51
|
Tamminen K, Salminen M, Blazevic V. Seroprevalence and SARS-CoV-2 cross-reactivity of endemic coronavirus OC43 and 229E antibodies in Finnish children and adults. Clin Immunol 2021; 229:108782. [PMID: 34118402 PMCID: PMC8188772 DOI: 10.1016/j.clim.2021.108782] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/11/2021] [Accepted: 06/07/2021] [Indexed: 12/24/2022]
Abstract
Endemic human coronaviruses (hCoVs) are common causative agents of respiratory tract infections, affecting especially children. However, in the ongoing SARS-CoV-2 pandemic, children are the least affected age-group. The objective of this study was to investigate the magnitude of endemic hCoVs antibodies in Finnish children and adults, and pre-pandemic antibody cross-reactivity with SARS-CoV-2. Antibody levels against endemic hCoVs start to rise at a very early age, reaching to overall 100% seroprevalence. No difference in the antibody levels was detected for OC43 but the magnitude of 229E-specific antibodies was significantly higher in the sera of children. OC43 and 229E hCoV antibody levels of children correlated significantly with each other and with the level of cross-reactive SARS-CoV-2 antibodies, whereas these correlations completely lacked in adults. Although none of the sera showed SARS-CoV-2 neutralization, the higher overall hCoV cross-reactivity observed in children might, at least partially, contribute in controlling SARS-CoV-2 infection in this population.
Collapse
Affiliation(s)
- Kirsi Tamminen
- Vaccine Development and Immunology/Vaccine Research Center, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland.
| | - Marjo Salminen
- Vaccine Development and Immunology/Vaccine Research Center, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland.
| | - Vesna Blazevic
- Vaccine Development and Immunology/Vaccine Research Center, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland.
| |
Collapse
|
52
|
Laban NM, Bosomprah S, Musukuma-Chifulo K, Simuyandi M, Iyer S, Ng'ombe H, Muchimba M, Chauwa A, Tigere S, Chisenga CC, Chibuye M, Chilyabanyama ON, Goodier M, Chilengi R. Comparable exposure to SARS-CoV-2 in young children and healthcare workers in Zambia. Wellcome Open Res 2021. [DOI: 10.12688/wellcomeopenres.16759.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an ongoing global health crisis that has caused large scale morbidity and mortality. We aimed to determine the exposure to SARS-CoV-2 among young children and healthcare workers by measurement of anti-S1 antigen (spike protein) specific immunoglobulin G (IgG) using an in-house optimized indirect enzyme-linked immunosorbent assay (ELISA) method. Methods: Plasma samples were collected from cohorts of healthcare workers (n = 287) and young children aged from 6 weeks to 2 years old (n = 150) pre-COVID-19 pandemic between September 2018 and November 2019 and post-COVID-19 pandemic between August and December 2020 were simultaneously tested for anti-SARS-CoV-2 S1 specific IgG. The arithmetic mean of natural logarithm-transformed ELISA relative absorbance reading + (3 x standard deviation) of pre-pandemic plasma was used as the cut-off to determine SARS-CoV-2 IgG seropositivity of post-pandemic plasma. Results: There was no reactivity to SARS-CoV-2 S1 antigen detected in pre-pandemic plasma but in post pandemic plasma an 8.0% (23/287) IgG seropositivity in healthcare workers’ and 6.0% (9/150) seropositivity in children aged 2 years old was detected. Conclusions: Comparable levels of SARS-CoV-2 IgG seropositivity in healthcare workers and children suggest widespread exposure to SARS-CoV-2 in Zambia during the first wave of the pandemic. This finding has implications for continued acquisition and transmission of infection in the healthcare setting, household, and wider community.
Collapse
|
53
|
Falahi S, Abdoli A, Kenarkoohi A. Claims and reasons about mild COVID-19 in children. New Microbes New Infect 2021; 41:100864. [PMID: 33747533 PMCID: PMC7963516 DOI: 10.1016/j.nmni.2021.100864] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 02/28/2021] [Accepted: 03/10/2021] [Indexed: 12/22/2022] Open
Abstract
The elderly form the main risk group in the coronavirus disease 2019 (COVID-19) pandemic, and age is recognized as a major risk factor for the severity of infection and mortality of COVID-19. The severity of the infection in children is milder than in adults. Although the pathophysiology of COVID-19 is not fully understood, several possible factors and mechanisms have been suggested for the lower severity of infection in children.
Collapse
Affiliation(s)
- S. Falahi
- Zoonotic Diseases Research Centre, Ilam University of Medical Sciences, Ilam, Iran
| | - A. Abdoli
- Department of Parasitology and Mycology, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - A. Kenarkoohi
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
54
|
Al-Tawfiq JA, Rabaan AA, Al-Omari A, Al Mutair A, Al-Qahtani M, Tirupathi R. Learning from SARS and MERS: COVID-19 reinfection where do we stand? Travel Med Infect Dis 2021; 41:102024. [PMID: 33741499 PMCID: PMC7962586 DOI: 10.1016/j.tmaid.2021.102024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 01/28/2023]
Affiliation(s)
- Jaffar A Al-Tawfiq
- Specialty Internal Medicine and Quality Department, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia; Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Division of Infectious Diseases, Department of Medicine Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
| | - Awad Al-Omari
- Research Center, Dr. Sulaiman Al Habib Medical Group, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al Hasa, Saudi Arabia; College of Nursing, prince Nora University, Riyadh, Saudi Arabia; School of Nursing, Wollongong University, Australia
| | - Manaf Al-Qahtani
- Bahrain National Taskforce to Combat COVID-19, Bahrain Defense Force Hospital, Bahrain
| | - Raghavendra Tirupathi
- Penn State University School of Medicine, Hershey, PA, USA; Wellspan Chambersburg and Waynesboro (Pa.) Hospitals, Chambersburg, PA, USA
| |
Collapse
|
55
|
Zimmermann P, Curtis N. Why is COVID-19 less severe in children? A review of the proposed mechanisms underlying the age-related difference in severity of SARS-CoV-2 infections. Arch Dis Child 2021; 106:429-439. [PMID: 33262177 DOI: 10.1136/archdischild-2020-320338] [Citation(s) in RCA: 290] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/12/2022]
Abstract
In contrast to other respiratory viruses, children have less severe symptoms when infected with the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this review, we discuss proposed hypotheses for the age-related difference in severity of coronavirus disease 2019 (COVID-19).Factors proposed to explain the difference in severity of COVID-19 in children and adults include those that put adults at higher risk and those that protect children. The former include: (1) age-related increase in endothelial damage and changes in clotting function; (2) higher density, increased affinity and different distribution of angiotensin converting enzyme 2 receptors and transmembrane serine protease 2; (3) pre-existing coronavirus antibodies (including antibody-dependent enhancement) and T cells; (4) immunosenescence and inflammaging, including the effects of chronic cytomegalovirus infection; (5) a higher prevalence of comorbidities associated with severe COVID-19 and (6) lower levels of vitamin D. Factors that might protect children include: (1) differences in innate and adaptive immunity; (2) more frequent recurrent and concurrent infections; (3) pre-existing immunity to coronaviruses; (4) differences in microbiota; (5) higher levels of melatonin; (6) protective off-target effects of live vaccines and (7) lower intensity of exposure to SARS-CoV-2.
Collapse
Affiliation(s)
- Petra Zimmermann
- Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Department of Paediatrics, Fribourg Hospital HFR, Fribourg, Switzerland
- Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Nigel Curtis
- Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
- Infectious Diseases Unit, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
56
|
Sermet-Gaudelus I, Temmam S, Huon C, Behillil S, Gajdos V, Bigot T, Lurier T, Chrétien D, Backovic M, Delaunay-Moisan A, Donati F, Albert M, Foucaud E, Mesplées B, Benoist G, Faye A, Duval-Arnould M, Cretolle C, Charbit M, Aubart M, Auriau J, Lorrot M, Kariyawasam D, Fertitta L, Orliaguet G, Pigneur B, Bader-Meunier B, Briand C, Enouf V, Toubiana J, Guilleminot T, van der Werf S, Leruez-Ville M, Eloit M. Prior infection by seasonal coronaviruses, as assessed by serology, does not prevent SARS-CoV-2 infection and disease in children, France, April to June 2020. Euro Surveill 2021; 26. [PMID: 33797390 PMCID: PMC8017906 DOI: 10.2807/1560-7917.es.2021.26.13.2001782] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/07/2021] [Indexed: 01/10/2023] Open
Abstract
BackgroundChildren have a low rate of COVID-19 and secondary severe multisystem inflammatory syndrome (MIS) but present a high prevalence of symptomatic seasonal coronavirus infections.AimWe tested if prior infections by seasonal coronaviruses (HCoV) NL63, HKU1, 229E or OC43 as assessed by serology, provide cross-protective immunity against SARS-CoV-2 infection.MethodsWe set a cross-sectional observational multicentric study in pauci- or asymptomatic children hospitalised in Paris during the first wave for reasons other than COVID (hospitalised children (HOS), n = 739) plus children presenting with MIS (n = 36). SARS-CoV-2 antibodies directed against the nucleoprotein (N) and S1 and S2 domains of the spike (S) proteins were monitored by an in-house luciferase immunoprecipitation system assay. We randomly selected 69 SARS-CoV-2-seropositive patients (including 15 with MIS) and 115 matched SARS-CoV-2-seronegative patients (controls (CTL)). We measured antibodies against SARS-CoV-2 and HCoV as evidence for prior corresponding infections and assessed if SARS-CoV-2 prevalence of infection and levels of antibody responses were shaped by prior seasonal coronavirus infections.ResultsPrevalence of HCoV infections were similar in HOS, MIS and CTL groups. Antibody levels against HCoV were not significantly different in the three groups and were not related to the level of SARS-CoV-2 antibodies in the HOS and MIS groups. SARS-CoV-2 antibody profiles were different between HOS and MIS children.ConclusionPrior infection by seasonal coronaviruses, as assessed by serology, does not interfere with SARS-CoV-2 infection and related MIS in children.
Collapse
Affiliation(s)
- Isabelle Sermet-Gaudelus
- Institut Necker Enfants Malades, INSERM U 1171, Paris, France
- Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
- Université de Paris, Paris, France
- These authors contributed equally to the work
| | - Sarah Temmam
- These authors contributed equally to the work
- Pathogen Discovery Laboratory, Department of Virology, Institut Pasteur, Paris, France
| | - Christèle Huon
- Pathogen Discovery Laboratory, Department of Virology, Institut Pasteur, Paris, France
| | - Sylvie Behillil
- Molecular Genetics of RNA Viruses, Department of Virology, CNRS UMR3569, Université de Paris, Institut Pasteur, Paris, France
- National Reference Center for Respiratory Viruses, Institut Pasteur, Paris, France
| | - Vincent Gajdos
- Hôpital Antoine Beclere, Clamart, France
- Centre for Research in Epidemiology and Population Health, INSERM UMR1018, Villejuif, France
| | - Thomas Bigot
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, Paris, France
- Pathogen Discovery Laboratory, Department of Virology, Institut Pasteur, Paris, France
| | - Thibaut Lurier
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, Saint-Genès-Champanelle, France
- Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, Marcy l'Etoile, France
- Université de Lyon, INRAE, VetAgro Sup, Usc 1233 UR RS2GP, Marcy l'Etoile, France
| | - Delphine Chrétien
- Pathogen Discovery Laboratory, Department of Virology, Institut Pasteur, Paris, France
| | - Marija Backovic
- Unité de Virologie Structurale, Institut Pasteur, Département de Virologie, CNRS, UMR3569, Paris, France
| | - Agnès Delaunay-Moisan
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Flora Donati
- Molecular Genetics of RNA Viruses, Department of Virology, CNRS UMR3569, Université de Paris, Institut Pasteur, Paris, France
- National Reference Center for Respiratory Viruses, Institut Pasteur, Paris, France
| | - Mélanie Albert
- Molecular Genetics of RNA Viruses, Department of Virology, CNRS UMR3569, Université de Paris, Institut Pasteur, Paris, France
- National Reference Center for Respiratory Viruses, Institut Pasteur, Paris, France
| | | | | | | | | | | | - Célia Cretolle
- Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Marina Charbit
- Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Mélodie Aubart
- Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Johanne Auriau
- Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | | | | | - Laura Fertitta
- Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Gilles Orliaguet
- Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Bénédicte Pigneur
- Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | | | | | - Vincent Enouf
- Plateforme de microbiologie mutualisée (P2M), Pasteur International Bioresources Network (PIBnet), Institut Pasteur, Paris, France
- Molecular Genetics of RNA Viruses, Department of Virology, CNRS UMR3569, Université de Paris, Institut Pasteur, Paris, France
- National Reference Center for Respiratory Viruses, Institut Pasteur, Paris, France
| | - Julie Toubiana
- Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
- Unité Biodiversité et Epidemiologie des Bacteries Pathogènes, Institut Pasteur, Paris, France
- Université de Paris, Paris, France
| | | | - Sylvie van der Werf
- Molecular Genetics of RNA Viruses, Department of Virology, CNRS UMR3569, Université de Paris, Institut Pasteur, Paris, France
- National Reference Center for Respiratory Viruses, Institut Pasteur, Paris, France
| | | | - Marc Eloit
- Ecole Nationale Vétérinaire d'Alfort, Maisons Alfort, France
- Pathogen Discovery Laboratory, Department of Virology, Institut Pasteur, Paris, France
| |
Collapse
|
57
|
Fadl N, Ali E, Salem TZ. COVID-19: Risk Factors Associated with Infectivity and Severity. Scand J Immunol 2021; 93:e13039. [PMID: 33710663 PMCID: PMC8265317 DOI: 10.1111/sji.13039] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 02/06/2023]
Abstract
COVID‐19 is highly transmissible; however, its severity varies from one
individual to another. Variability among different isolates of the virus and among
its receptor (ACE2) may contribute to this severity, but comorbidity plays a major
role on disease prognosis. Many comorbidities have been reported to be associated
with severe COVID‐19 patients. We have collected data from retrospective studies
which include clinical and epidemiological features of patients and categorize them
into severe/mild, ICU/non‐ICU and survivors/dead patients. In this review, we give an
update about SARS‐CoV‐2 structure with emphasis on the possible reasons for the
severity of the virus in patients. We also collected information and patients’ data
to highlight the relation between COVID‐19 patients and comorbidities.
Collapse
Affiliation(s)
- Nahla Fadl
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Esraa Ali
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Tamer Z Salem
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt.,Department of Microbial Genetics, AGERI, ARC, Giza, Egypt.,National Biotechnology Network of Expertise (NBNE), Academy of Science Research and Technology (ASRT), Cairo, Egypt
| |
Collapse
|
58
|
Batool H, Batool S, Mahmood MS, Mushtaq N, Khan AU, Ali M, Sahibzada KI, Ashraf NM. Prediction of putative epitope-based vaccine against all corona virus strains for the Chinese population: Approach toward development of vaccine. Microbiol Immunol 2021; 65:154-160. [PMID: 33295677 DOI: 10.1111/1348-0421.12866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/13/2020] [Accepted: 12/05/2020] [Indexed: 11/30/2022]
Abstract
Currently, the whole world is facing the coronavirus disease-19 pandemic. As of now, approximately 0.15 million people around the globe are infected with the novel coronavirus. In the last decade, two strains of the coronavirus family, severe acute respiratory syndrome-related coronavirus and Middle East respiratory syndrome coronavirus, also resulted in epidemics in south Asian and the Middle Eastern countries with high mortality rate. This scenario demands the development of a putative vaccine which may provide immunity against all current and new evolving coronavirus strains. In this study, we designed an epitope-based vaccine using an immunoinformatic approach. This vaccine may protect against all coronavirus strains. The vaccine is developed by considering the geographical distribution of coronavirus strains and host genetics (Chinese population). Nine experimentally validated epitopes sequences from coronavirus strains were used to derive the variants considering the conservancy in all strains. Further, the binding affinities of all derived variants were checked with most abundant human leukocyte antigen alleles in the Chinese population. Three major histocompatibility complex (MHC) Class I epitopes from spike glycoprotein and nucleoprotein showed sufficient binding while one MHC Class II epitope from spike glycoprotein was found to be an effective binder. A cocktail of these epitopes gave more than 95% population coverage in the Chinese population. Moreover, molecular dynamics simulation supported the aforementioned predictions. Further, in vivo studies are needed to confirm the immunogenic potential of these vaccines.
Collapse
Affiliation(s)
- Hina Batool
- Department of Life Science, School of Science, University of Management Technology, Lahore, Pakistan
| | - Sana Batool
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Malik Siddique Mahmood
- Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan.,Department of Biochemistry, NUR International University, Lahore, Pakistan
| | - Nada Mushtaq
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, Pakistan
| | - Azmat Ullah Khan
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, Pakistan
| | - Muhammad Ali
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Pakistan
| | - Kashif Iqbal Sahibzada
- Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan.,Division of Viral Hepatitis, CDC, Atlanta, Georgia, USA
| | - Naeem Mahmood Ashraf
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, Pakistan
| |
Collapse
|
59
|
Tan H, Lee WS, Wragg KM, Nelson C, Esterbauer R, Kelly HG, Amarasena T, Jones R, Starkey G, Wang BZ, Yoshino O, Tiang T, Grayson ML, Opdam H, D'Costa R, Vago A, Mackay LK, Gordon CL, Wheatley AK, Kent SJ, Juno JA. Adaptive immunity to human coronaviruses is widespread but low in magnitude. Clin Transl Immunology 2021; 10:e1264. [PMID: 33747512 PMCID: PMC7968850 DOI: 10.1002/cti2.1264] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Endemic human coronaviruses (hCoVs) circulate worldwide but cause minimal mortality. Although seroconversion to hCoV is near ubiquitous during childhood, little is known about hCoV-specific T-cell memory in adults. METHODS We quantified CD4 T-cell and antibody responses to hCoV spike antigens in 42 SARS-CoV-2-uninfected individuals. Antigen-specific memory T cells and circulating T follicular helper (cTFH) cells were identified using an activation-induced marker assay and characterised for memory phenotype and chemokine receptor expression. RESULTS T-cell responses were widespread within conventional memory and cTFH compartments but did not correlate with IgG titres. SARS-CoV-2 cross-reactive T cells were observed in 48% of participants and correlated with HKU1 memory. hCoV-specific T cells exhibited a CCR6+ central memory phenotype in the blood, but were enriched for frequency and CXCR3 expression in human lung-draining lymph nodes. CONCLUSION Overall, hCoV-specific humoral and cellular memory are independently maintained, with a shared phenotype existing among coronavirus-specific CD4 T cells. This understanding of endemic coronavirus immunity provides insight into the homeostatic maintenance of immune responses that are likely to be critical components of protection against SARS-CoV-2.
Collapse
Affiliation(s)
- Hyon‐Xhi Tan
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty institute for Infection and ImmunityMelbourneVICAustralia
| | - Wen Shi Lee
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty institute for Infection and ImmunityMelbourneVICAustralia
| | - Kathleen M Wragg
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty institute for Infection and ImmunityMelbourneVICAustralia
| | - Christina Nelson
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty institute for Infection and ImmunityMelbourneVICAustralia
| | - Robyn Esterbauer
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty institute for Infection and ImmunityMelbourneVICAustralia
| | - Hannah G Kelly
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty institute for Infection and ImmunityMelbourneVICAustralia
- Australian Research Council Centre for Excellence in Convergent Bio‐Nano Science and TechnologyUniversity of MelbourneMelbourneVICAustralia
| | - Thakshila Amarasena
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty institute for Infection and ImmunityMelbourneVICAustralia
| | - Robert Jones
- Department of SurgeryAustin HealthHeidelbergVICAustralia
| | - Graham Starkey
- Department of SurgeryAustin HealthHeidelbergVICAustralia
| | - Bao Zhong Wang
- Department of SurgeryAustin HealthHeidelbergVICAustralia
| | - Osamu Yoshino
- Department of SurgeryAustin HealthHeidelbergVICAustralia
| | - Thomas Tiang
- Department of SurgeryAustin HealthHeidelbergVICAustralia
| | | | - Helen Opdam
- DonateLifeThe Australian Organ and Tissue AuthorityCarltonVICAustralia
- Department of Intensive CareAustin HealthHeidelbergVICAustralia
| | - Rohit D'Costa
- DonateLife VictoriaCarltonVICAustralia
- Intensive Care UnitThe Royal Melbourne HospitalParkvilleVICAustralia
| | - Angela Vago
- Department of SurgeryAustin HealthHeidelbergVICAustralia
| | - Laura K Mackay
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty institute for Infection and ImmunityMelbourneVICAustralia
| | - Claire L Gordon
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty institute for Infection and ImmunityMelbourneVICAustralia
- Department of Infectious DiseasesAustin HealthHeidelbergVICAustralia
| | - Adam K Wheatley
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty institute for Infection and ImmunityMelbourneVICAustralia
| | - Stephen J Kent
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty institute for Infection and ImmunityMelbourneVICAustralia
- Australian Research Council Centre for Excellence in Convergent Bio‐Nano Science and TechnologyUniversity of MelbourneMelbourneVICAustralia
- Melbourne Sexual Health Centre and Department of Infectious DiseasesAlfred Hospital and Central Clinical SchoolMonash UniversityMelbourneVICAustralia
| | - Jennifer A Juno
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty institute for Infection and ImmunityMelbourneVICAustralia
| |
Collapse
|
60
|
Owusu M, Sylverken AA, El-Duah P, Acheampong G, Mutocheluh M, Adu-Sarkodie Y. Sero-epidemiology of human coronaviruses in three rural communities in Ghana. Pan Afr Med J 2021; 38:244. [PMID: 34104292 PMCID: PMC8164429 DOI: 10.11604/pamj.2021.38.244.26110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/22/2021] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION acute respiratory tract infections (ARIs) are responsible for significant proportions of illnesses and deaths annually. Most of ARIs are of viral etiology, with human coronaviruses (HCoVs) playing a key role. This study was conducted prior to the outbreak of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) to provide evidence about the sero-epidemiology of HCoVs in rural areas of Ghana. METHODS this was a cross-sectional study conducted as part of a large epidemiological study investigating the occurrence of respiratory viruses in 3 rural areas of Ghana; Buoyem, Kwamang and Forikrom. Serum samples were collected and tested for the presence of IgG-antibodies to three HCoVs; HCoV-229E, HCoV-OC43 and HCoV-NL63 using immunofluorescence assay. RESULTS of 201 subjects enrolled into the study, 97 (48.3%) were positive for all three viruses. The most prevalent virus was HCoV-229E (23%; 95% CI: 17.2 - 29.3), followed by HCoV-OC43 (17%; 95% CI: 12.4 - 23.4), then HCoV-NL63 (8%, 95% CI: 4.6 - 12.6). Subjects in Kwamang had the highest sero-prevalence for HCoV-NL63 (68.8%). human coronaviruses-229E (41.3%) and HCoV-OC43 (45.7%) were much higher in Forikrom compared to the other study areas. There was however no statistical difference between place of origin and HCoVs positivity. Although blood group O+ and B+ were most common among the recruited subjects, there was no significant association (p = 0.163) between blood group and HCoV infection. CONCLUSION this study reports a 48.3% sero-prevalence of HCoVs (OC43, NL63 and 229E) among rural communities in Ghana. The findings provide useful baseline data that could inform further sero-epidemiological studies on SARS-CoV-2 in Africa.
Collapse
Affiliation(s)
- Michael Owusu
- Department of Medical Diagnostics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Centre for Health Systems Strengthening, Kumasi, Ghana
| | - Augustina Angelina Sylverken
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Philip El-Duah
- Institute of Virology, Charite, Universitätsmedizin Berlin, Berlin, Germany
| | | | - Mohammed Mutocheluh
- Department of Clinical Microbiology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Yaw Adu-Sarkodie
- Department of Clinical Microbiology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
61
|
Khan T, Rahman M, Ali FA, Huang SSY, Ata M, Zhang Q, Bastard P, Liu Z, Jouanguy E, Béziat V, Cobat A, Nasrallah GK, Yassine HM, Smatti MK, Saeed A, Vandernoot I, Goffard JC, Smits G, Migeotte I, Haerynck F, Meyts I, Abel L, Casanova JL, Hasan MR, Marr N. Distinct antibody repertoires against endemic human coronaviruses in children and adults. JCI Insight 2021; 6:144499. [PMID: 33497357 PMCID: PMC7934927 DOI: 10.1172/jci.insight.144499] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/13/2021] [Indexed: 12/26/2022] Open
Abstract
Four endemic human coronaviruses (HCoVs) are commonly associated with acute respiratory infection in humans. B cell responses to these “common cold” viruses remain incompletely understood. Here we report a comprehensive analysis of CoV-specific antibody repertoires in 231 children and 1168 adults using phage immunoprecipitation sequencing. Seroprevalence of antibodies against endemic HCoVs ranged between approximately 4% and 27% depending on the species and cohort. We identified at least 136 novel linear B cell epitopes. Antibody repertoires against endemic HCoVs were qualitatively different between children and adults in that anti-HCoV IgG specificities more frequently found among children targeted functionally important and structurally conserved regions of the spike, nucleocapsid, and matrix proteins. Moreover, antibody specificities targeting the highly conserved fusion peptide region and S2′ cleavage site of the spike protein were broadly cross-reactive with peptides of epidemic human and nonhuman coronaviruses. In contrast, an acidic tandem repeat in the N-terminal region of the Nsp3 subdomain of the HCoV-HKU1 polyprotein was the predominant target of antibody responses in adult donors. Our findings shed light on the dominant species-specific and pan-CoV target sites of human antibody responses to coronavirus infection, thereby providing important insights for the development of prophylactic or therapeutic monoclonal antibodies and vaccine design.
Collapse
Affiliation(s)
| | | | | | | | - Manar Ata
- Research Branch, Sidra Medicine, Doha, Qatar
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA
| | - Paul Bastard
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Zhiyong Liu
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Vivien Béziat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Aurélie Cobat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Gheyath K Nasrallah
- College of Health Sciences, QU Health, Qatar University, Doha, Qatar.,Biomedical Research Center, Qatar University, Doha, Qatar
| | - Hadi M Yassine
- College of Health Sciences, QU Health, Qatar University, Doha, Qatar.,Biomedical Research Center, Qatar University, Doha, Qatar
| | - Maria K Smatti
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Amira Saeed
- Department of Pathology, Sidra Medicine, Doha, Qatar
| | | | | | | | - Isabelle Migeotte
- Fonds de la Recherche Scientifique (FNRS) and Center of Human Genetics, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Filomeen Haerynck
- Department of Pediatric Pulmonology and Immunology, Department of Pediatrics and Internal Medicine, Center for Primary Immunodeficiencies Ghent, Jeffrey Modell Foundation Diagnostic and Research Center, Ghent University Hospital, Belgium
| | - Isabelle Meyts
- Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, and Department of Pediatrics, University Hospitals Leuven, KU Leuven, Belgium.,Department of Pediatrics, University Hospitals Leuven, KU Leuven, Belgium
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris, Imagine Institute, Paris, France.,Howard Hughes Medical Institute, New York, New York, USA
| | - Mohammad R Hasan
- Department of Pathology, Sidra Medicine, Doha, Qatar.,Weill Cornell Medical College in Qatar, Doha, Qatar
| | - Nico Marr
- Research Branch, Sidra Medicine, Doha, Qatar.,College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
62
|
Borbone N, Piccialli G, Roviello GN, Oliviero G. Nucleoside Analogs and Nucleoside Precursors as Drugs in the Fight against SARS-CoV-2 and Other Coronaviruses. Molecules 2021; 26:986. [PMID: 33668428 PMCID: PMC7918729 DOI: 10.3390/molecules26040986] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 01/18/2023] Open
Abstract
Coronaviruses (CoVs) are positive-sense RNA enveloped viruses, members of the family Coronaviridae, that cause infections in a broad range of mammals including humans. Several CoV species lead to mild upper respiratory infections typically associated with common colds. However, three human CoV (HCoV) species: Severe Acute Respiratory Syndrome (SARS)-CoV-1, Middle East Respiratory Syndrome (MERS)-CoV, and SARS-CoV-2, are responsible for severe respiratory diseases at the origin of two recent epidemics (SARS and MERS), and of the current COronaVIrus Disease 19 (COVID-19), respectively. The easily transmissible SARS-CoV-2, emerging at the end of 2019 in China, spread rapidly worldwide, leading the World Health Organization (WHO) to declare COVID-19 a pandemic. While the world waits for mass vaccination, there is an urgent need for effective drugs as short-term weapons to combat the SARS-CoV-2 infection. In this context, the drug repurposing approach is a strategy able to guarantee positive results rapidly. In this regard, it is well known that several nucleoside-mimicking analogs and nucleoside precursors may inhibit the growth of viruses providing effective therapies for several viral diseases, including HCoV infections. Therefore, this review will focus on synthetic nucleosides and nucleoside precursors active against different HCoV species, paying great attention to SARS-CoV-2. This work covers progress made in anti-CoV therapy with nucleoside derivatives and provides insight into their main mechanisms of action.
Collapse
Affiliation(s)
- Nicola Borbone
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (N.B.); (G.P.)
| | - Gennaro Piccialli
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (N.B.); (G.P.)
| | | | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy;
| |
Collapse
|
63
|
Peterhoff D, Glück V, Vogel M, Schuster P, Schütz A, Neubert P, Albert V, Frisch S, Kiessling M, Pervan P, Werner M, Ritter N, Babl L, Deichner M, Hanses F, Lubnow M, Müller T, Lunz D, Hitzenbichler F, Audebert F, Hähnel V, Offner R, Müller M, Schmid S, Burkhardt R, Glück T, Koller M, Niller HH, Graf B, Salzberger B, Wenzel JJ, Jantsch J, Gessner A, Schmidt B, Wagner R. A highly specific and sensitive serological assay detects SARS-CoV-2 antibody levels in COVID-19 patients that correlate with neutralization. Infection 2021; 49:75-82. [PMID: 32827125 PMCID: PMC7441844 DOI: 10.1007/s15010-020-01503-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/07/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic challenges national health systems and the global economy. Monitoring of infection rates and seroprevalence can guide public health measures to combat the pandemic. This depends on reliable tests on active and former infections. Here, we set out to develop and validate a specific and sensitive enzyme linked immunosorbent assay (ELISA) for detection of anti-SARS-CoV-2 antibody levels. METHODS In our ELISA, we used SARS-CoV-2 receptor-binding domain (RBD) and a stabilized version of the spike (S) ectodomain as antigens. We assessed sera from patients infected with seasonal coronaviruses, SARS-CoV-2 and controls. We determined and monitored IgM-, IgA- and IgG-antibody responses towards these antigens. In addition, for a panel of 22 sera, virus neutralization and ELISA parameters were measured and correlated. RESULTS The RBD-based ELISA detected SARS-CoV-2-directed antibodies, did not cross-react with seasonal coronavirus antibodies and correlated with virus neutralization (R2 = 0.89). Seroconversion started at 5 days after symptom onset and led to robust antibody levels at 10 days after symptom onset. We demonstrate high specificity (99.3%; N = 1000) and sensitivity (92% for IgA, 96% for IgG and 98% for IgM; > 10 days after PCR-proven infection; N = 53) in serum. CONCLUSIONS With the described RBD-based ELISA protocol, we provide a reliable test for seroepidemiological surveys. Due to high specificity and strong correlation with virus neutralization, the RBD ELISA holds great potential to become a preferred tool to assess thresholds of protective immunity after infection and vaccination.
Collapse
Affiliation(s)
- David Peterhoff
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany.
| | - Vivian Glück
- Institute for Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Matthias Vogel
- Institute for Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Philipp Schuster
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Anja Schütz
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Philip Neubert
- Institute for Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Veruschka Albert
- Institute for Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Stefanie Frisch
- Institute for Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Mara Kiessling
- Institute for Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Philip Pervan
- Institute for Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Maren Werner
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Nicole Ritter
- Institute for Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Leon Babl
- Institute for Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Maria Deichner
- Institute for Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Frank Hanses
- Department for Infection Control and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
- Emergency Department, University Hospital Regensburg, Regensburg, Germany
| | - Matthias Lubnow
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Thomas Müller
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Dirk Lunz
- Department of Anesthesiology, University Hospital Regensburg, Regensburg, Germany
| | - Florian Hitzenbichler
- Department for Infection Control and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
| | | | - Viola Hähnel
- Institute of Clinical Chemistry and Laboratory Medicine, Transfusion Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Robert Offner
- Institute of Clinical Chemistry and Laboratory Medicine, Transfusion Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Martina Müller
- Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | - Stephan Schmid
- Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | | | - Michael Koller
- Center for Clinical Studies, University Hospital Regensburg, Regensburg, Germany
| | - Hans Helmut Niller
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Bernhard Graf
- Department of Anesthesiology, University Hospital Regensburg, Regensburg, Germany
| | - Bernd Salzberger
- Department for Infection Control and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
| | - Jürgen J Wenzel
- Institute for Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Jonathan Jantsch
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
- Institute for Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - André Gessner
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
- Institute for Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Barbara Schmidt
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany.
- Institute for Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany.
| | - Ralf Wagner
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany.
- Institute for Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany.
| |
Collapse
|
64
|
SARS-CoV-2 and other human coronaviruses: Mapping of protease recognition sites, antigenic variation of spike protein and their grouping through molecular phylogenetics. INFECTION GENETICS AND EVOLUTION 2021; 89:104729. [PMID: 33497837 PMCID: PMC7826164 DOI: 10.1016/j.meegid.2021.104729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/10/2020] [Accepted: 01/20/2021] [Indexed: 11/20/2022]
Abstract
In recent years, a total of seven human pathogenic coronaviruses (HCoVs) strains were identified, i.e., SARS-CoV, SARS-CoV-2, MERS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, and HCoV-HKU1. Here, we performed an analysis of the protease recognition sites and antigenic variation of the S-protein of these HCoVs. We showed tissue-specific expression pattern, functions, and a number of recognition sites of proteases in S-proteins from seven strains of HCoVs. In the case of SARS-CoV-2, we found two new protease recognition sites, each of calpain-2, pepsin-A, and caspase-8, and one new protease recognition site each of caspase-6, caspase-3, and furin. Our antigenic mapping study of the S-protein of these HCoVs showed that the SARS-CoV-2 virus strain has the most potent antigenic epitopes (highest antigenicity score with maximum numbers of epitope regions). Additionally, the other six strains of HCoVs show common antigenic epitopes (both B-cell and T-cell), with low antigenicity scores compared to SARS-CoV-2. We suggest that the molecular evolution of structural proteins of human CoV can be classified, such as (i) HCoV-NL63 and HCoV-229E, (ii) SARS-CoV-2, and SARS-CoV and (iii) HCoV-OC43 and HCoV-HKU1. In conclusion, we can presume that our study might help to prepare the interventions for the possible HCoVs outbreaks in the future.
Collapse
|
65
|
Henss L, Scholz T, von Rhein C, Wieters I, Borgans F, Eberhardt FJ, Zacharowski K, Ciesek S, Rohde G, Vehreschild M, Stephan C, Wolf T, Hofmann-Winkler H, Scheiblauer H, Schnierle BS. Analysis of Humoral Immune Responses in Patients With Severe Acute Respiratory Syndrome Coronavirus 2 Infection. J Infect Dis 2021; 223:56-61. [PMID: 33128369 PMCID: PMC7665662 DOI: 10.1093/infdis/jiaa680] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
Background The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection has caused a pandemic with tens of millions of cases and hundreds of thousands of deaths. The infection causes COVID-19, a disease of the respiratory system of divergent severity. Here, the humoral immune response of a cohort of 143 COVID-19 patients from the University Hospital Frankfurt/Main, Germany was characterized. Methods SARS-CoV-2-specific antibodies were detected by enzyme-linked immunosorbent assay (ELISA). SARS-CoV-2 and hCoV NL63 neutralization activity was analyzed with pseudotyped lentiviral vectors. Results COVID-19 severity increased with age and male patients encountered more serious symptoms than females. Disease severity correlated with the amount of SARS-CoV-2 specific IgG and IgA and the neutralization activity of the antibodies. The amount of SARS-CoV-2 specific IgG antibodies decreased with time after PCR conformation of the infection and antibodies directed against the nucleoprotein waned faster than spike directed antibodies. In contrast, for the common flu coronavirus NL63, COVID19 disease severity seemed to correlate with low NL63-neutralizing activities, suggesting the possibility of cross-reactive protection. Conclusion The results describe the humoral immune responses against SARS-CoV-2 and might aid the identification of correlates of protection needed for vaccine development.
Collapse
Affiliation(s)
- Lisa Henss
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | - Tatjana Scholz
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | | | - Imke Wieters
- Zentrum für Innere Medizin, Infektiologie, Universitätsklinikum Frankfurt, Goethe Universität Frankfurt, Frankfurt am Main, Germany
| | - Frauke Borgans
- Zentrum für Innere Medizin, Infektiologie, Universitätsklinikum Frankfurt, Goethe Universität Frankfurt, Frankfurt am Main, Germany
| | - Fabian J Eberhardt
- Zentrum für Innere Medizin, Infektiologie, Universitätsklinikum Frankfurt, Goethe Universität Frankfurt, Frankfurt am Main, Germany
| | - Kai Zacharowski
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Frankfurt, Frankfurt am Main, Germany
| | - Sandra Ciesek
- Institut für Medizinische Virologie, Universitätsklinikum Frankfurt am Main, Goethe Universität Frankfurt, Frankfurt am Main, Germany
| | - Gernot Rohde
- Medizinische Klinik 1, Pneumologie/Allergologie, Universitätsklinikum Frankfurt-Goethe-Universität, Frankfurt am Main, Germany
| | - Maria Vehreschild
- Zentrum für Innere Medizin, Infektiologie, Universitätsklinikum Frankfurt, Goethe Universität Frankfurt, Frankfurt am Main, Germany
| | - Christoph Stephan
- Zentrum für Innere Medizin, Infektiologie, Universitätsklinikum Frankfurt, Goethe Universität Frankfurt, Frankfurt am Main, Germany
| | - Timo Wolf
- Zentrum für Innere Medizin, Infektiologie, Universitätsklinikum Frankfurt, Goethe Universität Frankfurt, Frankfurt am Main, Germany
| | - Heike Hofmann-Winkler
- Deutsches Primatenzentrum GmbH, Leibniz-Institut für Primatenforschung, Göttingen, Germany
| | | | | |
Collapse
|
66
|
Cueno ME, Imai K. Structural Comparison of the SARS CoV 2 Spike Protein Relative to Other Human-Infecting Coronaviruses. Front Med (Lausanne) 2021; 7:594439. [PMID: 33585502 PMCID: PMC7874069 DOI: 10.3389/fmed.2020.594439] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022] Open
Abstract
Coronaviruses (CoV) are enveloped positive-stranded RNA viruses and, historically, there are seven known human-infecting CoVs with varying degrees of virulence. CoV attachment to the host is the first step of viral pathogenesis and mainly relies on the spike glycoprotein located on the viral surface. Among the human-infecting CoVs, only the infection of SARS CoV 2 (SARS2) among humans resulted to a pandemic which would suggest that the protein structural conformation of SARS2 spike protein is distinct as compared to other human-infecting CoVs. Surprisingly, the possible differences and similarities in the protein structural conformation between the various human-infecting CoV spike proteins have not been fully elucidated. In this study, we utilized a computational approach to generate models and analyze the seven human-infecting CoV spike proteins, namely: HCoV 229E, HCoV OC43, HCoV NL63, HCoV HKU1, SARS CoV, MERS CoV, and SARS2. Model quality assessment of all CoV models generated, structural superimposition of the whole protein model and selected S1 domains (S1-CTD and S1-NTD), and structural comparison based on RMSD values, Tm scores, and contact mapping were all performed. We found that the structural orientation of S1-CTD is a potential structural feature associated to both the CoV phylogenetic cluster and lineage. Moreover, we observed that spike models in the same phylogenetic cluster or lineage could potentially have similar protein structure. Additionally, we established that there are potentially three distinct S1-CTD orientation (Pattern I, Pattern II, Pattern III) among the human-infecting CoVs. Furthermore, we postulate that human-infecting CoVs in the same phylogenetic cluster may have similar S1-CTD and S1-NTD structural orientation. Taken together, we propose that the SARS2 spike S1-CTD follows a Pattern III orientation which has a higher degree of similarity with SARS1 and some degree of similarity with both OC43 and HKU1 which coincidentally are in the same phylogenetic cluster and lineage, whereas, the SARS2 spike S1-NTD has some degree of similarity among human-infecting CoVs that are either in the same phylogenetic cluster or lineage.
Collapse
Affiliation(s)
- Marni E Cueno
- Department of Microbiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Kenichi Imai
- Department of Microbiology, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
67
|
Cohen SA, Kellogg C, Equils O. Neutralizing and cross-reacting antibodies: implications for immunotherapy and SARS-CoV-2 vaccine development. Hum Vaccin Immunother 2021; 17:84-87. [PMID: 32678695 PMCID: PMC7872068 DOI: 10.1080/21645515.2020.1787074] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/13/2020] [Indexed: 12/28/2022] Open
Abstract
The novel coronavirus SARS-CoV-2 emerged in China in 2019 and quickly spread globally, causing a pandemic. There is an urgent need to develop vaccines against the virus, and both convalescent plasma and immune globulin are currently in clinical trials for treatment of patients with COVID-19. It is unclear whether antibodies induced by SARS-CoV-2 have neutralizing capacity and whether they can protect from future infection. Seasonal human coronaviruses (HCoV) have been circulating for decades. It is currently unknown whether antibodies against seasonal HCoV may cross-neutralize SARS-CoV-2. Data from neonates suggest that trans-placental antibodies against HCoV may have neutralizing capacity. Here we briefly review the epidemiologic observations on HCoV and discuss the potential implications for neutralizing and cross-neutralizing antibodies against SARS-CoV-2.
Collapse
Affiliation(s)
- Samuel A. Cohen
- Department of Preventive Medicine, Keck School of Medicine of USC, Los Angeles, US
- MiOra, Public Health Nonprofit (www.miora.org)
| | - Caitlyn Kellogg
- MiOra, Public Health Nonprofit (www.miora.org)
- MiOra Covid-19 Response, University of California San Diego School of Medicine, Los Angeles, US
| | | |
Collapse
|
68
|
Ladner JT, Henson SN, Boyle AS, Engelbrektson AL, Fink ZW, Rahee F, D'ambrozio J, Schaecher KE, Stone M, Dong W, Dadwal S, Yu J, Caligiuri MA, Cieplak P, Bjørås M, Fenstad MH, Nordbø SA, Kainov DE, Muranaka N, Chee MS, Shiryaev SA, Altin JA. Epitope-resolved profiling of the SARS-CoV-2 antibody response identifies cross-reactivity with endemic human coronaviruses. CELL REPORTS MEDICINE 2021; 2:100189. [PMID: 33495758 PMCID: PMC7816965 DOI: 10.1016/j.xcrm.2020.100189] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/11/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022]
Abstract
The SARS-CoV-2 proteome shares regions of conservation with endemic human coronaviruses (CoVs), but it remains unknown to what extent these may be cross-recognized by the antibody response. Here, we study cross-reactivity using a highly multiplexed peptide assay (PepSeq) to generate an epitope-resolved view of IgG reactivity across all human CoVs in both COVID-19 convalescent and negative donors. PepSeq resolves epitopes across the SARS-CoV-2 Spike and Nucleocapsid proteins that are commonly targeted in convalescent donors, including several sites also recognized in some uninfected controls. By comparing patterns of homologous reactivity between CoVs and using targeted antibody-depletion experiments, we demonstrate that SARS-CoV-2 elicits antibodies that cross-recognize pandemic and endemic CoV antigens at two Spike S2 subunit epitopes. We further show that these cross-reactive antibodies preferentially bind endemic homologs. Our findings highlight sites at which the SARS-CoV-2 response appears to be shaped by previous CoV exposures and which have the potential to raise broadly neutralizing responses. PepSeq enables fully in vitro, highly multiplexed peptide-based antibody assays Epitope mapping shows preexisting antibody reactivity to SARS-CoV-2 antigens Antibodies cross-recognize endemic and pandemic antigens in the Spike S2 subunit Cross-reactive antibodies raised by SARS-CoV-2 preferentially bind endemic homologs
Collapse
Affiliation(s)
- Jason T Ladner
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Sierra N Henson
- The Translational Genomics Research Institute (TGen), Phoenix and Flagstaff, AZ, USA
| | - Annalee S Boyle
- The Translational Genomics Research Institute (TGen), Phoenix and Flagstaff, AZ, USA
| | - Anna L Engelbrektson
- The Translational Genomics Research Institute (TGen), Phoenix and Flagstaff, AZ, USA
| | - Zane W Fink
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Fatima Rahee
- The Translational Genomics Research Institute (TGen), Phoenix and Flagstaff, AZ, USA
| | | | | | - Mars Stone
- Vitalant Research Institute and Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Wenjuan Dong
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Sanjeet Dadwal
- Division of Infectious Diseases, City of Hope National Medical Center, Duarte, CA, USA
| | - Jianhua Yu
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Michael A Caligiuri
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Piotr Cieplak
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mona H Fenstad
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Immunology and Transfusion Medicine, St. Olavs Hospital, Trondheim, Norway
| | - Svein A Nordbø
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Medical Microbiology, St. Olavs Hospital, Trondheim, Norway
| | - Denis E Kainov
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | - Sergey A Shiryaev
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - John A Altin
- The Translational Genomics Research Institute (TGen), Phoenix and Flagstaff, AZ, USA
| |
Collapse
|
69
|
Zaunders J, Phetsouphanh C. Long-term and short-term immunity to SARS-CoV-2: why it matters. MICROBIOLOGY AUSTRALIA 2021. [DOI: 10.1071/ma21010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The adaptive immune system, regulated by CD4 T cells, is essential for control of many viral infections. Endemic coronavirus infections generally occur as short-term upper respiratory tract infections which in many cases appear to be cleared before adaptive immunity is fully involved, since adaptive immunity takes approximately 1.5–2 weeks to ramp up the response to a primary infection, or approximately 1 week for a recurrent infection. However, the adaptive immune response to SARS-CoV-2 infection will be critical to full recovery with minimal long-lasting effects, and to either prevention of recurrence of infection or at least reduced severity of symptoms. The detailed kinetics of this infection versus the dynamics of the immune response, including in vaccinated individuals, will largely determine these outcomes.
Collapse
|
70
|
Simula ER, Manca MA, Jasemi S, Uzzau S, Rubino S, Manchia P, Bitti A, Palermo M, Sechi LA. HCoV-NL63 and SARS-CoV-2 Share Recognized Epitopes by the Humoral Response in Sera of People Collected Pre- and during CoV-2 Pandemic. Microorganisms 2020; 8:microorganisms8121993. [PMID: 33327507 PMCID: PMC7764996 DOI: 10.3390/microorganisms8121993] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can cause serious illness in older adults and people with chronic underlying medical conditions; however, children and young people are often asymptomatic or with mild symptoms. We evaluated the presence of specific antibodies (Abs) response against Human coronavirus NL63 (HCoV-NL63) S protein epitopes (NL63-RBM1, NL63-RBM2_1, NL63-RBM2_2, NL63-RBM3, NL63-SPIKE541-554, and NL63-DISC-like) and SARS-CoV-2 epitopes (COV2-SPIKE421-434 and COV2-SPIKE742-759) in plasma samples of pre-pandemic, mid-pandemic, and COVID-19 cohorts by indirect ELISA. Moreover, a competitive assay was performed to check for cross reactivity response between COV2-SPIKE421-434 and NL63-RBM3 among patients with a definitive diagnosis of SARS-CoV-2. Immune reaction against all SARS-CoV-2 and HCoV-NL63 epitopes showed a significantly higher response in pre-pandemic patients compared to mid-pandemic patients. The results indicate that probably antibodies against HCoV-NL63 may be able to cross react with SARS-CoV-2 epitopes and the higher incidence in pre-pandemic was probably due to the timing of collection when a high incidence of HCoV-NL63 is reported. In addition, the competitive assay showed cross-reactivity between antibodies directed against COV2-SPIKE421-434 and NL63-RBM3 peptides. Pre-existing HCoV-NL63 antibody response cross reacting with SARS-CoV-2 has been detected in both pre- and mid-pandemic individual, suggesting that previous exposure to HCoV-NL63 epitopes may produce antibodies which could confer a protective immunity against SARS-CoV-2 and probably reduce the severity of the disease.
Collapse
Affiliation(s)
- Elena Rita Simula
- Department of Biomedical Sciences, Division of Microbiology and Virology, University of Sassari, 07100 Sassari, Italy; (E.R.S.); (M.A.M.); (S.J.); (S.U.); (S.R.)
| | - Maria Antonietta Manca
- Department of Biomedical Sciences, Division of Microbiology and Virology, University of Sassari, 07100 Sassari, Italy; (E.R.S.); (M.A.M.); (S.J.); (S.U.); (S.R.)
| | - Seyedsomaye Jasemi
- Department of Biomedical Sciences, Division of Microbiology and Virology, University of Sassari, 07100 Sassari, Italy; (E.R.S.); (M.A.M.); (S.J.); (S.U.); (S.R.)
| | - Sergio Uzzau
- Department of Biomedical Sciences, Division of Microbiology and Virology, University of Sassari, 07100 Sassari, Italy; (E.R.S.); (M.A.M.); (S.J.); (S.U.); (S.R.)
| | - Salvatore Rubino
- Department of Biomedical Sciences, Division of Microbiology and Virology, University of Sassari, 07100 Sassari, Italy; (E.R.S.); (M.A.M.); (S.J.); (S.U.); (S.R.)
| | - Pierangela Manchia
- Patologia Clinica, ATS Sardegna, ASSL, 07100 Sassari, Italy; (P.M.); (A.B.)
| | - Angela Bitti
- Patologia Clinica, ATS Sardegna, ASSL, 07100 Sassari, Italy; (P.M.); (A.B.)
| | - Mario Palermo
- Servizio di Endocrinologia, Azienda Ospedaliera Universitaria (AOU), 07100 Sassari, Italy;
| | - Leonardo A. Sechi
- Department of Biomedical Sciences, Division of Microbiology and Virology, University of Sassari, 07100 Sassari, Italy; (E.R.S.); (M.A.M.); (S.J.); (S.U.); (S.R.)
- Correspondence: ; Tel.: +39-079-228-462; Fax: +39-079-212-345
| |
Collapse
|
71
|
Ng KW, Faulkner N, Cornish GH, Rosa A, Harvey R, Hussain S, Ulferts R, Earl C, Wrobel AG, Benton DJ, Roustan C, Bolland W, Thompson R, Agua-Doce A, Hobson P, Heaney J, Rickman H, Paraskevopoulou S, Houlihan CF, Thomson K, Sanchez E, Shin GY, Spyer MJ, Joshi D, O'Reilly N, Walker PA, Kjaer S, Riddell A, Moore C, Jebson BR, Wilkinson M, Marshall LR, Rosser EC, Radziszewska A, Peckham H, Ciurtin C, Wedderburn LR, Beale R, Swanton C, Gandhi S, Stockinger B, McCauley J, Gamblin SJ, McCoy LE, Cherepanov P, Nastouli E, Kassiotis G. Preexisting and de novo humoral immunity to SARS-CoV-2 in humans. Science 2020; 370:1339-1343. [PMID: 33159009 DOI: 10.1101/2020.05.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/29/2020] [Indexed: 05/20/2023]
Abstract
Zoonotic introduction of novel coronaviruses may encounter preexisting immunity in humans. Using diverse assays for antibodies recognizing SARS-CoV-2 proteins, we detected preexisting humoral immunity. SARS-CoV-2 spike glycoprotein (S)-reactive antibodies were detectable using a flow cytometry-based method in SARS-CoV-2-uninfected individuals and were particularly prevalent in children and adolescents. They were predominantly of the immunoglobulin G (IgG) class and targeted the S2 subunit. By contrast, SARS-CoV-2 infection induced higher titers of SARS-CoV-2 S-reactive IgG antibodies targeting both the S1 and S2 subunits, and concomitant IgM and IgA antibodies, lasting throughout the observation period. SARS-CoV-2-uninfected donor sera exhibited specific neutralizing activity against SARS-CoV-2 and SARS-CoV-2 S pseudotypes. Distinguishing preexisting and de novo immunity will be critical for our understanding of susceptibility to and the natural course of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Kevin W Ng
- Retroviral Immunology, The Francis Crick Institute, London NW1 1AT, UK
| | - Nikhil Faulkner
- Retroviral Immunology, The Francis Crick Institute, London NW1 1AT, UK
| | | | - Annachiara Rosa
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Ruth Harvey
- Worldwide Influenza Centre, The Francis Crick Institute, London NW1 1AT, UK
| | - Saira Hussain
- Worldwide Influenza Centre, The Francis Crick Institute, London NW1 1AT, UK
| | - Rachel Ulferts
- Cell Biology of Infection Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Christopher Earl
- Signalling and Structural Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Antoni G Wrobel
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Donald J Benton
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Chloe Roustan
- Structural Biology STP, The Francis Crick Institute, London NW1 1AT, UK
| | - William Bolland
- Retroviral Immunology, The Francis Crick Institute, London NW1 1AT, UK
| | - Rachael Thompson
- Retroviral Immunology, The Francis Crick Institute, London NW1 1AT, UK
| | - Ana Agua-Doce
- Flow Cytometry STP, The Francis Crick Institute, London NW1 1AT, UK
| | - Philip Hobson
- Flow Cytometry STP, The Francis Crick Institute, London NW1 1AT, UK
| | - Judith Heaney
- University College London Hospitals (UCLH) NHS Trust, London NW1 2BU, UK
| | - Hannah Rickman
- University College London Hospitals (UCLH) NHS Trust, London NW1 2BU, UK
| | | | - Catherine F Houlihan
- University College London Hospitals (UCLH) NHS Trust, London NW1 2BU, UK
- Division of Infection and Immunity, University College London (UCL), London WC1E 6BT, UK
| | - Kirsty Thomson
- University College London Hospitals (UCLH) NHS Trust, London NW1 2BU, UK
| | - Emilie Sanchez
- University College London Hospitals (UCLH) NHS Trust, London NW1 2BU, UK
| | - Gee Yen Shin
- University College London Hospitals (UCLH) NHS Trust, London NW1 2BU, UK
| | - Moira J Spyer
- University College London Hospitals (UCLH) NHS Trust, London NW1 2BU, UK
- Department of Population, Policy and Practice, Great Ormond Street Institute for Child Health (ICH), UCL, London WC1N 1EH, UK
| | - Dhira Joshi
- Peptide Chemistry, The Francis Crick Institute, London NW1 1AT, UK
| | - Nicola O'Reilly
- Peptide Chemistry, The Francis Crick Institute, London NW1 1AT, UK
| | - Philip A Walker
- Structural Biology STP, The Francis Crick Institute, London NW1 1AT, UK
| | - Svend Kjaer
- Structural Biology STP, The Francis Crick Institute, London NW1 1AT, UK
| | - Andrew Riddell
- Flow Cytometry STP, The Francis Crick Institute, London NW1 1AT, UK
| | - Catherine Moore
- Public Health Wales, University Hospital of Wales, Cardiff CF14 4XW, UK
| | - Bethany R Jebson
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, Great Ormond Street Hospital (GOSH), London WC1N 3JH, UK
- UCL Great Ormond Street Institute for Child Health (ICH), UCL, London WC1N 1EH, UK
| | - Meredyth Wilkinson
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, Great Ormond Street Hospital (GOSH), London WC1N 3JH, UK
- UCL Great Ormond Street Institute for Child Health (ICH), UCL, London WC1N 1EH, UK
| | - Lucy R Marshall
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, Great Ormond Street Hospital (GOSH), London WC1N 3JH, UK
- UCL Great Ormond Street Institute for Child Health (ICH), UCL, London WC1N 1EH, UK
| | - Elizabeth C Rosser
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, Great Ormond Street Hospital (GOSH), London WC1N 3JH, UK
- Centre for Rheumatology Research, Division of Medicine, UCL, London, WC1E 6BT, UK
| | - Anna Radziszewska
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, Great Ormond Street Hospital (GOSH), London WC1N 3JH, UK
- Centre for Rheumatology Research, Division of Medicine, UCL, London, WC1E 6BT, UK
| | - Hannah Peckham
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, Great Ormond Street Hospital (GOSH), London WC1N 3JH, UK
- Centre for Rheumatology Research, Division of Medicine, UCL, London, WC1E 6BT, UK
| | - Coziana Ciurtin
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, Great Ormond Street Hospital (GOSH), London WC1N 3JH, UK
- Centre for Rheumatology Research, Division of Medicine, UCL, London, WC1E 6BT, UK
| | - Lucy R Wedderburn
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, Great Ormond Street Hospital (GOSH), London WC1N 3JH, UK
- UCL Great Ormond Street Institute for Child Health (ICH), UCL, London WC1N 1EH, UK
| | - Rupert Beale
- Cell Biology of Infection Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Sonia Gandhi
- Neurodegeneration Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | | | - John McCauley
- Worldwide Influenza Centre, The Francis Crick Institute, London NW1 1AT, UK
| | - Steve J Gamblin
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Laura E McCoy
- Division of Infection and Immunity, University College London (UCL), London WC1E 6BT, UK.
| | - Peter Cherepanov
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| | - Eleni Nastouli
- University College London Hospitals (UCLH) NHS Trust, London NW1 2BU, UK.
- Department of Population, Policy and Practice, Great Ormond Street Institute for Child Health (ICH), UCL, London WC1N 1EH, UK
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, London NW1 1AT, UK.
- Department of Medicine, Faculty of Medicine, Imperial College London, London W2 1PG, UK
| |
Collapse
|
72
|
Ng KW, Faulkner N, Cornish GH, Rosa A, Harvey R, Hussain S, Ulferts R, Earl C, Wrobel AG, Benton DJ, Roustan C, Bolland W, Thompson R, Agua-Doce A, Hobson P, Heaney J, Rickman H, Paraskevopoulou S, Houlihan CF, Thomson K, Sanchez E, Shin GY, Spyer MJ, Joshi D, O'Reilly N, Walker PA, Kjaer S, Riddell A, Moore C, Jebson BR, Wilkinson M, Marshall LR, Rosser EC, Radziszewska A, Peckham H, Ciurtin C, Wedderburn LR, Beale R, Swanton C, Gandhi S, Stockinger B, McCauley J, Gamblin SJ, McCoy LE, Cherepanov P, Nastouli E, Kassiotis G. Preexisting and de novo humoral immunity to SARS-CoV-2 in humans. Science 2020; 370:1339-1343. [PMID: 33159009 PMCID: PMC7857411 DOI: 10.1126/science.abe1107] [Citation(s) in RCA: 615] [Impact Index Per Article: 123.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022]
Abstract
Zoonotic introduction of novel coronaviruses may encounter preexisting immunity in humans. Using diverse assays for antibodies recognizing SARS-CoV-2 proteins, we detected preexisting humoral immunity. SARS-CoV-2 spike glycoprotein (S)-reactive antibodies were detectable using a flow cytometry-based method in SARS-CoV-2-uninfected individuals and were particularly prevalent in children and adolescents. They were predominantly of the immunoglobulin G (IgG) class and targeted the S2 subunit. By contrast, SARS-CoV-2 infection induced higher titers of SARS-CoV-2 S-reactive IgG antibodies targeting both the S1 and S2 subunits, and concomitant IgM and IgA antibodies, lasting throughout the observation period. SARS-CoV-2-uninfected donor sera exhibited specific neutralizing activity against SARS-CoV-2 and SARS-CoV-2 S pseudotypes. Distinguishing preexisting and de novo immunity will be critical for our understanding of susceptibility to and the natural course of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Kevin W Ng
- Retroviral Immunology, The Francis Crick Institute, London NW1 1AT, UK
| | - Nikhil Faulkner
- Retroviral Immunology, The Francis Crick Institute, London NW1 1AT, UK
| | | | - Annachiara Rosa
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Ruth Harvey
- Worldwide Influenza Centre, The Francis Crick Institute, London NW1 1AT, UK
| | - Saira Hussain
- Worldwide Influenza Centre, The Francis Crick Institute, London NW1 1AT, UK
| | - Rachel Ulferts
- Cell Biology of Infection Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Christopher Earl
- Signalling and Structural Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Antoni G Wrobel
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Donald J Benton
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Chloe Roustan
- Structural Biology STP, The Francis Crick Institute, London NW1 1AT, UK
| | - William Bolland
- Retroviral Immunology, The Francis Crick Institute, London NW1 1AT, UK
| | - Rachael Thompson
- Retroviral Immunology, The Francis Crick Institute, London NW1 1AT, UK
| | - Ana Agua-Doce
- Flow Cytometry STP, The Francis Crick Institute, London NW1 1AT, UK
| | - Philip Hobson
- Flow Cytometry STP, The Francis Crick Institute, London NW1 1AT, UK
| | - Judith Heaney
- University College London Hospitals (UCLH) NHS Trust, London NW1 2BU, UK
| | - Hannah Rickman
- University College London Hospitals (UCLH) NHS Trust, London NW1 2BU, UK
| | | | - Catherine F Houlihan
- University College London Hospitals (UCLH) NHS Trust, London NW1 2BU, UK
- Division of Infection and Immunity, University College London (UCL), London WC1E 6BT, UK
| | - Kirsty Thomson
- University College London Hospitals (UCLH) NHS Trust, London NW1 2BU, UK
| | - Emilie Sanchez
- University College London Hospitals (UCLH) NHS Trust, London NW1 2BU, UK
| | - Gee Yen Shin
- University College London Hospitals (UCLH) NHS Trust, London NW1 2BU, UK
| | - Moira J Spyer
- University College London Hospitals (UCLH) NHS Trust, London NW1 2BU, UK
- Department of Population, Policy and Practice, Great Ormond Street Institute for Child Health (ICH), UCL, London WC1N 1EH, UK
| | - Dhira Joshi
- Peptide Chemistry, The Francis Crick Institute, London NW1 1AT, UK
| | - Nicola O'Reilly
- Peptide Chemistry, The Francis Crick Institute, London NW1 1AT, UK
| | - Philip A Walker
- Structural Biology STP, The Francis Crick Institute, London NW1 1AT, UK
| | - Svend Kjaer
- Structural Biology STP, The Francis Crick Institute, London NW1 1AT, UK
| | - Andrew Riddell
- Flow Cytometry STP, The Francis Crick Institute, London NW1 1AT, UK
| | - Catherine Moore
- Public Health Wales, University Hospital of Wales, Cardiff CF14 4XW, UK
| | - Bethany R Jebson
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, Great Ormond Street Hospital (GOSH), London WC1N 3JH, UK
- UCL Great Ormond Street Institute for Child Health (ICH), UCL, London WC1N 1EH, UK
| | - Meredyth Wilkinson
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, Great Ormond Street Hospital (GOSH), London WC1N 3JH, UK
- UCL Great Ormond Street Institute for Child Health (ICH), UCL, London WC1N 1EH, UK
| | - Lucy R Marshall
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, Great Ormond Street Hospital (GOSH), London WC1N 3JH, UK
- UCL Great Ormond Street Institute for Child Health (ICH), UCL, London WC1N 1EH, UK
| | - Elizabeth C Rosser
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, Great Ormond Street Hospital (GOSH), London WC1N 3JH, UK
- Centre for Rheumatology Research, Division of Medicine, UCL, London, WC1E 6BT, UK
| | - Anna Radziszewska
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, Great Ormond Street Hospital (GOSH), London WC1N 3JH, UK
- Centre for Rheumatology Research, Division of Medicine, UCL, London, WC1E 6BT, UK
| | - Hannah Peckham
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, Great Ormond Street Hospital (GOSH), London WC1N 3JH, UK
- Centre for Rheumatology Research, Division of Medicine, UCL, London, WC1E 6BT, UK
| | - Coziana Ciurtin
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, Great Ormond Street Hospital (GOSH), London WC1N 3JH, UK
- Centre for Rheumatology Research, Division of Medicine, UCL, London, WC1E 6BT, UK
| | - Lucy R Wedderburn
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, Great Ormond Street Hospital (GOSH), London WC1N 3JH, UK
- UCL Great Ormond Street Institute for Child Health (ICH), UCL, London WC1N 1EH, UK
| | - Rupert Beale
- Cell Biology of Infection Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Sonia Gandhi
- Neurodegeneration Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | | | - John McCauley
- Worldwide Influenza Centre, The Francis Crick Institute, London NW1 1AT, UK
| | - Steve J Gamblin
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Laura E McCoy
- Division of Infection and Immunity, University College London (UCL), London WC1E 6BT, UK.
| | - Peter Cherepanov
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| | - Eleni Nastouli
- University College London Hospitals (UCLH) NHS Trust, London NW1 2BU, UK.
- Department of Population, Policy and Practice, Great Ormond Street Institute for Child Health (ICH), UCL, London WC1N 1EH, UK
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, London NW1 1AT, UK.
- Department of Medicine, Faculty of Medicine, Imperial College London, London W2 1PG, UK
| |
Collapse
|
73
|
van Tol S, Mögling R, Li W, Godeke GJ, Swart A, Bergmans B, Brandenburg A, Kremer K, Murk JL, van Beek J, Wintermans B, Reimerink J, Bosch BJ, Reusken C. Accurate serology for SARS-CoV-2 and common human coronaviruses using a multiplex approach. Emerg Microbes Infect 2020; 9:1965-1973. [PMID: 32819220 PMCID: PMC8284965 DOI: 10.1080/22221751.2020.1813636] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/19/2020] [Indexed: 01/10/2023]
Abstract
Serology is a crucial part of the public health response to the ongoing SARS-CoV-2 pandemic. Here, we describe the development, validation and clinical evaluation of a protein micro-array as a quantitative multiplex immunoassay that can identify S and N-directed SARS-CoV-2 IgG antibodies with high specificity and sensitivity and distinguish them from all currently circulating human coronaviruses. The method specificity was 100% for SARS-CoV-2 S1 and 96% for N antigen based on extensive syndromic (n=230 cases) and population panel (n=94) testing that also confirmed the high prevalence of seasonal human coronaviruses. To assess its potential role for both SARS-CoV-2 patient diagnostics and population studies, we evaluated a large heterogeneous COVID-19 cohort (n=330) and found an overall sensitivity of 89% (≥ 21 days post onset symptoms (dps)), ranging from 86% to 96% depending on severity of disease. For a subset of these patients longitudinal samples were provided up to 56 dps. Mild cases showed absent or delayed, and lower SARS-CoV-2 antibody responses. Overall, we present the development and extensive clinical validation of a multiplex coronavirus serological assay for syndromic testing, to answer research questions regarding to antibody responses, to support SARS-CoV-2 diagnostics and to evaluate epidemiological developments efficiently and with high-throughput.
Collapse
Affiliation(s)
- Sophie van Tol
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Ramona Mögling
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Wentao Li
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Gert-Jan Godeke
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Arno Swart
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Barbara Bergmans
- Microvida, Elisabeth-Tweesteden Hospital, Tilburg, The Netherlands
| | - Afke Brandenburg
- Izore Centre for Infectious Diseases Friesland, Leeuwarden, The Netherlands
| | - Kristin Kremer
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Jean-Luc Murk
- Microvida, Elisabeth-Tweesteden Hospital, Tilburg, The Netherlands
| | - Josine van Beek
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Bas Wintermans
- Department of Medical Microbiology and Immunology, Admiral De Ruyter Hospital, Goes, The Netherlands
- Department of Medical Microbiology, Bravis Hospital, Roosendaal, The Netherlands
| | - Johan Reimerink
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Berend-Jan Bosch
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Chantal Reusken
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
74
|
Chau NVV, Toan LM, Man DNH, Thao HP, Lan NPH, Ty DTB, Hieu DK, Tien NTM, Ngoc NM, Hung LM, Dung NT, Thanh TT, Truong NT, Thwaites G, Tan LV. Absence of SARS-CoV-2 antibodies in health care workers of a tertiary referral hospital for COVID-19 in southern Vietnam. J Infect 2020; 82:e36-e37. [PMID: 33221367 PMCID: PMC7674964 DOI: 10.1016/j.jinf.2020.11.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 12/21/2022]
Affiliation(s)
| | - Le Mau Toan
- Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | | | | | | | | | - Dinh Khac Hieu
- Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | | | - Nghiem My Ngoc
- Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Le Manh Hung
- Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | | | - Tran Tan Thanh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | - Guy Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Le Van Tan
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.
| |
Collapse
|
75
|
Edridge AWD, Kaczorowska J, Hoste ACR, Bakker M, Klein M, Loens K, Jebbink MF, Matser A, Kinsella CM, Rueda P, Ieven M, Goossens H, Prins M, Sastre P, Deijs M, van der Hoek L. Seasonal coronavirus protective immunity is short-lasting. Nat Med 2020. [PMID: 32929268 DOI: 10.1101/2020.05.11.20086439] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A key unsolved question in the current coronavirus disease 2019 (COVID-19) pandemic is the duration of acquired immunity. Insights from infections with the four seasonal human coronaviruses might reveal common characteristics applicable to all human coronaviruses. We monitored healthy individuals for more than 35 years and determined that reinfection with the same seasonal coronavirus occurred frequently at 12 months after infection.
Collapse
Affiliation(s)
- Arthur W D Edridge
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Joanna Kaczorowska
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Margreet Bakker
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Michelle Klein
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Katherine Loens
- Department of Medical Microbiology, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium
- Department of Microbiology, University Hospital Antwerp, Edegem, Belgium
| | - Maarten F Jebbink
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Amy Matser
- Department of Infectious Diseases, Public Health Service of Amsterdam, Amsterdam, the Netherlands
| | - Cormac M Kinsella
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Paloma Rueda
- INGENASA, Inmunología y Genética Aplicada S. A., Madrid, Spain
| | - Margareta Ieven
- Department of Medical Microbiology, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium
| | - Herman Goossens
- Department of Medical Microbiology, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium
- Department of Microbiology, University Hospital Antwerp, Edegem, Belgium
| | - Maria Prins
- Department of Infectious Diseases, Public Health Service of Amsterdam, Amsterdam, the Netherlands
- Amsterdam UMC, University of Amsterdam, Department of Infectious Diseases, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Patricia Sastre
- INGENASA, Inmunología y Genética Aplicada S. A., Madrid, Spain
| | - Martin Deijs
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Lia van der Hoek
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
76
|
Grimwood K, Lambert SB, Ware RS. Endemic Non-SARS-CoV-2 Human Coronaviruses in a Community-Based Australian Birth Cohort. Pediatrics 2020; 146:peds.2020-009316. [PMID: 32887791 DOI: 10.1542/peds.2020-009316] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/27/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The coronavirus (CoV) disease 2019 pandemic has drawn attention to the CoV virus family. However, in community settings, there is limited information on these viruses in healthy children. We explored the epidemiology of the 4 endemic (non-severe acute respiratory syndrome CoV 2) human coronaviruses (HCoVs) by species, including acute illness episodes, risk factors, and health care burden in Australian children in the first 2 years of life. METHODS The Observational Research in Childhood Infectious Diseases community-based cohort was a prospective study of acute respiratory illnesses in children from birth until their second birthday. Parents recorded daily symptoms, maintained an illness-burden diary, and collected weekly nasal swabs, which were tested for 17 respiratory viruses, including HCoVs, by real-time polymerase chain reaction assays. RESULTS Overall, 158 children participating in Observational Research in Childhood Infectious Diseases provided 11 126 weekly swabs, of which 168 were HCoV-positive involving 130 incident episodes. HCoV-NL63 and HCoV-OC43 were most commonly detected, accounting for two-thirds of episodes. Whereas 30 children had different HCoVs detected on different occasions, 7 were reinfected with the same species. HCoV incidence in the first 2 years of life was 0.76 episodes per child-year (95% confidence interval [CI] 0.63 to 0.91), being greatest in the second year (1.06; 95% CI 0.84 to 1.33) and during winter (1.32; 95% CI 1.02 to 1.71). Fifty percent of HCoV episodes were symptomatic, and 24.2% led to health care contact. CONCLUSIONS In children, HCoV infections are common, recurrent, and frequently asymptomatic. In future studies, researchers should determine transmission pathways and immune mechanisms.
Collapse
Affiliation(s)
- Keith Grimwood
- School of Medicine and Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia; .,Departments of Paediatrics and Infectious Diseases, Gold Coast Health, Southport, Queensland, Australia; and
| | - Stephen B Lambert
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Robert S Ware
- School of Medicine and Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia
| |
Collapse
|
77
|
Crespi B. Evolutionary medical insights into the SARS-CoV-2 pandemic. Evol Med Public Health 2020; 2020:314-322. [PMID: 33335737 PMCID: PMC7665492 DOI: 10.1093/emph/eoaa036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Abstract
The author apply concepts and tools from evolutionary medicine to understanding the SARS-CoV-2 pandemic. The pandemic represents a mismatched conflict, with dynamics and pathology apparently driven by three main factors: (i) bat immune systems that rely on low inflammation but high efficacy of interferon-based defenses; (ii) viral tactics that differentially target the human interferon system, leading to substantial asymptomatic and pre-symptomatic transmission; and (ii) high mortality caused by hyper-inflammatory and hyper-coagulatory phenotypes, that represent dysregulated tradeoffs whereby collateral immune-induced damage becomes systemic and severe. This framework can explain the association of mortality with age (which involves immune life-history shifts towards higher inflammation and coagulation and reduced adaptive immunity), and sex (since males senesce faster than females). Genetic-risk factors for COVID-19 mortality can be shown, from a phenome-wide association analysis of the relevant SNPs, to be associated with inflammation and coagulation; the phenome-wide association study also provides evidence, consistent with several previous studies, that the calcium channel blocking drug amlodipine mediates risk of mortality. Lay Summary: SARS-CoV-2 is a bat virus that jumped into humans. The virus is adapted to bat immune systems, where it evolved to suppress the immune defenses (interferons) that mammals use to tell that they are infected. In humans, the virus can apparently spread effectively in the body with a delay in the production of symptoms and the initiation of immune responses. This delay may then promote overactive immune responses, when the virus is detected, that damage the body as a side effect. Older people are more vulnerable to the virus because they are less adapted to novel infectious agents, and invest less in immune defense, compared to younger people. Genes that increase risk of mortality from SARS-CoV-2 are functionally associated with a drug called amlodipine, which may represent a useful treatment.
Collapse
Affiliation(s)
- Bernard Crespi
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
78
|
Luo X, Zhou GZ, Zhang Y, Peng LH, Zou LP, Yang YS. Coronaviruses and gastrointestinal diseases. Mil Med Res 2020; 7:49. [PMID: 33054860 PMCID: PMC7556584 DOI: 10.1186/s40779-020-00279-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023] Open
Abstract
The effects of coronaviruses on the respiratory system are of great concern, but their effects on the digestive system receive much less attention. Coronaviruses that infect mammals have shown gastrointestinal pathogenicity and caused symptoms such as diarrhea and vomiting. Available data have shown that human coronaviruses, including the newly emerged SARS-CoV-2, mainly infect the respiratory system and cause symptoms such as cough and fever, while they may generate gastrointestinal symptoms. However, there is little about the relation between coronavirus and digestive system. This review specifically addresses the effects of mammalian and human coronaviruses, including SARS-CoV-2, on the digestive tract, helping to cope with the new virus infection-induced disease, COVID-19.
Collapse
Affiliation(s)
- Xi Luo
- Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.,Department of Pediatrics, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Guan-Zhou Zhou
- Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yan Zhang
- Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Li-Hua Peng
- Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Li-Ping Zou
- Department of Pediatrics, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yun-Sheng Yang
- Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
79
|
Pujhari S, Paul S, Ahluwalia J, Rasgon JL. Clotting disorder in severe acute respiratory syndrome coronavirus 2. Rev Med Virol 2020; 31:e2177. [PMID: 33022790 PMCID: PMC7646030 DOI: 10.1002/rmv.2177] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 01/20/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel human respiratory viral infection that has rapidly progressed into a pandemic, causing significant morbidity and mortality. Blood clotting disorders and acute respiratory failure have surfaced as the major complications among the severe cases of coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 infection. Remarkably, more than 70% of deaths related to COVID-19 are attributed to clotting-associated complications such as pulmonary embolism, strokes and multi-organ failure. These vascular complications have been confirmed by autopsy. This study summarizes the current understanding and explains the possible mechanisms of the blood clotting disorder, emphasizing the role of (1) hypoxia-related activation of coagulation factors like tissue factor, a significant player in triggering coagulation cascade, (2) cytokine storm and activation of neutrophils and the release of neutrophil extracellular traps and (3) immobility and ICU related risk factors.
Collapse
Affiliation(s)
- Sujit Pujhari
- Department of Pharmacology Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, USA.,Department of Entomology, The Center for Infectious Disease Dynamics, and the Huck Institutes of The Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Sanjeeta Paul
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jasmina Ahluwalia
- Departments of Hematology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Jason L Rasgon
- Department of Entomology, The Center for Infectious Disease Dynamics, and the Huck Institutes of The Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
80
|
Huang AT, Garcia-Carreras B, Hitchings MDT, Yang B, Katzelnick LC, Rattigan SM, Borgert BA, Moreno CA, Solomon BD, Trimmer-Smith L, Etienne V, Rodriguez-Barraquer I, Lessler J, Salje H, Burke DS, Wesolowski A, Cummings DAT. A systematic review of antibody mediated immunity to coronaviruses: kinetics, correlates of protection, and association with severity. Nat Commun 2020; 11:4704. [PMID: 32943637 PMCID: PMC7499300 DOI: 10.1038/s41467-020-18450-4] [Citation(s) in RCA: 636] [Impact Index Per Article: 127.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/18/2020] [Indexed: 01/05/2023] Open
Abstract
Many public health responses and modeled scenarios for COVID-19 outbreaks caused by SARS-CoV-2 assume that infection results in an immune response that protects individuals from future infections or illness for some amount of time. The presence or absence of protective immunity due to infection or vaccination (when available) will affect future transmission and illness severity. Here, we review the scientific literature on antibody immunity to coronaviruses, including SARS-CoV-2 as well as the related SARS-CoV, MERS-CoV and endemic human coronaviruses (HCoVs). We reviewed 2,452 abstracts and identified 491 manuscripts relevant to 5 areas of focus: 1) antibody kinetics, 2) correlates of protection, 3) immunopathogenesis, 4) antigenic diversity and cross-reactivity, and 5) population seroprevalence. While further studies of SARS-CoV-2 are necessary to determine immune responses, evidence from other coronaviruses can provide clues and guide future research.
Collapse
Affiliation(s)
- Angkana T Huang
- Department of Biology, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Bernardo Garcia-Carreras
- Department of Biology, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Matt D T Hitchings
- Department of Biology, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Bingyi Yang
- Department of Biology, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Leah C Katzelnick
- Department of Biology, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Susan M Rattigan
- Department of Biology, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Brooke A Borgert
- Department of Biology, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Carlos A Moreno
- Department of Biology, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Benjamin D Solomon
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Luke Trimmer-Smith
- Department of Biology, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Veronique Etienne
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
- Department of Comparative, Diagnostic & Population Medicine, University of Florida, Gainesville, FL, USA
| | | | - Justin Lessler
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Henrik Salje
- Department of Biology, University of Florida, Gainesville, FL, USA
- Department of Genetics, University of Cambridge, Cambridge, UK
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Paris, France
| | - Donald S Burke
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amy Wesolowski
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Derek A T Cummings
- Department of Biology, University of Florida, Gainesville, FL, USA.
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
81
|
Edridge AWD, Kaczorowska J, Hoste ACR, Bakker M, Klein M, Loens K, Jebbink MF, Matser A, Kinsella CM, Rueda P, Ieven M, Goossens H, Prins M, Sastre P, Deijs M, van der Hoek L. Seasonal coronavirus protective immunity is short-lasting. Nat Med 2020; 26:1691-1693. [PMID: 32929268 DOI: 10.1038/s41591-020-1083-1] [Citation(s) in RCA: 507] [Impact Index Per Article: 101.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022]
Abstract
A key unsolved question in the current coronavirus disease 2019 (COVID-19) pandemic is the duration of acquired immunity. Insights from infections with the four seasonal human coronaviruses might reveal common characteristics applicable to all human coronaviruses. We monitored healthy individuals for more than 35 years and determined that reinfection with the same seasonal coronavirus occurred frequently at 12 months after infection.
Collapse
Affiliation(s)
- Arthur W D Edridge
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Joanna Kaczorowska
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Margreet Bakker
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Michelle Klein
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Katherine Loens
- Department of Medical Microbiology, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium.,Department of Microbiology, University Hospital Antwerp, Edegem, Belgium
| | - Maarten F Jebbink
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Amy Matser
- Department of Infectious Diseases, Public Health Service of Amsterdam, Amsterdam, the Netherlands
| | - Cormac M Kinsella
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Paloma Rueda
- INGENASA, Inmunología y Genética Aplicada S. A., Madrid, Spain
| | - Margareta Ieven
- Department of Medical Microbiology, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium
| | - Herman Goossens
- Department of Medical Microbiology, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium.,Department of Microbiology, University Hospital Antwerp, Edegem, Belgium
| | - Maria Prins
- Department of Infectious Diseases, Public Health Service of Amsterdam, Amsterdam, the Netherlands.,Amsterdam UMC, University of Amsterdam, Department of Infectious Diseases, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Patricia Sastre
- INGENASA, Inmunología y Genética Aplicada S. A., Madrid, Spain
| | - Martin Deijs
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Lia van der Hoek
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
82
|
Age-Related Differences in Immunological Responses to SARS-CoV-2. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 8:3251-3258. [PMID: 32861856 PMCID: PMC7450283 DOI: 10.1016/j.jaip.2020.08.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/28/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022]
Abstract
There is a striking age-related disparity in the prevalence and severity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced coronavirus disease 2019 infections, which might be explained by age-dependent immunological mechanisms. These include age-related physiological differences in immunological responses, cross-neutralizing antibodies, and differences in levels and binding affinity of angiotensin-converting enzyme 2, the SARS-CoV-2 target receptor; antibody-dependent enhancement in adults manifesting with an overexuberant systemic inflammation in response to infection; and the increased likelihood of comorbidities in adults and the elderly. Emerging immunological phenomena such as Pediatric Multi-System Inflammatory Disorder Temporally associated with SARS-CoV-2 or Multisystem Inflammatory Syndrome in Children are now being observed, though the underlying mechanisms are still unclear. Understanding the mechanisms through which pediatric patients are protected from severe novel coronaviruses infections will provide critical clues to the pathophysiology of coronavirus disease 2019 infection and inform future therapeutic and prophylactic interventions. Asymptomatic carriage in children may have major public health implications, which will have an impact on social and health care policies on screening and isolation practices, school reopening, and safe distancing requirements in the community.
Collapse
|
83
|
Mortaz E, Tabarsi P, Varahram M, Folkerts G, Adcock IM. The Immune Response and Immunopathology of COVID-19. Front Immunol 2020; 11:2037. [PMID: 32983152 PMCID: PMC7479965 DOI: 10.3389/fimmu.2020.02037] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/27/2020] [Indexed: 01/11/2023] Open
Abstract
Coronaviruses were first discovered in the 1960s and are named due to their crown-like shape. Sometimes, but not often, a coronavirus can infect both animals and humans. An acute respiratory disease, caused by a novel coronavirus (severe acute respiratory syndrome coronavirus-2 or SARS-CoV-2 previously known as 2019-nCoV) was identified as the cause of coronavirus disease 2019 (COVID-19) as it spread throughout China and subsequently across the globe. As of 14th July 2020, a total of 13.1 million confirmed cases globally and 572,426 deaths had been reported by the World Health Organization (WHO). SARS-CoV-2 belongs to the β-coronavirus family and shares extensive genomic identity with bat coronavirus suggesting that bats are the natural host. SARS-CoV-2 uses the same receptor, angiotensin-converting enzyme 2 (ACE2), as that for SARS-CoV, the coronavirus associated with the SARS outbreak in 2003. It mainly spreads through the respiratory tract with lymphopenia and cytokine storms occuring in the blood of subjects with severe disease. This suggests the existence of immunological dysregulation as an accompanying event during severe illness caused by this virus. The early recognition of this immunological phenotype could assist prompt recognition of patients who will progress to severe disease. Here we review the data of the immune response during COVID-19 infection. The current review summarizes our understanding of how immune dysregulation and altered cytokine networks contribute to the pathophysiology of COVID-19 patients.
Collapse
Affiliation(s)
- Esmaeil Mortaz
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Payam Tabarsi
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Varahram
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gert Folkerts
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Ian M. Adcock
- Respiratory Section, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Priority Research Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
84
|
Jesus MCSD, Lima AGA, Santos VS, Storti-Melo LM, Moura TRD, Santos RWFD, Santos CAD, Martins-Filho PR, Cuevas LE, Gurgel RQ. Family COVID-19 cluster analysis of an infant without respiratory symptoms. Rev Soc Bras Med Trop 2020; 53:e20200494. [PMID: 32876320 PMCID: PMC7451496 DOI: 10.1590/0037-8682-0494-2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/03/2020] [Indexed: 01/19/2023] Open
Abstract
Diagnosing cases of coronavirus disease (COVID-19) with only non-respiratory symptoms has been challenging. We reported the diagnosis of a child who tested positive for COVID-19 with abdominal pain/diarrhea and tracked his family cluster. One member of the family tested positive for COVID-19 on real-time reverse-transcription polymerase chain reaction assay and three other family members had anti-SARS-CoV-2 antibodies.
Collapse
Affiliation(s)
- Myrela Conceição Santos de Jesus
- Programa de Pós-Graduação Stricto Sensu em Microbiologia e Parasitologia Aplicadas, Universidade Federal Fluminense, Niterói, RJ, Brasil
| | - Alexandra Giovanna Aragão Lima
- Programa de Pós-Graduação Stricto Sensu em Biologia Parasitária, Universidade Federal de Sergipe, São Cristóvão, SE, Brasil
| | | | - Luciane Moreno Storti-Melo
- Programa de Pós-Graduação Stricto Sensu em Biologia Parasitária, Universidade Federal de Sergipe, São Cristóvão, SE, Brasil
| | - Tatiana Rodrigues de Moura
- Programa de Pós-Graduação Stricto Sensu em Biologia Parasitária, Universidade Federal de Sergipe, São Cristóvão, SE, Brasil
| | | | | | - Paulo Ricardo Martins-Filho
- Programa de Pós-Graduação Stricto Sensu em Ciências da Saúde, Universidade Federal de Sergipe, Aracaju, SE, Brasil
| | - Luis Eduardo Cuevas
- Department of Clinical Science, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Ricardo Queiroz Gurgel
- Programa de Pós-Graduação Stricto Sensu em Biologia Parasitária, Universidade Federal de Sergipe, São Cristóvão, SE, Brasil
| |
Collapse
|
85
|
Mirzaei R, Goodarzi P, Asadi M, Soltani A, Aljanabi HAA, Jeda AS, Dashtbin S, Jalalifar S, Mohammadzadeh R, Teimoori A, Tari K, Salari M, Ghiasvand S, Kazemi S, Yousefimashouf R, Keyvani H, Karampoor S. Bacterial co-infections with SARS-CoV-2. IUBMB Life 2020; 72:2097-2111. [PMID: 32770825 PMCID: PMC7436231 DOI: 10.1002/iub.2356] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/11/2020] [Accepted: 07/12/2020] [Indexed: 12/13/2022]
Abstract
The pandemic coronavirus disease 2019 (COVID‐19), caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS‐CoV‐2), has affected millions of people worldwide. To date, there are no proven effective therapies for this virus. Efforts made to develop antiviral strategies for the treatment of COVID‐19 are underway. Respiratory viral infections, such as influenza, predispose patients to co‐infections and these lead to increased disease severity and mortality. Numerous types of antibiotics such as azithromycin have been employed for the prevention and treatment of bacterial co‐infection and secondary bacterial infections in patients with a viral respiratory infection (e.g., SARS‐CoV‐2). Although antibiotics do not directly affect SARS‐CoV‐2, viral respiratory infections often result in bacterial pneumonia. It is possible that some patients die from bacterial co‐infection rather than virus itself. To date, a considerable number of bacterial strains have been resistant to various antibiotics such as azithromycin, and the overuse could render those or other antibiotics even less effective. Therefore, bacterial co‐infection and secondary bacterial infection are considered critical risk factors for the severity and mortality rates of COVID‐19. Also, the antibiotic‐resistant as a result of overusing must be considered. In this review, we will summarize the bacterial co‐infection and secondary bacterial infection in some featured respiratory viral infections, especially COVID‐19.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Pedram Goodarzi
- Faculty of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Muhammad Asadi
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ayda Soltani
- School of Basic Sciences, Ale-Taha Institute of Higher Education, Tehran, Iran
| | - Hussain Ali Abraham Aljanabi
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Alnahrain University College of Medicine, Iraq
| | - Ali Salimi Jeda
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shirin Dashtbin
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saba Jalalifar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rokhsareh Mohammadzadeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Teimoori
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Kamran Tari
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Environmental Health Engineering, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehdi Salari
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Environmental Health Engineering, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sima Ghiasvand
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sima Kazemi
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasoul Yousefimashouf
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hossein Keyvani
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sajad Karampoor
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
86
|
Kellam P, Barclay W. The dynamics of humoral immune responses following SARS-CoV-2 infection and the potential for reinfection. J Gen Virol 2020; 101:791-797. [PMID: 32430094 PMCID: PMC7641391 DOI: 10.1099/jgv.0.001439] [Citation(s) in RCA: 254] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
SARS-CoV-2 is a novel coronavirus that is the causative agent of coronavirus infectious disease 2019 (COVID-19). As of 17 April 2020, it has infected 2 114 269 people, resulting in 145 144 deaths. The timing, magnitude and longevity of humoral immunity is not yet understood for SARS-CoV-2. Nevertheless, understanding this is urgently required to inform the likely future dynamics of the pandemic, to guide strategies to allow relaxation of social distancing measures and to understand how to deploy limiting vaccine doses when they become available to achieve maximum impact. SARS-CoV-2 is the seventh human coronavirus to be described. Four human coronaviruses circulate seasonally and cause common colds. Two other coronaviruses, SARS and MERS, have crossed from animal sources into humans but have not become endemic. Here we review what is known about the human humoral immune response to epidemic SARS CoV and MERS CoV and to the seasonal, endemic coronaviruses. Then we summarize recent, mostly non-peer reviewed, studies into SARS-CoV-2 serology and reinfection in humans and non-human primates and summarize current pressing research needs.
Collapse
Affiliation(s)
- Paul Kellam
- Department of Infectious Diseases, Faulty of Medicine, Imperial College London, London, W2 1NY, UK
- Kymab Ltd, The Bennet Building (B930), Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Wendy Barclay
- Department of Infectious Diseases, Faulty of Medicine, Imperial College London, London, W2 1NY, UK
| |
Collapse
|
87
|
Ladner JT, Henson SN, Boyle AS, Engelbrektson AL, Fink ZW, Rahee F, D’ambrozio J, Schaecher KE, Stone M, Dong W, Dadwal S, Yu J, Caligiuri MA, Cieplak P, Bjørås M, Fenstad MH, Nordbø SA, Kainov DE, Muranaka N, Chee MS, Shiryaev SA, Altin JA. Epitope-resolved profiling of the SARS-CoV-2 antibody response identifies cross-reactivity with an endemic human CoV. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.07.27.222943. [PMID: 32743570 PMCID: PMC7386487 DOI: 10.1101/2020.07.27.222943] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A high-resolution understanding of the antibody response to SARS-CoV-2 is important for the design of effective diagnostics, vaccines and therapeutics. However, SARS-CoV-2 antibody epitopes remain largely uncharacterized, and it is unknown whether and how the response may cross-react with related viruses. Here, we use a multiplexed peptide assay ('PepSeq') to generate an epitope-resolved view of reactivity across all human coronaviruses. PepSeq accurately detects SARS-CoV-2 exposure and resolves epitopes across the Spike and Nucleocapsid proteins. Two of these represent recurrent reactivities to conserved, functionally-important sites in the Spike S2 subunit, regions that we show are also targeted for the endemic coronaviruses in pre-pandemic controls. At one of these sites, we demonstrate that the SARS-CoV-2 response strongly and recurrently cross-reacts with the endemic virus hCoV-OC43. Our analyses reveal new diagnostic and therapeutic targets, including a site at which SARS-CoV-2 may recruit common pre-existing antibodies and with the potential for broadly-neutralizing responses.
Collapse
Affiliation(s)
- Jason T Ladner
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Sierra N Henson
- The Translational Genomics Research Institute (TGen), Phoenix and Flagstaff, AZ, USA
| | - Annalee S Boyle
- The Translational Genomics Research Institute (TGen), Phoenix and Flagstaff, AZ, USA
| | - Anna L Engelbrektson
- The Translational Genomics Research Institute (TGen), Phoenix and Flagstaff, AZ, USA
| | - Zane W Fink
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Fatima Rahee
- The Translational Genomics Research Institute (TGen), Phoenix and Flagstaff, AZ, USA
| | | | | | - Mars Stone
- Vitalant Research Institute, San Francisco, CA, USA
| | - Wenjuan Dong
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Sanjeet Dadwal
- Division of Infectious Diseases, City of Hope National Medical Center, Duarte, CA, USA
| | - Jianhua Yu
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Michael A Caligiuri
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Piotr Cieplak
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mona H Fenstad
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Immunology and Transfusion Medicine, St. Olavs Hospital, Trondheim, Norway
| | - Svein A Nordbø
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Medical Microbiology, St. Olavs Hospital, Trondheim, Norway
| | - Denis E Kainov
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | - Sergey A Shiryaev
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - John A Altin
- The Translational Genomics Research Institute (TGen), Phoenix and Flagstaff, AZ, USA
| |
Collapse
|
88
|
Folegatti PM, Bittaye M, Flaxman A, Lopez FR, Bellamy D, Kupke A, Mair C, Makinson R, Sheridan J, Rohde C, Halwe S, Jeong Y, Park YS, Kim JO, Song M, Boyd A, Tran N, Silman D, Poulton I, Datoo M, Marshall J, Themistocleous Y, Lawrie A, Roberts R, Berrie E, Becker S, Lambe T, Hill A, Ewer K, Gilbert S. Safety and immunogenicity of a candidate Middle East respiratory syndrome coronavirus viral-vectored vaccine: a dose-escalation, open-label, non-randomised, uncontrolled, phase 1 trial. THE LANCET. INFECTIOUS DISEASES 2020; 20:816-826. [PMID: 32325038 PMCID: PMC7172901 DOI: 10.1016/s1473-3099(20)30160-2] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Cases of Middle East respiratory syndrome coronavirus (MERS-CoV) infection continue to rise in the Arabian Peninsula 7 years after it was first described in Saudi Arabia. MERS-CoV poses a significant risk to public health security because of an absence of currently available effective countermeasures. We aimed to assess the safety and immunogenicity of the candidate simian adenovirus-vectored vaccine expressing the full-length spike surface glycoprotein, ChAdOx1 MERS, in humans. METHODS This dose-escalation, open-label, non-randomised, uncontrolled, phase 1 trial was done at the Centre for Clinical Vaccinology and Tropical Medicine (Oxford, UK) and included healthy people aged 18-50 years with negative pre-vaccination tests for HIV antibodies, hepatitis B surface antigen, and hepatitis C antibodies (and a negative urinary pregnancy test for women). Participants received a single intramuscular injection of ChAdOx1 MERS at three different doses: the low-dose group received 5 × 109 viral particles, the intermediate-dose group received 2·5 × 1010 viral particles, and the high-dose group received 5 × 1010 viral particles. The primary objective was to assess safety and tolerability of ChAdOx1 MERS, measured by the occurrence of solicited, unsolicited, and serious adverse events after vaccination. The secondary objective was to assess the cellular and humoral immunogenicity of ChAdOx1 MERS, measured by interferon-γ-linked enzyme-linked immunospot, ELISA, and virus neutralising assays after vaccination. Participants were followed up for up to 12 months. This study is registered with ClinicalTrials.gov, NCT03399578. FINDINGS Between March 14 and Aug 15, 2018, 24 participants were enrolled: six were assigned to the low-dose group, nine to the intermediate-dose group, and nine to the high-dose group. All participants were available for follow-up at 6 months, but five (one in the low-dose group, one in the intermediate-dose group, and three in the high-dose group) were lost to follow-up at 12 months. A single dose of ChAdOx1 MERS was safe at doses up to 5 × 1010 viral particles with no vaccine-related serious adverse events reported by 12 months. One serious adverse event reported was deemed to be not related to ChAdOx1 MERS. 92 (74% [95% CI 66-81]) of 124 solicited adverse events were mild, 31 (25% [18-33]) were moderate, and all were self-limiting. Unsolicited adverse events in the 28 days following vaccination considered to be possibly, probably, or definitely related to ChAdOx1 MERS were predominantly mild in nature and resolved within the follow-up period of 12 months. The proportion of moderate and severe adverse events was significantly higher in the high-dose group than in the intermediate-dose group (relative risk 5·83 [95% CI 2·11-17·42], p<0·0001) Laboratory adverse events considered to be at least possibly related to the study intervention were self-limiting and predominantly mild in severity. A significant increase from baseline in T-cell (p<0·003) and IgG (p<0·0001) responses to the MERS-CoV spike antigen was observed at all doses. Neutralising antibodies against live MERS-CoV were observed in four (44% [95% CI 19-73]) of nine participants in the high-dose group 28 days after vaccination, and 19 (79% [58-93]) of 24 participants had antibodies capable of neutralisation in a pseudotyped virus neutralisation assay. INTERPRETATION ChAdOx1 MERS was safe and well tolerated at all tested doses. A single dose was able to elicit both humoral and cellular responses against MERS-CoV. The results of this first-in-human clinical trial support clinical development progression into field phase 1b and 2 trials. FUNDING UK Department of Health and Social Care, using UK Aid funding, managed by the UK National Institute for Health Research.
Collapse
Affiliation(s)
- Pedro M Folegatti
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mustapha Bittaye
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Amy Flaxman
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Fernando Ramos Lopez
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Duncan Bellamy
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Alexandra Kupke
- Institute of Virology, Philipps University of Marburg, Marburg, Germany; German Center for Infection Research, Thematic Translational Unit Emerging Infections, Marburg, Germany
| | - Catherine Mair
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Rebecca Makinson
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jonathan Sheridan
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Cornelius Rohde
- Institute of Virology, Philipps University of Marburg, Marburg, Germany; German Center for Infection Research, Thematic Translational Unit Emerging Infections, Marburg, Germany
| | - Sandro Halwe
- Institute of Virology, Philipps University of Marburg, Marburg, Germany; German Center for Infection Research, Thematic Translational Unit Emerging Infections, Marburg, Germany
| | - Yuji Jeong
- International Vaccine Institute, Science Unit, Seoul, South Korea
| | - Young-Shin Park
- International Vaccine Institute, Science Unit, Seoul, South Korea
| | - Jae-Ouk Kim
- International Vaccine Institute, Science Unit, Seoul, South Korea
| | - Manki Song
- International Vaccine Institute, Science Unit, Seoul, South Korea
| | - Amy Boyd
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nguyen Tran
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Daniel Silman
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ian Poulton
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mehreen Datoo
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Julia Marshall
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Yrene Themistocleous
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Alison Lawrie
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Rachel Roberts
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Eleanor Berrie
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Stephan Becker
- Institute of Virology, Philipps University of Marburg, Marburg, Germany; German Center for Infection Research, Thematic Translational Unit Emerging Infections, Marburg, Germany
| | - Teresa Lambe
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Adrian Hill
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Katie Ewer
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sarah Gilbert
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
89
|
Cashman DP. Why the lower reported prevalence of asthma in patients diagnosed with COVID-19 validates repurposing EDTA solutions to prevent and manage treat COVID-19 disease. Med Hypotheses 2020; 144:110027. [PMID: 32758873 PMCID: PMC7319607 DOI: 10.1016/j.mehy.2020.110027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/11/2020] [Accepted: 06/20/2020] [Indexed: 12/24/2022]
Abstract
There currently is no specific antiviral drug or a vaccine for SARS-CoV-2/COVID-19 infections; now exceeding 10,300,000 infections worldwide. In the absence of animal models to test drugs, we need to find molecular explanations for any unforeseen peculiarities in clinical data, especially the recent reports describing an unexpected asthma paradox. Asthma is considered a high medical risk factor for susceptibility to SARS-CoV-2/COVID-19 infection, yet asthma is not on the list of top 10 chronic health problems suffered by people who died from SARS-CoV-2/COVID-19. Resolving this paradox requires looking beyond the binary model of a viral receptor-binding domain (RBD) attaching to the ACE-2 receptor. A NCBI pBlast analysis revealed that the SARS-CoV-2 surface spike protein contains key two calcium-dependent fusion domains that are almost identical to those that were recently discovered SARS-CoV-1. These viral calcium-dependent binding domains can facilitate membrane fusion only after cleavage by the host surface protease TMPRSS2. Importantly, TMPRSS2 also requires calcium for its SRCR (scavenger receptor cysteine-rich) domain and its LDLRA (LDL receptor class A) domain. Thus, the presence of EDTA excipients in nebulized β2-agonist medicines can disrupt SARS-CoV-2/COVID-19 infection and can explain the asthma paradox. This model validates repurposing EDTA in nebulizer solutions from a passive excipient to an active drug for treating COVID-19 infections. Repurposed EDTA delivery to respiratory tissues at an initial target dose of 2.4 mg per aerosol treatment is readily achievable with standard nebulizer and mechanical ventilator equipment. EDTA warrants further investigation as a potential treatment for SARS-CoV-2/COVID-19 in consideration of the new calcium requirements for virus infection and the regular presence of EDTA excipients in common asthma medications such as Metaproterenol. Finally, the natural history of Coronavirus diseases and further analysis of the fusion loop homologies between the Betacorona SARS-CoV-2 virus and the less pathogenic Alphacorona HC0V-229E virus suggest how to engineer a hybrid virus suitable for an attenuated alpha-beta SARS-CoV-2/COVID-19 vaccine. Thus, replacing SARS-CoV-2 fusion loops (amino acids 816–855) with the less pathogenic HCoV-229E fusion loop (amino acids 923–982) may provide antigenicity of COVID-19, but limit the pathogenicity to the level of HCoV-229E.
Collapse
|
90
|
Felsenstein S, Herbert JA, McNamara PS, Hedrich CM. COVID-19: Immunology and treatment options. Clin Immunol 2020; 215:108448. [PMID: 32353634 PMCID: PMC7185015 DOI: 10.1016/j.clim.2020.108448] [Citation(s) in RCA: 398] [Impact Index Per Article: 79.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 12/15/2022]
Abstract
The novel coronavirus SARS-CoV2 causes COVID-19, a pandemic threatening millions. As protective immunity does not exist in humans and the virus is capable of escaping innate immune responses, it can proliferate, unhindered, in primarily infected tissues. Subsequent cell death results in the release of virus particles and intracellular components to the extracellular space, which result in immune cell recruitment, the generation of immune complexes and associated damage. Infection of monocytes/macrophages and/or recruitment of uninfected immune cells can result in massive inflammatory responses later in the disease. Uncontrolled production of pro-inflammatory mediators contributes to ARDS and cytokine storm syndrome. Antiviral agents and immune modulating treatments are currently being trialled. Understanding immune evasion strategies of SARS-CoV2 and the resulting delayed massive immune response will result in the identification of biomarkers that predict outcomes as well as phenotype and disease stage specific treatments that will likely include both antiviral and immune modulating agents.
Collapse
Affiliation(s)
- Susanna Felsenstein
- Department of Infectious Diseases and Immunology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK
| | - Jenny A Herbert
- Department of Women's & Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Paul S McNamara
- Department of Women's & Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Christian M Hedrich
- Department of Women's & Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK; Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK.
| |
Collapse
|
91
|
Zimmermann P, Curtis N. COVID-19 in Children, Pregnancy and Neonates: A Review of Epidemiologic and Clinical Features. Pediatr Infect Dis J 2020; 39:469-477. [PMID: 32398569 PMCID: PMC7363381 DOI: 10.1097/inf.0000000000002700] [Citation(s) in RCA: 239] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/29/2020] [Indexed: 02/06/2023]
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has spread rapidly across the globe. In contrast to initial reports, recent studies suggest that children are just as likely as adults to become infected with the virus but have fewer symptoms and less severe disease. In this review, we summarize the epidemiologic and clinical features of children infected with SARS-CoV-2 reported in pediatric case series to date. We also summarize the perinatal outcomes of neonates born to women infected with SARS-CoV-2 in pregnancy. We found 11 case series including a total of 333 infants and children. Overall, 83% of the children had a positive contact history, mostly with family members. The incubation period varied between 2 and 25 days with a mean of 7 days. The virus could be isolated from nasopharyngeal secretions for up to 22 days and from stool for more than 30 days. Co-infections were reported in up to 79% of children (mainly mycoplasma and influenza). Up to 35% of children were asymptomatic. The most common symptoms were cough (48%; range 19%-100%), fever (42%; 11%-100%) and pharyngitis (30%; 11%-100%). Further symptoms were nasal congestion, rhinorrhea, tachypnoea, wheezing, diarrhea, vomiting, headache and fatigue. Laboratory test parameters were only minimally altered. Radiologic findings were unspecific and included unilateral or bilateral infiltrates with, in some cases, ground-glass opacities or consolidation with a surrounding halo sign. Children rarely needed admission to intensive care units (3%), and to date, only a small number of deaths have been reported in children globally. Nine case series and 2 case reports described outcomes of maternal SARS-CoV-2 infection during pregnancy in 65 women and 67 neonates. Two mothers (3%) were admitted to intensive care unit. Fetal distress was reported in 30% of pregnancies. Thirty-seven percent of women delivered preterm. Neonatal complications included respiratory distress or pneumonia (18%), disseminated intravascular coagulation (3%), asphyxia (2%) and 2 perinatal deaths. Four neonates (3 with pneumonia) have been reported to be SARS-CoV-2 positive despite strict infection control and prevention procedures during delivery and separation of mother and neonates, meaning vertical transmission could not be excluded.
Collapse
Affiliation(s)
- Petra Zimmermann
- From the Department of Paediatrics, Fribourg Hospital HFR and Faculty of Science and Medicine, University of Fribourg, Switzerland
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Infectious Diseases Research Group, Murdoch Children’s Research Institute, Parkville, Australia
| | - Nigel Curtis
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Infectious Diseases Research Group, Murdoch Children’s Research Institute, Parkville, Australia
- Infectious Diseases Unit, The Royal Children’s Hospital Melbourne, Parkville, Australia
| |
Collapse
|
92
|
Coronavirus Infections in Children Including COVID-19: An Overview of the Epidemiology, Clinical Features, Diagnosis, Treatment and Prevention Options in Children. Pediatr Infect Dis J 2020. [PMID: 32310621 DOI: 10.1097/inf.0000000000002660)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Coronaviruses (CoVs) are a large family of enveloped, single-stranded, zoonotic RNA viruses. Four CoVs commonly circulate among humans: HCoV2-229E, -HKU1, -NL63 and -OC43. However, CoVs can rapidly mutate and recombine leading to novel CoVs that can spread from animals to humans. The novel CoVs severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in 2002 and Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012. The 2019 novel coronavirus (SARS-CoV-2) is currently causing a severe outbreak of disease (termed COVID-19) in China and multiple other countries, threatening to cause a global pandemic. In humans, CoVs mostly cause respiratory and gastrointestinal symptoms. Clinical manifestations range from a common cold to more severe disease such as bronchitis, pneumonia, severe acute respiratory distress syndrome, multi-organ failure and even death. SARS-CoV, MERS-CoV and SARS-CoV-2 seem to less commonly affect children and to cause fewer symptoms and less severe disease in this age group compared with adults, and are associated with much lower case-fatality rates. Preliminary evidence suggests children are just as likely as adults to become infected with SARS-CoV-2 but are less likely to be symptomatic or develop severe symptoms. However, the importance of children in transmitting the virus remains uncertain. Children more often have gastrointestinal symptoms compared with adults. Most children with SARS-CoV present with fever, but this is not the case for the other novel CoVs. Many children affected by MERS-CoV are asymptomatic. The majority of children infected by novel CoVs have a documented household contact, often showing symptoms before them. In contrast, adults more often have a nosocomial exposure. In this review, we summarize epidemiologic, clinical and diagnostic findings, as well as treatment and prevention options for common circulating and novel CoVs infections in humans with a focus on infections in children.
Collapse
|
93
|
Zimmermann P, Curtis N. Coronavirus Infections in Children Including COVID-19: An Overview of the Epidemiology, Clinical Features, Diagnosis, Treatment and Prevention Options in Children. Pediatr Infect Dis J 2020; 39:355-368. [PMID: 32310621 PMCID: PMC7158880 DOI: 10.1097/inf.0000000000002660] [Citation(s) in RCA: 681] [Impact Index Per Article: 136.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Abstract
Coronaviruses (CoVs) are a large family of enveloped, single-stranded, zoonotic RNA viruses. Four CoVs commonly circulate among humans: HCoV2-229E, -HKU1, -NL63 and -OC43. However, CoVs can rapidly mutate and recombine leading to novel CoVs that can spread from animals to humans. The novel CoVs severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in 2002 and Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012. The 2019 novel coronavirus (SARS-CoV-2) is currently causing a severe outbreak of disease (termed COVID-19) in China and multiple other countries, threatening to cause a global pandemic. In humans, CoVs mostly cause respiratory and gastrointestinal symptoms. Clinical manifestations range from a common cold to more severe disease such as bronchitis, pneumonia, severe acute respiratory distress syndrome, multi-organ failure and even death. SARS-CoV, MERS-CoV and SARS-CoV-2 seem to less commonly affect children and to cause fewer symptoms and less severe disease in this age group compared with adults, and are associated with much lower case-fatality rates. Preliminary evidence suggests children are just as likely as adults to become infected with SARS-CoV-2 but are less likely to be symptomatic or develop severe symptoms. However, the importance of children in transmitting the virus remains uncertain. Children more often have gastrointestinal symptoms compared with adults. Most children with SARS-CoV present with fever, but this is not the case for the other novel CoVs. Many children affected by MERS-CoV are asymptomatic. The majority of children infected by novel CoVs have a documented household contact, often showing symptoms before them. In contrast, adults more often have a nosocomial exposure. In this review, we summarize epidemiologic, clinical and diagnostic findings, as well as treatment and prevention options for common circulating and novel CoVs infections in humans with a focus on infections in children.
Collapse
Affiliation(s)
- Petra Zimmermann
- From the Department of Paediatrics, Fribourg Hospital HFR and Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Department of Paediatrics, The University of Melbourne
- Infectious Diseases Research Group, Murdoch Children’s Research Institute
| | - Nigel Curtis
- Department of Paediatrics, The University of Melbourne
- Infectious Diseases Research Group, Murdoch Children’s Research Institute
- Infectious Diseases Unit, The Royal Children’s Hospital Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
94
|
Huang AT, Garcia-Carreras B, Hitchings MD, Yang B, Katzelnick LC, Rattigan SM, Borgert BA, Moreno CA, Solomon BD, Rodriguez-Barraquer I, Lessler J, Salje H, Burke D, Wesolowski A, Cummings DA. A systematic review of antibody mediated immunity to coronaviruses: antibody kinetics, correlates of protection, and association of antibody responses with severity of disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.04.14.20065771. [PMID: 32511434 PMCID: PMC7217088 DOI: 10.1101/2020.04.14.20065771] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
The duration and nature of immunity generated in response to SARS-CoV-2 infection is unknown. Many public health responses and modeled scenarios for COVID-19 outbreaks caused by SARSCoV-2 assume that infection results in an immune response that protects individuals from future infections or illness for some amount of time. The timescale of protection is a critical determinant of the future impact of the pathogen. The presence or absence of protective immunity due to infection or vaccination (when available) will affect future transmission and illness severity. The dynamics of immunity and nature of protection are relevant to discussions surrounding therapeutic use of convalescent sera as well as efforts to identify individuals with protective immunity. Here, we review the scientific literature on antibody immunity to coronaviruses, including SARS-CoV-2 as well as the related SARS-CoV-1, MERS-CoV and human endemic coronaviruses (HCoVs). We reviewed 1281 abstracts and identified 322 manuscripts relevant to 5 areas of focus: 1) antibody kinetics, 2) correlates of protection, 3) immunopathogenesis, 4) antigenic diversity and cross-reactivity, and 5) population seroprevalence. While studies of SARS-CoV-2 are necessary to determine immune responses to it, evidence from other coronaviruses can provide clues and guide future research.
Collapse
Affiliation(s)
- Angkana T. Huang
- Department of Biology, University of Florida, USA
- Emerging Pathogens Institute, University of Florida, USA
| | - Bernardo Garcia-Carreras
- Department of Biology, University of Florida, USA
- Emerging Pathogens Institute, University of Florida, USA
| | - Matt D.T. Hitchings
- Department of Biology, University of Florida, USA
- Emerging Pathogens Institute, University of Florida, USA
| | - Bingyi Yang
- Department of Biology, University of Florida, USA
- Emerging Pathogens Institute, University of Florida, USA
| | - Leah C. Katzelnick
- Department of Biology, University of Florida, USA
- Emerging Pathogens Institute, University of Florida, USA
| | - Susan M. Rattigan
- Department of Biology, University of Florida, USA
- Emerging Pathogens Institute, University of Florida, USA
| | - Brooke A. Borgert
- Department of Biology, University of Florida, USA
- Emerging Pathogens Institute, University of Florida, USA
| | - Carlos A. Moreno
- Department of Biology, University of Florida, USA
- Emerging Pathogens Institute, University of Florida, USA
| | - Benjamin D. Solomon
- National Human Genome Research Institute, National Institutes of Health, USA
| | | | - Justin Lessler
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, USA
| | - Henrik Salje
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Donald Burke
- Department of Epidemiology, University of Pittsburgh, USA
| | - Amy Wesolowski
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, USA
| | - Derek A.T. Cummings
- Department of Biology, University of Florida, USA
- Emerging Pathogens Institute, University of Florida, USA
| |
Collapse
|
95
|
Survey of WU and KI polyomaviruses, coronaviruses, respiratory syncytial virus and parechovirus in children under 5 years of age in Tehran, Iran. IRANIAN JOURNAL OF MICROBIOLOGY 2020; 12:164-169. [PMID: 32494351 PMCID: PMC7244825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND OBJECTIVES Severe acute respiratory infections (SARI) remain an important cause for childhood morbidity worldwide. We designed a research with the objective of finding the frequency of respiratory viruses, particularly WU and KI polyomaviruses (WUPyV & KIPyV), human coronaviruses (HCoVs), human respiratory syncytial virus (HRSV) and human parechovirus (HPeV) in hospitalized children who were influenza negative. MATERIALS AND METHODS Throat swabs were collected from children younger than 5 years who have been hospitalized for SARI and screened for WUPyV, KIPyV, HCoVs, HRSV and HPeV using Real time PCR. RESULTS A viral pathogen was identified in 23 (11.16%) of 206 hospitalized children with SARI. The rate of virus detection was considerably greater in infants <12 months (78.2%) than in older children (21.8%). The most frequently detected viruses were HCoVs with 7.76% of positive cases followed by KIPyV (2%) and WUPyV (1.5%). No HPeV and HRSV were detected in this study. CONCLUSION This research shown respiratory viruses as causes of childhood acute respiratory infections, while as most of mentioned viruses usually causes mild respiratory diseases, their frequency might be higher in outpatient children. Meanwhile as HRSV is really sensitive to inactivation due to environmental situations and its genome maybe degraded, then for future studies, we need to use fresh samples for HRSV detection. These findings addressed a need for more studies on viral respiratory tract infections to help public health.
Collapse
|
96
|
Gorse GJ, Donovan MM, Patel GB. Antibodies to coronaviruses are higher in older compared with younger adults and binding antibodies are more sensitive than neutralizing antibodies in identifying coronavirus-associated illnesses. J Med Virol 2020; 92:512-517. [PMID: 32073157 PMCID: PMC7166442 DOI: 10.1002/jmv.25715] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/16/2020] [Indexed: 12/19/2022]
Abstract
Human coronaviruses (HCoV) are common causes of respiratory illnesses (RI) despite preexisting humoral immunity. Sera were obtained near the onset of RI and 3 to 4 weeks later as part of a prospective study of 200 subjects evaluated for RI from 2009 to 2013. Antibodies against common HCoV strains were measured by enzyme‐linked immunosorbent assay and neutralization assay comparing older adults with cardiopulmonary diseases (99 subjects) to younger, healthy adults (101 subjects). Virus shedding was detected in respiratory secretions by polymerase chain reaction. Of 43 HCoV‐associated illnesses, 15 (35%) occurred in 14 older adults (aged ≥60 years) and 28 (65%) in 28 younger adults (aged 21‐40 years). Binding and neutralizing antibodies were higher in older adults. Only 16 (35.7%) of RI with increases in binding antibodies also had increases in neutralizing antibodies to HCoV. Increases in binding antibodies with RI were more frequent than increased neutralizing antibodies and virus shedding, and more frequent in younger compared to older adults. Functional neutralizing antibodies were not stimulated as often as binding antibodies, explaining in part a susceptibility to reinfection with HCoV. Monitoring binding antibodies may be more sensitive for the serologic detection of HCoV infections. Antibodies to common coronaviruses (HCoV) were higher in older than younger adults. Antibodies to HCoV can be cross‐reactive between strains. More HCoV‐related respiratory illnesses were detected in younger than older adults, and binding antibodies to HCoV increased with respiratory illness more frequently than neutralizing antibodies. There were correlations between binding and neutralizing antibodies, especially to related HCoV strains in convalescent sera. Pre‐existing antibodies to HCoV may not necessarily be protective against repeated infections and lower rates of neutralizing antibody stimulation may contribute to susceptibility to re‐infection. Assessment of binding antibodies to HCoV may be useful in seroepidemiologic studies of HCoV infections.
Collapse
Affiliation(s)
- Geoffrey J Gorse
- Section of Infectious Diseases, and Research and Development Service, VA Saint Louis Health Care System, Saint Louis, Missouri.,Division of Infectious Diseases, Allergy, and Immunology, School of Medicine, Saint Louis University, Saint Louis, Missouri
| | - Mary M Donovan
- Section of Infectious Diseases, and Research and Development Service, VA Saint Louis Health Care System, Saint Louis, Missouri
| | - Gira B Patel
- Section of Infectious Diseases, and Research and Development Service, VA Saint Louis Health Care System, Saint Louis, Missouri.,Division of Infectious Diseases, Allergy, and Immunology, School of Medicine, Saint Louis University, Saint Louis, Missouri
| |
Collapse
|
97
|
Haveri A, Smura T, Kuivanen S, Österlund P, Hepojoki J, Ikonen N, Pitkäpaasi M, Blomqvist S, Rönkkö E, Kantele A, Strandin T, Kallio-Kokko H, Mannonen L, Lappalainen M, Broas M, Jiang M, Siira L, Salminen M, Puumalainen T, Sane J, Melin M, Vapalahti O, Savolainen-Kopra C. Serological and molecular findings during SARS-CoV-2 infection: the first case study in Finland, January to February 2020. Euro Surveill 2020; 25:2000266. [PMID: 32209163 PMCID: PMC7096774 DOI: 10.2807/1560-7917.es.2020.25.11.2000266] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 03/18/2020] [Indexed: 02/04/2023] Open
Abstract
The first case of coronavirus disease (COVID-19) in Finland was confirmed on 29 January 2020. No secondary cases were detected. We describe the clinical picture and laboratory findings 3-23 days since the first symptoms. The SARS-CoV-2/Finland/1/2020 virus strain was isolated, the genome showing a single nucleotide substitution to the reference strain from Wuhan. Neutralising antibody response appeared within 9 days along with specific IgM and IgG response, targeting particularly nucleocapsid and spike proteins.
Collapse
Affiliation(s)
- Anu Haveri
- Department of Health Security, Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Teemu Smura
- University of Helsinki, Medicum, Department of Virology, Helsinki, Finland
| | - Suvi Kuivanen
- University of Helsinki, Medicum, Department of Virology, Helsinki, Finland
| | - Pamela Österlund
- Department of Health Security, Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Jussi Hepojoki
- University of Helsinki, Medicum, Department of Virology, Helsinki, Finland
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Niina Ikonen
- Department of Health Security, Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Marjaana Pitkäpaasi
- Department of Health Security, Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Soile Blomqvist
- Department of Health Security, Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Esa Rönkkö
- Department of Health Security, Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Anu Kantele
- Inflammation Center, Infectious Diseases, Helsinki University Hospital (HUSLAB) and University of Helsinki, Helsinki, Finland
| | - Tomas Strandin
- University of Helsinki, Medicum, Department of Virology, Helsinki, Finland
| | - Hannimari Kallio-Kokko
- Department of Virology and Immunology, Helsinki University Hospital (HUSLAB) and University of Helsinki, Helsinki, Finland
| | - Laura Mannonen
- Department of Virology and Immunology, Helsinki University Hospital (HUSLAB) and University of Helsinki, Helsinki, Finland
| | - Maija Lappalainen
- Department of Virology and Immunology, Helsinki University Hospital (HUSLAB) and University of Helsinki, Helsinki, Finland
| | - Markku Broas
- Infection-Hospital Hygiene Unit, Lapland Central Hospital, Rovaniemi, Finland
| | - Miao Jiang
- Department of Health Security, Finnish Institute for Health and Welfare (THL), Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Lotta Siira
- Department of Health Security, Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Mika Salminen
- Department of Health Security, Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Taneli Puumalainen
- Department of Health Security, Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Jussi Sane
- Department of Health Security, Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Merit Melin
- Department of Health Security, Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Olli Vapalahti
- University of Helsinki, Medicum, Department of Virology, Helsinki, Finland
- Department of Virology and Immunology, Helsinki University Hospital (HUSLAB) and University of Helsinki, Helsinki, Finland
| | - Carita Savolainen-Kopra
- Department of Health Security, Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| |
Collapse
|
98
|
Hobbs CV, Khaitan A, Kirmse BM, Borkowsky W. COVID-19 in Children: A Review and Parallels to Other Hyperinflammatory Syndromes. Front Pediatr 2020; 8:593455. [PMID: 33330288 PMCID: PMC7732413 DOI: 10.3389/fped.2020.593455] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/15/2020] [Indexed: 12/18/2022] Open
Abstract
During the COVID-19 pandemic, children have had markedly different clinical presentations and outcomes compared to adults. In the acute phase of infection, younger children are relatively spared the severe consequences reported in adults. Yet, they are uniquely susceptible to the newly described Multisystem Inflammatory Syndrome in Children (MIS-C). This may result from the developmental "immunodeficiency" resulting from a Th2 polarization that starts in utero and is maintained for most of the first decade of life. MIS-C may be due to IgA complexes in a Th2 environment or a Th1-like response to COVID-19 antigens that developed slowly. Alternatively, MIS-C may occur in vulnerable hosts with genetic susceptibilities in other immune and non-immune pathways. Herein, we present a brief overview of the host immune response, virologic and genetic factors, and comparable inflammatory syndromes that may explain the pathophysiology leading to drastic differences in clinical presentation and outcomes of COVID-19 between children and adults.
Collapse
Affiliation(s)
- Charlotte V Hobbs
- Division of Infectious Disease, Department of Pediatrics, Batson Children's Hospital, University of Mississippi Medical Center, Jackson, MS, United States.,Department of Microbiology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Alka Khaitan
- Department of Pediatrics, The Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Brian M Kirmse
- Division of Medical Genetics, Department of Pediatrics, Batson Children's Hospital, University of Mississippi Medical Center, Jackson, MS, United States
| | - William Borkowsky
- Division of Infectious Diseases, Department of Pediatrics, New York University Langone Health, New York, NY, United States
| |
Collapse
|
99
|
A. Desheva Y, S. Mamontov A, G. Nazarov P. Contribution of antibody-dependent enhancement to the pathogenesis of coronavirus infections. AIMS ALLERGY AND IMMUNOLOGY 2020. [DOI: 10.3934/allergy.2020005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
100
|
[Basis of coronavirus infection, and SARS-CoV-2]. Uirusu 2020; 70:155-166. [PMID: 34544930 DOI: 10.2222/jsv.70.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|