51
|
Vlachakis D, Papakonstantinou E, Mitsis T, Pierouli K, Diakou I, Chrousos G, Bacopoulou F. Molecular mechanisms of the novel coronavirus SARS-CoV-2 and potential anti-COVID19 pharmacological targets since the outbreak of the pandemic. Food Chem Toxicol 2020; 146:111805. [PMID: 33038452 PMCID: PMC7543766 DOI: 10.1016/j.fct.2020.111805] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 12/26/2022]
Abstract
The novel coronavirus SARS-CoV-2 has emerged as a severe threat against public health and global economies. COVID-19, the disease caused by this virus, is highly contagious and has led to an ongoing pandemic. SARS-CoV-2 affects, mainly, the respiratory system, with most severe cases primarily showcasing acute respiratory distress syndrome. Currently, no targeted therapy exists, and since the number of infections and death toll keeps rising, it has become a necessity to study possible therapeutic targets. Antiviral drugs can target various stages of the viral infection, and in the case of SARS-CoV-2, both structural and non-structural proteins have been proposed as potential drug targets. This review focuses on the most researched SARS-CoV-2 proteins, their structure, function, and possible therapeutic approaches.
Collapse
Affiliation(s)
- Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, Athens, 11855, Greece; University Research Institute of Maternal and Child Health & Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, 8 Levadias Street, Athens, 11527, Greece; Lab of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou Street, Athens, 11527, Greece; Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, Strand, London WC2R 2LS, UK
| | - Eleni Papakonstantinou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, Athens, 11855, Greece
| | - Thanasis Mitsis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, Athens, 11855, Greece
| | - Katerina Pierouli
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, Athens, 11855, Greece
| | - Io Diakou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, Athens, 11855, Greece
| | - George Chrousos
- University Research Institute of Maternal and Child Health & Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, 8 Levadias Street, Athens, 11527, Greece; Lab of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou Street, Athens, 11527, Greece
| | - Flora Bacopoulou
- University Research Institute of Maternal and Child Health & Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, 8 Levadias Street, Athens, 11527, Greece.
| |
Collapse
|
52
|
Gurung AB. In silico structure modelling of SARS-CoV-2 Nsp13 helicase and Nsp14 and repurposing of FDA approved antiviral drugs as dual inhibitors. GENE REPORTS 2020; 21:100860. [PMID: 32875166 PMCID: PMC7452913 DOI: 10.1016/j.genrep.2020.100860] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/14/2020] [Accepted: 08/26/2020] [Indexed: 12/31/2022]
Abstract
The high mortality rate from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in humans and the lack of effective therapeutic regime for its treatment necessitates the identification of new antivirals. SARS-CoV-2 relies on non-structural proteins such as Nsp13 helicase and nsp14 which are the key components of the replication-transcription complex (RTC) to complete its infectious life cycle. Therefore, targeting these essential viral proteins with small molecules will most likely to halt the disease pathogenesis. The lack of experimental structures of these proteins deters the process of structure-based identification of their specific inhibitors. In the present study, the in silico models of SARS-CoV-2 nsp13 helicase and nsp14 protein were elucidated using a comparative homology modelling approach. These in silico model structures were validated using various parameters such as Ramachandran plot, Verify 3D score, ERRAT score, knowledge-based energy and Z-score. The in silico models were further used for virtual screening of the Food and Drug Administration (FDA) approved antiviral drugs. Simeprevir (SMV), Paritaprevir (PTV) and Grazoprevir (GZR) were the common leads identified which show higher binding affinity to both nsp13 helicase and nsp14 as compared to the control inhibitors and therefore, they might be potential dual-target inhibitors. The leads also establish a network of hydrogen bonds and hydrophobic interactions with the key residues lining the active site pockets. The present findings suggest that these FDA approved antiviral drugs can be subjected to repurposing against SARS-CoV-2 infection after verifying the in silico results through in vitro and in vivo studies.
Collapse
Key Words
- 3CLpro, 3C-like proteinase
- COVID-19
- COVID-19, coronavirus disease 2019
- DOPE, discrete optimized protein energy
- FDA approved antiviral drugs
- FDA, Food and Drug Administration
- GRAVY, grand average of hydropathicity
- GZR, Grazoprevir
- GpppA, Guanosine-P3-adenosine-5′,5′-triphosphate
- Homology modelling
- MERS-CoV, Middle East respiratory syndrome coronavirus
- Molecular docking
- N7-MTase, S-adenosyl methionine (SAM)-dependent (guanine-N7) methyltransferase
- Nsp13 helicase
- Nsp14
- Nsps, non-structural proteins
- PDB, protein data bank
- PLpro, papain-like proteinase
- PTV, Paritaprevir
- RMSD, root mean square deviation
- RTC, replication-transcription complex
- RdRp, RNA-dependent RNA polymerase
- SAH, S-adenosyl homocysteine
- SARS-CoV, severe acute respiratory syndrome coronavirus
- SARS-CoV-2
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- SAVES, Structure Analysis and Verification Server
- SF, Sinefungin
- SMV, Simeprevir
- TMHs, transmembrane helices
- ZBD, zinc binding domain
Collapse
Affiliation(s)
- Arun Bahadur Gurung
- Department of Basic Sciences and Social Sciences, North-Eastern Hill University, Shillong 793022, Meghalaya, India
| |
Collapse
|
53
|
Structural and functional insights into non-structural proteins of coronaviruses. Microb Pathog 2020; 150:104641. [PMID: 33242646 PMCID: PMC7682334 DOI: 10.1016/j.micpath.2020.104641] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022]
Abstract
Coronaviruses (CoVs) are causing a number of human and animal diseases because of their zoonotic nature such as Middle East respiratory syndrome (MERS), severe acute respiratory syndrome (SARS) and coronavirus disease 2019 (COVID-19). These viruses can infect respiratory, gastrointestinal, hepatic and central nervous systems of human, livestock, birds, bat, mouse, and many wild animals. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a newly emerging respiratory virus and is causing CoVID-19 with high morbidity and considerable mortality. All CoVs belong to the order Nidovirales, family Coronaviridae, are enveloped positive-sense RNA viruses, characterised by club-like spikes on their surfaces and large RNA genome with a distinctive replication strategy. Coronavirus have the largest RNA genomes (~26–32 kilobases) and their expansion was likely enabled by acquiring enzyme functions that counter the commonly high error frequency of viral RNA polymerases. Non-structural proteins (nsp) 7–16 are cleaved from two large replicase polyproteins and guide the replication and processing of coronavirus RNA. Coronavirus replicase has more or less universal activities, such as RNA polymerase (nsp 12) and helicase (nsp 13), as well as a variety of unusual or even special mRNA capping (nsp 14, nsp 16) and fidelity regulation (nsp 14) domains. Besides that, several smaller subunits (nsp 7– nsp 10) serve as essential cofactors for these enzymes and contribute to the emerging “nsp interactome.” In spite of the significant progress in studying coronaviruses structural and functional properties, there is an urgent need to understand the coronaviruses evolutionary success that will be helpful to develop enhanced control strategies. Therefore, it is crucial to understand the structure, function, and interactions of coronaviruses RNA synthesizing machinery and their replication strategies.
Collapse
|
54
|
Singh DD, Han I, Choi EH, Yadav DK. Immunopathology, host-virus genome interactions, and effective vaccine development in SARS-CoV-2. Comput Struct Biotechnol J 2020; 18:3774-3787. [PMID: 33235690 PMCID: PMC7677077 DOI: 10.1016/j.csbj.2020.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 02/06/2023] Open
Abstract
Coronaviruses are a group of enveloped RNA viruses that are diversely found in humans and now declared a global pandemic by the World Health Organization in March 2020. The population's susceptibility to these highly pathogenic coronaviruses has contributed to large outbreaks, evolved into public health events, and rapidly transmitted globally. Thus, there is an urgent need to develop effective therapies and vaccines against this disease. In the primary stage of severe acute respiratory syndrome coronavirus (SARS-COV-2) infection, the signs and symptoms are nonspecific, and many more cases have been observed than initially expected. Genome sequencing is performed regularly to identify genetic changes to SARS-COV-2, and vaccine development is focused on manufacture, production, and based on specific problems, and very few are available on recent developments in the prevention of outbreaks. The aim of this review article to explore recent updates on SARS-COV-2 in the context of pathogenesis during disease progression, and innate acquired mechanisms of defense, This includes advances in diagnostics, susceptibility, and severity of host-virus genome interactions, modes of transmission, active compounds being used in pre-clinical and clinical trials for the treatment of patients, vaccine developments, and the effectiveness of SARS-COV-2 prevention and control measures. We have summarized the importance of pathophysiology immune response, Diagnostics, vaccine development currently approaches explored for SARS-COV-2.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Ihn Han
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical & Biological Physics, Kwangwoon University, Seoul, Republic of Korea
| | - Eun-Ha Choi
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical & Biological Physics, Kwangwoon University, Seoul, Republic of Korea
| | - Dharmendra Kumar Yadav
- Gachon Institute of Pharmaceutical Science and Department of Pharmacy, College of Pharmacy, Hambakmoeiro 191, Yeonsu-gu, Gachon University, Incheon, Republic of Korea
| |
Collapse
|
55
|
Silva LR, da Silva Santos-Júnior PF, de Andrade Brandão J, Anderson L, Bassi ÊJ, Xavier de Araújo-Júnior J, Cardoso SH, da Silva-Júnior EF. Druggable targets from coronaviruses for designing new antiviral drugs. Bioorg Med Chem 2020; 28:115745. [PMID: 33007557 PMCID: PMC7836322 DOI: 10.1016/j.bmc.2020.115745] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/26/2020] [Accepted: 08/29/2020] [Indexed: 01/18/2023]
Abstract
Severe respiratory infections were highlighted in the SARS-CoV outbreak in 2002, as well as MERS-CoV, in 2012. Recently, the novel CoV (COVID-19) has led to severe respiratory damage to humans and deaths in Asia, Europe, and Americas, which allowed the WHO to declare the pandemic state. Notwithstanding all impacts caused by Coronaviruses, it is evident that the development of new antiviral agents is an unmet need. In this review, we provide a complete compilation of all potential antiviral agents targeting macromolecular structures from these Coronaviruses (Coronaviridae), providing a medicinal chemistry viewpoint that could be useful for designing new therapeutic agents.
Collapse
Affiliation(s)
- Leandro Rocha Silva
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil; Laboratory of Organic and Medicinal Synthesis, Federal University of Alagoas, Campus Arapiraca, Manoel Severino Barbosa Avenue, Arapiraca 57309-005, Brazil
| | | | - Júlia de Andrade Brandão
- IMUNOREG - Immunoregulation Research Group, Laboratory of Research in Virology and Immunology, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus AC. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil
| | - Letícia Anderson
- IMUNOREG - Immunoregulation Research Group, Laboratory of Research in Virology and Immunology, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus AC. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil; CESMAC University Center, Cônego Machado Street, Maceió 57051-160, Brazil
| | - Ênio José Bassi
- IMUNOREG - Immunoregulation Research Group, Laboratory of Research in Virology and Immunology, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus AC. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil
| | - João Xavier de Araújo-Júnior
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil; Laboratory of Medicinal Chemistry, Pharmaceutical Sciences Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil
| | - Sílvia Helena Cardoso
- Laboratory of Organic and Medicinal Synthesis, Federal University of Alagoas, Campus Arapiraca, Manoel Severino Barbosa Avenue, Arapiraca 57309-005, Brazil
| | - Edeildo Ferreira da Silva-Júnior
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil; Laboratory of Medicinal Chemistry, Pharmaceutical Sciences Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil.
| |
Collapse
|
56
|
Gil C, Ginex T, Maestro I, Nozal V, Barrado-Gil L, Cuesta-Geijo MÁ, Urquiza J, Ramírez D, Alonso C, Campillo NE, Martinez A. COVID-19: Drug Targets and Potential Treatments. J Med Chem 2020; 63:12359-12386. [PMID: 32511912 PMCID: PMC7323060 DOI: 10.1021/acs.jmedchem.0c00606] [Citation(s) in RCA: 296] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Indexed: 02/07/2023]
Abstract
Currently, humans are immersed in a pandemic caused by the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which threatens public health worldwide. To date, no drug or vaccine has been approved to treat the severe disease caused by this coronavirus, COVID-19. In this paper, we will focus on the main virus-based and host-based targets that can guide efforts in medicinal chemistry to discover new drugs for this devastating disease. In principle, all CoV enzymes and proteins involved in viral replication and the control of host cellular machineries are potentially druggable targets in the search for therapeutic options for SARS-CoV-2. This Perspective provides an overview of the main targets from a structural point of view, together with reported therapeutic compounds with activity against SARS-CoV-2 and/or other CoVs. Also, the role of innate immune response to coronavirus infection and the related therapeutic options will be presented.
Collapse
Affiliation(s)
- Carmen Gil
- Centro de Investigaciones
Biológicas Margarita Salas (CSIC), Ramiro
de Maeztu 9, 28040 Madrid, Spain
| | - Tiziana Ginex
- Centro de Investigaciones
Biológicas Margarita Salas (CSIC), Ramiro
de Maeztu 9, 28040 Madrid, Spain
| | - Inés Maestro
- Centro de Investigaciones
Biológicas Margarita Salas (CSIC), Ramiro
de Maeztu 9, 28040 Madrid, Spain
| | - Vanesa Nozal
- Centro de Investigaciones
Biológicas Margarita Salas (CSIC), Ramiro
de Maeztu 9, 28040 Madrid, Spain
| | - Lucía Barrado-Gil
- Centro de Investigaciones
Biológicas Margarita Salas (CSIC), Ramiro
de Maeztu 9, 28040 Madrid, Spain
| | - Miguel Ángel Cuesta-Geijo
- Centro de Investigaciones
Biológicas Margarita Salas (CSIC), Ramiro
de Maeztu 9, 28040 Madrid, Spain
| | - Jesús Urquiza
- Department of Biotechnology,
Instituto Nacional de Investigación y
Tecnología Agraria y Alimentaria (INIA),
Ctra. de la Coruña km 7.5, 28040 Madrid,
Spain
| | - David Ramírez
- Instituto de Ciencias Biomédicas,
Universidad Autónoma de Chile,
Llano Subercaseaux 2801- piso 6, 7500912 Santiago,
Chile
| | - Covadonga Alonso
- Department of Biotechnology,
Instituto Nacional de Investigación y
Tecnología Agraria y Alimentaria (INIA),
Ctra. de la Coruña km 7.5, 28040 Madrid,
Spain
| | - Nuria E. Campillo
- Centro de Investigaciones
Biológicas Margarita Salas (CSIC), Ramiro
de Maeztu 9, 28040 Madrid, Spain
| | - Ana Martinez
- Centro de Investigaciones
Biológicas Margarita Salas (CSIC), Ramiro
de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
57
|
White MA, Lin W, Cheng X. Discovery of COVID-19 Inhibitors Targeting the SARS-CoV-2 Nsp13 Helicase. J Phys Chem Lett 2020; 11:9144-9151. [PMID: 33052685 PMCID: PMC7571306 DOI: 10.1021/acs.jpclett.0c02421] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/06/2020] [Indexed: 05/28/2023]
Abstract
The raging COVID-19 pandemic caused by SARS-CoV-2 has infected tens of millions of people and killed several hundred thousand patients worldwide. Currently, there are no effective drugs or vaccines available for treating coronavirus infections. In this study, we have focused on the SARS-CoV-2 helicase (Nsp13), which is critical for viral replication and the most conserved nonstructural protein within the coronavirus family. Using homology modeling that couples published electron-density with molecular dynamics (MD)-based structural refinements, we generated structural models of the SARS-CoV-2 helicase in its apo- and ATP/RNA-bound conformations. We performed virtual screening of ∼970 000 chemical compounds against the ATP-binding site to identify potential inhibitors. Herein, we report docking hits of approved human drugs targeting the ATP-binding site. Importantly, two of our top drug hits have significant activity in inhibiting purified recombinant SARS-CoV-2 helicase, providing hope that these drugs can be potentially repurposed for the treatment of COVID-19.
Collapse
Affiliation(s)
- Mark Andrew White
- Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Wei Lin
- Department of Integrative Biology & Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Texas Therapeutics Institute, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaodong Cheng
- Department of Integrative Biology & Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Texas Therapeutics Institute, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
58
|
Shanmugam A, Muralidharan N, Velmurugan D, Gromiha MM. Therapeutic Targets and Computational Approaches on Drug Development for COVID-19. Curr Top Med Chem 2020; 20:2210-2220. [DOI: 10.2174/1568026620666200710105507] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/20/2020] [Accepted: 04/10/2020] [Indexed: 12/12/2022]
Abstract
World Health Organization declared coronavirus disease (COVID-19) caused by SARS
coronavirus-2 (SARS-CoV-2) as pandemic. Its outbreak started in China in Dec 2019 and rapidly spread
all over the world. SARS-CoV-2 has infected more than 800,000 people and caused about 35,000 deaths
so far, moreover, no approved drugs are available to treat COVID-19. Several investigations have been
carried out to identify potent drugs for COVID-19 based on drug repurposing, potential novel compounds
from ligand libraries, natural products, short peptides, and RNAseq analysis. This review is focused
on three different aspects; (i) targets for drug design (ii) computational methods to identify lead
compounds and (iii) drugs for COVID-19. It also covers the latest literature on various hit molecules
proposed by computational methods and experimental techniques.
Collapse
Affiliation(s)
- Anusuya Shanmugam
- Department of Pharmaceutical Engineering, Vinayaka Mission’s KirupanandaVariyar Engineering College, Vinayaka Mission’s Research Foundation (Deemed to be University), Salem – 636308, Tamil Nadu, India
| | - Nisha Muralidharan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai – 600036, Tamil Nadu, India
| | - Devadasan Velmurugan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai - 600025, India
| | - M. Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai – 600036, Tamil Nadu, India
| |
Collapse
|
59
|
Zhou QA, Kato-Weinstein J, Li Y, Deng Y, Granet R, Garner L, Liu C, Polshakov D, Gessner C, Watkins S. Potential Therapeutic Agents and Associated Bioassay Data for COVID-19 and Related Human Coronavirus Infections. ACS Pharmacol Transl Sci 2020; 3:813-834. [PMID: 33062950 PMCID: PMC7447080 DOI: 10.1021/acsptsci.0c00074] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/07/2023]
Abstract
The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, has led to several million confirmed cases and hundreds of thousands of deaths worldwide. To support the ongoing research and development of COVID-19 therapeutics, this report provides an overview of protein targets and corresponding potential drug candidates with bioassay and structure-activity relationship data found in the scientific literature and patents for COVID-19 or related virus infections. Highlighted are several sets of small molecules and biologics that act on specific targets, including 3CLpro, PLpro, RdRp, S-protein-ACE2 interaction, helicase/NTPase, TMPRSS2, and furin, which are involved in the viral life cycle or in other aspects of the disease pathophysiology. We hope this report will be valuable to the ongoing drug repurposing efforts and the discovery of new therapeutics with the potential for treating COVID-19.
Collapse
Affiliation(s)
- Qiongqiong Angela Zhou
- CAS, a division
of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43210-3012, United States
| | | | - Yingzhu Li
- CAS, a division
of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43210-3012, United States
| | - Yi Deng
- CAS, a division
of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43210-3012, United States
| | - Roger Granet
- CAS, a division
of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43210-3012, United States
| | - Linda Garner
- CAS, a division
of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43210-3012, United States
| | - Cynthia Liu
- CAS, a division
of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43210-3012, United States
| | - Dmitrii Polshakov
- CAS, a division
of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43210-3012, United States
| | - Chris Gessner
- CAS, a division
of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43210-3012, United States
| | - Steven Watkins
- CAS, a division
of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43210-3012, United States
| |
Collapse
|
60
|
Metallodrug ranitidine bismuth citrate suppresses SARS-CoV-2 replication and relieves virus-associated pneumonia in Syrian hamsters. Nat Microbiol 2020; 5:1439-1448. [PMID: 33028965 DOI: 10.1038/s41564-020-00802-x] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/21/2020] [Indexed: 12/15/2022]
Abstract
SARS-CoV-2 is causing a pandemic of COVID-19, with high infectivity and significant mortality1. Currently, therapeutic options for COVID-19 are limited. Historically, metal compounds have found use as antimicrobial agents, but their antiviral activities have rarely been explored. Here, we test a set of metallodrugs and related compounds, and identify ranitidine bismuth citrate, a commonly used drug for the treatment of Helicobacter pylori infection, as a potent anti-SARS-CoV-2 agent, both in vitro and in vivo. Ranitidine bismuth citrate exhibited low cytotoxicity and protected SARS-CoV-2-infected cells with a high selectivity index of 975. Importantly, ranitidine bismuth citrate suppressed SARS-CoV-2 replication, leading to decreased viral loads in both upper and lower respiratory tracts, and relieved virus-associated pneumonia in a golden Syrian hamster model. In vitro studies showed that ranitidine bismuth citrate and its related compounds exhibited inhibition towards both the ATPase (IC50 = 0.69 µM) and DNA-unwinding (IC50 = 0.70 µM) activities of the SARS-CoV-2 helicase via an irreversible displacement of zinc(II) ions from the enzyme by bismuth(III) ions. Our findings highlight viral helicase as a druggable target and the clinical potential of bismuth(III) drugs or other metallodrugs for the treatment of SARS-CoV-2 infection.
Collapse
|
61
|
Petushkova AI, Zamyatnin AA. Papain-Like Proteases as Coronaviral Drug Targets: Current Inhibitors, Opportunities, and Limitations. Pharmaceuticals (Basel) 2020; 13:E277. [PMID: 32998368 PMCID: PMC7601131 DOI: 10.3390/ph13100277] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/26/2020] [Accepted: 09/26/2020] [Indexed: 12/23/2022] Open
Abstract
Papain-like proteases (PLpro) of coronaviruses (CoVs) support viral reproduction and suppress the immune response of the host, which makes CoV PLpro perspective pharmaceutical targets. Their inhibition could both prevent viral replication and boost the immune system of the host, leading to the speedy recovery of the patient. Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the third CoV outbreak in the last 20 years. Frequent mutations of the viral genome likely lead to the emergence of more CoVs. Inhibitors for CoV PLpro can be broad-spectrum and can diminish present and prevent future CoV outbreaks as PLpro from different CoVs have conservative structures. Several inhibitors have been developed to withstand SARS-CoV and Middle East respiratory syndrome CoV (MERS-CoV). This review summarizes the structural features of CoV PLpro, the inhibitors that have been identified over the last 20 years, and the compounds that have the potential to become novel effective therapeutics against CoVs in the near future.
Collapse
Affiliation(s)
- Anastasiia I. Petushkova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
| |
Collapse
|
62
|
Hartenian E, Nandakumar D, Lari A, Ly M, Tucker JM, Glaunsinger BA. The molecular virology of coronaviruses. J Biol Chem 2020; 295:12910-12934. [PMID: 32661197 PMCID: PMC7489918 DOI: 10.1074/jbc.rev120.013930] [Citation(s) in RCA: 308] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
Few human pathogens have been the focus of as much concentrated worldwide attention as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of COVID-19. Its emergence into the human population and ensuing pandemic came on the heels of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), two other highly pathogenic coronavirus spillovers, which collectively have reshaped our view of a virus family previously associated primarily with the common cold. It has placed intense pressure on the collective scientific community to develop therapeutics and vaccines, whose engineering relies on a detailed understanding of coronavirus biology. Here, we present the molecular virology of coronavirus infection, including its entry into cells, its remarkably sophisticated gene expression and replication mechanisms, its extensive remodeling of the intracellular environment, and its multifaceted immune evasion strategies. We highlight aspects of the viral life cycle that may be amenable to antiviral targeting as well as key features of its biology that await discovery.
Collapse
Affiliation(s)
- Ella Hartenian
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Divya Nandakumar
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Azra Lari
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Michael Ly
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Jessica M Tucker
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Britt A Glaunsinger
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA; Department of Plant and Microbial Biology, University of California, Berkeley, California, USA; Howard Hughes Medical Institute, University of California, Berkeley, California, USA.
| |
Collapse
|
63
|
Zheng X, Li L. Potential Therapeutic Options for COVID-19. INFECTIOUS MICROBES & DISEASES 2020; 2:89-95. [PMID: 38630098 PMCID: PMC8529694 DOI: 10.1097/im9.0000000000000033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/02/2020] [Accepted: 07/12/2020] [Indexed: 01/08/2023]
Abstract
The recently emerged coronavirus disease 2019 (COVID-19) has rapidly evolved into a pandemic with over 10 million infections and over 500 thousand deaths. There are currently no effective therapies or vaccines available to protect against this coronavirus infection. In this review, we discuss potential therapeutic options for COVID-19 based on the available information from previous research on severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). Substantial efforts are underway to discover new therapeutic agents for COVID-19, including the repurposing of existing agents and the development of novel agents that specifically target SARS-coronavirus 2 (SARS-CoV-2) or host factors. Through the screening of compound libraries, various classes of drugs, such as ribavirin, remdesivir, lopinavir/ritonavir, and hydroxychloroquine have been identified as potential therapeutic candidates against COVID-19. Novel antiviral drugs for SARS-coronavirus 2 are being developed to target viral enzymes or functional proteins, as well as host factors or cell signaling pathways.
Collapse
|
64
|
White MA, Lin W, Cheng X. Discovery of COVID-19 Inhibitors Targeting the SARS-CoV2 Nsp13 Helicase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.08.09.243246. [PMID: 32817950 PMCID: PMC7430582 DOI: 10.1101/2020.08.09.243246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The raging COVID-19 pandemic caused by SARS-CoV2 has infected millions of people and killed several hundred thousand patients worldwide. Currently, there are no effective drugs or vaccines available for treating coronavirus infections. In this study, we have focused on the SARS-CoV2 helicase (Nsp13), which is critical for viral replication and the most conserved non-structural protein within the coronavirus family. Using homology modeling and molecular dynamics approaches, we generated structural models of the SARS-CoV2 helicase in its apo- and ATP/RNA-bound conformations. We performed virtual screening of ~970,000 chemical compounds against the ATP binding site to identify potential inhibitors. Herein, we report docking hits of approved human drugs targeting the ATP binding site. Importantly, two of our top drug hits have significant activity in inhibiting purified recombinant SARS-CoV-2 helicase, providing hope that these drugs can be potentially repurposed for the treatment of COVID-19.
Collapse
Affiliation(s)
- Mark Andrew White
- Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Wei Lin
- Department of Integrative Biology & Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Texas Therapeutics Institute, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaodong Cheng
- Department of Integrative Biology & Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Texas Therapeutics Institute, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
65
|
Das G, Ghosh S, Garg S, Ghosh S, Jana A, Samat R, Mukherjee N, Roy R, Ghosh S. An overview of key potential therapeutic strategies for combat in the COVID-19 battle. RSC Adv 2020; 10:28243-28266. [PMID: 35685027 PMCID: PMC9127683 DOI: 10.1039/d0ra05434h] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 07/09/2020] [Indexed: 12/27/2022] Open
Abstract
The sudden ravaging outbreak of a novel coronavirus, or SARS-CoV-2, in terms of virulence, severity, and casualties has already overtaken previous versions of coronaviruses, like SARS CoV and MERS CoV. Originating from its epicenter in Wuhan, China, this mutated version of the influenza virus with its associated pandemic effects has engulfed the whole world with awful speed. In the midst of this bewildering situation, medical and scientific communities are on their toes to produce the potential vaccine-mediated eradication of this virus. Though the chances are really high, to date no such panacea has been reported. The time requirements for the onerous procedures of human trials for the successful clinical translation of any vaccine or potential therapeutics are also a major concern. In order to build some resistance against this massive pandemic, the repurposing of some earlier antiviral drugs has been done, along with the refurbishment of some immune-responsive alternative avenues, like monoclonal antibody mediated neutralization, interferon treatment, and plasma therapy. New drugs developed from the RBD domain of the virus spike protein and drugs targeting viral proteases are also undergoing further research and have shown potential from preliminary results. The sole purpose of this review article is to provide a brief collective overview of the recent status of therapeutics advances and approaches, and their current state of implementation for the management of COVID-19.
Collapse
Affiliation(s)
- Gaurav Das
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology 4, Raja S. C. Mullick Road, Jadavpur Kolkata 700 032 WB India +91-33-2473-5197 ext. 0284 +91-33-2499-5872
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Surojit Ghosh
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur NH 65, Surpura Bypass Road Karwar Rajasthan 342037 India +91-291-280-1212
| | - Shubham Garg
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur NH 65, Surpura Bypass Road Karwar Rajasthan 342037 India +91-291-280-1212
| | - Satyajit Ghosh
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur NH 65, Surpura Bypass Road Karwar Rajasthan 342037 India +91-291-280-1212
| | - Aniket Jana
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur NH 65, Surpura Bypass Road Karwar Rajasthan 342037 India +91-291-280-1212
| | - Ramkamal Samat
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur NH 65, Surpura Bypass Road Karwar Rajasthan 342037 India +91-291-280-1212
| | - Nabanita Mukherjee
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur NH 65, Surpura Bypass Road Karwar Rajasthan 342037 India +91-291-280-1212
| | - Rajsekhar Roy
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur NH 65, Surpura Bypass Road Karwar Rajasthan 342037 India +91-291-280-1212
| | - Surajit Ghosh
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur NH 65, Surpura Bypass Road Karwar Rajasthan 342037 India +91-291-280-1212
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology 4, Raja S. C. Mullick Road, Jadavpur Kolkata 700 032 WB India +91-33-2473-5197 ext. 0284 +91-33-2499-5872
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
66
|
Zhou H, Fang Y, Xu T, Ni W, Shen A, Meng X. Potential therapeutic targets and promising drugs for combating SARS-CoV-2. Br J Pharmacol 2020; 177:3147-3161. [PMID: 32368792 PMCID: PMC7267399 DOI: 10.1111/bph.15092] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 01/08/2023] Open
Abstract
As of April 9, 2020, a novel coronavirus (SARS-CoV-2) had caused 89,931 deaths and 1,503,900 confirmed cases worldwide, which indicates an increasingly severe and uncontrollable situation. Initially, little was known about the virus. As research continues, we now know the genome structure, epidemiological and clinical characteristics, and pathogenic mechanisms of SARS-CoV-2. Based on this knowledge, potential targets involved in the processes of virus pathogenesis need to be identified, and the discovery or development of drugs based on these potential targets is the most pressing need. Here, we have summarized the potential therapeutic targets involved in virus pathogenesis and discuss the advances, possibilities, and significance of drugs based on these targets for treating SARS-CoV-2. This review will facilitate the identification of potential targets and provide clues for drug development that can be translated into clinical applications for combating SARS-CoV-2.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Yan Fang
- Department of Pharmacy, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of PharmacyAnhui Medical UniversityHefeiChina
| | - Wei‐Jian Ni
- Department of Pharmacy, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of PharmacyAnhui Medical UniversityHefeiChina
| | - Ai‐Zong Shen
- Department of Pharmacy, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Xiao‐Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of PharmacyAnhui Medical UniversityHefeiChina
| |
Collapse
|
67
|
Liu D, Ndongwe TP, Puray-Chavez M, Casey MC, Izumi T, Pathak VK, Tedbury PR, Sarafianos SG. Effect of P-body component Mov10 on HCV virus production and infectivity. FASEB J 2020; 34:9433-9449. [PMID: 32496609 DOI: 10.1096/fj.201800641r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 03/28/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022]
Abstract
Mov10 is a processing body (P-body) protein and an interferon-stimulated gene that can affect replication of retroviruses, hepatitis B virus, and hepatitis C virus (HCV). The mechanism of HCV inhibition by Mov10 is unknown. Here, we investigate the effect of Mov10 on HCV infection and determine the virus life cycle steps affected by changes in Mov10 overexpression. Mov10 overexpression suppresses HCV RNA in both infectious virus and subgenomic replicon systems. Additionally, Mov10 overexpression decreases the infectivity of released virus, unlike control P-body protein DCP1a that has no effect on HCV RNA production or infectivity of progeny virus. Confocal imaging of uninfected cells shows endogenous Mov10 localized at P-bodies. However, in HCV-infected cells, Mov10 localizes in circular structures surrounding cytoplasmic lipid droplets with NS5A and core protein. Mutagenesis experiments show that the RNA binding activity of Mov10 is required for HCV inhibition, while its P-body localization, helicase, and ATP-binding functions are not required. Unexpectedly, endogenous Mov10 promotes HCV replication, as CRISPR-Cas9-based Mov10 depletion decreases HCV replication and infection levels. Our data reveal an important and complex role for Mov10 in HCV replication, which can be perturbed by excess or insufficient Mov10.
Collapse
Affiliation(s)
- Dandan Liu
- Christopher Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | - Tanyaradzwa P Ndongwe
- Christopher Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | - Maritza Puray-Chavez
- Christopher Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | - Mary C Casey
- Christopher Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | - Taisuke Izumi
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute-Frederick, Frederick, MD, USA
| | - Vinay K Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute-Frederick, Frederick, MD, USA
| | - Philip R Tedbury
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Stefan G Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
68
|
SARS-Coronavirus-2 Nsp13 Possesses NTPase and RNA Helicase Activities That Can Be Inhibited by Bismuth Salts. Virol Sin 2020; 35:321-329. [PMID: 32500504 PMCID: PMC7271831 DOI: 10.1007/s12250-020-00242-1] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 05/19/2020] [Indexed: 12/15/2022] Open
Abstract
The ongoing outbreak of Coronavirus Disease 2019 (COVID-19) has become a global public health emergency. SARS-coronavirus-2 (SARS-CoV-2), the causative pathogen of COVID-19, is a positive-sense single-stranded RNA virus belonging to the family Coronaviridae. For RNA viruses, virus-encoded RNA helicases have long been recognized to play pivotal roles during viral life cycles by facilitating the correct folding and replication of viral RNAs. Here, our studies show that SARS-CoV-2-encoded nonstructural protein 13 (nsp13) possesses the nucleoside triphosphate hydrolase (NTPase) and RNA helicase activities that can hydrolyze all types of NTPs and unwind RNA helices dependently of the presence of NTP, and further characterize the biochemical characteristics of these two enzymatic activities associated with SARS-CoV-2 nsp13. Moreover, we found that some bismuth salts could effectively inhibit both the NTPase and RNA helicase activities of SARS-CoV-2 nsp13 in a dose-dependent manner. Thus, our findings demonstrate the NTPase and helicase activities of SARS-CoV-2 nsp13, which may play an important role in SARS-CoV-2 replication and serve as a target for antivirals.
Collapse
|
69
|
Design, synthesis and molecular docking of novel triazole derivatives as potential CoV helicase inhibitors. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2020; 70:145-159. [PMID: 31955138 DOI: 10.2478/acph-2020-0024] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/08/2019] [Indexed: 01/19/2023]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) had emerged and spread because of the worldwide travel and inefficient healthcare provided for the infected patients in several countries. Herein we investigated the anti-MERS-CoV activity of newly synthesized sixteen halogenated triazole compounds through the inhibition of helicase activity using the FRET assay. All new compounds underwent justification for their target structures via microanalytical and spectral data. SAR studies were performed. Biological results revealed that the most potent compounds were 4-(cyclopent-1-en-3-ylamino)-5-(2-(4-iodophenyl)hydrazinyl)-4H-1,2,4-triazole-3-thiol (16) and 4-(cyclopent-1-en-3-ylamino)-5-[2-(4-chlorophenyl)hydrazinyl]-4H-1,2,4-triazole-3-thiol (12). In silico molecular docking of the most potent compounds was performed to the active binding site of MERS-CoV helicase nsp13. Molecular docking results are in agreement with experimental findings.
Collapse
|
70
|
Fernandes RS, Freire MCLC, Bueno RV, Godoy AS, Gil LHVG, Oliva G. Reporter Replicons for Antiviral Drug Discovery against Positive Single-Stranded RNA Viruses. Viruses 2020; 12:v12060598. [PMID: 32486283 PMCID: PMC7354593 DOI: 10.3390/v12060598] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/25/2022] Open
Abstract
Single-stranded positive RNA ((+) ssRNA) viruses include several important human pathogens. Some members are responsible for large outbreaks, such as Zika virus, West Nile virus, SARS-CoV, and SARS-CoV-2, while others are endemic, causing an enormous global health burden. Since vaccines or specific treatments are not available for most viral infections, the discovery of direct-acting antivirals (DAA) is an urgent need. Still, the low-throughput nature of and biosafety concerns related to traditional antiviral assays hinders the discovery of new inhibitors. With the advances of reverse genetics, reporter replicon systems have become an alternative tool for the screening of DAAs. Herein, we review decades of the use of (+) ssRNA viruses replicon systems for the discovery of antiviral agents. We summarize different strategies used to develop those systems, as well as highlight some of the most promising inhibitors identified by the method. Despite the genetic alterations introduced, reporter replicons have been shown to be reliable systems for screening and identification of viral replication inhibitors and, therefore, an important tool for the discovery of new DAAs.
Collapse
Affiliation(s)
- Rafaela S. Fernandes
- Physics Institute of São Carlos, University of São Paulo, São Carlos 13566-590, SP, Brazil; (R.S.F.); (M.C.L.C.F.); (R.V.B.); (A.S.G.)
| | - Marjorie C. L. C. Freire
- Physics Institute of São Carlos, University of São Paulo, São Carlos 13566-590, SP, Brazil; (R.S.F.); (M.C.L.C.F.); (R.V.B.); (A.S.G.)
| | - Renata V. Bueno
- Physics Institute of São Carlos, University of São Paulo, São Carlos 13566-590, SP, Brazil; (R.S.F.); (M.C.L.C.F.); (R.V.B.); (A.S.G.)
| | - Andre S. Godoy
- Physics Institute of São Carlos, University of São Paulo, São Carlos 13566-590, SP, Brazil; (R.S.F.); (M.C.L.C.F.); (R.V.B.); (A.S.G.)
| | | | - Glaucius Oliva
- Physics Institute of São Carlos, University of São Paulo, São Carlos 13566-590, SP, Brazil; (R.S.F.); (M.C.L.C.F.); (R.V.B.); (A.S.G.)
- Correspondence:
| |
Collapse
|
71
|
Naik B, Gupta N, Ojha R, Singh S, Prajapati VK, Prusty D. High throughput virtual screening reveals SARS-CoV-2 multi-target binding natural compounds to lead instant therapy for COVID-19 treatment. Int J Biol Macromol 2020; 160:1-17. [PMID: 32470577 PMCID: PMC7250083 DOI: 10.1016/j.ijbiomac.2020.05.184] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/21/2022]
Abstract
The present-day world is severely suffering from the recently emerged SARS-CoV-2. The lack of prescribed drugs for the deadly virus has stressed the likely need to identify novel inhibitors to alleviate and stop the pandemic. In the present high throughput virtual screening study, we used in silico techniques like receptor-ligand docking, Molecular dynamic (MD), and ADME properties to screen natural compounds. It has been documented that many natural compounds display antiviral activities, including anti–SARS-CoV effect. The present study deals with compounds of Natural Product Activity and Species Source (NPASS) database with known biological activity that probably impedes the activity of six essential enzymes of the virus. Promising drug-like compounds were identified, demonstrating better docking score and binding energy for each druggable targets. After an extensive screening analysis, three novel multi-target natural compounds were predicted to subdue the activity of three/more major drug targets simultaneously. Concerning the utility of natural compounds in the formulation of many therapies, we propose these compounds as excellent lead candidates for the development of therapeutic drugs against SARS-CoV-2.
Collapse
Affiliation(s)
- Biswajit Naik
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, 305817 Ajmer, Rajasthan, India
| | - Nidhi Gupta
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, 305817 Ajmer, Rajasthan, India
| | - Rupal Ojha
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, 305817 Ajmer, Rajasthan, India
| | - Satyendra Singh
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, 305817 Ajmer, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, 305817 Ajmer, Rajasthan, India
| | - Dhaneswar Prusty
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, 305817 Ajmer, Rajasthan, India.
| |
Collapse
|
72
|
Romano M, Ruggiero A, Squeglia F, Maga G, Berisio R. A Structural View of SARS-CoV-2 RNA Replication Machinery: RNA Synthesis, Proofreading and Final Capping. Cells 2020; 9:E1267. [PMID: 32443810 PMCID: PMC7291026 DOI: 10.3390/cells9051267] [Citation(s) in RCA: 308] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 01/18/2023] Open
Abstract
The current coronavirus disease-2019 (COVID-19) pandemic is due to the novel coronavirus SARS-CoV-2. The scientific community has mounted a strong response by accelerating research and innovation, and has quickly set the foundation for understanding the molecular determinants of the disease for the development of targeted therapeutic interventions. The replication of the viral genome within the infected cells is a key stage of the SARS-CoV-2 life cycle. It is a complex process involving the action of several viral and host proteins in order to perform RNA polymerization, proofreading and final capping. This review provides an update of the structural and functional data on the key actors of the replicatory machinery of SARS-CoV-2, to fill the gaps in the currently available structural data, which is mainly obtained through homology modeling. Moreover, learning from similar viruses, we collect data from the literature to reconstruct the pattern of interactions among the protein actors of the SARS-CoV-2 RNA polymerase machinery. Here, an important role is played by co-factors such as Nsp8 and Nsp10, not only as allosteric activators but also as molecular connectors that hold the entire machinery together to enhance the efficiency of RNA replication.
Collapse
Affiliation(s)
- Maria Romano
- Institute of Biostructures and Bioimaging, IBB, CNR, 80134 Naples, Italy; (M.R.); (A.R.); (F.S.)
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, IBB, CNR, 80134 Naples, Italy; (M.R.); (A.R.); (F.S.)
| | - Flavia Squeglia
- Institute of Biostructures and Bioimaging, IBB, CNR, 80134 Naples, Italy; (M.R.); (A.R.); (F.S.)
| | - Giovanni Maga
- Institute of Molecular Genetics, IGM, CNR, 27100 Pavia, Italy;
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, IBB, CNR, 80134 Naples, Italy; (M.R.); (A.R.); (F.S.)
| |
Collapse
|
73
|
Pillaiyar T, Meenakshisundaram S, Manickam M. Recent discovery and development of inhibitors targeting coronaviruses. Drug Discov Today 2020; 25:668-688. [PMID: 32006468 PMCID: PMC7102522 DOI: 10.1016/j.drudis.2020.01.015] [Citation(s) in RCA: 239] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/11/2019] [Accepted: 01/22/2020] [Indexed: 11/25/2022]
Abstract
Human coronaviruses (CoVs) are enveloped viruses with a positive-sense single-stranded RNA genome. Currently, six human CoVs have been reported including human coronavirus 229E (HCoV-229E), OC43 (HCoV-OC43), NL63 (HCoV-NL63), HKU1 (HCoV-HKU1), severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV), and MiddleEast respiratory syndrome (MERS) coronavirus (MERS-CoV). They cause moderate to severe respiratory and intestinal infections in humans. In this review, we focus on recent advances in the research and development of small-molecule anti-human coronavirus therapies targeting different stages of the CoV life cycle.
Collapse
Affiliation(s)
- Thanigaimalai Pillaiyar
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany.
| | | | - Manoj Manickam
- Department of Chemistry, PSG Institute of Technology and Applied Research, Coimbatore, Tamil Nadu, India.
| |
Collapse
|
74
|
Rumlová M, Ruml T. In vitro methods for testing antiviral drugs. Biotechnol Adv 2018; 36:557-576. [PMID: 29292156 PMCID: PMC7127693 DOI: 10.1016/j.biotechadv.2017.12.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/22/2017] [Accepted: 12/27/2017] [Indexed: 12/24/2022]
Abstract
Despite successful vaccination programs and effective treatments for some viral infections, humans are still losing the battle with viruses. Persisting human pandemics, emerging and re-emerging viruses, and evolution of drug-resistant strains impose continuous search for new antiviral drugs. A combination of detailed information about the molecular organization of viruses and progress in molecular biology and computer technologies has enabled rational antivirals design. Initial step in establishing efficacy of new antivirals is based on simple methods assessing inhibition of the intended target. We provide here an overview of biochemical and cell-based assays evaluating the activity of inhibitors of clinically important viruses.
Collapse
Affiliation(s)
- Michaela Rumlová
- Department of Biotechnology, University of Chemistry and Technology, Prague 166 28, Czech Republic.
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 166 28, Czech Republic.
| |
Collapse
|
75
|
Lee JM, Cho JB, Ahn HC, Jeong YJ. Selective Inhibition of Enzymatic Activities of Severe Acute Respiratory Syndrome Coronavirus Helicase with a Thioxopyrimidine Derivative. B KOREAN CHEM SOC 2016; 37:2066-2068. [PMID: 32313349 PMCID: PMC7161877 DOI: 10.1002/bkcs.11002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/11/2016] [Indexed: 01/20/2023]
Affiliation(s)
- Jin-Moo Lee
- Department of Bio and Nanochemistry Kookmin University Seoul 02707 Korea
| | - Jin-Beom Cho
- Department of Bio and Nanochemistry Kookmin University Seoul 02707 Korea
| | - Hee-Chul Ahn
- Department of Pharmacy Dongguk University Seoul 10326 Korea
| | - Yong-Joo Jeong
- Department of Bio and Nanochemistry Kookmin University Seoul 02707 Korea
| |
Collapse
|
76
|
Abstract
Coronaviruses are animal and human pathogens that can cause lethal zoonotic infections like SARS and MERS. They have polycistronic plus-stranded RNA genomes and belong to the order Nidovirales, a diverse group of viruses for which common ancestry was inferred from the common principles underlying their genome organization and expression, and from the conservation of an array of core replicase domains, including key RNA-synthesizing enzymes. Coronavirus genomes (~ 26–32 kilobases) are the largest RNA genomes known to date and their expansion was likely enabled by acquiring enzyme functions that counter the commonly high error frequency of viral RNA polymerases. The primary functions that direct coronavirus RNA synthesis and processing reside in nonstructural protein (nsp) 7 to nsp16, which are cleavage products of two large replicase polyproteins translated from the coronavirus genome. Significant progress has now been made regarding their structural and functional characterization, stimulated by technical advances like improved methods for bioinformatics and structural biology, in vitro enzyme characterization, and site-directed mutagenesis of coronavirus genomes. Coronavirus replicase functions include more or less universal activities of plus-stranded RNA viruses, like an RNA polymerase (nsp12) and helicase (nsp13), but also a number of rare or even unique domains involved in mRNA capping (nsp14, nsp16) and fidelity control (nsp14). Several smaller subunits (nsp7–nsp10) act as crucial cofactors of these enzymes and contribute to the emerging “nsp interactome.” Understanding the structure, function, and interactions of the RNA-synthesizing machinery of coronaviruses will be key to rationalizing their evolutionary success and the development of improved control strategies.
Collapse
Affiliation(s)
- E J Snijder
- Leiden University Medical Center, Leiden, The Netherlands.
| | - E Decroly
- Aix-Marseille Université, AFMB UMR 7257, Marseille, France; CNRS, AFMB UMR 7257, Marseille, France
| | - J Ziebuhr
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
77
|
Abelson Kinase Inhibitors Are Potent Inhibitors of Severe Acute Respiratory Syndrome Coronavirus and Middle East Respiratory Syndrome Coronavirus Fusion. J Virol 2016; 90:8924-33. [PMID: 27466418 DOI: 10.1128/jvi.01429-16] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 07/18/2016] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED The highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) cause significant morbidity and morality. There is currently no approved therapeutic for highly pathogenic coronaviruses, even as MERS-CoV is spreading throughout the Middle East. We previously screened a library of FDA-approved drugs for inhibitors of coronavirus replication in which we identified Abelson (Abl) kinase inhibitors, including the anticancer drug imatinib, as inhibitors of both SARS-CoV and MERS-CoV in vitro Here we show that the anti-CoV activity of imatinib occurs at the early stages of infection, after internalization and endosomal trafficking, by inhibiting fusion of the virions at the endosomal membrane. We specifically identified the imatinib target, Abelson tyrosine-protein kinase 2 (Abl2), as required for efficient SARS-CoV and MERS-CoV replication in vitro These data demonstrate that specific approved drugs can be characterized in vitro for their anticoronavirus activity and used to identify host proteins required for coronavirus replication. This type of study is an important step in the repurposing of approved drugs for treatment of emerging coronaviruses. IMPORTANCE Both SARS-CoV and MERS-CoV are zoonotic infections, with bats as the primary source. The 2003 SARS-CoV outbreak began in Guangdong Province in China and spread to humans via civet cats and raccoon dogs in the wet markets before spreading to 37 countries. The virus caused 8,096 confirmed cases of SARS and 774 deaths (a case fatality rate of ∼10%). The MERS-CoV outbreak began in Saudi Arabia and has spread to 27 countries. MERS-CoV is believed to have emerged from bats and passed into humans via camels. The ongoing outbreak of MERS-CoV has resulted in 1,791 cases of MERS and 640 deaths (a case fatality rate of 36%). The emergence of SARS-CoV and MERS-CoV provides evidence that coronaviruses are currently spreading from zoonotic sources and can be highly pathogenic, causing serious morbidity and mortality in humans. Treatment of SARS-CoV and MERS-CoV infection is limited to providing supportive therapy consistent with any serious lung disease, as no specific drugs have been approved as therapeutics. Highly pathogenic coronaviruses are rare and appear to emerge and disappear within just a few years. Currently, MERS-CoV is still spreading, as new infections continue to be reported. The outbreaks of SARS-CoV and MERS-CoV and the continuing diagnosis of new MERS cases highlight the need for finding therapeutics for these diseases and potential future coronavirus outbreaks. Screening FDA-approved drugs streamlines the pipeline for this process, as these drugs have already been tested for safety in humans.
Collapse
|
78
|
Biochemical Characterization of Middle East Respiratory Syndrome Coronavirus Helicase. mSphere 2016; 1:mSphere00235-16. [PMID: 27631026 PMCID: PMC5014916 DOI: 10.1128/msphere.00235-16] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 08/19/2016] [Indexed: 11/20/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) helicase is a superfamily 1 helicase containing seven conserved motifs. We have cloned, expressed, and purified a Strep-fused recombinant MERS-CoV nonstructural protein 13 (M-nsp13) helicase. Characterization of its biochemical properties showed that it unwound DNA and RNA similarly to severe acute respiratory syndrome CoV nsp13 (S-nsp13) helicase. We showed that M-nsp13 unwound in a 5'-to-3' direction and efficiently unwound the partially duplex RNA substrates with a long loading strand relative to those of the RNA substrates with a short or no loading strand. Moreover, the Km of ATP for M-nsp13 is inversely proportional to the length of the 5' loading strand of the partially duplex RNA substrates. Finally, we also showed that the rate of unwinding (ku) of M-nsp13 is directly proportional to the length of the 5' loading strand of the partially duplex RNA substrate. These results provide insights that enhance our understanding of the biochemical properties of M-nsp13. IMPORTANCE Coronaviruses are known to cause a wide range of diseases in humans and animals. Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel coronavirus discovered in 2012 and is responsible for acute respiratory syndrome in humans in the Middle East, Europe, North Africa, and the United States of America. Helicases are motor proteins that catalyze the processive separation of double-stranded nucleic acids into two single-stranded nucleic acids by utilizing the energy derived from ATP hydrolysis. MERS-CoV helicase is one of the most important viral replication enzymes of this coronavirus. Herein, we report the first bacterial expression, enzyme purification, and biochemical characterization of MERS-CoV helicase. The knowledge obtained from this study might be used to identify an inhibitor of MERS-CoV replication, and the helicase might be used as a therapeutic target.
Collapse
|
79
|
Zumla A, Chan JFW, Azhar EI, Hui DSC, Yuen KY. Coronaviruses - drug discovery and therapeutic options. Nat Rev Drug Discov 2016. [PMID: 26868298 DOI: 10.1038/nrd201537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In humans, infections with the human coronavirus (HCoV) strains HCoV-229E, HCoV-OC43, HCoV-NL63 and HCoV-HKU1 usually result in mild, self-limiting upper respiratory tract infections, such as the common cold. By contrast, the CoVs responsible for severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), which were discovered in Hong Kong, China, in 2003, and in Saudi Arabia in 2012, respectively, have received global attention over the past 12 years owing to their ability to cause community and health-care-associated outbreaks of severe infections in human populations. These two viruses pose major challenges to clinical management because there are no specific antiviral drugs available. In this Review, we summarize the epidemiology, virology, clinical features and current treatment strategies of SARS and MERS, and discuss the discovery and development of new virus-based and host-based therapeutic options for CoV infections.
Collapse
Affiliation(s)
- Alimuddin Zumla
- Division of Infection and Immunity, University College London, and NIHR Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, 307 Euston Road, London NW1 3AD, UK
| | - Jasper F W Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Research Centre of Infection and Immunology, Department of Microbiology, University Pathology Building, Queen Mary Hospital, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong Special Administrative Region of the People's Republic of China
| | - Esam I Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Centre, and Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 128442, Jeddah - 21362, Kingdom of Saudi Arabia
| | - David S C Hui
- Division of Respiratory Medicine and Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Prince of Wales Hospital, 30-32 Ngan Shing Street, Shatin, New Territories, Hong Kong Special Administrative Region of the People's Republic of China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Research Centre of Infection and Immunology, Department of Microbiology, University Pathology Building, Queen Mary Hospital, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong Special Administrative Region of the People's Republic of China
| |
Collapse
|
80
|
Zumla A, Chan JFW, Azhar EI, Hui DSC, Yuen KY. Coronaviruses - drug discovery and therapeutic options. Nat Rev Drug Discov 2016; 15:327-47. [PMID: 26868298 PMCID: PMC7097181 DOI: 10.1038/nrd.2015.37] [Citation(s) in RCA: 1147] [Impact Index Per Article: 143.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) are examples of emerging zoonotic coronavirus infections capable of person-to-person transmission that result in large-scale epidemics with substantial effects on patient health and socioeconomic factors. Unlike patients with mild illnesses that are caused by other human-pathogenic coronaviruses, patients with SARS or MERS coronavirus infections may develop severe acute respiratory disease with multi-organ failure. The case–fatality rates of SARS and MERS are approximately 10% and 35%, respectively. Both SARS and MERS pose major clinical management challenges because there is no specific antiviral treatment that has been proven to be effective in randomized clinical trials for either infection. Substantial efforts are underway to discover new therapeutic agents for coronavirus infections. Virus-based therapies include monoclonal antibodies and antiviral peptides that target the viral spike glycoprotein, viral enzyme inhibitors, viral nucleic acid synthesis inhibitors and inhibitors of other viral structural and accessory proteins. Host-based therapies include agents that potentiate the interferon response or affect either host signalling pathways involved in viral replication or host factors utilized by coronaviruses for viral replication. The major challenges in the clinical development of novel anti-coronavirus drugs include the limited number of suitable animal models for the evaluation of potential treatments for SARS and MERS, the current absence of new SARS cases, the limited number of MERS cases — which are also predominantly geographically confined to the Middle East — as well as the lack of industrial incentives to develop antivirals for mild infections caused by other, less pathogenic coronaviruses. The continuing threat of MERS-CoV to global health 3 years after its discovery presents a golden opportunity to tackle current obstacles in the development of new anti-coronavirus drugs. A well-organized, multidisciplinary, international collaborative network consisting of clinicians, virologists and drug developers, coupled to political commitment, should be formed to carry out clinical trials using anti-coronavirus drugs that have already been shown to be safe and effective in vitro and/or in animal models, particularly lopinavir–ritonavir, interferon beta-1b and monoclonal antibodies and antiviral peptides targeting the viral spike glycoprotein.
Severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), which are caused by coronaviruses, have attracted substantial attention owing to their high mortality rates and potential to cause epidemics. Yuen and colleagues discuss progress with treatment options for these syndromes, including virus- and host-targeted drugs, and the challenges that need to be overcome in their further development. In humans, infections with the human coronavirus (HCoV) strains HCoV-229E, HCoV-OC43, HCoV-NL63 and HCoV-HKU1 usually result in mild, self-limiting upper respiratory tract infections, such as the common cold. By contrast, the CoVs responsible for severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), which were discovered in Hong Kong, China, in 2003, and in Saudi Arabia in 2012, respectively, have received global attention over the past 12 years owing to their ability to cause community and health-care-associated outbreaks of severe infections in human populations. These two viruses pose major challenges to clinical management because there are no specific antiviral drugs available. In this Review, we summarize the epidemiology, virology, clinical features and current treatment strategies of SARS and MERS, and discuss the discovery and development of new virus-based and host-based therapeutic options for CoV infections.
Collapse
Affiliation(s)
- Alimuddin Zumla
- Division of Infection and Immunity, University College London, and NIHR Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, 307 Euston Road, London NW1 3AD, UK
| | - Jasper F W Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Research Centre of Infection and Immunology, Department of Microbiology, University Pathology Building, Queen Mary Hospital, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong Special Administrative Region of the People's Republic of China
| | - Esam I Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Centre, and Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 128442, Jeddah - 21362, Kingdom of Saudi Arabia
| | - David S C Hui
- Division of Respiratory Medicine and Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Prince of Wales Hospital, 30-32 Ngan Shing Street, Shatin, New Territories, Hong Kong Special Administrative Region of the People's Republic of China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Research Centre of Infection and Immunology, Department of Microbiology, University Pathology Building, Queen Mary Hospital, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong Special Administrative Region of the People's Republic of China
| |
Collapse
|
81
|
Almazán F, Sola I, Zuñiga S, Marquez-Jurado S, Morales L, Becares M, Enjuanes L. Reprint of: Coronavirus reverse genetic systems: infectious clones and replicons. Virus Res 2014; 194:67-75. [PMID: 25261606 PMCID: PMC7114485 DOI: 10.1016/j.virusres.2014.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Coronaviruses (CoVs) infect humans and many animal species, and are associated with respiratory, enteric, hepatic, and central nervous system diseases. The large size of the CoV genome and the instability of some CoV replicase gene sequences during its propagation in bacteria, represent serious obstacles for the development of reverse genetic systems similar to those used for smaller positive sense RNA viruses. To overcome these limitations, several alternatives to more conventional plasmid-based approaches have been established in the last 13 years. In this report, we briefly review and discuss the different reverse genetic systems developed for CoVs, paying special attention to the severe acute respiratory syndrome CoV (SARS-CoV).
Collapse
Affiliation(s)
- Fernando Almazán
- Department of Molecular and Cell Biology. Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, C/ Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Isabel Sola
- Department of Molecular and Cell Biology. Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, C/ Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Sonia Zuñiga
- Department of Molecular and Cell Biology. Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, C/ Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Silvia Marquez-Jurado
- Department of Molecular and Cell Biology. Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, C/ Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Lucia Morales
- Department of Molecular and Cell Biology. Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, C/ Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Martina Becares
- Department of Molecular and Cell Biology. Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, C/ Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Luis Enjuanes
- Department of Molecular and Cell Biology. Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, C/ Darwin 3, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
82
|
Lehmann KC, Snijder EJ, Posthuma CC, Gorbalenya AE. What we know but do not understand about nidovirus helicases. Virus Res 2014; 202:12-32. [PMID: 25497126 PMCID: PMC7114383 DOI: 10.1016/j.virusres.2014.12.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/28/2014] [Accepted: 12/01/2014] [Indexed: 01/24/2023]
Abstract
The ubiquitous nidovirus helicase is a multi-functional enzyme of superfamily 1. Its unique N-terminal domain is most similar to the Upf1 multinuclear zinc-binding domain. It has been implicated in replication, transcription, virion biogenesis, translation and post-transcriptional viral RNA processing. Four different classes of antiviral compounds targeting the helicase have been identified.
Helicases are versatile NTP-dependent motor proteins of monophyletic origin that are found in all kingdoms of life. Their functions range from nucleic acid duplex unwinding to protein displacement and double-strand translocation. This explains their participation in virtually every metabolic process that involves nucleic acids, including DNA replication, recombination and repair, transcription, translation, as well as RNA processing. Helicases are encoded by all plant and animal viruses with a positive-sense RNA genome that is larger than 7 kb, indicating a link to genome size evolution in this virus class. Viral helicases belong to three out of the six currently recognized superfamilies, SF1, SF2, and SF3. Despite being omnipresent, highly conserved and essential, only a few viral helicases, mostly from SF2, have been studied extensively. In general, their specific roles in the viral replication cycle remain poorly understood at present. The SF1 helicase protein of viruses classified in the order Nidovirales is encoded in replicase open reading frame 1b (ORF1b), which is translated to give rise to a large polyprotein following a ribosomal frameshift from the upstream ORF1a. Proteolytic processing of the replicase polyprotein yields a dozen or so mature proteins, one of which includes a helicase. Its hallmark is the presence of an N-terminal multi-nuclear zinc-binding domain, the nidoviral genetic marker and one of the most conserved domains across members of the order. This review summarizes biochemical, structural, and genetic data, including drug development studies, obtained using helicases originating from several mammalian nidoviruses, along with the results of the genomics characterization of a much larger number of (putative) helicases of vertebrate and invertebrate nidoviruses. In the context of our knowledge of related helicases of cellular and viral origin, it discusses the implications of these results for the protein's emerging critical function(s) in nidovirus evolution, genome replication and expression, virion biogenesis, and possibly also post-transcriptional processing of viral RNAs. Using our accumulated knowledge and highlighting gaps in our data, concepts and approaches, it concludes with a perspective on future research aimed at elucidating the role of helicases in the nidovirus replication cycle.
Collapse
Affiliation(s)
- Kathleen C Lehmann
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Eric J Snijder
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Clara C Posthuma
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Alexander E Gorbalenya
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Russia.
| |
Collapse
|
83
|
Almazán F, Sola I, Zuñiga S, Marquez-Jurado S, Morales L, Becares M, Enjuanes L. Coronavirus reverse genetic systems: infectious clones and replicons. Virus Res 2014; 189:262-70. [PMID: 24930446 PMCID: PMC4727449 DOI: 10.1016/j.virusres.2014.05.026] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 01/09/2023]
Abstract
Coronaviruses (CoVs) infect humans and many animal species, and are associated with respiratory, enteric, hepatic, and central nervous system diseases. The large size of the CoV genome and the instability of some CoV replicase gene sequences during its propagation in bacteria, represent serious obstacles for the development of reverse genetic systems similar to those used for smaller positive sense RNA viruses. To overcome these limitations, several alternatives to more conventional plasmid-based approaches have been established in the last 13 years. In this report, we briefly review and discuss the different reverse genetic systems developed for CoVs, paying special attention to the severe acute respiratory syndrome CoV (SARS-CoV).
Collapse
Affiliation(s)
- Fernando Almazán
- Department of Molecular and Cell Biology. Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, C/ Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Isabel Sola
- Department of Molecular and Cell Biology. Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, C/ Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Sonia Zuñiga
- Department of Molecular and Cell Biology. Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, C/ Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Silvia Marquez-Jurado
- Department of Molecular and Cell Biology. Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, C/ Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Lucia Morales
- Department of Molecular and Cell Biology. Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, C/ Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Martina Becares
- Department of Molecular and Cell Biology. Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, C/ Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Luis Enjuanes
- Department of Molecular and Cell Biology. Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, C/ Darwin 3, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
84
|
Adedeji AO, Sarafianos SG. Antiviral drugs specific for coronaviruses in preclinical development. Curr Opin Virol 2014; 8:45-53. [PMID: 24997250 PMCID: PMC4195804 DOI: 10.1016/j.coviro.2014.06.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 05/26/2014] [Accepted: 06/02/2014] [Indexed: 12/21/2022]
Abstract
Coronaviruses are RNA viruses that cause systemic diseases in humans and animals. There are no approved drugs for the treatment of coronavirus infections. Several SARS-CoV inhibitors, with known mechanisms of action, have been identified. These inhibitors stand as promising leads for coronavirus therapeutics.
Coronaviruses are positive stranded RNA viruses that cause respiratory, enteric and central nervous system diseases in many species, including humans. Until recently, the relatively low burden of disease in humans caused by few of these viruses impeded the development of coronavirus specific therapeutics. However, the emergence of severe acute respiratory syndrome coronavirus (SARS-CoV), and more recently, Middle East respiratory syndrome coronavirus (MERS-CoV), has impelled the development of such drugs. This review focuses on some newly identified SARS-CoV inhibitors, with known mechanisms of action and their potential to inhibit the novel MERS-CoV. The clinical development of optimized versions of such compounds could be beneficial for the treatment and control of SARS-CoV, the current MERS-CoV and other future SARS-like epidemics.
Collapse
Affiliation(s)
- Adeyemi O Adedeji
- Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, CA 95616, United States.
| | - Stefan G Sarafianos
- Christopher Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States; Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, MO 65211, United States; Department of Biochemistry, University of Missouri, Columbia, MO 65211, United States.
| |
Collapse
|
85
|
Future treatment strategies for novel Middle East respiratory syndrome coronavirus infection. Future Med Chem 2014; 5:2119-22. [PMID: 24261888 DOI: 10.4155/fmc.13.183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
86
|
Alternative screening approaches for discovery of Middle East respiratory syndrome coronavirus inhibitors. Antimicrob Agents Chemother 2014; 58:4251-2. [PMID: 24867994 DOI: 10.1128/aac.03406-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two coronaviruses causing severe respiratory disease and high mortality rates emerging within the past dozen years reinforces the need for clinically efficacious antivirals targeting coronaviruses. Alternative screening approaches for antivirals against the recently emergent Middle East respiratory syndrome coronavirus (MERS-CoV) may provide lead compounds to address this need. Two Antimicrobial Agents and Chemotherapy (AAC) papers screened libraries of approved compounds that may potentially be repurposed as MERS-CoV antivirals. A third AAC paper showed that a previously described severe acute respiratory syndrome coronavirus (SARS-CoV) helicase inhibitor also has activity against MERS-CoV.
Collapse
|
87
|
Evaluation of SSYA10-001 as a replication inhibitor of severe acute respiratory syndrome, mouse hepatitis, and Middle East respiratory syndrome coronaviruses. Antimicrob Agents Chemother 2014; 58:4894-8. [PMID: 24841268 DOI: 10.1128/aac.02994-14] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We have previously shown that SSYA10-001 blocks severe acute respiratory syndrome coronavirus (SARS-CoV) replication by inhibiting SARS-CoV helicase (nsp13). Here, we show that SSYA10-001 also inhibits replication of two other coronaviruses, mouse hepatitis virus (MHV) and Middle Eastern respiratory syndrome coronavirus (MERS-CoV). A putative binding pocket for SSYA10-001 was identified and shown to be similar in SARS-CoV, MERS-CoV, and MHV helicases. These studies show that it is possible to target multiple coronaviruses through broad-spectrum inhibitors.
Collapse
|
88
|
Subissi L, Imbert I, Ferron F, Collet A, Coutard B, Decroly E, Canard B. SARS-CoV ORF1b-encoded nonstructural proteins 12-16: replicative enzymes as antiviral targets. Antiviral Res 2014; 101:122-30. [PMID: 24269475 PMCID: PMC7113864 DOI: 10.1016/j.antiviral.2013.11.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 10/22/2013] [Accepted: 11/11/2013] [Indexed: 12/17/2022]
Abstract
The SARS (severe acute respiratory syndrome) pandemic caused ten years ago by the SARS-coronavirus (SARS-CoV) has stimulated a number of studies on the molecular biology of coronaviruses. This research has provided significant new insight into many mechanisms used by the coronavirus replication-transcription complex (RTC). The RTC directs and coordinates processes in order to replicate and transcribe the coronavirus genome, a single-stranded, positive-sense RNA of outstanding length (∼27-32kilobases). Here, we review the up-to-date knowledge on SARS-CoV replicative enzymes encoded in the ORF1b, i.e., the main RNA-dependent RNA polymerase (nsp12), the helicase/triphosphatase (nsp13), two unusual ribonucleases (nsp14, nsp15) and RNA-cap methyltransferases (nsp14, nsp16). We also review how these enzymes co-operate with other viral co-factors (nsp7, nsp8, and nsp10) to regulate their activity. These last ten years of research on SARS-CoV have considerably contributed to unravel structural and functional details of one of the most fascinating replication/transcription machineries of the RNA virus world. This paper forms part of a series of invited articles in Antiviral Research on "From SARS to MERS: 10years of research on highly pathogenic human coronaviruses".
Collapse
Affiliation(s)
- Lorenzo Subissi
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257 - CNRS et Aix-Marseille Université, ESIL Case 925, 13288 Marseille, France
| | - Isabelle Imbert
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257 - CNRS et Aix-Marseille Université, ESIL Case 925, 13288 Marseille, France
| | - François Ferron
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257 - CNRS et Aix-Marseille Université, ESIL Case 925, 13288 Marseille, France
| | - Axelle Collet
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257 - CNRS et Aix-Marseille Université, ESIL Case 925, 13288 Marseille, France
| | - Bruno Coutard
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257 - CNRS et Aix-Marseille Université, ESIL Case 925, 13288 Marseille, France
| | - Etienne Decroly
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257 - CNRS et Aix-Marseille Université, ESIL Case 925, 13288 Marseille, France
| | - Bruno Canard
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257 - CNRS et Aix-Marseille Université, ESIL Case 925, 13288 Marseille, France.
| |
Collapse
|
89
|
Debing Y, Neyts J. Antiviral strategies for hepatitis E virus. Antiviral Res 2013; 102:106-18. [PMID: 24374149 PMCID: PMC7113752 DOI: 10.1016/j.antiviral.2013.12.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 12/12/2013] [Accepted: 12/14/2013] [Indexed: 02/08/2023]
Abstract
The hepatitis E virus is a common cause of acute hepatitis. Contrary to hepatitis B and C, hepatitis E is mostly a mild infection, although it has a high mortality in pregnant women and can evolve to chronicity in immunocompromised patients. Ribavirin and pegylated interferon-α are the only available therapies, but both have side effects that are not acceptable for prophylaxis or treatment of mild infections. In addition, these drugs cannot be used for all patient types (e.g. in case of pregnancy, specific organ transplants or co-morbidities) and in resource-poor settings. Hence there is an urgent need for better antiviral treatments that are efficacious and safe, also during pregnancy. In this review, a concise introduction to the virus and disease is provided, followed by a discussion of the available assay systems and potential molecular targets (viral proteins and host factors) for the development of inhibitors of HEV replication. Finally, directions for future research are presented.
Collapse
Affiliation(s)
- Yannick Debing
- Rega Institute for Medical Research, Department of Microbiology and Immunology, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Johan Neyts
- Rega Institute for Medical Research, Department of Microbiology and Immunology, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| |
Collapse
|
90
|
Chan JFW, Chan KH, Kao RYT, To KKW, Zheng BJ, Li CPY, Li PTW, Dai J, Mok FKY, Chen H, Hayden FG, Yuen KY. Broad-spectrum antivirals for the emerging Middle East respiratory syndrome coronavirus. J Infect 2013; 67:606-16. [PMID: 24096239 PMCID: PMC7112612 DOI: 10.1016/j.jinf.2013.09.029] [Citation(s) in RCA: 276] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 09/27/2013] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Middle East respiratory syndrome coronavirus (MERS-CoV) has emerged to cause fatal infections in patients in the Middle East and traveler-associated secondary cases in Europe and Africa. Person-to-person transmission is evident in outbreaks involving household and hospital contacts. Effective antivirals are urgently needed. METHODS We used small compound-based forward chemical genetics to screen a chemical library of 1280 known drugs against influenza A virus in Biosafety Level-2 laboratory. We then assessed the anti-MERS-CoV activities of the identified compounds and of interferons, nelfinavir, and lopinavir because of their reported anti-coronavirus activities in terms of cytopathic effect inhibition, viral yield reduction, and plaque reduction assays in Biosafety Level-3 laboratory. RESULTS Ten compounds were identified as primary hits in high-throughput screening. Only mycophenolic acid exhibited low EC50 and high selectivity index. Additionally, ribavirin and interferons also exhibited in-vitro anti-MERS-CoV activity. The serum concentrations achievable at therapeutic doses of mycophenolic acid and interferon-β1b were 60-300 and 3-4 times higher than the concentrations at which in-vitro anti-MERS-CoV activities were demonstrated, whereas that of ribavirin was ∼2 times lower. Combination of mycophenolic acid and interferon-β1b lowered the EC50 of each drug by 1-3 times. CONCLUSIONS Interferon-β1b with mycophenolic acid should be considered in treatment trials of MERS.
Collapse
Affiliation(s)
- Jasper F W Chan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China; Department of Microbiology, The University of Hong Kong, Hong Kong, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Kilianski A, Baker SC. Cell-based antiviral screening against coronaviruses: developing virus-specific and broad-spectrum inhibitors. Antiviral Res 2013; 101:105-12. [PMID: 24269477 PMCID: PMC3931262 DOI: 10.1016/j.antiviral.2013.11.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 10/31/2013] [Accepted: 11/09/2013] [Indexed: 01/19/2023]
Abstract
To combat the public health threat from emerging coronaviruses (CoV), the development of antiviral therapies with either virus-specific or pan-coronaviral activities is necessary. An important step in antiviral drug development is the screening of potential inhibitors in cell-based systems. The recent emergence of Middle East respiratory syndrome coronavirus (MERS-CoV) necessitates adapting methods that have been used to identify antivirals against severe acute respiratory syndrome coronavirus (SARS-CoV) and developing new approaches to more efficiently screen antiviral drugs. In this article we review cell-based assays using infectious virus (BSL-3) and surrogate assays (BSL-2) that can be implemented to accelerate antiviral development against MERS-CoV and future emergent coronaviruses. This paper forms part of a series of invited articles in Antiviral Research on "From SARS to MERS: 10years of research on highly pathogenic human coronaviruses."
Collapse
Affiliation(s)
- Andy Kilianski
- Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, United States
| | - Susan C Baker
- Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, United States.
| |
Collapse
|
92
|
Dai JP, Wu LQ, Li R, Zhao XF, Wan QY, Chen XX, Li WZ, Wang GF, Li KS. Identification of 23-(s)-2-amino-3-phenylpropanoyl-silybin as an antiviral agent for influenza A virus infection in vitro and in vivo. Antimicrob Agents Chemother 2013; 57:4433-43. [PMID: 23836164 PMCID: PMC3754338 DOI: 10.1128/aac.00759-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/26/2013] [Indexed: 02/05/2023] Open
Abstract
It has been reported that autophagy is involved in the replication of many viruses. In this study, we screened 89 medicinal plants, using an assay based on the inhibition of the formation of the Atg12-Atg5/Atg16 heterotrimer, an important regulator of autophagy, and selected Silybum marianum L. for further study. An antiviral assay indicated that silybin (S0), the major active compound of S. marianum L., can inhibit influenza A virus (IAV) infection. We later synthesized 5 silybin derivatives (S1 through S5) and found that 23-(S)-2-amino-3-phenylpropanoyl-silybin (S3) had the best activity. When we compared the polarities of the substituent groups, we found that the hydrophobicity of the substituent groups was positively correlated with their activities. We further studied the mechanisms of action of these compounds and determined that S0 and S3 also inhibited both the formation of the Atg12-Atg5/Atg16 heterotrimer and the elevated autophagy induced by IAV infection. In addition, we found that S0 and S3 could inhibit several components induced by IAV infection, including oxidative stress, the activation of extracellular signal-regulated kinase (ERK)/p38 mitogen-activated protein kinase (MAPK) and IκB kinase (IKK) pathways, and the expression of autophagic genes, especially Atg7 and Atg3. All of these components have been reported to be related to the formation of the Atg12-Atg5/Atg16 heterotrimer, which might validate our screening strategy. Finally, we demonstrated that S3 can significantly reduce influenza virus replication and the associated mortality in infected mice. In conclusion, we identified 23-(S)-2-amino-3-phenylpropanoyl-silybin as a promising inhibitor of IAV infection.
Collapse
Affiliation(s)
- Jian-Ping Dai
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Li-Qi Wu
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Rui Li
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Xiang-Feng Zhao
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Qian-Ying Wan
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Xiao-Xuan Chen
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Wei-Zhong Li
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Ge-Fei Wang
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Kang-Sheng Li
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| |
Collapse
|
93
|
Novel inhibitors of severe acute respiratory syndrome coronavirus entry that act by three distinct mechanisms. J Virol 2013; 87:8017-28. [PMID: 23678171 DOI: 10.1128/jvi.00998-13] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Severe acute respiratory syndrome (SARS) is an infectious and highly contagious disease that is caused by SARS coronavirus (SARS-CoV) and for which there are currently no approved treatments. We report the discovery and characterization of small-molecule inhibitors of SARS-CoV replication that block viral entry by three different mechanisms. The compounds were discovered by screening a chemical library of compounds for blocking of entry of HIV-1 pseudotyped with SARS-CoV surface glycoprotein S (SARS-S) but not that of HIV-1 pseudotyped with vesicular stomatitis virus surface glycoprotein G (VSV-G). Studies on their mechanisms of action revealed that the compounds act by three distinct mechanisms: (i) SSAA09E2 {N-[[4-(4-methylpiperazin-1-yl)phenyl]methyl]-1,2-oxazole-5-carboxamide} acts through a novel mechanism of action, by blocking early interactions of SARS-S with the receptor for SARS-CoV, angiotensin converting enzyme 2 (ACE2); (ii) SSAA09E1 {[(Z)-1-thiophen-2-ylethylideneamino]thiourea} acts later, by blocking cathepsin L, a host protease required for processing of SARS-S during viral entry; and (iii) SSAA09E3 [N-(9,10-dioxo-9,10-dihydroanthracen-2-yl)benzamide] also acts later and does not affect interactions of SARS-S with ACE2 or the enzymatic functions of cathepsin L but prevents fusion of the viral membrane with the host cellular membrane. Our work demonstrates that there are at least three independent strategies for blocking SARS-CoV entry, validates these mechanisms of inhibition, and introduces promising leads for the development of SARS therapeutics.
Collapse
|
94
|
Debing Y, Jochmans D, Neyts J. Intervention strategies for emerging viruses: use of antivirals. Curr Opin Virol 2013; 3:217-24. [PMID: 23562753 PMCID: PMC7102692 DOI: 10.1016/j.coviro.2013.03.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 03/08/2013] [Accepted: 03/11/2013] [Indexed: 12/25/2022]
Abstract
Today, small molecule antiviral drugs are available for the treatment of infections with herpesviruses, HIV, HBV and HCV as well as with influenza viruses. Ribavirin, a broad-spectrum (but aspecific) antiviral, has been approved for the treatment of infections with respiratory syncytial virus, HCV and Lassa virus. Yet, for many other viruses that cause life-threatening infections [most of which are considered emerging and/or neglected] there are no drugs available. Ideally, potent and broad-spectrum (i.e., pan-genus or pan-family virus activity) antiviral drugs should be developed whereby one drug could be used for the treatment of a number of such viral infections. We here review recent evolutions in the search for inhibitors of emerging and neglected RNA viruses.
Collapse
Affiliation(s)
- Yannick Debing
- Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium
| | | | | |
Collapse
|
95
|
Shadrick WR, Ndjomou J, Kolli R, Mukherjee S, Hanson AM, Frick DN. Discovering new medicines targeting helicases: challenges and recent progress. ACTA ACUST UNITED AC 2013; 18:761-81. [PMID: 23536547 PMCID: PMC4427233 DOI: 10.1177/1087057113482586] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Helicases are ubiquitous motor proteins that separate and/or rearrange nucleic acid duplexes in reactions fueled by adenosine triphosphate (ATP) hydrolysis. Helicases encoded by bacteria, viruses, and human cells are widely studied targets for new antiviral, antibiotic, and anticancer drugs. This review summarizes the biochemistry of frequently targeted helicases. These proteins include viral enzymes from herpes simplex virus, papillomaviruses, polyomaviruses, coronaviruses, the hepatitis C virus, and various flaviviruses. Bacterial targets examined include DnaB-like and RecBCD-like helicases. The human DEAD-box protein DDX3 is the cellular antiviral target discussed, and cellular anticancer drug targets discussed are the human RecQ-like helicases and eIF4A. We also review assays used for helicase inhibitor discovery and the most promising and common helicase inhibitor chemotypes, such as nucleotide analogues, polyphenyls, metal ion chelators, flavones, polycyclic aromatic polymers, coumarins, and various DNA binding pharmacophores. Also discussed are common complications encountered while searching for potent helicase inhibitors and possible solutions for these problems.
Collapse
Affiliation(s)
- William R Shadrick
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | | | | | | | | | | |
Collapse
|
96
|
Adedeji AO, Singh K, Sarafianos SG. Structural and biochemical basis for the difference in the helicase activity of two different constructs of SARS-CoV helicase. Cell Mol Biol (Noisy-le-grand) 2012; 58:114-121. [PMID: 23273200 PMCID: PMC3612351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 10/05/2012] [Indexed: 06/01/2023]
Abstract
The non—structural protein 13 (nsp13) of Severe Acute Respiratory Syndrome Coronavirus (SARS—CoV) is a helicase that separates double—stranded RNA or DNA with a 5'—3' polarity, using the energy of nucleotide hydrolysis. We have previously determined the minimal mechanism of helicase function by nsp13 where we demonstrated that the enzyme unwinds nucleic acid in discrete steps of 9.3 base—pairs each with a catalytic rate of 30 steps per second. In that study we used different constructs of nsp13 (GST and H6 constructs). GST—nsp13 showed much more efficient nucleic acid unwinding than the H6—tagged counterpart. At 0.1 second, more than 50% of the ATP is hydrolyzed by GST—nsp13 compared to less than 5% ATP hydrolysis by H6—nsp13. Interestingly, the two constructs have the same binding affinity for nucleic acids. We, therefore propose that the difference in the catalytic efficiency of these two constructs is due to the interference of ATP binding by the histidine tag at the amino—terminus of nsp13.
Collapse
Affiliation(s)
- Adeyemi O. Adedeji
- Christopher S. Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, MO 65211, USA
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | - Kamalendra Singh
- Christopher S. Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, MO 65211, USA
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | - Stefan G. Sarafianos
- Christopher S. Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, MO 65211, USA
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, MO 65211, USA
- Department of Biochemistry, University of Missouri School of Medicine, Columbia, MO 65211, USA
| |
Collapse
|