51
|
Otify AM, ElBanna SA, Eltanany BM, Pont L, Benavente F, Ibrahim RM. A comprehensive analytical framework integrating liquid chromatography-tandem mass spectrometry metabolomics with chemometrics for metabolite profiling of lettuce varieties and discovery of antibacterial agents. Food Res Int 2023; 172:113178. [PMID: 37689928 DOI: 10.1016/j.foodres.2023.113178] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 09/11/2023]
Abstract
This study comprehensively characterized the metabolite profiles of six lettuce varieties and established the correlation between the elucidated profiles and their antivirulence effects. A total of 195 metabolites were annotated using LC-QTOF-MS/MS metabolomics assisted by molecular networking and integrated with chemometrics. Red varieties (red longifolia and lolla rosa) demonstrated higher chlorogenic and chicoric acids suggesting their antioxidant properties. In parallel, amino acids and disaccharides were enriched in romaine longifolia rationalizing its palatable taste and nutritional potential, while crispa, capitata, and lolla bionda presented a high β-carboline alkaloid content. The antibacterial and antihemolytic potential of all varieties against methicillin-sensitive and methicillin-resistant Staphylococcus aureus was assessed and validated by prominent downregulation of α-hemolysin transcriptional levels in both strains. Moreover, correlation analysis revealed sesquiterpenes, β-carboline alkaloids, amino acids, and oxy-fatty acids as the main bioactives. Results emphasize lettuce significance as a functional food and nutraceutical source, and highlight varieties naturally rich in antibacterial agents to adapt breeding programs.
Collapse
Affiliation(s)
- Asmaa M Otify
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Shahira A ElBanna
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Basma M Eltanany
- Department of Analytical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Laura Pont
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona 08028, Spain; Serra Húnter Program, Generalitat de Catalunya, Barcelona 08007, Spain
| | - Fernando Benavente
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona 08028, Spain.
| | - Rana M Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
52
|
AlSaleh A, Shahid M, Farid E, Bindayna KM. Reduction of Panton-Valentine Leukocidin Production in the Staphylococcal Strain USA300 After In Vitro Ascorbic Acid and Nicotinamide Treatment. Cureus 2023; 15:e47588. [PMID: 38022293 PMCID: PMC10666906 DOI: 10.7759/cureus.47588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Background Panton-Valentine leukocidin (PVL) is one of the most important determinants of virulence in Staphylococcus aureus. It is associated with a propensity for complicating skin and soft tissue infections and necrotizing pneumonia. This study aims to quantitively examine the effect of ascorbic acid and nicotinamide on PVL production in the reference strain USA300. Methodology Sandwich enzyme-linked immunosorbent assay (ELISA) was used to quantitively measure the production of PVL via the commercial LukS sandwich ELISA kit (IBT Bio-services, MD, USA). Results Incubating USA300 with subinhibitory concentrations of antioxidants resulted in a statistically significant eight-fold reduction in PVL production at 1.25 mg/mL and 30 mg/mL for ascorbic acid and nicotinamide, respectively. Although the mechanism by which antioxidants inhibit PVL production is yet to be elucidated, we suggest that it can be due to interrupting PVL gene expression. Conclusions Ascorbic acid and nicotinamide have the potential to be toxin-suppressing agents that may be effective in supporting the bactericidal effect of antibiotics to improve the outcome of PVL-associated infections; however, further extensive research is required.
Collapse
Affiliation(s)
- Abdullah AlSaleh
- Microbiology, Immunology and Infectious Diseases, Arabian Gulf University, Manama, BHR
| | - Mohammad Shahid
- Microbiology, Immunology and Infectious Diseases, Arabian Gulf University, Manama, BHR
| | - Eman Farid
- Pathology/Immunology, Salmaniya Medical Complex, Ministry of Health, College of Medicine, Arabian Gulf University, Manama, BHR
| | | |
Collapse
|
53
|
Wang S, Li C, Zhang L, Sun B, Cui Y, Sang F. Isolation and biological activity of natural chalcones based on antibacterial mechanism classification. Bioorg Med Chem 2023; 93:117454. [PMID: 37659218 DOI: 10.1016/j.bmc.2023.117454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 09/04/2023]
Abstract
Bacterial infection, which is still one of the leading causes of death in humans, poses an enormous threat to the worldwide public health system. Antibiotics are the primary medications used to treat bacterial diseases. Currently, the discovery of antibiotics has reached an impasse, and due to the abuse of antibiotics resulting in bacterial antibiotic resistance, researchers have a critical desire to develop new antibacterial agents in order to combat the deteriorating antibacterial situation. Natural chalcones, the flavonoids consisting of two phenolic rings and a three-carbon α, β-unsaturated carbonyl system, possess a variety of biological and pharmacological properties, including anti-cancer, anti-inflammatory, antibacterial, and so on. Due to their potent antibacterial properties, natural chalcones possess the potential to become a new treatment for infectious diseases that circumvents existing antibiotic resistance. Currently, the majority of research on natural chalcones focuses on their synthesis, biological and pharmacological activities, etc. A few studies have been conducted on their antibacterial activity and mechanism. Therefore, this review focuses on the antibacterial activity and mechanisms of seventeen natural chalcones. Firstly, seventeen natural chalcones have been classified based on differences in antibacterial mechanisms. Secondly, a summary of the isolation and biological activity of seventeen natural chalcones was provided, with a focus on their antibacterial activity. Thirdly, the antibacterial mechanisms of natural chalcones were summarized, including those that act on bacterial cell membranes, biological macromolecules, biofilms, and quorum sensing systems. This review aims to lay the groundwork for the discovery of novel antibacterial agents based on chalcones.
Collapse
Affiliation(s)
- Sinan Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, PR China
| | - Chuang Li
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, PR China
| | - Liyan Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, PR China
| | - Bingxia Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, PR China
| | - Yuting Cui
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, PR China.
| | - Feng Sang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, PR China.
| |
Collapse
|
54
|
Kim SY, Kim M, Kim TJ. Regulation of σ B-Dependent Biofilm Formation in Staphylococcus aureus through Strain-Specific Signaling Induced by Diosgenin. Microorganisms 2023; 11:2376. [PMID: 37894034 PMCID: PMC10609180 DOI: 10.3390/microorganisms11102376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Staphylococcus aureus is a commensal skin bacterium and a causative agent of infectious diseases. Biofilm formation in S. aureus is a mechanism that facilitates the emergence of resistant strains. This study proposes a mechanism for the regulation of biofilm formation in S. aureus through strain-specific physiological changes induced by the plant steroid diosgenin. A comparison of diosgenin-induced changes in the expression of regulatory genes associated with physiological changes revealed the intracellular regulatory mechanisms involved in biofilm formation. Diosgenin reduced biofilm formation in S. aureus ATCC 6538 and methicillin-resistant S. aureus (MRSA) CCARM 3090 by 39% and 61%, respectively. Conversely, it increased biofilm formation in S. aureus ATCC 29213 and MRSA CCARM 3820 by 186% and 582%, respectively. Cell surface hydrophobicity and extracellular protein and carbohydrate contents changed in a strain-specific manner in response to biofilm formation. An assessment of the changes in gene expression associated with biofilm formation revealed that diosgenin treatment decreased the expression of icaA and spa and increased the expression of RNAIII, agrA, sarA, and sigB in S. aureus ATCC 6538 and MRSA CCARM 3090; however, contrasting gene expression changes were noted in S. aureus ATCC 29213 and MRSA CCARM 3820. These results suggest that a regulatory mechanism of biofilm formation is that activated sigB expression sequentially increases the expression of sarA, agrA, and RNAIII. This increased RNAIII expression decreases the expression of spa, a surface-associated adhesion factor. An additional regulatory mechanism of biofilm formation is that activated sigB expression decreases the expression of an unknown regulator that increases the expression of icaA. This in turn decreases the expression of icaA, which decreases the synthesis of polysaccharide intercellular adhesins and ultimately inhibits biofilm formation. By assessing strain-specific contrasting regulatory signals induced by diosgenin in S. aureus without gene mutation, this study elucidated the signal transduction mechanisms that regulate biofilm formation based on physiological and gene expression changes.
Collapse
Affiliation(s)
| | | | - Tae-Jong Kim
- Department of Forest Products and Biotechnology, Kookmin University, Seoul 02707, Republic of Korea
| |
Collapse
|
55
|
Moreno-Grua E, Pérez-Fuentes S, Viana D, Selva L, Martínez-Paredes E, Marín-García PJ, Pascual JJ, Corpa JM, Arnau-Bonachera A. Effect of selection for growth rate on the rabbit (Oryctolagus cuniculus) immune system and its response after experimental Staphylococcus aureus infection. Vet Res Commun 2023; 47:1547-1560. [PMID: 37002454 DOI: 10.1007/s11259-023-10110-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 03/16/2023] [Indexed: 04/03/2023]
Abstract
The aim of the work was to evaluate if genetic selection for daily gain may affect the immune system. Two experiments were performed. The first one involved 80 rabbit females and their first two litters to explore the effect of selection on the ability of animals to maintain immune competence. Two generations from a line selected for average daily gain (ADG) were evaluated (VR19 generation 19th, n = 43; VR37 generation 37th, n = 37). In females, the effect of selection and its interaction with physiological state were not significant for any trait. In litters, the selection criterion increased the granulocyte to lymphocyte ratio. The second experiment involved 73 19-week-old females (VR19, n = 39; VR37, n = 34) to explore the effect of genetic selection on immune response after S. aureus infection. The VR37 rabbit females had lower counts for total lymphocytes, CD5+, CD4+, CD8+, CD25+, monocytes, the CD4+/CD8+ ratio and platelets than those of VR19 (-14, -21, -25, -15, -33, -18, -11 and -11%, respectively; P < 0.05). VR37 had less erythema (-8.4 percentage points; P < 0.05), fewer nodules (-6.5 percentage points; P < 0.05) and a smaller nodule size (-0.65 cm3 on 7 day post-inoculation; P < 0.05) compared to VR19. Our study suggests that genetic selection for average daily gain does not negatively affect the maintenance of a competent immune system or the ability to establish immune response. It seems that such selection may improve the response to S. aureus infections.
Collapse
Affiliation(s)
- Elena Moreno-Grua
- Pathology Group, PASAPTA, Biomedical Research Institute, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, C/ Assegadors nº 2Alfara del Patriarca, 46115, Valencia, Spain
| | - Sara Pérez-Fuentes
- Pathology Group, PASAPTA, Biomedical Research Institute, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, C/ Assegadors nº 2Alfara del Patriarca, 46115, Valencia, Spain
| | - David Viana
- Pathology Group, PASAPTA, Biomedical Research Institute, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, C/ Assegadors nº 2Alfara del Patriarca, 46115, Valencia, Spain
| | - Laura Selva
- Pathology Group, PASAPTA, Biomedical Research Institute, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, C/ Assegadors nº 2Alfara del Patriarca, 46115, Valencia, Spain
| | - Eugenio Martínez-Paredes
- Institute for Animal Science and Technology, Universitat Politècnica de València, Camino de Vera 14, 46071, Valencia, Spain
| | - Pablo Jesús Marín-García
- Departamento Producción Y Sanidad Animal, Salud Pública y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, Valencia, Spain
| | - Juan José Pascual
- Institute for Animal Science and Technology, Universitat Politècnica de València, Camino de Vera 14, 46071, Valencia, Spain
| | - Juan Manuel Corpa
- Pathology Group, PASAPTA, Biomedical Research Institute, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, C/ Assegadors nº 2Alfara del Patriarca, 46115, Valencia, Spain.
| | - Alberto Arnau-Bonachera
- Pathology Group, PASAPTA, Biomedical Research Institute, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, C/ Assegadors nº 2Alfara del Patriarca, 46115, Valencia, Spain.
| |
Collapse
|
56
|
Ramadan HA, El-Baz AM, Goda RM, El-Sokkary MMA, El-Morsi RM. Molecular characterization of enterotoxin genes in methicillin-resistant S. aureus isolated from food poisoning outbreaks in Egypt. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2023; 42:86. [PMID: 37641155 PMCID: PMC10463939 DOI: 10.1186/s41043-023-00416-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 07/09/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Staphylococcus aureus (S. aureus), especially methicillin-resistant S. aureus (MRSA), is a known disease-causing bacteria with many associated health hazards. Staphylococcal food poisoning can result from staphylococcal enterotoxins (SEs). METHODS In this study, 50 S. aureus isolates were isolated from the gastrointestinal tract (GIT) clinical samples of patients with food poisoning in clinical laboratories at Mansoura University Hospital, Egypt. For determination their antibiogram, these isolates were tested for antimicrobial sensitivity against 12 antimicrobial agents using the agar disk diffusion test. After DNA extraction from the isolates, conventional polymerase chain reaction (PCR) was used to detect mecA and SEs genes. RESULTS As a result, all isolates were ampicillin and cefoxitin-resistant, while 86% (43 of 50) of the tested isolates exhibited multidrug resistance (MDR). In contrast, the highest sensitivity was confirmed against vancomycin, linezolid and quinolones, namely ciprofloxacin and norfloxacin. Although 100% of the isolates were mecA positive, staphylococcal enterotoxin genes set-A, set-B, set-C, set-G, set-M, and set-O genes were detected in 56%, 20%, 8%, 32%, 16%, and 24%, of the tested isolates, respectively. Finally, isolates encompassing SEs genes were used to validate a microarray chip, indicating its potential for a better methodological approach for detecting and identifying SEs in human samples. CONCLUSION The genotypic findings of this study may help explain the enterotoxigenic patterns in S. aureus among Egyptian patients with food poisoning.
Collapse
Affiliation(s)
- Heba A Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt
| | - Ahmed M El-Baz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt
| | - Reham M Goda
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt
| | - Mohamed M A El-Sokkary
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Rasha M El-Morsi
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt
| |
Collapse
|
57
|
Schlievert PM, Gaitán AV, Kilgore SH, Roe AL, Maukonen J, Lehtoranta L, Leung DYM, Marsman DS. Inhibition of Toxic Shock Syndrome-Associated Staphylococcus aureus by Probiotic Lactobacilli. Microbiol Spectr 2023; 11:e0173523. [PMID: 37404182 PMCID: PMC10434015 DOI: 10.1128/spectrum.01735-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023] Open
Abstract
Staphylococcus aureus is a human pathogen with many infections originating on mucosal surfaces. One common group of S. aureus is the USA200 (CC30) clonal group, which produces toxic shock syndrome toxin-1 (TSST-1). Many USA200 infections occur on mucosal surfaces, particularly in the vagina and gastrointestinal tract. This allows these organisms to cause cases of menstrual TSS and enterocolitis. The current study examined the ability of two lactobacilli, Lactobacillus acidophilus strain LA-14 and Lacticaseibacillus rhamnosus strain HN001, for their ability to inhibit the growth of TSST-1 positive S. aureus, the production of TSST-1, and the ability of TSST-1 to induce pro-inflammatory chemokines from human vaginal epithelial cells (HVECs). In competition growth experiments, L. rhamnosus did not affect the growth of TSS S. aureus but did inhibit the production of TSST-1; this effect was partially due to acidification of the growth medium. L. acidophilus was both bactericidal and prevented the production of TSST-1 by S. aureus. This effect appeared to be partially due to acidification of the growth medium, production of H2O2, and production of other antibacterial molecules. When both organisms were incubated with S. aureus, the effect of L. acidophilus LA-14 dominated. In in vitro experiments with HVECs, neither lactobacillus induced significant production of the chemokine interleukin-8, whereas TSST-1 did induce production of the chemokine. When the lactobacilli were incubated with HVECs in the presence of TSST-1, the lactobacilli reduced chemokine production. These data suggest that these two bacteria in probiotics could reduce the incidence of menstrual and enterocolitis-associated TSS. IMPORTANCE Toxic shock syndrome (TSS) Staphylococcus aureus commonly colonize mucosal surfaces, giving them the ability to cause TSS through the action of TSS toxin-1 (TSST-1). This study examined the ability of two probiotic lactobacilli to inhibit S. aureus growth and TSST-1 production, and the reduction of pro-inflammatory chemokine production by TSST-1. Lacticaseibacillus rhamnosus strain HN001 inhibited TSST-1 production due to acid production but did not affect S. aureus growth. Lactobacillus acidophilus strain LA-14 was bactericidal against S. aureus, partially due to acid and H2O2 production, and consequently also inhibited TSST-1 production. Neither lactobacillus induced the production of pro-inflammatory chemokines by human vaginal epithelial cells, and both inhibited chemokine production by TSST-1. These data suggest that the two probiotics could reduce the incidence of mucosa-associated TSS, including menstrual TSS and cases originating as enterocolitis.
Collapse
Affiliation(s)
- Patrick M. Schlievert
- Department of Microbiology and Immunology, University of Iowa; Carver College of Medicine, Iowa City, Iowa, USA
| | | | - Samuel H. Kilgore
- Department of Microbiology and Immunology, University of Iowa; Carver College of Medicine, Iowa City, Iowa, USA
| | - Amy L. Roe
- The Procter & Gamble Company, Cincinnati, Ohio, USA
| | | | | | | | | |
Collapse
|
58
|
Oh SE, Heo S, Lee G, Park HJ, Jeong DW. Novel Starter Strain Enterococcus faecium DMEA09 from Traditional Korean Fermented Meju. Foods 2023; 12:3008. [PMID: 37628007 PMCID: PMC10453556 DOI: 10.3390/foods12163008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
The Enterococcus faecium strain DMEA09 was previously isolated from traditional Korean fermented meju. The objective of the current study was to investigate the traits of E. faecium strain DMEA09 as a starter candidate, focusing on its safety and technological properties. Regarding its safety, the DMEA09 strain was found to be sensitive to nine antibiotics (ampicillin, chloramphenicol, erythromycin, gentamicin, kanamycin, streptomycin, tetracycline, tylosin, and vancomycin) by showing lower minimum inhibitory concentrations (MICs) than the cut-off values suggested by the European Union Food Safety Authority for these nine antibiotics. However, its MIC value for clindamycin was twice as high as the cut-off value. A genomic analysis revealed that strain DMEA09 did not encode the acquired antibiotic resistance genes, including those for clindamycin. The DMEA09 strain did not show hemolysis as a result of analyzing α- and β-hemolysis. It did not form biofilm either. A genomic analysis revealed that strain DMEA09 did not encode for any virulence factors including hemolysin. Most importantly, multilocus sequence typing revealed that the clonal group of strain DMEA09 was distinguished from clinical isolates. Regarding its technological properties, strain DMEA09 could grow in the presence of 6% salt. It showed protease activity when the salt concentration was 3%. It did not exhibit lipase activity. Its genome possessed 37 putative protease genes and salt-tolerance genes for survivability under salt conditions. Consequently, strain DMEA09 shows safe and technological properties as a new starter candidate. This was confirmed by genome analysis.
Collapse
Affiliation(s)
- Seung-Eun Oh
- Department of Food and Nutrition, Dongduk Women’s University, Seoul 02748, Republic of Korea
| | - Sojeong Heo
- Department of Food and Nutrition, Dongduk Women’s University, Seoul 02748, Republic of Korea
| | - Gawon Lee
- Department of Food and Nutrition, Dongduk Women’s University, Seoul 02748, Republic of Korea
| | - Hee-Jung Park
- Department of Food and Nutrition, Sangmyung University, Seoul 03016, Republic of Korea
| | - Do-Won Jeong
- Department of Food and Nutrition, Dongduk Women’s University, Seoul 02748, Republic of Korea
| |
Collapse
|
59
|
Kansaen R, Boueroy P, Hatrongjit R, Kamjumphol W, Kerdsin A, Chopjitt P. The Occurrence and Characteristics of Methicillin-Resistant Staphylococcal Isolates from Foods and Containers. Antibiotics (Basel) 2023; 12:1287. [PMID: 37627707 PMCID: PMC10451473 DOI: 10.3390/antibiotics12081287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Antimicrobial resistance (AMR) has emerged as an urgent global public health issue that requires immediate attention. Methicillin-resistant staphylococci (MRS) is a major problem, as it may cause serious human and animal infections, eventually resulting in death. This study determined the proportional distribution, genetic characteristics, and antimicrobial susceptibility of mecA- or mecC-carrying staphylococci isolated from food chain products. A total of 230 samples were taken from meat, food, fermented food, and food containers. Overall, 13.9% (32/230) of the samples were identified to have Staphylococcus aureus isolates; of those, 3.9% (9/230) were MRS, with eight mecA-positive and one mecC-positive samples, and 1.3% (3/230) methicillin-resistant Staphylococcus aureus (MRSA). MRSA strains belonging to three sequence types (ST9, ST22, and a newly identified ST), three different spa types (T005, t526, and a newly identified type), and three different SCCmec types (IV, V, and an unidentified SCCmec) were detected. Additionally, eight mecA-positive staphylococcal isolates were identified as S. haemolyticus, S. sciuri, S. simulans, and S. warneri, while the mecC-harboring isolate was S. xylosus. The enterotoxin gene, SEm, was detected at 1.56% in S. aureus, whereas SEq was detected at 0.31%, and SEi was also found in MRSA. Our study emphasizes the importance of enhanced hygiene standards in reducing the risk of occupational and foodborne MRSA infections associated with the handling or consumption of meat, food, and preserved food products.
Collapse
Affiliation(s)
- Rada Kansaen
- Faculty of Public Health, Chalermphrakiat Sakon Nakhon Province Campus, Kasetsart University, Sakon Nakhon 47000, Thailand; (R.K.); (P.B.); (A.K.)
| | - Parichart Boueroy
- Faculty of Public Health, Chalermphrakiat Sakon Nakhon Province Campus, Kasetsart University, Sakon Nakhon 47000, Thailand; (R.K.); (P.B.); (A.K.)
| | - Rujirat Hatrongjit
- Faculty of Science and Engineering, Chalermphrakiat Sakon Nakhon Province Campus, Kasetsart University, Sakon Nakhon 47000, Thailand;
| | - Watcharaporn Kamjumphol
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand;
| | - Anusak Kerdsin
- Faculty of Public Health, Chalermphrakiat Sakon Nakhon Province Campus, Kasetsart University, Sakon Nakhon 47000, Thailand; (R.K.); (P.B.); (A.K.)
| | - Peechanika Chopjitt
- Faculty of Public Health, Chalermphrakiat Sakon Nakhon Province Campus, Kasetsart University, Sakon Nakhon 47000, Thailand; (R.K.); (P.B.); (A.K.)
| |
Collapse
|
60
|
Laurence Yehouenou C, Bogaerts B, Vanneste K, De Keersmaecker SCJ, Roosens NHC, Kpangon AA, Affolabi D, Simon A, Dossou FM, Dalleur O. Whole-Genome Sequencing-Based Screening of MRSA in Patients and Healthcare Workers in Public Hospitals in Benin. Microorganisms 2023; 11:1954. [PMID: 37630513 PMCID: PMC10459514 DOI: 10.3390/microorganisms11081954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 08/27/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) constitutes a serious public health concern, with a considerable impact on patients' health, and substantial healthcare costs. In this study, patients and healthcare workers (HCWs) from six public hospitals in Benin were screened for MRSA. Strains were identified as MRSA using conventional microbiological methods in Benin, and confirmed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in Belgium. Whole-genome sequencing (WGS) was used on the confirmed MRSA isolates, to characterize their genomic content and study their relatedness. Amongst the 305 isolates (304 wound swabs and 61 nasal swabs) that were collected from patients and HCWs, we detected 32 and 15 cases of MRSA, respectively. From this collection, 27 high-quality WGS datasets were obtained, which carried numerous genes and mutations associated with antimicrobial resistance. The mecA gene was detected in all the sequenced isolates. These isolates were assigned to five sequence types (STs), with ST8 (55.56%, n = 15/27), ST152 (18.52%, n = 5/27), and ST121 (18.52%, n = 5/27) being the most common. These 27 isolates carried multiple virulence genes, including the genes encoding the Panton-Valentine leukocidin toxin (48.15%, n = 13/27), and the tst gene (29.63%, n = 8/27), associated with toxic shock syndrome. This study highlights the need to implement a multimodal strategy for reducing the risk of the cross-transmission of MRSA in hospitals.
Collapse
Affiliation(s)
- Carine Laurence Yehouenou
- Clinical Pharmacy Research Group (CLIP), Louvain Drug Research Institute (LDRI), Université Catholique de Louvain UCLouvain, Avenue Mounier 73, 1200 Brussels, Belgium;
- Laboratoire de Référence des Mycobactéries (LRM), Cotonou BP 817, Benin;
- Faculté des Sciences de la Santé (FSS), Université d’Abomey Calavi (UAC), Cotonou 01 BP 188, Benin
| | - Bert Bogaerts
- Transversal Activities in Applied Genomics, Sciensano, Juliette Wytsmanstraat 14, 1050 Brussels, Belgium; (B.B.); (K.V.); (S.C.J.D.K.); (N.H.C.R.)
| | - Kevin Vanneste
- Transversal Activities in Applied Genomics, Sciensano, Juliette Wytsmanstraat 14, 1050 Brussels, Belgium; (B.B.); (K.V.); (S.C.J.D.K.); (N.H.C.R.)
| | - Sigrid C. J. De Keersmaecker
- Transversal Activities in Applied Genomics, Sciensano, Juliette Wytsmanstraat 14, 1050 Brussels, Belgium; (B.B.); (K.V.); (S.C.J.D.K.); (N.H.C.R.)
| | - Nancy H. C. Roosens
- Transversal Activities in Applied Genomics, Sciensano, Juliette Wytsmanstraat 14, 1050 Brussels, Belgium; (B.B.); (K.V.); (S.C.J.D.K.); (N.H.C.R.)
| | - Arsène A. Kpangon
- Ecole Nationale des Techniciens Supérieurs en Santé Publique et Surveillance Épidémiologique, Université de Parakou, Parakou, Benin;
| | - Dissou Affolabi
- Laboratoire de Référence des Mycobactéries (LRM), Cotonou BP 817, Benin;
- Faculté des Sciences de la Santé (FSS), Université d’Abomey Calavi (UAC), Cotonou 01 BP 188, Benin
- Centre National Hospitalier et Universitaire Hubert Koutoukou Maga (CNHU-HKM), Cotonou BP 386, Benin
| | - Anne Simon
- Centres Hospitaliers Jolimont, Prévention et Contrôle des Infections, Groupe Jolimont Asbl, Rue Ferrer 159, 7100 Haine-Saint-Paul, Belgium;
| | - Francis Moise Dossou
- Department of Surgery and Surgical Specialties, Faculty of Health Sciences, Campus Universitaire, Champs de Foire, Cotonou 01 BP 118, Benin;
| | - Olivia Dalleur
- Clinical Pharmacy Research Group (CLIP), Louvain Drug Research Institute (LDRI), Université Catholique de Louvain UCLouvain, Avenue Mounier 73, 1200 Brussels, Belgium;
- Pharmacy, Clinique Universitaire Saint-Luc, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 10, 1200 Brussels, Belgium
| |
Collapse
|
61
|
Fu X, Xu M, Yu Z, Gu W, Zhang Z, Zhang B, Wang X, Su Z, Zhang C. Staphylococcal Enterotoxin C2 Mutant-Induced Antitumor Immune Response Is Controlled by CDC42/MLC2-Mediated Tumor Cell Stiffness. Int J Mol Sci 2023; 24:11796. [PMID: 37511553 PMCID: PMC10380429 DOI: 10.3390/ijms241411796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/03/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
As a biological macromolecule, the superantigen staphylococcal enterotoxin C2 (SEC2) is one of the most potent known T-cell activators, and it induces massive cytotoxic granule production. With this property, SEC2 and its mutants are widely regarded as immunomodulating agents for cancer therapy. In a previous study, we constructed an MHC-II-independent mutant of SEC2, named ST-4, which exhibits enhanced immunocyte stimulation and antitumor activity. However, tumor cells have different degrees of sensitivity to SEC2/ST-4. The mechanisms of immune resistance to SEs in cancer cells have not been investigated. Herein, we show that ST-4 could activate more powerful human lymphocyte granule-based cytotoxicity than SEC2. The results of RNA-seq and atomic force microscopy (AFM) analysis showed that, compared with SKOV3 cells, the softer ES-2 cells could escape from SEC2/ST-4-induced cytotoxic T-cell-mediated apoptosis by regulating cell softness through the CDC42/MLC2 pathway. Conversely, after enhancing the stiffness of cancer cells by a nonmuscle myosin-II-specific inhibitor, SEC2/ST-4 exhibited a significant antitumor effect against ES-2 cells by promoting perforin-dependent apoptosis and the S-phase arrest. Taken together, these data suggest that cell stiffness could be a key factor of resistance to SEs in ovarian cancer, and our findings may provide new insight for SE-based tumor immunotherapy.
Collapse
Affiliation(s)
- Xuanhe Fu
- Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016, China
- Department of Immunology, Shenyang Medical College, No. 146 Huanghe North Street, Shenyang 110034, China
- Key Laboratory of Superantigen Research of Liao Ning Province, Shenyang 110016, China
| | - Mingkai Xu
- Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016, China
- Key Laboratory of Superantigen Research of Liao Ning Province, Shenyang 110016, China
| | - Zhixiong Yu
- Department of Immunology, Shenyang Medical College, No. 146 Huanghe North Street, Shenyang 110034, China
| | - Wu Gu
- Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhichun Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bowen Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiujuan Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016, China
- Key Laboratory of Superantigen Research of Liao Ning Province, Shenyang 110016, China
| | - Zhencheng Su
- Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016, China
- Key Laboratory of Superantigen Research of Liao Ning Province, Shenyang 110016, China
| | - Chenggang Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016, China
- Key Laboratory of Superantigen Research of Liao Ning Province, Shenyang 110016, China
| |
Collapse
|
62
|
Li Y, Pan T, Cao R, Li W, He Z, Sun B. Nitrate Reductase NarGHJI Modulates Virulence via Regulation of agr Expression in Methicillin-Resistant Staphylococcus aureus Strain USA300 LAC. Microbiol Spectr 2023; 11:e0359622. [PMID: 37199609 PMCID: PMC10269880 DOI: 10.1128/spectrum.03596-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 04/28/2023] [Indexed: 05/19/2023] Open
Abstract
Staphylococcus aureus is a pathogenic bacterium with a widespread distribution that can cause diverse severe diseases. The membrane-bound nitrate reductase NarGHJI serves respiratory function. However, little is known about its contribution to virulence. In this study, we demonstrated that narGHJI disruption results in the downregulation of virulence genes (e.g., RNAIII, agrBDCA, hla, psmα, and psmβ) and reduces the hemolytic activity of the methicillin-resistant S. aureus (MRSA) strain USA300 LAC. Moreover, we provided evidence that NarGHJI participates in regulating host inflammatory response. A mouse model of subcutaneous abscess and Galleria mellonella survival assay demonstrated that the ΔnarG mutant was significantly less virulent than the wild type. Interestingly, NarGHJI contributes to virulence in an agr-dependent manner, and the role of NarGHJI differs between different S. aureus strains. Our study highlights the novel role of NarGHJI in regulating virulence, thereby providing a new theoretical reference for the prevention and control of S. aureus infection. IMPORTANCE Staphylococcus aureus is a notorious pathogen that poses a great threat to human health. The emergence of drug-resistant strains has significantly increased the difficulty of preventing and treating S. aureus infection and enhanced the pathogenic ability of the bacterium. This indicates the importance of identifying novel pathogenic factors and revealing the regulatory mechanisms through which they regulate virulence. The nitrate reductase NarGHJI is mainly involved in bacterial respiration and denitrification, which can enhance bacterial survival. We demonstrated that narGHJI disruption results in the downregulation of the agr system and agr-dependent virulence genes, suggesting that NarGHJI participates in the regulation of S. aureus virulence in an agr-dependent manner. Moreover, the regulatory approach is strain specific. This study provides a new theoretical reference for the prevention and control of S. aureus infection and reveals new targets for the development of therapeutic drugs.
Collapse
Affiliation(s)
- Yujie Li
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, People’s Republic of China
- Department of Life Science and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Ting Pan
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, People’s Republic of China
- Department of Life Science and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Ruobing Cao
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, People’s Republic of China
- Department of Life Science and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, People’s Republic of China
- Department of Life Science and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Zhien He
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, People’s Republic of China
- Department of Life Science and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Baolin Sun
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, People’s Republic of China
- Department of Life Science and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| |
Collapse
|
63
|
Mzee T, Kumburu H, Kazimoto T, Leekitcharoenphon P, van Zwetselaar M, Masalu R, Mlaganile T, Sonda T, Wadugu B, Mushi I, Aarestrup FM, Matee M. Molecular Characterization of Staphylococcus aureus Isolated from Raw Milk and Humans in Eastern Tanzania: Genetic Diversity and Inter-Host Transmission. Microorganisms 2023; 11:1505. [PMID: 37375007 DOI: 10.3390/microorganisms11061505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 06/29/2023] Open
Abstract
Staphylococcus aureus is a common cause of infection in humans and animals, including bovine mastitis, globally. The objective of this study was to genetically characterize a collection of S. aureus isolates recovered from milk and nasal swabs from humans with and without animal contact (bovine = 43, human = 12). Using whole genome sequencing (NextSeq550), isolates were sequence typed, screened for antimicrobial resistance and virulence genes and examined for possible inter-species host transmission. Multi locus sequence typing (MLST) and single nucleotide polymorphism (SNP)-based phylogeny revealed 14 different sequence types, including the following six novel sequence types: ST7840, 7841, 7845, 7846, 7847, and 7848. The SNP tree confirmed that MLST clustering occurred most commonly within CC97, CC5477, and CC152. ResFinder analysis revealed five common antibiotic resistance genes, namely tet(K), blaZ, dfrG, erm©, and str, encoding for different antibiotics. mecA was discovered in one human isolate only. Multidrug resistance was observed in 25% of the isolates, predominantly in CC152 (7/8) and CC121 (3/4). Known bovine S. aureus (CC97) were collected in humans and known human S. aureus lineages (CC152) were collected in cattle; additionally, when these were compared to bovine-isolated CC97 and human-isolated CC152, respectively, no genetic distinction could be observed. This is suggestive of inter-host transmission and supports the need for surveillance of the human-animal interface.
Collapse
Affiliation(s)
- Tutu Mzee
- Ifakara Health Institute, Bagamoyo Branch, Bagamoyo P.O. Box 74, Tanzania
- Department of Molecular Biology and Biotechnology, University of Dar es Salaam, Dar es Salaam P.O. Box 35179, Tanzania
| | - Happiness Kumburu
- Kilimanjaro Clinical Research Institute, Moshi P.O. Box 2236, Tanzania
| | - Theckla Kazimoto
- Ifakara Health Institute, Bagamoyo Branch, Bagamoyo P.O. Box 74, Tanzania
| | - Pimlapas Leekitcharoenphon
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kemitorvet, DK 2800 Kgs. Lyngby, Denmark
| | | | - Rose Masalu
- Department of Molecular Biology and Biotechnology, University of Dar es Salaam, Dar es Salaam P.O. Box 35179, Tanzania
| | - Tarsis Mlaganile
- Ifakara Health Institute, Bagamoyo Branch, Bagamoyo P.O. Box 74, Tanzania
| | - Tolbert Sonda
- Kilimanjaro Clinical Research Institute, Moshi P.O. Box 2236, Tanzania
| | - Boaz Wadugu
- Kilimanjaro Clinical Research Institute, Moshi P.O. Box 2236, Tanzania
| | - Ignass Mushi
- Kilimanjaro Clinical Research Institute, Moshi P.O. Box 2236, Tanzania
| | - Frank M Aarestrup
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kemitorvet, DK 2800 Kgs. Lyngby, Denmark
| | - Mecky Matee
- Department of Microbiology and Immunology, School of Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam P.O. Box 65001, Tanzania
| |
Collapse
|
64
|
Burgold-Voigt S, Monecke S, Busch A, Bocklisch H, Braun SD, Diezel C, Hotzel H, Liebler-Tenorio EM, Müller E, Reinicke M, Reissig A, Ruppelt-Lorz A, Ehricht R. Characterisation of a Staphylococcus aureus Isolate Carrying Phage-Borne Enterotoxin E from a European Badger ( Meles meles). Pathogens 2023; 12:pathogens12050704. [PMID: 37242375 DOI: 10.3390/pathogens12050704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Staphylococcus (S.) aureus colonizes up to 30% of all humans and can occasionally cause serious infections. It is not restricted to humans as it can also often be found in livestock and wildlife. Recent studies have shown that wildlife strains of S. aureus usually belong to other clonal complexes than human strains and that they might differ significantly with regard to the prevalence of genes encoding antimicrobial resistance properties and virulence factors. Here, we describe a strain of S. aureus isolated from a European badger (Meles meles). For molecular characterisation, DNA microarray-based technology was combined with various next-generation sequencing (NGS) methods. Bacteriophages from this isolate were induced with Mitomycin C and characterized in detail by transmission electron microscopy (TEM) and NGS. The S. aureus isolate belonged to ST425 and had a novel spa repeat sequence (t20845). It did not carry any resistance genes. The uncommon enterotoxin gene see was detected in one of its three temperate bacteriophages. It was possible to demonstrate the induction of all three prophages, although only one of them was expected to be capable of excision based on its carriage of the excisionase gene xis. All three bacteriophages belonged to the family Siphoviridae. Minor differences in size and shape of their heads were noted in TEM images. The results highlight the ability of S. aureus to colonize or infect different host species successfully, which can be attributed to a variety of virulence factors on mobile genetic elements, such as bacteriophages. As shown in the strain described herein, temperate bacteriophages not only contribute to the fitness of their staphylococcal host by transferring virulence factors, but also increase mobility among themselves by sharing genes for excision and mobilization with other prophages.
Collapse
Affiliation(s)
- Sindy Burgold-Voigt
- Leibniz-Institute of Photonic Technology (Leibniz-IPHT), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Stefan Monecke
- Leibniz-Institute of Photonic Technology (Leibniz-IPHT), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
- Institute for Medical Microbiology and Virology, Dresden University Hospital, 01307 Dresden, Germany
| | - Anne Busch
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital, 07747 Jena, Germany
| | - Herbert Bocklisch
- Thuringian State Authority for Food-Safety and Consumer Protection (TLLV), 99947 Bad Langensalza, Germany
| | - Sascha D Braun
- Leibniz-Institute of Photonic Technology (Leibniz-IPHT), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Celia Diezel
- Leibniz-Institute of Photonic Technology (Leibniz-IPHT), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Helmut Hotzel
- Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Institute of Bacterial Infections and Zoonoses, 07751 Jena, Germany
| | | | - Elke Müller
- Leibniz-Institute of Photonic Technology (Leibniz-IPHT), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Martin Reinicke
- Leibniz-Institute of Photonic Technology (Leibniz-IPHT), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Annett Reissig
- Leibniz-Institute of Photonic Technology (Leibniz-IPHT), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Antje Ruppelt-Lorz
- Institute for Medical Microbiology and Virology, Dresden University Hospital, 01307 Dresden, Germany
| | - Ralf Ehricht
- Leibniz-Institute of Photonic Technology (Leibniz-IPHT), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University, 07743 Jena, Germany
| |
Collapse
|
65
|
Johnson WL, Sohn M, Woeller CF, Wozniak RAF. Staphylococcal Enterotoxins Promote Virulence in Bacterial Keratitis. Invest Ophthalmol Vis Sci 2023; 64:5. [PMID: 37133835 PMCID: PMC10166116 DOI: 10.1167/iovs.64.5.5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
Purpose Staphylococcus aureus is an important cause of corneal infections (keratitis). To better understand the virulence mechanisms mediating keratitis, a recent comparative genomics study revealed that a set of secreted enterotoxins were found with higher prevalence among ocular versus non-ocular S. aureus clinical infection isolates, suggesting a key role for these toxins in keratitis. Although well known to cause toxic shock syndrome and S. aureus food poisoning, enterotoxins have not yet been shown to mediate virulence in keratitis. Methods A set of clinical isolate test strains, including a keratitis isolate that encodes five enterotoxins (sed, sej, sek, seq, ser), its corresponding enterotoxin deletion mutant and complementation strain, a keratitis isolate devoid of enterotoxins, and the non-ocular S. aureus strain USA300 along with its corresponding enterotoxin deletion and complementation strains, were evaluated for cellular adhesion, invasion and cytotoxicity in a primary corneal epithelial model as well as with microscopy. Additionally, strains were evaluated in an in vivo model of keratitis to quantify enterotoxin gene expression and measure disease severity. Results We demonstrate that, although enterotoxins do not impact bacterial adhesion or invasion, they do elicit direct cytotoxicity in vitro toward corneal epithelial cells. In an in vivo model, sed, sej, sek, seq, ser were found to have variable gene expression across 72 hours of infection and test strains encoding enterotoxins resulted in increased bacterial burden as well as a reduced host cytokine response. Conclusions Our results support a novel role for staphylococcal enterotoxins in promoting virulence in S. aureus keratitis.
Collapse
Affiliation(s)
- William L Johnson
- Department of Ophthalmology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
| | - Michael Sohn
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
| | - Collynn F Woeller
- Department of Ophthalmology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
| | - Rachel A F Wozniak
- Department of Ophthalmology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
| |
Collapse
|
66
|
Youssef O, Agún S, Fernández L, Khalil SA, Rodríguez A, García P. Impact of the calcium concentration on the efficacy of phage phiIPLA-RODI, LysRODIΔAmi and nisin for the elimination of Staphylococcus aureus during lab-scale cheese production. Int J Food Microbiol 2023; 399:110227. [PMID: 37148666 DOI: 10.1016/j.ijfoodmicro.2023.110227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/08/2023]
Abstract
Staphylococcus aureus is a Gram-positive human opportunistic pathogen that may also cause food poisoning because of the ability of some strains to produce heat stable enterotoxins that can persist in food even after the pathogen is successfully eliminated. In this context, biopreservation may be a forward-looking strategy to help eliminate staphylococcal contamination in dairy products by using natural compounds. However, these antimicrobials exhibit individual limitations that may be overcome by combining them. This work investigates the combination of a virulent bacteriophage, phiIPLA-RODI, a phage-derived engineered lytic protein, LysRODIΔAmi, and the bacteriocin nisin for the elimination of S. aureus during lab-scale cheese production at two CaCl2 concentrations (0.2 % and 0.02 %), and subsequent storage at two different temperatures (4 °C and 12 °C). In most of the assayed conditions, our results demonstrate that the combined action of the antimicrobials led to a greater reduction of the pathogen population than the compounds individually, albeit this effect was additive and not synergistic. However, our results did show synergy between the three antimicrobials for reducing the bacterial load after 14 days of storage at 12 °C, temperature at which there is growth of the S. aureus population. Additionally, we tested the impact of the calcium concentration on the activity of the combination treatment and observed that higher CaCl2 levels led to a notable increase in endolysin activity that allowed the utilization of approximately 10-times less protein to attain the same efficacy. Overall, our data show that the combination of LysRODIΔAmi with nisin and/or phage phiIPLA-RODI, and an increase in the calcium concentration are successful strategies to decrease the amount of protein required for the control of S. aureus contamination in the dairy sector with a low potential for resistance selection, thereby reducing costs.
Collapse
Affiliation(s)
- Olivia Youssef
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain; DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Microbiology Department, Faculty of Veterinary Medicine, Alexandria University, Egypt; Animal Health Research Institute, Agricultural Research Center (ARC), Egypt
| | - Seila Agún
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain; DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Lucía Fernández
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain; DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.
| | - Samy A Khalil
- Microbiology Department, Faculty of Veterinary Medicine, Alexandria University, Egypt
| | - Ana Rodríguez
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain; DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Pilar García
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain; DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| |
Collapse
|
67
|
Tutka K, Żychowska M, Żaczek A, Maternia-Dudzik K, Pawełczyk J, Strapagiel D, Lach J, Reich A. Skin Microbiome in Prurigo Nodularis. Int J Mol Sci 2023; 24:ijms24087675. [PMID: 37108838 PMCID: PMC10146575 DOI: 10.3390/ijms24087675] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/12/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Prurigo nodularis (PN) is a chronic condition characterized by the presence of nodular lesions accompanied by intense pruritus. The disease has been linked to several infectious factors, but data on the direct presence of microorganisms in the lesions of PN are scarce. The aim of this study was to evaluate the diversity and composition of the bacterial microbiome in PN lesions by targeting the region V3-V4 of 16S rRNA. Skin swabs were obtained from active nodules in 24 patients with PN, inflammatory patches of 14 patients with atopic dermatitis (AD) and corresponding skin areas of 9 healthy volunteers (HV). After DNA extraction, the V3-V4 region of the bacterial 16S rRNA gene was amplified. Sequencing was performed using the Illumina platform on the MiSeq instrument. Operational taxonomic units (OTU) were identified. The identification of taxa was carried out using the Silva v.138 database. There was no statistically significant difference in the alpha-diversity (intra-sample diversity) between the PN, AD and HV groups. The beta-diversity (inter-sample diversity) showed statistically significant differences between the three groups on a global level and in paired analyses. Staphylococcus was significantly more abundant in samples from PN and AD patients than in controls. The difference was maintained across all taxonomic levels. The PN microbiome is highly similar to that of AD. It remains unclear whether the disturbed composition of the microbiome and the domination of Staphylococcus in PN lesions may be the trigger factor of pruritus and lead to the development of cutaneous changes or is a secondary phenomenon. Our preliminary results support the theory that the composition of the skin microbiome in PN is altered and justify further research on the role of the microbiome in this debilitating condition.
Collapse
Affiliation(s)
- Klaudia Tutka
- Department of Dermatology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-055 Rzeszów, Poland
| | - Magdalena Żychowska
- Department of Dermatology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-055 Rzeszów, Poland
| | - Anna Żaczek
- Department of Microbiology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-055 Rzeszów, Poland
| | - Karolina Maternia-Dudzik
- Department of Microbiology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-055 Rzeszów, Poland
| | - Jakub Pawełczyk
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, 90-235 Łódź, Poland
| | - Dominik Strapagiel
- Biobank Laboratory, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-235 Łódź, Poland
| | - Jakub Lach
- Biobank Laboratory, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-235 Łódź, Poland
| | - Adam Reich
- Department of Dermatology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-055 Rzeszów, Poland
| |
Collapse
|
68
|
AlSaleh A, Shahid M, Farid E, Saeed N, Bindayna KM. Multidrug-Resistant Staphylococcus aureus Isolates in a Tertiary Care Hospital, Kingdom of Bahrain. Cureus 2023; 15:e37255. [PMID: 37168202 PMCID: PMC10166627 DOI: 10.7759/cureus.37255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Methicillin-resistant Staphylococcus aureus (MRSA) is a ubiquitous pathogen associated with a wide spectrum of human infections. In recent decades, MRSA infections have been increasingly reported in individuals without established risk factors, infecting immunocompetent members of the community. This emergence is attributed to the production of various virulence factors, notably Panton-Valentine leukocidin (PVL). OBJECTIVE The aim of this study was to better understand the prevalence, antibiotic resistance profiles, and molecular characteristics of S. aureus and MRSA in a tertiary care hospital in the Kingdom of Bahrain. MATERIALS AND METHODS This cross-sectional study was carried out in a tertiary hospital for a one-year period, from December 2020 to December 2021. A total of 161 consecutive S. aureus isolates were collected. Antibiotic susceptibility was tested using BD Phoenix™ automated identification and susceptibility testing system. Molecular analysis was conducted via conventional PCR and conventional multiplex PCR for SCCmec typing. RESULTS In this study, 161 S. aureus isolates were investigated, 60% (n=97) were characterized as MRSA, of which, 12% (n=12) were healthcare-associated methicillin-resistant Staphylococcus aureus (HA-MRSA) while 88% (n=85) were community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA). No statistically significant difference (P>0.05) in antibiotic resistance trends between HA-MRSA and CA-MRSA was detected. Multidrug resistance (MDR) amounted to 19% (n=30) of all S. aureus isolates, 14% (n=9) of methicillin-susceptible Staphylococcus aureus (MSSA) isolates, and 22% (n=21) of MRSA isolates. SCCmec typing demonstrated a high prevalence of type IV (61%, n=59), followed by type V (32%, n=31), then type II (4%, n=4), and type III (3%, n=3). The PVL prevalence was 39% (n=25) in MSSA and 62% (n=60) in MRSA, 33% (n=4) in HA-MRSA, and 66% (n=56) in CA-MRSA. CONCLUSION This study demonstrated the emergence of PVL-producing CA-MRSA in a tertiary care hospital, as well as the detection of PVL-producing MDR strains. This development prompts serious measures to be taken in order to sustain a healthy clinical environment.
Collapse
Affiliation(s)
- Abdullah AlSaleh
- Microbiology, Immunology and Infectious Diseases, Arabian Gulf University, Manama, BHR
| | - Mohammed Shahid
- Microbiology, Immunology and Infectious Diseases, Arabian Gulf University, Manama, BHR
| | - Eman Farid
- Microbiology, Immunology and Infectious Diseases, Arabian Gulf University, Manama, BHR
| | - Nermin Saeed
- Microbiology, Salmaniya Medical Complex, Manama, BHR
| | - Khalid M Bindayna
- Microbiology, Immunology and Infectious Diseases, Arabian Gulf University, Manama, BHR
| |
Collapse
|
69
|
Mishra S, Roy A, Dutta S. Cryo-EM-based structural insights into supramolecular assemblies of γ-hemolysin from S. aureus reveal the pore formation mechanism. Structure 2023:S0969-2126(23)00085-0. [PMID: 37019111 DOI: 10.1016/j.str.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/31/2023] [Accepted: 03/10/2023] [Indexed: 04/07/2023]
Abstract
γ-Hemolysin (γ-HL) is a hemolytic and leukotoxic bicomponent β-pore-forming toxin (β-PFT), a potent virulence factor from the Staphylococcus aureus Newman strain. In this study, we performed single-particle cryoelectron microscopy (cryo-EM) of γ-HL in a lipid environment. We observed clustering and square lattice packing of octameric HlgAB pores on the membrane bilayer and an octahedral superassembly of octameric pore complexes that we resolved at resolution of 3.5 Å. Our atomic model further demonstrated the key residues involved in hydrophobic zipping between the rim domains of adjacent octameric complexes, providing additional structural stability in PFTs post oligomerization. We also observed extra densities at the octahedral and octameric interfaces, providing insights into the plausible lipid-binding residues involved for HlgA and HlgB components. Furthermore, the hitherto elusive N-terminal region of HlgA was also resolved in our cryo-EM map, and an overall mechanism of pore formation for bicomponent β-PFTs is proposed.
Collapse
Affiliation(s)
- Suman Mishra
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Anupam Roy
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Somnath Dutta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
70
|
Merghni A, Hamdi H, Ben Abdallah M, Al-Hasawi ZM, Al-Quwaie DA, Abid-Essefi S. Detection of Methicillin-Resistant Staphylococcus aureus among Foodborne Pathogenic Strains and Assessment of Their Adhesion Ability and Cytotoxic Effects in HCT-116 Cells. Foods 2023; 12:foods12050974. [PMID: 36900491 PMCID: PMC10001405 DOI: 10.3390/foods12050974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Staphylococcus aureus is one of the high-threat pathogens equipped with a repertoire of virulence factors making it responsible for many infections in humans, including foodborne diseases. The present study aims to characterize antibiotic resistance and virulence factors in foodborne S. aureus isolates, and to investigate their cytotoxic effects in human intestinal cells (HCT-116). Our results revealed methicillin resistance phenotypes (MRSA) along with the detection of mecA gene (20%) among tested foodborne S. aureus strains. Furthermore, 40% of tested isolates showed a strong ability for adhesion and biofilm formation. A high rate of exoenzymes production by tested bacteria was also registered. Additionally, treatment with S. aureus extracts leads to a significant decrease in HCT-116 cell viability, accompanied by a reduction in the mitochondrial membrane potential (MMP), as a result of reactive oxygen species (ROS) generation. Thereby, S. aureus food poisoning remains daunting and needs particular concern to prevent foodborne illness.
Collapse
Affiliation(s)
- Abderrahmen Merghni
- Laboratory of Antimicrobial Resistance LR99ES09, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1007, Tunisia
- Correspondence:
| | - Hiba Hamdi
- Laboratory for Research on Biologically Compatible Compounds, LR01SE17, Faculty of Dental Medicine, University of Monastir, Monastir 5000, Tunisia
| | - Marwa Ben Abdallah
- Laboratory of Transmissible Diseases and Biologically Active Substances, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Zaki M. Al-Hasawi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Diana A. Al-Quwaie
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Salwa Abid-Essefi
- Laboratory for Research on Biologically Compatible Compounds, LR01SE17, Faculty of Dental Medicine, University of Monastir, Monastir 5000, Tunisia
| |
Collapse
|
71
|
Liu J, Huang T, Soteyome T, Miao J, Yu G, Chen D, Ye C, Yang L, Xu Z. Antimicrobial Resistance, SCC mec, Virulence and Genotypes of MRSA in Southern China for 7 Years: Filling the Gap of Molecular Epidemiology. Antibiotics (Basel) 2023; 12:antibiotics12020368. [PMID: 36830279 PMCID: PMC9952273 DOI: 10.3390/antibiotics12020368] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/06/2022] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Abstract
As the prevalence of Staphylococcus aureus infections is of worldwide concern, phenotype and genotype in prevalent MRSA strains require longitudinal investigation. In this study, the antibiotic resistance, virulence gene acquisition, and molecular type were determined on a large scale of nosocomial S. aureus strains in Southern China during 2009-2015. Bacterial identification and antimicrobial susceptibility to 10 antibiotics were tested by Vitek-2. Virulence genes encoding staphylococcal enterotoxins (SEA, SEB, SEC, SED, and SEE), exfoliative toxins (ETA and ETB), Panton-Valentine leukocidin (PVL), and toxic shock syndrome toxin (TSST) were detected by PCR, with SCCmec typing also conducted by multiplex PCR strategy. Genotypes were discriminated by MLST and spaA typing. MLST was performed by amplification of the internal region of seven housekeeping genes. PCR amplification targeting the spa gene was performed for spa typing. No resistance to vancomycin, linezolid, or quinupristin and increase in the resistance to trimethoprim/sulfamethoxazole (55.5%) were identified. A total of nine SCCmec types and subtypes, thirteen STs clustered into thirteen spa types were identified, with ST239-SCCmec III-t037 presenting the predominant methicillin-resistant S. aureus (MRSA) clone. Typically, SCCmec type IX and ST546 were emergent types in China. Isolates positive for both pvl and tsst genes and for both eta and etb genes were also identified. Important findings in this study include: firstly, we have provided comprehensive knowledge on the molecular epidemiology of MRSA in Southern China which fills the gap since 2006 or 2010 from previous studies. Secondly, we have presented the correlation between virulence factors (four major groups) and genotypes (SCCmec, ST and spa types). Thirdly, we have shown evidence for earliest emergence of type I SCCmec from 2012, type VI from 2009 and type XI from 2012 in MRSA from Southern China.
Collapse
Affiliation(s)
- Junyan Liu
- College of Light Industry and Food Science, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Tengyi Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515063, China
| | - Thanapop Soteyome
- Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok 10300, Thailand
| | - Jian Miao
- Graduate Program in Pharmaceutical Sciences, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Guangchao Yu
- Center of Clinical Laboratory Medicine, First Affiliated Hospital of Jinan University, Guangzhou 510620, China
| | - Dingqiang Chen
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Congxiu Ye
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yan-Sen University, Guangzhou 510630, China
| | - Ling Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| | - Zhenbo Xu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515063, China
- Correspondence: ; Tel./Fax: +86-20-8711-3252
| |
Collapse
|
72
|
Francis D, Bhairaddy A, Joy A, Hari GV, Francis A. Secretory proteins in the orchestration of microbial virulence: The curious case of Staphylococcus aureus. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 133:271-350. [PMID: 36707204 DOI: 10.1016/bs.apcsb.2022.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Microbial virulence showcases an excellent model for adaptive changes that enable an organism to survive and proliferate in a hostile environment and exploit host resources to its own benefit. In Staphylococcus aureus, an opportunistic pathogen of the human host, known for the diversity of the disease conditions it inflicts and the rapid evolution of antibiotic resistance, virulence is a consequence of having a highly plastic genome that is amenable to quick reprogramming and the ability to express a diverse arsenal of virulence factors. Virulence factors that are secreted to the host milieu effectively manipulate the host conditions to favor bacterial survival and growth. They assist in colonization, nutrient acquisition, immune evasion, and systemic spread. The structural and functional characteristics of the secreted virulence proteins have been shaped to assist S. aureus in thriving and disseminating effectively within the host environment and exploiting the host resources to its best benefit. With the aim of highlighting the importance of secreted virulence proteins in bacterial virulence, the present chapter provides a comprehensive account of the role of the major secreted proteins of S. aureus in orchestrating its virulence in the human host.
Collapse
Affiliation(s)
- Dileep Francis
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India.
| | - Anusha Bhairaddy
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India
| | - Atheene Joy
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India
| | | | - Ashik Francis
- Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| |
Collapse
|
73
|
Analysis of Whole-Genome Sequences of Pathogenic Gram-Positive and Gram-Negative Isolates from the Same Hospital Environment to Investigate Common Evolutionary Trends Associated with Horizontal Gene Exchange, Mutations and DNA Methylation Patterning. Microorganisms 2023; 11:microorganisms11020323. [PMID: 36838287 PMCID: PMC9961978 DOI: 10.3390/microorganisms11020323] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/31/2023] Open
Abstract
Hospital-acquired infections are a generally recognized problem for healthcare professionals. Clinical variants of Gram-negative and Gram-positive pathogens are characterized with enhanced antibiotic resistance and virulence due to mutations and the horizontal acquisition of respective genetic determinants. In this study, two Escherichia coli, two Klebsiella pneumoniae, three Pseudomonas aeruginosa, two Staphylococcus aureus, one Staphylococcus epidermidis and one Streptococcus pneumoniae showing broad spectra of antibiotic resistance were isolated from patients suffering from nosocomial infections in a local hospital in Almaty, Kazakhstan. The aim of the study was to compare general and species-specific pathways of the development of virulence and antibiotic resistance through opportunistic pathogens causing hospital-acquired infections. The whole-genome PacBio sequencing of the isolates allowed for the genotyping and identification of antibiotic resistance and virulence genetic determinants located in the chromosomes, plasmids and genomic islands. It was concluded that long-read sequencing is a useful tool for monitoring the epidemiological situation in hospitals. Marker antibiotic resistance mutations common for different microorganisms were identified, which were acquired due to antibiotic-selective pressure in the same clinical environment. The genotyping and identification of strain-specific DNA methylation motifs were found to be promising in estimating the risks associated with hospital infection outbreaks and monitoring the distribution and evolution of nosocomial pathogens.
Collapse
|
74
|
Pouget C, Chatre C, Lavigne JP, Pantel A, Reynes J, Dunyach-Remy C. Effect of Antibiotic Exposure on Staphylococcus epidermidis Responsible for Catheter-Related Bacteremia. Int J Mol Sci 2023; 24:ijms24021547. [PMID: 36675063 PMCID: PMC9863639 DOI: 10.3390/ijms24021547] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/16/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Coagulase-negative staphylococci (CoNS) and especially Staphylococcus epidermidis are responsible for health care infections, notably in the presence of foreign material (e.g., venous or central-line catheters). Catheter-related bacteremia (CRB) increases health care costs and mortality. The aim of our study was to evaluate the impact of 15 days of antibiotic exposure (ceftobiprole, daptomycin, linezolid and vancomycin) at sub-inhibitory concentration on the resistance, fitness and genome evolution of 36 clinical strains of S. epidermidis responsible for CRB. Resistance was evaluated by antibiogram, the ability to adapt metabolism by the Biofilm Ring test® and the in vivo nematode virulence model. The impact of antibiotic exposure was determined by whole-genome sequencing (WGS) and biofilm formation experiments. We observed that S. epidermidis strains presented a wide variety of virulence potential and biofilm formation. After antibiotic exposure, S. epidermidis strains adapted their fitness with an increase in biofilm formation. Antibiotic exposure also affected genes involved in resistance and was responsible for cross-resistance between vancomycin, daptomycin and ceftobiprole. Our data confirmed that antibiotic exposure modified bacterial pathogenicity and the emergence of resistant bacteria.
Collapse
Affiliation(s)
- Cassandra Pouget
- Department of Microbiology and Hospital Hygiene, Bacterial Virulence and Chronic Infections, INSERM U1047, CHU Nîmes Univiversity Montpellier, CEDEX 09, 30029 Nîmes, France
| | - Clotilde Chatre
- Department of Infectious and Tropical Diseases, CH Perpignan, 66000 Perpignan, France
| | - Jean-Philippe Lavigne
- Department of Microbiology and Hospital Hygiene, Bacterial Virulence and Chronic Infections, INSERM U1047, CHU Nîmes Univiversity Montpellier, CEDEX 09, 30029 Nîmes, France
| | - Alix Pantel
- Department of Microbiology and Hospital Hygiene, Bacterial Virulence and Chronic Infections, INSERM U1047, CHU Nîmes Univiversity Montpellier, CEDEX 09, 30029 Nîmes, France
| | - Jacques Reynes
- Department of Infectious and Tropical Diseases, IRD UMI 233, INSERM U1175, CHU Montpellier, University Montpellier, CEDEX 5, 34295 Montpellier, France
| | - Catherine Dunyach-Remy
- Department of Microbiology and Hospital Hygiene, Bacterial Virulence and Chronic Infections, INSERM U1047, CHU Nîmes Univiversity Montpellier, CEDEX 09, 30029 Nîmes, France
- Correspondence: ; Tel.: +33-4-6668-3202
| |
Collapse
|
75
|
Shoaib M, Aqib AI, Muzammil I, Majeed N, Bhutta ZA, Kulyar MFEA, Fatima M, Zaheer CNF, Muneer A, Murtaza M, Kashif M, Shafqat F, Pu W. MRSA compendium of epidemiology, transmission, pathophysiology, treatment, and prevention within one health framework. Front Microbiol 2023; 13:1067284. [PMID: 36704547 PMCID: PMC9871788 DOI: 10.3389/fmicb.2022.1067284] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Staphylococcus aureus is recognized as commensal as well as opportunistic pathogen of humans and animals. Methicillin resistant strain of S. aureus (MRSA) has emerged as a major pathogen in hospitals, community and veterinary settings that compromises the public health and livestock production. MRSA basically emerged from MSSA after acquiring SCCmec element through gene transfer containing mecA gene responsible for encoding PBP-2α. This protein renders the MRSA resistant to most of the β-lactam antibiotics. Due to the continuous increasing prevalence and transmission of MRSA in hospitals, community and veterinary settings posing a major threat to public health. Furthermore, high pathogenicity of MRSA due to a number of virulence factors produced by S. aureus along with antibiotic resistance help to breach the immunity of host and responsible for causing severe infections in humans and animals. The clinical manifestations of MRSA consist of skin and soft tissues infection to bacteremia, septicemia, toxic shock, and scalded skin syndrome. Moreover, due to the increasing resistance of MRSA to number of antibiotics, there is need to approach alternatives ways to overcome economic as well as human losses. This review is going to discuss various aspects of MRSA starting from emergence, transmission, epidemiology, pathophysiology, disease patterns in hosts, novel treatment, and control strategies.
Collapse
Affiliation(s)
- Muhammad Shoaib
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of the Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Amjad Islam Aqib
- Department of Medicine, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Iqra Muzammil
- Department of Medicine, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Noreen Majeed
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Zeeshan Ahmad Bhutta
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | | | - Mahreen Fatima
- Faculty of Biosciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | | | - Afshan Muneer
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Maheen Murtaza
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Muhammad Kashif
- Department of Microbiology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Furqan Shafqat
- Department of Microbiology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Wanxia Pu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of the Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
76
|
Cao J, Zhang H, He Z, Piao Z, Zong X, Sun B. Genotypic and Phenotypic Characterization of Some psms Hypervirulent Clinical Isolates of Staphylococcus aureus in a Tertiary Hospital in Hefei, Anhui. Infect Drug Resist 2023; 16:1471-1484. [PMID: 36949844 PMCID: PMC10025015 DOI: 10.2147/idr.s399688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/17/2023] [Indexed: 03/15/2023] Open
Abstract
Background Staphylococcus aureus is a highly successful pathogen that can cause various infectious diseases, from relatively mild skin infections to life-threatening severe systemic diseases. The widespread pathogenicity of S. aureus is mainly due to its ability to produce many virulence factors that help destroy various host cells, causing disease. Our primary goal in this study was to explore the genes of highly virulent strains, to identify genes closely associated with high virulence, and to provide ideas for the treatment of infection by highly virulent clinical strains. Results This study collected 221 clinical strains from The First Affiliated Hospital Of The University of Science and Technology of China (USTC); their hemolytic abilities were tested. Eight isolates were selected based on their highly hemolytic ability and tested their hemolytic activity again; their phenotypes and gene sequences were also explored. Whole-genome sequencing (WGS) showed six plasmids (pN315, pNE131, pSJH901, pSJH101, SAP106B, and MSSA476), eight antibiotic resistance genes [blaR1, blaI, blaZ, mecA, erm(C), erm(T), tet(38), and fosB-Saur] and seventy-two virulence related genes. Three highly virulent strains, namely X21111206, 21092239, and 21112607, were found according the Galleria mellonella infection model. Therefore, we selected 10 representative virulence genes for qRT-PCR: psmα, psmβ, hlgA, hlgB, hlgC, hla, clfA, clfB, spa, and sak. Among them, the expression levels of psmα and psmβ, the three isolates, were significantly higher than the positive control NCTC8325. Conclusion Significant differences appear in the expression of virulence genes in the highly virulent strains, particularly the psmα and psmβ, It may be that the high expression of psm gene is the cause of the high virulence of Staphylococcus aureus. We can reduce the pathogenicity of Staphylococcus aureus by inhibiting the expression of psm gene, which may provide a strong basis for psm as a new target for clinical treatment of S. aureus infection.
Collapse
Affiliation(s)
- Jiaxin Cao
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, People’s Republic of China
- School of Life Science and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Huimin Zhang
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, People’s Republic of China
- School of Life Science and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Zhien He
- School of Life Science and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Zhongwan Piao
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, People’s Republic of China
- Correspondence: Baolin Sun; Zhongwan Piao, Email ;
| | - Xianchun Zong
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, People’s Republic of China
| | - Baolin Sun
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, People’s Republic of China
- School of Life Science and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
- Correspondence: Baolin Sun; Zhongwan Piao, Email ;
| |
Collapse
|
77
|
Jorde I, Schreiber J, Stegemann-Koniszewski S. The Role of Staphylococcus aureus and Its Toxins in the Pathogenesis of Allergic Asthma. Int J Mol Sci 2022; 24:ijms24010654. [PMID: 36614093 PMCID: PMC9820472 DOI: 10.3390/ijms24010654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 01/01/2023] Open
Abstract
Bronchial asthma is one of the most common chronic diseases worldwide and affects more than 300 million patients. Allergic asthma affects the majority of asthmatic children as well as approximately 50% of adult asthmatics. It is characterized by a Th2-mediated immune response against aeroallergens. Many aspects of the overall pathophysiology are known, while the underlying mechanisms and predisposing factors remain largely elusive today. Over the last decade, respiratory colonization with Staphylococcus aureus (S. aureus), a Gram-positive facultative bacterial pathogen, came into focus as a risk factor for the development of atopic respiratory diseases. More than 30% of the world’s population is constantly colonized with S. aureus in their nasopharynx. This colonization is mostly asymptomatic, but in immunocompromised patients, it can lead to serious complications including pneumonia, sepsis, or even death. S. aureus is known for its ability to produce a wide range of proteins including toxins, serine-protease-like proteins, and protein A. In this review, we provide an overview of the current knowledge about the pathophysiology of allergic asthma and to what extent it can be affected by different toxins produced by S. aureus. Intensifying this knowledge might lead to new preventive strategies for atopic respiratory diseases.
Collapse
|
78
|
Xiao M, Wan Z, Lin X, Wang D, Chen Z, Gu Y, Ding S, Zheng S, Li Q. ABO-Incompatible Liver Transplantation under the Desensitization Protocol with Rituximab: Effect on Biliary Microbiota and Metabolites. J Clin Med 2022; 12:jcm12010141. [PMID: 36614942 PMCID: PMC9821037 DOI: 10.3390/jcm12010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Background: ABO-incompatible liver transplantation (ABOi LT) under the desensitization protocol with rituximab had excellent survival outcomes comparable to those of ABO-compatible liver transplantation (ABOc LT). In this work, we explored the effect of ABOi LT on recipients from the perspective of biliary microbiota and metabonomics. Methods: Liver transplant (LT) recipients treated at our center were enrolled in the study. In total, 6 ABOi LT recipients and 12 ABOc LT recipients were enrolled, and we collected their bile five times (during LT and at 2 days, 1 week, 2 weeks and 1 month after LT). The collected samples were used for 16S ribosomal RNA sequencing and liquid chromatography mass spectrometry analysis. Results: We obtained 90 bile samples. Whether in group ABOi LT or ABOc LT, the most common phyla in all of the samples were Firmicutes, Proteobacteria, Bacteroidetes and Actinobacteria. The most common genera were Lactobacillus, Weissella, Klebsiella, Pantoea and Lactococcus. There was no significant difference in the diversity between the two groups at 1 week, 2 weeks and 1 month after LT. However, the biggest disparities between the ABOi LT recipients and ABOc LT recipients were observed 2 days after LT, including increased biodiversity with a higher ACE, Chao1, OBS and Shannon index (p < 0.05), and more Staphylococcus in ABOi LT and binary−Jaccard dissimilarity, which indicated varying β-diversity (p = 0.046). These differences were not observed at 1 week, 2 weeks and 1 month after LT. The principal coordinate analysis (PCoA) revealed that the composition of the bile microbiota did not change significantly within 1 month after LT by longitudinal comparison. In an analysis of the bile components, the metabolites were not significantly different every time. However, four enrichment KEGG pathways were observed among the groups. Conclusion: These findings suggest that ABOi LT under the desensitization protocol with rituximab did not significantly affect the biliary microbiota and metabolites of recipients.
Collapse
Affiliation(s)
- Min Xiao
- Department of Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310004, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Zhenmiao Wan
- Department of Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310004, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
- Division of Hepatobiliary and Pancreatic Surgery, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xin Lin
- Department of Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310004, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Di Wang
- Department of Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310004, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
- Division of Hepatobiliary and Pancreatic Surgery, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhitao Chen
- Department of Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310004, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Yangjun Gu
- Department of Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310004, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Songming Ding
- Department of Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310004, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Shusen Zheng
- Department of Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310004, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
- Correspondence: (S.Z.); (Q.L.)
| | - Qiyong Li
- Department of Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310004, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
- Correspondence: (S.Z.); (Q.L.)
| |
Collapse
|
79
|
In Silico Genome-Scale Analysis of Molecular Mechanisms Contributing to the Development of a Persistent Infection with Methicillin-Resistant Staphylococcus aureus (MRSA) ST239. Int J Mol Sci 2022; 23:ijms232416086. [PMID: 36555727 PMCID: PMC9781258 DOI: 10.3390/ijms232416086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
The increasing frequency of isolation of methicillin-resistant Staphylococcus aureus (MRSA) limits the chances for the effective antibacterial therapy of staphylococcal diseases and results in the development of persistent infection such as bacteremia and osteomyelitis. The aim of this study was to identify features of the MRSAST239 0943-1505-2016 (SA943) genome that contribute to the formation of both acute and chronic musculoskeletal infections. The analysis was performed using comparative genomics data of the dominant epidemic S. aureus lineages, namely ST1, ST8, ST30, ST36, and ST239. The SA943 genome encodes proteins that provide resistance to the host's immune system, suppress immunological memory, and form biofilms. The molecular mechanisms of adaptation responsible for the development of persistent infection were as follows: amino acid substitution in PBP2 and PBP2a, providing resistance to ceftaroline; loss of a large part of prophage DNA and restoration of the nucleotide sequence of beta-hemolysin, that greatly facilitates the escape of phagocytosed bacteria from the phagosome and formation of biofilms; dysfunction of the AgrA system due to the presence of psm-mec and several amino acid substitutions in the AgrC; partial deletion of the nucleotide sequence in genomic island vSAβ resulting in the loss of two proteases of Spl-operon; and deletion of SD repeats in the SdrE amino acid sequence.
Collapse
|
80
|
Obanda BA, Cook EAJ, Fèvre EM, Bebora L, Ogara W, Wang SH, Gebreyes W, Ngetich R, Wandede D, Muyodi J, Blane B, Coll F, Harrison EM, Peacock SJ, Gitao GC. Characteristics of Staphylococcus aureus Isolated from Patients in Busia County Referral Hospital, Kenya. Pathogens 2022; 11:1504. [PMID: 36558838 PMCID: PMC9781741 DOI: 10.3390/pathogens11121504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022] Open
Abstract
Staphylococcus aureus is an important pathogen associated with hospital, community, and livestock-acquired infections, with the ability to develop resistance to antibiotics. Nasal carriage by hospital inpatients is a risk for opportunistic infections. Antibiotic susceptibility patterns, virulence genes and genetic population structure of S. aureus nasal isolates, from inpatients at Busia County Referral Hospital (BCRH) were analyzed. A total of 263 inpatients were randomly sampled, from May to July 2015. The majority of inpatients (85.9%) were treated empirically with antimicrobials, including ceftriaxone (65.8%) and metronidazole (49.8%). Thirty S. aureus isolates were cultured from 29 inpatients with a prevalence of 11% (10.3% methicillin-susceptible S. aureus (MSSA), 0.8% methicillin resistant S. aureus (MRSA)). Phenotypic and genotypic resistance was highest to penicillin-G (96.8%), trimethoprim (73.3%), and tetracycline (13.3%) with 20% of isolates classified as multidrug resistant. Virulence genes, Panton-Valentine leukocidin (pvl), toxic shock syndrome toxin-1 (tsst-1), and sasX gene were detected in 16.7%, 23.3% and 3.3% of isolates. Phylogenetic analysis showed 4 predominant clonal complexes CC152, CC8, CC80, and CC508. This study has identified that inpatients of BCRH were carriers of S. aureus harbouring virulence genes and resistance to a range of antibiotics. This may indicate a public health risk to other patients and the community.
Collapse
Affiliation(s)
- Benear Apollo Obanda
- Department of Veterinary Pathology, Microbiology and Parasitology, University of Nairobi, Nairobi P.O. Box 29053-00625, Kenya
- Global One Health Initiative, Office of International Affairs, The Ohio State University, Columbus, OH 43210, USA
- Centre for Microbiology Research Nairobi, Kenya Medical Research Institute, Nairobi P.O. Box 54840-00200, Kenya
| | | | - Eric M. Fèvre
- International Livestock Research Institute, Nairobi P.O. Box 30709-00100, Kenya
- Institute of Infection, Veterinary & Ecological Sciences, Leahurst Campus, University of Liverpool, Chester High Road, Neston CH64 7TE, UK
| | - Lilly Bebora
- Department of Veterinary Pathology, Microbiology and Parasitology, University of Nairobi, Nairobi P.O. Box 29053-00625, Kenya
| | - William Ogara
- Department of Public Health, Pharmacology and Toxicology, University of Nairobi, Nairobi P.O. Box 29053-00625, Kenya
| | - Shu-Hua Wang
- Global One Health Initiative, Office of International Affairs, The Ohio State University, Columbus, OH 43210, USA
- Division of Infectious Disease, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Wondwossen Gebreyes
- Global One Health Initiative, Office of International Affairs, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Ronald Ngetich
- Centre for Microbiology Research Nairobi, Kenya Medical Research Institute, Nairobi P.O. Box 54840-00200, Kenya
| | - Dolphine Wandede
- Centre for Microbiology Research Nairobi, Kenya Medical Research Institute, Nairobi P.O. Box 54840-00200, Kenya
| | - Johnstone Muyodi
- The Centre for Infectious and Parasitic Diseases Control Research, Busia P.O. Box 3-50400, Kenya
| | - Beth Blane
- Department of Medicine, University of Cambridge, Cambridge CB2 2QQ, UK
| | - Francesc Coll
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, University of London, London WC1E 7HT, UK
| | - Ewan M. Harrison
- Department of Medicine, University of Cambridge, Cambridge CB2 2QQ, UK
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK
- Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Sharon J. Peacock
- Department of Medicine, University of Cambridge, Cambridge CB2 2QQ, UK
| | - George C. Gitao
- Department of Veterinary Pathology, Microbiology and Parasitology, University of Nairobi, Nairobi P.O. Box 29053-00625, Kenya
| |
Collapse
|
81
|
Obanda BA, Gibbons CL, Fèvre EM, Bebora L, Gitao G, Ogara W, Wang SH, Gebreyes W, Ngetich R, Blane B, Coll F, Harrison EM, Kariuki S, Peacock SJ, Cook EAJ. Multi-Drug Resistant Staphylococcus aureus Carriage in Abattoir Workers in Busia, Kenya. Antibiotics (Basel) 2022; 11:1726. [PMID: 36551383 PMCID: PMC9774130 DOI: 10.3390/antibiotics11121726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Abattoir workers have been identified as high-risk for livestock-associated Staphylococcus aureus carriage. This study investigated S. aureus carriage in abattoir workers in Western Kenya. Nasal swabs were collected once from participants between February-November 2012. S. aureus was isolated using bacterial culture and antibiotic susceptibility testing performed using the VITEK 2 instrument and disc diffusion methods. Isolates underwent whole genome sequencing and Multi Locus Sequence Types were derived from these data. S. aureus (n = 126) was isolated from 118/737 (16.0%) participants. Carriage was higher in HIV-positive (24/89, 27.0%) than HIV−negative participants (94/648, 14.5%; p = 0.003). There were 23 sequence types (STs) identified, and half of the isolates were ST152 (34.1%) or ST8 (15.1%). Many isolates carried the Panton-Valentine leucocidin toxin gene (42.9%). Only three isolates were methicillin resistant S. aureus (MRSA) (3/126, 2.4%) and the prevalence of MRSA carriage was 0.4% (3/737). All MRSA were ST88. Isolates from HIV-positive participants (37.0%) were more frequently resistant to sulfamethoxazole/trimethoprim compared to isolates from HIV-negative participants (6.1%; p < 0.001). Similarly, trimethoprim resistance genes were more frequently detected in isolates from HIV-positive (81.5%) compared to HIV-negative participants (60.6%; p = 0.044). S. aureus in abattoir workers were representative of major sequence types in Africa, with a high proportion being toxigenic isolates. HIV-positive individuals were more frequently colonized by antimicrobial resistant S. aureus which may be explained by prophylactic antimicrobial use.
Collapse
Affiliation(s)
- Benear Apollo Obanda
- Department of Veterinary Pathology, Microbiology and Parasitology, University of Nairobi, Nairobi P.O. Box 29053-00625, Kenya
- Global One Health Initiative, The Ohio State University, Columbus, OH 43210, USA
- Centre for Microbiology Research Nairobi, Kenya Medical Research Institute, Nairobi P.O. Box 54840-00200, Kenya
| | | | - Eric M. Fèvre
- Institute of Infection, Veterinary & Ecological Sciences, Leahurst Campus, University of Liverpool, Chester High Road, Neston CH64 7TE, UK
- International Livestock Research Institute, Nairobi P.O. Box 30709-00100, Kenya
| | - Lilly Bebora
- Department of Veterinary Pathology, Microbiology and Parasitology, University of Nairobi, Nairobi P.O. Box 29053-00625, Kenya
| | - George Gitao
- Department of Veterinary Pathology, Microbiology and Parasitology, University of Nairobi, Nairobi P.O. Box 29053-00625, Kenya
| | - William Ogara
- Department of Public Health Pharmacology and Toxicology, University of Nairobi, Nairobi P.O. Box 29053-00625, Kenya
| | - Shu-Hua Wang
- Global One Health Initiative, The Ohio State University, Columbus, OH 43210, USA
- Division of Infectious Disease, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Wondwossen Gebreyes
- Global One Health Initiative, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Ronald Ngetich
- Centre for Microbiology Research Nairobi, Kenya Medical Research Institute, Nairobi P.O. Box 54840-00200, Kenya
| | - Beth Blane
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Francesc Coll
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Ewan M. Harrison
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK
- Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Samuel Kariuki
- Centre for Microbiology Research Nairobi, Kenya Medical Research Institute, Nairobi P.O. Box 54840-00200, Kenya
| | - Sharon J. Peacock
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | | |
Collapse
|
82
|
Zhang W, Ran J, Shang L, Zhang L, Wang M, Fei C, Chen C, Gu F, Liu Y. Niclosamide as a repurposing drug against Gram-positive bacterial infections. J Antimicrob Chemother 2022; 77:3312-3320. [PMID: 36173387 DOI: 10.1093/jac/dkac319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/30/2022] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Niclosamide is commonly used as an antiparasitic drug in veterinary clinics. The objectives of this study were to evaluate the efficacy of niclosamide against resistant Gram-positive bacteria in vitro and in an in vivo experimental model of topical bacterial infection. Moreover, to study the antibacterial mechanism of niclosamide to Staphylococcus aureus. METHODS A mouse topical infection model was established to detect the antibacterial activity of niclosamide in vivo. The antimicrobial mechanism was probed by visualizing the bacterial morphologies using scanning electron microscopy and transmission electron microscopy. Moreover, the haemolytic assay and western blotting analysis were performed to evaluate whether niclosamide could inhibit the secretion of alpha-haemolysin (α-HL) from S. aureus. RESULTS The MICs of niclosamide were below 0.5 mg/L for Gram-positive bacteria, showing excellent antibacterial activity in vitro. The in vivo antibacterial activity results indicated that niclosamide treatment at 10 mg/kg of body weight caused a significant reduction in the abscess area and the number of S. aureus cells. Moreover, the antibacterial mechanism of niclosamide showed that the surface morphology of S. aureus displayed noticeable shrinkage, with an increasing number of small vacuole-like structures observed as the drug concentration increased. Intracellular ATP levels were found to decrease in a niclosamide dose-dependent manner. Haemolysis and western blotting analyses revealed that niclosamide inhibited the haemolytic activity of S. aureus by inhibiting α-HL expression under subinhibitory concentration conditions. CONCLUSIONS Niclosamide has significant potential for development into drugs that prevent and treat diseases caused by Gram-positive bacteria such as Staphylococcus and Streptococcus.
Collapse
Affiliation(s)
- Wei Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.,Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Jinxin Ran
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.,Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Lu Shang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.,Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Lifang Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.,Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Mi Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.,Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Chenzhong Fei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.,Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Chan Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.,Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Feng Gu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.,Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| | - Yingchun Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.,Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai 200241, China
| |
Collapse
|
83
|
Wei Y, Sandhu E, Yang X, Yang J, Ren Y, Gao X. Bidirectional Functional Effects of Staphylococcus on Carcinogenesis. Microorganisms 2022; 10:microorganisms10122353. [PMID: 36557606 PMCID: PMC9783839 DOI: 10.3390/microorganisms10122353] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
As a Gram-positive cocci existing in nature, Staphylococcus has a variety of species, such as Staphylococcus aureus and Staphylococcus epidermidis, etc. Growing evidence reveals that Staphylococcus is closely related to the occurrence and development of various cancers. On the one hand, cancer patients are more likely to suffer from bacterial infection and antibiotic-resistant strain infection compared to healthy controls. On the other hand, there exists an association between staphylococcal infection and carcinogenesis. Staphylococcus often plays a pathogenic role and evades the host immune system through surface adhesion molecules, α-hemolysin, PVL (Panton-Valentine leukocidin), SEs (staphylococcal enterotoxins), SpA (staphylococcal protein A), TSST-1 (Toxic shock syndrom toxin-1) and other factors. Staphylococcal nucleases (SNases) are extracellular nucleases that serve as genomic markers for Staphylococcus aureus. Interestingly, a human homologue of SNases, SND1 (staphylococcal nuclease and Tudor domain-containing 1), has been recognized as an oncoprotein. This review is the first to summarize the reported basic and clinical evidence on staphylococci and neoplasms. Investigations on the correlation between Staphylococcus and the occurrence, development, diagnosis and treatment of breast, skin, oral, colon and other cancers, are made from the perspectives of various virulence factors and SND1.
Collapse
Affiliation(s)
- Yuannan Wei
- Faculty of Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Esha Sandhu
- Faculty of Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Xi Yang
- Department of Immunology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Jie Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Tianjin Medical University, Qixiangtai Road No. 22, Heping District, Tianjin 300070, China
- Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Qixiangtai Road No. 22, Heping District, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Qixiangtai Road No. 22, Heping District, Tianjin 300070, China
| | - Yuanyuan Ren
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Tianjin Medical University, Qixiangtai Road No. 22, Heping District, Tianjin 300070, China
- Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Qixiangtai Road No. 22, Heping District, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Qixiangtai Road No. 22, Heping District, Tianjin 300070, China
- Correspondence: (Y.R.); (X.G.); Tel./Fax: +86-022-83336806 (X.G.)
| | - Xingjie Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Tianjin Medical University, Qixiangtai Road No. 22, Heping District, Tianjin 300070, China
- Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Qixiangtai Road No. 22, Heping District, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Qixiangtai Road No. 22, Heping District, Tianjin 300070, China
- Correspondence: (Y.R.); (X.G.); Tel./Fax: +86-022-83336806 (X.G.)
| |
Collapse
|
84
|
Jeon J, Kang S, Hur JK, Rho M. Metagenomic characterization of sphingomyelinase C in the microbiome of humans and environments. Front Cell Infect Microbiol 2022; 12:1015706. [PMID: 36467737 PMCID: PMC9710629 DOI: 10.3389/fcimb.2022.1015706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/25/2022] [Indexed: 09/25/2023] Open
Abstract
Bacterial sphingomyelinases (SMases) hydrolyze sphingomyelin and play an important role in membrane dynamics and the host immune system. While the number of sequenced genomes and metagenomes is increasing, a limited number of experimentally validated SMases have been reported, and the genomic diversity of SMases needs to be elucidated extensively. This study investigated the sequence and structural characteristics of SMases in bacterial genomes and metagenomes. Using previously identified SMases, such as the β-toxin of Staphylococcus aureus, we identified 276 putative SMases and 15 metagenomic SMases by a sequence homology search. Among the predicted metagenomic SMases, six non-redundant metagenomic SMases (M-SMase1-6) were selected for further analysis. The predicted SMases were confirmed to contain highly conserved residues in the central metal-binding site; however, the edge metal-binding site showed high diversity according to the taxon. In addition, protein structure modeling of metagenomic SMases confirmed structural conservation of the central metal-binding site and variance of the edge metal-binding site. From the activity assay on M-SMase2 and M-SMase5, we found that they displayed sphingomyelinase activity compared to Bacillus cereus SMase. This study elucidates a comprehensive genomic characterization of SMases and provides insight into the sequence-structure-activity relationship.
Collapse
Affiliation(s)
- Jehyun Jeon
- Department of Computer Science, Hanyang University, Seoul, South Korea
| | - Seunghun Kang
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Junho K. Hur
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
- Department of Genetics, College of Medicine, Hanyang University, Seoul, South Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, South Korea
| | - Mina Rho
- Department of Computer Science, Hanyang University, Seoul, South Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, South Korea
- Department of Biomedical Informatics, Hanyang University, Seoul, South Korea
| |
Collapse
|
85
|
Fernandes A, Ramos C, Monteiro V, Santos J, Fernandes P. Virulence Potential and Antibiotic Susceptibility of S. aureus Strains Isolated from Food Handlers. Microorganisms 2022; 10:2155. [PMID: 36363746 PMCID: PMC9696720 DOI: 10.3390/microorganisms10112155] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 08/27/2023] Open
Abstract
Staphylococcus spp. are common members of the normal human flora. However, some Staphylococcus species are recognised as human pathogens due to the production of several virulence factors and enterotoxins that are particularly worrisome in food poisoning. Since many of Staphylococcal food poisoning outbreaks are typically associated with cross-contamination, the detection of S. aureus on food handlers was performed. Hand swabs from 167 food handlers were analysed for the presence of S. aureus. More than 11% of the samples were positive for S. aureus. All S. aureus strains were isolated and analysed for the presence of virulence and enterotoxin genes, namely, sea, seb, sec, sed, seg, sei, tsst-1 and pvl. The same strains were phenotypically characterised in terms of antibiotic susceptibility using the disc diffusion method and antimicrobial agents from 12 different classes. A low prevalence of antibiotic-resistant strains was found, with 55.6% of the strains being sensitive to all of the antimicrobial agents tested. However, a high prevalence of resistance to macrolides was found, with 44.4% of the strains showing resistance to erythromycin. At least one of the virulence or toxin genes was detected in 61.1% of the strains, and seg was the most prevalent toxin gene, being detected in 44.4% of the strains.
Collapse
Affiliation(s)
- Adriana Fernandes
- Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal
| | - Carla Ramos
- Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal
| | - Victor Monteiro
- Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal
| | - Joana Santos
- Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal
- CISAS, Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal
| | - Paulo Fernandes
- Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal
- CISAS, Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal
| |
Collapse
|
86
|
Soezi M, Piri-Gavgani S, Ghanei M, Omrani MD, Soltanmohammadi B, Bagheri KP, Cohan RA, Vaziri F, Siadat SD, Fateh A, Khatami S, Azizi M, Rahimi-Jamnani F. Identification of a novel fully human anti-toxic shock syndrome toxin (TSST)-1 single-chain variable fragment antibody averting TSST-1-induced mitogenesis and cytokine secretion. BMC Biotechnol 2022; 22:31. [PMID: 36307814 PMCID: PMC9617332 DOI: 10.1186/s12896-022-00760-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 08/18/2022] [Accepted: 10/07/2022] [Indexed: 12/05/2022] Open
Abstract
Background Staphylococcal superantigens are virulence factors that help the pathogen escape the immune system and develop an infection. Toxic shock syndrome toxin (TSST)-1 is one of the most studied superantigens whose role in toxic shock syndrome and some particular disorders have been demonstrated. Inhibiting TSST-1 production with antibiotics and targeting TSST-1 with monoclonal antibodies might be one of the best strategies to prevent TSST-1-induced cytokines storm followed by lethality. Results A novel single-chain variable fragment (scFv), MS473, against TSST-1 was identified by selecting an scFv phage library on the TSST-1 protein. The MS473 scFv showed high affinity and specificity for TSST-1. Moreover, MS473 could significantly prevent TSST-1-induced mitogenicity (the IC50 value: 1.5 µM) and cytokine production. Conclusion Using traditional antibiotics with an anti-TSST-1 scFv as a safe and effective agent leads to deleting the infection source and preventing the detrimental effects of the toxin disseminated into the whole body. Supplementary information The online version contains supplementary material available at 10.1186/s12896-022-00760-8.
Collapse
|
87
|
Tao Y, Sun D, Ren X, Zhao Y, Zhang H, Jiang T, Guan J, Tang Y, Song W, Li S, Wang L. Bavachin Suppresses Alpha-Hemolysin Expression and Protects Mice from Pneumonia Infection by Staphylococcus aureus. J Microbiol Biotechnol 2022; 32:1253-1261. [PMID: 36224757 PMCID: PMC9668093 DOI: 10.4014/jmb.2207.07048] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 11/05/2022]
Abstract
Staphylococcus aureus (S. aureus) infection causes dramatic harm to human health as well as to livestock development. As an important virulence factor, alpha-hemolysin (hla) is critical in the process of S. aureus infection. In this report, we found that bavachin, a natural flavonoid, not only efficiently inhibited the hemolytic activity of hla, but was also capable of inhibiting it on transcriptional and translational levels. Moreover, further data revealed that bavachin had no neutralizing activity on hla, which did not affect the formation of hla heptamers and exhibited no effects on the hla thermal stability. In vitro assays showed that bavachin was able to reduce the S. aureus-induced damage of A549 cells. Thus, bavachin repressed the lethality of pneumonia infection, lung bacterial load and lung tissue inflammation in mice, providing potent protection to mice models in vivo. Our results indicated that bavachin has the potential for development as a candidate hla inhibitor against S. aureus.
Collapse
Affiliation(s)
- Ye Tao
- Changchun University of Chinese Medicine, Changchun 130117, P.R. China,The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, P.R. China
| | - Dazhong Sun
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Xinran Ren
- School of Pharmaceutical Science, Jilin University, Changchun 130021, P.R. China
| | - Yicheng Zhao
- Changchun University of Chinese Medicine, Changchun 130117, P.R. China,Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, State Key Laboratory of Human-Animal Zoonotic infectious Diseases, Changchun, P.R. China
| | - Hengjian Zhang
- Changchun University of Chinese Medicine, Changchun 130117, P.R. China
| | - Tao Jiang
- Changchun University of Chinese Medicine, Changchun 130117, P.R. China
| | - Jiyu Guan
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, P.R. China
| | - Yong Tang
- Changchun University of Chinese Medicine, Changchun 130117, P.R. China
| | - Wu Song
- Changchun University of Chinese Medicine, Changchun 130117, P.R. China,Corresponding authors W. Song E-mail:
| | - Shuqiang Li
- Department of Orthopedic Surgery, The First Hospital of Jilin University, Changchun 130062, P.R. China,
S. Li E-mail:
| | - Li Wang
- Changchun University of Chinese Medicine, Changchun 130117, P.R. China,
L. Wang E-mail:
| |
Collapse
|
88
|
First Genome-Based Characterisation and Staphylococcal Enterotoxin Production Ability of Methicillin-Susceptible and Methicillin-Resistant Staphylococcus aureus Strains Isolated from Ready-to-Eat Foods in Algiers (Algeria). Toxins (Basel) 2022; 14:toxins14110731. [PMID: 36355981 PMCID: PMC9694651 DOI: 10.3390/toxins14110731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 01/26/2023] Open
Abstract
Staphylococcus aureus is a pathogenic microorganism of humans and animals, able to cause foodborne intoxication due to the production of staphylococcal enterotoxins (SEs) and to resist antibiotic treatment as in the case of methicillin-resistant S. aureus (MRSA). In this study, we performed a genomic characterisation of 12 genetically diverse S. aureus strains isolated from ready-to-eat foods in Algiers (Algeria). Moreover, their ability to produce some classical and new staphylococcal enterotoxins (SEs) was investigated. The 12 S. aureus strains resulted to belong to nine known sequence types (STs) and to the novel ST7199 and ST7200. Furthermore, S. aureus SA46 was assigned to the European clone MRSA-ST80-SCCmec-IV. The 12 strains showed a wide endowment of se and sel (staphylococcal enterotoxin-like toxin) genes (sea, seb, sed, seg, seh, sei, selj, sek, sem, sen, seo, seq, ser, selu2, selw, selx, sey, sel30; ψent1-ψent2), including variants and pseudogenes, and harboured the enterotoxin gene cluster (egc) types 1 and 5. Additionally, they produced various amounts of SEA (64.54-345.02 ng/mL), SEB (2871.28-14739.17 ng/mL), SED (322.70-398.94 ng/mL), SEH (not detectable-239.48 ng/mL), and SER (36,720.10-63,176.06 ng/mL) depending on their genotypes. The genetic determinants related to their phenotypic resistance to β-lactams (blaZ, mecA), ofloxacin (gyrA-S84L), erythromycin (ermB), lincomycin (lmrS), kanamycin (aph(3')-III, ant(6)-I), and tetracyclin (tet(L), tet(38)) were also detected. A plethora of virulence-related genes, including major virulence genes such as the tst gene, determinant for the toxic shock syndrome toxin-1, and the lukF-PV and lukS-PV genes, encoding the panton-valentine leukocidin (PVL), were present in the S. aureus strains, highlighting their pathogenic potential. Furthermore, a phylogenomic reconstruction including worldwide foodborne S. aureus showed a clear clustering based on ST and geographical origin rather than the source of isolation.
Collapse
|
89
|
Molecular Characteristics and Distribution of Virulence Genes among Staphylococcus aureus Complex Isolates Derived from Vascular Access Infections. CANADIAN JOURNAL OF INFECTIOUS DISEASES AND MEDICAL MICROBIOLOGY 2022; 2022:3196545. [PMCID: PMC9616667 DOI: 10.1155/2022/3196545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022]
Abstract
Staphylococcus aureus is a major human pathogen that produces various virulence factors which promote the binding of bacteria to tissues and medical devices such as vascular access devices, thereby developing a wide range of invasive infections. Vascular access serves as an entry site for S. aureus and elevates the risk of infection in the hemodialysis population. Nevertheless, the distribution of virulence genes in Staphylococcus spp. associated with vascular access infections (VAIs) has not been studied previously. In this study, we determined the relationship between the molecular characteristics and virulence profiles of S. aureus isolates obtained from VAIs. We collected isolates from patients with VAIs between August 2017 and December 2020 and further analyzed the molecular characteristics, antimicrobial resistance profiles, and virulence gene distribution in the isolates. Overall, 15 sequence types (STs), including a new ST (ST6892) and 19 spa types, were identified among the 56 isolates. Of the 53 S. aureus isolates, ST8, ST239, ST45, and ST59 were the predominant STs, whereas ST2250 was the only ST in 3 S. argenteus isolates. ST45-SCCmecIV-t026 (abbreviated as ST45-IV-t026), ST59-V-t437, and ST8-IV-t008 were the predominant clones that belonged to agr type I. All isolates harbored clfB and eno, whereas all S. aureus isolates harbored clfA. In addition, 10 Panton-Valentine leucocidin-positive isolates belonged to ST8 and ST59, with ST8-IV-t008 and ST59-V-t437 being the predominant clones. In brief, the distribution of virulence genes associated with STs may assist in the spread of molecular types of Staphylococcus spp.
Collapse
|
90
|
Glucose Mediates Niche-Specific Repression of Staphylococcus aureus Toxic Shock Syndrome Toxin-1 through the Activity of CcpA in the Vaginal Environment. J Bacteriol 2022; 204:e0026922. [PMID: 36106854 PMCID: PMC9578429 DOI: 10.1128/jb.00269-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus chronically colonizes up to 30% of the human population on the skin or mucous membranes, including the nasal tract or vaginal canal. While colonization is often benign, this bacterium also has the capability to cause serious infections. Menstrual toxic shock syndrome (mTSS) is a serious toxinosis associated with improper use of tampons, which can induce an environment that is favorable to the production of the superantigen known as toxic shock syndrome toxin-1 (TSST-1). To better understand environmental signaling that influences TSST-1 production, we analyzed expression in the prototype mTSS strain S. aureus MN8. Using transcriptional and protein-based analysis in two niche-related media, we observed that TSST-1 expression was significantly higher in synthetic nasal medium (SNM) than in vaginally defined medium (VDM). One major divergence in medium composition was high glucose concentration in VDM. The glucose-dependent virulence regulator gene ccpA was deleted in MN8, and, compared with wild-type MN8, we observed increased TSST-1 expression in the ΔccpA mutant when grown in VDM, suggesting that TSST-1 is repressed by catabolite control protein A (CcpA) in the vaginal environment. We were able to relieve CcpA-mediated repression by modifying the glucose level in vaginal conditions, confirming that changes in nutritional conditions contribute to the overexpression of TSST-1 that can lead to mTSS. We also compared CcpA-mediated repression to other key regulators of tst, finding that CcpA regulation is dominant compared to other characterized regulatory mechanisms. This study underlines the importance of environmental signaling for S. aureus pathogenesis in the context of mTSS. IMPORTANCE Menstrual toxic shock syndrome (mTSS) is caused by strains of Staphylococcus aureus that overproduce a toxin known as toxic shock syndrome toxin-1 (TSST-1). This work studied how glucose levels in a model vaginal environment could influence the amount of TSST-1 that is produced by S. aureus. We found that high levels of glucose repress TSST-1 production, and this is done by a regulatory protein called catabolite control protein A (CcpA). The research also demonstrated that, compared with other regulatory proteins, the CcpA regulator appears to be the most important for maintaining low levels of TSST-1 in the vaginal environment, and this information helps to understand how changes in the vaginal environmental can lead to mTSS.
Collapse
|
91
|
Bianchi DM, Maurella C, Lenzi C, Fornasiero M, Barbaro A, Decastelli L. Influence of Season and Food Type on Bacterial and Entero-Toxigenic Prevalence of Staphylococcus aureus. Toxins (Basel) 2022; 14:671. [PMID: 36287940 PMCID: PMC9611241 DOI: 10.3390/toxins14100671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/10/2022] [Accepted: 09/21/2022] [Indexed: 11/30/2022] Open
Abstract
Staphylococcus (S.) aureus is a coagulase-positive pathogen of interest for human health and food safety in particular. It can survive in a wide environmental temperature range (7-48 °C, optimum 37 °C). Its enterotoxins are thermostable, which increases the risk of potential contamination in a variety of food products. Here we investigated the influence of seasonality and food type on bacterial count and presence of S. aureus enterotoxins. To do this, we analyzed 3604 food samples collected over a 5-year period (2016-2020). Ordinal logistic regression showed an influence of both seasonality and food type on the bacterial count. Regarding bacterial counts, winter was found to be the season with the highest risk, while with regards to enterotoxin production, the highest risk was found in autumn, specifically in October. The risk of contamination with S. aureus was greatest for dairy products. Our findings may inform food epidemiologists about foodborne illness prevention and risk to human health.
Collapse
Affiliation(s)
- Daniela Manila Bianchi
- Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d’Aosta, 10154 Turin, Italy
- National Reference Laboratory for Coaugulase-Positive Staphylococci including S. aureus, Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d’Aosta, 10154 Turin, Italy
| | - Cristiana Maurella
- Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d’Aosta, 10154 Turin, Italy
| | - Christian Lenzi
- Department of Mathematics, Physics and Natural Sciences, University of Eastern Piedmont Amedeo Avogadro, 13100 Vercelli, Italy
| | - Massimo Fornasiero
- Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d’Aosta, 10154 Turin, Italy
| | - Antonio Barbaro
- Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d’Aosta, 10154 Turin, Italy
| | - Lucia Decastelli
- Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d’Aosta, 10154 Turin, Italy
- National Reference Laboratory for Coaugulase-Positive Staphylococci including S. aureus, Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d’Aosta, 10154 Turin, Italy
| |
Collapse
|
92
|
Kim S, Lee JH, Kim YG, Tan Y, Lee J. Hydroquinones Inhibit Biofilm Formation and Virulence Factor Production in Staphylococcus aureus. Int J Mol Sci 2022; 23:ijms231810683. [PMID: 36142597 PMCID: PMC9506180 DOI: 10.3390/ijms231810683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus aureus is one of the major pathogens responsible for antimicrobial resistance-associated death. S. aureus can secrete various exotoxins, and staphylococcal biofilms play critical roles in antibiotic tolerance and the persistence of chronic infections. Here, we investigated the inhibitory effects of 18 hydroquinones on biofilm formation and virulence factor production by S. aureus. It was found that 2,5-bis(1,1,3,3-tetramethylbutyl) hydroquinone (TBHQ) at 1 µg/mL efficiently inhibits biofilm formation by two methicillin-sensitive and two methicillin-resistant S. aureus strains with MICs of 5 µg/mL, whereas the backbone compound hydroquinone did not (MIC > 400 µg/mL). In addition, 2,3-dimethylhydroquinone and tert-butylhydroquinone at 50 µg/mL also exhibited antibiofilm activity. TBHQ at 1 µg/mL significantly decreased the hemolytic effect and lipase production by S. aureus, and at 5−50 µg/mL was non-toxic to the nematode Caenorhabditis elegans and did not adversely affect Brassica rapa seed germination or growth. Transcriptional analyses showed that TBHQ suppressed the expression of RNAIII (effector of quorum sensing). These results suggest that hydroquinones, particularly TBHQ, are potentially useful for inhibiting S. aureus biofilm formation and virulence.
Collapse
Affiliation(s)
- Sanghun Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Yong-Guy Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Yulong Tan
- Special Food Research Institute, Qingdao Agricultural University, Qingdao 266109, China
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
- Correspondence: ; Tel.: +82-53-810-2533
| |
Collapse
|
93
|
Li Y, Tang Y, Jiang Z, Wang Z, Li Q, Jiao X. Molecular Characterization of Methicillin-Sensitive Staphylococcus aureus from the Intestinal Tracts of Adult Patients in China. Pathogens 2022; 11:pathogens11090978. [PMID: 36145410 PMCID: PMC9504698 DOI: 10.3390/pathogens11090978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Intestinal infections caused by methicillin-sensitive Staphylococcus aureus (MSSA) have posed a great challenge for clinical treatments. In recent years, the intestinal carriage rates of MSSA have risen steadily in hospital settings in China. However, the epidemiology and molecular characteristics of MSSA from the intestinal tracts of Chinese adult patients remain unknown. In the present study, a total of 80 S. aureus isolates, including 64 MSSA and 16 methicillin-resistant Staphylococcus aureus (MRSA), were recovered from 466 fecal swabs in adult patients between 2019 and 2021 in China. The MSSA isolates exhibited high resistance to penicillin (92.2%) and erythromycin (45.3%). In addition, a higher proportion of MSSA isolates (14.1%) were multidrug-resistant (MDR) strains than that of MRSA isolates (1.3%). Among the 64 MSSA isolates, we identified 17 MLST types, of which ST398 and ST15 were the most predominant types. The most frequently detected resistance genes were blaZ (87.5%) and erm(C) (21.9%). The hemolysin genes (hla, hld, hlgA, hlgB, hlgC) were detected in all the MSSA isolates, but the Panton–Valentine leucocidin (pvl) gene was identified in 1.7% of the MSSA isolates. Our findings indicated that the prevalence and antimicrobial resistance of intestinal MSSA was a serious concern among adult patients in China.
Collapse
Affiliation(s)
- Yang Li
- Jiangsu Key Lab of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225000, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225000, China
| | - Yuanyue Tang
- Jiangsu Key Lab of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225000, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225000, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225000, China
| | - Zhongyi Jiang
- Jiangsu Key Lab of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225000, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225000, China
| | - Zhenyu Wang
- Jiangsu Key Lab of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225000, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225000, China
| | - Qiuchun Li
- Jiangsu Key Lab of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225000, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225000, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225000, China
- Correspondence: (Q.L.); (X.J.); Tel.: +86-514-8797-1136 (Q.L. & X.J.)
| | - Xinan Jiao
- Jiangsu Key Lab of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225000, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225000, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225000, China
- Correspondence: (Q.L.); (X.J.); Tel.: +86-514-8797-1136 (Q.L. & X.J.)
| |
Collapse
|
94
|
Yu H, Liu J, Wang L, Guan S, Jin Y, Zheng J, Xiang H, Wang D, Liu D. 2,3-Dehydrokievitone combats methicillin-resistant Staphylococcus aureus infection by reducing alpha-hemolysin expression. Front Microbiol 2022; 13:969215. [PMID: 36090058 PMCID: PMC9454091 DOI: 10.3389/fmicb.2022.969215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/02/2022] [Indexed: 11/21/2022] Open
Abstract
Due to powerful drug resistance and fatal toxicity of methicillin-resistant Staphylococcus aureus (MRSA), therapeutic strategies against virulence factors present obvious advantages since no evolutionary pressure will induce bacterial resistance. Alpha-hemolysin (Hla) is an extracellular toxin secreted by Staphylococcus aureus and contributes to bacterial pathogenicity. Herein, we identified a natural product 2,3-dehydrokievitone (2,3-DHKV) for inhibiting Hla activity of MRSA strain USA300 but not affecting bacteria growth. 2,3-DHKV significantly decreased hemolysin expression in a dose-dependent manner, but it did not potently neutralize hemolysin activity. Subsequently, cellular thermal shift and heptamer formation assays confirmed that 2,3-DHK affects hemolytic activity through indirect binding to Hla. RT-qPCR and western blot revealed that 2,3-DHKV suppressed Hla expression at the mRNA and protein levels, and further decreased accessory gene regulator A (agrA) transcription levels. We also observed that 2,3-DHK significantly attenuated the damage of A549 cells by S. aureus and reduced the release of lactate dehydrogenase (LDH). Moreover, in the MRSA-induced pneumonia mouse model, 2,3-DHK treatment prolonged the life span of mice and reduced the bacterial load in the lungs, which significantly alleviated the damage to the lungs. In summary, this study proved that 2,3-DHK as a Hla inhibitor is a potential antivirulence agent against MRSA infection.
Collapse
Affiliation(s)
- Hangqian Yu
- College of Animal Science, Jilin University, Changchun, China
| | - Jingyu Liu
- College of Animal Science, Jilin University, Changchun, China
| | - Li Wang
- College of Animal Science, Jilin University, Changchun, China
- Changchun University of Chinese Medicine, Changchun, China
| | - Shuhan Guan
- College of Animal Science, Jilin University, Changchun, China
| | - Yajing Jin
- College of Animal Science, Jilin University, Changchun, China
| | - Jianze Zheng
- College of Animal Science, Jilin University, Changchun, China
| | - Hua Xiang
- College of Animal Medicine, Jilin Agricultural University, Changchun, China
| | - Dacheng Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Dianfeng Liu
- College of Animal Science, Jilin University, Changchun, China
- *Correspondence: Dianfeng Liu,
| |
Collapse
|
95
|
Turner AB, Gerner E, Firdaus R, Echeverz M, Werthén M, Thomsen P, Almqvist S, Trobos M. Role of sodium salicylate in Staphylococcus aureus quorum sensing, virulence, biofilm formation and antimicrobial susceptibility. Front Microbiol 2022; 13:931839. [PMID: 35992652 PMCID: PMC9384861 DOI: 10.3389/fmicb.2022.931839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/06/2022] [Indexed: 01/01/2023] Open
Abstract
The widespread threat of antibiotic resistance requires new treatment options. Disrupting bacterial communication, quorum sensing (QS), has the potential to reduce pathogenesis by decreasing bacterial virulence. The aim of this study was to investigate the influence of sodium salicylate (NaSa) on Staphylococcus aureus QS, virulence production and biofilm formation. In S. aureus ATCC 25923 (agr III), with or without serum, NaSa (10 mM) downregulated the agr QS system and decreased the secretion levels of alpha-hemolysin, staphopain A and delta-hemolysin. Inhibition of agr expression caused a downregulation of delta-hemolysin, decreasing biofilm dispersal and increasing biofilm formation on polystyrene and titanium under static conditions. In contrast, NaSa did not increase biofilm biomass under flow but caused one log10 reduction in biofilm viability on polystyrene pegs, resulting in biofilms being twice as susceptible to rifampicin. A concentration-dependent effect of NaSa was further observed, where high concentrations (10 mM) decreased agr expression, while low concentrations (≤0.1 mM) increased agr expression. In S. aureus 8325-4 (agr I), a high concentration of NaSa (10 mM) decreased hla expression, and a low concentration of NaSa (≤1 mM) increased rnaIII and hla expression. The activity of NaSa on biofilm formation was dependent on agr type and material surface. Eight clinical strains isolated from prosthetic joint infection (PJI) or wound infection belonging to each of the four agr types were evaluated. The four PJI S. aureus strains did not change their biofilm phenotype with NaSa on the clinically relevant titanium surface. Half of the wound strains (agr III and IV) did not change the biofilm phenotype in the 3D collagen wound model. In addition, compared to the control, ATCC 25923 biofilms formed with 10 mM NaSa in the collagen model were more susceptible to silver. It is concluded that NaSa can inhibit QS in S. aureus, decreasing the levels of toxin production with certain modulation of biofilm formation. The effect on biofilm formation was dependent on the strain and material surface. It is suggested that the observed NaSa inhibition of bacterial communication is a potential alternative or adjuvant to traditional antibiotics.
Collapse
Affiliation(s)
- Adam Benedict Turner
- Department of Biomaterials, University of Gothenburg, The Sahlgrenska Academy, Gothenburg, Sweden
- Center for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Erik Gerner
- Department of Biomaterials, University of Gothenburg, The Sahlgrenska Academy, Gothenburg, Sweden
- Center for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Mölnlycke Health Care AB, Gothenburg, Sweden
| | - Rininta Firdaus
- Department of Biomaterials, University of Gothenburg, The Sahlgrenska Academy, Gothenburg, Sweden
- Center for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Maite Echeverz
- Microbial Pathogenesis Research Unit, Public University of Navarre, Pamplona, Spain
| | - Maria Werthén
- Department of Biomaterials, University of Gothenburg, The Sahlgrenska Academy, Gothenburg, Sweden
- Center for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Peter Thomsen
- Department of Biomaterials, University of Gothenburg, The Sahlgrenska Academy, Gothenburg, Sweden
| | | | - Margarita Trobos
- Department of Biomaterials, University of Gothenburg, The Sahlgrenska Academy, Gothenburg, Sweden
- Center for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- *Correspondence: Margarita Trobos,
| |
Collapse
|
96
|
Li H, Huang YY, Addo KA, Yu YG, Xiao XL. Effects of cuminaldehyde on toxins production of Staphylococcus aureus and its application in sauced beef. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
97
|
Brar A, Majumder S, Navarro MZ, Benoit-Biancamano MO, Ronholm J, George S. Nanoparticle-Enabled Combination Therapy Showed Superior Activity against Multi-Drug Resistant Bacterial Pathogens in Comparison to Free Drugs. NANOMATERIALS 2022; 12:nano12132179. [PMID: 35808015 PMCID: PMC9268018 DOI: 10.3390/nano12132179] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023]
Abstract
The emergence of multidrug-resistant (MDR) bacterial pathogens in farm animals and their zoonotic spread is a concern to both animal agriculture and public health. Apart from antimicrobial resistance (AMR), bacterial pathogens from the genera of Salmonella and Staphylococcus take refuge inside host cells, thereby demanding intervention strategies that can eliminate intracellular MDR pathogens. In this study, seven clinical isolates of Salmonella and Staphylococcus from swine farms were characterized for antibiotic (n = 24) resistance, resistance mechanisms, and virulence characteristics. All isolates showed resistance to one or more antibiotics and S. enterica ser. Typhimurium isolate had the highest resistance to the panel of antibiotics tested. Major resistance mechanisms identified were efflux pump and beta-lactamase enzyme activities. Staphylococcus isolates showed complete hemolysis and strong biofilm formation, while Salmonella isolates caused partial hemolysis, but showed no or weak biofilm formation. MDR isolates of S. aureus M12 and S. enterica ser. Typhimurium bacteria were subsequently tested against combinations of antibiotics and potentiating adjuvants for improved antibacterial efficacy using a checkerboard assay, and their fractional inhibitory concentration index (FICI) was calculated. A combination of chitosan and silica nanoparticles containing tetracycline (TET) and efflux pump inhibitor chlorpromazine (CPZ), respectively, was characterized for physicochemical properties and effectiveness against MDR Salmonella enterica ser. Typhimurium isolate. This combination of nano-encapsulated drugs improved the antibacterial efficacy by inhibiting AMR mechanisms (efflux activity, beta-lactamase enzyme activity, and hydrogen sulfide (H2S) production) and reducing intracellular pathogen load by 83.02 ± 14.35%. In conclusion, this study sheds light on the promising applicability of nanoparticle-enabled combination therapy to combat multidrug-resistant pathogens encountered in animal agriculture.
Collapse
Affiliation(s)
- Amarpreet Brar
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, 21111 Lakeshore, Ste Anne de Bellevue, QC H9X 3V9, Canada; (A.B.); (S.M.); (J.R.)
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, QC J2S 2M2, Canada; (M.Z.N.); (M.-O.B.-B.)
| | - Satwik Majumder
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, 21111 Lakeshore, Ste Anne de Bellevue, QC H9X 3V9, Canada; (A.B.); (S.M.); (J.R.)
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, QC J2S 2M2, Canada; (M.Z.N.); (M.-O.B.-B.)
| | - Maria Zardon Navarro
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, QC J2S 2M2, Canada; (M.Z.N.); (M.-O.B.-B.)
- Research Group on Infectious Diseases in Production Animals (GREMIP), Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Marie-Odile Benoit-Biancamano
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, QC J2S 2M2, Canada; (M.Z.N.); (M.-O.B.-B.)
- Research Group on Infectious Diseases in Production Animals (GREMIP), Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Jennifer Ronholm
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, 21111 Lakeshore, Ste Anne de Bellevue, QC H9X 3V9, Canada; (A.B.); (S.M.); (J.R.)
- Department of Animal Science, Macdonald Campus, McGill University, 2111 Lakeshore, Ste Anne de Bellevue, QC H9X 3V9, Canada
| | - Saji George
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, 21111 Lakeshore, Ste Anne de Bellevue, QC H9X 3V9, Canada; (A.B.); (S.M.); (J.R.)
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, QC J2S 2M2, Canada; (M.Z.N.); (M.-O.B.-B.)
- Correspondence: ; Tel.: +1-514-398-7920; Fax: +1-514-398-7990
| |
Collapse
|
98
|
Chakraborty N, Srinivasan S, Yang R, Miller SA, Gautam A, Detwiler LJ, Carney BC, Alkhalil A, Moffatt LT, Jett M, Shupp JW, Hammamieh R. Comparison of Transcriptional Signatures of Three Staphylococcal Superantigenic Toxins in Human Melanocytes. Biomedicines 2022; 10:biomedicines10061402. [PMID: 35740423 PMCID: PMC9219963 DOI: 10.3390/biomedicines10061402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/28/2022] Open
Abstract
Staphylococcus aureus, a gram-positive bacterium, causes toxic shock through the production of superantigenic toxins (sAgs) known as Staphylococcal enterotoxins (SE), serotypes A-J (SEA, SEB, etc.), and toxic shock syndrome toxin-1 (TSST-1). The chronology of host transcriptomic events that characterizes the response to the pathogenesis of superantigenic toxicity remains uncertain. The focus of this study was to elucidate time-resolved host responses to three toxins of the superantigenic family, namely SEA, SEB, and TSST-1. Due to the evolving critical role of melanocytes in the host’s immune response against environmental harmful elements, we investigated herein the transcriptomic responses of melanocytes after treatment with 200 ng/mL of SEA, SEB, or TSST-1 for 0.5, 2, 6, 12, 24, or 48 h. Functional analysis indicated that each of these three toxins induced a specific transcriptional pattern. In particular, the time-resolved transcriptional modulations due to SEB exposure were very distinct from those induced by SEA and TSST-1. The three superantigens share some similarities in the mechanisms underlying apoptosis, innate immunity, and other biological processes. Superantigen-specific signatures were determined for the functional dynamics related to necrosis, cytokine production, and acute-phase response. These differentially regulated networks can be targeted for therapeutic intervention and marked as the distinguishing factors for the three sAgs.
Collapse
Affiliation(s)
- Nabarun Chakraborty
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (S.S.); (R.Y.); (S.-A.M.); (A.G.); (L.J.D.); (M.J.); (R.H.)
- Correspondence: ; Tel.: +1-301-452-8940 or +1-301-319-7363
| | - Seshamalini Srinivasan
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (S.S.); (R.Y.); (S.-A.M.); (A.G.); (L.J.D.); (M.J.); (R.H.)
- The Geneva Foundation, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Ruoting Yang
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (S.S.); (R.Y.); (S.-A.M.); (A.G.); (L.J.D.); (M.J.); (R.H.)
| | - Stacy-Ann Miller
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (S.S.); (R.Y.); (S.-A.M.); (A.G.); (L.J.D.); (M.J.); (R.H.)
| | - Aarti Gautam
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (S.S.); (R.Y.); (S.-A.M.); (A.G.); (L.J.D.); (M.J.); (R.H.)
| | - Leanne J. Detwiler
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (S.S.); (R.Y.); (S.-A.M.); (A.G.); (L.J.D.); (M.J.); (R.H.)
- The Geneva Foundation, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Bonnie C. Carney
- Firefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC 20010, USA; (B.C.C.); (A.A.); (L.T.M.); (J.W.S.)
- Department of Surgery, Georgetown University School of Medicine, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA
| | - Abdulnaser Alkhalil
- Firefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC 20010, USA; (B.C.C.); (A.A.); (L.T.M.); (J.W.S.)
| | - Lauren T. Moffatt
- Firefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC 20010, USA; (B.C.C.); (A.A.); (L.T.M.); (J.W.S.)
- Department of Surgery, Georgetown University School of Medicine, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA
| | - Marti Jett
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (S.S.); (R.Y.); (S.-A.M.); (A.G.); (L.J.D.); (M.J.); (R.H.)
| | - Jeffrey W. Shupp
- Firefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC 20010, USA; (B.C.C.); (A.A.); (L.T.M.); (J.W.S.)
- Department of Surgery, Georgetown University School of Medicine, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA
- The Burn Center, MedStar Washington Hospital Center, Washington, DC 20010, USA
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (S.S.); (R.Y.); (S.-A.M.); (A.G.); (L.J.D.); (M.J.); (R.H.)
| |
Collapse
|
99
|
Shaghayegh G, Cooksley C, Ramezanpour M, Wormald PJ, Psaltis AJ, Vreugde S. Chronic Rhinosinusitis, S. aureus Biofilm and Secreted Products, Inflammatory Responses, and Disease Severity. Biomedicines 2022; 10:1362. [PMID: 35740385 PMCID: PMC9220248 DOI: 10.3390/biomedicines10061362] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic rhinosinusitis (CRS) is a persistent inflammation of the nasal cavity and paranasal sinuses associated with tissue remodelling, dysfunction of the sinuses' natural defence mechanisms, and induction of different inflammatory clusters. The etiopathogenesis of CRS remains elusive, and both environmental factors, such as bacterial biofilms and the host's general condition, are thought to play a role. Bacterial biofilms have significant clinical relevance due to their potential to cause resistance to antimicrobial therapy and host defenses. Despite substantial medical advances, some CRS patients suffer from recalcitrant disease that is unresponsive to medical and surgical treatments. Those patients often have nasal polyps with tissue eosinophilia, S. aureus-dominant mucosal biofilm, comorbid asthma, and a severely compromised quality of life. This review aims to summarise the contemporary knowledge of inflammatory cells/pathways in CRS, the role of bacterial biofilm, and their impact on the severity of the disease. Here, an emphasis is placed on S. aureus biofilm and its secreted products. A better understanding of these factors might offer important diagnostic and therapeutic perceptions for recalcitrant disease.
Collapse
Affiliation(s)
- Gohar Shaghayegh
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5000, Australia; (G.S.); (C.C.); (M.R.); (P.-J.W.); (A.J.P.)
- Department of Surgery-Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide 5011, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, The Basil Hetzel Institute for Translational Health Research, Woodville South 5011, Australia
| | - Clare Cooksley
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5000, Australia; (G.S.); (C.C.); (M.R.); (P.-J.W.); (A.J.P.)
- Department of Surgery-Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide 5011, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, The Basil Hetzel Institute for Translational Health Research, Woodville South 5011, Australia
| | - Mahnaz Ramezanpour
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5000, Australia; (G.S.); (C.C.); (M.R.); (P.-J.W.); (A.J.P.)
- Department of Surgery-Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide 5011, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, The Basil Hetzel Institute for Translational Health Research, Woodville South 5011, Australia
| | - Peter-John Wormald
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5000, Australia; (G.S.); (C.C.); (M.R.); (P.-J.W.); (A.J.P.)
- Department of Surgery-Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide 5011, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, The Basil Hetzel Institute for Translational Health Research, Woodville South 5011, Australia
| | - Alkis James Psaltis
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5000, Australia; (G.S.); (C.C.); (M.R.); (P.-J.W.); (A.J.P.)
- Department of Surgery-Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide 5011, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, The Basil Hetzel Institute for Translational Health Research, Woodville South 5011, Australia
| | - Sarah Vreugde
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5000, Australia; (G.S.); (C.C.); (M.R.); (P.-J.W.); (A.J.P.)
- Department of Surgery-Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide 5011, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, The Basil Hetzel Institute for Translational Health Research, Woodville South 5011, Australia
| |
Collapse
|
100
|
Kwiatkowski P, Tabiś A, Fijałkowski K, Masiuk H, Łopusiewicz Ł, Pruss A, Sienkiewicz M, Wardach M, Kurzawski M, Guenther S, Bania J, Dołęgowska B, Wojciechowska-Koszko I. Regulatory and Enterotoxin Gene Expression and Enterotoxins Production in Staphylococcus aureus FRI913 Cultures Exposed to a Rotating Magnetic Field and trans-Anethole. Int J Mol Sci 2022; 23:6327. [PMID: 35683006 PMCID: PMC9181688 DOI: 10.3390/ijms23116327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 11/29/2022] Open
Abstract
The study aimed to examine the influence of a rotating magnetic field (RMF) of two different frequencies (5 and 50 Hz) on the expression of regulatory (agrA, hld, rot) and staphylococcal enterotoxin (SE-sea, sec, sel) genes as well as the production of SEs (SEA, SEC, SEL) by the Staphylococcus aureus FRI913 strain cultured on a medium supplemented with a subinhibitory concentration of trans-anethole (TA). Furthermore, a theoretical model of interactions between the bacterial medium and bacterial cells exposed to RMF was proposed. Gene expression and SEs production were measured using quantitative real-time PCR and ELISA techniques, respectively. Based on the obtained results, it was found that there were no significant differences in the expression of regulatory and SE genes in bacteria simultaneously cultured on a medium supplemented with TA and exposed to RMF at the same time in comparison to the control (unexposed to TA and RMF). In contrast, when the bacteria were cultured on a medium supplemented with TA but were not exposed to RMF or when they were exposed to RMF of 50 Hz (but not to TA), a significant increase in agrA and sea transcripts as compared to the unexposed control was found. Moreover, the decreased level of sec transcripts in bacteria cultured without TA but exposed to RMF of 50 Hz was also revealed. In turn, a significant increase in SEA and decrease in SEC and SEL production was observed in bacteria cultured on a medium supplemented with TA and simultaneously exposed to RMFs. It can be concluded, that depending on SE and regulatory genes expression as well as production of SEs, the effect exerted by the RMF and TA may be positive (i.e., manifests as the increase in SEs and/or regulatory gene expression of SEs production) or negative (i.e., manifests as the reduction in both aforementioned features) or none.
Collapse
Affiliation(s)
- Paweł Kwiatkowski
- Department of Diagnostic Immunology, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Aleksandra Tabiś
- Department of Food Hygiene and Consumer Health Protection, Wroclaw University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wroclaw, Poland; (A.T.); (J.B.)
| | - Karol Fijałkowski
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Piastow 45, 70-311 Szczecin, Poland
| | - Helena Masiuk
- Department of Medical Microbiology, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Łukasz Łopusiewicz
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology, Janickiego 35, 71-270 Szczecin, Poland;
| | - Agata Pruss
- Department of Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (A.P.); (B.D.)
| | - Monika Sienkiewicz
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| | - Marcin Wardach
- Faculty of Electrical Engineering, West Pomeranian University of Technology, Sikorskiego 37, 70-313 Szczecin, Poland;
| | - Mateusz Kurzawski
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Sebastian Guenther
- Pharmaceutical Biology, Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Straße 17, 17489 Greifswald, Germany;
| | - Jacek Bania
- Department of Food Hygiene and Consumer Health Protection, Wroclaw University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wroclaw, Poland; (A.T.); (J.B.)
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (A.P.); (B.D.)
| | - Iwona Wojciechowska-Koszko
- Department of Diagnostic Immunology, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland;
| |
Collapse
|