51
|
Chamcheu JC, Walker AL, Noubissi FK. Natural and Synthetic Bioactives for Skin Health, Disease and Management. Nutrients 2021; 13:nu13124383. [PMID: 34959935 PMCID: PMC8705709 DOI: 10.3390/nu13124383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/02/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana, Monroe, LA 71209-0497, USA
- Correspondence: (J.C.C.); (A.L.W.); (F.K.N.)
| | - Anthony Lynn. Walker
- School of Clinical Sciences, College of Pharmacy, University of Louisiana, Monroe, LA 71209-0497, USA
- Correspondence: (J.C.C.); (A.L.W.); (F.K.N.)
| | - Felicite Kamdem Noubissi
- Department of Biology, Jackson State University, Jackson, MS 39217, USA
- Correspondence: (J.C.C.); (A.L.W.); (F.K.N.)
| |
Collapse
|
52
|
Pérez P. The mineralocorticoid receptor in skin disease. Br J Pharmacol 2021; 179:3178-3189. [PMID: 34788475 DOI: 10.1111/bph.15736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/23/2021] [Accepted: 10/19/2021] [Indexed: 11/26/2022] Open
Abstract
The Mineralocorticoid Receptor (MR or NR3C2) is expressed in all cell types of the different skin compartments and can be bound and activated by glucocorticoids (GCs) with higher affinity than its closely related glucocorticoid (GC) receptor (GR or NR3C1). As both corticosteroid receptors co-express in skin, and considering the therapeutic relevance of GCs to combat skin inflammatory diseases, it was proposed that several of the major side-effects of topical GCs such as skin atrophy and delayed wound healing were due to unintended activation of the MR. Indeed, cutaneous MR blockade using genetic and pharmacological approaches in mice and human reduced the GC-associated skin atrophy in conditions of endogenous and pharmacological GC excess. While data support the safety of topical MR antagonists combined with GCs, it is crucial to address the efficacy of treatment in skin inflammatory conditions and its impact on the overall metabolism.
Collapse
Affiliation(s)
- Paloma Pérez
- Instituto de Biomedicina de Valencia (IBV)-CSIC, Valencia, Spain
| |
Collapse
|
53
|
Vo DT, Fuller MR, Tindle C, Anandachar MS, Das S, Sahoo D, Ghosh P. SPT6 loss permits the transdifferentiation of keratinocytes into an intestinal fate that resembles Barrett's metaplasia. iScience 2021; 24:103121. [PMID: 34622168 PMCID: PMC8481972 DOI: 10.1016/j.isci.2021.103121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/13/2021] [Accepted: 09/09/2021] [Indexed: 12/15/2022] Open
Abstract
Transient depletion of the transcription elongation factor SPT6 in the keratinocyte has been recently shown to inhibit epidermal differentiation and stratification; instead, they transdifferentiate into a gut-like lineage. We show here that this phenomenon of transdifferentiation recapitulates Barrett's metaplasia, the only human pathophysiologic condition in which a stratified squamous epithelium that is injured due to chronic acid reflux is trans-committed into an intestinal fate. The evidence we present here not only lend support to the notion that the keratinocytes are potentially the cell of origin of Barrett's metaplasia but also provide mechanistic insights linking transient acid exposure, downregulation of SPT6, stalled transcription of the master regulator of epidermal fate TP63, loss of epidermal fate, and metaplastic progression. Because Barrett's metaplasia in the esophagus is a pre-neoplastic condition with no preclinical human models, these findings have a profound impact on the modeling Barrett's metaplasia-in-a-dish.
Collapse
Affiliation(s)
- Daniella T. Vo
- Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, MC 0703, Leichtag Building 132, La Jolla, CA 92093-0703, USA
- Department of Computer Science and Engineering, Jacob's School of Engineering, University of California San Diego, La Jolla, USA
| | - MacKenzie R. Fuller
- Departments of Medicine and Cell and Molecular Medicine, University of California San Diego, 9500 Gilman Drive (MC 0651), George E. Palade Bldg, Rm 232, La Jolla, CA 92093, USA
- HUMANOID Center of Research Excellence (CoRE), University of California San Diego, La Jolla, USA
| | - Courtney Tindle
- Departments of Medicine and Cell and Molecular Medicine, University of California San Diego, 9500 Gilman Drive (MC 0651), George E. Palade Bldg, Rm 232, La Jolla, CA 92093, USA
- HUMANOID Center of Research Excellence (CoRE), University of California San Diego, La Jolla, USA
| | - Mahitha Shree Anandachar
- Department of Pathology, University of California San Diego, 9500 Gilman Drive, George E. Palade Bldg, Rm 256, La Jolla, CA 92093, USA
| | - Soumita Das
- HUMANOID Center of Research Excellence (CoRE), University of California San Diego, La Jolla, USA
- Department of Pathology, University of California San Diego, 9500 Gilman Drive, George E. Palade Bldg, Rm 256, La Jolla, CA 92093, USA
- Moore Comprehensive Cancer Center, University of California San Diego, La Jolla, USA
| | - Debashis Sahoo
- Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, MC 0703, Leichtag Building 132, La Jolla, CA 92093-0703, USA
- Department of Computer Science and Engineering, Jacob's School of Engineering, University of California San Diego, La Jolla, USA
- Moore Comprehensive Cancer Center, University of California San Diego, La Jolla, USA
| | - Pradipta Ghosh
- Departments of Medicine and Cell and Molecular Medicine, University of California San Diego, 9500 Gilman Drive (MC 0651), George E. Palade Bldg, Rm 232, La Jolla, CA 92093, USA
- HUMANOID Center of Research Excellence (CoRE), University of California San Diego, La Jolla, USA
- Moore Comprehensive Cancer Center, University of California San Diego, La Jolla, USA
- Department of Medicine, University of California San Diego, La Jolla, USA
| |
Collapse
|
54
|
Mancino G, Miro C, Di Cicco E, Dentice M. Thyroid hormone action in epidermal development and homeostasis and its implications in the pathophysiology of the skin. J Endocrinol Invest 2021; 44:1571-1579. [PMID: 33683663 PMCID: PMC8285348 DOI: 10.1007/s40618-020-01492-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
Thyroid hormones (THs) are key endocrine regulators of tissue development and homeostasis. They are constantly released into the bloodstream and help to regulate many cell functions. The principal products released by the follicular epithelial cells are T3 and T4. T4, which is the less active form of TH, is produced in greater amounts than T3, which is the most active form of TH. This mechanism highlights the importance of the peripheral regulation of TH levels that goes beyond the central axis. Skin, muscle, liver, bone and heart are finely regulated by TH. In particular, skin is among the target organs most influenced by TH, which is essential for skin homeostasis. Accordingly, skin diseases are associated with an altered thyroid status. Alopecia, dermatitis and vitiligo are associated with thyroiditis and alopecia and eczema are frequently correlated with the Graves' disease. However, only in recent decades have studies started to clarify the molecular mechanisms underlying the effects of TH in epidermal homeostasis. Herein, we summarize the most frequent clinical epidermal alterations linked to thyroid diseases and review the principal mechanisms involved in TH control of keratinocyte proliferation and functional differentiation. Our aim is to define the open questions in this field that are beginning to be elucidated thanks to the advent of mouse models of altered TH metabolism and to obtain novel insights into the physiopathological consequences of TH metabolism on the skin.
Collapse
Affiliation(s)
- G Mancino
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Via S. Pansini 5, 80131, Naples, Italy
| | - C Miro
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Via S. Pansini 5, 80131, Naples, Italy
| | - E Di Cicco
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Via S. Pansini 5, 80131, Naples, Italy
| | - M Dentice
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Via S. Pansini 5, 80131, Naples, Italy.
- CEINGE-Biotecnologie Avanzate Scarl, Naples, Italy.
| |
Collapse
|
55
|
Pereira D, Sequeira I. A Scarless Healing Tale: Comparing Homeostasis and Wound Healing of Oral Mucosa With Skin and Oesophagus. Front Cell Dev Biol 2021; 9:682143. [PMID: 34381771 PMCID: PMC8350526 DOI: 10.3389/fcell.2021.682143] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022] Open
Abstract
Epithelial tissues are the most rapidly dividing tissues in the body, holding a natural ability for renewal and regeneration. This ability is crucial for survival as epithelia are essential to provide the ultimate barrier against the external environment, protecting the underlying tissues. Tissue stem and progenitor cells are responsible for self-renewal and repair during homeostasis and following injury. Upon wounding, epithelial tissues undergo different phases of haemostasis, inflammation, proliferation and remodelling, often resulting in fibrosis and scarring. In this review, we explore the phenotypic differences between the skin, the oesophagus and the oral mucosa. We discuss the plasticity of these epithelial stem cells and contribution of different fibroblast subpopulations for tissue regeneration and wound healing. While these epithelial tissues share global mechanisms of stem cell behaviour for tissue renewal and regeneration, the oral mucosa is known for its outstanding healing potential with minimal scarring. We aim to provide an updated review of recent studies that combined cell therapy with bioengineering exporting the unique scarless properties of the oral mucosa to improve skin and oesophageal wound healing and to reduce fibrotic tissue formation. These advances open new avenues toward the ultimate goal of achieving scarless wound healing.
Collapse
Affiliation(s)
| | - Inês Sequeira
- Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
56
|
Qu H, Miao T, Wang Y, Tan L, Huang B, Zhang L, Liu X, Long M, Zhang R, Liao X, Gong X, Wang J, Xiong X, Liu J, Li X, Yu J, Yang G, Zhu Z, Zheng H, Zheng Y. Dedicator of Cytokinesis 5 Regulates Keratinocyte Function and Promotes Diabetic Wound Healing. Diabetes 2021; 70:1170-1184. [PMID: 33627322 PMCID: PMC8173801 DOI: 10.2337/db20-1008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/12/2021] [Indexed: 02/06/2023]
Abstract
Cutaneous wound healing is a fundamental biologic and coordinated process, and failure to maintain this process contributes to the dysfunction of tissue homeostasis, increasing the global burden of diabetic foot ulcerations. However, the factors that mediate this process are not fully understood. Here, we identify the pivotal role of dedicator of cytokinesis 5 (Dock5) in keratinocyte functions contributing to the process of skin wound healing. Specifically, Dock5 is highly upregulated during the proliferative phase of wound repair and is predominantly expressed in epidermal keratinocytes. It regulates keratinocyte adhesion, migration, and proliferation and influences the functions of extracellular matrix (ECM) deposition by facilitating the ubiquitination of transcription factor ZEB1 to activate laminin-332/integrin signaling. Genetic ablation of Dock5 in mice leads to attenuated reepithelialization and granulation tissue formation, and Dock5 overexpression-improved skin repair can be abrogated by LAMA3 knockdown. Importantly, Dock5 expression in the skin edge is reduced in patients and animal models of diabetes, further suggesting a direct correlation between its abundance and healing capability. The rescue of Dock5 expression in diabetic mice causes a significant improvement in reepithelialization, collagen deposition, ECM production, and granulation. Our study provides a potential therapeutic target for wound healing impairment during diabetes.
Collapse
Affiliation(s)
- Hua Qu
- Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, Department of Endocrinology, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Tian Miao
- Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, Department of Endocrinology, Second Affiliated Hospital of Army Medical University, Chongqing, China
- Department of Respiratory and Critical Care Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Yuren Wang
- Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, Department of Endocrinology, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Liang Tan
- Department of Neurosurgery, Southwest Hospital, Army Medical University, Chongqing, China
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Bangliang Huang
- Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, Department of Endocrinology, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Linlin Zhang
- Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, Department of Endocrinology, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xiufei Liu
- Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, Department of Endocrinology, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Min Long
- Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, Department of Endocrinology, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Rui Zhang
- Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, Department of Endocrinology, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xiaoyu Liao
- Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, Department of Endocrinology, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xiaoli Gong
- Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, Department of Endocrinology, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Ju Wang
- Department of Neurosurgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xin Xiong
- Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, Department of Endocrinology, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Junli Liu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi Li
- Biology Science Institutes, Chongqing Medical University, Chongqing, China
| | - Jiang Yu
- Department of Outpatient, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Gangyi Yang
- Department of Endocrinology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Third Affiliated Hospital of Army Medical University, Chongqing, China
| | - Hongting Zheng
- Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, Department of Endocrinology, Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Yi Zheng
- Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, Department of Endocrinology, Second Affiliated Hospital of Army Medical University, Chongqing, China
| |
Collapse
|
57
|
Žnidarič M, Žurga ŽM, Maver U. Design of In Vitro Hair Follicles for Different Applications in the Treatment of Alopecia-A Review. Biomedicines 2021; 9:biomedicines9040435. [PMID: 33923738 PMCID: PMC8072628 DOI: 10.3390/biomedicines9040435] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 12/19/2022] Open
Abstract
The hair research field has seen great improvement in recent decades, with in vitro hair follicle (HF) models being extensively developed. However, due to the cellular complexity and number of various molecular interactions that must be coordinated, a fully functional in vitro model of HFs remains elusive. The most common bioengineering approach to grow HFs in vitro is to manipulate their features on cellular and molecular levels, with dermal papilla cells being the main focus. In this study, we focus on providing a better understanding of HFs in general and how they behave in vitro. The first part of the review presents skin morphology with an emphasis on HFs and hair loss. The remainder of the paper evaluates cells, materials, and methods of in vitro growth of HFs. Lastly, in vitro models and assays for evaluating the effects of active compounds on alopecia and hair growth are presented, with the final emphasis on applications of in vitro HFs in hair transplantation. Since the growth of in vitro HFs is a complicated procedure, there is still a great number of unanswered questions aimed at understanding the long-term cycling of HFs without losing inductivity. Incorporating other regions of HFs that lead to the successful formation of different hair classes remains a difficult challenge.
Collapse
|
58
|
Schwab M, Lohr S, Schneider J, Kaiser M, Krunic D, Helbig D, Géraud C, Angel P. Podoplanin is required for tumor cell invasion in cutaneous squamous cell carcinoma. Exp Dermatol 2021; 30:1619-1630. [PMID: 33783869 DOI: 10.1111/exd.14344] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/28/2021] [Accepted: 03/19/2021] [Indexed: 11/30/2022]
Abstract
The invasiveness of late-stage cutaneous squamous cell carcinoma (cSCC) is associated with poor patients' prognosis and linked to strong upregulation of the glycoprotein Podoplanin (PDPN) in cancer cells. However, the function of PDPN in these processes in cSCC carcinogenesis has not been characterized in detail yet. Employing a CRISPR/Cas9-based loss-of-function approach on murine cSCC cells, we show that the loss of Pdpn results in decreased migration and invasion in vitro. Complementing these in vitro studies, labelled murine control and Pdpn knockout cells were injected orthotopically into the dermis of nude mice to recapitulate the formation of human cSCC displaying a well-differentiated morphology with a PDPN-positive reaction in fibroblasts in the tumor stroma. Smaller tumors were observed upon Pdpn loss, which is associated with reduced tumor cell infiltration into the stroma. Utilizing Pdpn mutants in functional experiments in vitro, we provide evidence that both the intra- and extracellular domains are essential for cancer cell invasion. These findings underline the critical role of PDPN in cSCC progression and highlight potential therapeutic strategies targeting PDPN-dependent cancer cell invasion, especially in late-stage cSCC patients.
Collapse
Affiliation(s)
- Melanie Schwab
- Division of Signal Transduction and Growth Control, DKFZ/ZMBH Alliance, Heidelberg, Germany.,Faculty of Biosciences, University Heidelberg, Heidelberg, Germany
| | - Sabrina Lohr
- Division of Signal Transduction and Growth Control, DKFZ/ZMBH Alliance, Heidelberg, Germany
| | - Jakob Schneider
- Division of Signal Transduction and Growth Control, DKFZ/ZMBH Alliance, Heidelberg, Germany.,Faculty of Biosciences, University Heidelberg, Heidelberg, Germany
| | - Michaela Kaiser
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Damir Krunic
- Light Microscopy Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Doris Helbig
- Department of Dermatology and Venereology, University Clinic of Cologne, Cologne, Germany
| | - Cyrill Géraud
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Center of Excellence in Dermatology, Heidelberg University, Mannheim, Germany.,Section of Clinical and Molecular Dermatology, Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Peter Angel
- Division of Signal Transduction and Growth Control, DKFZ/ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
59
|
Kitrungrotsakul T, Han XH, Iwamoto Y, Takemoto S, Yokota H, Ipponjima S, Nemoto T, Xiong W, Chen YW. A Cascade of 2.5D CNN and Bidirectional CLSTM Network for Mitotic Cell Detection in 4D Microscopy Image. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:396-404. [PMID: 31144644 DOI: 10.1109/tcbb.2019.2919015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mitosis detection is one of the challenging steps in biomedical imaging research, which can be used to observe the cell behavior. Most of the already existing methods that are applied in detecting mitosis usually contain many nonmitotic events (normal cell and background) in the result (false positives, FPs). In order to address such a problem, in this study, we propose to apply 2.5-dimensional (2.5D) networks called CasDetNet_CLSTM, which can accurately detect mitotic events in 4D microscopic images. This CasDetNet_CLSTM involves a 2.5D faster region-based convolutional neural network (Faster R-CNN) as the first network, and a convolutional long short-term memory (CLSTM) network as the second network. The first network is used to select candidate cells using the information from nearby slices, whereas the second network uses temporal information to eliminate FPs and refine the result of the first network. Our experiment shows that the precision and recall of our networks yield better results than those of other state-of-the-art methods.
Collapse
|
60
|
Kitrungrotsakul T, Iwamoto Y, Takemoto S, Yokota H, Ipponjima S, Nemoto T, Lin L, Tong R, Li J, Chen YW. Accurate and fast mitotic detection using an anchor-free method based on full-scale connection with recurrent deep layer aggregation in 4D microscopy images. BMC Bioinformatics 2021; 22:91. [PMID: 33637042 PMCID: PMC7908657 DOI: 10.1186/s12859-021-04014-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 02/10/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND To effectively detect and investigate various cell-related diseases, it is essential to understand cell behaviour. The ability to detection mitotic cells is a fundamental step in diagnosing cell-related diseases. Convolutional neural networks (CNNs) have been successfully applied to object detection tasks, however, when applied to mitotic cell detection, most existing methods generate high false-positive rates due to the complex characteristics that differentiate normal cells from mitotic cells. Cell size and orientation variations in each stage make detecting mitotic cells difficult in 2D approaches. Therefore, effective extraction of the spatial and temporal features from mitotic data is an important and challenging task. The computational time required for detection is another major concern for mitotic detection in 4D microscopic images. RESULTS In this paper, we propose a backbone feature extraction network named full scale connected recurrent deep layer aggregation (RDLA++) for anchor-free mitotic detection. We utilize a 2.5D method that includes 3D spatial information extracted from several 2D images from neighbouring slices that form a multi-stream input. CONCLUSIONS Our proposed technique addresses the scale variation problem and can efficiently extract spatial and temporal features from 4D microscopic images, resulting in improved detection accuracy and reduced computation time compared with those of other state-of-the-art methods.
Collapse
Affiliation(s)
- Titinunt Kitrungrotsakul
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, China.,Graduate School of Information Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Yutaro Iwamoto
- Graduate School of Information Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan
| | | | - Hideo Yokota
- Center for Advanced Photonics, RIKEN, Wako, Saitama, Japan
| | - Sari Ipponjima
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tomomi Nemoto
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Lanfen Lin
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Ruofeng Tong
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, China.,College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Jingsong Li
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, China.,College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Yen-Wei Chen
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, China. .,Graduate School of Information Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan. .,College of Computer Science and Technology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
61
|
Persa OD, Koester J, Niessen CM. Regulation of Cell Polarity and Tissue Architecture in Epidermal Aging and Cancer. J Invest Dermatol 2021; 141:1017-1023. [PMID: 33531135 DOI: 10.1016/j.jid.2020.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022]
Abstract
The mammalian skin is essential to protect the organism from external damage while at the same time enabling communication with the environment. Aging compromises skin function and regeneration, which is further exacerbated by external influences, such as UVR from the sun. Aging and UVR are also major risk factors contributing to the development of skin cancer. Whereas aging research traditionally has focused on the role of DNA damage and metabolic and stress pathways, less is known about how aging affects tissue architecture and cell dynamics in skin homeostasis and regeneration and whether changes in these processes promote skin cancer. This review highlights how key regulators of cell polarity and adhesion affect epidermal mechanics, tissue architecture, and stem cell dynamics in skin aging and cancer.
Collapse
Affiliation(s)
- Oana D Persa
- Department Cell Biology of the Skin, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany; Department of Dermatology and Venerology, University Hospital of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Janis Koester
- Cologne Excellence Cluster on Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany; Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Carien M Niessen
- Department Cell Biology of the Skin, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
62
|
Chen M, Amado N, Tan J, Reis A, Ge M, Abreu JG, He X. TMEM79/MATTRIN defines a pathway for Frizzled regulation and is required for Xenopus embryogenesis. eLife 2020; 9:e56793. [PMID: 32924931 PMCID: PMC7521923 DOI: 10.7554/elife.56793] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 09/11/2020] [Indexed: 12/28/2022] Open
Abstract
Wnt signaling through the Frizzled (FZD) family of serpentine receptors is essential for embryogenesis and homeostasis, and stringent control of the FZD protein level is critical for stem cell regulation. Through CRISPR/Cas9 genome-wide screening in human cells, we identified TMEM79/MATTRIN, an orphan multi-span transmembrane protein, as a specific inhibitor of Wnt/FZD signaling. TMEM79 interacts with FZD during biogenesis and promotes FZD degradation independent of ZNRF3/RNF43 ubiquitin ligases (R-spondin receptors). TMEM79 interacts with ubiquitin-specific protease 8 (USP8), whose activating mutations underlie human tumorigenesis. TMEM79 specifically inhibits USP8 deubiquitination of FZD, thereby governing USP8 substrate specificity and promoting FZD degradation. Tmem79 and Usp8 genes have a pre-bilaterian origin, and Tmem79 inhibition of Usp8 and Wnt signaling is required for anterior neural development and gastrulation in Xenopus embryos. TMEM79 is a predisposition gene for Atopic dermatitis, suggesting deregulation of Wnt/FZD signaling a possible cause for this most common yet enigmatic inflammatory skin disease.
Collapse
Affiliation(s)
- Maorong Chen
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Department of Neurology, Harvard Medical SchoolBostonUnited States
| | - Nathalia Amado
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Department of Neurology, Harvard Medical SchoolBostonUnited States
| | - Jieqiong Tan
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Department of Neurology, Harvard Medical SchoolBostonUnited States
| | - Alice Reis
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
| | - Mengxu Ge
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Department of Neurology, Harvard Medical SchoolBostonUnited States
| | - Jose Garcia Abreu
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
| | - Xi He
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Department of Neurology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
63
|
Vietri Rudan M, Mishra A, Klose C, Eggert US, Watt FM. Human epidermal stem cell differentiation is modulated by specific lipid subspecies. Proc Natl Acad Sci U S A 2020; 117:22173-22182. [PMID: 32843345 PMCID: PMC7486749 DOI: 10.1073/pnas.2011310117] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
While the lipids of the outer layers of mammalian epidermis and their contribution to barrier formation have been extensively described, the role of individual lipid species in the onset of keratinocyte differentiation remains unknown. A lipidomic analysis of primary human keratinocytes revealed accumulation of numerous lipid species during suspension-induced differentiation. A small interfering RNA screen of 258 lipid-modifying enzymes identified two genes that on knockdown induced epidermal differentiation: ELOVL1, encoding elongation of very long-chain fatty acids protein 1, and SLC27A1, encoding fatty acid transport protein 1. By intersecting lipidomic datasets from suspension-induced differentiation and knockdown keratinocytes, we pinpointed candidate bioactive lipid subspecies as differentiation regulators. Several of these-ceramides and glucosylceramides-induced differentiation when added to primary keratinocytes in culture. Our results reveal the potential of lipid subspecies to regulate exit from the epidermal stem cell compartment.
Collapse
Affiliation(s)
- Matteo Vietri Rudan
- Centre for Stem Cells and Regenerative Medicine, King's College London, SE1 9RT London, United Kingdom
| | - Ajay Mishra
- Centre for Stem Cells and Regenerative Medicine, King's College London, SE1 9RT London, United Kingdom
- European Bioinformatics Institute, CB10 1SD Hinxton, United Kingdom
| | | | - Ulrike S Eggert
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL London, United Kingdom
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, SE1 9RT London, United Kingdom;
| |
Collapse
|
64
|
Ammar HO, Tadros MI, Salama NM, Ghoneim AM. Ethosome-Derived Invasomes as a Potential Transdermal Delivery System for Vardenafil Hydrochloride: Development, Optimization and Application of Physiologically Based Pharmacokinetic Modeling in Adults and Geriatrics. Int J Nanomedicine 2020; 15:5671-5685. [PMID: 32821096 PMCID: PMC7418156 DOI: 10.2147/ijn.s261764] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/08/2020] [Indexed: 01/15/2023] Open
Abstract
Aim The aim of the current work was to develop vardenafil hydrochloride (VRD)-loaded ethosome-derived invasomes as a possible transdermal system which could be used for patients suffering from pulmonary arterial hypertension. Methods VRD-loaded ethosomes were developed at three concentrations of phosphatidylcholine (5, 10 and 15 mg/mL) and three percentages of ethanol (20%, 30% and 40%, v/v). The best achieved VRD-loaded ethosomes (ETH9) were optimized to invasomes via incorporation of terpenes (limonene, cineole and a 1:1 mixture) at three concentrations (0.5%, 1% and 2%, v/v). All systems were evaluated for vesicle size, zeta potential, drug entrapment efficiency (EE%), cumulative drug permeated percentages after 0.5hrs (Q0.5h) and 12hrs (Q12h) and steady-state flux (Jss). The optimized system (ETH9-INV8) was further characterized for morphology, histopathology and confocal laser scanning microscopy (CLSM). Physiologically based pharmacokinetic (PBPK) modeling was employed to estimate VRD pharmacokinetic parameters from the optimized transdermal system and an oral aqueous drug dispersion, in adults and geriatrics. Results The optimized invasomal system (ETH9-INV8) was characterized with spherical vesicles (159.9 nm) possessing negative zeta potential (-20.3 mV), promising EE% (81.3%), low Q0.5h (25.4%), high Q12h (85.3%) and the largest steady-state flux (6.4 µg.cm-2h-1). Following a leave-on period of 12hrs in rats, it showed minor histopathologic changes. CLSM studies proved its ability to deeply permeate rat skin. Lower Cmax values, delayed Tmax estimates and greater AUC0-24h folds in adults and geriatrics (≈ 2.18 and 1.69, respectively) were estimated following the transdermal application of ETH9-INV8 system. Conclusion ETH9-INV8 is a promising transdermal system for VRD.
Collapse
Affiliation(s)
- Hussein O Ammar
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt (FUE), New Cairo, Egypt
| | - Mina Ibrahim Tadros
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nahla M Salama
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt (FUE), New Cairo, Egypt
| | - Amira Mohsen Ghoneim
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt (FUE), New Cairo, Egypt
| |
Collapse
|
65
|
Gratton R, Tricarico PM, Moltrasio C, Lima Estevão de Oliveira AS, Brandão L, Marzano AV, Zupin L, Crovella S. Pleiotropic Role of Notch Signaling in Human Skin Diseases. Int J Mol Sci 2020; 21:E4214. [PMID: 32545758 PMCID: PMC7353046 DOI: 10.3390/ijms21124214] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023] Open
Abstract
Notch signaling orchestrates the regulation of cell proliferation, differentiation, migration and apoptosis of epidermal cells by strictly interacting with other cellular pathways. Any disruption of Notch signaling, either due to direct mutations or to an aberrant regulation of genes involved in the signaling route, might lead to both hyper- or hypo-activation of Notch signaling molecules and of target genes, ultimately inducing the onset of skin diseases. The mechanisms through which Notch contributes to the pathogenesis of skin diseases are multiple and still not fully understood. So far, Notch signaling alterations have been reported for five human skin diseases, suggesting the involvement of Notch in their pathogenesis: Hidradenitis Suppurativa, Dowling Degos Disease, Adams-Oliver Syndrome, Psoriasis and Atopic Dermatitis. In this review, we aim at describing the role of Notch signaling in the skin, particularly focusing on the principal consequences associated with its alterations in these five human skin diseases, in order to reorganize the current knowledge and to identify potential cellular mechanisms in common between these pathologies.
Collapse
Affiliation(s)
- Rossella Gratton
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (R.G.); (L.Z.); (S.C.)
- Department of Medical Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Paola Maura Tricarico
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (R.G.); (L.Z.); (S.C.)
| | - Chiara Moltrasio
- Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (C.M.); (A.V.M.)
| | | | - Lucas Brandão
- Department of Pathology, Federal University of Pernambuco, Recife 50670-901, Brazil;
| | - Angelo Valerio Marzano
- Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (C.M.); (A.V.M.)
| | - Luisa Zupin
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (R.G.); (L.Z.); (S.C.)
| | - Sergio Crovella
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (R.G.); (L.Z.); (S.C.)
- Department of Medical Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| |
Collapse
|
66
|
Choi YJ. Shedding Light on the Effects of Calorie Restriction and its Mimetics on Skin Biology. Nutrients 2020; 12:nu12051529. [PMID: 32456324 PMCID: PMC7284700 DOI: 10.3390/nu12051529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 12/11/2022] Open
Abstract
During the aging process of an organism, the skin gradually loses its structural and functional characteristics. The skin becomes more fragile and vulnerable to damage, which may contribute to age-related diseases and even death. Skin aging is aggravated by the fact that the skin is in direct contact with extrinsic factors, such as ultraviolet irradiation. While calorie restriction (CR) is the most effective intervention to extend the lifespan of organisms and prevent age-related disorders, its effects on cutaneous aging and disorders are poorly understood. This review discusses the effects of CR and its alternative dietary intake on skin biology, with a focus on skin aging. CR structurally and functionally affects most of the skin and has been reported to rescue both age-related and photo-induced changes. The anti-inflammatory, anti-oxidative, stem cell maintenance, and metabolic activities of CR contribute to its beneficial effects on the skin. To the best of the author’s knowledge, the effects of fasting or a specific nutrient-restricted diet on skin aging have not been evaluated; these strategies offer benefits in wound healing and inflammatory skin diseases. In addition, well-known CR mimetics, including resveratrol, metformin, rapamycin, and peroxisome proliferator-activated receptor agonists, show CR-like prevention against skin aging. An overview of the role of CR in skin biology will provide valuable insights that would eventually lead to improvements in skin health.
Collapse
Affiliation(s)
- Yeon Ja Choi
- Department of Biopharmaceutical Engineering, Division of Chemistry and Biotechnology, Dongguk University, Gyeongju 38066, Korea
| |
Collapse
|
67
|
An end-to-end CNN and LSTM network with 3D anchors for mitotic cell detection in 4D microscopic images and its parallel implementation on multiple GPUs. Neural Comput Appl 2020. [DOI: 10.1007/s00521-019-04374-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
68
|
刘 鹏, 谭 秋, 江 燕, 吕 青. [Wound-induced hair follicle neogenesis: a new perspective on hair follicles regeneration in adult mammals]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2020; 34:393-398. [PMID: 32174089 PMCID: PMC8171643 DOI: 10.7507/1002-1892.201905102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 12/14/2019] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To explore the research progress of the cell sources and related signaling pathways of the wound-induced hair follicle neogenesis (WIHN) in recent years. METHODS The literature related to WIHN in recent years was reviewed, and the cell sources and molecular mechanism were summarized and discussed. RESULTS Current research shows that WIHN is a rare regeneration phenomenon in the skin of adult mammals, with multiple cell origins, both hair follicle stem cells and epithelial stem cells around the wound. Its molecular mechanism is complicated, which is regulated by many signaling pathways. Besides, the process is closely related to the immune response, the immunocytes and their related cytokines provide suitable conditions for this process. CONCLUSION There are still many unsolved problems on the cellular origins and molecular mechanisms of the WIHN. Further study on the mechanisms will enhance the understanding of adult mammals' hair follicle regeneration and may provide new strategy for functional healing of the human skin.
Collapse
Affiliation(s)
- 鹏程 刘
- 四川大学华西医院乳腺疾病研究中心 乳腺外科(成都 610041)Department of Breast Surgery, Clinical Research Center for Breast Disease, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - 秋雯 谭
- 四川大学华西医院乳腺疾病研究中心 乳腺外科(成都 610041)Department of Breast Surgery, Clinical Research Center for Breast Disease, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
- 四川大学华西医院干细胞与组织工程实验室(成都 610041)Laboratory of Stem Cell and Tissue Engineering, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - 燕林 江
- 四川大学华西医院乳腺疾病研究中心 乳腺外科(成都 610041)Department of Breast Surgery, Clinical Research Center for Breast Disease, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - 青 吕
- 四川大学华西医院乳腺疾病研究中心 乳腺外科(成都 610041)Department of Breast Surgery, Clinical Research Center for Breast Disease, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| |
Collapse
|
69
|
Koyama S, Heinbockel T. The Effects of Essential Oils and Terpenes in Relation to Their Routes of Intake and Application. Int J Mol Sci 2020; 21:E1558. [PMID: 32106479 PMCID: PMC7084246 DOI: 10.3390/ijms21051558] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 12/18/2022] Open
Abstract
Essential oils have been used in multiple ways, i.e., inhaling, topically applying on the skin, and drinking. Thus, there are three major routes of intake or application involved: the olfactory system, the skin, and the gastro-intestinal system. Understanding these routes is important for clarifying the mechanisms of action of essential oils. Here we summarize the three systems involved, and the effects of essential oils and their constituents at the cellular and systems level. Many factors affect the rate of uptake of each chemical constituent included in essential oils. It is important to determine how much of each constituent is included in an essential oil and to use single chemical compounds to precisely test their effects. Studies have shown synergistic influences of the constituents, which affect the mechanisms of action of the essential oil constituents. For the skin and digestive system, the chemical components of essential oils can directly activate gamma aminobutyric acid (GABA) receptors and transient receptor potential channels (TRP) channels, whereas in the olfactory system, chemical components activate olfactory receptors. Here, GABA receptors and TRP channels could play a role, mostly when the signals are transferred to the olfactory bulb and the brain.
Collapse
Affiliation(s)
- Sachiko Koyama
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Thomas Heinbockel
- Department of Anatomy, College of Medicine, Howard University, Washington, DC 20059, USA
| |
Collapse
|
70
|
Guan Y, Wang G, Fails D, Nagarajan P, Ge Y. Unraveling cancer lineage drivers in squamous cell carcinomas. Pharmacol Ther 2020; 206:107448. [PMID: 31836455 PMCID: PMC6995404 DOI: 10.1016/j.pharmthera.2019.107448] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022]
Abstract
Cancer hijacks embryonic development and adult wound repair mechanisms to fuel malignancy. Cancer frequently originates from de-regulated adult stem cells or progenitors, which are otherwise essential units for postnatal tissue remodeling and repair. Cancer genomics studies have revealed convergence of multiple cancers across organ sites, including squamous cell carcinomas (SCCs), a common group of cancers arising from the head and neck, esophagus, lung, cervix and skin. In this review, we summarize our current knowledge on the molecular drivers of SCCs, including these five major organ sites. We especially focus our discussion on lineage dependent driver genes and pathways, in the context of squamous development and stratification. We then use skin as a model to discuss the notion of field cancerization during SCC carcinogenesis, and cancer as a wound that never heals. Finally, we turn to the idea of context dependency widely observed in cancer driver genes, and outline literature support and possible explanations for their lineage specific functions. Through these discussions, we aim to provide an up-to-date summary of molecular mechanisms driving tumor plasticity in squamous cancers. Such basic knowledge will be helpful to inform the clinics for better stratifying cancer patients, revealing novel drug targets and providing effective treatment options.
Collapse
Affiliation(s)
- Yinglu Guan
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Guan Wang
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Danielle Fails
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Priyadharsini Nagarajan
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Yejing Ge
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| |
Collapse
|
71
|
Beta-caryophyllene enhances wound healing through multiple routes. PLoS One 2019; 14:e0216104. [PMID: 31841509 PMCID: PMC6913986 DOI: 10.1371/journal.pone.0216104] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022] Open
Abstract
Beta-caryophyllene is an odoriferous bicyclic sesquiterpene found in various herbs and spices. Recently, it was found that beta-caryophyllene is a ligand of the cannabinoid receptor 2 (CB2). Activation of CB2 will decrease pain, a major signal for inflammatory responses. We hypothesized that beta-caryophyllene can affect wound healing by decreasing inflammation. Here we show that cutaneous wounds of mice treated with beta-caryophyllene had enhanced re-epithelialization. The treated tissue showed increased cell proliferation and cells treated with beta-caryophyllene showed enhanced cell migration, suggesting that the higher re-epithelialization is due to enhanced cell proliferation and cell migration. The treated tissues also had up-regulated gene expression for hair follicle bulge stem cells. Olfactory receptors were not involved in the enhanced wound healing. Transient Receptor Potential channel genes were up-regulated in the injured skin exposed to beta-caryophyllene. Interestingly, there were sex differences in the impact of beta- caryophyllene as only the injured skin of female mice had enhanced re-epithelialization after exposure to beta-caryophyllene. Our study suggests that chemical compounds included in essential oils have the capability to improve wound healing, an effect generated by synergetic impacts of multiple pathways.
Collapse
|
72
|
Vidal Yucha SE, Tamamoto KA, Kaplan DL. The importance of the neuro-immuno-cutaneous system on human skin equivalent design. Cell Prolif 2019; 52:e12677. [PMID: 31441145 PMCID: PMC6869210 DOI: 10.1111/cpr.12677] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/27/2019] [Accepted: 07/15/2019] [Indexed: 12/11/2022] Open
Abstract
The skin is a highly complex organ, responsible for sensation, protection against the environment (pollutants, foreign proteins, infection) and thereby linked to the immune and sensory systems in the neuro-immuno-cutaneous (NIC) system. Cutaneous innervation is a key part of the peripheral nervous system; therefore, the skin should be considered a sensory organ and an important part of the central nervous system, an 'active interface' and the first connection of the body to the outside world. Peripheral nerves are a complex class of neurons within these systems, subsets of functions are conducted, including mechanoreception, nociception and thermoception. Epidermal and dermal cells produce signalling factors (such as cytokines or growth factors), neurites influence skin cells (such as via neuropeptides), and peripheral nerves have a role in both early and late stages of the inflammatory response. One way this is achieved, specifically in the cutaneous system, is through neuropeptide release and signalling, especially via substance P (SP), neuropeptide Y (NPY) and nerve growth factor (NGF). Cutaneous, neuronal and immune cells play a central role in many conditions, including psoriasis, atopic dermatitis, vitiligo, UV-induced immunosuppression, herpes and lymphomas. Therefore, it is critical to understand the connections and interplay between the peripheral nervous system and the skin and immune systems, the NIC system. Relevant in vitro tissue models based on human skin equivalents can be used to gain insight and to address impact across research and clinical needs.
Collapse
Affiliation(s)
- Sarah E Vidal Yucha
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Kasey A Tamamoto
- Department of Chemistry, Tufts University, Medford, Massachusetts
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| |
Collapse
|
73
|
IRF2 is a master regulator of human keratinocyte stem cell fate. Nat Commun 2019; 10:4676. [PMID: 31611556 PMCID: PMC6791852 DOI: 10.1038/s41467-019-12559-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 09/14/2019] [Indexed: 12/25/2022] Open
Abstract
Resident adult epithelial stem cells maintain tissue homeostasis by balancing self-renewal and differentiation. The stem cell potential of human epidermal keratinocytes is retained in vitro but lost over time suggesting extrinsic and intrinsic regulation. Transcription factor-controlled regulatory circuitries govern cell identity, are sufficient to induce pluripotency and transdifferentiate cells. We investigate whether transcriptional circuitry also governs phenotypic changes within a given cell type by comparing human primary keratinocytes with intrinsically high versus low stem cell potential. Using integrated chromatin and transcriptional profiling, we implicate IRF2 as antagonistic to stemness and show that it binds and regulates active cis-regulatory elements at interferon response and antigen presentation genes. CRISPR-KD of IRF2 in keratinocytes with low stem cell potential increases self-renewal, migration and epidermis formation. These data demonstrate that transcription factor regulatory circuitries, in addition to maintaining cell identity, control plasticity within cell types and offer potential for therapeutic modulation of cell function. Epidermal homeostasis requires long term stem cell function. Here, the authors apply transcriptional circuitry analysis based on integrated epigenomic profiling of primary human keratinocytes with high and low stem cell function to identify IRF2 as a negative regulator of stemness.
Collapse
|
74
|
Neely AE, Bao X. Nuclei Isolation Staining (NIS) Method for Imaging Chromatin-Associated Proteins in Difficult Cell Types. CURRENT PROTOCOLS IN CELL BIOLOGY 2019; 84:e94. [PMID: 31483111 PMCID: PMC6727977 DOI: 10.1002/cpcb.94] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Spatial distribution of chromatin-associated proteins provides invaluable information for understanding gene regulation. Conventional immunostaining is widely used for labeling chromatin-associated proteins in many cell types. However, for a subset of difficult cell types, such as differentiated human keratinocytes, achieving high-quality immunostaining for nuclear proteins remains challenging. To overcome this technical barrier, we developed the nuclei isolation staining (NIS) method. In brief, NIS involves rapid isolation of nuclei from live cells, followed by fixation and staining of the nuclei directly on coverslips for subsequent high-magnification imaging. By removing the cytoplasmic contents and staining just the nuclei, this NIS method drastically improves antibody labeling efficiency for chromatin-associated proteins. In this article, we describe the development and a step-by-step protocol of NIS, using differentiated human keratinocytes as an example. We also discuss other applications, based on the principle of this NIS method, for understanding cell-type and cell-state specific gene regulation. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Amy E. Neely
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Xiaomin Bao
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
- Department of Dermatology, Northwestern University, Evanston, IL 60208
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208
| |
Collapse
|
75
|
Zhou D, Chen F, Handschuh‐Wang S, Gan T, Zhou X, Zhou X. Biomimetic Extreme‐Temperature‐ and Environment‐Adaptable Hydrogels. Chemphyschem 2019; 20:2139-2154. [DOI: 10.1002/cphc.201900545] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/10/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Dan Zhou
- College of Chemistry and Environmental EngineeringShenzhen University, Shenzhen 518060 P. R. China
| | - Fan Chen
- College of Chemistry and Environmental EngineeringShenzhen University, Shenzhen 518060 P. R. China
| | - Stephan Handschuh‐Wang
- College of Chemistry and Environmental EngineeringShenzhen University, Shenzhen 518060 P. R. China
| | - Tiansheng Gan
- College of Chemistry and Environmental EngineeringShenzhen University, Shenzhen 518060 P. R. China
| | - Xiaohu Zhou
- College of Chemistry and Environmental EngineeringShenzhen University, Shenzhen 518060 P. R. China
| | - Xuechang Zhou
- College of Chemistry and Environmental EngineeringShenzhen University, Shenzhen 518060 P. R. China
| |
Collapse
|
76
|
Chamcheu JC, Roy T, Uddin MB, Banang-Mbeumi S, Chamcheu RCN, Walker AL, Liu YY, Huang S. Role and Therapeutic Targeting of the PI3K/Akt/mTOR Signaling Pathway in Skin Cancer: A Review of Current Status and Future Trends on Natural and Synthetic Agents Therapy. Cells 2019; 8:cells8080803. [PMID: 31370278 PMCID: PMC6721560 DOI: 10.3390/cells8080803] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/16/2022] Open
Abstract
The mammalian or mechanistic target of rapamycin (mTOR) and associated phosphatidyl-inositiol 3-kinase (PI3K)/protein kinase B (Akt) pathways regulate cell growth, differentiation, migration, and survival, as well as angiogenesis and metabolism. Dysregulation of these pathways is frequently associated with genetic/epigenetic alterations and predicts poor treatment outcomes in a variety of human cancers including cutaneous malignancies like melanoma and non-melanoma skin cancers. Recently, the enhanced understanding of the molecular and genetic basis of skin dysfunction in patients with skin cancers has provided a strong basis for the development of novel therapeutic strategies for these obdurate groups of skin cancers. This review summarizes recent advances in the roles of PI3K/Akt/mTOR and their targets in the development and progression of a broad spectrum of cutaneous cancers and discusses the current progress in preclinical and clinical studies for the development of PI3K/Akt/mTOR targeted therapies with nutraceuticals and synthetic small molecule inhibitors.
Collapse
Affiliation(s)
| | - Tithi Roy
- College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209-0497, USA
| | | | - Sergette Banang-Mbeumi
- College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209-0497, USA
- Division for Research and Innovation, POHOFI Inc., P.O. Box 44067, Madison, WI 53744, USA
- School of Nursing and Allied Health Sciences, Louisiana Delta Community College, Monroe, LA 71203, USA
| | | | - Anthony L Walker
- College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209-0497, USA
| | - Yong-Yu Liu
- College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209-0497, USA
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| |
Collapse
|
77
|
Yang R, Liu F, Wang J, Chen X, Xie J, Xiong K. Epidermal stem cells in wound healing and their clinical applications. Stem Cell Res Ther 2019; 10:229. [PMID: 31358069 PMCID: PMC6664527 DOI: 10.1186/s13287-019-1312-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The skin has important barrier, sensory, and immune functions, contributing to the health and integrity of the organism. Extensive skin injuries that threaten the entire organism require immediate and effective treatment. Wound healing is a natural response, but in severe conditions, such as burns and diabetes, this process is insufficient to achieve effective treatment. Epidermal stem cells (EPSCs) are a multipotent cell type and are committed to the formation and differentiation of the functional epidermis. As the contributions of EPSCs in wound healing and tissue regeneration have been increasingly attracting the attention of researchers, a rising number of therapies based on EPSCs are currently under development. In this paper, we review the characteristics of EPSCs and the mechanisms underlying their functions during wound healing. Applications of EPSCs are also discussed to determine the potential and feasibility of using EPSCs clinically in wound healing.
Collapse
Affiliation(s)
- Ronghua Yang
- Department of Burn Surgery, The First People's Hospital of Foshan, Foshan, 528000, China
| | - Fengxia Liu
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830001, China
| | - Jingru Wang
- Department of Burn Surgery, The First People's Hospital of Foshan, Foshan, 528000, China
| | - Xiaodong Chen
- Department of Burn Surgery, The First People's Hospital of Foshan, Foshan, 528000, China
| | - Julin Xie
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 512100, China.
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Morphological Sciences Building, Central South University, 172 Tongzi Po Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
78
|
Negri VA, Logtenberg MEW, Renz LM, Oules B, Walko G, Watt FM. Delta-like 1-mediated cis-inhibition of Jagged1/2 signalling inhibits differentiation of human epidermal cells in culture. Sci Rep 2019; 9:10825. [PMID: 31346203 PMCID: PMC6658703 DOI: 10.1038/s41598-019-47232-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 07/04/2019] [Indexed: 11/20/2022] Open
Abstract
Epidermal homeostasis depends on a balance between self-renewal of stem cells and terminal differentiation of their progeny. Notch signalling is known to play a role in epidermal stem cell patterning and differentiation. However, the molecular mechanisms are incompletely understood. Here we demonstrate dynamic patterns of Notch ligand and receptor expression in cultured human epidermis. Notch2 and 3 act together to promote differentiation, while Notch1 decreases stem cell proliferation. The Notch ligand Jagged1 triggers differentiation when presented on an adhesive substrate or on polystyrene beads and over-rides the differentiation inhibitory effect of cell spreading. In contrast, Delta-like 1 (Dll1) overexpression abrogates the pro-differentiation effect of Jagged1 in a cell autonomous fashion. We conclude that Dll1 expression by stem cells not only stimulates differentiation of neighbouring cells in trans, but also inhibits differentiation cell autonomously. These results highlight the distinct roles of different Notch receptors and ligands in controlling epidermal homeostasis.
Collapse
Affiliation(s)
- Victor A Negri
- Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, 28th Floor, Tower Wing, Guy's Hospital, SE1 9RT, London, UK
| | - Meike E W Logtenberg
- Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, 28th Floor, Tower Wing, Guy's Hospital, SE1 9RT, London, UK.,Division of Immunology, The Netherlands Cancer Institute, Postbus 90203, 1006 BE, Amsterdam, The Netherlands
| | - Lisa M Renz
- Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, 28th Floor, Tower Wing, Guy's Hospital, SE1 9RT, London, UK.,Research Institute for Applied Bioanalytics and Drug Development, IMC University of Applied Sciences, A-3500, Krems an der Donau, Austria
| | - Bénédicte Oules
- Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, 28th Floor, Tower Wing, Guy's Hospital, SE1 9RT, London, UK
| | - Gernot Walko
- Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, 28th Floor, Tower Wing, Guy's Hospital, SE1 9RT, London, UK. .,Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom.
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, 28th Floor, Tower Wing, Guy's Hospital, SE1 9RT, London, UK.
| |
Collapse
|
79
|
Brouki Milan P, Pazouki A, Joghataei MT, Mozafari M, Amini N, Kargozar S, Amoupour M, Latifi N, Samadikuchaksaraei A. Decellularization and preservation of human skin: A platform for tissue engineering and reconstructive surgery. Methods 2019; 171:62-67. [PMID: 31302179 DOI: 10.1016/j.ymeth.2019.07.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 07/04/2019] [Accepted: 07/06/2019] [Indexed: 12/12/2022] Open
Abstract
A matrix derived from natural tissue functions as a highly biocompatible and versatile scaffold for tissue engineering applications. It can act as a supportive construct that provides a niche for colonization by host cells. In this work, we describe a cost-effective, reliable and reproducible protocol for decellularization and preservation of human skin as a potential soft tissue replacement. The decellularized human skin is achieved using purely chemical agents without any enzymatic steps. The suitability of the proposed method for the preservation of the extracellular matrix (ECM) structure and its main components and integrity were evaluated using histological and immunohistochemical analysis. Cryopreservation and final sterility were conducted using programmable freeze-drying and gamma irradiation. The architecture, basement membrane and 3D structure of ECM can be successfully preserved after decellularization. Our protocol was found to be appropriate to maintain key proteins such as collagen type I, III, IV and laminin in the structure of final scaffold. This protocol offers a novel platform for the preparation of a dermal substitute for potential clinical applications. STATEMENT OF SIGNIFICANCE: Clinical application of naturally-based scaffolds for verity of health problems obliges development of a reproducible and effective technology that does not change structural and compositional material properties during scaffold preparation and preservation. Lack of an effective protocol for the production of biological products using decellularization method is still remaining. This effort is directing to solve this challenge in order to accomplish the off-the -shelf availability of decellularized dermal scaffold in market for clinical application.
Collapse
Affiliation(s)
- Peiman Brouki Milan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Institute of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abdolreza Pazouki
- Minimally Invasive Surgery Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | | | - Masoud Mozafari
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Institute of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Naser Amini
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Minimally Invasive Surgery Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, 917794-8564 Mashhad, Iran
| | - Moein Amoupour
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Noorahmad Latifi
- Department of Plastic and Reconstructive Surgery, Hazrat Fatemeh Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Samadikuchaksaraei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Institute of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
80
|
Augustyniak J, Bertero A, Coccini T, Baderna D, Buzanska L, Caloni F. Organoids are promising tools for species-specific in vitro toxicological studies. J Appl Toxicol 2019; 39:1610-1622. [PMID: 31168795 DOI: 10.1002/jat.3815] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/05/2019] [Accepted: 04/05/2019] [Indexed: 12/11/2022]
Abstract
Organoids are three-dimensional self-aggregating structures generated from stem cells (SCs) or progenitor cells in a process that recapitulates molecular and cellular stages of early organ development. The differentiation process leads to the appearance of specialized mature cells and is connected with changes in the organoid internal structure rearrangement and self-organization. The formation of organ-specific structures in vitro with highly ordered architecture is also strongly influenced by the extracellular matrix. These features make organoids as a powerful model for in vitro toxicology. Nowadays this technology is developing very quickly. In this review we present, from a toxicological and species-specific point of view, the state of the art of organoid generation from adult SCs and pluripotent SCs: embryonic SCs or induced pluripotent SCs. The current culture organoid techniques are discussed for their main advantages, disadvantages and limitations. In the second part of the review, we concentrated on the characterization of species-specific organoids generated from tissue-specific SCs of different sources: mammary (bovine), epidermis (canine), intestinal (porcine, bovine, canine, chicken) and liver (feline, canine).
Collapse
Affiliation(s)
- Justyna Augustyniak
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Alessia Bertero
- Department of Veterinary Medicine (DIMEVET), Università degli Studi di Milano, Milan, Italy
| | - Teresa Coccini
- Laboratory of Clinical and Experimental Toxicology, Toxicology Unit, ICS Maugeri SpA-SB, IRCCS Pavia, Pavia, Italy
| | - Diego Baderna
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy
| | - Leonora Buzanska
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Francesca Caloni
- Department of Veterinary Medicine (DIMEVET), Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
81
|
Bhattacharya N, Sato WJ, Kelly A, Ganguli-Indra G, Indra AK. Epidermal Lipids: Key Mediators of Atopic Dermatitis Pathogenesis. Trends Mol Med 2019; 25:551-562. [PMID: 31054869 DOI: 10.1016/j.molmed.2019.04.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/19/2019] [Accepted: 04/01/2019] [Indexed: 02/06/2023]
Abstract
The skin barrier keeps the 'inside in' and the 'outside out', forming a protective blanket against external insults. Epidermal lipids, such as ceramides, fatty acids (FAs), triglycerides, and cholesterol, are integral components driving the formation and maintenance of the epidermal permeability barrier (EPB). A breach in this lipid barrier sets the platform for the subsequent onset and progression of atopic dermatitis (AD). Such lipids are also important in the normal functioning of organisms, both plants and animals, and in diseases, including cancer. Given the doubling of the number of cases of AD in recent years and the chronic nature of this disorder, here we shed light on the multifaceted role of diverse types of lipid in mediating AD pathogenesis.
Collapse
Affiliation(s)
- Nilika Bhattacharya
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - William J Sato
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Avalon Kelly
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Gitali Ganguli-Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA; Knight Cancer Institute, Portland, OR 97239, USA
| | - Arup K Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA; Knight Cancer Institute, Portland, OR 97239, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA; Linus Pauling Science Center, Oregon State University, Corvallis, OR, USA; Departments of Dermatology, Oregon Health & Science University (OHSU), Portland, OR 97239, USA.
| |
Collapse
|
82
|
Belokhvostova D, Berzanskyte I, Cujba AM, Jowett G, Marshall L, Prueller J, Watt FM. Homeostasis, regeneration and tumour formation in the mammalian epidermis. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2019; 62:571-582. [PMID: 29938768 DOI: 10.1387/ijdb.170341fw] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The epidermis is the outer covering of the skin and provides a protective interface between the body and the environment. It is well established that the epidermis is maintained by stem cells that self-renew and generate differentiated cells. In this review, we discuss how recent technological advances, including single cell transcriptomics and in vivo imaging, have provided new insights into the nature and plasticity of the stem cell compartment and the differing roles of stem cells in homeostasis, wound repair and cancer.
Collapse
Affiliation(s)
- Daria Belokhvostova
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, London, UK
| | | | | | | | | | | | | |
Collapse
|
83
|
Mobasseri SA, Zijl S, Salameti V, Walko G, Stannard A, Garcia-Manyes S, Watt FM. Patterning of human epidermal stem cells on undulating elastomer substrates reflects differences in cell stiffness. Acta Biomater 2019; 87:256-264. [PMID: 30710711 PMCID: PMC6401207 DOI: 10.1016/j.actbio.2019.01.063] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/15/2019] [Accepted: 01/29/2019] [Indexed: 11/27/2022]
Abstract
In human skin the junction between epidermis and dermis undulates, the width and depth of the undulations varying with age and disease. When primary human epidermal keratinocytes are seeded on collagen-coated polydimethylsiloxane (PDMS) elastomer substrates that mimic the epidermal-dermal interface, the stem cells become patterned by 24 h, resembling their organisation in living skin. We found that cell density and nuclear height were higher at the base than the tips of the PDMS features. Cells on the tips not only expressed higher levels of the stem cell marker β1 integrin but also had elevated E-cadherin, Desmoglein 3 and F-actin than cells at the base. In contrast, levels of the transcriptional cofactor MAL were higher at the base. AFM measurements established that the Young’s modulus of cells on the tips was lower than on the base or cells on flat substrates. The differences in cell stiffness were dependent on Rho kinase activity and intercellular adhesion. On flat substrates the Young’s modulus of calcium-dependent intercellular junctions was higher than that of the cell body, again dependent on Rho kinase. Cell patterning was influenced by the angle of the slope on undulating substrates. Our observations are consistent with the concept that epidermal stem cell patterning is dependent on mechanical forces exerted at intercellular junctions in response to undulations in the epidermal-dermal interface. Statement of significance In human skin the epidermal-dermal junction undulates and epidermal stem cells are patterned according to their position. We previously created collagen-coated polydimethylsiloxane (PDMS) elastomer substrates that mimic the undulations and provide sufficient topographical information for stem cells to cluster on the tips. Here we show that the stiffness of cells on the tips is lower than cells on the base. The differences in cell stiffness depend on Rho kinase activity and intercellular adhesion. We propose that epidermal stem cell patterning is determined by mechanical forces exerted at intercellular junctions in response to the slope of the undulations.
Collapse
|
84
|
Li Y, Kong Q, Yue J, Gou X, Xu M, Wu X. Genome-edited skin epidermal stem cells protect mice from cocaine-seeking behaviour and cocaine overdose. Nat Biomed Eng 2019; 3:105-113. [PMID: 30899600 PMCID: PMC6423967 DOI: 10.1038/s41551-018-0293-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 08/15/2018] [Indexed: 12/20/2022]
Abstract
Cocaine addiction is associated with compulsive drug-seeking, and exposure to the drug or to drug-associated cues leads to relapse, even after long periods of abstention. A variety of pharmacological targets and behavioral interventions have been explored to counteract cocaine addiction, but to date no market-approved medications for treating cocaine addiction or relapse exist, and effective interventions for acute emergencies resulting from cocaine overdose are lacking. We recently demonstrated that skin epidermal stem cells can be readily edited by using CRISPR (clustered regularly interspaced short palindromic repeats) and then transplanted back into the donor mice. Here, we show that the transplantation, into mice, of skin cells modified to express an enhanced form of butyrylcholinesterase, an enzyme that hydrolyzes cocaine, enables the long-term release of the enzyme and efficiently protects the mice from cocaine-seeking behavior and cocaine overdose. Cutaneous gene therapy through skin transplants that elicit drug elimination may offer a therapeutic option to address drug abuse.
Collapse
Affiliation(s)
- Yuanyuan Li
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Qingyao Kong
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL, USA
| | - Jiping Yue
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Xuewen Gou
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Ming Xu
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL, USA.
| | - Xiaoyang Wu
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
85
|
Chitosan/LiCl composite scaffolds promote skin regeneration in full-thickness loss. SCIENCE CHINA-LIFE SCIENCES 2019; 63:552-562. [DOI: 10.1007/s11427-018-9389-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/24/2018] [Indexed: 12/21/2022]
|
86
|
Zhao X, Psarianos P, Ghoraie LS, Yip K, Goldstein D, Gilbert R, Witterick I, Pang H, Hussain A, Lee JH, Williams J, Bratman SV, Ailles L, Haibe-Kains B, Liu FF. Metabolic regulation of dermal fibroblasts contributes to skin extracellular matrix homeostasis and fibrosis. Nat Metab 2019; 1:147-157. [PMID: 32694814 DOI: 10.1038/s42255-018-0008-5] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/29/2018] [Indexed: 12/31/2022]
Abstract
Extracellular matrix (ECM) homeostasis is essential for normal tissue function, and its disruption by iatrogenic injury, trauma, or disease results in fibrosis. Skin ECM homeostasis is maintained by a complex process that involves an integration of cytokine and environmental mediators. However, it is unclear, in both normal and disease states, how these multifactorial processes converge to shift ECM homeostasis towards accumulation or degradation. Here we show a consistent downregulation in fatty acid oxidation (FAO) and upregulation of glycolysis in fibrotic skin and in normal skin with abundant ECM. Perturbation of glycolysis and FAO pathway enzymes reveals their reciprocal effects in ECM upregulation and downregulation, respectively. Increasing peroxisome proliferator-activated receptor (PPAR) signalling, an inducer of the FAO pathway, generates a catabolic fibroblast phenotype characterised by inhibition of ECM transcription and enhanced ECM internalization and lysosomal degradation. In contrast, suppression of glycolysis inhibits ECM gene transcription and protein levels, independently of an intact FAO pathway or PPAR signalling. Moreover, we show that CD36, a multifunctional fatty acid transporter, connects the metabolic state of fibroblasts with their capacity for ECM regulation, as internalization and degradation of collagen-1 is abrogated in fibroblasts lacking CD36. Finally, restoring FAO and upregulating CD36 reduces ECM accumulation in murine skin fibrosis. These findings indicate that metabolic perturbation of ECM homeostasis may have broad implications for therapies aimed at ECM regulation, such as fibrosis, regenerative medicine, and ageing.
Collapse
Affiliation(s)
- Xiao Zhao
- Department of Otolaryngology-Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
- Insitute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.
| | - Pamela Psarianos
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Laleh Soltan Ghoraie
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Kenneth Yip
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - David Goldstein
- Department of Otolaryngology-Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Otolaryngology-Head and Neck Surgery and Surgical Oncology, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Ralph Gilbert
- Department of Otolaryngology-Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Otolaryngology-Head and Neck Surgery and Surgical Oncology, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Ian Witterick
- Department of Otolaryngology-Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Otolaryngology-Head and Neck Surgery and Surgical Oncology, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Otolaryngology-Head and Neck Surgery, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Hilary Pang
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Ali Hussain
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Ju Hee Lee
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Justin Williams
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Scott V Bratman
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Laurie Ailles
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Insitute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Computer Science, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Fei-Fei Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada.
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
87
|
Sanz-Gómez N, Freije A, Gandarillas A. Keratinocyte Differentiation by Flow Cytometry. Methods Mol Biol 2019; 2109:83-92. [PMID: 31123997 DOI: 10.1007/7651_2019_237] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The epidermis is continuously exposed to environmental hazard and undergoes continuous cell renewal. The maintenance of the epidermal balance between proliferation and differentiation is essential for the homeostasis of the skin. Proliferation and terminal differentiation are compartmentalized in basal and suprabasal layers, respectively. These compartments can be identified by different patterns of protein expression that can be used as differentiation markers. For instance, components of the intermediate filament cytoskeleton keratins K5 and K14 are confined to the proliferative basal layer, while keratins K1 and K10, keratins K6 and K16, or precursors of the cornified envelope such as involucrin are expressed by suprabasal terminally differentiating cells. The analysis of the expression of these markers allows studying the imbalance typical of disease. Although these markers have been traditionally analyzed on skin microsections, on attached cells by immunostaining or by western blotting, it is possible and advantageous to quantify them by flow cytometry. We have extensively applied this technology onto human and mouse keratinocytes. Here we describe detailed flow cytometry methods to determine the differentiation status of keratinocyte populations.
Collapse
Affiliation(s)
- Natalia Sanz-Gómez
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Ana Freije
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Alberto Gandarillas
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), Santander, Spain. .,INSERM, Languedoc-Roussillon, Montpellier, France.
| |
Collapse
|
88
|
Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound Healing: A Cellular Perspective. Physiol Rev 2019; 99:665-706. [PMID: 30475656 PMCID: PMC6442927 DOI: 10.1152/physrev.00067.2017] [Citation(s) in RCA: 1284] [Impact Index Per Article: 256.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 02/08/2023] Open
Abstract
Wound healing is one of the most complex processes in the human body. It involves the spatial and temporal synchronization of a variety of cell types with distinct roles in the phases of hemostasis, inflammation, growth, re-epithelialization, and remodeling. With the evolution of single cell technologies, it has been possible to uncover phenotypic and functional heterogeneity within several of these cell types. There have also been discoveries of rare, stem cell subsets within the skin, which are unipotent in the uninjured state, but become multipotent following skin injury. Unraveling the roles of each of these cell types and their interactions with each other is important in understanding the mechanisms of normal wound closure. Changes in the microenvironment including alterations in mechanical forces, oxygen levels, chemokines, extracellular matrix and growth factor synthesis directly impact cellular recruitment and activation, leading to impaired states of wound healing. Single cell technologies can be used to decipher these cellular alterations in diseased states such as in chronic wounds and hypertrophic scarring so that effective therapeutic solutions for healing wounds can be developed.
Collapse
Affiliation(s)
- Melanie Rodrigues
- Department of Surgery, Stanford University School of Medicine , Stanford, California
| | - Nina Kosaric
- Department of Surgery, Stanford University School of Medicine , Stanford, California
| | - Clark A Bonham
- Department of Surgery, Stanford University School of Medicine , Stanford, California
| | - Geoffrey C Gurtner
- Department of Surgery, Stanford University School of Medicine , Stanford, California
| |
Collapse
|
89
|
Helling AL, Viswanathan P, Cheliotis KS, Mobasseri SA, Yang Y, El Haj AJ, Watt FM. Dynamic Culture Substrates That Mimic the Topography of the Epidermal-Dermal Junction. Tissue Eng Part A 2018; 25:214-223. [PMID: 30280972 PMCID: PMC6388717 DOI: 10.1089/ten.tea.2018.0125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
IMPACT STATEMENT In human skin the junction between the epidermis and dermis undulates. Epidermal stem cells pattern according to their position relative to those undulations. Here we describe a rig in which epidermal cells are cultured on a collagen-coated poly(d,l-lactide-co-glycolide) (PLGA) membrane. When a vacuum is applied the membrane is induced to undulate. Stem cells cluster in response to the vacuum, whereas differentiating cells do not. Rho kinase inhibition results in loss of clustering, suggesting a role for Rho family members in the process. This dynamic platform is a new tool for investigating changes in the skin with age and disease.
Collapse
Affiliation(s)
- Ayelen L Helling
- 1 Center for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, London, United Kingdom
| | - Priyalakshmi Viswanathan
- 1 Center for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, London, United Kingdom
| | - Katerina S Cheliotis
- 1 Center for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, London, United Kingdom
| | - Seyedeh Atefeh Mobasseri
- 1 Center for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, London, United Kingdom
| | - Ying Yang
- 2 Institute for Science and Technology in Medicine, Keele University, Stoke-on-Trent, United Kingdom
| | - Alicia J El Haj
- 2 Institute for Science and Technology in Medicine, Keele University, Stoke-on-Trent, United Kingdom
| | - Fiona M Watt
- 1 Center for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, London, United Kingdom
| |
Collapse
|
90
|
Brusatin G, Panciera T, Gandin A, Citron A, Piccolo S. Biomaterials and engineered microenvironments to control YAP/TAZ-dependent cell behaviour. NATURE MATERIALS 2018; 17:1063-1075. [PMID: 30374202 PMCID: PMC6992423 DOI: 10.1038/s41563-018-0180-8] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/29/2018] [Indexed: 05/11/2023]
Abstract
Mechanical signals are increasingly recognized as overarching regulators of cell behaviour, controlling stemness, organoid biology, tissue development and regeneration. Moreover, aberrant mechanotransduction is a driver of disease, including cancer, fibrosis and cardiovascular defects. A central question remains how cells compute a host of biomechanical signals into meaningful biological behaviours. Biomaterials and microfabrication technologies are essential to address this issue. Here we review a large body of evidence that connects diverse biomaterial-based systems to the functions of YAP/TAZ, two highly related mechanosensitive transcriptional regulators. YAP/TAZ orchestrate the response to a suite of engineered microenviroments, emerging as a universal control system for cells in two and three dimensions, in static or dynamic fashions, over a range of elastic and viscoelastic stimuli, from solid to fluid states. This approach may guide the rational design of technological and material-based platforms with dramatically improved functionalities and inform the generation of new biomaterials for regenerative medicine applications.
Collapse
Affiliation(s)
- Giovanna Brusatin
- Department of Industrial Engineering (DII) and INSTM, University of Padua, Padua, Italy
| | - Tito Panciera
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, Padua, Italy
| | - Alessandro Gandin
- Department of Industrial Engineering (DII) and INSTM, University of Padua, Padua, Italy
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, Padua, Italy
| | - Anna Citron
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, Padua, Italy
| | - Stefano Piccolo
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, Padua, Italy.
- IFOM-the FIRC Institute of Molecular Oncology, .
| |
Collapse
|
91
|
Rübsam M, Broussard JA, Wickström SA, Nekrasova O, Green KJ, Niessen CM. Adherens Junctions and Desmosomes Coordinate Mechanics and Signaling to Orchestrate Tissue Morphogenesis and Function: An Evolutionary Perspective. Cold Spring Harb Perspect Biol 2018; 10:a029207. [PMID: 28893859 PMCID: PMC6211388 DOI: 10.1101/cshperspect.a029207] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cadherin-based adherens junctions (AJs) and desmosomes are crucial to couple intercellular adhesion to the actin or intermediate filament cytoskeletons, respectively. As such, these intercellular junctions are essential to provide not only integrity to epithelia and other tissues but also the mechanical machinery necessary to execute complex morphogenetic and homeostatic intercellular rearrangements. Moreover, these spatially defined junctions serve as signaling hubs that integrate mechanical and chemical pathways to coordinate tissue architecture with behavior. This review takes an evolutionary perspective on how the emergence of these two essential intercellular junctions at key points during the evolution of multicellular animals afforded metazoans with new opportunities to integrate adhesion, cytoskeletal dynamics, and signaling. We discuss known literature on cross-talk between the two junctions and, using the skin epidermis as an example, provide a model for how these two junctions function in concert to orchestrate tissue organization and function.
Collapse
Affiliation(s)
- Matthias Rübsam
- University of Cologne, Department of Dermatology, Cologne Excellence Cluster on Stress Responses in Aging Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC) at the CECAD Research Center, 50931 Cologne, Germany
| | - Joshua A Broussard
- Northwestern University Feinberg School of Medicine, Departments of Pathology and Dermatology, the Robert H Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois 60611
| | - Sara A Wickström
- Paul Gerson Unna Group, Skin Homeostasis and Ageing, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Oxana Nekrasova
- Northwestern University Feinberg School of Medicine, Departments of Pathology and Dermatology, the Robert H Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois 60611
| | - Kathleen J Green
- Northwestern University Feinberg School of Medicine, Departments of Pathology and Dermatology, the Robert H Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois 60611
| | - Carien M Niessen
- University of Cologne, Department of Dermatology, Cologne Excellence Cluster on Stress Responses in Aging Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC) at the CECAD Research Center, 50931 Cologne, Germany
| |
Collapse
|
92
|
Rognoni E, Watt FM. Skin Cell Heterogeneity in Development, Wound Healing, and Cancer. Trends Cell Biol 2018; 28:709-722. [PMID: 29807713 PMCID: PMC6098245 DOI: 10.1016/j.tcb.2018.05.002] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/01/2018] [Accepted: 05/08/2018] [Indexed: 12/14/2022]
Abstract
Skin architecture and function depend on diverse populations of epidermal cells and dermal fibroblasts. Reciprocal communication between the epidermis and dermis plays a key role in skin development, homeostasis and repair. While several stem cell populations have been identified in the epidermis with distinct locations and functions, it is now recognised that there is additional heterogeneity within the mesenchymal cells of the dermis. Here, we discuss recent insights into how these distinct cell populations are maintained and coordinated during development, homeostasis, and wound healing. We highlight the importance of the local environment, or niche, in cellular plasticity. We also discuss new mechanisms that have been identified as influencing wound repair and cancer progression.
Collapse
Affiliation(s)
- Emanuel Rognoni
- King's College London, Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Hospital Campus, Great Maze Pond, London SE1 9RT, UK
| | - Fiona M Watt
- King's College London, Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Hospital Campus, Great Maze Pond, London SE1 9RT, UK.
| |
Collapse
|
93
|
Rognoni E, Pisco AO, Hiratsuka T, Sipilä KH, Belmonte JM, Mobasseri SA, Philippeos C, Dilão R, Watt FM. Fibroblast state switching orchestrates dermal maturation and wound healing. Mol Syst Biol 2018; 14:e8174. [PMID: 30158243 PMCID: PMC6113774 DOI: 10.15252/msb.20178174] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 01/25/2023] Open
Abstract
Murine dermis contains functionally and spatially distinct fibroblast lineages that cease to proliferate in early postnatal life. Here, we propose a model in which a negative feedback loop between extracellular matrix (ECM) deposition and fibroblast proliferation determines dermal architecture. Virtual-tissue simulations of our model faithfully recapitulate dermal maturation, predicting a loss of spatial segregation of fibroblast lineages and dictating that fibroblast migration is only required for wound healing. To test this, we performed in vivo live imaging of dermal fibroblasts, which revealed that homeostatic tissue architecture is achieved without active cell migration. In contrast, both fibroblast proliferation and migration are key determinants of tissue repair following wounding. The results show that tissue-scale coordination is driven by the interdependence of cell proliferation and ECM deposition, paving the way for identifying new therapeutic strategies to enhance skin regeneration.
Collapse
Affiliation(s)
- Emanuel Rognoni
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | | | - Toru Hiratsuka
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | - Kalle H Sipilä
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | - Julio M Belmonte
- Developmental Biology Unit and Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Christina Philippeos
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | - Rui Dilão
- Nonlinear Dynamics Group, Instituto Superior Técnico, Lisbon, Portugal
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| |
Collapse
|
94
|
Wiener DJ, Basak O, Asra P, Boonekamp KE, Kretzschmar K, Papaspyropoulos A, Clevers H. Establishment and characterization of a canine keratinocyte organoid culture system. Vet Dermatol 2018; 29:375-e126. [PMID: 29963730 DOI: 10.1111/vde.12541] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND Perturbations of epidermal and follicular homeostasis have been attributed to a variety of skin diseases affecting dogs. The availability of an in vitro system to investigate these diseases is important to understand underlying pathomechanisms. OBJECTIVES To establish an accurate and reliable in vitro 3D system of canine keratinocyte organoids to lay the basis for studying functional defects in interfollicular epidermis (IFE) and hair follicle (HF) morphogenesis, reconstitution and differentiation that lead to alopecic and epidermal diseases. ANIMALS Skin biopsies were obtained from freshly euthanized dogs of different breeds with no skin abnormalities. METHODS Cells derived from microdissected IFE and HFs were seeded in Matrigel and keratinocyte organoids were grown and characterized using immunohistochemistry, RT-qPCR and RNA sequencing. RESULTS Both organoid lines develop into a basal IFE-like cell type. Gene and protein expression analysis revealed high mRNA and protein levels of keratins 5 and 14, IFE differentiation markers and intercellular molecules. Key markers of HF stem cells were lacking. Withdrawal of growth factors resulted in upregulation of markers such as KRT16, Involucrin, KRT17 and SOX9, showing the potential of the organoids to develop towards more differentiated tissue. CONCLUSION AND CLINICAL IMPORTANCE Our 3D in vitro culture system provides the basis to explore epidermal function, to investigate the culture conditions necessary for the development of organoids with a HF signature and to address cutaneous disorders in dogs. However, for induction of HF signatures or hair growth, addition of different growth factors or co-culture with dermal papilla will be required.
Collapse
Affiliation(s)
- Dominique J Wiener
- Vetsuisse Faculty, Institute of Animal Pathology, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland.,Dermfocus, Vetsuisse Faculty, Inselspital, Bern University Hospital, Freiburgstrasse 14, 3010, Bern, Switzerland.,Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - Onur Basak
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands.,Cancer Genomics Netherlands, UMC Utrecht, Universiteitsweg 100, CG, 3584, Utrecht, the Netherlands
| | - Priyanca Asra
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands.,Cancer Genomics Netherlands, UMC Utrecht, Universiteitsweg 100, CG, 3584, Utrecht, the Netherlands
| | - Kim E Boonekamp
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands.,Cancer Genomics Netherlands, UMC Utrecht, Universiteitsweg 100, CG, 3584, Utrecht, the Netherlands
| | - Kai Kretzschmar
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands.,Cancer Genomics Netherlands, UMC Utrecht, Universiteitsweg 100, CG, 3584, Utrecht, the Netherlands
| | - Angelos Papaspyropoulos
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands.,Cancer Genomics Netherlands, UMC Utrecht, Universiteitsweg 100, CG, 3584, Utrecht, the Netherlands
| | - Hans Clevers
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands.,Cancer Genomics Netherlands, UMC Utrecht, Universiteitsweg 100, CG, 3584, Utrecht, the Netherlands.,Princess Máxima Centre for Pediatric Oncology, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| |
Collapse
|
95
|
Sevilla LM, Pérez P. Roles of the Glucocorticoid and Mineralocorticoid Receptors in Skin Pathophysiology. Int J Mol Sci 2018; 19:ijms19071906. [PMID: 29966221 PMCID: PMC6073661 DOI: 10.3390/ijms19071906] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 12/15/2022] Open
Abstract
The nuclear hormone receptor (NR) superfamily comprises approximately 50 evolutionarily conserved proteins that play major roles in gene regulation by prototypically acting as ligand-dependent transcription factors. Besides their central role in physiology, NRs have been largely used as therapeutic drug targets in many chronic inflammatory conditions and derivatives of their specific ligands, alone or in combination, are frequently prescribed for the treatment of skin diseases. In particular, glucocorticoids (GCs) are the most commonly used compounds for treating prevalent skin diseases such as psoriasis due to their anti-proliferative and anti-inflammatory actions. However, and despite their therapeutic efficacy, the long-term use of GCs is limited because of the cutaneous adverse effects including atrophy, delayed wound healing, and increased susceptibility to stress and infections. The GC receptor (GR/NR3C1) and the mineralocorticoid receptor (MR/NR3C2) are members of the NR subclass NR3C that are highly related, both structurally and functionally. While the GR is ubiquitously expressed and is almost exclusively activated by GCs; an MR has a more restricted tissue expression pattern and can bind GCs and the mineralocorticoid aldosterone with similar high affinity. As these receptors share 95% identity in their DNA binding domains; both can recognize the same hormone response elements; theoretically resulting in transcriptional regulation of the same target genes. However, a major mechanism for specific activation of GRs and/or MRs is at the pre-receptor level by modulating the local availability of active GCs. Furthermore, the selective interactions of each receptor with spatio-temporally regulated transcription factors and co-regulators are crucial for the final transcriptional outcome. While there are abundant genome wide studies identifying GR transcriptional targets in a variety of tissue and cell types; including keratinocytes; the data for MR is more limited thus far. Our group and others have studied the role of GRs and MRs in skin development and disease by generating and characterizing mouse and cellular models with gain- and loss-of-function for each receptor. Both NRs are required for skin barrier competence during mouse development and also play a role in adult skin homeostasis. Moreover, the combined loss of epidermal GRs and MRs caused a more severe skin phenotype relative to single knock-outs (KOs) in developing skin and in acute inflammation and psoriasis, indicating that these corticosteroid receptors play cooperative roles. Understanding GR- and MR-mediated signaling in skin should contribute to deciphering their tissue-specific relative roles and ultimately help to improve GC-based therapies.
Collapse
Affiliation(s)
- Lisa M Sevilla
- Instituto de Biomedicina de Valencia (IBV)-CSIC, 46010 Valencia, Spain.
| | - Paloma Pérez
- Instituto de Biomedicina de Valencia (IBV)-CSIC, 46010 Valencia, Spain.
| |
Collapse
|
96
|
Kober KI, Cano A, Géraud C, Sipilä K, Mobasseri SA, Philippeos C, Pisco AO, Stannard A, Martin A, Salvador F, Santos V, Boutros M, Rognoni E, Watt FM. Loxl2 is dispensable for dermal development, homeostasis and tumour stroma formation. PLoS One 2018; 13:e0199679. [PMID: 29953488 PMCID: PMC6023175 DOI: 10.1371/journal.pone.0199679] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/12/2018] [Indexed: 12/31/2022] Open
Abstract
Lysyl oxidase-like 2 (LOXL2) is a copper-dependent monoamine oxidase that contributes to the remodelling of the extracellular matrix (ECM) by cross linkage of collagen and elastin fibres and has emerged as a potential therapeutic target in cancer and fibrosis. In the skin, LOXL2 is essential for epidermal cell polarity and differentiation. However, its role in the dermis has not been evaluated. We found that Loxl2 is dispensable for mouse dermal development, maturation and homeostasis, yet affects dermal stiffness. Neither loss of Loxl2 nor increased Loxl2 expression affected dermal architecture following treatment with the phorbol ester TPA. Furthermore, Loxl2 expression did not alter the stroma of DMBA-TPA-induced tumours. We conclude that, although Loxl2 is expressed in both dermis and epidermis, its function appears largely confined to the epidermis.
Collapse
Affiliation(s)
- Katharina Isabelle Kober
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Amparo Cano
- Departamento de Bioquímica, UAM, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, IdiPAZ, Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERONC, Madrid, Spain
| | - Cyrill Géraud
- Section of Clinical and Molecular Dermatology, Department of Dermatology, Venereology and Allergology and European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kalle Sipilä
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy’s Hospital, London, United Kingdom
| | - Seyedeh Atefeh Mobasseri
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy’s Hospital, London, United Kingdom
| | - Christina Philippeos
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy’s Hospital, London, United Kingdom
| | - Angela Oliveira Pisco
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy’s Hospital, London, United Kingdom
| | - Andrew Stannard
- Department of Physics, King’s College London, Strand, London, United Kingdom
| | - Alberto Martin
- Departamento de Bioquímica, UAM, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, IdiPAZ, Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERONC, Madrid, Spain
| | - Fernando Salvador
- Departamento de Bioquímica, UAM, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, IdiPAZ, Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERONC, Madrid, Spain
| | - Vanesa Santos
- Departamento de Bioquímica, UAM, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, IdiPAZ, Madrid, Spain
- Centro de Investigación Biomédica en Red, CIBERONC, Madrid, Spain
| | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Emanuel Rognoni
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy’s Hospital, London, United Kingdom
- * E-mail: (ER); (FMW)
| | - Fiona M. Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy’s Hospital, London, United Kingdom
- * E-mail: (ER); (FMW)
| |
Collapse
|
97
|
Silva WN, Prazeres PHDM, Paiva AE, Lousado L, Turquetti AOM, Barreto RSN, de Alvarenga EC, Miglino MA, Gonçalves R, Mintz A, Birbrair A. Macrophage-derived GPNMB accelerates skin healing. Exp Dermatol 2018; 27:630-635. [PMID: 29505115 PMCID: PMC6013359 DOI: 10.1111/exd.13524] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2018] [Indexed: 12/22/2022]
Abstract
Healing is a vital response important for the re-establishment of the skin integrity following injury. Delayed or aberrant dermal wound healing leads to morbidity in patients. The development of therapies to improve dermal healing would be useful. Currently, the design of efficient treatments is stalled by the lack of detailed knowledge about the cellular and molecular mechanisms involved in wound healing. Recently, using state-of-the-art technologies, it was revealed that macrophages signal via GPNMB to mesenchymal stem cells, accelerating skin healing. Strikingly, transplantation of macrophages expressing GPNMB improves skin healing in GPNMB-mutant mice. Additionally, topical treatment with recombinant GPNMB restored mesenchymal stem cells recruitment and accelerated wound closure in the diabetic skin. From a drug development perspective, this GPNMB is a new candidate for skin healing.
Collapse
Affiliation(s)
- Walison N. Silva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Ana E. Paiva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luiza Lousado
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Anaelise O. M. Turquetti
- Anatomy of Domestic and Wild Animals Program, Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Rodrigo S. N. Barreto
- Anatomy of Domestic and Wild Animals Program, Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Erika Costa de Alvarenga
- Department of Natural Sciences, Federal University of São João del Rei, São João Del Rey, MG, Brazil
| | - Maria A. Miglino
- Anatomy of Domestic and Wild Animals Program, Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Ricardo Gonçalves
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- Anatomy of Domestic and Wild Animals Program, Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
98
|
Epidermal glucocorticoid and mineralocorticoid receptors act cooperatively to regulate epidermal development and counteract skin inflammation. Cell Death Dis 2018; 9:588. [PMID: 29789551 PMCID: PMC5964110 DOI: 10.1038/s41419-018-0673-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 12/14/2022]
Abstract
Endogenous and synthetic glucocorticoids (GCs) regulate epidermal development and combat skin inflammatory diseases. GC actions can be mediated through the GC receptor (GR) and/or the mineralocorticoid receptor (MR), highly homologous ligand-activated transcription factors. While the role of GR as a potent anti-inflammatory mediator is well known, that of MR is not as clear, nor is whether these receptors cooperate or antagonize each other in the epidermis. To address this, we generated mice with epidermal-specific loss of both receptors (double knockout, DKO), and analyzed the phenotypical and functional consequences relative to single KOs or controls (CO). At birth, DKO epidermis displayed a phenotype of defective differentiation and inflammation, which was more severe than in either single KO, featuring neutrophil-containing infiltrates, and gene dysregulation characteristic of human psoriatic lesions. This phenotype resolved spontaneously. However, in adulthood, single or combined loss of GC receptors increased susceptibility to inflammation and hyperproliferation triggered by phorbol ester which, different to CO, was not effectively counteracted by GC treatment. Also, DKOs were more susceptible to imiquimod-induced psoriasis than CO showing severe defective epidermal differentiation and microabcesses while single KOs showed an intermediate response. Immortalized DKO keratinocytes featured increased proliferation kinetics and reduced cell size, a unique phenotype relative to single KO cells. The lack of GR and MR in keratinocytes, individual or combined, caused constitutive increases in p38 and ERK activities, which were partially reversed upon reinsertion of receptors into DKO cells. DKO keratinocytes also displayed significant increases in AP-1 and NF-κB transcriptional activities, which were partially rescued by ERK and p38 inhibition, respectively. Reinsertion of GR and MR in DKO keratinocytes resulted in physical and cooperative functional interactions that restored the transcriptional response to GCs. In conclusion, our data have revealed that epidermal GR and MR act cooperatively to regulate epidermal development and counteract skin inflammation.
Collapse
|
99
|
Hakimi N, Cheng R, Leng L, Sotoudehfar M, Ba PQ, Bakhtyar N, Amini-Nik S, Jeschke MG, Günther A. Handheld skin printer: in situ formation of planar biomaterials and tissues. LAB ON A CHIP 2018; 18:1440-1451. [PMID: 29662977 PMCID: PMC5965293 DOI: 10.1039/c7lc01236e] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We present a handheld skin printer that enables the in situ formation of biomaterial and skin tissue sheets of different homogeneous and architected compositions. When manually positioned above a target surface, the compact instrument (weight <0.8 kg) conformally deposits a biomaterial or tissue sheet from a microfluidic cartridge. Consistent sheet formation is achieved by coordinating the flow rates at which bioink and cross-linker solution are delivered, with the speed at which a pair of rollers actively translate the cartridge along the surface. We demonstrate compatibility with dermal and epidermal cells embedded in ionically cross-linkable biomaterials (e.g., alginate), and enzymatically cross-linkable proteins (e.g., fibrin), as well as their mixtures with collagen type I and hyaluronic acid. Upon rapid crosslinking, biomaterial and skin cell-laden sheets of consistent thickness, width and composition were obtained. Sheets deposited onto horizontal, agarose-coated surfaces were used for physical and in vitro characterization. Proof-of-principle demonstrations for the in situ formation of biomaterial sheets in murine and porcine excisional wound models illustrate the capacity of depositing onto inclined and compliant wound surfaces that are subject to respiratory motion. We expect the presented work will enable the in situ delivery of a wide range of different cells, biomaterials, and tissue adhesives, as well as the in situ fabrication of spatially organized biomaterials, tissues, and biohybrid structures.
Collapse
Affiliation(s)
- Navid Hakimi
- Department of Mechanical and Industrial Engineering, University of Toronto 5 King’s College Road, Toronto, Ontario M5S3G8, Canada
| | - Richard Cheng
- Institute of Biomaterials and Biomedical Engineering, University of Toronto 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Lian Leng
- Department of Mechanical and Industrial Engineering, University of Toronto 5 King’s College Road, Toronto, Ontario M5S3G8, Canada
| | - Mohammad Sotoudehfar
- Department of Mechanical and Industrial Engineering, University of Toronto 5 King’s College Road, Toronto, Ontario M5S3G8, Canada
| | - Phoenix Qing Ba
- Department of Mechanical and Industrial Engineering, University of Toronto 5 King’s College Road, Toronto, Ontario M5S3G8, Canada
| | - Nazihah Bakhtyar
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre and Sunnybrook Research Institute, 2075 Bayview Ave, Room D704, Toronto, Ontario M4N 3M5, Canada
| | - Saeid Amini-Nik
- Department of Surgery, Department of Immunology, Division of Plastic Surgery and General Surgery, University of Toronto, 149 College Street, Toronto, Ontario M5T 1P5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Marc G. Jeschke
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre and Sunnybrook Research Institute, 2075 Bayview Ave, Room D704, Toronto, Ontario M4N 3M5, Canada
- Department of Surgery, Department of Immunology, Division of Plastic Surgery and General Surgery, University of Toronto, 149 College Street, Toronto, Ontario M5T 1P5, Canada
- Institute of Medical Science, University of Toronto, 1 King’s College Circle, Room 2374, Toronto, Ontario M5S 1A8, Canada
| | - Axel Günther
- Department of Mechanical and Industrial Engineering, University of Toronto 5 King’s College Road, Toronto, Ontario M5S3G8, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto 164 College Street, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
100
|
Forni MF, Peloggia J, Braga TT, Chinchilla JEO, Shinohara J, Navas CA, Camara NOS, Kowaltowski AJ. Caloric Restriction Promotes Structural and Metabolic Changes in the Skin. Cell Rep 2018; 20:2678-2692. [PMID: 28903047 DOI: 10.1016/j.celrep.2017.08.052] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 06/09/2017] [Accepted: 08/16/2017] [Indexed: 12/22/2022] Open
Abstract
Caloric restriction (CR) is the most effective intervention known to enhance lifespan, but its effect on the skin is poorly understood. Here, we show that CR mice display fur coat remodeling associated with an expansion of the hair follicle stem cell (HFSC) pool. We also find that the dermal adipocyte depot (dWAT) is underdeveloped in CR animals. The dermal/vennule annulus vasculature is enlarged, and a vascular endothelial growth factor (VEGF) switch and metabolic reprogramming in both the dermis and the epidermis are observed. When the fur coat is removed, CR mice display increased energy expenditure associated with lean weight loss and locomotion impairment. Our findings indicate that CR promotes extensive skin and fur remodeling. These changes are necessary for thermal homeostasis and metabolic fitness under conditions of limited energy intake, suggesting a potential adaptive mechanism.
Collapse
Affiliation(s)
- Maria Fernanda Forni
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000 São Paulo, Brazil
| | - Julia Peloggia
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000 São Paulo, Brazil
| | - Tárcio T Braga
- Instituto de Ciências Biomédicas, Universidade de São Paulo. Av. Prof. Lineu Prestes, 1730, 05508-900 São Paulo, Brazil
| | | | - Jorge Shinohara
- Laboratório de Química Supramolecular e Nanotecnologia - LQSN, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000 São Paulo, Brazil
| | - Carlos Arturo Navas
- Departamento de Fisiologia, Instituto de Biologia, Universidade de São Paulo, R. do Matão, 321, 05508-090 São Paulo, Brazil
| | - Niels Olsen Saraiva Camara
- Instituto de Ciências Biomédicas, Universidade de São Paulo. Av. Prof. Lineu Prestes, 1730, 05508-900 São Paulo, Brazil
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000 São Paulo, Brazil.
| |
Collapse
|