51
|
Lee J, Song X, Hyun B, Jeon CO, Hyun S. Drosophila Gut Immune Pathway Suppresses Host Development-Promoting Effects of Acetic Acid Bacteria. Mol Cells 2023; 46:637-653. [PMID: 37853687 PMCID: PMC10590707 DOI: 10.14348/molcells.2023.0141] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 10/20/2023] Open
Abstract
The physiology of most organisms, including Drosophila, is heavily influenced by their interactions with certain types of commensal bacteria. Acetobacter and Lactobacillus, two of the most representative Drosophila commensal bacteria, have stimulatory effects on host larval development and growth. However, how these effects are related to host immune activity remains largely unknown. Here, we show that the Drosophila development-promoting effects of commensal bacteria are suppressed by host immune activity. Mono-association of germ-free Drosophila larvae with Acetobacter pomorum stimulated larval development, which was accelerated when host immune deficiency (IMD) pathway genes were mutated. This phenomenon was not observed in the case of mono-association with Lactobacillus plantarum. Moreover, the mutation of Toll pathway, which constitutes the other branch of the Drosophila immune pathway, did not accelerate A. pomorum-stimulated larval development. The mechanism of action of the IMD pathway-dependent effects of A. pomorum did not appear to involve previously known host mechanisms and bacterial metabolites such as gut peptidase expression, acetic acid, and thiamine, but appeared to involve larval serum proteins. These findings may shed light on the interaction between the beneficial effects of commensal bacteria and host immune activity.
Collapse
Affiliation(s)
- Jaegeun Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Xinge Song
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Bom Hyun
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Seogang Hyun
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
52
|
Li K, Jiang Y, Wang N, Lai L, Xu S, Xia T, Yue X, Xin H. Traditional Chinese Medicine in Osteoporosis Intervention and the Related Regulatory Mechanism of Gut Microbiome. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1957-1981. [PMID: 37884447 DOI: 10.1142/s0192415x23500866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The gut microbiome (GM) has become a crucial factor that can affect the progression of osteoporosis. A number of studies have demonstrated the impact of Traditional Chinese Medicine (TCM) on GM and bone metabolism. In this review, we summarize the potential mechanisms of the relationship between osteoporosis and GM disorder and introduce several natural Chinese medicines that exert anti-osteoporosis effects by modulating the GM. It is underlined that, through the provision of the microbial associated molecular pattern (MAMP), the GM causes inflammatory reactions and alterations in the Treg-Th17 balance and ultimately leads to changes in bone mass. Serotonin and many hormones, especially estrogen, may play a crucial role in the interaction of the GM with bone metabolism. Additionally, the GM may affect the absorption of specific nutrients in the intestine, particularly minerals like calcium, magnesium, and phosphorus. Several natural Chinese herbs, such as Sambucus Williamsii, Achyranthes bidentata Blume, Pleurotus ostreatus and Ganoderma lucidum mushrooms, Pueraria Lobata, and Agaricus blazei Murill have exhibited anti-osteoporosis effects through regulating the distribution and metabolism of the GM. These herbs may increase the abundance of Firmicutes, decrease the abundance of Bacteroides, promote the GM to produce more SCFAs, modulate the immune response caused by harmful bacteria, and increase the proportion of Treg-Th17 to indirectly affect bone metabolism. Moreover, gut-derived 5-HT is an important target for TCM to prevent osteoporosis via the gut-bone axis. Puerarin could prevent osteoporosis by improving intestinal mucosal integrity and decrease systemic inflammation caused by estrogen deficiency.
Collapse
Affiliation(s)
- Kun Li
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, P. R. China
- Department of Traditional Chinese Medicine, Changzheng Hospital, Naval Medical University, Shanghai, P. R. China
| | - Yiping Jiang
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, P. R. China
| | - Nani Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, P. R. China
| | - Liyong Lai
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, P. R. China
| | - Shengyan Xu
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, P. R. China
| | - Tianshuang Xia
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, P. R. China
| | - Xiaoqiang Yue
- Department of Traditional Chinese Medicine, Changzheng Hospital, Naval Medical University, Shanghai, P. R. China
| | - Hailiang Xin
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, P. R. China
| |
Collapse
|
53
|
Bailey S, Fraser K. Advancing our understanding of the influence of drug induced changes in the gut microbiome on bone health. Front Endocrinol (Lausanne) 2023; 14:1229796. [PMID: 37867525 PMCID: PMC10588641 DOI: 10.3389/fendo.2023.1229796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/07/2023] [Indexed: 10/24/2023] Open
Abstract
The gut microbiome has been implicated in a multitude of human diseases, with emerging evidence linking its microbial diversity to osteoporosis. This review article will explore the molecular mechanisms underlying perturbations in the gut microbiome and their influence on osteoporosis incidence in individuals with chronic diseases. The relationship between gut microbiome diversity and bone density is primarily mediated by microbiome-derived metabolites and signaling molecules. Perturbations in the gut microbiome, induced by chronic diseases can alter bacterial diversity and metabolic profiles, leading to changes in gut permeability and systemic release of metabolites. This cascade of events impacts bone mineralization and consequently bone mineral density through immune cell activation. In addition, we will discuss how orally administered medications, including antimicrobial and non-antimicrobial drugs, can exacerbate or, in some cases, treat osteoporosis. Specifically, we will review the mechanisms by which non-antimicrobial drugs disrupt the gut microbiome's diversity, physiology, and signaling, and how these events influence bone density and osteoporosis incidence. This review aims to provide a comprehensive understanding of the complex interplay between orally administered drugs, the gut microbiome, and osteoporosis, offering new insights into potential therapeutic strategies for preserving bone health.
Collapse
Affiliation(s)
- Stacyann Bailey
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, United States
- Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Keith Fraser
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
54
|
Joly A, Leulier F. [NOD2 signaling is at the interface between microbiota and linear growth in malnourished mice]. Med Sci (Paris) 2023; 39:712-715. [PMID: 37943129 DOI: 10.1051/medsci/2023119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Affiliation(s)
- Amélie Joly
- Institut de génomique fonctionnelle de Lyon (IGFL), école normale supérieure de Lyon, CNRS UMR5242, université Claude Bernard Lyon-1, Lyon, France
| | - François Leulier
- Institut de génomique fonctionnelle de Lyon (IGFL), école normale supérieure de Lyon, CNRS UMR5242, université Claude Bernard Lyon-1, Lyon, France
| |
Collapse
|
55
|
Odiase E, Frank DN, Young BE, Robertson CE, Kofonow JM, Davis KN, Berman LM, Krebs NF, Tang M. The Gut Microbiota Differ in Exclusively Breastfed and Formula-Fed United States Infants and are Associated with Growth Status. J Nutr 2023; 153:2612-2621. [PMID: 37506974 PMCID: PMC10517231 DOI: 10.1016/j.tjnut.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Evidence regarding the effects of infant feeding type (exclusive breastfeeding compared with exclusive formula feeding) on the gut microbiota and how it impacts infant growth status is limited. OBJECTIVES The primary objective was to compare gut microbiota by feeding type and characterize the associations between gut microbiota and infant growth status. METHODS Stool samples from healthy, full-term infants (4-5 mo-old) who were either exclusively breastfed (BF) or exclusively formula-fed (FF) in Denver, CO, United States were collected, and fecal 16S ribosomal ribonucleic acid gene-based profiling was conducted. Length and weight were measured at the time of stool collection. Length-for-age z-score, weight-for-age z-scores (WAZ), and weight-for-length z-scores were calculated based on the World Health Organization standards. Associations between gut microbial taxa and anthropometric z-scores were assessed by Spearman's rank correlation test. RESULTS A total of 115 infants (BF n = 54; FF n = 61) were included in this study. Feeding type (BF compared with FF) was the most significant tested variable on gut microbiota composition (P < 1 × 10-⁶), followed by mode of delivery and race. Significant differences were observed in α-diversity, β-diversity, and relative abundances of individual taxa between BF and FF. BF infants had lower α-diversity than FF infants. Abundances of Bifidobacterium and Lactobacillus were greater in the breastfeeding group. FF infants had a higher relative abundance of unclassified Ruminococcaceae (P < 0.001), which was associated with a higher WAZ (P < 0.001) and length-for-age z-score (P < 0.01). Lactobacillus was inversely associated with WAZ (P < 0.05). CONCLUSIONS Feeding type is the main driver of gut microbiota differences in young infants. The gut microbiota differences based on feeding type (exclusive breast- or formula feeding) were associated with observed differences in growth status. This trial was registered at clinicaltrials.gov as NCT02142647, NCT01693406, and NCT04137445.
Collapse
Affiliation(s)
- Eunice Odiase
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, University of Virginia, Charlottesville, VA, 22904, USA
| | - Daniel N Frank
- Division of Infectious Disease, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Bridget E Young
- University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Charles E Robertson
- Division of Infectious Disease, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jennifer M Kofonow
- Division of Infectious Disease, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kathryn N Davis
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lillian M Berman
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nancy F Krebs
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Minghua Tang
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
56
|
Jones HJ, Bourke CD, Swann JR, Robertson RC. Malnourished Microbes: Host-Microbiome Interactions in Child Undernutrition. Annu Rev Nutr 2023; 43:327-353. [PMID: 37207356 DOI: 10.1146/annurev-nutr-061121-091234] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Childhood undernutrition is a major global health burden that is only partially resolved by nutritional interventions. Both chronic and acute forms of child undernutrition are characterized by derangements in multiple biological systems including metabolism, immunity, and endocrine systems. A growing body of evidence supports a role of the gut microbiome in mediating these pathways influencing early life growth. Observational studies report alterations in the gut microbiome of undernourished children, while preclinical studies suggest that this can trigger intestinal enteropathy, alter host metabolism, and disrupt immune-mediated resistance against enteropathogens, each of which contribute to poor early life growth. Here, we compile evidence from preclinical and clinical studies and describe the emerging pathophysiological pathways by which the early life gut microbiome influences host metabolism, immunity, intestinal function, endocrine regulation, and other pathways contributing to child undernutrition. We discuss emerging microbiome-directed therapies and consider future research directions to identify and target microbiome-sensitive pathways in child undernutrition.
Collapse
Affiliation(s)
- Helen J Jones
- Centre for Genomics & Child Health, Blizard Institute, Queen Mary University of London, London, United Kingdom;
| | - Claire D Bourke
- Centre for Genomics & Child Health, Blizard Institute, Queen Mary University of London, London, United Kingdom;
| | - Jonathan R Swann
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ruairi C Robertson
- Centre for Genomics & Child Health, Blizard Institute, Queen Mary University of London, London, United Kingdom;
- Microenvironment and Immunity Unit, INSERM U1224, Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
57
|
Gerasco JE, Hathaway‐Schrader JD, Poulides NA, Carson MD, Okhura N, Westwater C, Hatch NE, Novince CM. Commensal Microbiota Effects on Craniofacial Skeletal Growth and Morphology. JBMR Plus 2023; 7:e10775. [PMID: 37614301 PMCID: PMC10443078 DOI: 10.1002/jbm4.10775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/07/2023] [Accepted: 05/11/2023] [Indexed: 08/25/2023] Open
Abstract
Microbes colonize anatomical sites in health to form commensal microbial communities (e.g., commensal gut microbiota, commensal skin microbiota, commensal oral microbiota). Commensal microbiota has indirect effects on host growth and maturation through interactions with the host immune system. The commensal microbiota was recently introduced as a novel regulator of skeletal growth and morphology at noncraniofacial sites. Further, we and others have shown that commensal gut microbes, such as segmented filamentous bacteria (SFB), contribute to noncraniofacial skeletal growth and maturation. However, commensal microbiota effects on craniofacial skeletal growth and morphology are unclear. To determine the commensal microbiota's role in craniofacial skeletal growth and morphology, we performed craniometric and bone mineral density analyses on skulls from 9-week-old female C57BL/6T germ-free (GF) mice (no microbes), excluded-flora (EF) specific-pathogen-free mice (commensal microbiota), and murine-pathogen-free (MPF) specific-pathogen-free mice (commensal microbiota with SFB). Investigations comparing EF and GF mice revealed that commensal microbiota impacted the size and shape of the craniofacial skeleton. EF versus GF mice exhibited an elongated gross skull length. Cranial bone length analyses normalized to skull length showed that EF versus GF mice had enhanced frontal bone length and reduced cranial base length. The shortened cranial base in EF mice was attributed to decreased presphenoid, basisphenoid, and basioccipital bone lengths. Investigations comparing MPF mice and EF mice demonstrated that commensal gut microbes played a role in craniofacial skeletal morphology. Cranial bone length analyses normalized to skull length showed that MPF versus EF mice had reduced frontal bone length and increased cranial base length. The elongated cranial base in MPF mice was due to enhanced presphenoid bone length. This work, which introduces the commensal microbiota as a contributor to craniofacial skeletal growth, underscores that noninvasive interventions in the gut microbiome could potentially be employed to modify craniofacial skeletal morphology. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Joy E. Gerasco
- Department of Oral Health Sciences, College of Dental MedicineMedical University of South CarolinaCharlestonSCUSA
- Department of Stomatology‐Division of Periodontics, College of Dental MedicineMedical University of South CarolinaCharlestonSCUSA
- Department of Pediatrics‐Division of Endocrinology, College of MedicineMedical University of South CarolinaCharlestonSCUSA
- Department of Orthodontics, Adam's School of DentistryUniversity of North CarolinaChapel HillNCUSA
| | - Jessica D. Hathaway‐Schrader
- Department of Oral Health Sciences, College of Dental MedicineMedical University of South CarolinaCharlestonSCUSA
- Department of Stomatology‐Division of Periodontics, College of Dental MedicineMedical University of South CarolinaCharlestonSCUSA
- Department of Pediatrics‐Division of Endocrinology, College of MedicineMedical University of South CarolinaCharlestonSCUSA
| | - Nicole A. Poulides
- Department of Oral Health Sciences, College of Dental MedicineMedical University of South CarolinaCharlestonSCUSA
- Department of Stomatology‐Division of Periodontics, College of Dental MedicineMedical University of South CarolinaCharlestonSCUSA
- Department of Pediatrics‐Division of Endocrinology, College of MedicineMedical University of South CarolinaCharlestonSCUSA
| | - Matthew D. Carson
- Department of Oral Health Sciences, College of Dental MedicineMedical University of South CarolinaCharlestonSCUSA
- Department of Stomatology‐Division of Periodontics, College of Dental MedicineMedical University of South CarolinaCharlestonSCUSA
- Department of Pediatrics‐Division of Endocrinology, College of MedicineMedical University of South CarolinaCharlestonSCUSA
| | - Naoto Okhura
- Department of Orthodontics and Pediatric Dentistry, School of DentistryUniversity of MichiganAnn ArborMIUSA
| | - Caroline Westwater
- Department of Oral Health Sciences, College of Dental MedicineMedical University of South CarolinaCharlestonSCUSA
- Department of Microbiology and Immunology, College of MedicineMedical University of South CarolinaCharlestonSCUSA
| | - Nan E. Hatch
- Department of Orthodontics and Pediatric Dentistry, School of DentistryUniversity of MichiganAnn ArborMIUSA
| | - Chad M. Novince
- Department of Oral Health Sciences, College of Dental MedicineMedical University of South CarolinaCharlestonSCUSA
- Department of Stomatology‐Division of Periodontics, College of Dental MedicineMedical University of South CarolinaCharlestonSCUSA
- Department of Pediatrics‐Division of Endocrinology, College of MedicineMedical University of South CarolinaCharlestonSCUSA
| |
Collapse
|
58
|
da Silva Soares NF, Quagliariello A, Yigitturk S, Martino ME. Gut microbes predominantly act as living beneficial partners rather than raw nutrients. Sci Rep 2023; 13:11981. [PMID: 37488173 PMCID: PMC10366161 DOI: 10.1038/s41598-023-38669-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/12/2023] [Indexed: 07/26/2023] Open
Abstract
Animals and their gut microbes mutually benefit their health. Nutrition plays a central role in this, directly influencing both host and microbial fitness and the nature of their interactions. This makes nutritional symbioses a complex and dynamic tri-system of diet-microbiota-host. Despite recent discoveries on this field, full control over the interplay among these partners is challenging and hinders the resolution of fundamental questions, such as how to parse the gut microbes' effect as raw nutrition or as symbiotic partners? To tackle this, we made use of the well-characterized Drosophila melanogaster/Lactiplantibacillus plantarum experimental model of nutritional symbiosis to generate a quantitative framework of gut microbes' effect on the host. By coupling experimental assays and Random Forest analysis, we show that the beneficial effect of L. plantarum strains primarily results from the active relationship as symbionts rather than raw nutrients, regardless of the bacterial strain. Metabolomic analysis of both active and inactive bacterial cells further demonstrated the crucial role of the production of beneficial bacterial metabolites, such as N-acetylated-amino-acids, as result of active bacterial growth and function. Altogether, our results provide a ranking and quantification of the main bacterial features contributing to sustain animal growth. We demonstrate that bacterial activity is the predominant and necessary variable involved in bacteria-mediated benefit, followed by strain-specific properties and the nutritional potential of the bacterial cells. This contributes to elucidate the role of beneficial bacteria and probiotics, creating a broad quantitative framework for host-gut microbiome that can be expanded to other model systems.
Collapse
Affiliation(s)
| | - Andrea Quagliariello
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Seren Yigitturk
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
- Food Quality and Design Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Maria Elena Martino
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy.
| |
Collapse
|
59
|
Andres SF, Zhang Y, Kuhn M, Scottoline B. Building better barriers: how nutrition and undernutrition impact pediatric intestinal health. Front Immunol 2023; 14:1192936. [PMID: 37545496 PMCID: PMC10401430 DOI: 10.3389/fimmu.2023.1192936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/26/2023] [Indexed: 08/08/2023] Open
Abstract
Chronic undernutrition is a major cause of death for children under five, leaving survivors at risk for adverse long-term consequences. This review focuses on the role of nutrients in normal intestinal development and function, from the intestinal epithelium, to the closely-associated mucosal immune system and intestinal microbiota. We examine what is known about the impacts of undernutrition on intestinal physiology, with focus again on the same systems. We provide a discussion of existing animal models of undernutrition, and review the evidence demonstrating that correcting undernutrition alone does not fully ameliorate effects on intestinal function, the microbiome, or growth. We review efforts to treat undernutrition that incorporate data indicating that improved recovery is possible with interventions focused not only on delivery of sufficient energy, macronutrients, and micronutrients, but also on efforts to correct the abnormal intestinal microbiome that is a consequence of undernutrition. Understanding of the role of the intestinal microbiome in the undernourished state and correction of the phenotype is both complex and a subject that holds great potential to improve recovery. We conclude with critical unanswered questions in the field, including the need for greater mechanistic research, improved models for the impacts of undernourishment, and new interventions that incorporate recent research gains. This review highlights the importance of understanding the mechanistic effects of undernutrition on the intestinal ecosystem to better treat and improve long-term outcomes for survivors.
Collapse
Affiliation(s)
- Sarah F. Andres
- Division of Pediatric Gastroenterology, Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| | - Yang Zhang
- Division of Pediatric Gastroenterology, Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| | - Madeline Kuhn
- Division of Pediatric Gastroenterology, Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| | - Brian Scottoline
- Division of Neonatology, Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
60
|
Lyu Z, Hu Y, Guo Y, Liu D. Modulation of bone remodeling by the gut microbiota: a new therapy for osteoporosis. Bone Res 2023; 11:31. [PMID: 37296111 PMCID: PMC10256815 DOI: 10.1038/s41413-023-00264-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 04/01/2023] [Accepted: 04/18/2023] [Indexed: 06/12/2023] Open
Abstract
The gut microbiota (GM) plays a crucial role in maintaining the overall health and well-being of the host. Recent studies have demonstrated that the GM may significantly influence bone metabolism and degenerative skeletal diseases, such as osteoporosis (OP). Interventions targeting GM modification, including probiotics or antibiotics, have been found to affect bone remodeling. This review provides a comprehensive summary of recent research on the role of GM in regulating bone remodeling and seeks to elucidate the regulatory mechanism from various perspectives, such as the interaction with the immune system, interplay with estrogen or parathyroid hormone (PTH), the impact of GM metabolites, and the effect of extracellular vesicles (EVs). Moreover, this review explores the potential of probiotics as a therapeutic approach for OP. The insights presented may contribute to the development of innovative GM-targeted therapies for OP.
Collapse
Affiliation(s)
- Zhengtian Lyu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
61
|
Agrawal S, Broderick NA. Inside help from the microbiome. eLife 2023; 12:e88873. [PMID: 37272924 PMCID: PMC10241506 DOI: 10.7554/elife.88873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023] Open
Abstract
Elucidating the role of one of the proteins produced by Lactiplantibacillus plantarum reveals a new molecule that allows this gut bacterium to support the development of fruit fly larvae.
Collapse
Affiliation(s)
- Sneha Agrawal
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | | |
Collapse
|
62
|
Yu Y, Fu D, Zhou H, Su J, Chen S, Lv G. Potential application of Atractylodes macrocephala Koidz. as a natural drug for bone mass regulation: A review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 315:116718. [PMID: 37268258 DOI: 10.1016/j.jep.2023.116718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/21/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The root of Atractylodes macrocephala Koidz. (AM) has been used for thousands of years in China, and it's extracts contain various constituents, such as volatile oils, polysaccharides, and lactones, with a myriad of pharmacological effects, including improves the healthy state of the gastrointestinal system and regulating immunity, hormone secretion, anti-inflammatory, antibacterial, antioxidation, anti-aging, and antitumor properties. Recently, researchers have focused on the effect of AM in regulating bone mass; therefore, its potential mechanism of action in regulating bone mass needs to be elucidated. AIM OF REVIEW This study reviewed the known and possible mechanisms of bone mass regulation by AM. MATERIALS AND METHODS Cochrane, Medline via PubMed, Embase, CENTRAL, CINAHL, Web of Science, Chinese biomedical literature database, Chinese Science and Technology Periodical Database, and Wanfang Database were used to search AM root extracts-related studies. The retrieval date was from the establishment of the database to January 1, 2023. RESULTS By summarizing 119 natural active substances that have been isolated from AM root to date, we explored its possible targets and pathways (such as Hedgehog, Wnt/β-catenin, and BMP/Smads pathways etc.) for bone growth and presented our position on possible future research/perspectives in the regulation of bone mass using this plant. CONCLUSIONS AM root extracts (incuding aqueous, ethanol etc.) promotes osteogenesis and inhibits osteoclastogenesis. These functions promote the absorption of nutrients, regulate gastrointestinal motility and intestinal microbial ecology, regulate endocrine function, strengthen bone immunity, and exert anti-inflammatory and antioxidant effects.
Collapse
Affiliation(s)
- Yikang Yu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Danqing Fu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hengpu Zhou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Su
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Suhong Chen
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.
| | - Guiyuan Lv
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
63
|
Bedree JK, Kerns K, Chen T, Lima BP, Liu G, Ha P, Shi J, Pan HC, Kim JK, Tran L, Minot SS, Hendrickson EL, Lamont EI, Schulte F, Hardt M, Stephens D, Patel M, Kokaras A, Stodieck L, Shirazi-Fard Y, Wu B, Kwak JH, Ting K, Soo C, McLean JS, He X, Shi W. Specific host metabolite and gut microbiome alterations are associated with bone loss during spaceflight. Cell Rep 2023; 42:112299. [PMID: 37080202 PMCID: PMC10344367 DOI: 10.1016/j.celrep.2023.112299] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 10/30/2022] [Accepted: 03/07/2023] [Indexed: 04/22/2023] Open
Abstract
Understanding the axis of the human microbiome and physiological homeostasis is an essential task in managing deep-space-travel-associated health risks. The NASA-led Rodent Research 5 mission enabled an ancillary investigation of the gut microbiome, varying exposure to microgravity (flight) relative to ground controls in the context of previously shown bone mineral density (BMD) loss that was observed in these flight groups. We demonstrate elevated abundance of Lactobacillus murinus and Dorea sp. during microgravity exposure relative to ground control through whole-genome sequencing and 16S rRNA analyses. Specific functionally assigned gene clusters of L. murinus and Dorea sp. capable of producing metabolites, lactic acid, leucine/isoleucine, and glutathione are enriched. These metabolites are elevated in the microgravity-exposed host serum as shown by liquid chromatography-tandem mass spectrometry (LC-MS/MS) metabolomic analysis. Along with BMD loss, ELISA reveals increases in osteocalcin and reductions in tartrate-resistant acid phosphatase 5b signifying additional loss of bone homeostasis in flight.
Collapse
Affiliation(s)
- Joseph K Bedree
- Section of Oral Biology, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Microbiology, The Forsyth Institute, Cambridge, MA 02142, USA.
| | - Kristopher Kerns
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, WA 98195, USA
| | - Tsute Chen
- Department of Microbiology, The Forsyth Institute, Cambridge, MA 02142, USA; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Bruno P Lima
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Guo Liu
- Section of Oral Biology, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Pin Ha
- Section of Orthodontics, Division of Growth & Development, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Division of Plastic and Reconstructive Surgery, School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jiayu Shi
- Section of Oral Biology, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hsin Chuan Pan
- Section of Oral Biology, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jong Kil Kim
- Section of Oral Biology, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Luan Tran
- Section of Oral Biology, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Samuel S Minot
- Microbiome Research Initiative, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Erik L Hendrickson
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, WA 98195, USA
| | - Eleanor I Lamont
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, WA 98195, USA
| | - Fabian Schulte
- Forsyth Center for Salivary Diagnostics, Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA 02142, USA; Harvard School of Dental Medicine, Department of Developmental Biology, Boston, MA 02115, USA
| | - Markus Hardt
- Forsyth Center for Salivary Diagnostics, Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA 02142, USA; Harvard School of Dental Medicine, Department of Developmental Biology, Boston, MA 02115, USA
| | - Danielle Stephens
- Multiplex Core, Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA 02142, USA
| | - Michele Patel
- Multiplex Core, Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA 02142, USA
| | - Alexis Kokaras
- Department of Microbiology, The Forsyth Institute, Cambridge, MA 02142, USA
| | - Louis Stodieck
- BioServe Space Technologies, Department of Aerospace Engineering Sciences, University of Colorado, Boulder, CO 80303, USA
| | - Yasaman Shirazi-Fard
- Bone and Signaling Laboratory, Space Biosciences Division, NASA Ames Research Center, Mail Stop 288-2, Moffett Field, CA 94035, USA
| | - Benjamin Wu
- Department of Bioengineering, School of Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jin Hee Kwak
- Section of Orthodontics, Division of Growth & Development, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kang Ting
- Section of Orthodontics, Division of Growth & Development, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chia Soo
- Division of Plastic and Reconstructive Surgery, School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Orthopedic Surgery, School of Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jeffrey S McLean
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, WA 98195, USA
| | - Xuesong He
- Department of Microbiology, The Forsyth Institute, Cambridge, MA 02142, USA; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Wenyuan Shi
- Department of Microbiology, The Forsyth Institute, Cambridge, MA 02142, USA.
| |
Collapse
|
64
|
Moneme C, Moore SR. Microbial cues stimulate linear growth in undernourished mice. Nat Rev Gastroenterol Hepatol 2023:10.1038/s41575-023-00790-3. [PMID: 37193833 DOI: 10.1038/s41575-023-00790-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- Chioma Moneme
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Sean R Moore
- Department of Pediatrics, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
65
|
Serrano Matos YA, Cowardin CA. Growing up: A NOD2 our microbes. Cell Host Microbe 2023; 31:685-687. [PMID: 37167948 DOI: 10.1016/j.chom.2023.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
In a recent report in Science, Schwarzer and colleagues demonstrate the growth benefits of treatment with Lactiplantibacillus plantarum strain WJL in a preclinical mouse model of chronic undernutrition. L. plantarum influences the somatotropic axis to promote growth through intestinal epithelial NOD2 sensing.
Collapse
Affiliation(s)
- Yadeliz A Serrano Matos
- Division of Pediatric Gastroenterology & Hepatology, Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Carrie A Cowardin
- Division of Pediatric Gastroenterology & Hepatology, Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
66
|
Gu S, Yang D, Liu C, Xue W. The role of probiotics in prevention and treatment of food allergy. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
67
|
Kwon C, Ediriweera MK, Kim Cho S. Interplay between Phytochemicals and the Colonic Microbiota. Nutrients 2023; 15:nu15081989. [PMID: 37111207 PMCID: PMC10145007 DOI: 10.3390/nu15081989] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/08/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Phytochemicals are natural compounds found in food ingredients with a variety of health-promoting properties. Phytochemicals improve host health through their direct systematic absorption into the circulation and modulation of the gut microbiota. The gut microbiota increases the bioactivity of phytochemicals and is a symbiotic partner whose composition and/or diversity is altered by phytochemicals and affects host health. In this review, the interactions of phytochemicals with the gut microbiota and their impact on human diseases are reviewed. We describe the role of intestinal microbial metabolites, including short-chain fatty acids, amino acid derivatives, and vitamins, from a therapeutic perspective. Next, phytochemical metabolites produced by the gut microbiota and the therapeutic effect of some selected metabolites are reviewed. Many phytochemicals are degraded by enzymes unique to the gut microbiota and act as signaling molecules in antioxidant, anti-inflammatory, anticancer, and metabolic pathways. Phytochemicals can ameliorate diseases by altering the composition and/or diversity of the gut microbiota, and they increase the abundance of some gut microbiota that produce beneficial substances. We also discuss the importance of investigating the interactions between phytochemicals and gut microbiota in controlled human studies.
Collapse
Affiliation(s)
- Chohee Kwon
- Department of Environmental Biotechnology, Graduate School of Industry, Jeju National University, Jeju 63243, Republic of Korea
| | - Meran Keshawa Ediriweera
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo, Colombo 008, Sri Lanka
| | - Somi Kim Cho
- Department of Environmental Biotechnology, Graduate School of Industry, Jeju National University, Jeju 63243, Republic of Korea
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
68
|
Nikolopoulos N, Matos RC, Ravaud S, Courtin P, Akherraz H, Palussiere S, Gueguen-Chaignon V, Salomon-Mallet M, Guillot A, Guerardel Y, Chapot-Chartier MP, Grangeasse C, Leulier F. Structure-function analysis of Lactiplantibacillus plantarum DltE reveals D-alanylated lipoteichoic acids as direct cues supporting Drosophila juvenile growth. eLife 2023; 12:e84669. [PMID: 37042660 PMCID: PMC10241514 DOI: 10.7554/elife.84669] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/11/2023] [Indexed: 04/13/2023] Open
Abstract
Metazoans establish mutually beneficial interactions with their resident microorganisms. However, our understanding of the microbial cues contributing to host physiology remains elusive. Previously, we identified a bacterial machinery encoded by the dlt operon involved in Drosophila melanogaster's juvenile growth promotion by Lactiplantibacillus plantarum. Here, using crystallography combined with biochemical and cellular approaches, we investigate the physiological role of an uncharacterized protein (DltE) encoded by this operon. We show that lipoteichoic acids (LTAs) but not wall teichoic acids are D-alanylated in Lactiplantibacillus plantarumNC8 cell envelope and demonstrate that DltE is a D-Ala carboxyesterase removing D-Ala from LTA. Using the mutualistic association of L. plantarumNC8 and Drosophila melanogaster as a symbiosis model, we establish that D-alanylated LTAs (D-Ala-LTAs) are direct cues supporting intestinal peptidase expression and juvenile growth in Drosophila. Our results pave the way to probing the contribution of D-Ala-LTAs to host physiology in other symbiotic models.
Collapse
Affiliation(s)
- Nikos Nikolopoulos
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086, Université Claude Bernard Lyon 1LyonFrance
| | - Renata C Matos
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1LyonFrance
| | - Stephanie Ravaud
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086, Université Claude Bernard Lyon 1LyonFrance
| | - Pascal Courtin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| | - Houssam Akherraz
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1LyonFrance
| | - Simon Palussiere
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| | - Virginie Gueguen-Chaignon
- Protein Science Facility, CNRS UAR3444, INSERM US8, Université Claude Bernard Lyon 1, Ecole Normale Supérieur de LyonLyonFrance
| | - Marie Salomon-Mallet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| | - Alain Guillot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| | - Yann Guerardel
- Institute for Glyco-core Research (iGCORE), Gifu UniversityGifuJapan
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et FonctionnelleLilleFrance
| | | | - Christophe Grangeasse
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086, Université Claude Bernard Lyon 1LyonFrance
| | - François Leulier
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1LyonFrance
| |
Collapse
|
69
|
Cowardin CA, Syed S, Iqbal N, Jamil Z, Sadiq K, Iqbal J, Ali SA, Moore SR. Environmental enteric dysfunction: gut and microbiota adaptation in pregnancy and infancy. Nat Rev Gastroenterol Hepatol 2023; 20:223-237. [PMID: 36526906 PMCID: PMC10065936 DOI: 10.1038/s41575-022-00714-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 03/31/2023]
Abstract
Environmental enteric dysfunction (EED) is a subclinical syndrome of intestinal inflammation, malabsorption and barrier disruption that is highly prevalent in low- and middle-income countries in which poverty, food insecurity and frequent exposure to enteric pathogens impair growth, immunity and neurodevelopment in children. In this Review, we discuss advances in our understanding of EED, intestinal adaptation and the gut microbiome over the 'first 1,000 days' of life, spanning pregnancy and early childhood. Data on maternal EED are emerging, and they mirror earlier findings of increased risks for preterm birth and fetal growth restriction in mothers with either active inflammatory bowel disease or coeliac disease. The intense metabolic demands of pregnancy and lactation drive gut adaptation, including dramatic changes in the composition, function and mother-to-child transmission of the gut microbiota. We urgently need to elucidate the mechanisms by which EED undermines these critical processes so that we can improve global strategies to prevent and reverse intergenerational cycles of undernutrition.
Collapse
Affiliation(s)
- Carrie A Cowardin
- Division of Paediatric Gastroenterology, Hepatology and Nutrition, Department of Paediatrics, Child Health Research Center, University of Virginia, Charlottesville, VA, USA
| | - Sana Syed
- Division of Paediatric Gastroenterology, Hepatology and Nutrition, Department of Paediatrics, Child Health Research Center, University of Virginia, Charlottesville, VA, USA
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Najeeha Iqbal
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Zehra Jamil
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Kamran Sadiq
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Junaid Iqbal
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Syed Asad Ali
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Sean R Moore
- Division of Paediatric Gastroenterology, Hepatology and Nutrition, Department of Paediatrics, Child Health Research Center, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
70
|
Gong R, Song S, Ai Y, Wang S, Dong X, Ren Z, Xie H, Jiang B, Zhao L. Exploring the growing forest musk deer (Moschus berezovskii) dietary protein requirement based on gut microbiome. Front Microbiol 2023; 14:1124163. [PMID: 36970665 PMCID: PMC10033606 DOI: 10.3389/fmicb.2023.1124163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
It is necessary to assess the appropriate dietary protein level of the forest musk deer (FMD), as nutritional needs are unclear. The microbiome in gastrointestinal tracts plays an important role in regulating nutrient utilization, absorption and host growth or development. Thus, we aimed to evaluate growth performance, nutrient digestibility and fecal microbiome of growing FMD supplied with different protein levels of diets. Eighteen 6-month-old male FMD with an initial weight 5.0 ± 0.2 kg were used in a 62-day trial. The animals were randomly distributed to three groups, the dietary crude protein (CP) level was 11.51% (L), 13.37% (M), and 15.48% (H). The results showed that the CP digestibility decreased as dietary CP level increased (p < 0.01). Compared with group L and H, FMD in M group has higher average daily gain, feed efficiency and neutral detergent fiber digestibility. For the fecal bacterial community, the percentage of Firmicutes was increased, Bacteroidetes was decreased and the diversity of microbiota significantly reduced (p < 0.05) with the increasing of dietary protein. The proportion of Ruminococcaceae_005, Ruminococcaceae_UCG-014 and uncultured_bacterium_f_Lachnospiraceae were significantly increased wtih rising CP, the proportions of Bacteroides and Rikenellaceae_RC9_gut_group were significantly decrease nevertheless at the genus level. The higher abundance of f_Prevotellaceae and g_Prevotellaceae_UCG_004 were found at M group by LEfSe analysis. The relative abundance of uncultured_bacterium_f_Ruminococcaceae was positively correlated with the average daily gain and feed conversion ratio (p < 0.05), whereas Family_XIII_AD3011_group was negatively correlated with feed conversion ratio (p < 0.05). The UPGMA tree showed L and M groups were closer in clustering relationship, while H group was clustered separately into a branch, which indicated that the bacterial structure had changed greatly with protein level increased from 13.37 to 15.48%. Overall, our results indicated that the optimum dietary CP for the growing FMD was 13.37%.
Collapse
Affiliation(s)
- Ruiguang Gong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Shengjie Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yaotian Ai
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuhui Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xianggui Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhanjun Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- *Correspondence: Zhanjun Ren,
| | - Hui Xie
- Qinba Ecological Protection Center of Chenggu County, Baoji, Shaanxi, China
| | - Benmo Jiang
- Baoji Fengchun Forest Musk Breeding Base, Baoji, Shaanxi, China
| | - Lixia Zhao
- Shaanxi Shenglinyuan Biotechnology Co., Ltd., Baoji, Shaanxi, China
| |
Collapse
|
71
|
Grüner N, Ortlepp AL, Mattner J. Pivotal Role of Intestinal Microbiota and Intraluminal Metabolites for the Maintenance of Gut-Bone Physiology. Int J Mol Sci 2023; 24:ijms24065161. [PMID: 36982235 PMCID: PMC10048911 DOI: 10.3390/ijms24065161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Intestinal microbiota, and their mutual interactions with host tissues, are pivotal for the maintenance of organ physiology. Indeed, intraluminal signals influence adjacent and even distal tissues. Consequently, disruptions in the composition or functions of microbiota and subsequent altered host-microbiota interactions disturb the homeostasis of multiple organ systems, including the bone. Thus, gut microbiota can influence bone mass and physiology, as well as postnatal skeletal evolution. Alterations in nutrient or electrolyte absorption, metabolism, or immune functions, due to the translocation of microbial antigens or metabolites across intestinal barriers, affect bone tissues, as well. Intestinal microbiota can directly and indirectly alter bone density and bone remodeling. Intestinal dysbiosis and a subsequently disturbed gut-bone axis are characteristic for patients with inflammatory bowel disease (IBD) who suffer from various intestinal symptoms and multiple bone-related complications, such as arthritis or osteoporosis. Immune cells affecting the joints are presumably even primed in the gut. Furthermore, intestinal dysbiosis impairs hormone metabolism and electrolyte balance. On the other hand, less is known about the impact of bone metabolism on gut physiology. In this review, we summarized current knowledge of gut microbiota, metabolites and microbiota-primed immune cells in IBD and bone-related complications.
Collapse
Affiliation(s)
- Niklas Grüner
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Anna Lisa Ortlepp
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Jochen Mattner
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
72
|
Stanaway IB, Wallace JC, Hong S, Wilder CS, Green FH, Tsai J, Knight M, Workman T, Vigoren EM, Smith MN, Griffith WC, Thompson B, Shojaie A, Faustman EM. Alteration of oral microbiome composition in children living with pesticide-exposed farm workers. Int J Hyg Environ Health 2023; 248:114090. [PMID: 36516690 PMCID: PMC9898171 DOI: 10.1016/j.ijheh.2022.114090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/30/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Our prior work shows that azinphos-methyl pesticide exposure is associated with altered oral microbiomes in exposed farmworkers. Here we extend this analysis to show the same association pattern is also evident in their children. Oral buccal swab samples were analyzed at two time points, the apple thinning season in spring-summer 2005 for 78 children and 101 adults and the non-spray season in winter 2006 for 62 children and 82 adults. The pesticide exposure for the children were defined by the farmworker occupation of the cohabitating household adult and the blood azinphos-methyl detection of the cohabitating adult. Oral buccal swab 16S rRNA sequencing determined taxonomic microbiota proportional composition from concurrent samples from both adults and children. Analysis of the identified bacteria showed significant proportional changes for 12 of 23 common oral microbiome genera in association with azinphos-methyl detection and farmworker occupation. The most common significantly altered genera had reductions in the abundance of Streptococcus, suggesting an anti-microbial effect of the pesticide. Principal component analysis of the microbiome identified two primary clusters, with association of principal component 1 to azinphos-methyl blood detection and farmworker occupational status of the household. The children's buccal microbiota composition clustered with their household adult in ∼95% of the households. Household adult farmworker occupation and household pesticide exposure is associated with significant alterations in their children's oral microbiome composition. This suggests that parental occupational exposure and pesticide take-home exposure pathways elicit alteration of their children's microbiomes.
Collapse
Affiliation(s)
- Ian B Stanaway
- Department of Environmental and Occupational Health Sciences, Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA, USA
| | - James C Wallace
- Department of Environmental and Occupational Health Sciences, Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA, USA
| | - Sungwoo Hong
- Department of Environmental and Occupational Health Sciences, Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA, USA
| | - Carly S Wilder
- Department of Environmental and Occupational Health Sciences, Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA, USA
| | - Foad H Green
- Department of Environmental and Occupational Health Sciences, Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA, USA
| | - Jesse Tsai
- Department of Environmental and Occupational Health Sciences, Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA, USA
| | - Misty Knight
- Department of Environmental and Occupational Health Sciences, Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA, USA
| | - Tomomi Workman
- Department of Environmental and Occupational Health Sciences, Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA, USA
| | - Eric M Vigoren
- Department of Environmental and Occupational Health Sciences, Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA, USA
| | - Marissa N Smith
- Department of Environmental and Occupational Health Sciences, Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA, USA
| | - William C Griffith
- Department of Environmental and Occupational Health Sciences, Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA, USA
| | - Beti Thompson
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ali Shojaie
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Elaine M Faustman
- Department of Environmental and Occupational Health Sciences, Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA, USA.
| |
Collapse
|
73
|
Yadav J, Philpott DJ. A gut bacterial strain rescues stunted growth. Science 2023; 379:756-757. [PMID: 36821690 DOI: 10.1126/science.adg6247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Lactiplantibacillus plantarum promotes growth in undernourished mice.
Collapse
Affiliation(s)
- Jitender Yadav
- Department of Immunology, Medical Sciences Building, University of Toronto, Toronto, ON, Canada
| | - Dana J Philpott
- Department of Immunology, Medical Sciences Building, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
74
|
Schwarzer M, Gautam UK, Makki K, Lambert A, Brabec T, Joly A, Šrůtková D, Poinsot P, Novotná T, Geoffroy S, Courtin P, Hermanová PP, Matos RC, Landry JJM, Gérard C, Bulteau AL, Hudcovic T, Kozáková H, Filipp D, Chapot-Chartier MP, Šinkora M, Peretti N, Boneca IG, Chamaillard M, Vidal H, De Vadder F, Leulier F. Microbe-mediated intestinal NOD2 stimulation improves linear growth of undernourished infant mice. Science 2023; 379:826-833. [PMID: 36821686 DOI: 10.1126/science.ade9767] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/04/2023] [Indexed: 02/25/2023]
Abstract
The intestinal microbiota is known to influence postnatal growth. We previously found that a strain of Lactiplantibacillus plantarum (strain LpWJL) buffers the adverse effects of chronic undernutrition on the growth of juvenile germ-free mice. Here, we report that LpWJL sustains the postnatal growth of malnourished conventional animals and supports both insulin-like growth factor-1 (IGF-1) and insulin production and activity. We have identified cell walls isolated from LpWJL, as well as muramyl dipeptide and mifamurtide, as sufficient cues to stimulate animal growth despite undernutrition. Further, we found that NOD2 is necessary in intestinal epithelial cells for LpWJL-mediated IGF-1 production and for postnatal growth promotion in malnourished conventional animals. These findings indicate that, coupled with renutrition, bacteria cell walls or purified NOD2 ligands have the potential to alleviate stunting.
Collapse
Affiliation(s)
- Martin Schwarzer
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, 54922 Novy Hradek, Czech Republic
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, UCBL Lyon-1, F-69007 Lyon, France
| | - Umesh Kumar Gautam
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, 54922 Novy Hradek, Czech Republic
| | - Kassem Makki
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, UCBL Lyon-1, F-69007 Lyon, France
- CarMeN Laboratory, INSERM, INRAE, Université Claude Bernard Lyon 1, 69310 Pierre-Bénite, France
| | - Anne Lambert
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, UCBL Lyon-1, F-69007 Lyon, France
| | - Tomáš Brabec
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Amélie Joly
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, UCBL Lyon-1, F-69007 Lyon, France
| | - Dagmar Šrůtková
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, 54922 Novy Hradek, Czech Republic
| | - Pierre Poinsot
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, UCBL Lyon-1, F-69007 Lyon, France
- CarMeN Laboratory, INSERM, INRAE, Université Claude Bernard Lyon 1, 69310 Pierre-Bénite, France
- Univ Lyon, Hospices Civil de Lyon, Gastro-enterology and Pediatric Nutrition, Hôpital Femme Mere Enfant, F-69500 Bron, France
| | - Tereza Novotná
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, 54922 Novy Hradek, Czech Republic
| | - Stéphanie Geoffroy
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, UCBL Lyon-1, F-69007 Lyon, France
| | - Pascal Courtin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Petra Petr Hermanová
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, 54922 Novy Hradek, Czech Republic
| | - Renata C Matos
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, UCBL Lyon-1, F-69007 Lyon, France
| | - Jonathan J M Landry
- Genomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Céline Gérard
- CarMeN Laboratory, INSERM, INRAE, Université Claude Bernard Lyon 1, 69310 Pierre-Bénite, France
| | - Anne-Laure Bulteau
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, UCBL Lyon-1, F-69007 Lyon, France
| | - Tomáš Hudcovic
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, 54922 Novy Hradek, Czech Republic
| | - Hana Kozáková
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, 54922 Novy Hradek, Czech Republic
| | - Dominik Filipp
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | | | - Marek Šinkora
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, 54922 Novy Hradek, Czech Republic
| | - Noël Peretti
- CarMeN Laboratory, INSERM, INRAE, Université Claude Bernard Lyon 1, 69310 Pierre-Bénite, France
- Univ Lyon, Hospices Civil de Lyon, Gastro-enterology and Pediatric Nutrition, Hôpital Femme Mere Enfant, F-69500 Bron, France
| | - Ivo Gomperts Boneca
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, INSERM U1306, Biology and Genetics of the Bacterial Cell Wall Unit, F-75015 Paris, France
| | | | - Hubert Vidal
- CarMeN Laboratory, INSERM, INRAE, Université Claude Bernard Lyon 1, 69310 Pierre-Bénite, France
| | - Filipe De Vadder
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, UCBL Lyon-1, F-69007 Lyon, France
| | - François Leulier
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, UCBL Lyon-1, F-69007 Lyon, France
| |
Collapse
|
75
|
Gao Y, Hao X, Hu Y, Zhou N, Ma Q, Zou L, Yao Y. Modification of the functional properties of chickpea proteins by ultrasonication treatment and alleviation of malnutrition in rat. Food Funct 2023; 14:1773-1784. [PMID: 36723159 DOI: 10.1039/d2fo02492f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
High-intensity ultrasonication (HIU) is an emerging technology for improving the functional properties of the leguminous proteins in the food industry. In this study, chickpea protein (CP) was treated at 150 W for 30 min to obtain ultrasonic chickpea protein (UCP). The physicochemical (particle size, ζ-potential, hydrophobicity, and free sulfhydryl) and structural properties (FTIR) were changed after the HIU treatment, which led to an improvement of functional properties, including the solubility, emulsifying, and foamability in UCP. The chickpea protein diet (CPD) and ultrasound chickpea protein diet (UCPD) were supplemented to undernourished weaning rats to assess their potential in improving malnutrition. After 6 weeks of administration, the body weight of malnourished rats in UCPD increased by 11.97% compared with that in CPD. The results in OMICS showed that beneficial bacteria and short-chain fatty acids were positively related to growth. This work demonstrated the physicochemical and functional properties of CP and UCP and guided the application of the UCP to malnutrition improvement.
Collapse
Affiliation(s)
- Yue Gao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China.
| | - Xiyu Hao
- Heilongjiang Feihe Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd, Chaoyang District, Beijing, 100015, People's Republic of China
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, 610106, People's Republic of China
| | - Nong Zhou
- Laboratory for Green Cultivation and Deep Processing of Three Gorges Reservoir Area's Medicinal Herbs, College of Life Science & Engineering, The Chongqing Engineering, Chongqing Three Gorges University, Chongqing, 404000, People's Republic of China
| | - Qiang Ma
- Department of Basic Medicine, Chongqing Three Gorges Medical College, Chongqing, 404120, People's Republic of China.
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, 610106, People's Republic of China
| | - Yang Yao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China. .,Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| |
Collapse
|
76
|
Gómez de la Torre Canny S, Nordgård CT, Mathisen AJH, Degré Lorentsen E, Vadstein O, Bakke I. A novel gnotobiotic experimental system for Atlantic salmon ( Salmo salar L.) reveals a microbial influence on mucosal barrier function and adipose tissue accumulation during the yolk sac stage. Front Cell Infect Microbiol 2023; 12:1068302. [PMID: 36817693 PMCID: PMC9929952 DOI: 10.3389/fcimb.2022.1068302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/05/2022] [Indexed: 02/04/2023] Open
Abstract
Gnotobiotic models have had a crucial role in studying the effect that commensal microbiota has on the health of their animal hosts. Despite their physiological and ecological diversity, teleost fishes are still underrepresented in gnotobiotic research. Moreover, a better understanding of host-microbe interactions in farmed fish has the potential to contribute to sustainable global food supply. We have developed a novel gnotobiotic experimental system that includes the derivation of fertilized eggs of farmed and wild Atlantic salmon, and gnotobiotic husbandry of fry during the yolk sac stage. We used a microscopy-based approach to estimate the barrier function of the skin mucus layer and used this measurement to select the derivation procedure that minimized adverse effects on the skin mucosa. We also used this method to demonstrate that the mucus barrier was reduced in germ-free fry when compared to fry colonized with two different bacterial communities. This alteration in the mucus barrier was preceded by an increase in the number of cells containing neutral mucosubstances in the anterior segment of the body, but without changes in the number of cells containing acidic substances in any of the other segments studied along the body axis. In addition, we showed how the microbial status of the fry temporarily affected body size and the utilization of internal yolk stores during the yolk sac stage. Finally, we showed that the presence of bacterial communities associated with the fry, as well as their composition, affected the size of adipose tissue. Fry colonized with water from a lake had a larger visceral adipose tissue depot than both conventionally raised and germ-free fry. Together, our results show that this novel gnotobiotic experimental system is a useful tool for the study of host-microbe interactions in this species of aquacultural importance.
Collapse
Affiliation(s)
| | | | | | | | | | - Ingrid Bakke
- Department of Biotechnology and Food Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
77
|
Wang L, Wang Z, Luo P, Bai S, Chen Y, Chen W. Dietary Zinc Glycine Supplementation Improves Tibia Quality of Meat Ducks by Modulating the Intestinal Barrier and Bone Resorption. Biol Trace Elem Res 2023; 201:888-903. [PMID: 35320516 DOI: 10.1007/s12011-022-03207-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/15/2022] [Indexed: 01/21/2023]
Abstract
Leg problems characterized by gait abnormity and bone structure destruction are associated with a high risk of fractures and continuous pain in poultry. Zinc (Zn) acts a pivotal part in normal bone homeostasis and has proven to be highly effective in alleviating leg problems. Therefore, the effects of graded concentration of Zn on bone quality were evaluated in this study. A total of 512 1-d-old male ducks were fed 4 basal diets added 30 mg/kg Zn, 60 mg/kg Zn, 90 mg/kg Zn, and 120 mg/kg Zn as Zn glycine for 35 d. Tibia Zn content, ash percentage, and breaking strength linearly increased with dietary elevated Zn level (P < 0.05). Broken-line analysis revealed that the recommended level of Zn from Zn glycine was 55.13 mg/kg and 64.48 mg/kg based on tibia ash and strength, respectively. To further confirm the role of dietary Zn glycine addition on bone characteristics, data from birds fed either 60 mg/kg Zn as Zn sulfate (ZnSO4), 30 mg/kg Zn, or 60 mg/kg Zn in the form of Zn glycine indicated that birds given 60 mg/kg Zn from Zn glycine diet exhibited higher tibia ash, strength, and trabecular volume compared to those fed the 30 mg/kg Zn diet (P < 0.05). Dietary 60 mg/kg Zn as Zn glycine addition decreased intestinal permeability, upregulated the mRNA expression of tight junction protein, and increased the abundance of Lactobacillus and Bifidobacterium, which was companied by declined the level of inflammatory cytokines in both the ileum and bone marrow. Regarding bone turnover, the diet with 60 mg/kg Zn from Zn glycine induced osteoprotegerin expression and thus decreased osteoclast number and serum bone resorption biomarker levels including serum tartrate-resistant acid phosphatase activity and C-terminal cross-linked telopeptide of type I collagen level when compared to 30 mg/kg Zn diet (P < 0.05). Except for the upregulation in runt-related transcription factor 2 transcription, the experimental treatments did not apparently change the bone formation biomarker contents in serum. Additionally, Zn glycine displayed a more efficient absorption rate, evidenced by higher serum Zn level, and thus had potentially greater a protective role in the intestine barrier and tibia mass as compared to ZnSO4. Collectively, the dietary supplementation of 60 mg/kg in the form of Zn glycine could suppress bone resorption mediated by osteoclast and consequently improve tibial quality of meat ducks, in which enhanced intestinal integrity and optimized gut microbiota might be involved.
Collapse
Affiliation(s)
- Leilei Wang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Ziyang Wang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Pengna Luo
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Shiping Bai
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yu Chen
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Wen Chen
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
78
|
Carson MD, Warner AJ, Hathaway-Schrader JD, Geiser VL, Kim J, Gerasco JE, Hill WD, Lemasters JJ, Alekseyenko AV, Wu Y, Yao H, Aguirre JI, Westwater C, Novince CM. Minocycline-induced disruption of the intestinal FXR/FGF15 axis impairs osteogenesis in mice. JCI Insight 2023; 8:160578. [PMID: 36413391 PMCID: PMC9870091 DOI: 10.1172/jci.insight.160578] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
Antibiotic-induced shifts in the indigenous gut microbiota influence normal skeletal maturation. Current theory implies that gut microbiota actions on bone occur through a direct gut/bone signaling axis. However, our prior work supports that a gut/liver signaling axis contributes to gut microbiota effects on bone. Our purpose was to investigate the effects of minocycline, a systemic antibiotic treatment for adolescent acne, on pubertal/postpubertal skeletal maturation. Sex-matched specific pathogen-free (SPF) and germ-free (GF) C57BL/6T mice were administered a clinically relevant minocycline dose from age 6-12 weeks. Minocycline caused dysbiotic shifts in the gut bacteriome and impaired skeletal maturation in SPF mice but did not alter the skeletal phenotype in GF mice. Minocycline administration in SPF mice disrupted the intestinal farnesoid X receptor/fibroblast growth factor 15 axis, a gut/liver endocrine axis supporting systemic bile acid homeostasis. Minocycline-treated SPF mice had increased serum conjugated bile acids that were farnesoid X receptor (FXR) antagonists, suppressed osteoblast function, decreased bone mass, and impaired bone microarchitecture and fracture resistance. Stimulating osteoblasts with the serum bile acid profile from minocycline-treated SPF mice recapitulated the suppressed osteogenic phenotype found in vivo, which was mediated through attenuated FXR signaling. This work introduces bile acids as a potentially novel mediator of gut/liver signaling actions contributing to gut microbiota effects on bone.
Collapse
Affiliation(s)
- Matthew D Carson
- Department of Oral Health Sciences, College of Dental Medicine.,Department of Pediatrics, Division of Endocrinology, College of Medicine.,Department of Stomatology, Division of Periodontics, College of Dental Medicine
| | - Amy J Warner
- Department of Oral Health Sciences, College of Dental Medicine.,Department of Pediatrics, Division of Endocrinology, College of Medicine.,Department of Stomatology, Division of Periodontics, College of Dental Medicine
| | - Jessica D Hathaway-Schrader
- Department of Oral Health Sciences, College of Dental Medicine.,Department of Pediatrics, Division of Endocrinology, College of Medicine.,Department of Stomatology, Division of Periodontics, College of Dental Medicine
| | - Vincenza L Geiser
- Department of Oral Health Sciences, College of Dental Medicine.,Department of Pediatrics, Division of Endocrinology, College of Medicine.,Department of Stomatology, Division of Periodontics, College of Dental Medicine
| | - Joseph Kim
- Department of Oral Health Sciences, College of Dental Medicine.,Department of Pediatrics, Division of Endocrinology, College of Medicine.,Department of Stomatology, Division of Periodontics, College of Dental Medicine
| | - Joy E Gerasco
- Department of Oral Health Sciences, College of Dental Medicine.,Department of Drug Discovery & Biomedical Sciences, College of Pharmacy
| | - William D Hill
- Department of Pathology and Laboratory Medicine, College of Medicine
| | - John J Lemasters
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy.,Department of Biochemistry & Molecular Biology, College of Medicine
| | - Alexander V Alekseyenko
- Department of Oral Health Sciences, College of Dental Medicine.,Biomedical Informatics Center, Program for Human Microbiome Research, Department of Public Health Sciences, College of Medicine.,Department of Healthcare Leadership and Management, College of Health Professions; and
| | - Yongren Wu
- Department of Orthopedics & Physical Medicine, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA.,Department of Bioengineering, College of Engineering, Clemson University, Clemson, South Carolina, USA
| | - Hai Yao
- Department of Oral Health Sciences, College of Dental Medicine.,Department of Bioengineering, College of Engineering, Clemson University, Clemson, South Carolina, USA
| | - J Ignacio Aguirre
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Caroline Westwater
- Department of Oral Health Sciences, College of Dental Medicine.,Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Chad M Novince
- Department of Oral Health Sciences, College of Dental Medicine.,Department of Pediatrics, Division of Endocrinology, College of Medicine.,Department of Stomatology, Division of Periodontics, College of Dental Medicine
| |
Collapse
|
79
|
Huang P, Yi S, Yu L, Tian F, Zhao J, Zhang H, Chen W, Zhai Q. Integrative analysis of the metabolome and transcriptome reveals the influence of Lactobacillus plantarum CCFM8610 on germ-free mice. Food Funct 2023; 14:388-398. [PMID: 36511852 DOI: 10.1039/d2fo03117e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study describes the influence of Lactobacillus plantarum CCFM8610 on the host by employing transcriptome and untargeted metabolomics. According to the enrichment analysis, three pathways, including the complement and coagulation cascade pathway, antigen processing and presentation pathways, and protein processing in the endoplasmic reticulum pathway, were affected by L. plantarum CCFM8610 colonization. According to partial least squares-discriminant analysis, five metabolites, L-methionine, D-tryptophan, indoleacrylic acid, DL-acetylcarnitine, and L-norleucine, were identified as key metabolites in the serum. Furthermore, integrative analysis of the metabolome and transcriptome revealed connections between enriched pathways and differential metabolites, and the regulation strategy of choline by affecting gene expression was proposed. Overall, the effects of L. plantarum CCFM8610 on host health were investigated after excluding the influence of gut microbes, which provides a valuable reference for studying the potential mechanisms of the effect of probiotics on host health.
Collapse
Affiliation(s)
- Pan Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shanrong Yi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
80
|
Neves LL, Hair AB, Preidis GA. A systematic review of associations between gut microbiota composition and growth failure in preterm neonates. Gut Microbes 2023; 15:2190301. [PMID: 36927287 PMCID: PMC10026866 DOI: 10.1080/19490976.2023.2190301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Growth failure is among the most prevalent and devastating consequences of prematurity. Up to half of all extremely preterm neonates struggle to grow despite modern nutrition practices. Although elegant preclinical models suggest causal roles for the gut microbiome, these insights have not yet translated into biomarkers that identify at-risk neonates or therapies that prevent or treat growth failure. This systematic review aims to identify features of the neonatal gut microbiota that are positively or negatively associated with early postnatal growth. We identified 860 articles, of which 14 were eligible for inclusion. No two studies used the same definitions of growth, ages at stool collection, and statistical methods linking microbiota to metadata. In all, 58 different taxa were associated with growth, with little consensus among studies. Two or more studies reported positive associations with Enterobacteriaceae, Bacteroides, Bifidobacterium, Enterococcus, and Veillonella, and negative associations with Citrobacter, Klebsiella, and Staphylococcus. Streptococcus was positively associated with growth in five studies and negatively associated with growth in three studies. To gain insight into how the various definitions of growth could impact results, we performed an exploratory secondary analysis of 245 longitudinally sampled preterm infant stools, linking microbiota composition to multiple clinically relevant definitions of neonatal growth. Within this cohort, every definition of growth was associated with a different combination of microbiota features. Together, these results suggest that the lack of consensus in defining neonatal growth may limit our capacity to detect consistent, meaningful clinical associations that could be leveraged into improved care for preterm neonates.
Collapse
Affiliation(s)
- Larissa L. Neves
- Division of Gastroenterology, Hepatology, & Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA
| | - Amy B. Hair
- Division of Neonatology, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA
| | - Geoffrey A. Preidis
- Division of Gastroenterology, Hepatology, & Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA
| |
Collapse
|
81
|
Tu Y, Kuang X, Zhang L, Xu X. The associations of gut microbiota, endocrine system and bone metabolism. Front Microbiol 2023; 14:1124945. [PMID: 37089533 PMCID: PMC10116073 DOI: 10.3389/fmicb.2023.1124945] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/16/2023] [Indexed: 04/25/2023] Open
Abstract
Gut microbiota is of great importance in human health, and its roles in the maintenance of skeletal homeostasis have long been recognized as the "gut-bone axis." Recent evidence has indicated intercorrelations between gut microbiota, endocrine system and bone metabolism. This review article discussed the complex interactions between gut microbiota and bone metabolism-related hormones, including sex steroids, insulin-like growth factors, 5-hydroxytryptamine, parathyroid hormone, glucagon-like peptides, peptide YY, etc. Although the underlying mechanisms still need further investigation, the regulatory effect of gut microbiota on bone health via interplaying with endocrine system may provide a new paradigm for the better management of musculoskeletal disorders.
Collapse
Affiliation(s)
- Ye Tu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinyi Kuang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Zhang
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Ling Zhang,
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Xin Xu,
| |
Collapse
|
82
|
Maritan E, Gallo M, Srutkova D, Jelinkova A, Benada O, Kofronova O, Silva-Soares NF, Hudcovic T, Gifford I, Barrick JE, Schwarzer M, Martino ME. Gut microbe Lactiplantibacillus plantarum undergoes different evolutionary trajectories between insects and mammals. BMC Biol 2022; 20:290. [PMID: 36575413 PMCID: PMC9795633 DOI: 10.1186/s12915-022-01477-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/23/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Animals form complex symbiotic associations with their gut microbes, whose evolution is determined by an intricate network of host and environmental factors. In many insects, such as Drosophila melanogaster, the microbiome is flexible, environmentally determined, and less diverse than in mammals. In contrast, mammals maintain complex multispecies consortia that are able to colonize and persist in the gastrointestinal tract. Understanding the evolutionary and ecological dynamics of gut microbes in different hosts is challenging. This requires disentangling the ecological factors of selection, determining the timescales over which evolution occurs, and elucidating the architecture of such evolutionary patterns. RESULTS We employ experimental evolution to track the pace of the evolution of a common gut commensal, Lactiplantibacillus plantarum, within invertebrate (Drosophila melanogaster) and vertebrate (Mus musculus) hosts and their respective diets. We show that in Drosophila, the nutritional environment dictates microbial evolution, while the host benefits L. plantarum growth only over short ecological timescales. By contrast, in a mammalian animal model, L. plantarum evolution results to be divergent between the host intestine and its diet, both phenotypically (i.e., host-evolved populations show higher adaptation to the host intestinal environment) and genomically. Here, both the emergence of hypermutators and the high persistence of mutated genes within the host's environment strongly differed from the low variation observed in the host's nutritional environment alone. CONCLUSIONS Our results demonstrate that L. plantarum evolution diverges between insects and mammals. While the symbiosis between Drosophila and L. plantarum is mainly determined by the host diet, in mammals, the host and its intrinsic factors play a critical role in selection and influence both the phenotypic and genomic evolution of its gut microbes, as well as the outcome of their symbiosis.
Collapse
Affiliation(s)
- Elisa Maritan
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Marialaura Gallo
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Dagmar Srutkova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Anna Jelinkova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Oldrich Benada
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Olga Kofronova
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Nuno F Silva-Soares
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Tomas Hudcovic
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Isaac Gifford
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Jeffrey E Barrick
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Martin Schwarzer
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic.
| | - Maria Elena Martino
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy.
| |
Collapse
|
83
|
Wang S, Cui J, Jiang S, Zheng C, Zhao J, Zhang H, Zhai Q. Early life gut microbiota: Consequences for health and opportunities for prevention. Crit Rev Food Sci Nutr 2022; 64:5793-5817. [PMID: 36537331 DOI: 10.1080/10408398.2022.2158451] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The gut microbiota influences many aspects of the host, including immune system maturation, nutrient absorption and metabolism, and protection from pathogens. Increasing evidences from cohort and animal studies indicate that changes in the gut microbiota early in life increases the risk of developing specific diseases early and later in life. Therefore, it is becoming increasingly important to identify specific disease prevention or therapeutic solutions targeting the gut microbiota, especially during infancy, which is the window of the human gut microbiota establishment process. In this review, we provide an overview of current knowledge concerning the relationship between disturbances in the gut microbiota early in life and health consequences later in life (e.g., necrotizing enterocolitis, celiac disease, asthma, allergies, autism spectrum disorders, overweight/obesity, diabetes and growth retardation), with a focus on changes in the gut microbiota prior to disease onset. In addition, we summarize and discuss potential microbiota-based interventions early in life (e.g., diet adjustments, probiotics, prebiotics, fecal microbiota transplantation, environmental changes) to promote health or prevent the development of specific diseases. This knowledge should aid the understanding of early life microbiology and inform the development of prediction and prevention measures for short- and long-term health disorders based on the gut microbiota.
Collapse
Affiliation(s)
- Shumin Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jingjing Cui
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Shilong Jiang
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd, Beijing, China
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Beijing, China
| | - Chengdong Zheng
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd, Beijing, China
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Beijing, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Heng Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Department of Child Health Care, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
84
|
Najmanová L, Vídeňská P, Cahová M. Healthy microbiome – a mere idea or a sound concept? Physiol Res 2022. [DOI: 10.33549/physiolres.934967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hundreds of studies in last decades have aimed to compare the microbiome of patients suffering from diverse diseases with that of healthy controls. The microbiome-related component was additionally identified in pathophysiology of many diseases formerly considered to depend only on the host physiology. This, however, opens important questions like: “What is the healthy microbiome?” or “Is it possible to define it unequivocally?”. In this review, we describe the main hindrances complicating the definition of “healthy microbiome” in terms of microbiota composition. We discuss the human microbiome from the perspective of classical ecology and we advocate for the shift from the stress on microbiota composition to the functions that microbiome ensures for the host. Finally, we propose to leave the concept of ideal healthy microbiome and replace it by focus on microbiome advantageous for the host, which always depends on the specific context like the age, genetics, dietary habits, body site or physiological state.
Collapse
Affiliation(s)
| | | | - M Cahová
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| |
Collapse
|
85
|
Ogilvie AR, McGuire BD, Meng L, Shapses SA. Fracture Risk in Vegetarians and Vegans: the Role of Diet and Metabolic Factors. Curr Osteoporos Rep 2022; 20:442-452. [PMID: 36129610 DOI: 10.1007/s11914-022-00754-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW There is strong evidence that poor dietary intake of certain micro- and macro-nutrients can negatively affect bone health. It is unclear if diet is the primary culprit for poor bone health in the vegan population. RECENT FINDINGS Plant-based diets are gaining public interest since they may improve metabolic health. Studies that examine vegetarians and vegans together show a lower bone mineral density (BMD), but not always increased fracture risk compared to omnivores. However, vegans consistently have higher risk of fracture at multiple bone sites, especially at the hip. There is higher fracture risk in vegans which may be due to calcium and vitamin D intake, as well as amount of dietary protein and quality. Other nutrients (B vitamins, Se, Zn, Fe, iodine) or physiological factors (lower body mass index, microbiome, or endocrine profile) may also play a role but have not been examined and require further study.
Collapse
Affiliation(s)
- Anna R Ogilvie
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
- Institute of Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, USA
| | - Brandon D McGuire
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
- Institute of Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, USA
| | - Lingqiong Meng
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
- Institute of Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, USA
| | - Sue A Shapses
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA.
- Institute of Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, USA.
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
| |
Collapse
|
86
|
He Y, Chen Y. The potential mechanism of the microbiota-gut-bone axis in osteoporosis: a review. Osteoporos Int 2022; 33:2495-2506. [PMID: 36169678 DOI: 10.1007/s00198-022-06557-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/16/2022] [Indexed: 10/14/2022]
Abstract
Osteoporosis is the prevalent metabolic bone disease characterized by a decrease in bone quantity and/or quality and an increase in skeletal fragility, which increases susceptibility to fractures. Osteoporotic fractures severely affect the patients' quality of life and mortality. A plethora of evidences have suggested that the alterations in gut microbiome are associated with the changes in bone mass and microstructure. We summarized pre-clinical and clinical studies to elucidate the underlying mechanism of gut microbiota in osteoporosis. Probiotics, prebiotics, and traditional Chinese medicine may reverse the gut microbiota dysbiosis and consequently improve bone metabolism. However, the causality of gut microbiota on bone metabolism need to be investigated more in depth. In the present review, we focused on the potential mechanism of the microbiota-gut-bone axis and the positive therapeutic effect of probiotics, prebiotics, and traditional Chinese medicine on osteoporosis. Overall, the current scientific literatures support that the gut microbiota may be a novel therapeutic target in treatment of osteoporosis and fracture prevention.
Collapse
Affiliation(s)
- Yinxi He
- Department of Orthopaedic Trauma, The Third Hospital of Shijiazhuang, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Yanxia Chen
- Department of Endocrinology, The Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, People's Republic of China.
| |
Collapse
|
87
|
Lefevre C, Bindels LB. Role of the Gut Microbiome in Skeletal Muscle Physiology and Pathophysiology. Curr Osteoporos Rep 2022; 20:422-432. [PMID: 36121571 DOI: 10.1007/s11914-022-00752-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW This review aims to summarize the recent findings about the contribution of the gut microbiome to muscle pathophysiology and discuss molecular pathways that may be involved in such process. Related findings in the context of cancer cachexia are outlined. RECENT FINDINGS Many bacterial metabolites have been reported to exert a beneficial or detrimental impact on muscle physiology. Most of the evidence concentrates on short-chain fatty acids (SCFAs), with an emerging role for bile acids, bacterial amino acid metabolites (bAAms), and bacterial polyphenol metabolites. Other molecular players worth considering include cytokines, hormones, lipopolysaccharides, and quorum sensing molecules. The current literature clearly establishes the ability for the gut microbiome to modulate muscle function and mass. The understanding of the mechanisms underlying this gut-muscle axis may lead to the delivery of novel therapeutic tools to tackle muscle wasting in cancer cachexia, chronic kidney disease, liver fibrosis, and age-related sarcopenia.
Collapse
Affiliation(s)
- Camille Lefevre
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Avenue Mounier 73, B1.73.11, 1200, Brussels, Belgium
| | - Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Avenue Mounier 73, B1.73.11, 1200, Brussels, Belgium.
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Avenue Pasteur 6, 1300, Wavre, Belgium.
| |
Collapse
|
88
|
Ma N, Chen X, Johnston LJ, Ma X. Gut microbiota-stem cell niche crosstalk: A new territory for maintaining intestinal homeostasis. IMETA 2022; 1:e54. [PMID: 38867904 PMCID: PMC10989768 DOI: 10.1002/imt2.54] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/04/2022] [Accepted: 08/14/2022] [Indexed: 06/14/2024]
Abstract
Intestinal epithelium undergoes rapid cellular turnover, relying on the local niche, to support intestinal stem cells (ISCs) function and self-renewal. Research into the association between ISCs and disease continues to expand at a rapid rate. However, the detailed interaction of ISCs and gut microbes remains to be elucidated. Thus, this review witnessed major advances in the crosstalk between ISCs and gut microbes, delivering key insights into (1) construction of ISC niche and molecular mechanism of how to jointly govern epithelial homeostasis and protect against intestinal diseases with the participation of Wnt, bone morphogenetic protein, and Notch; (2) differentiation fate of ISCs affect the gut microbiota. Meanwhile, the presence of intestinal microbes also regulates ISC function; (3) microbiota regulation on ISCs by Wnt and Notch signals through pattern recognition receptors; (4) how do specific microbiota-related postbiotics influence ISCs to maintain intestinal epithelial regeneration and homeostasis that provide insights into a promising alternative therapeutic method for intestinal diseases. Considering the detailed interaction is still unclear, it is necessary to further explore the regulatory role of gut microbiota on ISCs to utilize microbes to alleviate gut disorders. Furthermore, these major advances collectively drive us ever closer to breakthroughs in regenerative medicine and cancer treatment by microbial transplantation in the clinic.
Collapse
Affiliation(s)
- Ning Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Xiyue Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Lee J. Johnston
- West Central Research & Outreach CenterUniversity of MinnesotaMorrisMinnesotaUSA
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
89
|
Lee J, Yun HM, Han G, Lee GJ, Jeon CO, Hyun S. A bacteria-regulated gut peptide determines host dependence on specific bacteria to support host juvenile development and survival. BMC Biol 2022; 20:258. [PMID: 36397042 PMCID: PMC9670437 DOI: 10.1186/s12915-022-01458-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Commensal microorganisms have a significant impact on the physiology of host animals, including Drosophila. Lactobacillus and Acetobacter, the two most common commensal bacteria in Drosophila, stimulate fly development and growth, but the mechanisms underlying their functional interactions remain elusive. RESULTS We found that imaginal morphogenesis protein-Late 2 (Imp-L2), a Drosophila homolog of insulin-like growth factor binding protein 7, is expressed in gut enterocytes in a bacteria-dependent manner, determining host dependence on specific bacteria for host development. Imp-L2 mutation abolished the stimulatory effects of Lactobacillus, but not of Acetobacter, on fly larval development. The lethality of the Imp-L2 mutant markedly increased under axenic conditions, which was reversed by Acetobacter, but not Lactobacillus, re-association. The host dependence on specific bacteria was determined by Imp-L2 expressed in enterocytes, which was repressed by Acetobacter, but not Lactobacillus. Mechanistically, Lactobacillus and Acetobacter differentially affected steroid hormone-mediated Imp-L2 expression and Imp-L2-specific FOXO regulation. CONCLUSIONS Our finding may provide a way how host switches dependence between different bacterial species when benefiting from varying microbiota.
Collapse
Affiliation(s)
- Jaegeun Lee
- grid.254224.70000 0001 0789 9563Department of Life Science, Chung-Ang University, Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Hyun Myoung Yun
- grid.254224.70000 0001 0789 9563Department of Life Science, Chung-Ang University, Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Gangsik Han
- grid.254224.70000 0001 0789 9563Department of Life Science, Chung-Ang University, Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Gang Jun Lee
- grid.254224.70000 0001 0789 9563Department of Life Science, Chung-Ang University, Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Che Ok Jeon
- grid.254224.70000 0001 0789 9563Department of Life Science, Chung-Ang University, Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Seogang Hyun
- grid.254224.70000 0001 0789 9563Department of Life Science, Chung-Ang University, Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| |
Collapse
|
90
|
Du C, Zhou X, Zhang K, Huang S, Wang X, Zhou S, Chen Y. Inactivation of the MSTN gene expression changes the composition and function of the gut microbiome in sheep. BMC Microbiol 2022; 22:273. [DOI: 10.1186/s12866-022-02687-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
Myostatin (MSTN) negatively regulates the muscle growth in animals and MSTN deficient sheep have been widely reported previously. The goal of this study was to explore how MSTN inactivation influences their gut microbiota composition and potential functions.
Results
We compared the slaughter parameters and meat quality of 3 MSTN-edited male sheep and 3 wild-type male sheep, and analyzed the gut microbiome of the MSTN-edited sheep (8 female and 8 male sheep) and wild-type sheep (8 female and 8 male sheep) through metagenomic sequencing. The results showed that the body weight, carcass weight and eye muscle area of MSTN-edited sheep were significantly higher, but there were no significant differences in the meat quality indexes. At the microbial level, the alpha diversity was significantly higher in the MSTN-edited sheep (P < 0.05), and the microbial composition was significantly different by PCoA analysis in the MSTN-edited and wild-type sheep. The abundance of Firmicutes significantly increased and Bacteroidota significantly decreased in the MSTN-edited sheep. At genus level, the abundance of Flavonifractor, Subdoligranulum, Ruthenibacterium, Agathobaculum, Anaerotignum, Oribacterium and Lactobacillus were significantly increased in the MSTN-edited sheep (P < 0.05). Further analysis of functional differences was found that the carotenoid biosynthesis was significantly increased and the peroxisome, apoptosis, ferroptosis, N-glycan biosynthesis, thermogenesis, and adipocytokines pathways were decreased in the MSTN-edited sheep (P < 0.05). Moreover, carbohydrate-active enzymes (CAZymes) results certified the abundance of the GH13_39, GH4, GH137, GH71 and PL17 were upregulated, and the GT41 and CBM20 were downregulated in the MSTN-edited sheep (P < 0.05).
Conclusions
Our study suggested that MSTN inactivation remarkably influenced the composition and potential function of hindgut microbial communities of the sheep, and significantly promoted growth performance without affecting meat quality.
Collapse
|
91
|
Combination of Cinnamaldehyde with Carvacrol or Thymol Improves the Mechanical Properties of Tibia in Post-Peak Laying Hens. Animals (Basel) 2022; 12:ani12223108. [PMID: 36428337 PMCID: PMC9687002 DOI: 10.3390/ani12223108] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Roles of plant-derived cinnamaldehyde, carvacrol, and thymol in the gut and bone health of laying hens was evaluated in the present study. After acclimation for 2 weeks, a total 384 of 52-week-old laying hens were allocated into three groups for 6 weeks: (1) basal diet group (Ctrl), (2) combination of cinnamaldehyde with carvacrol group (CAR+CIN), and (3) blend of cinnamaldehyde with thymol (THY+CIN). The dietary essential oil level was 100 mg/kg. Each treatment group had eight replicate pens (16 birds/pen). The stiffness and ultimate load of the tibiae from both the CAR+CIN and THY+CIN groups were higher than that of the Ctrl group (p < 0.05), along with comparable tibia ash, calcium, and phosphorus content among groups. At the same time, the manipulation of essential oils upregulated the transcription abundances of intestinal barrier proteins to varying degrees, whereas the experimental treatment failed to affect the composition in phyla of cecal microbiota. When compared to the Ctrl group, birds fed the CAR+CIN and THY+CIN diet displayed decreased bone resorption markers, reduced interleukin-1 concentrations, and increased transforming growth factor beta levels in serum. These findings suggest that cinnamaldehyde with carvacrol or thymol in feed of hens could enhance intestinal barrier and improve the mechanical properties of tibiae through structural modelling but not increase the mineral density, which might be involved in suppressing inflammation-mediated bone resorption.
Collapse
|
92
|
Cheng X, Song X, Li Z, Yuan C, Lei X, Feng M, Hong Z, Zhang L, Hong D. Acyloxyacyl hydrolase deficiency induces chronic inflammation and bone loss in male mice. J Mol Med (Berl) 2022; 100:1599-1616. [PMID: 36112153 DOI: 10.1007/s00109-022-02252-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/10/2022] [Accepted: 08/29/2022] [Indexed: 12/14/2022]
Abstract
Hormonal homeostasis is essential in bone remodeling. Recent studies have shown that the treatment of intestinal inflammation can result in the regulation of bone resorption in distant bones. Increased intestinal permeability may lead to systemic inflammation and bone loss, also known as gut-bone axis. However, the underlying mechanism remains to be elucidated. Lipopolysaccharide (LPS) is a component of gram-negative bacteria that can increase osteoclastic differentiation in vitro. Acyloxyacyl hydrolase (AOAH) is a specific degrading enzyme of LPS, but little is known about the role of AOAH in bone metabolism. In this study, adult Aoah-/- mice showed a chronic inflammatory state and osteopenic phenotype analyzed by micro-CT and HE staining. Tartrate-resistant acid phosphatase (TRAP) staining of femurs showed an increase in TRAP-positive cells from Aoah-/- mice. AOAH depletion enhanced the osteoclast differentiation and bone resorption capacity of bone marrow-derived macrophages (BMMs). The enhanced osteoclast differentiation and bone resorption capacity of Aoah-/- BMMs were reversed by rAOAH. In conclusion, the chronic inflammatory state of adult Aoah-/- mice promotes bone resorption. AOAH participates in bone metabolism, which is mainly mediated by inhibiting osteoclast differentiation. LPS may be a key mediator of the gut-bone axis, and targeting AOAH may represent a feasible strategy for the treatment of chronic inflammatory bone resorption. KEY MESSAGES : AOAH knockout mice exhibited chronic inflammation mediated by LPS, and LPS may also serve as an important mediator in the regulation of bone metabolism in the gut-bone axis. AOAH regulated bone resorption by blocking the osteoclast differentiation via classical ERK and JNK pathways. rAOAH could rescue the enhanced osteoclast differentiation caused by AOAH deficiency.
Collapse
Affiliation(s)
- Xu Cheng
- Department of Orthopedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China.,Enze Medical Center, Taizhou, China.,Bone Metabolism and Development Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Xiaoting Song
- Department of Orthopedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China.,Enze Medical Center, Taizhou, China.,Bone Metabolism and Development Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Zhiyan Li
- Department of Orthopedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China.,Enze Medical Center, Taizhou, China.,Bone Metabolism and Development Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Chiting Yuan
- Department of Orthopedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China.,Enze Medical Center, Taizhou, China.,Bone Metabolism and Development Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Xinhuan Lei
- Department of Orthopedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China.,Enze Medical Center, Taizhou, China.,Bone Metabolism and Development Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Mingxuan Feng
- Department of Orthopedics, Taizhou Central Hospital Affiliated to Taizhou College, Taizhou, Zhejiang, China
| | - Zhenghua Hong
- Department of Orthopedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China.,Enze Medical Center, Taizhou, China.,Bone Metabolism and Development Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Liwei Zhang
- Department of Orthopedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China. .,Enze Medical Center, Taizhou, China. .,Bone Metabolism and Development Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China.
| | - Dun Hong
- Department of Orthopedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China. .,Enze Medical Center, Taizhou, China. .,Bone Metabolism and Development Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China.
| |
Collapse
|
93
|
Li C, Zhang X. Current in Vitro and Animal Models for Understanding Foods: Human Gut-Microbiota Interactions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12733-12745. [PMID: 36166347 DOI: 10.1021/acs.jafc.2c04238] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The food-gut microbiota interaction is an important regulator of human health. Numerous in vitro and animal models have thus been developed in order to simulate the specific food-gut microbiota and/or host-gut microbiota interactions in the human colon. This review summarizes the design principles of each model and discusses their advantages and weaknesses in terms of studying food-gut microbiota interactions. In vitro fermentation models appear to be reliable methods to investigate various aspects involved in the food-gut microbiota interactions in humans. However, many physiological perspectives lack appreciation of these models, such as peristaltic movement, biochemical conditions, and gastrointestinal anatomy. Animal models provide more physiological relevance to human trials compared to in vitro models. However, they may have gastrointestinal tract aspects that are distinct from human subjects. This review contains important information that can help the development of more advanced models to study food-gut microbiota interactions in humans.
Collapse
Affiliation(s)
- Cheng Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Joint International Research Laboratory of Agriculture Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Xiaowei Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
94
|
Paprckova D, Niederlova V, Moudra A, Drobek A, Pribikova M, Janusova S, Schober K, Neuwirth A, Michalik J, Huranova M, Horkova V, Cesnekova M, Simova M, Prochazka J, Balounova J, Busch DH, Sedlacek R, Schwarzer M, Stepanek O. Self-reactivity of CD8 T-cell clones determines their differentiation status rather than their responsiveness in infections. Front Immunol 2022; 13:1009198. [PMID: 36275704 PMCID: PMC9582129 DOI: 10.3389/fimmu.2022.1009198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Mature T cells are selected for recognizing self-antigens with low to intermediate affinity in the thymus. Recently, the relative differences in self-reactivity among individual T-cell clones were appreciated as important factors regulating their fate and immune response, but the role of self-reactivity in T-cell biology is incompletely understood. We addressed the role of self-reactivity in T-cell diversity by generating an atlas of mouse peripheral CD8+ T cells, which revealed two unconventional populations of antigen-inexperienced T cells. In the next step, we examined the steady-state phenotype of monoclonal T cells with various levels of self-reactivity. Highly self-reactive clones preferentially differentiate into antigen-inexperienced memory-like cells, but do not form a population expressing type I interferon-induced genes, showing that these two subsets have unrelated origins. The functional comparison of naïve monoclonal CD8+ T cells specific to the identical model antigen did not show any correlation between the level of self-reactivity and the magnitude of the immune response.
Collapse
Affiliation(s)
- Darina Paprckova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Veronika Niederlova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
- Faculty of Science, Department of Cell Biology, Charles University, Prague, Czechia
| | - Alena Moudra
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Ales Drobek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Michaela Pribikova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
- Laboratory of Immunity & Cell Communication, BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
| | - Sarka Janusova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Kilian Schober
- Institute for Medical Microbiology, Immunology, and Hygiene, Technical University of Munich, Munich, Germany
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Ales Neuwirth
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Juraj Michalik
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Martina Huranova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Veronika Horkova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Michaela Cesnekova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
- Faculty of Science, Department of Cell Biology, Charles University, Prague, Czechia
| | - Michaela Simova
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Jan Prochazka
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Jana Balounova
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology, and Hygiene, Technical University of Munich, Munich, Germany
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Martin Schwarzer
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - Ondrej Stepanek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
- *Correspondence: Ondrej Stepanek,
| |
Collapse
|
95
|
Gao J, Sadiq FA, Zheng Y, Zhao J, He G, Sang Y. Biofilm-based delivery approaches and specific enrichment strategies of probiotics in the human gut. Gut Microbes 2022; 14:2126274. [PMID: 36175161 PMCID: PMC9542427 DOI: 10.1080/19490976.2022.2126274] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The use of probiotics has been one of the effective strategies to restructure perturbed human gut microbiota following a disease or metabolic disorder. One of the biggest challenges associated with the use of probiotic-based gut modulation strategies is to keep the probiotic cells viable and stable during the gastrointestinal transit. Biofilm-based probiotics delivery approaches have emerged as fascinating modes of probiotic delivery in which probiotics show significantly greater tolerance and biotherapeutic potential, and interestingly probiotic biofilms can be developed on food-grade surfaces too, which is ideal for the growth and proliferation of bacterial cells for incorporation into food matrices. In addition, biofilms can be further encapsulated with food-grade materials or with bacterial self-produced biofilms. This review presents a newly emerging and unprecedently discussed techniques for the safe delivery of probiotics based on biofilms and further discusses newly emerging prebiotic materials which target specific gut microbiota groups for growth and proliferation.
Collapse
Affiliation(s)
- Jie Gao
- Collge of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Faizan Ahmed Sadiq
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology & Food Sciences Unit, Melle, Belgium
| | - Yixin Zheng
- Collge of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Jinrong Zhao
- Collge of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Guoqing He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China,CONTACT Guoqing He College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yaxin Sang
- Collge of Food Science and Technology, Hebei Agricultural University, Baoding, China,Yaxin Sang Collge of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
96
|
Enhanced cultured diversity of the mouse gut microbiota enables custom-made synthetic communities. Cell Host Microbe 2022; 30:1630-1645.e25. [DOI: 10.1016/j.chom.2022.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/30/2022] [Accepted: 09/13/2022] [Indexed: 12/26/2022]
|
97
|
Zemanova N, Omelka R, Mondockova V, Kovacova V, Martiniakova M. Roles of Gut Microbiome in Bone Homeostasis and Its Relationship with Bone-Related Diseases. BIOLOGY 2022; 11:1402. [PMID: 36290306 PMCID: PMC9598716 DOI: 10.3390/biology11101402] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022]
Abstract
The extended microbial genome-the gut microbiome (GM)-plays a significant role in host health and disease. It is able to influence a number of physiological functions. During dysbiosis, GM is associated with the development of various chronic diseases with impaired bone quality. In general, GM is important for bone homeostasis and can affect it via several mechanisms. This review describes the roles of GM in bone homeostasis through influencing the immune and endocrine functions, short-chain fatty acids production, calcium absorption and the gut-brain axis. The relationship between GM composition and several bone-related diseases, specifically osteoporosis, osteoarthritis, rheumatoid arthritis, diabetes mellitus, obesity and bone cancer, is also highlighted and summarized. GM manipulation may become a future adjuvant therapy in the prevention of many chronic diseases. Therefore, the beneficial effects of probiotic therapy to improve the health status of individuals with aforementioned diseases are provided, but further studies are needed to clearly confirm its effectiveness. Recent evidence suggests that GM is responsible for direct and indirect effects on drug efficacy. Accordingly, various GM alterations and interactions related to the treatment of bone-related diseases are mentioned as well.
Collapse
Affiliation(s)
- Nina Zemanova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia
| | - Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia
| |
Collapse
|
98
|
Comparative study of the function and structure of the gut microbiota in Siberian musk deer and Forest musk deer. Appl Microbiol Biotechnol 2022; 106:6799-6817. [DOI: 10.1007/s00253-022-12158-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/02/2022]
|
99
|
Zhang H, Qin S, Zhang X, Du P, Zhu Y, Huang Y, Michiels J, Zeng Q, Chen W. Dietary resistant starch alleviates Escherichia coli-induced bone loss in meat ducks by promoting short-chain fatty acid production and inhibiting Malt1/NF-κB inflammasome activation. J Anim Sci Biotechnol 2022; 13:92. [PMID: 35927754 PMCID: PMC9354418 DOI: 10.1186/s40104-022-00739-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/05/2022] [Indexed: 11/16/2022] Open
Abstract
Background Escherichia coli (E. coli) infection in humans and animals usually comes with gut dysbiosis, which is potential culprit to skeletal health, it is still unclear to whether diet interfered gut microbiome changes can be a protective strategy to bone loss development. Here, the effects of resistant starch from raw potato starch (RPS), a type of prebiotic, on E. coli-induced bone loss and gut microbial composition in meat ducks were evaluated. Results The results showed that dietary 12% RPS treatment improved bone quality, depressed bone resorption, and attenuated the pro-inflammatory reaction in both ileum and bone marrow. Meanwhile, the 12% RPS diet also increased the abundance of Firmicutes in E. coli-treated birds, along with higher production of short-chain fatty acids (SCFAs) especially propionate and butyrate. Whereas addition of β-acid, an inhibitor of bacterial SCFAs production, to the drinking water of ducks fed 12% RPS diet significantly decreased SCFAs level in cecum content and eliminated RPS-induced tibial mass improvement. Further, treatment with MI-2 to abrogate mucosa-associated lymphoid tissue lymphoma translocation protein 1 (Malt1) activity replicated the protective role of dietary 12% RPS in E. coli-induced bone loss including reduced the inhibition on nuclear factor κB (NF-κB) inflammasome activation, decreased bone resorption, and improved bone quality, which were correlated with comparable and higher regulatory T cells (Treg) frequency in MI-2 and 12% RPS group, respectively. Conclusions These findings suggested that the diet with 12% RPS could alleviate E. coli-induced bone loss in meat ducks by changing the gut microbial composition and promoting concomitant SCFAs production, and consequently inhibiting Malt1/NF-κB inflammasome activation and Treg cells expansion. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00739-7.
Collapse
Affiliation(s)
- Huaiyong Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China.,Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000, Ghent, Belgium
| | - Simeng Qin
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiangli Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Pengfei Du
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yao Zhu
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yanqun Huang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Joris Michiels
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000, Ghent, Belgium
| | - Quifeng Zeng
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Wen Chen
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
100
|
Hu J, Yang J, Chen L, Meng X, Zhang X, Li W, Li Z, Huang G. Alterations of the Gut Microbiome in Patients With Pituitary Adenoma. Pathol Oncol Res 2022; 28:1610402. [PMID: 35991836 PMCID: PMC9385953 DOI: 10.3389/pore.2022.1610402] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022]
Abstract
Pituitary adenoma (PA) includes invasive pituitary adenoma (IPA) and noninvasive pituitary adenoma (NIPA), which are associated with the endocrine system. The gut microbiome plays an important role in human metabolism, but the association between the gut microbiome and pituitary adenoma remains unclear. A total of 44 subjects were enrolled in this study. Of these, 29 PA patients were further divided into IPA patients (n = 13) and NIPA patients (n = 16), while 15 healthy age-matched subjects were defined as control subjects. We collected faecal samples and characterized the gut microbial profiles by metagenomic sequencing using the Illumina X-ten platform. PLS-DA showed different microbial clusters among the three groups, and slightly different microbial ecological networks were observed. LEfSe analysis revealed significant alterations in the microbial community among PA patients. In particular, the enrichment of Clostridium innocuum, along with the reduced abundance of Oscillibacter sp. 57_20 and Fusobacterium mortiferum, were observed both in the IPA and NIPA groups compared to the control group. Moreover, PA patients could be effectively classified based on these bacteria using a support vector machine algorithm. In summary, this study demonstrated significant differences in the gut microbiome between PA patients and healthy controls. Future mechanistic experiments are needed to determine whether such alterations are a cause or consequence of pituitary adenoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zongyang Li
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Guodong Huang
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| |
Collapse
|