genomic medicine for DD/ID on the African continent, and to successfully bridge healthcare inequalities.
Collapse
Affiliation(s)
- Fiona Baine-Savanhu
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shelley Macaulay
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nadja Louw
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Alanna Bollweg
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kaitlyn Flynn
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mhlekazi Molatoli
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Patracia Nevondwe
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Heather Seymour
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nadia Carstens
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Genomics Platform, South African Medical Research Council, Cape Town, South Africa
| | - Amanda Krause
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Zané Lombard
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
63
|
Fiziev P, McRae J, Ulirsch JC, Dron JS, Hamp T, Yang Y, Wainschtein P, Ni Z, Schraiber JG, Gao H, Cable D, Field Y, Aguet F, Fasnacht M, Metwally A, Rogers J, Marques-Bonet T, Rehm HL, O’Donnell-Luria A, Khera AV, Kai-How Farh K. Rare penetrant mutations confer severe risk of common diseases. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.01.23289356. [PMID: 37205493 PMCID: PMC10187340 DOI: 10.1101/2023.05.01.23289356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We examined 454,712 exomes for genes associated with a wide spectrum of complex traits and common diseases and observed that rare, penetrant mutations in genes implicated by genome-wide association studies confer ∼10-fold larger effects than common variants in the same genes. Consequently, an individual at the phenotypic extreme and at the greatest risk for severe, early-onset disease is better identified by a few rare penetrant variants than by the collective action of many common variants with weak effects. By combining rare variants across phenotype-associated genes into a unified genetic risk model, we demonstrate superior portability across diverse global populations compared to common variant polygenic risk scores, greatly improving the clinical utility of genetic-based risk prediction. One sentence summary Rare variant polygenic risk scores identify individuals with outlier phenotypes in common human diseases and complex traits.
Collapse
Affiliation(s)
- Petko Fiziev
- Artificial Intelligence Laboratory, Illumina, Inc.; San Diego, California 92122, USA
| | - Jeremy McRae
- Artificial Intelligence Laboratory, Illumina, Inc.; San Diego, California 92122, USA
| | - Jacob C. Ulirsch
- Artificial Intelligence Laboratory, Illumina, Inc.; San Diego, California 92122, USA
| | - Jacqueline S. Dron
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard; Cambridge, Massachusetts 02142, USA
| | - Tobias Hamp
- Artificial Intelligence Laboratory, Illumina, Inc.; San Diego, California 92122, USA
| | - Yanshen Yang
- Artificial Intelligence Laboratory, Illumina, Inc.; San Diego, California 92122, USA
| | - Pierrick Wainschtein
- Artificial Intelligence Laboratory, Illumina, Inc.; San Diego, California 92122, USA
| | - Zijian Ni
- Department of Statistics, UW Madison; Madison, Wisconsin 53706, USA
| | - Joshua G. Schraiber
- Artificial Intelligence Laboratory, Illumina, Inc.; San Diego, California 92122, USA
| | - Hong Gao
- Artificial Intelligence Laboratory, Illumina, Inc.; San Diego, California 92122, USA
| | - Dylan Cable
- Department of Electrical Engineering and Computer Science, MIT; Cambridge, Massachusetts 02142, USA
| | - Yair Field
- Artificial Intelligence Laboratory, Illumina, Inc.; San Diego, California 92122, USA
| | - Francois Aguet
- Artificial Intelligence Laboratory, Illumina, Inc.; San Diego, California 92122, USA
| | - Marc Fasnacht
- Artificial Intelligence Laboratory, Illumina, Inc.; San Diego, California 92122, USA
| | - Ahmed Metwally
- Artificial Intelligence Laboratory, Illumina, Inc.; San Diego, California 92122, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine; Houston, Texas 77030, USA
- Wisconsin National Primate Research Center, University of Wisconsin; Madison 53715, USA
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC); 08003 Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA); 08010 Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST); 08003 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona; 08193 Barcelona, Spain
| | - Heidi L. Rehm
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard; Cambridge, Massachusetts 02142, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital; Boston, Massachusetts 02114, USA
| | - Anne O’Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard; Cambridge, Massachusetts 02142, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital; Boston, Massachusetts 02114, USA
- Division of Genetics and Genomics, Boston Children’s Hospital; Boston, Massachusetts 02115, USA
| | - Amit V. Khera
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard; Cambridge, Massachusetts 02142, USA
- Verve Therapeutics, Cambridge, Massachusetts 02215, USA
| | - Kyle Kai-How Farh
- Artificial Intelligence Laboratory, Illumina, Inc.; San Diego, California 92122, USA
| |
Collapse
|
64
|
Kaawa-Mafigiri D, Ekusai Sebatta D, Munabi I, Mwaka ES. Genetic and Genomic Researchers' Perspectives on Biological Sample Sharing in Collaborative Research in Uganda: A Qualitative Study. J Empir Res Hum Res Ethics 2023:15562646231171289. [PMID: 37151037 DOI: 10.1177/15562646231171289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Numerous ethical, legal, and social issues arise with biological sample sharing. The study explored the perspectives of genetic and genomic researchers on the sharing of biological samples in international collaborative research. Qualitative in-depth interviews were conducted with 15 researchers. Participants expressed positive attitudes towards biobanking and appreciated the benefits of cross-border sharing of biological samples but noted that this practice had adversely affected local capacity building efforts. There was limited understanding of the ethical and regulatory frameworks governing sample sharing. Researchers emphasized the importance of respecting cultural values in biobanking research. Issues concerning poor governance and inequitable benefit sharing were also raised. There is a need for fair and equitable international collaborations where all researchers are treated with respect and as equal partners.
Collapse
Affiliation(s)
| | | | - Ian Munabi
- College of Health Sciences, Makerere University, Kampala, Uganda
| | | |
Collapse
|
65
|
Ezugwu AE, Oyelade ON, Ikotun AM, Agushaka JO, Ho YS. Machine Learning Research Trends in Africa: A 30 Years Overview with Bibliometric Analysis Review. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING : STATE OF THE ART REVIEWS 2023; 30:1-31. [PMID: 37359741 PMCID: PMC10148585 DOI: 10.1007/s11831-023-09930-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/19/2023] [Indexed: 06/28/2023]
Abstract
The machine learning (ML) paradigm has gained much popularity today. Its algorithmic models are employed in every field, such as natural language processing, pattern recognition, object detection, image recognition, earth observation and many other research areas. In fact, machine learning technologies and their inevitable impact suffice in many technological transformation agendas currently being propagated by many nations, for which the already yielded benefits are outstanding. From a regional perspective, several studies have shown that machine learning technology can help address some of Africa's most pervasive problems, such as poverty alleviation, improving education, delivering quality healthcare services, and addressing sustainability challenges like food security and climate change. In this state-of-the-art paper, a critical bibliometric analysis study is conducted, coupled with an extensive literature survey on recent developments and associated applications in machine learning research with a perspective on Africa. The presented bibliometric analysis study consists of 2761 machine learning-related documents, of which 89% were articles with at least 482 citations published in 903 journals during the past three decades. Furthermore, the collated documents were retrieved from the Science Citation Index EXPANDED, comprising research publications from 54 African countries between 1993 and 2021. The bibliometric study shows the visualization of the current landscape and future trends in machine learning research and its application to facilitate future collaborative research and knowledge exchange among authors from different research institutions scattered across the African continent.
Collapse
Affiliation(s)
- Absalom E. Ezugwu
- Unit for Data Science and Computing, North-West University, 11 Hoffman Street, Potchefstroom, 2520 South Africa
| | - Olaide N. Oyelade
- Department of Computer Science, Faculty of Physical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Abiodun M. Ikotun
- Unit for Data Science and Computing, North-West University, 11 Hoffman Street, Potchefstroom, 2520 South Africa
| | - Jeffery O. Agushaka
- Unit for Data Science and Computing, North-West University, 11 Hoffman Street, Potchefstroom, 2520 South Africa
| | - Yuh-Shan Ho
- Trend Research Centre, Asia University, No. 500, Lioufeng RoadWufeng, Taichung, 41354 Taiwan
| |
Collapse
|
66
|
Cullina S, Wojcik GL, Shemirani R, Klarin D, Gorman BR, Sorokin EP, Gignoux CR, Belbin GM, Pyarajan S, Asgari S, Tsao PS, Damrauer SM, Abul-Husn NS, Kenny EE. Admixture Mapping of Peripheral Artery Disease in a Dominican Population Reveals a Novel Risk Locus on 2q35. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.27.23287788. [PMID: 37034679 PMCID: PMC10081406 DOI: 10.1101/2023.03.27.23287788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Peripheral artery disease (PAD) is a form of atherosclerotic cardiovascular disease, affecting ∼8 million Americans, and is known to have racial and ethnic disparities. PAD has been reported to have significantly higher prevalence in African Americans (AAs) compared to non-Hispanic European Americans (EAs). Hispanic/Latinos (HLs) have been reported to have lower or similar rates of PAD compared to EAs, despite having a paradoxically high burden of PAD risk factors, however recent work suggests prevalence may differ between sub-groups. Here we examined a large cohort of diverse adults in the Bio Me biobank in New York City (NYC). We observed the prevalence of PAD at 1.7% in EAs vs 8.5% and 9.4% in AAs and HLs, respectively; and among HL sub-groups, at 11.4% and 11.5% in Puerto Rican and Dominican populations, respectively. Follow-up analysis that adjusted for common risk factors demonstrated that Dominicans had the highest increased risk for PAD relative to EAs (OR=3.15 (95% CI 2.33-4.25), P <6.44×10 -14 ). To investigate whether genetic factors may explain this increased risk, we performed admixture mapping by testing the association between local ancestry (LA) and PAD in Dominican Bio Me participants (N=1,940) separately for European (EUR), African (AFR) and Native American (NAT) continental ancestry tracts. We identified a NAT ancestry tract at chromosome 2q35 that was significantly associated with PAD (OR=2.05 (95% CI 1.51-2.78), P <4.06×10 -6 ) with 22.5% vs 12.5% PAD prevalence in heterozygous NAT tract carriers versus non-carriers, respectively. Fine-mapping at this locus implicated tag SNP rs78529201 located within a long intergenic non-coding RNA (lincRNA) LINC00607 , a gene expression regulator of key genes related to thrombosis and extracellular remodeling of endothelial cells, suggesting a putative link of the 2q35 locus to PAD etiology. In summary, we showed how leveraging health systems data helped understand nuances of PAD risk across HL sub-groups and admixture mapping approaches elucidated a novel risk locus in a Dominican population.
Collapse
|
67
|
A case for investment in clinical metagenomics in low-income and middle-income countries. THE LANCET. MICROBE 2023; 4:e192-e199. [PMID: 36563703 DOI: 10.1016/s2666-5247(22)00328-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 12/24/2022]
Abstract
Clinical metagenomics is the diagnostic approach with the broadest capacity to detect both known and novel pathogens. Clinical metagenomics is costly to run and requires infrastructure, but the use of next-generation sequencing for SARS-CoV-2 molecular epidemiology in low-income and middle-income countries (LMICs) offers an opportunity to direct this infrastructure to the establishment of clinical metagenomics programmes. Local implementation of clinical metagenomics is important to create relevant systems and evaluate cost-effective methodologies for its use, as well as to ensure that reference databases and result interpretation tools are appropriate to local epidemiology. Rational implementation, based on the needs of LMICs and the available resources, could ultimately improve individual patient care in instances in which available diagnostics are inadequate and supplement emerging infectious disease surveillance systems to ensure the next pandemic pathogen is quickly identified.
Collapse
|
68
|
Adams AD, Jumah N, Okun N, Bonham VL. Equitable delivery of expanded genetic technologies: Considerations for prenatal and reproductive care. Prenat Diagn 2023; 43:435-442. [PMID: 36825328 DOI: 10.1002/pd.6338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/06/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Affiliation(s)
- April D Adams
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Baylor College of Medicine, Houston, Texas, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Naana Jumah
- Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada.,Centre for Rural and Northern Health Research, Lakehead University, Thunder Bay, Ontario, Canada
| | - Nanette Okun
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Vence L Bonham
- Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
69
|
Neurogenomics in Africa: current state, challenges, opportunities, and recommendation. Ann Med Surg (Lond) 2023; 85:351-354. [PMID: 36845781 PMCID: PMC9949868 DOI: 10.1097/ms9.0000000000000158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/25/2022] [Indexed: 02/28/2023] Open
Abstract
Neurological diseases are becoming more common in Africa. Current estimates indicate that Africa has a significant burden of neurological illnesses, though it is unclear what fraction of the burden may be linked to genetic transmission. In recent years, there has been a significant expansion in the knowledge of the genetic basis of neurological illnesses. This has been made possible mainly by the positional cloning research paradigm, which uses linkage studies to pinpoint specific genes on chromosomes and targeted screening of Mendelian neurological illnesses to identify the causative genes. However, there is currently very little and unequal geographic knowledge about neurogenetics in African people. The lack of collaboration between academics studying neurogenomics and bioinformatics contributes to the scarcity of large-scale neurogenomic investigations in Africa. The primary cause is a shortage of funding from the African government for clinical researchers; this has resulted in heterogeneity in research collaboration in the region as African researchers work more closely with researchers outside the region due to pulling factors of standardized laboratory resources and adequate funding. Therefore, adequate funding is required to elevate researchers' morale and give them the resources they need for their neurogenomic and bioinformatics studies. For Africa to fully benefit from this significant research area, substantial and sustainable financial investments in the training of scientists and clinicians will be required.
Collapse
|
70
|
|
71
|
Masiye F, Jaoko W, Rennie S. Stakeholder views on informed consent models for future use of biological samples in Malawi and South Africa. BMC Med Ethics 2023; 24:4. [PMID: 36658544 PMCID: PMC9854061 DOI: 10.1186/s12910-023-00882-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Current advances in biomedical research have introduced new ethical challenges in obtaining informed consent in low and middle-income settings. For example, there are controversies about the use of broad consent in the collection of biological samples for use in future biomedical research. However, few studies have explored preferred informed consent models for future use of biological samples in Malawi and South Africa. Therefore, we conducted an empirical study to understand preferred consent models among key stakeholders in biomedical studies that involve collection of biological samples in Malawi and South Africa. The main objective of the study was to explore views of key stakeholders on current policies on informed consent in Malawi and South Africa. METHODS This was a qualitative study involving in-depth interviews and focus group discussions. Thirty-four in-depth interviews and 6 focus group discussions were conducted with REC members, Funders, Policymakers, CAB members and Research Participants in Malawi and South Africa to gather their views on models of informed consent. The study was conducted in Cape Town, South Africa, and Blantyre and Lilongwe in Malawi. RESULTS Most key stakeholders preferred broad consent and tiered consent to specific consent. Some participants expressed a strong preference for specific consent to other models of informed consent in biomedical research. Few participants did not have any preference for a consent model, opting for any consent model which provides adequate information about the proposed research and what their national consent regulations require. Finally, very few participants preferred blanket consent to other informed consent models. CONCLUSIONS This study aimed to help fill the gap in the scientific literature on key stakeholder views on consent models for future use of biological samples in Malawi and South Africa. The findings of the study have provided some evidence that may support policies on permissible consent models for future use of biological samples in sub-Saharan Africa considering the differences in informed consent regulations and guidelines. Finally, the findings can inform ongoing discussions on permissible consent models to be used for future use of biological samples.
Collapse
Affiliation(s)
- Francis Masiye
- Malawi University of Science and Technology, Ndata Farm, Thyolo, Malawi.
- Centre for Medical Ethics and Law, Stellenbosch University, Cape Town, South Africa.
| | - Walter Jaoko
- Centre for Medical Ethics and Law, Stellenbosch University, Cape Town, South Africa
- University of Nairobi, Nairobi, Kenya
| | - Stuart Rennie
- Centre for Medical Ethics and Law, Stellenbosch University, Cape Town, South Africa
- University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
72
|
Mostajo-Radji MA. A Latin American perspective on neurodiplomacy. FRONTIERS IN MEDICAL TECHNOLOGY 2023; 4:1005043. [PMID: 36712171 PMCID: PMC9880232 DOI: 10.3389/fmedt.2022.1005043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/08/2022] [Indexed: 01/15/2023] Open
Affiliation(s)
- Mohammed A. Mostajo-Radji
- UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, United States
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
73
|
Consent Codes: Maintaining Consent in an Ever-expanding Open Science Ecosystem. Neuroinformatics 2023; 21:89-100. [PMID: 36520344 PMCID: PMC9931855 DOI: 10.1007/s12021-022-09577-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2022] [Indexed: 12/23/2022]
Abstract
We previously proposed a structure for recording consent-based data use 'categories' and 'requirements' - Consent Codes - with a view to supporting maximum use and integration of genomic research datasets, and reducing uncertainty about permissible re-use of shared data. Here we discuss clarifications and subsequent updates to the Consent Codes (v4) based on new areas of application (e.g., the neurosciences, biobanking, H3Africa), policy developments (e.g., return of research results), and further practical considerations, including developments in automated approaches to consent management.
Collapse
|
74
|
Ibe C, Otu AA, Mnyambwa NP. Advancing disease genomics beyond COVID-19 and reducing health disparities: what does the future hold for Africa? Brief Funct Genomics 2022; 22:241-249. [DOI: 10.1093/bfgp/elac040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/03/2022] [Accepted: 10/14/2022] [Indexed: 11/27/2022] Open
Abstract
Abstract
The COVID-19 pandemic has ushered in high-throughput sequencing technology as an essential public health tool. Scaling up and operationalizing genomics in Africa is crucial as enhanced capacity for genome sequencing could address key health problems relevant to African populations. High-quality genomics research can be leveraged to improve diagnosis, understand the aetiology of unexplained illnesses, improve surveillance of infectious diseases and inform efficient control and therapeutic methods of known, rare and emerging infectious diseases. Achieving these within Africa requires strong commitment from stakeholders. A roadmap is needed to guide training of scientists, infrastructural development, research funding, international collaboration as well as promote public–private partnerships. Although the COVID-19 pandemic has significantly boosted genomics capacity in Africa, the continent still lags other regions. Here, we highlighted key initiatives in genomics research and efforts to address health challenges facing the diverse and fast-growing populations on the continent. We explore the scalability of genomic tools and techniques to tackle a broader range of infectious diseases in Africa, a continent that desperately requires a boost from genomic science.
Collapse
Affiliation(s)
- Chibuike Ibe
- Abia State University Department of Microbiology, Faculty of Biological Sciences, , Uturu, Nigeria
| | | | - Nicholaus P Mnyambwa
- National Institute for Medical Research , Muhimbili Research Centre, Dar es Salaam , Tanzania
- Alliance for Africa Health and Research (A4A), Dar es Salaam , Tanzania
| |
Collapse
|
75
|
Sudi SM, Kabbashi S, Roomaney IA, Aborass M, Chetty M. The genetic determinants of oral diseases in Africa: The gaps should be filled. FRONTIERS IN ORAL HEALTH 2022; 3:1017276. [PMID: 36304994 PMCID: PMC9593064 DOI: 10.3389/froh.2022.1017276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/16/2022] [Indexed: 11/07/2022] Open
Abstract
Oral diseases are a major health concern and are among the most prevalent diseases globally. This problem is becoming more prominent in the rapidly growing populations of Africa. It is well documented that Africa exhibits the most diverse genetic make-up in the world. However, little work has been conducted to understand the genetic basis of oral diseases in Africans. Oral health is often neglected and receives low prioritisation from funders and governments. The genetic determinants of highly prevalent oral diseases such as dental caries and periodontal disease, and regionally prevalent conditions such as oral cancer and NOMA, are largely under-researched areas despite numerous articles alluding to a high burden of these diseases in African populations. Therefore, this review aims to shed light on the significant gaps in research on the genetic and genomic aspects of oral diseases in African populations and highlights the urgent need for evidence-based dentistry, in tandem with the development of the dentist/scientist workforce.
Collapse
Affiliation(s)
| | - Salma Kabbashi
- Craniofacial Biology, University of the Western Cape, Cape Town, South Africa
| | | | | | | |
Collapse
|
76
|
Caliebe A, Tekola‐Ayele F, Darst BF, Wang X, Song YE, Gui J, Sebro RA, Balding DJ, Saad M, Dubé M. Including diverse and admixed populations in genetic epidemiology research. Genet Epidemiol 2022; 46:347-371. [PMID: 35842778 PMCID: PMC9452464 DOI: 10.1002/gepi.22492] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022]
Abstract
The inclusion of ancestrally diverse participants in genetic studies can lead to new discoveries and is important to ensure equitable health care benefit from research advances. Here, members of the Ethical, Legal, Social, Implications (ELSI) committee of the International Genetic Epidemiology Society (IGES) offer perspectives on methods and analysis tools for the conduct of inclusive genetic epidemiology research, with a focus on admixed and ancestrally diverse populations in support of reproducible research practices. We emphasize the importance of distinguishing socially defined population categorizations from genetic ancestry in the design, analysis, reporting, and interpretation of genetic epidemiology research findings. Finally, we discuss the current state of genomic resources used in genetic association studies, functional interpretation, and clinical and public health translation of genomic findings with respect to diverse populations.
Collapse
Affiliation(s)
- Amke Caliebe
- Institute of Medical Informatics and StatisticsKiel University and University Hospital Schleswig‐HolsteinKielGermany
| | - Fasil Tekola‐Ayele
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMarylandUSA
| | - Burcu F. Darst
- Center for Genetic EpidemiologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Public Health Sciences DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| | - Xuexia Wang
- Department of MathematicsUniversity of North TexasDentonTexasUSA
| | - Yeunjoo E. Song
- Department of Population and Quantitative Health SciencesCase Western Reserve UniversityClevelandOhioUSA
| | - Jiang Gui
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth CollegeOne Medical Center Dr.LebanonNew HampshireUSA
| | | | - David J. Balding
- Melbourne Integrative Genomics, Schools of BioSciences and of Mathematics & StatisticsUniversity of MelbourneMelbourneAustralia
| | - Mohamad Saad
- Qatar Computing Research InstituteHamad Bin Khalifa UniversityDohaQatar
- Neuroscience Research Center, Faculty of Medical SciencesLebanese UniversityBeirutLebanon
| | - Marie‐Pierre Dubé
- Department of Medicine, and Social and Preventive MedicineUniversité de MontréalMontréalQuébecCanada
- Beaulieu‐Saucier Pharmacogenomcis CentreMontreal Heart InstituteMontrealCanada
| | | |
Collapse
|
77
|
Nsubuga G, Kateete DP, Aloyo SM, Kigingi LN, Emmanuel N, Dafala K, Ntayi ML, Joloba ML, Rogers K. Biobanking in East and Central Africa: A case of the Integrated Biorepository of H3Africa Uganda. OPEN RESEARCH AFRICA 2022; 5:33. [PMID: 37224314 PMCID: PMC10175960 DOI: 10.12688/openresafrica.13495.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/26/2022] [Indexed: 05/26/2023]
Abstract
Biorepositories are essential because they guarantee the proper storage and distribution of biospecimens and their associated data for current and future research. In Eastern and Central Africa, the Integrated Biorepository of H3Africa Uganda (IBRH3AU) at Makerere University in Uganda was the first of its kind. It is strategically located at Makerere University College of Health Sciences, which is home to some of Uganda's most relevant and impactful infectious and non-infectious disease research. Since its inception as a pilot project in 2012, the IBRH3AU biorepository has grown into a state-of-the-art facility serving the H3Africa consortium and the rest of the scientific community. IBRH3AU has built a solid infrastructure over the past ten years with cutting-edge methods and technologies for the collection, processing, quality control, handling, management, storage and shipment of biospecimens. H3Africa researchers, local researchers, postgraduate and postdoctoral students, and the greater scientific community in Eastern and Central Africa and beyond have benefited from IBRH3AU's exceptional biobanking services.
Collapse
Affiliation(s)
- Gideon Nsubuga
- Integrated Biorepository of H3Africa Uganda, Makerere University, Kampala, P.O. BOX 7072, Uganda
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, P.O. BOX 7072, Uganda
| | - David Patrick Kateete
- Integrated Biorepository of H3Africa Uganda, Makerere University, Kampala, P.O. BOX 7072, Uganda
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, P.O. BOX 7072, Uganda
| | - Sharley Melissa Aloyo
- Integrated Biorepository of H3Africa Uganda, Makerere University, Kampala, P.O. BOX 7072, Uganda
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, P.O. BOX 7072, Uganda
| | - Lwanga Newton Kigingi
- Integrated Biorepository of H3Africa Uganda, Makerere University, Kampala, P.O. BOX 7072, Uganda
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, P.O. BOX 7072, Uganda
| | - Nasinghe Emmanuel
- Integrated Biorepository of H3Africa Uganda, Makerere University, Kampala, P.O. BOX 7072, Uganda
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, P.O. BOX 7072, Uganda
| | - Kezimbira Dafala
- Integrated Biorepository of H3Africa Uganda, Makerere University, Kampala, P.O. BOX 7072, Uganda
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, P.O. BOX 7072, Uganda
| | - Moses Levi Ntayi
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, P.O. BOX 7072, Uganda
| | - Moses L Joloba
- Integrated Biorepository of H3Africa Uganda, Makerere University, Kampala, P.O. BOX 7072, Uganda
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, P.O. BOX 7072, Uganda
| | - Kamulegeya Rogers
- Integrated Biorepository of H3Africa Uganda, Makerere University, Kampala, P.O. BOX 7072, Uganda
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, P.O. BOX 7072, Uganda
| |
Collapse
|
78
|
Ilori T, Watanabe A, Ng KH, Solarin A, Sinha A, Gbadegesin R. Genetics of Chronic Kidney Disease in Low-Resource Settings. Semin Nephrol 2022; 42:151314. [PMID: 36801667 PMCID: PMC10272019 DOI: 10.1016/j.semnephrol.2023.151314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Advances in kidney genomics in the past 20 years has opened the door for more precise diagnosis of kidney disease and identification of new and specific therapeutic agents. Despite these advances, an imbalance exists between low-resource and affluent regions of the world. Individuals of European ancestry from the United States, United Kingdom, and Iceland account for 16% of the world's population, but represent more than 80% of all genome-wide association studies. South Asia, Southeast Asia, Latin America, and Africa together account for 57% of the world population but less than 5% of genome-wide association studies. Implications of this difference include limitations in new variant discovery, inaccurate interpretation of the effect of genetic variants in non-European populations, and unequal access to genomic testing and novel therapies in resource-poor regions. It also further introduces ethical, legal, and social pitfalls, and ultimately may propagate global health inequities. Ongoing efforts to reduce the imbalance in low-resource regions include funding and capacity building, population-based genome sequencing, population-based genome registries, and genetic research networks. More funding, training, and capacity building for infrastructure and expertise is needed in resource-poor regions. Focusing on this will ensure multiple-fold returns on investments in genomic research and technology.
Collapse
Affiliation(s)
- Titilayo Ilori
- Division of Nephrology, Boston University School of Medicine, Boston, MA
| | - Andreia Watanabe
- Division of Molecular Medicine, Department of Pediatrics, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Kar-Hui Ng
- Department of Pediatrics, Yong Loo Lin School of Medicine, Singapore
| | - Adaobi Solarin
- Department of Pediatrics and Child Health, Lagos State University College of Medicine, Ikeja, Lagos, Nigeria
| | - Aditi Sinha
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Rasheed Gbadegesin
- Division of Nephrology, Department of Pediatrics, Duke University School of Medicine, Durham, NC.
| |
Collapse
|
79
|
Clinicians' Perceptions towards Precision Medicine Tools for Cardiovascular Disease Risk Stratification in South Africa. J Pers Med 2022; 12:jpm12091360. [PMID: 36143145 PMCID: PMC9505828 DOI: 10.3390/jpm12091360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Cardiovascular diseases (CVDs) are a leading cause of mortality and morbidity in South Africa. Risk stratification is the preferred approach to disease prevention, but identifying patients at high risk for CVD remains challenging. Assessing genetic risk could improve stratification and inform a clinically relevant precision medicine (PM) approach. Clinicians are critical to PM adoption, thus, this study explores practicing clinicians’ perceptions of PM-based CVD risk stratification in South Africa’s public health setting. Practicing clinicians (n = 109) at four teaching hospitals in Johannesburg, South Africa, completed an electronic self-administered survey. The effect of demographic and professional characteristics on PM-based CVD risk stratification perceptions was assessed. Fewer than 25% of respondents used clinical genetic testing, and 14% had formal genetics training. 78% had a low mean knowledge score, with higher scores associated with genetic training (p < 0.0005) and research involvement (p < 0.05). Despite limited knowledge and resources, 84% perceived PM approaches positively. 57% felt confident in applying the PM-based approach, with those already undertaking CVD risk stratification more confident (p < 0.001). High cost and limited access to genetics services are key barriers. Integrating genetic information into established clinical tools will likely increase confidence in using PM approaches. Addressing the genetics training gap and investment into the country’s genomics capacity is needed to advance PM in South Africa.
Collapse
|
80
|
Yek C, Pacheco AR, Vanaerschot M, Bohl JA, Fahsbender E, Aranda-Díaz A, Lay S, Chea S, Oum MH, Lon C, Tato CM, Manning JE. Metagenomic Pathogen Sequencing in Resource-Scarce Settings: Lessons Learned and the Road Ahead. FRONTIERS IN EPIDEMIOLOGY 2022; 2:926695. [PMID: 36247976 PMCID: PMC9558322 DOI: 10.3389/fepid.2022.926695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/29/2022] [Indexed: 06/16/2023]
Abstract
Metagenomic next-generation sequencing (mNGS) is the process of sequencing all genetic material in a biological sample. The technique is growing in popularity with myriad applications including outbreak investigation, biosurveillance, and pathogen detection in clinical samples. However, mNGS programs are costly to build and maintain, and additional obstacles faced by low- and middle-income countries (LMICs) may further widen global inequities in mNGS capacity. Over the past two decades, several important infectious disease outbreaks have highlighted the importance of establishing widespread sequencing capacity to support rapid disease detection and containment at the source. Using lessons learned from the COVID-19 pandemic, LMICs can leverage current momentum to design and build sustainable mNGS programs, which would form part of a global surveillance network crucial to the elimination of infectious diseases.
Collapse
Affiliation(s)
- Christina Yek
- Department of Critical Care Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, United States
| | - Andrea R. Pacheco
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, Phnom Penh, Cambodia
| | | | - Jennifer A. Bohl
- Vaccine Immunology Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | | | - Andrés Aranda-Díaz
- Chan Zuckerberg Initiative, Redwood City, CA, United States
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Sreyngim Lay
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, Phnom Penh, Cambodia
| | - Sophana Chea
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, Phnom Penh, Cambodia
| | - Meng Heng Oum
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, Phnom Penh, Cambodia
| | - Chanthap Lon
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, Phnom Penh, Cambodia
| | | | - Jessica E. Manning
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, United States
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, Phnom Penh, Cambodia
| |
Collapse
|
81
|
Singh A, Arulogun O, Akinyemi J, Nichols M, Calys-Tagoe B, Ojebuyi B, Jenkins C, Obiako R, Akpalu A, Sarfo F, Wahab K, Sunday A, Owolabi LF, Adigun M, Afolami I, Olorunsogbon O, Ogunronbi M, Melikam ES, Laryea R, Asibey S, Oguike W, Melikam L, Sule A, Titiloye MA, Yahaya IS, Bello A, Kalaria RN, Jegede A, Owolabi M, Ovbiagele B, Akinyemi R. Biological sample donation and informed consent for neurobiobanking: Evidence from a community survey in Ghana and Nigeria. PLoS One 2022; 17:e0267705. [PMID: 35951660 PMCID: PMC9371301 DOI: 10.1371/journal.pone.0267705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 04/13/2022] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Genomic research and neurobiobanking are expanding globally. Empirical evidence on the level of awareness and willingness to donate/share biological samples towards the expansion of neurobiobanking in sub-Saharan Africa is lacking. AIMS To ascertain the awareness, perspectives and predictors regarding biological sample donation, sharing and informed consent preferences among community members in Ghana and Nigeria. METHODS A questionnaire cross-sectional survey was conducted among randomly selected community members from seven communities in Ghana and Nigeria. RESULTS Of the 1015 respondents with mean age 39.3 years (SD 19.5), about a third had heard of blood donation (37.2%, M: 42.4%, F: 32.0%, p = 0.001) and a quarter were aware of blood sample storage for research (24.5%; M: 29.7%, F: 19.4%, p = 0.151). Two out of ten were willing to donate brain after death (18.8%, M: 22.6%, F: 15.0%, p<0.001). Main reasons for unwillingness to donate brain were; to go back to God complete (46.6%) and lack of knowledge related to brain donation (32.7%). Only a third of the participants were aware of informed consent (31.7%; M: 35.9%, F: 27.5%, p<0.001). Predictors of positive attitude towards biobanking and informed consent were being married, tertiary level education, student status, and belonging to select ethnic groups. CONCLUSION There is a greater need for research attention in the area of brain banking and informed consent. Improved context-sensitive public education on neurobiobanking and informed consent, in line with the sociocultural diversities, is recommended within the African sub region.
Collapse
Affiliation(s)
- Arti Singh
- School of Public Health, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Oyedunni Arulogun
- Department of Health Promotion and Education, Faculty of Public Health, University of Ibadan, Ibadan, Nigeria
| | - Joshua Akinyemi
- Department of Epidemiology and Medical Statistics, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Michelle Nichols
- College of Nursing, Medical University of South Carolina, Carolina, Charleston, United Sates of America
| | | | - Babatunde Ojebuyi
- Department of Communication and Language Arts, Faculty of Arts, University of Ibadan, Nigeria
| | - Carolyn Jenkins
- College of Nursing, Medical University of South Carolina, Carolina, Charleston, United Sates of America
| | - Reginald Obiako
- Neurology Unit, Department of Medicine, Ahmadu Bello University Teaching Hospital, Shika, Zaria, Nigeria
| | - Albert Akpalu
- University of Ghana Medical School, College of Health Sciences, Accra, Ghana
| | - Fred Sarfo
- Neurology Unit, Department of Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Kolawole Wahab
- Neurology Unit, Department of Medicine, University of Ilorin Teaching Hospital, University of Ilorin, Ilorin, Nigeria
| | - Adeniyi Sunday
- Neurology Unit, Department of Medicine, University of Ilorin Teaching Hospital, University of Ilorin, Ilorin, Nigeria
| | - Lukman F. Owolabi
- Neurology Unit, Department of Medicine, Aminu Kano Teaching Hospital, Bayero University, Kano, Nigeria
| | - Muyiwa Adigun
- Faculty of Law, University of Ibadan, Ibadan, Nigeria
| | - Ibukun Afolami
- Faculty of Public Health, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olorunyomi Olorunsogbon
- Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Mayowa Ogunronbi
- Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Ruth Laryea
- University of Ghana Medical School, College of Health Sciences, Accra, Ghana
| | - Shadrack Asibey
- Neurology Unit, Department of Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Wisdom Oguike
- Neurology Unit, Department of Medicine, Ahmadu Bello University Teaching Hospital, Shika, Zaria, Nigeria
| | - Lois Melikam
- Neurology Unit, Department of Medicine, Ahmadu Bello University Teaching Hospital, Shika, Zaria, Nigeria
| | - Abdullateef Sule
- Neurology Unit, Department of Medicine, Ahmadu Bello University Teaching Hospital, Shika, Zaria, Nigeria
| | - Musibau A. Titiloye
- Department of Health Promotion and Education, Faculty of Public Health, University of Ibadan, Ibadan, Nigeria
| | - Isah Suleiman Yahaya
- Neurology Unit, Department of Medicine, Aminu Kano Teaching Hospital, Bayero University, Kano, Nigeria
| | - Abiodun Bello
- Neurology Unit, Department of Medicine, University of Ilorin Teaching Hospital, University of Ilorin, Ilorin, Nigeria
| | - Rajesh N. Kalaria
- Neurovascular Research Group, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ayodele Jegede
- Department of Sociology, Faculty of the Social Sciences, University of Ibadan, Ibadan, Nigeria
| | - Mayowa Owolabi
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Bruce Ovbiagele
- School of Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Rufus Akinyemi
- Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
82
|
Ju D, Hui D, Hammond DA, Wonkam A, Tishkoff SA. Importance of Including Non-European Populations in Large Human Genetic Studies to Enhance Precision Medicine. Annu Rev Biomed Data Sci 2022; 5:321-339. [PMID: 35576557 PMCID: PMC9904154 DOI: 10.1146/annurev-biodatasci-122220-112550] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
One goal of genomic medicine is to uncover an individual's genetic risk for disease, which generally requires data connecting genotype to phenotype, as done in genome-wide association studies (GWAS). While there may be clinical promise to employing prediction tools such as polygenic risk scores (PRS), it currently stands that individuals of non-European ancestry may not reap the benefits of genomic medicine because of underrepresentation in large-scale genetics studies. Here, we discuss why this inequity poses a problem for genomic medicine and the reasons for the low transferability of PRS across populations. We also survey the ancestry representation of published GWAS and investigate how estimates of ancestry diversity in GWASparticipants might be biased. We highlight the importance of expanding genetic research in Africa, one of the most underrepresented regions in human genomics research, and discuss issues of ethics, resources, and technology for equitable advancement of genomic medicine.
Collapse
Affiliation(s)
- Dan Ju
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Daniel Hui
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
- Graduate Program in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dorothy A Hammond
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
- Penn Center for Global Genomics & Health Equity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ambroise Wonkam
- Division of Human Genetics, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA;
| | - Sarah A Tishkoff
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
83
|
Wonkam A, Bardien S, Diallo RN, Gaye A, Alimohamed MZ, Kya S, Makani J, Landoure G, Mutesa L, El-Kamah G, Mohamed A, Newport M, Williams SM, Ramsay M, Nembaware V. "Black Lives Matter and Black Research Matters": the African Society of Human Genetics' call to halt racism in science. Mol Biol Cell 2022; 33:vo2. [PMID: 35862495 DOI: 10.1091/mbc.e22-04-0122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The African Society of Human Genetics (AfSHG) was formed to provide a forum for human genetics and genomics scientists in Africa to interact, network, and collaborate. This is critical to facilitate development of solutions to the public health burden of many rare and common diseases across the continent. AfSHG fully supports the Black Lives Matter movement, which is dedicated to fighting racism and ensuring that society values the lives and humanity of Black people. The AfSHG would like to add its "voice" to the public outcry against racism sparked by George Floyd's death and to declare its commitment to ensuring that injustice and systematic racism, as well as abuse and exploitation of Africans and their biological material, are no longer tolerated. This is particularly relevant now as African genomic variation is poised to make significant contributions across several disciplines including ancestry, personalized medicine, and novel drug discovery. "Black Lives Matter and Black Research Matters" is AfSHG's call for the global community to support halting, and reversing, the perpetuation of exploitation of African people through neocolonial malpractices in genomic research. We also propose five key ways to curb racism in science, so that we can move forward together, with a common humanity, collectively embracing scientific endeavors.
Collapse
Affiliation(s)
- Ambroise Wonkam
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa.,McKusick-Nathans Institute and Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa.,South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Cape Town 7505, South Africa
| | - Rokhaya Ndiaye Diallo
- Division of Human Genetics, Faculty of Medicine, Pharmacy and Odontology, University Cheikh Anta Diop, Dakar P. O. Box 5005, Senegal
| | - Amadou Gaye
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Mohamed Zahir Alimohamed
- Department of Haematology and Blood Transfusion, School of Medicine, MUHAS, Dar es Saalam P. O. Box 65001, Tanzania.,Department of Research and Training, Shree Hindu Mandal Hospital, Dar es Salaam P. O. Box 581, Tanzania
| | - Siana Kya
- Department of Haematology and Blood Transfusion, School of Medicine, MUHAS, Dar es Saalam P. O. Box 65001, Tanzania
| | - Julie Makani
- Department of Haematology and Blood Transfusion, School of Medicine, MUHAS, Dar es Saalam P. O. Box 65001, Tanzania
| | - Guida Landoure
- Hopital du point G, University of Bamako, Bamako P. O. Box 333, Mali
| | - Leon Mutesa
- Center for Human Genetics, College of Medicine and Health Sciences, University of Rwanda, Kigali P. O. Box 4285, Rwanda
| | - Ghada El-Kamah
- Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Amal Mohamed
- Brighton & Sussex Centre for Global Health Research, Brighton and Sussex Medical School, University of Sussex, Sussex, BN1 9RH, UK
| | - Melanie Newport
- Brighton & Sussex Centre for Global Health Research, Brighton and Sussex Medical School, University of Sussex, Sussex, BN1 9RH, UK
| | - Scott M Williams
- Department of Population and Quantitative Health Sciences, Institute of Computational Biology, Case Western Reserve University, Cleveland, 44106 OH
| | - Michele Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Private Bag 3, Wits 2050, South Africa
| | - Victoria Nembaware
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
84
|
Martin AR, Stroud RE, Abebe T, Akena D, Alemayehu M, Atwoli L, Chapman SB, Flowers K, Gelaye B, Gichuru S, Kariuki SM, Kinyanjui S, Korte KJ, Koen N, Koenen KC, Newton CRJC, Olivares AM, Pollock S, Post K, Singh I, Stein DJ, Teferra S, Zingela Z, Chibnik LB. Increasing diversity in genomics requires investment in equitable partnerships and capacity building. Nat Genet 2022; 54:740-745. [PMID: 35668301 PMCID: PMC7613571 DOI: 10.1038/s41588-022-01095-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Calls for diversity in genomics have motivated new global research collaborations across institutions with highly imbalanced resources. We describe practical lessons we have learned so far from designing multidisciplinary international research and capacity-building programs that prioritize equity in two intertwined programs — the NeuroGAP-Psychosis research study and GINGER training program — spanning institutions in Ethiopia, Kenya, South Africa, Uganda and the united States.
Collapse
Affiliation(s)
- Alicia R Martin
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| | - Rocky E Stroud
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Tamrat Abebe
- Department of Microbiology, Immunology, and Parasitology, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Dickens Akena
- Department of Psychiatry, School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Melkam Alemayehu
- Department of Psychiatry, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Lukoye Atwoli
- Department of Mental Health, School of Medicine, Moi University College of Health Sciences, Eldoret, Kenya
- Brain and Mind Institute, Medical College East Africa, The Aga Khan University, Nairobi, Kenya
- Department of Internal Medicine, Medical College East Africa, The Aga Khan University, Nairobi, Kenya
| | - Sinéad B Chapman
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Katelyn Flowers
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Broad Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bizu Gelaye
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Stella Gichuru
- Department of Mental Health, Moi Teaching and Referral Hospital, Eldoret, Kenya
| | - Symon M Kariuki
- Neurosciences Unit, Clinical Department, KEMRI-Wellcome Trust Research Programme-Coast, Kilifi, Kenya
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Sam Kinyanjui
- Centre for Geographic Medicine Research Coast, KEMRI-Wellcome Trust Research Programme-Coast, Kilifi, Kenya
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Kristina J Korte
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nastassja Koen
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- SA MRC Unit on Risk & Resilience in Mental Disorders, University of Cape Town and Neuroscience Institute, Cape Town, South Africa
| | - Karestan C Koenen
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Charles R J C Newton
- Neurosciences Unit, Clinical Department, KEMRI-Wellcome Trust Research Programme-Coast, Kilifi, Kenya
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Ana Maria Olivares
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Sam Pollock
- Broad Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kristianna Post
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ilina Singh
- Department of Psychiatry and Wellcome Centre for Ethics and Humanities, University of Oxford, Oxford, UK
| | - Dan J Stein
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- SA MRC Unit on Risk & Resilience in Mental Disorders, University of Cape Town and Neuroscience Institute, Cape Town, South Africa
| | - Solomon Teferra
- Department of Psychiatry, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Zukiswa Zingela
- Executive Dean's Office, Faculty of Health Sciences, Nelson Mandela University, Gqebera, South Africa
| | - Lori B Chibnik
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
85
|
Makani J, Nkya S, Collins F, Luzzatto L. From Mendel to a Mendelian disorder: towards a cure for sickle cell disease. Nat Rev Genet 2022; 23:389-390. [PMID: 35595849 DOI: 10.1038/s41576-022-00498-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Julie Makani
- Department of Haematology and Blood Transfusion, Muhimbili University of Health and Allied Sciences (MUHAS), Dar-es-Salaam, Tanzania. .,Sickle Cell Programme, Department of Haematology and Blood Transfusion, School of Medicine, MUHAS, Dar-es-Salaam, Tanzania. .,Sickle Pan-African Consortium (SPARCO) Clinical Coordinating Centre, SickleInAfrica, Muhimbili University of Health and Allied Sciences (MUHAS), Dar-es-Salaam, Tanzania.
| | - Siana Nkya
- Sickle Cell Programme, Department of Haematology and Blood Transfusion, School of Medicine, MUHAS, Dar-es-Salaam, Tanzania.,Sickle Pan-African Consortium (SPARCO) Clinical Coordinating Centre, SickleInAfrica, Muhimbili University of Health and Allied Sciences (MUHAS), Dar-es-Salaam, Tanzania.,Department of Biochemistry, Muhimbili University of Health and Allied Sciences (MUHAS), Dar-es-Salaam, Tanzania.,Tanzania Society of Human Genetics, Dar-es-Salaam, Tanzania
| | - Francis Collins
- National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, USA
| | - Lucio Luzzatto
- Department of Haematology and Blood Transfusion, Muhimbili University of Health and Allied Sciences (MUHAS), Dar-es-Salaam, Tanzania.,Sickle Cell Programme, Department of Haematology and Blood Transfusion, School of Medicine, MUHAS, Dar-es-Salaam, Tanzania.,University of Florence, Firenze, Italy
| |
Collapse
|
86
|
Munung NS, de Vries J, Pratt B. Towards equitable genomics governance in Africa: Guiding principles from theories of global health governance and the African moral theory of Ubuntu. BIOETHICS 2022; 36:411-422. [PMID: 35041227 PMCID: PMC9050794 DOI: 10.1111/bioe.12995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 09/13/2021] [Accepted: 11/25/2021] [Indexed: 05/03/2023]
Abstract
The post-genomics era promises a revolution characterized by precision medicine and the integration of genomics into almost every area of biomedical research. At the same time, there are concerns that if care is not taken, the genomics revolution may widen global inequities in science and health. In Africa, these concerns are primarily linked to the underrepresentation of African populations in genomics research, limited genomics research capacity in Africa and associated macro-level justice issues such as benefit sharing, inequitable international research collaborations, and the contribution of genomics to the health and research priorities of Africa. Addressing these concerns requires an in-depth reflection on how the ideals of global justice and equity may be advanced in genomics research. To contribute to the limited but growing scholarship on global genomics equity, especially in the African context, we performed a conceptual analysis of three accounts of justice and governance namely, Ubuntu, shared health governance and global governance of health, with the aim of identifying principles that could inform genomics governance in Africa. We used a convergence approach in the conceptual analysis, resulting in the identification of nine principles namely: solidarity, furthering the ideals of health justice, reciprocity, shared decision-making, shared resources, shared responsibility, mutual trust, transparency, and mutual collective accountability. Examples of how the principles may be applied are provided. We recommend that these principles should form the foundation of any mechanism that seeks to systematically advance justice, fairness and equity in genomics research in Africa and more broadly, global health and science equity.
Collapse
Affiliation(s)
- Nchangwi Syntia Munung
- Department of Medicine, University of Cape Town, Cape Town, South Africa
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Jantina de Vries
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Bridget Pratt
- Centre for Health Equity, School of Population and Global Health, University of Melbourne, Melbourne, Australia
| |
Collapse
|
87
|
Hussein AA, Hamad R, Newport MJ, Ibrahim ME. Individualized Medicine in Africa: Bringing the Practice Into the Realms of Population Heterogeneity. Front Genet 2022; 13:853969. [PMID: 35495155 PMCID: PMC9047898 DOI: 10.3389/fgene.2022.853969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/28/2022] [Indexed: 12/02/2022] Open
Abstract
The declared aim of "personalized", "stratified" or "precision" approaches is to place individual variation, as ascertained through genomic and various other biomarkers, at the heart of Scientific Medicine using it to predict risk of disease or response to therapy and to tailor interventions and target therapies so as to maximize benefit and minimize risk for individual patients and efficiency for the health care system overall. It is often contrasted to current practices for which the scientific base is rooted in concepts of a "universal biology" and a "typical" or "average patient" and in which variation is ignored. Yet both approaches equally overlook the hierarchical nature of human variation and the critical importance of differences between populations. Impact of genetic heterogeneity has to be seen within that context to be meaningful and subsequently useful. In Africa such complexity is compounded by the high effective size of its populations, their diverse histories and the diversity of the environmental terrains they occupy, rendering analysis of gene environment interactions including the establishment of phenotype genotype correlations even more cumbersome. Henceforth "Individualized" methods and approaches can only magnify the shortcomings of universal approaches if adopted without due regard to these complexities. In the current perspective we review examples of potential hurdles that may confront biomedical scientists and analysts in genomic medicine in clinical and public health genomics in Africa citing specific examples from the current SARS-COV2 pandemic and the challenges of establishing reference biobanks and pharmacogenomics reference values.
Collapse
Affiliation(s)
- Ayman A. Hussein
- Unit of Diseases and Diversity, Department of Molecular Biology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Reem Hamad
- Unit of Diseases and Diversity, Department of Molecular Biology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Melanie J. Newport
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Muntaser E. Ibrahim
- Unit of Diseases and Diversity, Department of Molecular Biology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| |
Collapse
|
88
|
Lu TP, Kamatani Y, Belbin G, Park T, Hsiao CK. Editorial: Current Status and Future Challenges of Biobank Data Analysis. Front Genet 2022; 13:882611. [PMID: 35495141 PMCID: PMC9047950 DOI: 10.3389/fgene.2022.882611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/24/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Tzu-Pin Lu
- Department of Public Health, College of Public Health, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Yoichiro Kamatani
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Gillian Belbin
- Institute of Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Taesung Park
- Department of Statistics, Seoul National University, Seoul, South Korea
| | - Chuhsing Kate Hsiao
- Department of Public Health, College of Public Health, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
- *Correspondence: Chuhsing Kate Hsiao,
| |
Collapse
|
89
|
Auwerx C, Sadler MC, Reymond A, Kutalik Z. From pharmacogenetics to pharmaco-omics: Milestones and future directions. HGG ADVANCES 2022; 3:100100. [PMID: 35373152 PMCID: PMC8971318 DOI: 10.1016/j.xhgg.2022.100100] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The origins of pharmacogenetics date back to the 1950s, when it was established that inter-individual differences in drug response are partially determined by genetic factors. Since then, pharmacogenetics has grown into its own field, motivated by the translation of identified gene-drug interactions into therapeutic applications. Despite numerous challenges ahead, our understanding of the human pharmacogenetic landscape has greatly improved thanks to the integration of tools originating from disciplines as diverse as biochemistry, molecular biology, statistics, and computer sciences. In this review, we discuss past, present, and future developments of pharmacogenetics methodology, focusing on three milestones: how early research established the genetic basis of drug responses, how technological progress made it possible to assess the full extent of pharmacological variants, and how multi-dimensional omics datasets can improve the identification, functional validation, and mechanistic understanding of the interplay between genes and drugs. We outline novel strategies to repurpose and integrate molecular and clinical data originating from biobanks to gain insights analogous to those obtained from randomized controlled trials. Emphasizing the importance of increased diversity, we envision future directions for the field that should pave the way to the clinical implementation of pharmacogenetics.
Collapse
Affiliation(s)
- Chiara Auwerx
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- University Center for Primary Care and Public Health, Lausanne, Switzerland
| | - Marie C. Sadler
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- University Center for Primary Care and Public Health, Lausanne, Switzerland
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Zoltán Kutalik
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- University Center for Primary Care and Public Health, Lausanne, Switzerland
| |
Collapse
|
90
|
Nkera-Gutabara CK, Kerr R, Scholefield J, Hazelhurst S, Naidoo J. Microbiomics: The Next Pillar of Precision Medicine and Its Role in African Healthcare. Front Genet 2022; 13:869610. [PMID: 35480328 PMCID: PMC9037082 DOI: 10.3389/fgene.2022.869610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/04/2022] [Indexed: 11/26/2022] Open
Abstract
Limited access to technologies that support early monitoring of disease risk and a poor understanding of the geographically unique biological and environmental factors underlying disease, represent significant barriers to improved health outcomes and precision medicine efforts in low to middle income countries. These challenges are further compounded by the rich genetic diversity harboured within Southern Africa thus necessitating alternative strategies for the prediction of disease risk and clinical outcomes in regions where accessibility to personalized healthcare remains limited. The human microbiome refers to the community of microorganisms (bacteria, archaea, fungi and viruses) that co-inhabit the human body. Perturbation of the natural balance of the gut microbiome has been associated with a number of human pathologies, and the microbiome has recently emerged as a critical determinant of drug pharmacokinetics and immunomodulation. The human microbiome should therefore not be omitted from any comprehensive effort towards stratified healthcare and would provide an invaluable and orthogonal approach to existing precision medicine strategies. Recent studies have highlighted the overarching effect of geography on gut microbial diversity as it relates to human health. Health insights from international microbiome datasets are however not yet verified in context of the vast geographical diversity that exists throughout the African continent. In this commentary we discuss microbiome research in Africa and its role in future precision medicine initiatives across the African continent.
Collapse
Affiliation(s)
- C. K. Nkera-Gutabara
- Sydney Brenner Institute for Molecular Bioscience (SBIMB), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Bioengineering and Integrated Genomics Research Group, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - R. Kerr
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - J. Scholefield
- Bioengineering and Integrated Genomics Research Group, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| | - S. Hazelhurst
- Sydney Brenner Institute for Molecular Bioscience (SBIMB), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- School of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg, South Africa
| | - J. Naidoo
- Bioengineering and Integrated Genomics Research Group, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| |
Collapse
|
91
|
Considerations of Autonomy in Guiding Decisions around the Feedback of Individual Genetic Research Results from Genomics Research: Expectations of and Preferences from Researchers in Botswana. Glob Health Epidemiol Genom 2022; 2022:3245206. [PMID: 35441036 PMCID: PMC8989579 DOI: 10.1155/2022/3245206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/19/2022] [Indexed: 11/18/2022] Open
Abstract
Background The Human Health and Heredity (H3Africa) Consortium continues to generate large amounts of genomic data leading to new insights into health and disease among African populations. This has however generated debate among stakeholders involved in developing, implementing, and applying ethical standards and policies for the return of individual genetic research results. The key questions are about when results must, should, may, or must not be returned and by whom. This study aimed to explore the views on the feedback of individual pertinent and incidental genetic research results of researchers, ethics committee members, and policymakers in Botswana. Methods In-depth interviews were conducted with 16 key stakeholders from academic, research institutions, and regulatory bodies in Botswana. An analysis of the coded data was done through an iterative process of analytic induction to document and interpret themes and patterns. Results Overall, the study indicated that researchers have at least a partial obligation to return individual genetic research results to research participants. Respondents placed emphasis on the ethical principle of autonomy. They felt that it was inappropriate for researchers to make decisions about the return of results on participants' behalf except in situations of avoiding participant self-harm or harm to society. Conclusion Findings helped to highlight the importance of considering participants' autonomy in the development of sustainable and credible guidelines for feedback of findings from genomics research in Botswana, which can be explained during community engagement and consent processes. Such guidelines would ultimately be used to develop policies, guide African genomics research, and promote participant autonomy, transparency, and possibly participant trust in research.
Collapse
|
92
|
Mahungu AC, Monnakgotla N, Nel M, Heckmann JM. A review of the genetic spectrum of hereditary spastic paraplegias, inherited neuropathies and spinal muscular atrophies in Africans. Orphanet J Rare Dis 2022; 17:133. [PMID: 35331287 PMCID: PMC8944057 DOI: 10.1186/s13023-022-02280-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/07/2022] [Indexed: 11/10/2022] Open
Abstract
Background Genetic investigations of inherited neuromuscular disorders in Africans, have been neglected. We aimed to summarise the published data and comment on the genetic evidence related to inherited neuropathies (Charcot-Marie-Tooth disease (CMT)), hereditary spastic paraplegias (HSP) and spinal muscular atrophy (SMA) in Africans. Methods PubMed was searched for relevant articles and manual checking of references and review publications were performed for African-ancestry participants with relevant phenotypes and identified genetic variants. For each case report we extracted phenotype information, inheritance pattern, variant segregation and variant frequency in population controls (including up to date frequencies from the gnomAD database). Results For HSP, 23 reports were found spanning the years 2000–2019 of which 19 related to North Africans, with high consanguinity, and six included sub-Saharan Africans. For CMT, 19 reports spanning years 2002–2021, of which 16 related to North Africans and 3 to sub-Saharan Africans. Most genetic variants had not been previously reported. There were 12 reports spanning years 1999–2020 related to SMN1-SMA caused by homozygous exon 7 ± 8 deletion. Interestingly, the population frequency of heterozygous SMN1-exon 7 deletion mutations appeared 2 × lower in Africans compared to Europeans, in addition to differences in the architecture of the SMN2 locus which may impact SMN1-SMA prognosis. Conclusions Overall, genetic data on inherited neuromuscular diseases in sub-Saharan Africa, are sparse. If African patients with rare neuromuscular diseases are to benefit from the expansion in genomics capabilities and therapeutic advancements, then it is critical to document the mutational spectrum of inherited neuromuscular disease in Africa. Highlights Review of genetic variants reported in hereditary spastic paraplegia in Africans Review of genetic variants reported in genetic neuropathies in Africans Review of genetic underpinnings of spinal muscular atrophies in Africans Assessment of pathogenic evidence for candidate variants
Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02280-2.
Collapse
Affiliation(s)
- Amokelani C Mahungu
- Neurology Research Group, University of Cape Town Neuroscience Institute, Cape Town, South Africa
| | | | - Melissa Nel
- Neurology Research Group, University of Cape Town Neuroscience Institute, Cape Town, South Africa
| | - Jeannine M Heckmann
- E8-74 Neurology, Department of Medicine, Groote Schuur Hospital and the University of Cape Town Neuroscience Institute, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
93
|
Fakunle ES, Pratola VG, Peterson SE, Loring JF, Madanat H. The Promoting Equity in Stem Cell Genomics Survey. Regen Med 2022; 17:203-218. [PMID: 35255713 DOI: 10.2217/rme-2021-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: This study aimed to determine knowledge and attitudes toward induced pluripotent stem cell technology and biobanking. Methods: A survey instrument was developed to determine individuals' knowledge of and attitudes toward these technologies. Results: Results from 276 ethnically diverse participants who took the online survey demonstrated significant associations (p ≤ 0. 05) in knowledge by ethnicity and race regarding properties of stem cells, different types of stem cells and previous sample donation behavior. Significantly more Whites 39% (n = 53) compared with Blacks or African-Americans 19.2% (n = 14) had previous knowledge of induced pluripotent stem cells (χ2 = 8.544; p = 0.003) Conclusion: Overall, White race was associated with greater knowledge about stem cells and biobanks and greater willingness to donate samples for future research.
Collapse
Affiliation(s)
- Eyitayo S Fakunle
- Founder at IFASEMB & Ilera "I am Pluripotent", Chandler, AZ 85286, USA.,Currently employed at Covis Pharmaceuticals, Grafenauweg 12, 6300 Zug, Switzerland.,J. Orin Edson Entrepreneurship + Innovation Institute, Venture Devils Program for startups, Arizona State University, Tempe, AZ 85281, USA
| | - Victoria Glenn Pratola
- The Scripps Research Institute, Center for Regenerative Medicine, La Jolla, CA 92037 USA
| | - Suzanne E Peterson
- The Scripps Research Institute, Center for Regenerative Medicine, La Jolla, CA 92037 USA
| | - Jeanne F Loring
- The Scripps Research Institute, Center for Regenerative Medicine, La Jolla, CA 92037 USA.,Graduate School of Public Health, Division of Health Promotion and Behavioral Science San Diego State University, San Diego, CA 92182, USA
| | - Hala Madanat
- Interim Vice President for Research and Innovation, Distinguished Professor, School of Public Health, Core Investigator, Institute for Behavioral and Community Health San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-4162
| |
Collapse
|
94
|
African Genomic Medicine Portal: A Web Portal for Biomedical Applications. J Pers Med 2022; 12:jpm12020265. [PMID: 35207753 PMCID: PMC8879570 DOI: 10.3390/jpm12020265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022] Open
Abstract
Genomics data are currently being produced at unprecedented rates, resulting in increased knowledge discovery and submission to public data repositories. Despite these advances, genomic information on African-ancestry populations remains significantly low compared with European- and Asian-ancestry populations. This information is typically segmented across several different biomedical data repositories, which often lack sufficient fine-grained structure and annotation to account for the diversity of African populations, leading to many challenges related to the retrieval, representation and findability of such information. To overcome these challenges, we developed the African Genomic Medicine Portal (AGMP), a database that contains metadata on genomic medicine studies conducted on African-ancestry populations. The metadata is curated from two public databases related to genomic medicine, PharmGKB and DisGeNET. The metadata retrieved from these source databases were limited to genomic variants that were associated with disease aetiology or treatment in the context of African-ancestry populations. Over 2000 variants relevant to populations of African ancestry were retrieved. Subsequently, domain experts curated and annotated additional information associated with the studies that reported the variants, including geographical origin, ethnolinguistic group, level of association significance and other relevant study information, such as study design and sample size, where available. The AGMP functions as a dedicated resource through which to access African-specific information on genomics as applied to health research, through querying variants, genes, diseases and drugs. The portal and its corresponding technical documentation, implementation code and content are publicly available.
Collapse
|
95
|
Mbarek H, Devadoss Gandhi G, Selvaraj S, Al-Muftah W, Badji R, Al-Sarraj Y, Saad C, Darwish D, Alvi M, Fadl T, Yasin H, Alkuwari F, Razali R, Aamer W, Abbaszadeh F, Ahmed I, Mokrab Y, Suhre K, Albagha O, Fakhro K, Badii R, Ismail SI, Althani A. Qatar Genome: Insights on Genomics from the Middle East. Hum Mutat 2022; 43:499-510. [PMID: 35112413 DOI: 10.1002/humu.24336] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/16/2021] [Accepted: 01/29/2022] [Indexed: 11/09/2022]
Abstract
Despite recent biomedical breakthroughs and large genomic studies growing momentum, the Middle Eastern population, home to over 400 million people, is under-represented in the human genome variation databases. Here we describe insights from phase 1 of the Qatar Genome Program with whole genome sequenced 6,047 individuals from Qatar. We identified more than 88 million variants of which 24 million are novel and 23 million are singletons. Consistent with the high consanguinity and founder effects in the region, we found that several rare deleterious variants were more common in the Qatari population while others seem to provide protection against diseases and have shaped the genetic architecture of adaptive phenotypes. These results highlight the value of our data as a resource to advance genetic studies in the Arab and neighbouring Middle Eastern populations and will significantly boost the current efforts to improve our understanding of global patterns of human variations, human history and genetic contributions to health and diseases in diverse populations. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hamdi Mbarek
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar
| | - Geethanjali Devadoss Gandhi
- Department of Biomedical Sciences, College of Health Sciences, Qatar University.,College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar
| | - Senthil Selvaraj
- Department of Biomedical Sciences, College of Health Sciences, Qatar University
| | - Wadha Al-Muftah
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Radja Badji
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar
| | - Yasser Al-Sarraj
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar.,Bioinformatics Core, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
| | - Chadi Saad
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar
| | - Dima Darwish
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar
| | - Muhammad Alvi
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar
| | - Tasnim Fadl
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar
| | - Heba Yasin
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar
| | - Fatima Alkuwari
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar
| | - Rozaimi Razali
- Department of Biomedical Sciences, College of Health Sciences, Qatar University
| | - Waleed Aamer
- Human Genetics Department, Sidra Medicine, Doha, Qatar
| | | | - Ikhlak Ahmed
- Sidra Medicine, Biomedical Informatics - Research Branch, Doha, Qatar
| | - Younes Mokrab
- Human Genetics Department, Sidra Medicine, Doha, Qatar
| | - Karsten Suhre
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
| | - Omar Albagha
- College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar.,Center of Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK
| | - Khalid Fakhro
- Department of Biomedical Sciences, College of Health Sciences, Qatar University
| | - Ramin Badii
- Molecular Genetics Laboratory, Hamad Medical Corporation, Doha, Qatar
| | | | - Asma Althani
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar.,Biomedical Research Center, Qatar University, Doha, Qatar
| |
Collapse
|
96
|
Abdill RJ, Adamowicz EM, Blekhman R. Public human microbiome data are dominated by highly developed countries. PLoS Biol 2022; 20:e3001536. [PMID: 35167588 PMCID: PMC8846514 DOI: 10.1371/journal.pbio.3001536] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/11/2022] [Indexed: 02/07/2023] Open
Abstract
The importance of sampling from globally representative populations has been well established in human genomics. In human microbiome research, however, we lack a full understanding of the global distribution of sampling in research studies. This information is crucial to better understand global patterns of microbiome-associated diseases and to extend the health benefits of this research to all populations. Here, we analyze the country of origin of all 444,829 human microbiome samples that are available from the world's 3 largest genomic data repositories, including the Sequence Read Archive (SRA). The samples are from 2,592 studies of 19 body sites, including 220,017 samples of the gut microbiome. We show that more than 71% of samples with a known origin come from Europe, the United States, and Canada, including 46.8% from the US alone, despite the country representing only 4.3% of the global population. We also find that central and southern Asia is the most underrepresented region: Countries such as India, Pakistan, and Bangladesh account for more than a quarter of the world population but make up only 1.8% of human microbiome samples. These results demonstrate a critical need to ensure more global representation of participants in microbiome studies.
Collapse
Affiliation(s)
- Richard J. Abdill
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Elizabeth M. Adamowicz
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ran Blekhman
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America
| |
Collapse
|
97
|
Fatumo S, Chikowore T, Choudhury A, Ayub M, Martin AR, Kuchenbaecker K. A roadmap to increase diversity in genomic studies. Nat Med 2022; 28:243-250. [PMID: 35145307 PMCID: PMC7614889 DOI: 10.1038/s41591-021-01672-4] [Citation(s) in RCA: 276] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022]
Abstract
Two decades ago, the sequence of the first human genome was published. Since then, advances in genome technologies have resulted in whole-genome sequencing and microarray-based genotyping of millions of human genomes. However, genetic and genomic studies are predominantly based on populations of European ancestry. As a result, the potential benefits of genomic research-including better understanding of disease etiology, early detection and diagnosis, rational drug design and improved clinical care-may elude the many underrepresented populations. Here, we describe factors that have contributed to the imbalance in representation of different populations and, leveraging our experiences in setting up genomic studies in diverse global populations, we propose a roadmap to enhancing inclusion and ensuring equal health benefits of genomics advances. Our Perspective highlights the importance of sincere, concerted global efforts toward genomic equity to ensure the benefits of genomic medicine are accessible to all.
Collapse
Affiliation(s)
- Segun Fatumo
- The African Computational Genomics (TACG) Research Group, MRC/UVRI and LSHTM, Entebbe, Uganda.
- The Department of Non-communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK.
| | - Tinashe Chikowore
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- MRC/Wits Developmental Pathways for Health Research Unit, Department of Paediatrics, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ananyo Choudhury
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Muhammad Ayub
- Division of Psychiatry, University College London, London, UK
| | - Alicia R Martin
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Karoline Kuchenbaecker
- Division of Psychiatry, University College London, London, UK
- UCL Genetics Institute, University College London, London, UK
| |
Collapse
|
98
|
Constantinescu AE, Mitchell RE, Zheng J, Bull CJ, Timpson NJ, Amulic B, Vincent EE, Hughes DA. A framework for research into continental ancestry groups of the UK Biobank. Hum Genomics 2022; 16:3. [PMID: 35093177 PMCID: PMC8800339 DOI: 10.1186/s40246-022-00380-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/18/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The UK Biobank is a large prospective cohort, based in the UK, that has deep phenotypic and genomic data on roughly a half a million individuals. Included in this resource are data on approximately 78,000 individuals with "non-white British ancestry." While most epidemiology studies have focused predominantly on populations of European ancestry, there is an opportunity to contribute to the study of health and disease for a broader segment of the population by making use of the UK Biobank's "non-white British ancestry" samples. Here, we present an empirical description of the continental ancestry and population structure among the individuals in this UK Biobank subset. RESULTS Reference populations from the 1000 Genomes Project for Africa, Europe, East Asia, and South Asia were used to estimate ancestry for each individual. Those with at least 80% ancestry in one of these four continental ancestry groups were taken forward (N = 62,484). Principal component and K-means clustering analyses were used to identify and characterize population structure within each ancestry group. Of the approximately 78,000 individuals in the UK Biobank that are of "non-white British" ancestry, 50,685, 6653, 2782, and 2364 individuals were associated to the European, African, South Asian, and East Asian continental ancestry groups, respectively. Each continental ancestry group exhibits prominent population structure that is consistent with self-reported country of birth data and geography. CONCLUSIONS Methods outlined here provide an avenue to leverage UK Biobank's deeply phenotyped data allowing researchers to maximize its potential in the study of health and disease in individuals of non-white British ancestry.
Collapse
Affiliation(s)
- Andrei-Emil Constantinescu
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
- School of Translational Health Sciences, University of Bristol, Bristol, UK
| | - Ruth E Mitchell
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
| | - Jie Zheng
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
| | - Caroline J Bull
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
- School of Translational Health Sciences, University of Bristol, Bristol, UK
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
| | - Borko Amulic
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Emma E Vincent
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
- School of Translational Health Sciences, University of Bristol, Bristol, UK
| | - David A Hughes
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK.
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
99
|
Magavern EF, Gurdasani D, Ng FL, Lee SSJ. Health equality, race and pharmacogenomics. Br J Clin Pharmacol 2022; 88:27-33. [PMID: 34251046 PMCID: PMC8752640 DOI: 10.1111/bcp.14983] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/23/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022] Open
Abstract
Pharmacogenomics is increasingly moving into mainstream clinical practice. Careful consideration must be paid to inclusion of diverse populations in research, translation and implementation, in the historical and social context of population stratification, to ensure that this leads to improvements in healthcare for all rather than increased health disparities. This review takes a broad and critical approach to the current role of diversity in pharmacogenomics and addresses potential pitfalls in order to raise awareness for prescribers. It also emphasizes evidence gaps and suggests approaches that may minimize negative consequences and promote health equality.
Collapse
Affiliation(s)
- Emma F. Magavern
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Deepti Gurdasani
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Fu L. Ng
- Department of Clinical Pharmacology, St Georges University of London, London, UK
| | - Sandra Soo-Jin Lee
- Division of Ethics, Department Medical Humanities and Ethics, Columbia University, New York, N.Y., USA
| |
Collapse
|
100
|
Matimba A, Ali S, Littler K, Madden E, Marshall P, McCurdy S, Nembaware V, Rodriguez L, Seeley J, Tindana P, Yakubu A, de Vries J. Guideline for feedback of individual genetic research findings for genomics research in Africa. BMJ Glob Health 2022; 7:e007184. [PMID: 35017180 PMCID: PMC8753388 DOI: 10.1136/bmjgh-2021-007184] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/08/2021] [Indexed: 12/25/2022] Open
Abstract
As human genomics research in Africa continues to generate large amounts of data, ethical issues arise regarding how actionable genetic information is shared with research participants. The Human Heredity and Health in Africa Consortium (H3Africa) Ethics and Community Engagement Working group acknowledged the need for such guidance, identified key issues and principles relevant to genomics research in Africa and developed a practical guideline for consideration of feeding back individual genetic results of health importance in African research projects. This included a decision flowchart, providing a logical framework to assist in decision-making and planning for human genomics research projects. Although presented in the context of the H3Africa Consortium, we believe the principles described, and the decision flowchart presented here is applicable more broadly in African genomics research.
Collapse
Affiliation(s)
- Alice Matimba
- Wellcome Connecting Science, Wellcome Genome Campus, Hinxton, UK
| | - Stuart Ali
- Akili Labs (Pty) Ltd, Johannesburg, South Africa
| | - Katherine Littler
- Health Ethics & Governance Unit, World Health Organization, Geneve, Switzerland
| | - Ebony Madden
- National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Patricia Marshall
- Department of Bioethics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Sheryl McCurdy
- Center for Health Promotion and Prevention Research, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Victoria Nembaware
- Division of Human Genetics, Deparment of Pathology, University of Cape Town, Rondebosch, Western Cape, South Africa
| | - Laura Rodriguez
- National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Janet Seeley
- Department of Global Health & Development, London School of Hygiene and Tropical Medicine, London, UK
| | - Paulina Tindana
- School of Public Health, University of Ghana, Legon, Greater Accra, Ghana
| | - Aminu Yakubu
- Center for Bioethics and Research, Ibadan, Oyo, Nigeria
- National Health Research Ethics Committee, Federal Ministry of Health, Nigeria, Nigeria
- 54gene, Nigeria, Nigeria
| | - Jantina de Vries
- Department of Medicine, University of Cape Town, Rondebosch, Western Cape, South Africa
| |
Collapse
|