51
|
Morón-López S, Riveira-Muñoz E, Urrea V, Gutiérrez-Chamorro L, Ávila-Nieto C, Noguera-Julian M, Carrillo J, Mitjà O, Mateu L, Massanella M, Ballana E, Martinez-Picado J. Comparison of Reverse Transcription (RT)-Quantitative PCR and RT-Droplet Digital PCR for Detection of Genomic and Subgenomic SARS-CoV-2 RNA. Microbiol Spectr 2023; 11:e0415922. [PMID: 36943067 PMCID: PMC10100669 DOI: 10.1128/spectrum.04159-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/24/2023] [Indexed: 03/23/2023] Open
Abstract
Most individuals acutely infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exhibit mild symptoms. However, 10 to 20% of those infected develop long-term symptoms, referred to as post-coronavirus disease 2019 (COVID-19) condition (PCC). One hypothesis is that PCC might be exacerbated by viral persistence in tissue sanctuaries. Therefore, the accurate detection and quantification of SARS-CoV-2 are not only necessary for viral load monitoring but also crucial for detecting long-term viral persistence and determining whether viral replication is occurring in tissue reservoirs. In this study, the sensitivity and robustness of reverse transcription (RT)-droplet digital PCR (ddPCR) and RT-quantitative PCR (qPCR) techniques have been compared for the detection and quantification of SARS-CoV-2 genomic and subgenomic RNAs from oropharyngeal swabs taken from confirmed SARS-CoV-2-positive, SARS-CoV-2-exposed, and nonexposed individuals as well as from samples from mice infected with SARS-CoV-2. Our data demonstrated that both techniques presented equivalent results in the mid- and high-viral-load ranges. Additionally, RT-ddPCR was more sensitive than RT-qPCR in the low-viral-load range, allowing the accurate detection of positive results in individuals exposed to the virus. Overall, these data suggest that RT-ddPCR might be an alternative to RT-qPCR for detecting low viral loads in samples and for assessing viral persistence in samples from individuals with PCC. IMPORTANCE We developed one-step reverse transcription (RT)-droplet digital PCR (ddPCR) protocols to detect SARS-CoV-2 RNA and compared them to the gold-standard RT-quantitative PCR (RT-qPCR) method. RT-ddPCR was more sensitive than RT-qPCR in the low-viral-load range, while both techniques were equivalent in the mid- and high-viral-load ranges. Overall, these results suggest that RT-ddPCR might be a viable alternative to RT-qPCR when it comes to detecting low viral loads in samples, which is a highly relevant issue for determining viral persistence in as-yet-unknown tissue reservoirs in individuals suffering from post-COVID conditions or long COVID.
Collapse
Affiliation(s)
- Sara Morón-López
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- CIBER de Enfermedades Infecciosas, Madrid, Spain
| | | | - Victor Urrea
- IrsiCaixa AIDS Research Institute, Badalona, Spain
| | | | | | - Marc Noguera-Julian
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - Jorge Carrillo
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- CIBER de Enfermedades Infecciosas, Madrid, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Oriol Mitjà
- Fight Infections Foundation, Badalona, Spain
- Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Lihir Medical Centre, International SOS, Londolovit, Lihir Island, Papua New Guinea
| | - Lourdes Mateu
- Fight Infections Foundation, Badalona, Spain
- Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Marta Massanella
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- CIBER de Enfermedades Infecciosas, Madrid, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Ester Ballana
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- CIBER de Enfermedades Infecciosas, Madrid, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
52
|
Prins HAB, Crespo R, Lungu C, Rao S, Li L, Overmars RJ, Papageorgiou G, Mueller YM, Stoszko M, Hossain T, Kan TW, Rijnders BJA, Bax HI, van Gorp ECM, Nouwen JL, de Vries-Sluijs TEMS, Schurink CAM, de Mendonça Melo M, van Nood E, Colbers A, Burger D, Palstra RJ, van Kampen JJA, van de Vijver DAMC, Mesplède T, Katsikis PD, Gruters RA, Koch BCP, Verbon A, Mahmoudi T, Rokx C. The BAF complex inhibitor pyrimethamine reverses HIV-1 latency in people with HIV-1 on antiretroviral therapy. SCIENCE ADVANCES 2023; 9:eade6675. [PMID: 36921041 PMCID: PMC10017042 DOI: 10.1126/sciadv.ade6675] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Reactivation of the latent HIV-1 reservoir is a first step toward triggering reservoir decay. Here, we investigated the impact of the BAF complex inhibitor pyrimethamine on the reservoir of people living with HIV-1 (PLWH). Twenty-eight PLWH on suppressive antiretroviral therapy were randomized (1:1:1:1 ratio) to receive pyrimethamine, valproic acid, both, or no intervention for 14 days. The primary end point was change in cell-associated unspliced (CA US) HIV-1 RNA at days 0 and 14. We observed a rapid, modest, and significant increase in (CA US) HIV-1 RNA in response to pyrimethamine exposure, which persisted throughout treatment and follow-up. Valproic acid treatment alone did not increase (CA US) HIV-1 RNA or augment the effect of pyrimethamine. Pyrimethamine treatment did not result in a reduction in the size of the inducible reservoir. These data demonstrate that the licensed drug pyrimethamine can be repurposed as a BAF complex inhibitor to reverse HIV-1 latency in vivo in PLWH, substantiating its potential advancement in clinical studies.
Collapse
Affiliation(s)
- Henrieke A. B. Prins
- Department of Internal Medicine, Section Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Raquel Crespo
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Cynthia Lungu
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Shringar Rao
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Letao Li
- Department of Pharmacy, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Ronald J. Overmars
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Yvonne M. Mueller
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Mateusz Stoszko
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Tanvir Hossain
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Tsung Wai Kan
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Pathology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Urology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Bart J. A. Rijnders
- Department of Internal Medicine, Section Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Hannelore I. Bax
- Department of Internal Medicine, Section Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Eric C. M. van Gorp
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jan L. Nouwen
- Department of Internal Medicine, Section Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Theodora E. M. S. de Vries-Sluijs
- Department of Internal Medicine, Section Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Carolina A. M. Schurink
- Department of Internal Medicine, Section Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Mariana de Mendonça Melo
- Department of Internal Medicine, Section Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Els van Nood
- Department of Internal Medicine, Section Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Angela Colbers
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center Nijmegen, Nijmegen, Netherlands
| | - David Burger
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center Nijmegen, Nijmegen, Netherlands
| | - Robert-Jan Palstra
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Pathology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Urology, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | | | - Thibault Mesplède
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Peter D. Katsikis
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Rob A. Gruters
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Birgit C. P. Koch
- Department of Pharmacy, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Annelies Verbon
- Department of Internal Medicine, Section Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Internal Medicine, University Medical Center, Utrecht, Netherlands
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Pathology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Urology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Casper Rokx
- Department of Internal Medicine, Section Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
53
|
White JA, Wu F, Yasin S, Moskovljevic M, Varriale J, Dragoni F, Camilo-Contreras A, Duan J, Zheng MY, Tadzong NF, Patel HB, Quiambao JMC, Rhodehouse K, Zhang H, Lai J, Beg SA, Delannoy M, Kilcrease C, Hoffmann CJ, Poulin S, Chano F, Tremblay C, Cherian J, Barditch-Crovo P, Chida N, Moore RD, Summers MF, Siliciano RF, Siliciano JD, Simonetti FR. Clonally expanded HIV-1 proviruses with 5'-leader defects can give rise to nonsuppressible residual viremia. J Clin Invest 2023; 133:165245. [PMID: 36602866 PMCID: PMC10014112 DOI: 10.1172/jci165245] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/04/2023] [Indexed: 01/06/2023] Open
Abstract
BackgroundAntiretroviral therapy (ART) halts HIV-1 replication, decreasing viremia to below the detection limit of clinical assays. However, some individuals experience persistent nonsuppressible viremia (NSV) originating from CD4+ T cell clones carrying infectious proviruses. Defective proviruses represent over 90% of all proviruses persisting during ART and can express viral genes, but whether they can cause NSV and complicate ART management is unknown.MethodsWe undertook an in-depth characterization of proviruses causing NSV in 4 study participants with optimal adherence and no drug resistance. We investigated the impact of the observed defects on 5'-leader RNA properties, virus infectivity, and gene expression. Integration-site specific assays were used to track these proviruses over time and among cell subsets.ResultsClones carrying proviruses with 5'-leader defects can cause persistent NSV up to approximately 103 copies/mL. These proviruses had small, often identical deletions or point mutations involving the major splicing donor (MSD) site and showed partially reduced RNA dimerization and nucleocapsid binding. Nevertheless, they were inducible and produced noninfectious virions containing viral RNA, but lacking envelope.ConclusionThese findings show that proviruses with 5'-leader defects in CD4+ T cell clones can give rise to NSV, affecting clinical care. Sequencing of the 5'-leader can help in understanding failure to completely suppress viremia.FundingOffice of the NIH Director and National Institute of Dental and Craniofacial Research, NIH; Howard Hughes Medical Institute; Johns Hopkins University Center for AIDS Research; National Institute for Allergy and Infectious Diseases (NIAID), NIH, to the PAVE, BEAT-HIV, and DARE Martin Delaney collaboratories.
Collapse
Affiliation(s)
- Jennifer A White
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Fengting Wu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Saif Yasin
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland, USA
| | - Milica Moskovljevic
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joseph Varriale
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Filippo Dragoni
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Jiayi Duan
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mei Y Zheng
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland, USA
| | - Ndeh F Tadzong
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland, USA
| | - Heer B Patel
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland, USA
| | - Jeanelle Mae C Quiambao
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland, USA
| | - Kyle Rhodehouse
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jun Lai
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Subul A Beg
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Delannoy
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christin Kilcrease
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christopher J Hoffmann
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | - Cécile Tremblay
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Canada.,Département de Microbiologie, Immunologie et Infectiologie, Université de Montréal, Montreal, Canada
| | - Jerald Cherian
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Patricia Barditch-Crovo
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Natasha Chida
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Richard D Moore
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael F Summers
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland, USA.,Howard Hughes Medical Institute, Baltimore, Maryland, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Howard Hughes Medical Institute, Baltimore, Maryland, USA
| | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Francesco R Simonetti
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
54
|
Ramirez PW, Pantoja C, Beliakova-Bethell N. An Evaluation on the Role of Non-Coding RNA in HIV Transcription and Latency: A Review. HIV AIDS (Auckl) 2023; 15:115-134. [PMID: 36942082 PMCID: PMC10024501 DOI: 10.2147/hiv.s383347] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
The existence of latent cellular reservoirs is recognized as the major barrier to an HIV cure. Reactivating and eliminating "shock and kill" or permanently silencing "block and lock" the latent HIV reservoir, as well as gene editing, remain promising approaches, but so far have proven to be only partially successful. Moreover, using latency reversing agents or "block and lock" drugs pose additional considerations, including the ability to cause cellular toxicity, a potential lack of specificity for HIV, or low potency when each agent is used alone. RNA molecules, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are becoming increasingly recognized as important regulators of gene expression. RNA-based approaches for combatting HIV latency represent a promising strategy since both miRNAs and lncRNAs are more cell-type and tissue specific than protein coding genes. Thus, a higher specificity of targeting the latent HIV reservoir with less overall cellular toxicity can likely be achieved. In this review, we summarize current knowledge about HIV gene expression regulation by miRNAs and lncRNAs encoded in the human genome, as well as regulatory molecules encoded in the HIV genome. We discuss both the transcriptional and post-transcriptional regulation of HIV gene expression to align with the current definition of latency, and describe RNA molecules that either promote HIV latency or have anti-latency properties. Finally, we provide perspectives on using each class of RNAs as potential targets for combatting HIV latency, and describe the complexity of the interactions between different RNA molecules, their protein targets, and HIV.
Collapse
Affiliation(s)
- Peter W Ramirez
- Department of Biological Sciences, California State University, Long Beach, CA, USA
| | - Christina Pantoja
- Department of Biological Sciences, California State University, Long Beach, CA, USA
| | - Nadejda Beliakova-Bethell
- VA San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, CA, USA
- Department of Medicine, University of California, San Diego, CA, USA
| |
Collapse
|
55
|
Pascucci GR, Morrocchi E, Pighi C, Rotili A, Neri A, Medri C, Olivieri G, Sanna M, Rasi G, Persaud D, Chahroudi A, Lichterfeld M, Nastouli E, Cancrini C, Amodio D, Rossi P, Cotugno N, Palma P. How CD4 + T Cells Transcriptional Profile Is Affected by Culture Conditions: Towards the Design of Optimal In Vitro HIV Reactivation Assays. Biomedicines 2023; 11:888. [PMID: 36979867 PMCID: PMC10045592 DOI: 10.3390/biomedicines11030888] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/15/2023] [Accepted: 02/25/2023] [Indexed: 03/16/2023] Open
Abstract
Most of the current assays directed at the investigation of HIV reactivation are based on cultures of infected cells such as Peripheral Blood Mononuclear Cells (PBMCs) or isolated CD4+ T cells, stimulated in vitro with different activator molecules. The culture media in these in vitro tests lack many age- and donor-specific immunomodulatory components normally found within the autologous plasma. This triggered our interest in understanding the impact that different matrices and cell types have on T cell transcriptional profiles following in vitro culture and stimulation. METHODS Unstimulated or stimulated CD4+ T cells of three young adults with perinatal HIV-infection were isolated from PBMCs before or after culture in RPMI medium or autologous plasma. Transcriptomes were sequenced using Oxford Nanopore technologies. RESULTS Transcriptional profiles revealed the activation of similar pathways upon stimulation in both media with a higher magnitude of TCR cascade activation in CD4+ lymphocytes cultured in RPMI. CONCLUSIONS These results suggest that for studies aiming at quantifying the magnitude of biological mechanisms under T cell activation, the autologous plasma could better approximate the in vivo environment. Conversely, if the study aims at defining qualitative aspects, then RPMI culture could provide more evident results.
Collapse
Affiliation(s)
- Giuseppe Rubens Pascucci
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Elena Morrocchi
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| | - Chiara Pighi
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| | - Arianna Rotili
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Alessia Neri
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| | - Chiara Medri
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| | - Giulio Olivieri
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Marco Sanna
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| | - Gianmarco Rasi
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Deborah Persaud
- Department of Pediatric Infectious Diseases, School of Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ann Chahroudi
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA 30322, USA
- Center for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta and Emory University, Atlanta, GA 30322, USA
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Eleni Nastouli
- Department of Infection, Immunity and Inflammation, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Caterina Cancrini
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| | - Donato Amodio
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| | - Paolo Rossi
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Nicola Cotugno
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Paolo Palma
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| |
Collapse
|
56
|
Soliman SH, Cisneros WJ, Iwanaszko M, Aoi Y, Ganesan S, Walter M, Zeidner JM, Mishra RK, Kim EY, Wolinsky SM, Hultquist JF, Shilatifard A. Enhancing HIV-1 latency reversal through regulating the elongating RNA Pol II pause-release by a small-molecule disruptor of PAF1C. SCIENCE ADVANCES 2023; 9:eadf2468. [PMID: 36888719 PMCID: PMC9995073 DOI: 10.1126/sciadv.adf2468] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 02/03/2023] [Indexed: 05/03/2023]
Abstract
The polymerase-associated factor 1 complex (PAF1C) is a key, post-initiation transcriptional regulator of both promoter-proximal pausing and productive elongation catalyzed by RNA Pol II and is also involved in transcriptional repression of viral gene expression during human immunodeficiency virus-1 (HIV-1) latency. Using a molecular docking-based compound screen in silico and global sequencing-based candidate evaluation in vivo, we identified a first-in-class, small-molecule inhibitor of PAF1C (iPAF1C) that disrupts PAF1 chromatin occupancy and induces global release of promoter-proximal paused RNA Pol II into gene bodies. Transcriptomic analysis revealed that iPAF1C treatment mimics acute PAF1 subunit depletion and impairs RNA Pol II pausing at heat shock-down-regulated genes. Furthermore, iPAF1C enhances the activity of diverse HIV-1 latency reversal agents both in cell line latency models and in primary cells from persons living with HIV-1. In sum, this study demonstrates that efficient disruption of PAF1C by a first-in-class, small-molecule inhibitor may have therapeutic potential for improving current HIV-1 latency reversal strategies.
Collapse
Affiliation(s)
- Shimaa H. A. Soliman
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - William J. Cisneros
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Marta Iwanaszko
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yuki Aoi
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Sheetal Ganesan
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Miriam Walter
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jacob M. Zeidner
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Rama K. Mishra
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Eun-Young Kim
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Steven M. Wolinsky
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Judd F. Hultquist
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ali Shilatifard
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
57
|
Dufour C, Richard C, Pardons M, Massanella M, Ackaoui A, Murrell B, Routy B, Thomas R, Routy JP, Fromentin R, Chomont N. Phenotypic characterization of single CD4+ T cells harboring genetically intact and inducible HIV genomes. Nat Commun 2023; 14:1115. [PMID: 36849523 PMCID: PMC9971253 DOI: 10.1038/s41467-023-36772-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/10/2023] [Indexed: 03/01/2023] Open
Abstract
The phenotype of the rare HIV-infected cells persisting during antiretroviral therapies (ART) remains elusive. We developed a single-cell approach that combines the phenotypic analysis of HIV-infected cells with near full-length sequencing of their associated proviruses to characterize the viral reservoir in 6 male individuals on suppressive ART. We show that individual cells carrying clonally expanded identical proviruses display very diverse phenotypes, indicating that cellular proliferation contributes to the phenotypic diversification of the HIV reservoir. Unlike most viral genomes persisting on ART, inducible and translation-competent proviruses rarely present large deletions but are enriched in defects in the Ψ locus. Interestingly, the few cells harboring genetically intact and inducible viral genomes express higher levels of the integrin VLA-4 compared to uninfected cells or cells with defective proviruses. Viral outgrowth assay confirmed that memory CD4+ T cells expressing high levels of VLA-4 are highly enriched in replication-competent HIV (27-fold enrichment). We conclude that although clonal expansions diversify the phenotype of HIV reservoir cells, CD4+ T cells harboring replication-competent HIV retain VLA-4 expression.
Collapse
Affiliation(s)
- Caroline Dufour
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, H2X 0A9, Quebec, Canada
| | - Corentin Richard
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, H2X 0A9, Quebec, Canada
| | - Marion Pardons
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, H2X 0A9, Quebec, Canada
| | - Marta Massanella
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, H2X 0A9, Quebec, Canada
| | - Antoine Ackaoui
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, H2X 0A9, Quebec, Canada
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Bertrand Routy
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, H2X 0A9, Quebec, Canada
| | - Réjean Thomas
- Clinique médicale l'Actuel, Montreal, H2L 4P9, Quebec, Canada
| | - Jean-Pierre Routy
- Division of Hematology & Chronic Viral Illness Service, McGill University Health Centre, Montreal, H4A 3J1, Quebec, Canada
| | - Rémi Fromentin
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, H2X 0A9, Quebec, Canada
| | - Nicolas Chomont
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, H2X 0A9, Quebec, Canada.
| |
Collapse
|
58
|
Clark IC, Mudvari P, Thaploo S, Smith S, Abu-Laban M, Hamouda M, Theberge M, Shah S, Ko SH, Pérez L, Bunis DG, Lee JS, Kilam D, Zakaria S, Choi S, Darko S, Henry AR, Wheeler MA, Hoh R, Butrus S, Deeks SG, Quintana FJ, Douek DC, Abate AR, Boritz EA. HIV silencing and cell survival signatures in infected T cell reservoirs. Nature 2023; 614:318-325. [PMID: 36599978 PMCID: PMC9908556 DOI: 10.1038/s41586-022-05556-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 11/11/2022] [Indexed: 01/06/2023]
Abstract
Rare CD4 T cells that contain HIV under antiretroviral therapy represent an important barrier to HIV cure1-3, but the infeasibility of isolating and characterizing these cells in their natural state has led to uncertainty about whether they possess distinctive attributes that HIV cure-directed therapies might exploit. Here we address this challenge using a microfluidic technology that isolates the transcriptomes of HIV-infected cells based solely on the detection of HIV DNA. HIV-DNA+ memory CD4 T cells in the blood from people receiving antiretroviral therapy showed inhibition of six transcriptomic pathways, including death receptor signalling, necroptosis signalling and antiproliferative Gα12/13 signalling. Moreover, two groups of genes identified by network co-expression analysis were significantly associated with HIV-DNA+ cells. These genes (n = 145) accounted for just 0.81% of the measured transcriptome and included negative regulators of HIV transcription that were higher in HIV-DNA+ cells, positive regulators of HIV transcription that were lower in HIV-DNA+ cells, and other genes involved in RNA processing, negative regulation of mRNA translation, and regulation of cell state and fate. These findings reveal that HIV-infected memory CD4 T cells under antiretroviral therapy are a distinctive population with host gene expression patterns that favour HIV silencing, cell survival and cell proliferation, with important implications for the development of HIV cure strategies.
Collapse
Affiliation(s)
- Iain C Clark
- Department of Bioengineering and Therapeutic Sciences, School of Pharmacy, University of California, San Francisco, San Francisco, CA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Bioengineering, California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, Berkeley, CA, USA
| | - Prakriti Mudvari
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shravan Thaploo
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Samuel Smith
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mohammad Abu-Laban
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mehdi Hamouda
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Marc Theberge
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sakshi Shah
- Department of Bioengineering, California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, Berkeley, CA, USA
| | - Sung Hee Ko
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Liliana Pérez
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel G Bunis
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - James S Lee
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Divya Kilam
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Saami Zakaria
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sally Choi
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Samuel Darko
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amy R Henry
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael A Wheeler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rebecca Hoh
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Salwan Butrus
- Department of Chemical and Biomolecular Engineering, California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, Berkeley, CA, USA
| | - Steven G Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adam R Abate
- Department of Bioengineering and Therapeutic Sciences, School of Pharmacy, University of California, San Francisco, San Francisco, CA, USA.
| | - Eli A Boritz
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
59
|
Basukala B, Rossi S, Bendiks S, Gnatienko N, Patts G, Krupitsky E, Lioznov D, So-Armah K, Sagar M, Cheng C, Henderson AJ. Virally Suppressed People Living with HIV Who Use Opioids Have Diminished Latency Reversal. Viruses 2023; 15:415. [PMID: 36851631 PMCID: PMC9961149 DOI: 10.3390/v15020415] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Of the 12 million people who inject drugs worldwide, 13% live with HIV. Whether opioid use impacts HIV pathogenesis and latency is an outstanding question. To gain insight into whether opioid use influences the proviral landscape and latent HIV reservoir, we performed intact proviral DNA assays (IPDA) on peripheral blood mononuclear cells (PBMCs) from antiretroviral therapy (ART)-suppressed people living with HIV (PWH) with or without current opioid use. No differences were observed between PWH with and without opioid use in the frequency of HIV intact and defective proviral genomes. To evaluate the latent reservoir, we activated PBMCs from ART-suppressed PWH with or without opioid use and assessed the induction of HIV RNA. PWH using opioids had diminished responses to ex vivo HIV reactivation, suggesting a smaller reversible reservoir of HIV-1 latently infected cells. However, in vitro studies using primary CD4+ T cells treated with morphine showed no effect of opioids on HIV-1 infection, replication or latency establishment. The discrepancy in our results from in vitro and clinical samples suggests that while opioids may not directly impact HIV replication, latency and reactivation in CD4+ T cells, opioid use may indirectly shape the HIV reservoir in vivo by modulating general immune functions.
Collapse
Affiliation(s)
- Binita Basukala
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Sarah Rossi
- Clinical Addiction Research and Education (CARE) Unit, Department of Medicine, Section of General Internal Medicine, Boston Medical Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Sally Bendiks
- Clinical Addiction Research and Education (CARE) Unit, Department of Medicine, Section of General Internal Medicine, Boston Medical Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Natalia Gnatienko
- Clinical Addiction Research and Education (CARE) Unit, Department of Medicine, Section of General Internal Medicine, Boston Medical Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Gregory Patts
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA 02118, USA
| | - Evgeny Krupitsky
- Laboratory of Clinical Pharmacology of Addictions, Pavlov First St. Petersburg State Medical University, Saint-Petersburg 197022, Russia
- Department of Addictions, Bekhterev National Medical Research Center for Psychiatry and Neurology, Saint-Petersburg 192019, Russia
| | - Dmitry Lioznov
- Laboratory of Clinical Pharmacology of Addictions, Pavlov First St. Petersburg State Medical University, Saint-Petersburg 197022, Russia
| | - Kaku So-Armah
- Clinical Addiction Research and Education (CARE) Unit, Department of Medicine, Section of General Internal Medicine, Boston Medical Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Manish Sagar
- Department of Medicine, Section of Infectious Diseases, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Christine Cheng
- Department of Biology, Boston University, Boston, MA 02215, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrew J. Henderson
- Department of Medicine, Section of Infectious Diseases, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
60
|
Abstract
Posttreatment controllers (PTCs) are rare HIV-infected individuals who can limit viral rebound after antiretroviral therapy interruption (ATI), but the mechanisms of this remain unclear. To investigate these mechanisms, we quantified various HIV RNA transcripts (via reverse transcription droplet digital PCR [RT-ddPCR]) and cellular transcriptomes (via RNA-seq) in blood cells from PTCs and noncontrollers (NCs) before and two time points after ATI. HIV transcription initiation did not significantly increase after ATI in PTCs or in NCs, whereas completed HIV transcripts increased at early ATI in both groups and multiply-spliced HIV transcripts increased only in NCs. Compared to NCs, PTCs showed lower levels of HIV DNA, more cell-associated HIV transcripts per total RNA at all times, no increase in multiply-spliced HIV RNA at early or late ATI, and a reduction in the ratio of completed/elongated HIV RNA after early ATI. NCs expressed higher levels of the IL-7 pathway before ATI and expressed higher levels of multiple cytokine, inflammation, HIV transcription, and cell death pathways after ATI. Compared to the baseline, the NCs upregulated interferon and cytokine (especially TNF) pathways during early and late ATI, whereas PTCs upregulated interferon and p53 pathways only at early ATI and downregulated gene translation during early and late ATI. In NCs, viral rebound after ATI is associated with increases in HIV transcriptional completion and splicing, rather than initiation. Differences in HIV and cellular transcription may contribute to posttreatment control, including an early limitation of spliced HIV RNA, a delayed reduction in completed HIV transcripts, and the differential expression of the IL-7, p53, and TNF pathways. IMPORTANCE The findings presented here provide new insights into how HIV and cellular gene expression change after stopping ART in both noncontrollers and posttreatment controllers. Posttreatment control is associated with an early ability to limit increases in multiply-spliced HIV RNA, a delayed (and presumably immune-mediated) ability to reverse an initial rise in processive/completed HIV transcripts, and multiple differences in cellular gene expression pathways. These differences may represent correlates or mechanisms of posttreatment control and may provide insight into the development and/or monitoring of therapeutic strategies that are aimed at a functional HIV cure.
Collapse
|
61
|
Horvath RM, Dahabieh M, Malcolm T, Sadowski I. TRIM24 controls induction of latent HIV-1 by stimulating transcriptional elongation. Commun Biol 2023; 6:86. [PMID: 36690785 PMCID: PMC9870992 DOI: 10.1038/s42003-023-04484-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 01/15/2023] [Indexed: 01/24/2023] Open
Abstract
Binding of USF1/2 and TFII-I (RBF-2) at conserved sites flanking the HIV-1 LTR enhancer is essential for reactivation from latency in T cells, with TFII-I knockdown rendering the provirus insensitive to T cell signaling. We identified an interaction of TFII-I with the tripartite motif protein TRIM24, and these factors were found to be constitutively associated with the HIV-1 LTR. Similar to the effect of TFII-I depletion, loss of TRIM24 impaired reactivation of HIV-1 in response to T cell signaling. TRIM24 deficiency did not affect recruitment of RNA Pol II to the LTR promoter, but inhibited transcriptional elongation, an effect that was associated with decreased RNA Pol II CTD S2 phosphorylation and impaired recruitment of CDK9. A considerable number of genomic loci are co-occupied by TRIM24/TFII-I, and we found that TRIM24 deletion caused altered T cell immune response, an effect that is facilitated by TFII-I. These results demonstrate a role of TRIM24 for regulation of transcriptional elongation from the HIV-1 promoter, through its interaction with TFII-I, and by recruitment of P-TEFb. Furthermore, these factors co-regulate a significant proportion of genes involved in T cell immune response, consistent with tight coupling of HIV-1 transcriptional activation and T cell signaling.
Collapse
Affiliation(s)
- Riley M Horvath
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, B.C., Canada
| | - Matthew Dahabieh
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, B.C., Canada
| | - Tom Malcolm
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, B.C., Canada
| | - Ivan Sadowski
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, B.C., Canada.
| |
Collapse
|
62
|
Li M, Budai MM, Chen M, Wang J. Targeting HIV-1 reservoirs in T cell subsets. Front Immunol 2023; 14:1087923. [PMID: 36742330 PMCID: PMC9895780 DOI: 10.3389/fimmu.2023.1087923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
The HIV-1 reservoirs harbor the latent proviruses that are integrated into the host genome. It is a challenging task to eradicate the proviruses in order to achieve an HIV cure. We have described a strategy for the clearance of HIV-1 infection through selective elimination of host cells harboring replication-competent HIV (SECH), by inhibition of autophagy and promotion of apoptosis during viral re-activation. HIV-1 can infect various CD4+ T cell subsets, but it is not known whether the SECH approach is equally effective in targeting HIV-1 reservoirs in these different subsets in vivo. In a humanized mouse model, we found that treatments of HIV-1 infection by suppressive antiretroviral therapy (ART) led to the establishment of latent HIV reservoirs in naïve, central memory and effector memory T cells. Moreover, SECH treatments could clear latent HIV-1 reservoirs in these different T cell subsets of humanized mice. Co-culture studies showed that T cell subsets latently infected by HIV-1, but not uninfected bystander cells, were susceptible to cell death induced by SECH treatments. Our study suggests that the SECH strategy is effective for specific targeting of latent HIV-1 reservoirs in different T cell subsets.
Collapse
Affiliation(s)
- Min Li
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX, United States
| | - Marietta M. Budai
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX, United States
| | - Min Chen
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Jin Wang
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX, United States
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, NY, United States
| |
Collapse
|
63
|
Depletion of HIV reservoir by activation of ISR signaling in resting CD4 +T cells. iScience 2023; 26:105743. [PMID: 36590168 PMCID: PMC9800255 DOI: 10.1016/j.isci.2022.105743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/21/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
HIV reservoirs are extremely stable and pose a tremendous challenge to clear HIV infection. Here, we demonstrate that activation of ISR/ATF4 signaling reverses HIV latency, which also selectively eliminates HIV+ cells in primary CD4+T cell model of latency without effect on HIV-negative CD4+T cells. The reduction of HIV+ cells is associated with apoptosis enhancement, but surprisingly is largely seen in HIV-infected cells in which gag-pol RNA transcripts are detected in HIV RNA-induced ATF4/IFIT signaling. In resting CD4+ (rCD4+) T cells isolated from people living with HIV on antiretroviral therapy, induction of ISR/ATF4 signaling reduced HIV reservoirs by depletion of replication-competent HIV without global reduction in the rCD4+ T cell population. These findings suggest that compromised ISR/ATF4 signaling maintains stable and quiescent HIV reservoirs whereas activation of ISR/ATF4 signaling results in the disruption of latent HIV and clearance of persistently infected CD4+T cells.
Collapse
|
64
|
Lian X, Seiger KW, Parsons EM, Gao C, Sun W, Gladkov GT, Roseto IC, Einkauf KB, Osborn MR, Chevalier JM, Jiang C, Blackmer J, Carrington M, Rosenberg ES, Lederman MM, McMahon DK, Bosch RJ, Jacobson JM, Gandhi RT, Peluso MJ, Chun TW, Deeks SG, Yu XG, Lichterfeld M. Progressive transformation of the HIV-1 reservoir cell profile over two decades of antiviral therapy. Cell Host Microbe 2023; 31:83-96.e5. [PMID: 36596305 PMCID: PMC9839361 DOI: 10.1016/j.chom.2022.12.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/08/2022] [Accepted: 11/30/2022] [Indexed: 01/03/2023]
Abstract
HIV-1 establishes a life-long reservoir of virally infected cells which cannot be eliminated by antiretroviral therapy (ART). Here, we demonstrate a markedly altered viral reservoir profile of long-term ART-treated individuals, characterized by large clones of intact proviruses preferentially integrated in heterochromatin locations, most prominently in centromeric satellite/micro-satellite DNA. Longitudinal evaluations suggested that this specific reservoir configuration results from selection processes that promote the persistence of intact proviruses in repressive chromatin positions, while proviruses in permissive chromosomal locations are more likely to be eliminated. A bias toward chromosomal integration sites in heterochromatin locations was also observed for intact proviruses in study participants who maintained viral control after discontinuation of antiretroviral therapy. Together, these results raise the possibility that antiviral selection mechanisms during long-term ART may induce an HIV-1 reservoir structure with features of deep latency and, possibly, more limited abilities to drive rebound viremia upon treatment interruptions.
Collapse
Affiliation(s)
- Xiaodong Lian
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Kyra W Seiger
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Elizabeth M Parsons
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Ce Gao
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Weiwei Sun
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Gregory T Gladkov
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | | | - Kevin B Einkauf
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Matthew R Osborn
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Joshua M Chevalier
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Chenyang Jiang
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Jane Blackmer
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Mary Carrington
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA; Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Eric S Rosenberg
- Infectious Disease Division, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | - Ronald J Bosch
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | | | - Rajesh T Gandhi
- Infectious Disease Division, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Michael J Peluso
- Division of HIV, Infectious Diseases and Global Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Tae-Wook Chun
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Steven G Deeks
- Division of HIV, Infectious Diseases and Global Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Xu G Yu
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Mathias Lichterfeld
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
65
|
Schynkel T, van Snippenberg W, Van Hecke C, Vandekerckhove L, Trypsteen W. Evaluating lncRNA Expression Patterns during HIV-1 Treatment Interruption. Int J Mol Sci 2023; 24:ijms24021031. [PMID: 36674541 PMCID: PMC9866393 DOI: 10.3390/ijms24021031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Lately, the interest in long non-coding RNAs (lncRNAs) as potential drug targets and predictive markers in the context of HIV-1 has peaked, but their in vivo expression and regulation remains largely unexplored. Therefore, the present study examined lncRNA expression patterns during a clinical antiretroviral treatment interruption (ATI) trial. Peripheral blood mononuclear cells were isolated from ten patients at four timepoints: prior to ATI, 7-15 days after stop, at viral rebound and 3 months post antiretroviral therapy re-initiation. RNA was extracted and RT-qPCR on five known HIV-1-related lncRNAs (HEAL, MALAT1, NEAT1, GAS5 and NRON) was performed and correlated with HIV-1 and host marker expression. All lncRNAs correlated stronger with interferon stimulated genes (ISGs) than with HIV-1 reservoir and replication markers. However, one lncRNA, HEAL, showed significant upregulation at viral rebound during ATI compared to baseline and re-initiation of therapy (p = 0.0010 and p = 0.0094, respectively), following a similar viral-load-driven expression pattern to ISGs. In vitro knockdown of HEAL caused a significant reduction in HIV-1 infection levels, validating HEAL's importance for HIV-1 replication. We conclude that the HIV-1-promoting lncRNA HEAL is upregulated at viral rebound during ATI, most likely induced by viral cues.
Collapse
|
66
|
Mbonye U, Kizito F, Karn J. New insights into transcription elongation control of HIV-1 latency and rebound. Trends Immunol 2023; 44:60-71. [PMID: 36503686 DOI: 10.1016/j.it.2022.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 12/13/2022]
Abstract
Antiretroviral therapy reduces circulating HIV-1 to undetectable amounts but does not eliminate the virus due to the persistence of a stable reservoir of latently infected cells. The reservoir is maintained both by proliferation of latently infected cells and by reseeding from reactivated cells. A major challenge for the field is to find safe and effective methods to eliminate this source of rebounding HIV-1. Studies on the molecular mechanisms leading to HIV-1 latency and reactivation are being transformed using latency models in primary and patient CD4+ T cells. These studies have revealed the central role played by the biogenesis of the transcription elongation factor P-TEFb (Positive Transcription Elongation Factor b) and its recruitment to proviral HIV-1, for the maintenance of viral latency and the control of viral reactivation.
Collapse
Affiliation(s)
- Uri Mbonye
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| | - Fredrick Kizito
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
67
|
New Assay Reveals Vast Excess of Defective over Intact HIV-1 Transcripts in Antiretroviral Therapy-Suppressed Individuals. J Virol 2022; 96:e0160522. [PMID: 36448806 PMCID: PMC9769383 DOI: 10.1128/jvi.01605-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Most of the HIV DNA in infected individuals is noninfectious because of deleterious mutations. However, it is unclear how much of the transcribed HIV RNA is potentially infectious or defective. To address this question, we developed and validated a novel intact viral RNA assay (IVRA) that uses droplet digital reverse transcriptase PCR (dd-RT-PCR) for the commonly mutated packaging signal (Psi) and Rev response element (RRE) regions (from the intact proviral DNA assay [IPDA]) to quantify likely intact (Psi+ RRE+), 3' defective (Psi+ RRE-), and 5' defective (Psi- RRE+) HIV RNA. We then applied the IPDA and IVRA to quantify intact and defective HIV DNA and RNA from peripheral CD4+ T cells from 9 antiretroviral therapy (ART)-suppressed individuals. Levels of 3' defective HIV DNA were not significantly different from those of 5' defective HIV DNA, and both were higher than intact HIV DNA. In contrast, 3' defective HIV RNA (median 86 copies/106 cells; 94% of HIV RNA) was much more abundant than 5' defective (2.1 copies/106 cells; 5.6%) or intact (0.6 copies/106 cells; <1%) HIV RNA. Likewise, the frequency of CD4+ T cells with 3' defective HIV RNA was greater than the frequency with 5' defective or intact HIV RNA. Intact HIV RNA was transcribed by a median of 0.018% of all proviruses and 2.2% of intact proviruses. The vast excess of 3' defective RNA over 5' defective or intact HIV RNA, which was not observed for HIV DNA, suggests that HIV transcription is completely blocked prior to the RRE in most cells with intact proviruses and/or that cells transcribing intact HIV RNA are cleared at very high rates. IMPORTANCE We developed a new assay that can distinguish and quantify intact (potentially infectious) as well as defective HIV RNA. In ART-treated individuals, we found that the vast majority of all HIV RNA is defective at the 3' end, possibly due to incomplete transcriptional processivity. Only a very small percentage of all HIV RNA is intact, and very few total or intact proviruses transcribe intact HIV RNA. Though rare, this intact HIV RNA is tremendously important because it is necessary to serve as the genome of infectious virions that allow transmission and spread, including rebound after stopping ART. Moreover, intact viral RNA may contribute disproportionately to the immune activation, inflammation, and organ damage observed with untreated and treated HIV infection. The intact viral RNA assay can be applied to many future studies aimed at better understanding HIV pathogenesis and barriers to HIV cure.
Collapse
|
68
|
Zerbato JM, Avihingsanon A, Singh KP, Zhao W, Deleage C, Rosen E, Cottrell ML, Rhodes A, Dantanarayana A, Tumpach C, Tennakoon S, Crane M, Price DJ, Braat S, Mason H, Roche M, Kashuba AD, Revill PA, Audsley J, Lewin SR. HIV DNA persists in hepatocytes in people with HIV-hepatitis B co-infection on antiretroviral therapy. EBioMedicine 2022; 87:104391. [PMID: 36502576 PMCID: PMC9763386 DOI: 10.1016/j.ebiom.2022.104391] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/04/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND HIV can infect multiple cells in the liver including hepatocytes, Kupffer cells and infiltrating T cells, but whether HIV can persist in the liver in people with HIV (PWH) on suppressive antiretroviral therapy (ART) remains unknown. METHODS In a prospective longitudinal cohort of PWH and hepatitis B virus (HBV) co-infection living in Bangkok, Thailand, we collected blood and liver biopsies from 18 participants prior to and following ART and quantified HIV and HBV persistence using quantitative (q)PCR and RNA/DNAscope. Antiretroviral (ARV) drug levels were quantified using mass spectroscopy. FINDINGS In liver biopsies taken prior to ART, HIV DNA and HIV RNA were detected by qPCR in 53% (9/17) and 47% (8/17) of participants respectively. Following a median ART duration of 3.4 years, HIV DNA was detected in liver in 61% (11/18) of participants by either qPCR, DNAscope or both, but only at very low and non-quantifiable levels. Using immunohistochemistry, HIV DNA was observed in both hepatocytes and liver infiltrating CD4+ T cells on ART. HIV RNA was not detected in liver biopsies collected on ART, by either qPCR or RNAscope. All ARVs were clearly detected in liver tissue. INTERPRETATION Persistence of HIV DNA in liver in PWH on ART represents an additional reservoir that warrants further investigation. FUNDING National Health and Medical Research Council of Australia (Project Grant APP1101836, 1149990, and 1135851); This project has been funded in part with federal funds from the National Cancer Institute, National Institutes of Health, under Contract No. 75N91019D00024.
Collapse
Affiliation(s)
- Jennifer M. Zerbato
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Anchalee Avihingsanon
- HIV-NAT, Thai Red Cross AIDS Research Centre and Centre of Excellence in Tuberculosis, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kasha P. Singh
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia,Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia,Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | - Wei Zhao
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Claire Deleage
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Elias Rosen
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | | | - Ajantha Rhodes
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Ashanti Dantanarayana
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Carolin Tumpach
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Surekha Tennakoon
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Megan Crane
- National Centre for Infections in Cancer, Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - David J. Price
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia,Centre for Epidemiology & Biostatistics, Melbourne School of Population & Global Health, University of Melbourne, Melbourne, Australia
| | - Sabine Braat
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia,Centre for Epidemiology & Biostatistics, Melbourne School of Population & Global Health, University of Melbourne, Melbourne, Australia,MISCH (Methods and Implementation Support for Clinical Health) Research Hub, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Hugh Mason
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at The Peter Doherty Institute of Infection and Immunity, Melbourne, Australia
| | - Michael Roche
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Angela D.M. Kashuba
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Peter A. Revill
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at The Peter Doherty Institute of Infection and Immunity, Melbourne, Australia
| | - Jennifer Audsley
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Sharon R. Lewin
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia,Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia,Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia,Corresponding author. Department of Infectious Diseases, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 786-798 Elizabeth Street, Melbourne, Victoria 3010, Australia.
| |
Collapse
|
69
|
Samer S, Thomas Y, Araínga M, Carter C, Shirreff LM, Arif MS, Avita JM, Frank I, McRaven MD, Thuruthiyil CT, Heybeli VB, Anderson MR, Owen B, Gaisin A, Bose D, Simons LM, Hultquist JF, Arthos J, Cicala C, Sereti I, Santangelo PJ, Lorenzo-Redondo R, Hope TJ, Villinger FJ, Martinelli E. Blockade of TGF-β signaling reactivates HIV-1/SIV reservoirs and immune responses in vivo. JCI Insight 2022; 7:e162290. [PMID: 36125890 PMCID: PMC9675457 DOI: 10.1172/jci.insight.162290] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/13/2022] [Indexed: 12/15/2022] Open
Abstract
TGF-β plays a critical role in maintaining immune cells in a resting state by inhibiting cell activation and proliferation. Resting HIV-1 target cells represent the main cellular reservoir after long-term antiretroviral therapy (ART). We hypothesized that releasing cells from TGF-β-driven signaling would promote latency reversal. To test our hypothesis, we compared HIV-1 latency models with and without TGF-β and a TGF-β type 1 receptor inhibitor, galunisertib. We tested the effect of galunisertib in SIV-infected, ART-treated macaques by monitoring SIV-env expression via PET/CT using the 64Cu-DOTA-F(ab')2 p7D3 probe, along with plasma and tissue viral loads (VLs). Exogenous TGF-β reduced HIV-1 reactivation in U1 and ACH-2 models. Galunisertib increased HIV-1 latency reversal ex vivo and in PBMCs from HIV-1-infected, ART-treated, aviremic donors. In vivo, oral galunisertib promoted increased total standardized uptake values in PET/CT images in gut and lymph nodes of 5 out of 7 aviremic, long-term ART-treated, SIV-infected macaques. This increase correlated with an increase in SIV RNA in the gut. Two of the 7 animals also exhibited increases in plasma VLs. Higher anti-SIV T cell responses and antibody titers were detected after galunisertib treatment. In summary, our data suggest that blocking TGF-β signaling simultaneously increases retroviral reactivation events and enhances anti-SIV immune responses.
Collapse
Affiliation(s)
- Sadia Samer
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Yanique Thomas
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Mariluz Araínga
- New Iberia Research Center (NIRC), University of Louisiana at Lafayette, New Iberia, Louisiana, USA
| | - Crystal Carter
- New Iberia Research Center (NIRC), University of Louisiana at Lafayette, New Iberia, Louisiana, USA
| | - Lisa M. Shirreff
- New Iberia Research Center (NIRC), University of Louisiana at Lafayette, New Iberia, Louisiana, USA
| | - Muhammad S. Arif
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Juan M. Avita
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ines Frank
- Center for Biomedical Research, Population Council, New York, New York, USA
| | - Michael D. McRaven
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Christopher T. Thuruthiyil
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Veli B. Heybeli
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Meegan R. Anderson
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Benjamin Owen
- Integrated Molecular Structure Education and Research (IMSERC), Northwestern University, Evanston, Illinois, USA
| | - Arsen Gaisin
- Integrated Molecular Structure Education and Research (IMSERC), Northwestern University, Evanston, Illinois, USA
| | - Deepanwita Bose
- New Iberia Research Center (NIRC), University of Louisiana at Lafayette, New Iberia, Louisiana, USA
| | - Lacy M. Simons
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health Northwestern University, Chicago, Illinois, USA
| | - Judd F. Hultquist
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health Northwestern University, Chicago, Illinois, USA
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Claudia Cicala
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Irini Sereti
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Philip J. Santangelo
- WH Coulter Department of Biomedical Engineering, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ramon Lorenzo-Redondo
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health Northwestern University, Chicago, Illinois, USA
| | - Thomas J. Hope
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Francois J. Villinger
- New Iberia Research Center (NIRC), University of Louisiana at Lafayette, New Iberia, Louisiana, USA
| | - Elena Martinelli
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
70
|
Dickey LL, Martins LJ, Planelles V, Hanley TM. HIV-1-induced type I IFNs promote viral latency in macrophages. J Leukoc Biol 2022; 112:1343-1356. [PMID: 35588262 PMCID: PMC9613502 DOI: 10.1002/jlb.4ma0422-616r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/27/2022] [Indexed: 12/30/2022] Open
Abstract
Macrophages chronically infected with HIV-1 serve as a reservoir that contributes to HIV-1 persistence during antiretroviral therapy; however, the mechanisms governing the establishment and maintenance of this virus reservoir have not been fully elucidated. Here, we show that HIV-1 enters a state reminiscent of latency in monocyte-derived macrophages (MDMs), characterized by integrated proviral DNA with decreased viral transcription. This quiescent state is associated with decreased NF-κB p65, RNA polymerase II, and p-TEFb recruitment to the HIV-1 promoter as well as maintenance of promoter chromatin in a transcriptionally nonpermissive state. MDM transition to viral latency is mediated by type I IFN signaling, as inhibiting type I IFN signaling or blocking type 1 IFN prevents the establishment of latent infection. Knockdown studies demonstrate that the innate immune signaling molecule mitochondrial antiviral signaling protein (MAVS) is required for the transition to latency. Finally, we demonstrate a role for the viral accessory protein Vpr in the establishment of HIV-1 latency in macrophages. Our data indicate that HIV-1-induced type I IFN production is responsible for the establishment of viral latency in MDMs and identify possible therapeutic targets for the prevention or elimination of this important HIV-1 reservoir.
Collapse
Affiliation(s)
- Laura L. Dickey
- Department of PathologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Laura J. Martins
- Department of PathologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Vicente Planelles
- Department of PathologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Timothy M. Hanley
- Department of PathologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| |
Collapse
|
71
|
Campbell GR, Spector SA. Current strategies to induce selective killing of HIV-1-infected cells. J Leukoc Biol 2022; 112:1273-1284. [PMID: 35707952 PMCID: PMC9613504 DOI: 10.1002/jlb.4mr0422-636r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/24/2022] [Indexed: 01/02/2023] Open
Abstract
Although combination antiretroviral therapy (ART) has led to significant HIV-1 suppression and improvement in immune function, persistent viral reservoirs remain that are refractory to intensified ART. ART poses many challenges such as adherence to drug regimens, the emergence of resistant virus, and cumulative toxicity resulting from long-term therapy. Moreover, latent HIV-1 reservoir cells can be stochastically activated to produce viral particles despite effective ART and contribute to the rapid viral rebound that typically occurs within 2 weeks of ART interruption; thus, lifelong ART is required for continued viral suppression. Several strategies have been proposed to address the HIV-1 reservoir such as reactivation of HIV-1 transcription using latency reactivating agents with a combination of ART, host immune clearance and HIV-1-cytotoxicity to purge the infected cells-a "shock and kill" strategy. However, these approaches do not take into account the multiple transcriptional and translational blocks that contribute to HIV-1 latency or the complex heterogeneity of the HIV-1 reservoir, and clinical trials have thus far failed to produce the desired results. Here, we describe alternative strategies being pursued that are designed to kill selectively HIV-1-infected cells while sparing uninfected cells in the absence of enhanced humoral or adaptive immune responses.
Collapse
Affiliation(s)
- Grant R. Campbell
- Department of PediatricsDivision of Infectious DiseasesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Stephen A. Spector
- Department of PediatricsDivision of Infectious DiseasesUniversity of California San DiegoLa JollaCaliforniaUSA,Division of Infectious DiseasesRady Children's HospitalSan DiegoCaliforniaUSA
| |
Collapse
|
72
|
Cruz-Lorenzo E, Ramirez NGP, Lee J, Pandhe S, Wang L, Hernandez-Doria J, Spivak AM, Planelles V, Petersen T, Jain MK, Martinez ED, D’Orso I. Host Cell Redox Alterations Promote Latent HIV-1 Reactivation through Atypical Transcription Factor Cooperativity. Viruses 2022; 14:v14102288. [PMID: 36298843 PMCID: PMC9612055 DOI: 10.3390/v14102288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Immune cell state alterations rewire HIV-1 gene expression, thereby influencing viral latency and reactivation, but the mechanisms are still unfolding. Here, using a screen approach on CD4+ T cell models of HIV-1 latency, we revealed Small Molecule Reactivators (SMOREs) with unique chemistries altering the CD4+ T cell state and consequently promoting latent HIV-1 transcription and reactivation through an unprecedented mechanism of action. SMOREs triggered rapid oxidative stress and activated a redox-responsive program composed of cell-signaling kinases (MEK-ERK axis) and atypical transcription factor (AP-1 and HIF-1α) cooperativity. SMOREs induced an unusual AP-1 phosphorylation signature to promote AP-1/HIF-1α binding to the latent HIV-1 proviral genome for its activation. Consistently, latent HIV-1 reactivation was compromised with pharmacologic inhibition of oxidative stress sensing or of cell-signaling kinases, and transcription factor’s loss of expression, thus functionally linking the host redox-responsive program to viral transcriptional rewiring. Notably, SMOREs induced the redox program in primary CD4+ T cells and reactivated latent HIV-1 in aviremic patient samples alone and in combination with known latency-reversing agents, thus providing physiological relevance. Our findings suggest that manipulation of redox-sensitive pathways could be exploited to alter the course of HIV-1 latency, thus rendering host cells responsive to help achieve a sterilizing cure.
Collapse
Affiliation(s)
- Emily Cruz-Lorenzo
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nora-Guadalupe P. Ramirez
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeon Lee
- Lydia Hill Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sonali Pandhe
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lei Wang
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Juan Hernandez-Doria
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Adam M. Spivak
- Division of Infectious Diseases, Department of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Vicente Planelles
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Tianna Petersen
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mamta K. Jain
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Parkland Health & Hospital System, 5200 Harry Hines Blvd, Dallas, TX 75235, USA
| | - Elisabeth D. Martinez
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Iván D’Orso
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence:
| |
Collapse
|
73
|
Rao S. Sex differences in HIV-1 persistence and the implications for a cure. Front Glob Womens Health 2022; 3:942345. [PMID: 36212905 PMCID: PMC9538461 DOI: 10.3389/fgwh.2022.942345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Of the 38 million people currently living with Human Immunodeficiency Virus type-1 (HIV-1), women, especially adolescents and young women, are disproportionally affected by the HIV-1 pandemic. Acquired immunodeficiency syndrome (AIDS) - related illnesses are the leading cause of death in women of reproductive age worldwide. Although combination antiretroviral therapy (cART) can suppress viral replication, cART is not curative due to the presence of a long-lived viral reservoir that persists despite treatment. Biological sex influences the characteristics of the viral reservoir as well as the immune responses to infection, factors that can have a significant impact on the design and quantification of HIV-1 curative interventions in which women are grossly underrepresented. This mini-review will provide an update on the current understanding of the impact of biological sex on the viral reservoir and will discuss the implications of these differences in the context of the development of potential HIV-1 curative strategies, with a focus on the shock and kill approach to an HIV-1 cure. This mini-review will also highlight the current gaps in the knowledge of sex-based differences in HIV-1 persistence and will speculate on approaches to address them to promote the development of more scalable, effective curative approaches for people living with HIV-1.
Collapse
|
74
|
Mediouni S, Lyu S, Schader SM, Valente ST. Forging a Functional Cure for HIV: Transcription Regulators and Inhibitors. Viruses 2022; 14:1980. [PMID: 36146786 PMCID: PMC9502519 DOI: 10.3390/v14091980] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Current antiretroviral therapy (ART) increases the survival of HIV-infected individuals, yet it is not curative. The major barrier to finding a definitive cure for HIV is our inability to identify and eliminate long-lived cells containing the dormant provirus, termed viral reservoir. When ART is interrupted, the viral reservoir ensures heterogenous and stochastic HIV viral gene expression, which can reseed infection back to pre-ART levels. While strategies to permanently eradicate the virus have not yet provided significant success, recent work has focused on the management of this residual viral reservoir to effectively limit comorbidities associated with the ongoing viral transcription still observed during suppressive ART, as well as limit the need for daily ART. Our group has been at the forefront of exploring the viability of the block-and-lock remission approach, focused on the long-lasting epigenetic block of viral transcription such that without daily ART, there is no risk of viral rebound, transmission, or progression to AIDS. Numerous studies have reported inhibitors of both viral and host factors required for HIV transcriptional activation. Here, we highlight and review some of the latest HIV transcriptional inhibitor discoveries that may be leveraged for the clinical exploration of block-and-lock and revolutionize the way we treat HIV infections.
Collapse
Affiliation(s)
- Sonia Mediouni
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, 130 Scripps Way, 3C1, Jupiter, FL 33458, USA
| | - Shuang Lyu
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, 130 Scripps Way, 3C1, Jupiter, FL 33458, USA
| | - Susan M. Schader
- Department of Infectious Disease Research, Drug Development Division, Southern Research, 431 Aviation Way, Frederick, MD 21701, USA
| | - Susana T. Valente
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, 130 Scripps Way, 3C1, Jupiter, FL 33458, USA
| |
Collapse
|
75
|
Adams P, Berkhout B, Pasternak AO. Towards a molecular profile of antiretroviral therapy-free HIV remission. Curr Opin HIV AIDS 2022; 17:301-307. [PMID: 35938464 DOI: 10.1097/coh.0000000000000749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW To summarize the current status and highlight recent findings on predictive biomarkers for posttreatment HIV control (PTC) and virological remission. While historically, many studies focused on virological markers, there is an increasing tendency to enter immune and metabolic factors into the equation. RECENT FINDINGS On the virological side, several groups reported that cell-associated HIV RNA could predict time to viral rebound. Recent data hints at the possible importance of the genic location and chromatin context of the integrated provirus, although these factors still need to be assessed in relation to PTC and virological remission. Evidence from immunological studies highlighted innate and humoral immunity as important factors for prolonged HIV remission. Interestingly, novel metabolic markers have emerged, which offer additional angles to our understanding of latency and viral rebound. SUMMARY Facilitating PTC and virological remission remain top priorities for the HIV cure research. We advocate for clear and precise definitions for both phenomena in order to avoid misconceptions and to strengthen the conclusions that can be drawn. As no one-size-fits-all marker has emerged yet, more biomarkers are on the horizon, and viral rebound is a complex and heterogeneous process, it is likely that a combination of various biomarkers in cohesion will be necessary for a more accurate prediction of antiretroviral therapy-free HIV remission.
Collapse
Affiliation(s)
- Philipp Adams
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
76
|
Tanaka K, Kim Y, Roche M, Lewin SR. The role of latency reversal in HIV cure strategies. J Med Primatol 2022; 51:278-283. [PMID: 36029233 PMCID: PMC9514955 DOI: 10.1111/jmp.12613] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 12/03/2022]
Abstract
One strategy to eliminate latently infected cells that persist in people with HIV on antiretroviral therapy is to activate virus transcription and virus production to induce virus or immune‐mediated cell death. This is called latency reversal. Despite clear activity of multiple latency reversal agents in vitro, clinical trials of latency‐reversing agents have not shown significant reduction in latently infected cells. We review new insights into the biology of HIV latency and discuss novel approaches to enhance the efficacy of latency reversal agents.
Collapse
Affiliation(s)
- Kiho Tanaka
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Youry Kim
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Michael Roche
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sharon R Lewin
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.,Victorian Infectious Diseases Service, Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.,Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
77
|
Dahal S, Clayton K, Been T, Fernet-Brochu R, Ocando AV, Balachandran A, Poirier M, Maldonado RK, Shkreta L, Boligan KF, Guvenc F, Rahman F, Branch D, Bell B, Chabot B, Gray-Owen SD, Parent LJ, Cochrane A. Opposing roles of CLK SR kinases in controlling HIV-1 gene expression and latency. Retrovirology 2022; 19:18. [PMID: 35986377 PMCID: PMC9389714 DOI: 10.1186/s12977-022-00605-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/29/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The generation of over 69 spliced HIV-1 mRNAs from one primary transcript by alternative RNA splicing emphasizes the central role that RNA processing plays in HIV-1 replication. Control is mediated in part through the action of host SR proteins whose activity is regulated by multiple SR kinases (CLK1-4, SRPKs). METHODS Both shRNA depletion and small molecule inhibitors of host SR kinases were used in T cell lines and primary cells to evaluate the role of these factors in the regulation of HIV-1 gene expression. Effects on virus expression were assessed using western blotting, RT-qPCR, and immunofluorescence. RESULTS The studies demonstrate that SR kinases play distinct roles; depletion of CLK1 enhanced HIV-1 gene expression, reduction of CLK2 or SRPK1 suppressed it, whereas CLK3 depletion had a modest impact. The opposing effects of CLK1 vs. CLK2 depletion were due to action at distinct steps; reduction of CLK1 increased HIV-1 promoter activity while depletion of CLK2 affected steps after transcript initiation. Reduced CLK1 expression also enhanced the response to several latency reversing agents, in part, by increasing the frequency of responding cells, consistent with a role in regulating provirus latency. To determine whether small molecule modulation of SR kinase function could be used to control HIV-1 replication, we screened a GSK library of protein kinase inhibitors (PKIS) and identified several pyrazolo[1,5-b] pyridazine derivatives that suppress HIV-1 gene expression/replication with an EC50 ~ 50 nM. The compounds suppressed HIV-1 protein and viral RNA accumulation with minimal impact on cell viability, inhibiting CLK1 and CLK2 but not CLK3 function, thereby selectively altering the abundance of individual CLK and SR proteins in cells. CONCLUSIONS These findings demonstrate the unique roles played by individual SR kinases in regulating HIV-1 gene expression, validating the targeting of these functions to either enhance latency reversal, essential for "Kick-and-Kill" strategies, or to silence HIV protein expression for "Block-and-Lock" strategies.
Collapse
Affiliation(s)
- Subha Dahal
- grid.17063.330000 0001 2157 2938Dept. of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S1A8 Canada
| | - Kiera Clayton
- grid.168645.80000 0001 0742 0364Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Terek Been
- grid.17063.330000 0001 2157 2938Dept. of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S1A8 Canada
| | - Raphaële Fernet-Brochu
- grid.17063.330000 0001 2157 2938Dept. of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S1A8 Canada
| | - Alonso Villasmil Ocando
- grid.461656.60000 0004 0489 3491Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139 USA
| | - Ahalya Balachandran
- grid.17063.330000 0001 2157 2938Dept. of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S1A8 Canada
| | - Mikaël Poirier
- grid.86715.3d0000 0000 9064 6198Dept. of Microbiology & Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC Canada
| | - Rebecca Kaddis Maldonado
- grid.240473.60000 0004 0543 9901Department of Medicine, Penn State College of Medicine, Hershey, PA 17033 USA ,grid.240473.60000 0004 0543 9901Microbiology & Immunology, Penn State College of Medicine, Hershey, PA 17033 USA
| | - Lulzim Shkreta
- grid.86715.3d0000 0000 9064 6198Dept. of Microbiology & Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC Canada
| | - Kayluz Frias Boligan
- grid.423370.10000 0001 0285 1288Center for Innovation, Canadian Blood Services, Toronto, ON Canada
| | - Furkan Guvenc
- grid.17063.330000 0001 2157 2938Dept. of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S1A8 Canada
| | - Fariha Rahman
- grid.17063.330000 0001 2157 2938Dept. of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S1A8 Canada
| | - Donald Branch
- grid.423370.10000 0001 0285 1288Center for Innovation, Canadian Blood Services, Toronto, ON Canada
| | - Brendan Bell
- grid.86715.3d0000 0000 9064 6198Dept. of Microbiology & Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC Canada
| | - Benoit Chabot
- grid.86715.3d0000 0000 9064 6198Dept. of Microbiology & Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC Canada
| | - Scott D. Gray-Owen
- grid.17063.330000 0001 2157 2938Dept. of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S1A8 Canada
| | - Leslie J. Parent
- grid.240473.60000 0004 0543 9901Department of Medicine, Penn State College of Medicine, Hershey, PA 17033 USA ,grid.240473.60000 0004 0543 9901Microbiology & Immunology, Penn State College of Medicine, Hershey, PA 17033 USA
| | - Alan Cochrane
- grid.17063.330000 0001 2157 2938Dept. of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S1A8 Canada
| |
Collapse
|
78
|
Wang X, Vincent E, Siddiqui S, Turnbull K, Lu H, Blair R, Wu X, Watkins M, Ziani W, Shao J, Doyle-Meyers LA, Russell-Lodrigue KE, Bohm RP, Veazey RS, Xu H. Early treatment regimens achieve sustained virologic remission in infant macaques infected with SIV at birth. Nat Commun 2022; 13:4823. [PMID: 35973985 PMCID: PMC9381774 DOI: 10.1038/s41467-022-32554-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 08/04/2022] [Indexed: 01/28/2023] Open
Abstract
Early antiretroviral therapy (ART) in HIV-infected infants generally fails to achieve a sustained state of ART-free virologic remission, even after years of treatment. Our studies show that viral reservoir seeding is different in neonatal macaques intravenously exposed to SIV at birth, in contrast to adults. Furthermore, one month of ART including an integrase inhibitor, initiated at day 3, but not day 4 or 5 post infection, efficiently and rapidly suppresses viremia to undetectable levels. Intervention initiated at day 3 post infection and continued for 9 months achieves a sustained virologic remission in 4 of 5 infants. Collectively, an early intervention strategy within a key timeframe and regimen may result in viral remission or successful post-exposure prophylaxis for neonatal SIV infection, which may be clinically relevant for optimizing treatment strategies for HIV-infected or exposed infants.
Collapse
Affiliation(s)
- Xiaolei Wang
- Tulane National Primate Research Center, Tulane University School of Medicine, 18703 Three Rivers Road, Covington, LA, 70433, USA
| | - Eunice Vincent
- Tulane National Primate Research Center, Tulane University School of Medicine, 18703 Three Rivers Road, Covington, LA, 70433, USA
| | - Summer Siddiqui
- Tulane National Primate Research Center, Tulane University School of Medicine, 18703 Three Rivers Road, Covington, LA, 70433, USA
| | - Katherine Turnbull
- Tulane National Primate Research Center, Tulane University School of Medicine, 18703 Three Rivers Road, Covington, LA, 70433, USA
| | - Hong Lu
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Robert Blair
- Tulane National Primate Research Center, Tulane University School of Medicine, 18703 Three Rivers Road, Covington, LA, 70433, USA
| | - Xueling Wu
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Meagan Watkins
- Tulane National Primate Research Center, Tulane University School of Medicine, 18703 Three Rivers Road, Covington, LA, 70433, USA
| | - Widade Ziani
- Tulane National Primate Research Center, Tulane University School of Medicine, 18703 Three Rivers Road, Covington, LA, 70433, USA
| | - Jiasheng Shao
- Tulane National Primate Research Center, Tulane University School of Medicine, 18703 Three Rivers Road, Covington, LA, 70433, USA
| | - Lara A Doyle-Meyers
- Tulane National Primate Research Center, Tulane University School of Medicine, 18703 Three Rivers Road, Covington, LA, 70433, USA
| | - Kasi E Russell-Lodrigue
- Tulane National Primate Research Center, Tulane University School of Medicine, 18703 Three Rivers Road, Covington, LA, 70433, USA
| | - Rudolf P Bohm
- Tulane National Primate Research Center, Tulane University School of Medicine, 18703 Three Rivers Road, Covington, LA, 70433, USA
| | - Ronald S Veazey
- Tulane National Primate Research Center, Tulane University School of Medicine, 18703 Three Rivers Road, Covington, LA, 70433, USA
| | - Huanbin Xu
- Tulane National Primate Research Center, Tulane University School of Medicine, 18703 Three Rivers Road, Covington, LA, 70433, USA.
| |
Collapse
|
79
|
Lichterfeld M, Gao C, Yu XG. An ordeal that does not heal: understanding barriers to a cure for HIV-1 infection. Trends Immunol 2022; 43:608-616. [PMID: 35905706 PMCID: PMC9346997 DOI: 10.1016/j.it.2022.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 12/23/2022]
Abstract
With more than 38 million people living with HIV-1 (PLWH) worldwide, developing a cure for HIV-1 remains a major global health priority. Lifelong persistence of HIV-1 is frequently attributed to a pool of stable, transcriptionally silent HIV-1 proviruses, which are unaffected by currently available antiretroviral therapy (ART) or host immune activity. In this opinion article, we propose a more dynamic interpretation of HIV-1 reservoir cell biology and argue that HIV-1 proviruses frequently display residual viral transcriptional activity, making them vulnerable to longitudinal immune-mediated selection processes. Such mechanisms may, over extended periods of ART, induce an attenuated viral reservoir profile characterized by intact proviruses preferentially integrated into heterochromatin locations. We suggest that intensifying and accelerating naturally occurring selection mechanisms might represent a promising strategy for finding a potential cure for HIV-1 infection.
Collapse
Affiliation(s)
- Mathias Lichterfeld
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Ce Gao
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Xu G Yu
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
80
|
Pedersen SF, Collora JA, Kim RN, Yang K, Razmi A, Catalano AA, Yeh YHJ, Mounzer K, Tebas P, Montaner LJ, Ho YC. Inhibition of a Chromatin and Transcription Modulator, SLTM, Increases HIV-1 Reactivation Identified by a CRISPR Inhibition Screen. J Virol 2022; 96:e0057722. [PMID: 35730977 PMCID: PMC9278143 DOI: 10.1128/jvi.00577-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/27/2022] [Indexed: 12/24/2022] Open
Abstract
Despite effective antiretroviral therapy, HIV-1 persistence in latent reservoirs remains a major obstacle to a cure. We postulate that HIV-1 silencing factors suppress HIV-1 reactivation and that inhibition of these factors will increase HIV-1 reactivation. To identify HIV-1 silencing factors, we conducted a genome-wide CRISPR inhibition (CRISPRi) screen using four CRISPRi-ready, HIV-1-d6-GFP-infected Jurkat T cell clones with distinct integration sites. We sorted cells with increased green fluorescent protein (GFP) expression and captured single guide RNAs (sgRNAs) via targeted deep sequencing. We identified 18 HIV-1 silencing factors that were significantly enriched in HIV-1-d6-GFPhigh cells. Among them, SLTM (scaffold attachment factor B-like transcription modulator) is an epigenetic and transcriptional modulator having both DNA and RNA binding capacities not previously known to affect HIV-1 transcription. Knocking down SLTM by CRISPRi significantly increased HIV-1-d6-GFP expression (by 1.9- to 4.2-fold) in three HIV-1-d6-GFP-Jurkat T cell clones. Furthermore, SLTM knockdown increased the chromatin accessibility of HIV-1 and the gene in which HIV-1 is integrated but not the housekeeping gene POLR2A. To test whether SLTM inhibition can reactivate HIV-1 and further induce cell death of HIV-1-infected cells ex vivo, we established a small interfering RNA (siRNA) knockdown method that reduced SLTM expression in CD4+ T cells from 10 antiretroviral therapy (ART)-treated, virally suppressed, HIV-1-infected individuals ex vivo. Using limiting dilution culture, we found that SLTM knockdown significantly reduced the frequency of HIV-1-infected cells harboring inducible HIV-1 by 62.2% (0.56/106 versus 1.48/106 CD4+ T cells [P = 0.029]). Overall, our study indicates that SLTM inhibition reactivates HIV-1 in vitro and induces cell death of HIV-1-infected cells ex vivo. Our study identified SLTM as a novel therapeutic target. IMPORTANCE HIV-1-infected cells, which can survive drug treatment and immune cell killing, prevent an HIV-1 cure. Immune recognition of infected cells requires HIV-1 protein expression; however, HIV-1 protein expression is limited in infected cells after long-term therapy. The ways in which the HIV-1 provirus is blocked from producing protein are unknown. We identified a new host protein that regulates HIV-1 gene expression. We also provided a new method of studying HIV-1-host factor interactions in cells from infected individuals. These improvements may enable future strategies to reactivate HIV-1 in infected individuals so that infected cells can be killed by immune cells, drug treatment, or the virus itself.
Collapse
Affiliation(s)
- Savannah F. Pedersen
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jack A. Collora
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Rachel N. Kim
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kerui Yang
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Anya Razmi
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Allison A. Catalano
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yang-Hui Jimmy Yeh
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Karam Mounzer
- Philadelphia FIGHT Community Health Centers, Philadelphia, Pennsylvania, USA
| | - Pablo Tebas
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Ya-Chi Ho
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
81
|
Ma T, McGregor M, Giron L, Xie G, George AF, Abdel-Mohsen M, Roan NR. Single-cell glycomics analysis by CyTOF-Lec reveals glycan features defining cells differentially susceptible to HIV. eLife 2022; 11:e78870. [PMID: 35787792 PMCID: PMC9255966 DOI: 10.7554/elife.78870] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/29/2022] [Indexed: 01/19/2023] Open
Abstract
High-parameter single-cell phenotyping has enabled in-depth classification and interrogation of immune cells, but to date has not allowed for glycan characterization. Here, we develop CyTOF-Lec as an approach to simultaneously characterize many protein and glycan features of human immune cells at the single-cell level. We implemented CyTOF-Lec to compare glycan features between different immune subsets from blood and multiple tissue compartments, and to characterize HIV-infected cell cultures. Using bioinformatics approaches to distinguish preferential infection of cellular subsets from viral-induced remodeling, we demonstrate that HIV upregulates the levels of cell-surface fucose and sialic acid in a cell-intrinsic manner, and that memory CD4+ T cells co-expressing high levels of fucose and sialic acid are highly susceptible to HIV infection. Sialic acid levels were found to distinguish memory CD4+ T cell subsets expressing different amounts of viral entry receptors, pro-survival factors, homing receptors, and activation markers, and to play a direct role in memory CD4+ T cells' susceptibility to HIV infection. The ability of sialic acid to distinguish memory CD4+ T cells with different susceptibilities to HIV infection was experimentally validated through sorting experiments. Together, these results suggest that HIV remodels not only cellular proteins but also glycans, and that glycan expression can differentiate memory CD4+ T cells with vastly different susceptibility to HIV infection.
Collapse
Affiliation(s)
- Tongcui Ma
- Department of Urology, University of California, San FranciscoSan FranciscoUnited States
- Gladstone InstitutesSan FranciscoUnited States
| | - Matthew McGregor
- Department of Urology, University of California, San FranciscoSan FranciscoUnited States
- Gladstone InstitutesSan FranciscoUnited States
| | - Leila Giron
- The Wistar InstitutePhiladelphiaUnited States
| | - Guorui Xie
- Department of Urology, University of California, San FranciscoSan FranciscoUnited States
- Gladstone InstitutesSan FranciscoUnited States
| | - Ashley F George
- Department of Urology, University of California, San FranciscoSan FranciscoUnited States
- Gladstone InstitutesSan FranciscoUnited States
| | | | - Nadia R Roan
- Department of Urology, University of California, San FranciscoSan FranciscoUnited States
- Gladstone InstitutesSan FranciscoUnited States
| |
Collapse
|
82
|
Tokarev A, Machmach K, Creegan M, Kim D, Eller MA, Bolton DL. Single-Cell Profiling of Latently SIV-Infected CD4 + T Cells Directly Ex Vivo to Reveal Host Factors Supporting Reservoir Persistence. Microbiol Spectr 2022; 10:e0060422. [PMID: 35510859 PMCID: PMC9241701 DOI: 10.1128/spectrum.00604-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/02/2022] [Indexed: 11/20/2022] Open
Abstract
HIV-1 cure strategies aiming to eliminate persistent infected cell reservoirs are hampered by a poor understanding of cells harboring viral DNA in vivo. We describe a novel method to identify, enumerate, and characterize in detail individual cells infected in vivo using a combination of single-cell multiplexed assays for integrated proviral DNA, quantitative viral and host gene expression, and quantitative surface protein expression without any in vitro manipulation. Latently infected CD4+ T cells, defined as harboring integrated provirus in the absence of spliced viral mRNA, were identified from macaque lymph nodes during acute, chronic, and combination antiretroviral therapy (cART)-suppressed simian immunodeficiency virus (SIV) infection. Latently infected CD4+ T cells were most abundant during acute SIV (~8% of memory CD4+ T cells) and persisted in chronic and cART-suppressed infection. Productively infected cells actively transcribing viral mRNA, by contrast, were much more labile and declined substantially between acute and chronic or cART-suppressed infection. Expression of most surface proteins and host genes was similar between latently infected cells and uninfected cells. Elevated FLIP mRNA and surface CD3 expression among latently infected cells suggest increased survival potential and capacity to respond to T cell receptor stimulation. These findings point to a large pool of latently infected CD4+ T cells established very early in acute infection and upregulated host factors that may facilitate their persistence in vivo, both of which pose potential challenges to eliminating HIV-1 reservoirs. IMPORTANCE Effective combination antiretroviral therapy controls HIV-1 infection but fails to eliminate latent viral reservoirs that give rise to viremia upon treatment interruption. Strategies to eradicate latently infected cells require a better understanding of their biology and distinguishing features to promote their elimination. Tools for studying these cells from patients are currently limited. Here, we developed a single-cell method to identify cells latently infected in vivo and to characterize these cells for expression of surface proteins and host genes without in vitro manipulation, capturing their in vivo state from SIV-infected macaques. Host factors involved in cell survival and proliferation were upregulated in latently infected cells, which were abundant in the earliest stages of acute infection. These studies provide insight into the basic biology of latently infected cells as well as potential mechanisms underlying the persistence of HIV-1/SIV reservoirs to inform development of novel HIV-1 cure strategies.
Collapse
Affiliation(s)
- Andrey Tokarev
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Kawthar Machmach
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Matthew Creegan
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Dohoon Kim
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Michael A. Eller
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Diane L. Bolton
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| |
Collapse
|
83
|
Crespo R, Rao S, Mahmoudi T. HibeRNAtion: HIV-1 RNA Metabolism and Viral Latency. Front Cell Infect Microbiol 2022; 12:855092. [PMID: 35774399 PMCID: PMC9237370 DOI: 10.3389/fcimb.2022.855092] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/10/2022] [Indexed: 01/12/2023] Open
Abstract
HIV-1 infection remains non-curative due to the latent reservoir, primarily a small pool of resting memory CD4+ T cells bearing replication-competent provirus. Pharmacological reversal of HIV-1 latency followed by intrinsic or extrinsic cell killing has been proposed as a promising strategy to target and eliminate HIV-1 viral reservoirs. Latency reversing agents have been extensively studied for their role in reactivating HIV-1 transcription in vivo, although no permanent reduction of the viral reservoir has been observed thus far. This is partly due to the complex nature of latency, which involves strict intrinsic regulation at multiple levels at transcription and RNA processing. Still, the molecular mechanisms that control HIV-1 latency establishment and maintenance have been almost exclusively studied in the context of chromatin remodeling, transcription initiation and elongation and most known LRAs target LTR-driven transcription by manipulating these. RNA metabolism is a largely understudies but critical mechanistic step in HIV-1 gene expression and latency. In this review we provide an update on current knowledge on the role of RNA processing mechanisms in viral gene expression and latency and speculate on the possible manipulation of these pathways as a therapeutic target for future cure studies.
Collapse
Affiliation(s)
- Raquel Crespo
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Shringar Rao
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Pathology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Urology, Erasmus University Medical Center, Rotterdam, Netherlands
- *Correspondence: Tokameh Mahmoudi,
| |
Collapse
|
84
|
Rao S, Mahmoudi T. DEAD-ly Affairs: The Roles of DEAD-Box Proteins on HIV-1 Viral RNA Metabolism. Front Cell Dev Biol 2022; 10:917599. [PMID: 35769258 PMCID: PMC9234453 DOI: 10.3389/fcell.2022.917599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
In order to ensure viral gene expression, Human Immunodeficiency virus type-1 (HIV-1) recruits numerous host proteins that promote optimal RNA metabolism of the HIV-1 viral RNAs (vRNAs), such as the proteins of the DEAD-box family. The DEAD-box family of RNA helicases regulates multiple steps of RNA metabolism and processing, including transcription, splicing, nucleocytoplasmic export, trafficking, translation and turnover, mediated by their ATP-dependent RNA unwinding ability. In this review, we provide an overview of the functions and role of all DEAD-box family protein members thus far described to influence various aspects of HIV-1 vRNA metabolism. We describe the molecular mechanisms by which HIV-1 hijacks these host proteins to promote its gene expression and we discuss the implications of these interactions during viral infection, their possible roles in the maintenance of viral latency and in inducing cell death. We also speculate on the emerging potential of pharmacological inhibitors of DEAD-box proteins as novel therapeutics to control the HIV-1 pandemic.
Collapse
Affiliation(s)
- Shringar Rao
- Department of Biochemistry, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Centre, Rotterdam, Netherlands
- Department of Pathology, Erasmus University Medical Centre, Rotterdam, Netherlands
- Department of Urology, Erasmus University Medical Centre, Rotterdam, Netherlands
| |
Collapse
|
85
|
Lindqvist B, Jütte BB, Love L, Assi W, Roux J, Sönnerborg A, Tezil T, Verdin E, Svensson JP. T cell stimulation remodels the latently HIV-1 infected cell population by differential activation of proviral chromatin. PLoS Pathog 2022; 18:e1010555. [PMID: 35666761 PMCID: PMC9203004 DOI: 10.1371/journal.ppat.1010555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/16/2022] [Accepted: 04/26/2022] [Indexed: 01/22/2023] Open
Abstract
The reservoir of latently HIV-1 infected cells is heterogeneous. To achieve an HIV-1 cure, the reservoir of activatable proviruses must be eliminated while permanently silenced proviruses may be tolerated. We have developed a method to assess the proviral nuclear microenvironment in single cells. In latently HIV-1 infected cells, a zinc finger protein tethered to the HIV-1 promoter produced a fluorescent signal as a protein of interest came in its proximity, such as the viral transactivator Tat when recruited to the nascent RNA. Tat is essential for viral replication. In these cells we assessed the proviral activation and chromatin composition. By linking Tat recruitment to proviral activity, we dissected the mechanisms of HIV-1 latency reversal and the consequences of HIV-1 production. A pulse of promoter-associated Tat was identified that contrasted to the continuous production of viral proteins. As expected, promoter H3K4me3 led to substantial expression of the provirus following T cell stimulation. However, the activation-induced cell cycle arrest and death led to a surviving cell fraction with proviruses encapsulated in repressive chromatin. Further, this cellular model was used to reveal mechanisms of action of small molecules. In a proof-of-concept study we determined the effect of modifying enhancer chromatin on HIV-1 latency reversal. Only proviruses resembling active enhancers, associated with H3K4me1 and H3K27ac and subsequentially recognized by BRD4, efficiently recruited Tat upon cell stimulation. Tat-independent HIV-1 latency reversal of unknown significance still occurred. We present a method for single cell assessment of the microenvironment of the latent HIV-1 proviruses, used here to reveal how T cell stimulation modulates the proviral activity and how the subsequent fate of the infected cell depends on the chromatin context.
Collapse
Affiliation(s)
- Birgitta Lindqvist
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Bianca B. Jütte
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Luca Love
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Wlaa Assi
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Laboratory of Viral Infectious Diseases, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Julie Roux
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Anders Sönnerborg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden, Division of Infectious Diseases, Department of Medicine Huddinge, I73, Karolinska University Hospital, Stockholm, Sweden
| | - Tugsan Tezil
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - J. Peter Svensson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- * E-mail:
| |
Collapse
|
86
|
Giron LB, Abdel-Mohsen M. Viral and Host Biomarkers of HIV Remission Post Treatment Interruption. Curr HIV/AIDS Rep 2022; 19:217-233. [PMID: 35438384 DOI: 10.1007/s11904-022-00607-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2022] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW HIV rebound/remission after antiretroviral therapy (ART) interruption is likely influenced by (a) the size of the inducible replication-competent HIV reservoir and (b) factors in the host environment that influence immunological pressures on this reservoir. Identifying viral and/or host biomarkers of HIV rebound after ART cessation may improve the safety of treatment interruptions and our understanding of how the viral-host interplay results in post-treatment control. Here we review the predictive and functional significance of recently suggested viral and host biomarkers of time to viral rebound and post-treatment control following ART interruption. RECENT FINDINGS There are currently no validated viral or host biomarkers of viral rebound; however, several biomarkers have been recently suggested. A combination of viral and host factors will likely be needed to predict viral rebound and to better understand the mechanisms contributing to post-treatment control of HIV, critical steps to developing a cure for HIV infection.
Collapse
|
87
|
Ne E, Crespo R, Izquierdo-Lara R, Rao S, Koçer S, Górska A, van Staveren T, Kan TW, van de Vijver D, Dekkers D, Rokx C, Moulos P, Hatzis P, Palstra RJ, Demmers J, Mahmoudi T. Catchet-MS identifies IKZF1-targeting thalidomide analogues as novel HIV-1 latency reversal agents. Nucleic Acids Res 2022; 50:5577-5598. [PMID: 35640596 PMCID: PMC9177988 DOI: 10.1093/nar/gkac407] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/11/2022] [Accepted: 05/24/2022] [Indexed: 12/27/2022] Open
Abstract
A major pharmacological strategy toward HIV cure aims to reverse latency in infected cells as a first step leading to their elimination. While the unbiased identification of molecular targets physically associated with the latent HIV-1 provirus would be highly valuable to unravel the molecular determinants of HIV-1 transcriptional repression and latency reversal, due to technical limitations, this has been challenging. Here we use a dCas9 targeted chromatin and histone enrichment strategy coupled to mass spectrometry (Catchet-MS) to probe the differential protein composition of the latent and activated HIV-1 5′LTR. Catchet-MS identified known and novel latent 5′LTR-associated host factors. Among these, IKZF1 is a novel HIV-1 transcriptional repressor, required for Polycomb Repressive Complex 2 recruitment to the LTR. We find the clinically advanced thalidomide analogue iberdomide, and the FDA approved analogues lenalidomide and pomalidomide, to be novel LRAs. We demonstrate that, by targeting IKZF1 for degradation, these compounds reverse HIV-1 latency in CD4+ T-cells isolated from virally suppressed people living with HIV-1 and that they are able to synergize with other known LRAs.
Collapse
Affiliation(s)
- Enrico Ne
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000CA Rotterdam, The Netherlands
| | - Raquel Crespo
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000CA Rotterdam, The Netherlands
| | - Ray Izquierdo-Lara
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000CA Rotterdam, The Netherlands
| | - Shringar Rao
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000CA Rotterdam, The Netherlands
| | - Selin Koçer
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000CA Rotterdam, The Netherlands
| | - Alicja Górska
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000CA Rotterdam, The Netherlands
| | - Thomas van Staveren
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000CA Rotterdam, The Netherlands
| | - Tsung Wai Kan
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000CA Rotterdam, The Netherlands.,Department of Pathology, Erasmus University Medical Center, The Netherlands.,Department of Urology, Erasmus University Medical Center, The Netherlands
| | - David van de Vijver
- Department of Viroscience, Erasmus University Medical Center, The Netherlands
| | - Dick Dekkers
- Proteomics Center, Erasmus University Medical Center, Ee679a PO Box 2040, 3000CA Rotterdam, The Netherlands
| | - Casper Rokx
- Department of Internal Medicine, Section of Infectious Diseases, Erasmus University Medical Center, Rg-530, PO Box 2040, 3000CA Rotterdam, The Netherlands
| | - Panagiotis Moulos
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", 16672, Vari, Greece
| | - Pantelis Hatzis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", 16672, Vari, Greece
| | - Robert-Jan Palstra
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000CA Rotterdam, The Netherlands.,Department of Pathology, Erasmus University Medical Center, The Netherlands.,Department of Urology, Erasmus University Medical Center, The Netherlands
| | - Jeroen Demmers
- Proteomics Center, Erasmus University Medical Center, Ee679a PO Box 2040, 3000CA Rotterdam, The Netherlands
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000CA Rotterdam, The Netherlands.,Department of Pathology, Erasmus University Medical Center, The Netherlands.,Department of Urology, Erasmus University Medical Center, The Netherlands
| |
Collapse
|
88
|
Beemon KL. Retroviral RNA Processing. Viruses 2022; 14:v14051113. [PMID: 35632854 PMCID: PMC9143442 DOI: 10.3390/v14051113] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023] Open
Abstract
This review is an accompaniment to a Special Issue on “Retroviral RNA Processing”. It discusses post-transcriptional regulation of retroviruses, ranging from the ancient foamy viruses to more modern viruses, such as HIV-1, HTLV-1, Rous sarcoma virus, murine leukemia virus, mouse mammary tumor virus, and Mason-Pfizer monkey virus. This review is not comprehensive. However, it tries to address some of the major questions in the field with examples of how different retroviruses express their genes. It is amazing that a single primary RNA transcript can have so many possible fates: genomic RNA, unspliced mRNA, and up to 50 different alternatively spliced mRNAs. This review will discuss the sorting of RNAs for packaging or translation, RNA nuclear export mechanisms, splicing, translation, RNA modifications, and avoidance of nonsense-mediated RNA decay.
Collapse
Affiliation(s)
- Karen L Beemon
- Biology Department, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
89
|
Lee MYH, Khoury G, Olshansky M, Sonza S, Carter GP, McMahon J, Stinear TP, Turner SJ, Lewin SR, Purcell DFJ. Detection of Chimeric Cellular: HIV mRNAs Generated Through Aberrant Splicing in HIV-1 Latently Infected Resting CD4+ T Cells. Front Cell Infect Microbiol 2022; 12:855290. [PMID: 35573784 PMCID: PMC9096486 DOI: 10.3389/fcimb.2022.855290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Latent HIV-1 provirus in infected individuals on suppressive therapy does not always remain transcriptionally silent. Both HIV-1 LTR and human gene promoter derived transcriptional events can contribute HIV-1 sequences to the mRNA produced in the cell. In addition, chimeric cellular:HIV mRNA can arise through readthrough transcription and aberrant splicing. Using target enrichment coupled to the Illumina Mi-Seq and PacBio RS II platforms, we show that 3’ LTR activation is frequent in latently infected cells from both the CCL19-induced primary cell model of HIV-1 latency as well as ex vivo samples. In both systems of latent HIV-1 infection, we detected several chimeric species that were generated via activation of a cryptic splice donor site in the 5’ LTR of HIV-1. Aberrant splicing involving the major HIV-1 splice donor sites, SD1 and SD4 disrupts post-transcriptional processing of the gene in which HIV-1 is integrated. In the primary cell model of HIV-1 latency, Tat-encoding sequences are incorporated into the chimeric mRNA transcripts through the use of SD4. Our study unravels clues to the characteristics of HIV-1 integrants that promote formation of chimeric cellular:HIV mRNA and improves the understanding of the HIV-1 RNA footprint in latently infected cells.
Collapse
Affiliation(s)
- Michelle Y-H Lee
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Georges Khoury
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Moshe Olshansky
- Department of Microbiology, Biomedical Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Secondo Sonza
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Glen P. Carter
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Doherty Applied Microbial Genomics, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - James McMahon
- Department of Infectious Diseases, Monash University and Alfred Hospital, Melbourne, VIC, Australia
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Doherty Applied Microbial Genomics, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Stephen J. Turner
- Department of Microbiology, Biomedical Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Sharon R. Lewin
- Department of Infectious Diseases, Monash University and Alfred Hospital, Melbourne, VIC, Australia
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Victorian Infectious Diseases Service, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Damian F. J. Purcell
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- *Correspondence: Damian F. J. Purcell,
| |
Collapse
|
90
|
Ta TM, Malik S, Anderson EM, Jones AD, Perchik J, Freylikh M, Sardo L, Klase ZA, Izumi T. Insights Into Persistent HIV-1 Infection and Functional Cure: Novel Capabilities and Strategies. Front Microbiol 2022; 13:862270. [PMID: 35572626 PMCID: PMC9093714 DOI: 10.3389/fmicb.2022.862270] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/21/2022] [Indexed: 12/23/2022] Open
Abstract
Although HIV-1 replication can be efficiently suppressed to undetectable levels in peripheral blood by combination antiretroviral therapy (cART), lifelong medication is still required in people living with HIV (PLWH). Life expectancies have been extended by cART, but age-related comorbidities have increased which are associated with heavy physiological and economic burdens on PLWH. The obstacle to a functional HIV cure can be ascribed to the formation of latent reservoir establishment at the time of acute infection that persists during cART. Recent studies suggest that some HIV reservoirs are established in the early acute stages of HIV infection within multiple immune cells that are gradually shaped by various host and viral mechanisms and may undergo clonal expansion. Early cART initiation has been shown to reduce the reservoir size in HIV-infected individuals. Memory CD4+ T cell subsets are regarded as the predominant cellular compartment of the HIV reservoir, but monocytes and derivative macrophages or dendritic cells also play a role in the persistent virus infection. HIV latency is regulated at multiple molecular levels in transcriptional and post-transcriptional processes. Epigenetic regulation of the proviral promoter can profoundly regulate the viral transcription. In addition, transcriptional elongation, RNA splicing, and nuclear export pathways are also involved in maintaining HIV latency. Although most proviruses contain large internal deletions, some defective proviruses may induce immune activation by expressing viral proteins or producing replication-defective viral-like particles. In this review article, we discuss the state of the art on mechanisms of virus persistence in the periphery and tissue and summarize interdisciplinary approaches toward a functional HIV cure, including novel capabilities and strategies to measure and eliminate the infected reservoirs and induce immune control.
Collapse
Affiliation(s)
- Tram M. Ta
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Sajjaf Malik
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Elizabeth M. Anderson
- Office of the Assistant Secretary for Health, Region 3, U.S. Department of Health and Human Services, Washington, DC, United States
| | - Amber D. Jones
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States,Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Jocelyn Perchik
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Maryann Freylikh
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Luca Sardo
- Department of Infectious Disease and Vaccines, Merck & Co., Inc., Kenilworth, NJ, United States
| | - Zackary A. Klase
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States,Center for Neuroimmunology and CNS Therapeutics, Institute of Molecular Medicine and Infectious Diseases, Drexel University of Medicine, Philadelphia, PA, United States
| | - Taisuke Izumi
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States,*Correspondence: Taisuke Izumi,
| |
Collapse
|
91
|
Zhu X, Liu P, Lu L, Zhong H, Xu M, Jia R, Su L, Cao L, Sun Y, Guo M, Sun J, Xu J. Development of a multiplex droplet digital PCR assay for detection of enterovirus, parechovirus, herpes simplex virus 1 and 2 simultaneously for diagnosis of viral CNS infections. Virol J 2022; 19:70. [PMID: 35443688 PMCID: PMC9020426 DOI: 10.1186/s12985-022-01798-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 04/08/2022] [Indexed: 11/22/2022] Open
Abstract
Background Enterovirus (EV), parechovirus (HPeV), herpes simplex virus 1 and 2 (HSV1/2) are common viruses leading to viral central nervous system (CNS) infections which are increasingly predominant but exhibit deficiency in definite pathogen diagnosis with gold-standard quantitative PCR method. Previous studies have shown that droplet digital PCR (ddPCR) has great potential in pathogen detection and quantification, especially in low concentration samples. Methods Targeting four common viruses of EV, HPeV, HSV1, and HSV2 in cerebrospinal fluid (CSF), we developed a multiplex ddPCR assay using probe ratio-based multiplexing strategy, analyzed the performance, and evaluated it in 97 CSF samples collected from patients with suspected viral CNS infections on a two-channel ddPCR detection system. Results The four viruses were clearly distinguished by their corresponding fluorescence amplitude. The limits of detection for EV, HPeV, HSV1, and HSV2 were 5, 10, 5, and 10 copies per reaction, respectively. The dynamic range was at least four orders of magnitude spanning from 2000 to 2 copies per reaction. The results of 97 tested clinical CSF specimens were identical to those deduced from qPCR/qRT-PCR assays using commercial kits. Conclusion The multiplex ddPCR assay was demonstrated to be an accurate and robust method which could detect EV, HPeV, HSV1, and HSV2 simultaneously. It provides a useful tool for clinical diagnosis and disease monitoring of viral CNS infections. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-022-01798-y.
Collapse
Affiliation(s)
- Xunhua Zhu
- Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Pengcheng Liu
- Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Lijuan Lu
- Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Huaqing Zhong
- Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Menghua Xu
- Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Ran Jia
- Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Liyun Su
- Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Lingfeng Cao
- Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yameng Sun
- Shanghai Bio-Chain Biological Technology Co., Ltd, Shanghai, China
| | - Meijun Guo
- Shanghai Bio-Chain Biological Technology Co., Ltd, Shanghai, China
| | - Jianyue Sun
- Department of Pediatrics, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Jin Xu
- Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| |
Collapse
|
92
|
Falcinelli SD, Peterson JJ, Turner AMW, Irlbeck D, Read J, Raines SL, James KS, Sutton C, Sanchez A, Emery A, Sampey G, Ferris R, Allard B, Ghofrani S, Kirchherr JL, Baker C, Kuruc JD, Gay CL, James LI, Wu G, Zuck P, Rioja I, Furze RC, Prinjha RK, Howell BJ, Swanstrom R, Browne EP, Strahl BD, Dunham RM, Archin NM, Margolis DM. Combined noncanonical NF-κB agonism and targeted BET bromodomain inhibition reverse HIV latency ex vivo. J Clin Invest 2022; 132:e157281. [PMID: 35426377 PMCID: PMC9012286 DOI: 10.1172/jci157281] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/01/2022] [Indexed: 11/23/2022] Open
Abstract
Latency reversal strategies for HIV cure using inhibitor of apoptosis protein (IAP) antagonists (IAPi) induce unprecedented levels of latent reservoir expression without immunotoxicity during suppressive antiretroviral therapy (ART). However, full targeting of the reservoir may require combinatorial approaches. A Jurkat latency model screen for IAPi combination partners demonstrated synergistic latency reversal with bromodomain (BD) and extraterminal domain protein inhibitors (BETi). Mechanistic investigations using CRISPR-CAS9 and single-cell RNA-Seq informed comprehensive ex vivo evaluations of IAPi plus pan-BET, bD-selective BET, or selective BET isoform targeting in CD4+ T cells from ART-suppressed donors. IAPi+BETi treatment resulted in striking induction of cell-associated HIV gag RNA, but lesser induction of fully elongated and tat-rev RNA compared with T cell activation-positive controls. IAPi+BETi resulted in HIV protein induction in bulk cultures of CD4+ T cells using an ultrasensitive p24 assay, but did not result in enhanced viral outgrowth frequency using a standard quantitative viral outgrowth assay. This study defines HIV transcriptional elongation and splicing as important barriers to latent HIV protein expression following latency reversal, delineates the roles of BET proteins and their BDs in HIV latency, and provides a rationale for exploration of IAPi+BETi in animal models of HIV latency.
Collapse
Affiliation(s)
- Shane D. Falcinelli
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, North Carolina, USA
| | - Jackson J. Peterson
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, North Carolina, USA
| | - Anne-Marie W. Turner
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, UNC, Chapel Hill, North Carolina, USA
| | - David Irlbeck
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
- HIV Drug Discovery, ViiV Healthcare, Research Triangle Park, North Carolina, USA
| | - Jenna Read
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
| | - Samuel L.M. Raines
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
| | - Katherine S. James
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
| | - Cameron Sutton
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
- Department of Biochemistry and Biophysics, UNC School of Medicine, Chapel Hill, North Carolina, USA
| | - Anthony Sanchez
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
| | - Ann Emery
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
- Department of Biochemistry and Biophysics, UNC School of Medicine, Chapel Hill, North Carolina, USA
| | - Gavin Sampey
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
| | - Robert Ferris
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
- HIV Drug Discovery, ViiV Healthcare, Research Triangle Park, North Carolina, USA
| | - Brigitte Allard
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
| | - Simon Ghofrani
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
| | - Jennifer L. Kirchherr
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
| | - Caroline Baker
- Division of Infectious Diseases, Department of Medicine, UNC, Chapel Hill, North Carolina, USA
| | - JoAnn D. Kuruc
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, UNC, Chapel Hill, North Carolina, USA
| | - Cynthia L. Gay
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, UNC, Chapel Hill, North Carolina, USA
| | - Lindsey I. James
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Guoxin Wu
- Department of Infectious Disease, Merck & Co. Inc., Kenilworth, New Jersey, USA
| | - Paul Zuck
- Department of Infectious Disease, Merck & Co. Inc., Kenilworth, New Jersey, USA
| | - Inmaculada Rioja
- Immuno-Epigenetics, Immunology Research Unit, GSK Medicines Research Centre, Stevenage, United Kingdom
| | - Rebecca C. Furze
- Immuno-Epigenetics, Immunology Research Unit, GSK Medicines Research Centre, Stevenage, United Kingdom
| | - Rab K. Prinjha
- Immuno-Epigenetics, Immunology Research Unit, GSK Medicines Research Centre, Stevenage, United Kingdom
| | - Bonnie J. Howell
- Department of Infectious Disease, Merck & Co. Inc., Kenilworth, New Jersey, USA
| | - Ronald Swanstrom
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
- Department of Biochemistry and Biophysics, UNC School of Medicine, Chapel Hill, North Carolina, USA
| | - Edward P. Browne
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, UNC, Chapel Hill, North Carolina, USA
| | - Brian D. Strahl
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
- Department of Biochemistry and Biophysics, UNC School of Medicine, Chapel Hill, North Carolina, USA
| | - Richard M. Dunham
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
- HIV Drug Discovery, ViiV Healthcare, Research Triangle Park, North Carolina, USA
| | - Nancie M. Archin
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, UNC, Chapel Hill, North Carolina, USA
| | - David M. Margolis
- UNC HIV Cure Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, UNC, Chapel Hill, North Carolina, USA
| |
Collapse
|
93
|
|
94
|
Li D, Dewey MG, Wang L, Falcinelli SD, Wong LM, Tang Y, Browne EP, Chen X, Archin NM, Margolis DM, Jiang G. Crotonylation sensitizes IAPi-induced disruption of latent HIV by enhancing p100 cleavage into p52. iScience 2022; 25:103649. [PMID: 35024584 PMCID: PMC8728431 DOI: 10.1016/j.isci.2021.103649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/08/2021] [Accepted: 12/15/2021] [Indexed: 01/08/2023] Open
Abstract
The eradication of HIV infection is difficult to achieve because of stable viral reservoirs. Here, we show that crotonylation enhances AZD5582-induced noncanonical NF-κB (ncNF-κB) signaling, further augmenting HIV latency reversal in Jurkat and U1 cell line models of latency, HIV latently infected primary CD4+ T cells and resting CD4+ T cells isolated from people living with HIV. Crotonylation upregulated the levels of the active p52 subunit of NF-κB following AZD5582. Biochemical analyses suggest that the ubiquitin E3 ligase TRIM27 is involved in enhanced p100 cleavage to p52. When TRIM27 was depleted, AZD5582-induced HIV latency reversal was reduced. TRIM27 small interfering RNA (siRNA) knockdown reduced both p100 and p52 levels without inhibiting p100 transcription, indicating that TRIM27 not only acts on p100 cleavage but also may impact p100/p52 stability. These observations reveal the complexity of HIV transcriptional machinery, particularly of NF-κB.
Collapse
Affiliation(s)
- Dajiang Li
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, The University of North Carolina at Chapel Hill, 120 Mason Farm Rd, Genetic Medicine Building, Room 2111, Chapel Hill, NC 27599-7042, USA
| | - Morgan G. Dewey
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, The University of North Carolina at Chapel Hill, 120 Mason Farm Rd, Genetic Medicine Building, Room 2111, Chapel Hill, NC 27599-7042, USA
| | - Li Wang
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7042, USA
| | - Shane D. Falcinelli
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, The University of North Carolina at Chapel Hill, 120 Mason Farm Rd, Genetic Medicine Building, Room 2111, Chapel Hill, NC 27599-7042, USA
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7042, USA
| | - Lilly M. Wong
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, The University of North Carolina at Chapel Hill, 120 Mason Farm Rd, Genetic Medicine Building, Room 2111, Chapel Hill, NC 27599-7042, USA
| | - Yuyang Tang
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, The University of North Carolina at Chapel Hill, 120 Mason Farm Rd, Genetic Medicine Building, Room 2111, Chapel Hill, NC 27599-7042, USA
| | - Edward P. Browne
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, The University of North Carolina at Chapel Hill, 120 Mason Farm Rd, Genetic Medicine Building, Room 2111, Chapel Hill, NC 27599-7042, USA
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7042, USA
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7042, USA
| | - Xian Chen
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7042, USA
| | - Nancie M. Archin
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, The University of North Carolina at Chapel Hill, 120 Mason Farm Rd, Genetic Medicine Building, Room 2111, Chapel Hill, NC 27599-7042, USA
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7042, USA
| | - David M. Margolis
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, The University of North Carolina at Chapel Hill, 120 Mason Farm Rd, Genetic Medicine Building, Room 2111, Chapel Hill, NC 27599-7042, USA
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7042, USA
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7042, USA
| | - Guochun Jiang
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, The University of North Carolina at Chapel Hill, 120 Mason Farm Rd, Genetic Medicine Building, Room 2111, Chapel Hill, NC 27599-7042, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7042, USA
| |
Collapse
|
95
|
Einkauf KB, Osborn MR, Gao C, Sun W, Sun X, Lian X, Parsons EM, Gladkov GT, Seiger KW, Blackmer JE, Jiang C, Yukl SA, Rosenberg ES, Yu XG, Lichterfeld M. Parallel analysis of transcription, integration, and sequence of single HIV-1 proviruses. Cell 2022; 185:266-282.e15. [PMID: 35026153 PMCID: PMC8809251 DOI: 10.1016/j.cell.2021.12.011] [Citation(s) in RCA: 131] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/17/2021] [Accepted: 12/10/2021] [Indexed: 01/09/2023]
Abstract
HIV-1-infected cells that persist despite antiretroviral therapy (ART) are frequently considered "transcriptionally silent," but active viral gene expression may occur in some cells, challenging the concept of viral latency. Applying an assay for profiling the transcriptional activity and the chromosomal locations of individual proviruses, we describe a global genomic and epigenetic map of transcriptionally active and silent proviral species and evaluate their longitudinal evolution in persons receiving suppressive ART. Using genome-wide epigenetic reference data, we show that proviral transcriptional activity is associated with activating epigenetic chromatin features in linear proximity of integration sites and in their inter- and intrachromosomal contact regions. Transcriptionally active proviruses were actively selected against during prolonged ART; however, this pattern was violated by large clones of virally infected cells that may outcompete negative selection forces through elevated intrinsic proliferative activity. Our results suggest that transcriptionally active proviruses are dynamically evolving under selection pressure by host factors.
Collapse
Affiliation(s)
- Kevin B Einkauf
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Matthew R Osborn
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Ce Gao
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Weiwei Sun
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Xiaoming Sun
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Immunology and Microbiology, Hangzhou Normal University, Zhejiang, P.R. China
| | - Xiaodong Lian
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Elizabeth M Parsons
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | | | - Kyra W Seiger
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Jane E Blackmer
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Chenyang Jiang
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Steven A Yukl
- San Francisco VA Medical Center, University of California at San Francisco, San Francisco, CA 94121, USA
| | - Eric S Rosenberg
- Infectious Disease Division, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Xu G Yu
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Mathias Lichterfeld
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
96
|
Joussef-Piña S, Nankya I, Nalukwago S, Baseke J, Rwambuya S, Winner D, Kyeyune F, Chervenak K, Thiel B, Asaad R, Dobrowolski C, Luttge B, Lawley B, Kityo CM, Boom WH, Karn J, Quiñones-Mateu ME. Reduced and highly diverse peripheral HIV-1 reservoir in virally suppressed patients infected with non-B HIV-1 strains in Uganda. Retrovirology 2022; 19:1. [PMID: 35033105 PMCID: PMC8760765 DOI: 10.1186/s12977-022-00587-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Our understanding of the peripheral human immunodeficiency virus type 1 (HIV-1) reservoir is strongly biased towards subtype B HIV-1 strains, with only limited information available from patients infected with non-B HIV-1 subtypes, which are the predominant viruses seen in low- and middle-income countries (LMIC) in Africa and Asia. RESULTS In this study, blood samples were obtained from well-suppressed ART-experienced HIV-1 patients monitored in Uganda (n = 62) or the U.S. (n = 50), with plasma HIV-1 loads < 50 copies/ml and CD4+ T-cell counts > 300 cells/ml. The peripheral HIV-1 reservoir, i.e., cell-associated HIV-1 RNA and proviral DNA, was characterized using our novel deep sequencing-based EDITS assay. Ugandan patients were slightly younger (median age 43 vs 49 years) and had slightly lower CD4+ counts (508 vs 772 cells/ml) than U.S. individuals. All Ugandan patients were infected with non-B HIV-1 subtypes (31% A1, 64% D, or 5% C), while all U.S. individuals were infected with subtype B viruses. Unexpectedly, we observed a significantly larger peripheral inducible HIV-1 reservoir in U.S. patients compared to Ugandan individuals (48 vs. 11 cell equivalents/million cells, p < 0.0001). This divergence in reservoir size was verified measuring proviral DNA (206 vs. 88 cell equivalents/million cells, p < 0.0001). However, the peripheral HIV-1 reservoir was more diverse in Ugandan than in U.S. individuals (8.6 vs. 4.7 p-distance, p < 0.0001). CONCLUSIONS The smaller, but more diverse, peripheral HIV-1 reservoir in Ugandan patients might be associated with viral (e.g., non-B subtype with higher cytopathicity) and/or host (e.g., higher incidence of co-infections or co-morbidities leading to less clonal expansion) factors. This highlights the need to understand reservoir dynamics in diverse populations as part of ongoing efforts to find a functional cure for HIV-1 infection in LMICs.
Collapse
Affiliation(s)
- Samira Joussef-Piña
- Departments of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| | - Immaculate Nankya
- Center for AIDS Research Uganda Laboratories, Joint Clinical Research Centre, Kampala, Uganda
| | - Sophie Nalukwago
- Center for AIDS Research Uganda Laboratories, Joint Clinical Research Centre, Kampala, Uganda
| | - Joy Baseke
- Center for AIDS Research Uganda Laboratories, Joint Clinical Research Centre, Kampala, Uganda
| | - Sandra Rwambuya
- Center for AIDS Research Uganda Laboratories, Joint Clinical Research Centre, Kampala, Uganda
| | - Dane Winner
- Departments of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| | - Fred Kyeyune
- Center for AIDS Research Uganda Laboratories, Joint Clinical Research Centre, Kampala, Uganda
| | - Keith Chervenak
- Departments of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Bonnie Thiel
- Departments of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Robert Asaad
- Departments of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Curtis Dobrowolski
- Departments of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| | - Benjamin Luttge
- Departments of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| | - Blair Lawley
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, 720 Cumberland Street, P.O. Box 56, Dunedin, New Zealand
| | - Cissy M Kityo
- Center for AIDS Research Uganda Laboratories, Joint Clinical Research Centre, Kampala, Uganda
| | - W Henry Boom
- Center for AIDS Research Uganda Laboratories, Joint Clinical Research Centre, Kampala, Uganda
- Departments of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jonathan Karn
- Departments of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
- Center for AIDS Research Uganda Laboratories, Joint Clinical Research Centre, Kampala, Uganda
| | - Miguel E Quiñones-Mateu
- Center for AIDS Research Uganda Laboratories, Joint Clinical Research Centre, Kampala, Uganda.
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, 720 Cumberland Street, P.O. Box 56, Dunedin, New Zealand.
- Webster Centre for Infectious Diseases, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
97
|
Wong LM, Li D, Tang Y, Méndez-Lagares G, Thompson GR, Hartigan-O'Connor DJ, Dandekar S, Jiang G. Human Immunodeficiency Virus-1 Latency Reversal via the Induction of Early Growth Response Protein 1 to Bypass Protein Kinase C Agonist-Associated Immune Activation. Front Microbiol 2022; 13:836831. [PMID: 35359743 PMCID: PMC8960990 DOI: 10.3389/fmicb.2022.836831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/28/2022] [Indexed: 01/12/2023] Open
Abstract
Human Immunodeficiency Virus-1 (HIV) remains a global health challenge due to the latent HIV reservoirs in people living with HIV (PLWH). Dormant yet replication competent HIV harbored in the resting CD4+ T cells cannot be purged by antiretroviral therapy (ART) alone. One approach of HIV cure is the "Kick and Kill" strategy where latency reversal agents (LRAs) have been implemented to disrupt latent HIV, expecting to eradicate HIV reservoirs by viral cytopathic effect or immune-mediated clearance. Protein Kinase C agonists (PKCa), a family of LRAs, have demonstrated the ability to disrupt latent HIV to an extent. However, the toxicity of PKCa remains a concern in vivo. Early growth response protein 1 (EGR1) is a downstream target of PKCa during latency reversal. Here, we show that PKCa induces EGR1 which directly drives Tat-dependent HIV transcription. Resveratrol, a natural phytoalexin found in grapes and various plants, induces Egr1 expression and disrupts latent HIV in several HIV latency models in vitro and in CD4+ T cells isolated from ART-suppressed PLWH ex vivo. In the primary CD4+ T cells, resveratrol does not induce immune activation at the dosage that it reverses latency, indicating that targeting EGR1 may be able to reverse latency and bypass PKCa-induced immune activation.
Collapse
Affiliation(s)
- Lilly M Wong
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Dajiang Li
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Yuyang Tang
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Gema Méndez-Lagares
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
| | - George R Thompson
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
| | - Dennis J Hartigan-O'Connor
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
| | - Satya Dandekar
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
| | - Guochun Jiang
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
98
|
Rodari A, Poli G, Van Lint C. Jurkat-Derived (J-Lat, J1.1, and Jurkat E4) and CEM-Derived T Cell Lines (8E5 and ACH-2) as Models of Reversible Proviral Latency. Methods Mol Biol 2022; 2407:3-15. [PMID: 34985653 DOI: 10.1007/978-1-0716-1871-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The introduction of combination antiretroviral therapy (cART) has switched HIV-1 infection from a lethal disease to a chronic one. Indeed, cART is a lifelong treatment since its interruption is always followed by a rapid rebound of viremia from both cellular and anatomical viral reservoirs where the integrated HIV-1 provirus remains transcriptionally silent or maintains low-levels of viral replication, thereby preventing HIV-1 eradication. As therapeutic approach, the "shock and kill" strategy has emerged with the main objective to reactivate HIV-1 transcription from latency by using latency reversing agents (LRAs) prior to kill the reactivated infected cells by improving host immune responses. In this context, the development of tools such as HIV-1 latently infected cell lines have drastically increased our knowledge about HIV-1 latency and how to counteract this highly heterogeneous phenomenon. In this chapter, we will describe several chronically HIV-1 infected T-lymphocytic cell lines as useful surrogate models to study reversible HIV-1 proviral latency in CD4+ T cells in vitro before approaching more complex and expensive models.
Collapse
Affiliation(s)
- Anthony Rodari
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Guido Poli
- Viral Pathogenesis Group, San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milan, Italy
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium.
| |
Collapse
|
99
|
Dubé M, Kaufmann DE. Single-Cell Multiparametric Analysis of Rare HIV-Infected Cells Identified by Duplexed RNAflow-FISH. Methods Mol Biol 2022; 2407:291-313. [PMID: 34985672 DOI: 10.1007/978-1-0716-1871-4_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
HIV-infected cells are difficult to characterize in vivo because of their great paucity and their diversity. This chapter describes a duplexed flow cytometry method that enables detection, quantification and phenotyping of these rare cells at single-cell resolution. Primary CD4+ T cells are enriched from PBMCs, stained for surface and intracellular proteins and then subjected to fluorescent in situ hybridization to label viral RNA before acquisition on a flow cytometer. Technical and analytical advices are provided to improve the quality of the data. This flow cytometric RNA fluorescent in situ hybridization (RNAflow-FISH) procedure can be applied to the characterization of both HIV-infected cells from viremic people living with HIV and reactivated viral reservoirs from virally suppressed individuals on therapy.
Collapse
Affiliation(s)
- Mathieu Dubé
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Daniel E Kaufmann
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.
- Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
100
|
Quantification of Total HIV DNA as a Marker to Measure Viral Reservoir: Methods and Potential Implications for Clinical Practice. Diagnostics (Basel) 2021; 12:diagnostics12010039. [PMID: 35054206 PMCID: PMC8774405 DOI: 10.3390/diagnostics12010039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 01/08/2023] Open
Abstract
The focus of this review is to examine the importance of quantifying total HIV DNA to target the HIV reservoir and the clinical implications and challenges involved in its future application in clinical practice. Despite intrinsic limitations, the quantification of total HIV DNA is currently the most widely used marker for exploring the HIV reservoir. As it allows estimating all forms of HIV DNA in the infected cells, total HIV DNA load is the biomarker of the HIV reservoir that provides most of the insights into HIV pathogenesis. The clinical role of total HIV-DNA in both untreated and treated patients is extensively supported by important lines of evidence. Thus, predictive models that include total HIV DNA load together with other variables could constitute a prognostic tool for use in clinical practice. To date, however, this marker has been primarily used in experimental evaluations. The main challenge is technical. Although the implementation of droplet digital PCR could improve analytical performance over real-time PCR, the lack of standardization has made cross-comparisons of the data difficult. An effort by investigators to compare protocols is needed. Furthermore, the main effort now should be to involve the biomedical industry in the development of certified assays for in vitro diagnostics use.
Collapse
|