51
|
Montague SJ, Patel P, Martin EM, Slater A, Quintanilla LG, Perrella G, Kardeby C, Nagy M, Mezzano D, Mendes PM, Watson SP. Platelet activation by charged ligands and nanoparticles: platelet glycoprotein receptors as pattern recognition receptors. Platelets 2021; 32:1018-1030. [PMID: 34266346 DOI: 10.1080/09537104.2021.1945571] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 02/08/2023]
Abstract
Charge interactions play a critical role in the activation of the innate immune system by damage- and pathogen-associated molecular pattern receptors. The ability of these receptors to recognize a wide spectrum of ligands through a common mechanism is critical in host defense. In this article, we argue that platelet glycoprotein receptors that signal through conserved tyrosine-based motifs function as pattern recognition receptors (PRRs) for charged endogenous and exogenous ligands, including sulfated polysaccharides, charged proteins and nanoparticles. This is exemplified by GPVI, CLEC-2 and PEAR1 which are activated by a wide spectrum of endogenous and exogenous ligands, including diesel exhaust particles, sulfated polysaccharides and charged surfaces. We propose that this mechanism has evolved to drive rapid activation of platelets at sites of injury, but that under some conditions it can drive occlusive thrombosis, for example, when blood comes into contact with infectious agents or toxins. In this Opinion Article, we discuss mechanisms behind charge-mediated platelet activation and opportunities for designing nanoparticles and related agents such as dendrimers as novel antithrombotics.
Collapse
Affiliation(s)
- Samantha J Montague
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Pushpa Patel
- School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, UK
| | - Eleyna M Martin
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Alexandre Slater
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Lourdes Garcia Quintanilla
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Gina Perrella
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Caroline Kardeby
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Magdolna Nagy
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Diego Mezzano
- Laboratorio de Trombosis y Hemostasia, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Paula M Mendes
- School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, UK
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, UK
| |
Collapse
|
52
|
Puhm F, Flamand L, Boilard E. Platelet extracellular vesicles in COVID-19: Potential markers and makers. J Leukoc Biol 2021; 111:63-74. [PMID: 34730839 PMCID: PMC8667644 DOI: 10.1002/jlb.3mir0221-100r] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Platelets and platelet extracellular vesicles (pEV) are at the crossroads of coagulation and immunity. Extracellular vesicles are messengers that not only transmit signals between cells, but also provide information about the status of their cell of origin. Thus, pEVs have potential as both biomarkers of platelet activation and contributors to pathology. Coronavirus Disease‐19 (COVID‐19), caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), is a complex disease affecting multiple organs and is characterized by a high degree of inflammation and risk of thrombosis in some patients. In this review, we introduce pEVs as valuable biomarkers in disease with a special focus on their potential as predictors of and contributors to COVID‐19.
Collapse
Affiliation(s)
- Florian Puhm
- Department of Infectious Diseases and Immunity, Centre de recherche du CHU de Québec, Québec, Québec, Canada.,Université Laval and Centre de recherche ARThrite, Québec, Québec, Canada
| | - Louis Flamand
- Department of Infectious Diseases and Immunity, Centre de recherche du CHU de Québec, Québec, Québec, Canada.,Université Laval and Centre de recherche ARThrite, Québec, Québec, Canada
| | - Eric Boilard
- Department of Infectious Diseases and Immunity, Centre de recherche du CHU de Québec, Québec, Québec, Canada.,Université Laval and Centre de recherche ARThrite, Québec, Québec, Canada
| |
Collapse
|
53
|
Willment JA. Fc-conjugated C-type lectin receptors: Tools for understanding host-pathogen interactions. Mol Microbiol 2021; 117:632-660. [PMID: 34709692 DOI: 10.1111/mmi.14837] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022]
Abstract
The use of soluble fusion proteins of pattern recognition receptors (PRRs) used in the detection of exogenous and endogenous ligands has helped resolve the roles of PRRs in the innate immune response to pathogens, how they shape the adaptive immune response, and function in maintaining homeostasis. Using the immunoglobulin (Ig) crystallizable fragment (Fc) domain as a fusion partner, the PRR fusion proteins are soluble, stable, easily purified, have increased affinity due to the Fc homodimerization properties, and consequently have been used in a wide range of applications such as flow cytometry, screening of protein and glycan arrays, and immunofluorescent microscopy. This review will predominantly focus on the recognition of pathogens by the cell membrane-expressed glycan-binding proteins of the C-type lectin receptor (CLR) subgroup of PRRs. PRRs bind to conserved pathogen-associated molecular patterns (PAMPs), such as glycans, usually located within or on the outer surface of the pathogen. Significantly, many glycans structures are identical on both host and pathogen (e.g. the Lewis (Le) X glycan), allowing the use of Fc CLR fusion proteins with known endogenous and/or exogenous ligands as tools to identify pathogen structures that are able to interact with the immune system. Screens of highly purified pathogen-derived cell wall components have enabled identification of many unique PAMP structures recognized by CLRs. This review highlights studies using Fc CLR fusion proteins, with emphasis on the PAMPs found in fungi, bacteria, viruses, and parasites. The structure and unique features of the different CLR families is presented using examples from a broad range of microbes whenever possible.
Collapse
Affiliation(s)
- Janet A Willment
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| |
Collapse
|
54
|
Chebbo M, Duez C, Alessi MC, Chanez P, Gras D. Platelets: a potential role in chronic respiratory diseases? Eur Respir Rev 2021; 30:30/161/210062. [PMID: 34526315 PMCID: PMC9488457 DOI: 10.1183/16000617.0062-2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/05/2021] [Indexed: 12/21/2022] Open
Abstract
Platelets are small anucleate cells known for their role in haemostasis and thrombosis. In recent years, an increasing number of observations have suggested that platelets are also immune cells and key modulators of immunity. They express different receptors and molecules that allow them to respond to pathogens, and to interact with other immune cells. Platelets were linked to the pathogenesis of some inflammatory disorders including respiratory diseases such as asthma and idiopathic pulmonary fibrosis. Here, we discuss the involvement of platelets in different immune responses, and we focus on their potential role in various chronic lung diseases. In addition to their essential role in haemostasis and thrombosis, platelets are strong modulators of different immune responses, and could be involved in the physiopathology of several chronic airway diseaseshttps://bit.ly/3cB6Xnj
Collapse
Affiliation(s)
| | | | - Marie C Alessi
- Aix-Marseille Univ, INSERM, INRAE, Marseille, France.,APHM, CHU de la Timone, Laboratoire d'hématologie, Marseille, France
| | - Pascal Chanez
- Aix-Marseille Univ, INSERM, INRAE, Marseille, France.,APHM, Hôpital NORD, Clinique des Bronches, Allergie et Sommeil, Marseille, France
| | - Delphine Gras
- Aix-Marseille Univ, INSERM, INRAE, Marseille, France
| |
Collapse
|
55
|
Vrbensky JR, Nazy I, Clare R, Larché M, Arnold DM. T cell-mediated autoimmunity in immune thrombocytopenia. Eur J Haematol 2021; 108:18-27. [PMID: 34487584 DOI: 10.1111/ejh.13705] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/22/2022]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disorder characterized by a low platelet count and an increased risk of bleeding. In addition to anti-platelet autoantibodies, CD8+ T cells have been implicated as a mechanism of platelet destruction. The current evidence for the existence of platelet-specific CD8+ T cells in ITP is inconclusive. The purpose of this review is to summarize the studies that investigated CD8+ T cells in ITP and to review the methods that have been used to detect autoreactive CD8+ T cells in other autoimmune diseases.
Collapse
Affiliation(s)
- John R Vrbensky
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Ishac Nazy
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada.,McMaster Centre for Transfusion Research, McMaster University, Hamilton, ON, Canada
| | - Rumi Clare
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Mark Larché
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Donald M Arnold
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada.,McMaster Centre for Transfusion Research, McMaster University, Hamilton, ON, Canada.,Canadian Blood Services, Hamilton, ON, Canada
| |
Collapse
|
56
|
Tomo S, Sindhujadevi M, Kumar V, Sevathy S, Daisy MS, Agieshkumar BP, Soundravally R. Differential platelet receptor expression for viral capture (DC-SIGN) and plasma leakage in patients with dengue infection. JOURNAL OF CLINICAL VIROLOGY PLUS 2021. [DOI: 10.1016/j.jcvp.2021.100039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
57
|
Fard MB, Fard SB, Ramazi S, Atashi A, Eslamifar Z. Thrombosis in COVID-19 infection: Role of platelet activation-mediated immunity. Thromb J 2021; 19:59. [PMID: 34425822 PMCID: PMC8380864 DOI: 10.1186/s12959-021-00311-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/10/2021] [Indexed: 01/08/2023] Open
Abstract
Background Thrombosis plays an important role in the Coronavrus Disease 2019 (COVID-19) infection-related complications such as acute respiratory distress syndrome and myocardial infarction. Multiple factors such as oxygen demand injuries, endothelial cells injury related to infection, and plaque formation. Main body Platelets obtained from the patients may have severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA, showing that the increased activation potential recommends platelet can be hyper-activated in severely ill SARS-CoV-2 cases. Platelets contain multiple receptors that interact with specific ligands. Pathogen’s receptors such as Toll-like receptors (TLRs), NOD-like receptor, C-type lectin receptor family, glycoprotein (GP) such as GPαIIbβ3 and GPIbα which allow pathogens to interact with platelets. Platelet TLRs and NOD2 are involved in platelet activation and thrombosis. Accordingly, TLRs are critical receptors that could recognize various endogenous damage-associated molecular patterns and exogenous pathogen-associated molecular patterns (PAMPs). TLRs are considered as important components in the activation of innate immunity response against pathogenic and non-pathogenic components like damaged tissues. TLRs-1,-2,-4,-6,-7 expression on or within platelets has been reported previously. Various PAMPs were indicated to be capable of binding to platelet-TLRs and inducing both the activation and promotion of downstream proinflammatory signaling cascade. Conclusion It is possible that the increased TLRs expression and TLR-mediated platelets activation during COVID-19 may enhance vascular and coronary thrombosis. It may be hypothesized using TLRs antagonist and monoclonal antibody against P-selectin, as the marker of leukocyte recruitment and platelet activation, besides viral therapy provide therapeutic advances in fighting against the thrombosis related complications in COVID-19.
Collapse
Affiliation(s)
| | | | - Shahin Ramazi
- Department of biophysics, faculty of biological sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Atashi
- Stem cell and tissue engineering research center, Shahroud university of medical sciences, Shahroud, Iran
| | | |
Collapse
|
58
|
Ebermeyer T, Cognasse F, Berthelot P, Mismetti P, Garraud O, Hamzeh-Cognasse H. Platelet Innate Immune Receptors and TLRs: A Double-Edged Sword. Int J Mol Sci 2021; 22:ijms22157894. [PMID: 34360659 PMCID: PMC8347377 DOI: 10.3390/ijms22157894] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 12/17/2022] Open
Abstract
Platelets are hematopoietic cells whose main function has for a long time been considered to be the maintenance of vascular integrity. They have an essential role in the hemostatic response, but they also have functional capabilities that go far beyond it. This review will provide an overview of platelet functions. Indeed, stress signals may induce platelet apoptosis through proapoptotis or hemostasis receptors, necrosis, and even autophagy. Platelets also interact with immune cells and modulate immune responses in terms of activation, maturation, recruitment and cytokine secretion. This review will also show that platelets, thanks to their wide range of innate immune receptors, and in particular toll-like receptors, and can be considered sentinels actively participating in the immuno-surveillance of the body. We will discuss the diversity of platelet responses following the engagement of these receptors as well as the signaling pathways involved. Finally, we will show that while platelets contribute significantly, via their TLRs, to immune response and inflammation, these receptors also participate in the pathophysiological processes associated with various pathogens and diseases, including cancer and atherosclerosis.
Collapse
Affiliation(s)
- Théo Ebermeyer
- INSERM U1059-SAINBIOSE, Université de Lyon, F-42023 Saint-Etienne, France; (T.E.); (F.C.); (P.M.); (O.G.)
| | - Fabrice Cognasse
- INSERM U1059-SAINBIOSE, Université de Lyon, F-42023 Saint-Etienne, France; (T.E.); (F.C.); (P.M.); (O.G.)
- Etablissement Français du Sang Auvergne-Rhône-Alpes, 25 bd Pasteur, F-42100 Saint-Étienne, France
| | - Philippe Berthelot
- Team GIMAP, CIRI—Centre International de Recherche en Infectiologie, Université de Lyon, U1111, UMR5308, F-69007 Lyon, France;
- Infectious Diseases Department, CHU de St-Etienne, F-42055 Saint-Etienne, France
| | - Patrick Mismetti
- INSERM U1059-SAINBIOSE, Université de Lyon, F-42023 Saint-Etienne, France; (T.E.); (F.C.); (P.M.); (O.G.)
- Department of Vascular Medicine and Therapeutics, INNOVTE, CHU de St-Etienne, F-42055 Saint-Etienne, France
| | - Olivier Garraud
- INSERM U1059-SAINBIOSE, Université de Lyon, F-42023 Saint-Etienne, France; (T.E.); (F.C.); (P.M.); (O.G.)
| | - Hind Hamzeh-Cognasse
- INSERM U1059-SAINBIOSE, Université de Lyon, F-42023 Saint-Etienne, France; (T.E.); (F.C.); (P.M.); (O.G.)
- Correspondence:
| |
Collapse
|
59
|
Hayakawa M, Sakata A, Hayakawa H, Matsumoto H, Hiramoto T, Kashiwakura Y, Baatartsogt N, Fukushima N, Sakata Y, Suzuki-Inoue K, Ohmori T. Characterization and visualization of murine coagulation factor VIII-producing cells in vivo. Sci Rep 2021; 11:14824. [PMID: 34290295 PMCID: PMC8295325 DOI: 10.1038/s41598-021-94307-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/09/2021] [Indexed: 11/22/2022] Open
Abstract
Coagulation factors are produced from hepatocytes, whereas production of coagulation factor VIII (FVIII) from primary tissues and cell species is still controversial. Here, we tried to characterize primary FVIII-producing organ and cell species using genetically engineered mice, in which enhanced green fluorescent protein (EGFP) was expressed instead of the F8 gene. EGFP-positive FVIII-producing cells existed only in thin sinusoidal layer of the liver and characterized as CD31high, CD146high, and lymphatic vascular endothelial hyaluronan receptor 1 (Lyve1)+. EGFP-positive cells can be clearly distinguished from lymphatic endothelial cells in the expression profile of the podoplanin− and C-type lectin-like receptor-2 (CLEC-2)+. In embryogenesis, EGFP-positive cells began to emerge at E14.5 and subsequently increased according to liver maturation. Furthermore, plasma FVIII could be abolished by crossing F8 conditional deficient mice with Lyve1-Cre mice. In conclusion, in mice, FVIII is only produced from endothelial cells exhibiting CD31high, CD146high, Lyve1+, CLEC-2+, and podoplanin− in liver sinusoidal endothelial cells.
Collapse
Affiliation(s)
- Morisada Hayakawa
- Department of Biochemistry, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan. .,Center for Gene Therapy Research, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| | - Asuka Sakata
- Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Hiroko Hayakawa
- Department of Biochemistry, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Hikari Matsumoto
- Department of Biochemistry, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Takafumi Hiramoto
- Department of Biochemistry, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Yuji Kashiwakura
- Department of Biochemistry, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Nemekhbayar Baatartsogt
- Department of Biochemistry, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Noriyoshi Fukushima
- Department of Pathology, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Yoichi Sakata
- Department of Biochemistry, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Katsue Suzuki-Inoue
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Tsukasa Ohmori
- Department of Biochemistry, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan. .,Center for Gene Therapy Research, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| |
Collapse
|
60
|
Hottz ED, Quirino-Teixeira AC, Merij LB, Pinheiro MBM, Rozini SV, Bozza FA, Bozza PT. Platelet-leukocyte interactions in the pathogenesis of viral infections. Platelets 2021; 33:200-207. [PMID: 34260328 DOI: 10.1080/09537104.2021.1952179] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Evolving evidence demonstrates that platelets have major roles in viral syndromes through previously unrecognized viral sensing and effector functions. Activated platelets and increased platelet-leukocyte aggregates are observed in clinical and experimental viral infections. The mechanisms and outcomes of platelet-leukocyte interactions depend on the interacting leukocyte as well as on the pathogen and pathological conditions. In this review, we discuss the mechanisms involved in platelet interactions with leukocytes and its functions during viral infections. We focus on the contributions of human platelet-leukocyte interactions to pathophysiological and protective responses during viral infections of major global health relevance, including acquired immunodeficiency syndrome (AIDS), dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS), influenza pneumonia, and COVID-19.
Collapse
Affiliation(s)
- Eugenio D Hottz
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil.,Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Anna Cecíllia Quirino-Teixeira
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Laura Botelho Merij
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Mariana Brandi Mendonça Pinheiro
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Stephane Vicente Rozini
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Fernando A Bozza
- Laboratory of Clinical Research in Intensive Care Medicine, National Institute of Infectious Disease Evandro Chagas, Oswaldo Cruz Foundation, Rio de Janeiro , Brazil.,Intensive Care Medicine, D'Or Institute for Research and Education, Rio de Janeiro, RJ, Brazil
| | - Patrícia T Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
61
|
Lundstrom K, Barh D, Uhal BD, Takayama K, Aljabali AAA, Abd El-Aziz TM, Lal A, Redwan EM, Adadi P, Chauhan G, Sherchan SP, Azad GK, Rezaei N, Serrano-Aroca Á, Bazan NG, Hassan SS, Panda PK, Pal Choudhury P, Pizzol D, Kandimalla R, Baetas-da-Cruz W, Mishra YK, Palu G, Brufsky AM, Tambuwala MM, Uversky VN. COVID-19 Vaccines and Thrombosis-Roadblock or Dead-End Street? Biomolecules 2021; 11:1020. [PMID: 34356644 PMCID: PMC8301964 DOI: 10.3390/biom11071020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 12/16/2022] Open
Abstract
Two adenovirus-based vaccines, ChAdOx1 nCoV-19 and Ad26.COV2.S, and two mRNA-based vaccines, BNT162b2 and mRNA.1273, have been approved by the European Medicines Agency (EMA), and are invaluable in preventing and reducing the incidence of coronavirus disease-2019 (COVID-19). Recent reports have pointed to thrombosis with associated thrombocytopenia as an adverse effect occurring at a low frequency in some individuals after vaccination. The causes of such events may be related to SARS-CoV-2 spike protein interactions with different C-type lectin receptors, heparan sulfate proteoglycans (HSPGs) and the CD147 receptor, or to different soluble splice variants of the spike protein, adenovirus vector interactions with the CD46 receptor or platelet factor 4 antibodies. Similar findings have been reported for several viral diseases after vaccine administration. In addition, immunological mechanisms elicited by viral vectors related to cellular delivery could play a relevant role in individuals with certain genetic backgrounds. Although rare, the potential COVID-19 vaccine-induced immune thrombotic thrombocytopenia (VITT) requires immediate validation, especially in risk groups, such as the elderly, chronic smokers, and individuals with pre-existing incidences of thrombocytopenia; and if necessary, a reformulation of existing vaccines.
Collapse
Affiliation(s)
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Purba Medinipur 721172, India
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Bruce D. Uhal
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA;
| | - Kazuo Takayama
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8397, Japan;
| | - Alaa A. A. Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan;
| | - Tarek Mohamed Abd El-Aziz
- Zoology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt;
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Amos Lal
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN 55902, USA;
| | - Elrashdy M. Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Parise Adadi
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand;
| | - Gaurav Chauhan
- School of Engineering and Sciences, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico;
| | - Samendra P. Sherchan
- Department of Environmental Health Sciences, Tulane University, New Orleans, LA 70112, USA;
| | | | - Nima Rezaei
- Research Center for Immunodeficiency, Children’s Medical Center, Tehran University of Medical Sciences, Tehran 1416753955, Iran;
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 17177 Stockholm, Sweden
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain;
| | - Nicolas G. Bazan
- Neuroscience Center of Excellence, School of Medicine, LSU Health New Orleans, New Orleans, LA 70112, USA;
| | - Sk Sarif Hassan
- Department of Mathematics, Pingla Thana Mahavidyalaya, Maligram 721140, India;
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden;
| | | | - Damiano Pizzol
- Italian Agency for Development Cooperation—Khartoum, Sudan Street 33, Al Amarat 11111, Sudan;
| | - Ramesh Kandimalla
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad 500007, India;
- Department of Biochemistry, Kakatiya Medical College, Warangal 506007, India
| | - Wagner Baetas-da-Cruz
- Translational Laboratory in Molecular Physiology, Centre for Experimental Surgery, College of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil;
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, University of Southern Denmark, NanoSYD, Alsion 2, 6400 Sønderborg, Denmark;
| | - Giorgio Palu
- Department of Molecular Medicine, University of Padova, 35122 Padova, PD, Italy;
| | - Adam M. Brufsky
- UPMC Hillman Cancer Center, Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, UK
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
62
|
Cox D. Targeting SARS-CoV-2-Platelet Interactions in COVID-19 and Vaccine-Related Thrombosis. Front Pharmacol 2021; 12:708665. [PMID: 34290613 PMCID: PMC8287727 DOI: 10.3389/fphar.2021.708665] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/24/2021] [Indexed: 01/08/2023] Open
Abstract
It is clear that COVID-19 is more than a pneumonia and is associated with a coagulopathy and multi-organ failure. While the use of anti-coagulants does reduce the incidence of pulmonary emboli, it does not help with survival. This suggests that the coagulopathy is more likely to be platelet-driven rather than thrombin-driven. There is significant evidence to suggest that SARS-CoV-2 virions directly interact with platelets to trigger activation leading to thrombocytopenia and thrombosis. I propose a model of multiple interactions between SARS-CoV-2 and platelets that has many similarities to that with Staphylococcus aureus and Dengue virus. As platelet activation and thrombosis are major factors in poor prognosis, therapeutics that target the platelet-SARS-CoV-2 interaction have potential in treating COVID-19 and other virus infections.
Collapse
Affiliation(s)
- Dermot Cox
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
63
|
Sung PS, Hsieh SL. C-type lectins and extracellular vesicles in virus-induced NETosis. J Biomed Sci 2021; 28:46. [PMID: 34116654 PMCID: PMC8193014 DOI: 10.1186/s12929-021-00741-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Dysregulated formation of neutrophil extracellular traps (NETs) is observed in acute viral infections. Moreover, NETs contribute to the pathogenesis of acute viral infections, including those caused by the dengue virus (DV) and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Furthermore, excessive NET formation (NETosis) is associated with disease severity in patients suffering from SARS-CoV-2-induced multiple organ injuries. Dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) and other members of C-type lectin family (L-SIGN, LSECtin, CLEC10A) have been reported to interact with viral glycans to facilitate virus spreading and exacerbates inflammatory reactions. Moreover, spleen tyrosine kinase (Syk)-coupled C-type lectin member 5A (CLEC5A) has been shown as the pattern recognition receptor for members of flaviviruses, and is responsible for DV-induced cytokine storm and Japanese encephalomyelitis virus (JEV)-induced neuronal inflammation. Moreover, DV activates platelets via CLEC2 to release extracellular vesicles (EVs), including microvesicles (MVs) and exosomes (EXOs). The DV-activated EXOs (DV-EXOs) and MVs (DV-MVs) stimulate CLEC5A and Toll-like receptor 2 (TLR2), respectively, to enhance NET formation and inflammatory reactions. Thus, EVs from virus-activated platelets (PLT-EVs) are potent endogenous danger signals, and blockade of C-type lectins is a promising strategy to attenuate virus-induced NETosis and intravascular coagulopathy.
Collapse
Affiliation(s)
- Pei-Shan Sung
- Genomics Research Center, Academia Sinica, 128, Academia Road, Sec. 2, Nankang District, Taipei, 115 Taiwan
| | - Shie-Liang Hsieh
- Genomics Research Center, Academia Sinica, 128, Academia Road, Sec. 2, Nankang District, Taipei, 115 Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
- Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
64
|
Tao DL, Tassi Yunga S, Williams CD, McCarty OJT. Aspirin and antiplatelet treatments in cancer. Blood 2021; 137:3201-3211. [PMID: 33940597 PMCID: PMC8351882 DOI: 10.1182/blood.2019003977] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
Platelets have been hypothesized to promote certain neoplastic malignancies; however, antiplatelet drugs are still not part of routine pharmacological cancer prevention and treatment protocols. Paracrine interactions between platelets and cancer cells have been implicated in potentiating the dissemination, survival within the circulation, and extravasation of cancer cells at distant sites of metastasis. Signals from platelets have also been suggested to confer epigenetic alterations, including upregulating oncoproteins in circulating tumor cells, and secretion of potent growth factors may play roles in promoting mitogenesis, angiogenesis, and metastatic outgrowth. Thrombocytosis remains a marker of poor prognosis in patients with solid tumors. Experimental data suggest that lowering of platelet count may reduce tumor growth and metastasis. On the basis of the mechanisms by which platelets could contribute to cancer growth and metastasis, it is conceivable that drugs reducing platelet count or platelet activation might attenuate cancer progression and improve outcomes. We will review select pharmacological approaches that inhibit platelets and may affect cancer development and propagation. We begin by presenting an overview of clinical cancer prevention and outcome studies with low-dose aspirin. We then review current nonclinical development of drugs targeted to platelet binding, activation, and count as potential mitigating agents in cancer.
Collapse
Affiliation(s)
- Derrick L Tao
- Division of Hematology & Medical Oncology
- Department of Biomedical Engineering, and
| | - Samuel Tassi Yunga
- Department of Biomedical Engineering, and
- Cancer Early Detection & Advanced Research Center, Oregon Health & Science University, Portland, OR; and
| | - Craig D Williams
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR
| | - Owen J T McCarty
- Division of Hematology & Medical Oncology
- Department of Biomedical Engineering, and
| |
Collapse
|
65
|
Meng D, Luo M, Liu B. The Role of CLEC-2 and Its Ligands in Thromboinflammation. Front Immunol 2021; 12:688643. [PMID: 34177942 PMCID: PMC8220156 DOI: 10.3389/fimmu.2021.688643] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/24/2021] [Indexed: 12/17/2022] Open
Abstract
C-type lectin-like receptor 2 (CLEC-2, also known as CLEC-1b) is expressed on platelets, Kupffer cells and other immune cells, and binds to various ligands including the mucin-like protein podoplanin (PDPN). The role of CLEC-2 in infection and immunity has become increasingly evident in recent years. CLEC-2 is involved in platelet activation, tumor cell metastasis, separation of blood/lymphatic vessels, and cerebrovascular patterning during embryonic development. In this review, we have discussed the role of CLEC-2 in thromboinflammation, and focused on the recent research.
Collapse
Affiliation(s)
- Danyang Meng
- Department of Neurology, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Man Luo
- Department of Neurology, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Beibei Liu
- Department of Central Laboratory, Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
66
|
Platelets function as an acute viral reservoir during HIV-1 infection by harboring virus and T-cell complex formation. Blood Adv 2021; 4:4512-4521. [PMID: 32946568 DOI: 10.1182/bloodadvances.2020002420] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/14/2020] [Indexed: 12/22/2022] Open
Abstract
Platelets were recently found to harbor infectious HIV virions in infected individuals who are on antiretroviral treatment with poor CD4+ T-cell recovery. In this study, we screened platelets from recently infected individuals, before and after antiretroviral therapy, for the presence of virus and examined platelet activation, as well as CD4+ T-cell recovery. This was followed by in vitro studies assessing platelet-CD4+ T-cell complex formation as a contributing factor to viral transmission. HIV+ platelets were detected in 10 of 10 acutely infected individuals with no prior history of antiretroviral therapy. The percentage of HIV+ platelets dropped significantly after 3 months of antiretroviral therapy in all of the study participants. These individuals also demonstrated significant recovery of CD4+ T cells. Interestingly, the percentage of HIV+ platelets correlated positively with viral load but not with CD4+ T-cell count. Furthermore, we found that platelet activation with soluble CD40L or thrombin receptor activator peptide 6 (TRAP6) increased platelet-virus interactions in vitro. TRAP6-mediated interactions were reduced by platelet antagonists, aspirin, and R406. We demonstrated that platelets transmit the virus to CD4+ T cells, and this transinfection was abolished by inhibiting platelet-T-cell complex formation via exposure to an anti-CD62P antibody. Additionally, treatment with TRAP6 significantly increased the transinfection, which was also inhibited by aspirin and R206. These results reveal that platelets have the potential to promote HIV viral spread during the acute stage of infection, by harboring infectious virus transmitting infection to susceptible CD4+ T cells through complex formation.
Collapse
|
67
|
Pretorius E. Platelets in HIV: A Guardian of Host Defence or Transient Reservoir of the Virus? Front Immunol 2021; 12:649465. [PMID: 33968041 PMCID: PMC8102774 DOI: 10.3389/fimmu.2021.649465] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/06/2021] [Indexed: 01/28/2023] Open
Abstract
The immune and inflammatory responses of platelets to human immunodeficiency virus 1 (HIV-1) and its envelope proteins are of great significance to both the treatment of the infection, and to the comorbidities related to systemic inflammation. Platelets can interact with the HIV-1 virus itself, or with viral membrane proteins, or with dysregulated inflammatory molecules in circulation, ensuing from HIV-1 infection. Platelets can facilitate the inhibition of HIV-1 infection via endogenously-produced inhibitors of HIV-1 replication, or the virus can temporarily hide from the immune system inside platelets, whereby platelets act as HIV-1 reservoirs. Platelets are therefore both guardians of the host defence system, and transient reservoirs of the virus. Such reservoirs may be of particular significance during combination antiretroviral therapy (cART) interruption, as it may drive viral persistence, and result in significant implications for treatment. Both HIV-1 envelope proteins and circulating inflammatory molecules can also initiate platelet complex formation with immune cells and erythrocytes. Complex formation cause platelet hypercoagulation and may lead to an increased thrombotic risk. Ultimately, HIV-1 infection can initiate platelet depletion and thrombocytopenia. Because of their relatively short lifespan, platelets are important signalling entities, and could be targeted more directly during HIV-1 infection and cART.
Collapse
Affiliation(s)
- Etheresia Pretorius
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
68
|
Oishi S, Tsukiji N, Otake S, Oishi N, Sasaki T, Shirai T, Yoshikawa Y, Takano K, Shinmori H, Inukai T, Kondo T, Suzuki-Inoue K. Heme activates platelets and exacerbates rhabdomyolysis-induced acute kidney injury via CLEC-2 and GPVI/FcRγ. Blood Adv 2021; 5:2017-2026. [PMID: 33843987 PMCID: PMC8045506 DOI: 10.1182/bloodadvances.2020001698] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 02/16/2021] [Indexed: 12/18/2022] Open
Abstract
There is increasing evidence that platelets participate in multiple pathophysiological processes other than thrombosis and hemostasis, such as immunity, inflammation, embryonic development, and cancer progression. A recent study revealed that heme (hemin)-activated platelets induce macrophage extracellular traps (METs) and exacerbate rhabdomyolysis-induced acute kidney injury (RAKI); however, how hemin activates platelets remains unclear. Here, we report that both C-type lectin-like receptor-2 (CLEC-2) and glycoprotein VI (GPVI) are platelet hemin receptors and are involved in the exacerbation of RAKI. We investigated hemin-induced platelet aggregation in humans and mice, binding of hemin to CLEC-2 and GPVI, the RAKI-associated phenotype in a mouse model, and in vitro MET formation. Using western blotting and surface plasmon resonance, we showed that hemin activates human platelets by stimulating the phosphorylation of SYK and PLCγ2 and directly binding to both CLEC-2 and GPVI. Furthermore, hemin-induced murine platelet aggregation was partially reduced in CLEC-2-depleted and FcRγ-deficient (equivalent to GPVI-deficient) platelets and almost completely inhibited in CLEC-2-depleted FcRγ-deficient (double-knockout) platelets. In addition, hemin-induced murine platelet aggregation was inhibited by the CLEC-2 inhibitor cobalt hematoporphyrin or GPVI antibody (JAQ-1). Renal dysfunction, tubular injury, and MET formation were attenuated in double-knockout RAKI mice. Furthermore, in vitro MET formation assay showed that the downstream signaling pathway of CLEC-2 and GPVI is involved in MET formation. We propose that both CLEC-2 and GPVI in platelets play an important role in RAKI development.
Collapse
Affiliation(s)
- Saori Oishi
- Department of Clinical and Laboratory Medicine and
| | | | - Shimon Otake
- Department of Clinical and Laboratory Medicine and
| | - Naoki Oishi
- Department of Pathology, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | | | | | | | | | - Hideyuki Shinmori
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu, Japan; and
| | - Takeshi Inukai
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Tetsuo Kondo
- Department of Pathology, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | | |
Collapse
|
69
|
Allaoui A, Khawaja AA, Badad O, Naciri M, Lordkipanidzé M, Guessous F, Zaid Y. Platelet Function in Viral Immunity and SARS-CoV-2 Infection. Semin Thromb Hemost 2021; 47:419-426. [PMID: 33851385 DOI: 10.1055/s-0041-1726033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Platelets, as nonnucleated blood components, are classically recognized for their pivotal role in hemostasis. In recent years, however, accumulating evidence points to a nonhemostatic role for platelets, as active participants in the inflammatory and immune responses to microbial organisms in infectious diseases. This stems from the ability of activated platelets to secrete a plethora of immunomodulatory cytokines and chemokines, as well as directly interplaying with viral receptors. While much attention has been given to the role of the cytokine storm in the severity of the coronavirus disease 2019 (COVID-19), less is known about the contribution of platelets to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Here, we give a brief overview on the platelet contribution to antiviral immunity and response during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Afaf Allaoui
- Department of Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Akif A Khawaja
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Oussama Badad
- Department of Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco.,Department of Plant, Southern Illinois University, Carbondale, Illinois
| | - Mariam Naciri
- Department of Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Marie Lordkipanidzé
- Research Center, Montreal Heart Institute, Montréal, Quebec, Canada.,Faculty of pharmacy, Université de Montréal, Montréal, Québec, Canada
| | - Fadila Guessous
- Microbiology, Immunology and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, Virginia.,Department of Biological Sciences, Faculty of Medicine, Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Younes Zaid
- Department of Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco.,Research Center of Abulcasis University of Health Sciences, Cheikh Zaïd Hospital, Rabat, Morocco
| |
Collapse
|
70
|
Gómez RM, López Ortiz AO, Schattner M. Platelets and extracellular traps in infections. Platelets 2021; 32:305-313. [PMID: 31984825 DOI: 10.1080/09537104.2020.1718631] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 12/14/2022]
Abstract
Platelets have a well-recognized role in hemostasis and thrombosis, and they are important amplifiers of inflammation and innate immune responses. The formation of DNA extracellular traps (ETs) is a complex cellular mechanism, which occurs in response to microbial infections and sterile inflammation, and results in the release of DNA complexed with histones and various granular proteins. ETs were first discovered in neutrophils (NETs); however, it is now accepted that other leukocytes, including eosinophils (EETs) and monocytes/macrophages (MoETs/METs), can also generate them. Moreover, several types of ETs have been described.Increasing evidence has demonstrated that platelets modulate the formation of ETs. This review summarizes recent findings about the physiopathological role of platelets in the formation of ETs during infection and future perspectives in the field.
Collapse
Affiliation(s)
- Ricardo M Gómez
- Laboratorio De Virus Animales, Instituto De Biotecnología Y Biología Molecular, CONICET-UNLP, La Plata, Argentina
- Global Viral Network, Baltimore, MD, USA
| | - Aída O López Ortiz
- Laboratorio De Virus Animales, Instituto De Biotecnología Y Biología Molecular, CONICET-UNLP, La Plata, Argentina
- Laboratorio De Trombosis Experimental, Instituto De Medicina Experimental, CONICET-ANM, Buenos Aires, Argentina
| | - Mirta Schattner
- Laboratorio De Trombosis Experimental, Instituto De Medicina Experimental, CONICET-ANM, Buenos Aires, Argentina
| |
Collapse
|
71
|
Real F, Zhu A, Bomsel M. [A free rider: Infectious HIV hidden in the platelets of infected but virally suppressed patients fuels tissue reservoirs]. Med Sci (Paris) 2021; 37:226-230. [PMID: 33739268 DOI: 10.1051/medsci/2021006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Fernando Real
- Laboratoire Entrée muqueuse du VIH et immunité muqueuse, Département 3I, Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France. - CNRS UMR8104, 75014 Paris, France. - Inserm U1016, Institut Cochin, 22 rue Méchain, 75014 Paris, France
| | - Aiwei Zhu
- Laboratoire Entrée muqueuse du VIH et immunité muqueuse, Département 3I, Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France. - CNRS UMR8104, 75014 Paris, France. - Inserm U1016, Institut Cochin, 22 rue Méchain, 75014 Paris, France
| | - Morgane Bomsel
- Laboratoire Entrée muqueuse du VIH et immunité muqueuse, Département 3I, Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France. - CNRS UMR8104, 75014 Paris, France. - Inserm U1016, Institut Cochin, 22 rue Méchain, 75014 Paris, France
| |
Collapse
|
72
|
Madzime M, Rossouw TM, Theron AJ, Anderson R, Steel HC. Interactions of HIV and Antiretroviral Therapy With Neutrophils and Platelets. Front Immunol 2021; 12:634386. [PMID: 33777022 PMCID: PMC7994251 DOI: 10.3389/fimmu.2021.634386] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/18/2021] [Indexed: 12/16/2022] Open
Abstract
Neutrophils are important components of the innate immune system that mediate pathogen defense by multiple processes including phagocytosis, release of proteolytic enzymes, production of reactive oxygen species, and neutrophil extracellular trap formation. Abnormalities of neutrophil count and function have been described in the setting of HIV infection, with the majority of antiretroviral agents (ARVs), excluding zidovudine, having been reported to correct neutropenia. Questions still remain, however, about their impact on neutrophil function, particularly the possibility of persistent neutrophil activation, which could predispose people living with HIV to chronic inflammatory disorders, even in the presence of virally-suppressive treatment. In this context, the effects of protease inhibitors and integrase strand transfer inhibitors, in particular, on neutrophil function remain poorly understood and deserve further study. Besides mediating hemostatic functions, platelets are increasingly recognized as critical role players in the immune response against infection. In the setting of HIV, these cells have been found to harbor the virus, even in the presence of antiretroviral therapy (ART) potentially promoting viral dissemination. While HIV-infected individuals often present with thrombocytopenia, they have also been reported to have increased platelet activation, as measured by an upregulation of expression of CD62P (P-selectin), CD40 ligand, glycoprotein IV, and RANTES. Despite ART-mediated viral suppression, HIV-infected individuals reportedly have sustained platelet activation and dysfunction. This, in turn, contributes to persistent immune activation and an inflammatory vascular environment, seemingly involving neutrophil-platelet-endothelium interactions that increase the risk for development of comorbidities such as cardiovascular disease (CVD) that has become the leading cause of morbidity and mortality in HIV-infected individuals on treatment, clearly underscoring the importance of unraveling the possible etiologic roles of ARVs. In this context, abacavir and ritonavir-boosted lopinavir and darunavir have all been linked to an increased risk of CVD. This narrative review is therefore focused primarily on the role of neutrophils and platelets in HIV transmission and disease, as well as on the effect of HIV and the most common ARVs on the numbers and functions of these cells, including neutrophil-platelet-endothelial interactions.
Collapse
Affiliation(s)
- Morris Madzime
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Theresa M Rossouw
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Annette J Theron
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Helen C Steel
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
73
|
Lien TS, Sun DS, Wu CY, Chang HH. Exposure to Dengue Envelope Protein Domain III Induces Nlrp3 Inflammasome-Dependent Endothelial Dysfunction and Hemorrhage in Mice. Front Immunol 2021; 12:617251. [PMID: 33717109 PMCID: PMC7947687 DOI: 10.3389/fimmu.2021.617251] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Typically occurring during secondary dengue virus (DENV) infections, dengue hemorrhagic fever (DHF) causes abnormal immune responses, as well as endothelial vascular dysfunction, for which the responsible viral factor remains unclear. During peak viremia, the plasma levels of virion-associated envelope protein domain III (EIII) increases to a point at which cell death is sufficiently induced in megakaryocytes in vitro. Thus, EIII may constitute a virulence factor for endothelial damage. In this study, we examined endothelial cell death induced by treatment with DENV and EIII in vitro. Notably, pyroptosis, the major type of endothelial cell death observed, was attenuated through treatment with Nlrp3 inflammasome inhibitors. EIII injection effectively induced endothelial abnormalities, and sequential injection of EIII and DENV-NS1 autoantibodies induced further vascular damage, liver dysfunction, thrombocytopenia, and hemorrhage, which are typical manifestations in DHF. Under the same treatments, pathophysiological changes in the Nlrp3 inflammasome–deficient mice were notably reduced compared with those in the wild-type mice. These results suggest that the Nlrp3 inflammasome constitutes a potential therapeutic target for treating DENV-induced hemorrhage in DHF.
Collapse
Affiliation(s)
- Te-Sheng Lien
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Cheng-Yeu Wu
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| |
Collapse
|
74
|
Abstract
Platelets play an essential role in maintaining vascular integrity after injury. In addition, platelets contribute to the immune response to pathogens. For instance, they express receptors that mediate binding of viruses, and toll-like receptors that activate the cell in response to pathogen-associated molecular patterns. Platelets can be beneficial and/or detrimental during viral infections. They reduce blood-borne viruses by engulfing the free virus and presenting the virus to neutrophils. However, platelets can also enhance inflammation and tissue injury during viral infections. Here, we discuss the roles of platelets in viral infection.
Collapse
Affiliation(s)
- Silvio Antoniak
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nigel Mackman
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
75
|
Torres-Juarez F, Trejo-Martínez LA, Layseca-Espinosa E, Leon-Contreras JC, Enciso-Moreno JA, Hernandez-Pando R, Rivas-Santiago B. Platelets immune response against Mycobacterium tuberculosis infection. Microb Pathog 2021; 153:104768. [PMID: 33524564 DOI: 10.1016/j.micpath.2021.104768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/23/2022]
Abstract
Tuberculosis (TB) is the first cause of death by a single infectious agent. Previous reports have highlighted the presence of platelets within Tb granulomas, albeit the immune-associated platelet response to Mycobacterium tuberculosis (Mtb) has not been deeply studied. Our results showed that platelets are recruited into the granuloma in the late stages of tuberculosis. Furthermore, electron-microscopy studies showed that platelets can internalize Mtb and produce host defense peptides (HDPs), such as RNase 7, HBD2 and hPF-4 that bind to the internalized Mtb. Mtb-infected platelets exhibited higher transcription and secretion of IL-1β and TNF-α, whereas IL-10 and IL-6 protein levels decreased. These results suggest that platelets participate in the immune response against Mtb through HDPs and cytokines production.
Collapse
Affiliation(s)
- Flor Torres-Juarez
- Biomedical Research Unit of Zacatecas-Mexican Institute of Social Security, Zacatecas, Mexico; Laboratory of Immunology, Autonomous University of San Luis Potosí, San Luis Potosi, Mexico
| | - Luis A Trejo-Martínez
- Biomedical Research Unit of Zacatecas-Mexican Institute of Social Security, Zacatecas, Mexico
| | | | - Juan C Leon-Contreras
- Laboratory of Experimental Pathology, Nacional Institute of Medical Sciences and Nutrition "Salvador Zubiran", CDMX, Mexico
| | - Jose A Enciso-Moreno
- Biomedical Research Unit of Zacatecas-Mexican Institute of Social Security, Zacatecas, Mexico
| | - Rogelio Hernandez-Pando
- Laboratory of Experimental Pathology, Nacional Institute of Medical Sciences and Nutrition "Salvador Zubiran", CDMX, Mexico
| | - Bruno Rivas-Santiago
- Biomedical Research Unit of Zacatecas-Mexican Institute of Social Security, Zacatecas, Mexico.
| |
Collapse
|
76
|
Gadanec LK, McSweeney KR, Qaradakhi T, Ali B, Zulli A, Apostolopoulos V. Can SARS-CoV-2 Virus Use Multiple Receptors to Enter Host Cells? Int J Mol Sci 2021; 22:992. [PMID: 33498183 PMCID: PMC7863934 DOI: 10.3390/ijms22030992] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
The occurrence of the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), responsible for coronavirus disease 2019 (COVD-19), represents a catastrophic threat to global health. Protruding from the viral surface is a densely glycosylated spike (S) protein, which engages angiotensin-converting enzyme 2 (ACE2) to mediate host cell entry. However, studies have reported viral susceptibility in intra- and extrapulmonary immune and non-immune cells lacking ACE2, suggesting that the S protein may exploit additional receptors for infection. Studies have demonstrated interactions between S protein and innate immune system, including C-lectin type receptors (CLR), toll-like receptors (TLR) and neuropilin-1 (NRP1), and the non-immune receptor glucose regulated protein 78 (GRP78). Recognition of carbohydrate moieties clustered on the surface of the S protein may drive receptor-dependent internalization, accentuate severe immunopathological inflammation, and allow for systemic spread of infection, independent of ACE2. Furthermore, targeting TLRs, CLRs, and other receptors (Ezrin and dipeptidyl peptidase-4) that do not directly engage SARS-CoV-2 S protein, but may contribute to augmented anti-viral immunity and viral clearance, may represent therapeutic targets against COVID-19.
Collapse
|
77
|
Rahimi N. C-type Lectin CD209L/L-SIGN and CD209/DC-SIGN: Cell Adhesion Molecules Turned to Pathogen Recognition Receptors. BIOLOGY 2020; 10:1. [PMID: 33375175 PMCID: PMC7822156 DOI: 10.3390/biology10010001] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/19/2022]
Abstract
C-type lectin CD209/DC-SIGN and CD209L/L-SIGN proteins are distinct cell adhesion and pathogen recognition receptors that mediate cellular interactions and recognize a wide range of pathogens, including viruses such as SARS, SARS-CoV-2, bacteria, fungi and parasites. Pathogens exploit CD209 family proteins to promote infection and evade the immune recognition system. CD209L and CD209 are widely expressed in SARS-CoV-2 target organs and can contribute to infection and pathogenesis. CD209 family receptors are highly susceptible to alternative splicing and genomic polymorphism, which may influence virus tropism and transmission in vivo. The carbohydrate recognition domain (CRD) and the neck/repeat region represent the key features of CD209 family proteins that are also central to facilitating cellular ligand interactions and pathogen recognition. While the neck/repeat region is involved in oligomeric dimerization, the CRD recognizes the mannose-containing structures present on specific glycoproteins such as those found on the SARS-CoV-2 spike protein. Considering the role of CD209L and related proteins in diverse pathogen recognition, this review article discusses the recent advances in the cellular and biochemical characterization of CD209 and CD209L and their roles in viral uptake, which has important implications in understanding the host-pathogen interaction, the viral pathobiology and driving vaccine development of SARS-CoV-2.
Collapse
Affiliation(s)
- Nader Rahimi
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, MA 02118, USA
| |
Collapse
|
78
|
K. Poddar M, Banerjee S. Molecular Aspects of Pathophysiology of Platelet Receptors. Platelets 2020. [DOI: 10.5772/intechopen.92856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Receptor is a dynamic instrumental surface protein that helps to interact with specific molecules to respond accordingly. Platelet is the smallest in size among the blood components, but it plays many pivotal roles to maintain hemostasis involving its surface receptors. It (platelet) has cell adhesion receptors (e.g., integrins and glycoproteins), leucine-rich repeats receptors (e.g., TLRs, glycoprotein complex, and MMPs), selectins (e.g., CLEC, P-selectin, and CD), tetraspanins (e.g., CD and LAMP), transmembrane receptors (e.g., purinergic—P2Y and P2X1), prostaglandin receptors (e.g., TxA2, PGH2, and PGI2), immunoglobulin superfamily receptors (e.g., FcRγ and FcεR), etc. on its surface. The platelet receptors (e.g., glycoproteins, protease-activated receptors, and GPCRs) during platelet activation are over expressed and their granule contents are secreted (including neurotransmitters, cytokines, and chemokines) into circulation, which are found to be correlated with different physiological conditions. Interestingly, platelets promote metastasis through circulation protecting from cytolysis and endogenous immune surveillance involving several platelets receptors. The updated knowledge about different types of platelet receptors in all probable aspects, including their inter- and intra-signaling mechanisms, are discussed with respect to not only its (platelets) receptor type but also under different pathophysiological conditions.
Collapse
|
79
|
Portier I, Campbell RA. Role of Platelets in Detection and Regulation of Infection. Arterioscler Thromb Vasc Biol 2020; 41:70-78. [PMID: 33115274 DOI: 10.1161/atvbaha.120.314645] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Platelets are classically known as essential mediators of hemostasis and thrombosis. However, in recent years, platelets have gained recognition for their inflammatory functions, which modulate the immune response during infectious diseases. Platelets contain various immunoreceptors that enable them to act as sentinels to recognize intravascular pathogens. Upon activation, platelets directly limit pathogen growth through the release of AMPs (antimicrobial proteins) and ensure pathogen clearance through activation of immune cells. However, aberrant platelet activation can lead to inflammation and thrombotic events.
Collapse
Affiliation(s)
- Irina Portier
- University of Utah Molecular Medicine Program, Salt Lake City (I.P., R.A.C.)
| | - Robert A Campbell
- University of Utah Molecular Medicine Program, Salt Lake City (I.P., R.A.C.).,Department of Internal Medicine, University of Utah, Salt Lake City (R.A.C.)
| |
Collapse
|
80
|
Gautam I, Storad Z, Filipiak L, Huss C, Meikle CK, Worth RG, Wuescher LM. From Classical to Unconventional: The Immune Receptors Facilitating Platelet Responses to Infection and Inflammation. BIOLOGY 2020; 9:E343. [PMID: 33092021 PMCID: PMC7589078 DOI: 10.3390/biology9100343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/06/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022]
Abstract
Platelets have long been recognized for their role in maintaining the balance between hemostasis and thrombosis. While their contributions to blood clotting have been well established, it has been increasingly evident that their roles extend to both innate and adaptive immune functions during infection and inflammation. In this comprehensive review, we describe the various ways in which platelets interact with different microbes and elicit immune responses either directly, or through modulation of leukocyte behaviors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Leah M. Wuescher
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (I.G.); (Z.S.); (L.F.); (C.H.); (C.K.M.); (R.G.W.)
| |
Collapse
|
81
|
Kuchi Bhotla H, Kaul T, Balasubramanian B, Easwaran M, Arumugam VA, Pappusamy M, Muthupandian S, Meyyazhagan A. Platelets to surrogate lung inflammation in COVID-19 patients. Med Hypotheses 2020; 143:110098. [PMID: 32688185 PMCID: PMC7354257 DOI: 10.1016/j.mehy.2020.110098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/01/2020] [Accepted: 07/09/2020] [Indexed: 12/23/2022]
Abstract
The neoteric severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been jeopardizing the world with the symptoms of seasonal flu. The virus contagion predicted to have been originated from Wuhan, China has by far trapped 4,198,418 cases from 212 countries in the world with two international conveyances with 284,102 deaths as of 11 May 2020 (10:18 GMT). Researchers around the globe have indulged in deciphering viral mode in the body for devising a cure. Affirmations from autopsies and preliminary findings on SARS-CoV-2 hypothesized on viral pathogenesis within the host, for instance, source of inflammation in lungs and pneumonia. This hypothesis assigns the platelets as agents of infection after viral entry. Presently, curbing infection to stall the spread of SARS-CoV-2 is the prima facie intervention employed, worldwide. However, public health authorities must monitor the state of affairs scrupulously, as the deeper our understanding of this novel virus and its associated outbreak, the better we can deal with it. Knowing this idea might be far-fetched, yet this postulate would serve as the groundwork for the present situation.
Collapse
Affiliation(s)
| | - Tanushri Kaul
- Nutritional Improvement of Crops, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.
| | | | - Murugesh Easwaran
- Nutritional Improvement of Crops, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Vijaya Anand Arumugam
- Medical Genetics and Epigenetics Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Manikantan Pappusamy
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru 560029 (Karnataka), India
| | - Saravanan Muthupandian
- Department of Medical Microbiology and Immunology, Division of Biomedical Sciences, School of Medicine, College of Health Sciences, Mekelle University, Mekelle 1871, Ethiopia
| | - Arun Meyyazhagan
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru 560029 (Karnataka), India; Euroespes Biomedical Research Centre, International Centre of Neuroscience and Genomic Medicine, 15165 Corunna, Spain.
| |
Collapse
|
82
|
Singh A, Bisht P, Bhattacharya S, Guchhait P. Role of Platelet Cytokines in Dengue Virus Infection. Front Cell Infect Microbiol 2020; 10:561366. [PMID: 33102253 PMCID: PMC7554584 DOI: 10.3389/fcimb.2020.561366] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/31/2020] [Indexed: 12/31/2022] Open
Abstract
Platelets are anucleated blood cells derived from bone marrow megakaryocytes and play a crucial role in hemostasis and thrombosis. Platelets contain specialized storage organelles, called alpha-granules, contents of which are rich in cytokines such as C-X-C Motif Chemokine Ligand (CXCL) 1/4/7, (C-C motif) ligand (CCL) 5/3, CXCL8 (also called as interleukin 8, IL-8), and transforming growth factor β (TGF-β). Activation of platelets lead to degranulation and release of contents into the plasma. Platelet activation is a common event in many viral infections including human immunodeficiency virus (HIV), H1N1 influenza, Hepatitis C virus (HCV), Ebola virus (EBV), and Dengue virus (DENV). The cytokines CXCL8, CCL5 (also known as Regulated on Activation, Normal T Expressed and Secreted, RANTES), tumor necrosis factor α (TNF-α), CXCL1/5 and CCL3 released, promote development of a pro-inflammatory state along with the recruitment of other immune cells to the site of infection. Platelets also interact with Monocytes and Neutrophils and facilitate their activation to release different cytokines which further enhances inflammation. Upon activation, platelets also secrete factors such as CXCL4 (also known as platelet factor, PF4), CCL5 and fibrinopeptides which are critical regulators of replication and propagation of several viruses in the host. Studies suggest that CXCL4 can both inhibit as well as enhance HIV1 infection. Data from our lab show that CXCL4 inhibits interferon (IFN) pathway and promotes DENV replication in monocytes in vitro and in patients significantly. Inhibition of CXCL4 mediated signaling results in increased IFN production and suppressed DENV and JEV replication in monocytes. In this review, we discuss the role of platelets in viral disease progression with a focus on dengue infection.
Collapse
Affiliation(s)
- Anamika Singh
- Disease Biology Laboratory, Regional Center for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Piyush Bisht
- Disease Biology Laboratory, Regional Center for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Sulagna Bhattacharya
- Disease Biology Laboratory, Regional Center for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India.,School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Prasenjit Guchhait
- Disease Biology Laboratory, Regional Center for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| |
Collapse
|
83
|
Maouia A, Rebetz J, Kapur R, Semple JW. The Immune Nature of Platelets Revisited. Transfus Med Rev 2020; 34:209-220. [PMID: 33051111 PMCID: PMC7501063 DOI: 10.1016/j.tmrv.2020.09.005] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 01/08/2023]
Abstract
Platelets are the primary cellular mediators of hemostasis and this function firmly acquaints them with a variety of inflammatory processes. For example, platelets can act as circulating sentinels by expressing Toll-like receptors (TLR) that bind pathogens and this allows platelets to effectively kill them or present them to cells of the immune system. Furthermore, activated platelets secrete and express many pro- and anti-inflammatory molecules that attract and capture circulating leukocytes and direct them to inflamed tissues. In addition, platelets can directly influence adaptive immune responses via secretion of, for example, CD40 and CD40L molecules. Platelets are also the source of most of the microvesicles in the circulation and these miniscule elements further enhance the platelet’s ability to communicate with the immune system. More recently, it has been demonstrated that platelets and their parent cells, the megakaryocytes (MK), can also uptake, process and present both foreign and self-antigens to CD8+ T-cells conferring on them the ability to directly alter adaptive immune responses. This review will highlight several of the non-hemostatic attributes of platelets that clearly and rightfully place them as integral players in immune reactions. Platelets can act as circulating sentinels by expressing pathogen-associated molecular pattern receptors that bind pathogens and induce their killing and elimination. Activated platelets secrete and express a multitude of pro- and anti-inflammatory molecules that attract and capture circulating leukocytes and direct them to inflamed tissues. Platelets express and secrete many critical immunoregulatory molecules that significantly affect both innate and adaptive immune responses. Platelets are the primary source of microparticles in the circulation and these augment the platelet’s ability to communicate with the immune system. Platelets and megakaryocytes can act as antigen presenting cells and present both foreign- and self-peptides to T-cells.
Collapse
Affiliation(s)
- Amal Maouia
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Johan Rebetz
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Rick Kapur
- Sanquin Research, Department of Experimental Immunohematology, Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - John W Semple
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden; Clinical Immunology and Transfusion Medicine, Office of Medical Services, Region Skåne, Lund, Sweden.
| |
Collapse
|
84
|
Zhang S, Liu Y, Wang X, Yang L, Li H, Wang Y, Liu M, Zhao X, Xie Y, Yang Y, Zhang S, Fan Z, Dong J, Yuan Z, Ding Z, Zhang Y, Hu L. SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19. J Hematol Oncol 2020; 13:120. [PMID: 32887634 PMCID: PMC7471641 DOI: 10.1186/s13045-020-00954-7] [Citation(s) in RCA: 471] [Impact Index Per Article: 94.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/19/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Critically ill patients diagnosed with COVID-19 may develop a pro-thrombotic state that places them at a dramatically increased lethal risk. Although platelet activation is critical for thrombosis and is responsible for the thrombotic events and cardiovascular complications, the role of platelets in the pathogenesis of COVID-19 remains unclear. METHODS Using platelets from healthy volunteers, non-COVID-19 and COVID-19 patients, as well as wild-type and hACE2 transgenic mice, we evaluated the changes in platelet and coagulation parameters in COVID-19 patients. We investigated ACE2 expression and direct effect of SARS-CoV-2 virus on platelets by RT-PCR, flow cytometry, Western blot, immunofluorescence, and platelet functional studies in vitro, FeCl3-induced thrombus formation in vivo, and thrombus formation under flow conditions ex vivo. RESULTS We demonstrated that COVID-19 patients present with increased mean platelet volume (MPV) and platelet hyperactivity, which correlated with a decrease in overall platelet count. Detectable SARS-CoV-2 RNA in the blood stream was associated with platelet hyperactivity in critically ill patients. Platelets expressed ACE2, a host cell receptor for SARS-CoV-2, and TMPRSS2, a serine protease for Spike protein priming. SARS-CoV-2 and its Spike protein directly enhanced platelet activation such as platelet aggregation, PAC-1 binding, CD62P expression, α granule secretion, dense granule release, platelet spreading, and clot retraction in vitro, and thereby Spike protein enhanced thrombosis formation in wild-type mice transfused with hACE2 transgenic platelets, but this was not observed in animals transfused with wild-type platelets in vivo. Further, we provided evidence suggesting that the MAPK pathway, downstream of ACE2, mediates the potentiating role of SARS-CoV-2 on platelet activation, and that platelet ACE2 expression decreases following SARS-COV-2 stimulation. SARS-CoV-2 and its Spike protein directly stimulated platelets to facilitate the release of coagulation factors, the secretion of inflammatory factors, and the formation of leukocyte-platelet aggregates. Recombinant human ACE2 protein and anti-Spike monoclonal antibody could inhibit SARS-CoV-2 Spike protein-induced platelet activation. CONCLUSIONS Our findings uncovered a novel function of SARS-CoV-2 on platelet activation via binding of Spike to ACE2. SARS-CoV-2-induced platelet activation may participate in thrombus formation and inflammatory responses in COVID-19 patients.
Collapse
Affiliation(s)
- Si Zhang
- Department of Biochemistry and Molecular Biology, NHC Key Laboratory of Glycoconjugates Research, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Yangyang Liu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Cardiovascular Institute of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaofang Wang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Cardiovascular Institute of Zhengzhou University, Zhengzhou, 450052, China
| | - Li Yang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Haishan Li
- Department of Emergency, Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuyan Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mengduan Liu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Cardiovascular Institute of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaoyan Zhao
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Cardiovascular Institute of Zhengzhou University, Zhengzhou, 450052, China
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Yang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Shenghui Zhang
- Department of Hematology, Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Jianzeng Dong
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Cardiovascular Institute of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhongren Ding
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Cardiovascular Institute of Zhengzhou University, Zhengzhou, 450052, China
| | - Yi Zhang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Liang Hu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Cardiovascular Institute of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
85
|
Dib PRB, Quirino-Teixeira AC, Merij LB, Pinheiro MBM, Rozini SV, Andrade FB, Hottz ED. Innate immune receptors in platelets and platelet-leukocyte interactions. J Leukoc Biol 2020; 108:1157-1182. [PMID: 32779243 DOI: 10.1002/jlb.4mr0620-701r] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/11/2020] [Accepted: 06/28/2020] [Indexed: 12/14/2022] Open
Abstract
Platelets are chief cells in hemostasis. Apart from their hemostatic roles, platelets are major inflammatory effector cells that can influence both innate and adaptive immune responses. Activated platelets have thromboinflammatory functions linking hemostatic and immune responses in several physiological and pathological conditions. Among many ways in which platelets exert these functions, platelet expression of pattern recognition receptors (PRRs), including TLR, Nod-like receptor, and C-type lectin receptor families, plays major roles in sensing and responding to pathogen-associated or damage-associated molecular patterns (PAMPs and DAMPs, respectively). In this review, an increasing body of evidence is compiled showing the participation of platelet innate immune receptors, including PRRs, in infectious diseases, sterile inflammation, and cancer. How platelet recognition of endogenous DAMPs participates in sterile inflammatory diseases and thrombosis is discussed. In addition, platelet recognition of both PAMPs and DAMPs initiates platelet-mediated inflammation and vascular thrombosis in infectious diseases, including viral, bacterial, and parasite infections. The study also focuses on the involvement of innate immune receptors in platelet activation during cancer, and their contribution to tumor microenvironment development and metastasis. Finally, how innate immune receptors participate in platelet communication with leukocytes, modulating leukocyte-mediated inflammation and immune functions, is highlighted. These cell communication processes, including platelet-induced release of neutrophil extracellular traps, platelet Ag presentation to T-cells and platelet modulation of monocyte cytokine secretion are discussed in the context of infectious and sterile diseases of major concern in human health, including cardiovascular diseases, dengue, HIV infection, sepsis, and cancer.
Collapse
Affiliation(s)
- Paula Ribeiro Braga Dib
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil.,Laboratory of Immunology, Infectious Diseases and Obesity, Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Anna Cecíllia Quirino-Teixeira
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Laura Botelho Merij
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Mariana Brandi Mendonça Pinheiro
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Stephane Vicente Rozini
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Fernanda Brandi Andrade
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Eugenio Damaceno Hottz
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| |
Collapse
|
86
|
Banerjee M, Huang Y, Joshi S, Popa GJ, Mendenhall MD, Wang QJ, Garvy BA, Myint T, Whiteheart SW. Platelets Endocytose Viral Particles and Are Activated via TLR (Toll-Like Receptor) Signaling. Arterioscler Thromb Vasc Biol 2020; 40:1635-1650. [PMID: 32434410 PMCID: PMC7316618 DOI: 10.1161/atvbaha.120.314180] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Thrombocytopenia is associated with many viral infections suggesting virions interact with and affect platelets. Consistently, viral particles are seen inside platelets, and platelet activation markers are detected in viremic patients. In this article, we sought mechanistic insights into these virion/platelet interactions by examining how platelets endocytose, traffic, and are activated by a model virion. Approach and Results: Using fluorescently tagged HIV-1 pseudovirions, 3-dimensional structured illumination microscopy, and transgenic mouse models, we probed the interactions between platelets and virions. Mouse platelets used known endocytic machinery, that is, dynamin, VAMP (vesicle-associated membrane protein)-3, and Arf6 (ADP-ribosylation factor 6), to take up and traffic HIV-1 pseudovirions. Endocytosed HIV-1 pseudovirions trafficked through early (Rab4+) and late endosomes (Rab7+), and then to an LC3+ (microtubule-associated protein 1A/1B-light chain 3) compartment. Incubation with virions induced IRAK4 (interleukin 1 receptor-associated kinase 4), Akt (protein kinase B), and IKK (IκB kinase) activation, granule secretion, and platelet-leukocyte aggregate formation. This activation required TLRs (Toll-like receptors) and MyD88 (myeloid differentiation primary response protein 88) but was less extensive and slower than activation with thrombin. In vivo, HIV-1 pseudovirions injection led to virion uptake and platelet activation, as measured by IKK activation, platelet-leukocyte aggregate formation, and mild thrombocytopenia. All were decreased in VAMP-3-/- and, megakaryocyte/platelet-specific, Arf6-/- mice. Similar platelet activation profiles (increased platelet-leukocyte aggregates, plasma platelet factor 4, and phospho-IκBα) were detected in newly diagnosed and antiretroviral therapy-controlled HIV-1+ patients. CONCLUSIONS Collectively, our data provide mechanistic insights into the cell biology of how platelets endocytose and process virions. We propose a mechanism by which platelets sample the circulation and respond to potential pathogens that they take up.
Collapse
Affiliation(s)
- Meenakshi Banerjee
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY
| | - Yunjie Huang
- Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Smita Joshi
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY
- Lexington VA Health Care System, Lexington, KY
| | - Gabriel J. Popa
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY
| | - Michael D. Mendenhall
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY
| | - Qing Jun Wang
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY
| | - Beth A. Garvy
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY
| | - Thein Myint
- Department of Infectious Diseases, Bluegrass Care Clinic, Kentucky Clinic, University of Kentucky, Lexington, KY
| | - Sidney W. Whiteheart
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY
- Lexington VA Health Care System, Lexington, KY
| |
Collapse
|
87
|
Maruyama S, Kono H, Furuya S, Shimizu H, Saito R, Shoda K, Akaike H, Hosomura N, Kawaguchi Y, Amemiya H, Kawaida H, Sudo M, Inoue S, Shirai T, Suzuki-Inoue K, Ichikawa D. Platelet C-Type Lectin-Like Receptor 2 Reduces Cholestatic Liver Injury in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1833-1842. [PMID: 32473917 DOI: 10.1016/j.ajpath.2020.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022]
Abstract
Cholestatic liver injury leads to liver dysfunction. The available evidence suggests that platelets can either promote or reduce liver injury and fibrosis. This study focused on the functions of the C-type lectin-like receptor 2 (CLEC-2), a new special platelet receptor that binds with podoplanin-activating platelets. The role of CLEC-2 and podoplanin in cholestatic liver injury was investigated. Mice were injected intraperitoneally with weekly doses of anti-CLEC-2 antibody (2A2B10) to achieve effective CLEC-2 inhibition in their platelets. Next, left and middle hepatic bile duct ligation (BDL) procedures were performed, and mice were euthanized 1 week later (2A2B10-BDL group). In addition, mice were prepared for control groups, and relevant histological and laboratory variables were compared among these groups. The inhibition of CLEC-2 resulted in increasing hepatocellular necrosis, hepatic inflammation, and liver fibrosis. In addition, podoplanin was strongly expressed in hepatic sinusoidal endothelial cells in BDL-treated mice. Moreover, in 2A2B10-BDL mice, total plasma bile acid levels were significantly increased. In summary, podoplanin is expressed on hepatic sinusoidal endothelial cells upon BDL. Platelets bind with podoplanin via CLEC-2 and become activated. As a result, the total bile acid pool is decreased. Therefore, the CLEC-2-podoplanin interaction promotes liver protection and inhibits liver fibrosis after cholestatic liver injury.
Collapse
Affiliation(s)
- Suguru Maruyama
- First Department of Surgery, Faculty of Medicine University of Yamanashi, Chuo, Japan
| | - Hiroshi Kono
- First Department of Surgery, Faculty of Medicine University of Yamanashi, Chuo, Japan.
| | - Shinji Furuya
- First Department of Surgery, Faculty of Medicine University of Yamanashi, Chuo, Japan
| | - Hiroki Shimizu
- First Department of Surgery, Faculty of Medicine University of Yamanashi, Chuo, Japan
| | - Ryo Saito
- First Department of Surgery, Faculty of Medicine University of Yamanashi, Chuo, Japan
| | - Katsutoshi Shoda
- First Department of Surgery, Faculty of Medicine University of Yamanashi, Chuo, Japan
| | - Hidenori Akaike
- First Department of Surgery, Faculty of Medicine University of Yamanashi, Chuo, Japan
| | - Naohiro Hosomura
- First Department of Surgery, Faculty of Medicine University of Yamanashi, Chuo, Japan
| | - Yoshihiko Kawaguchi
- First Department of Surgery, Faculty of Medicine University of Yamanashi, Chuo, Japan
| | - Hidetake Amemiya
- First Department of Surgery, Faculty of Medicine University of Yamanashi, Chuo, Japan
| | - Hiromichi Kawaida
- First Department of Surgery, Faculty of Medicine University of Yamanashi, Chuo, Japan
| | - Makoto Sudo
- First Department of Surgery, Faculty of Medicine University of Yamanashi, Chuo, Japan
| | - Shingo Inoue
- First Department of Surgery, Faculty of Medicine University of Yamanashi, Chuo, Japan
| | - Toshiaki Shirai
- Department of Clinical and Laboratory Medicine, Faculty of Medicine University of Yamanashi, Chuo, Japan
| | - Katsue Suzuki-Inoue
- Department of Clinical and Laboratory Medicine, Faculty of Medicine University of Yamanashi, Chuo, Japan
| | - Daisuke Ichikawa
- First Department of Surgery, Faculty of Medicine University of Yamanashi, Chuo, Japan
| |
Collapse
|
88
|
Suzuki‐Inoue K, Tsukiji N. Platelet CLEC-2 and lung development. Res Pract Thromb Haemost 2020; 4:481-490. [PMID: 32548549 PMCID: PMC7292670 DOI: 10.1002/rth2.12338] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/05/2020] [Accepted: 02/08/2020] [Indexed: 01/23/2023] Open
Abstract
In this article, the State of the Art lecture "Platelet CLEC-2 and Lung Development" presented at the ISTH congress 2019 is reviewed. During embryonic development, blood cells are often considered as porters of nutrition and oxygen but not as active influencers of cell differentiation. However, recent studies revealed that platelets actively facilitate cell differentiation by releasing biological substances during development. C-type lectin-like receptor 2 (CLEC-2) has been identified as a receptor for the platelet-activating snake venom rhodocytin. An endogenous ligand of CLEC-2 is the membrane protein podoplanin (PDPN), which is expressed on the surface of certain types of tumor cells and lymphatic endothelial cells (LECs). Deletion of CLEC-2 from platelets in mice results in death just after birth due to lung malformation and blood/lymphatic vessel separation. During development, lymphatic vessels are derived from cardinal veins. At this stage, platelets are activated by binding of CLEC-2 to LEC PDPN and release trandforming growth factor-β (TGF-β). This cytokine inhibits LEC migration and proliferation, facilitating blood/lymphatic vessel separation. TGF-β released upon platelet-expressed CLEC-2/LEC PDPN also facilitates differentiation of lung mesothelial cells into alveolar duct myofibroblasts (adMYFs) in the developing lung. AdMYFs generate elastic fibers inside the lung, so that the lung can be properly inflated. Thus, platelets act as an ultimate natural drug delivery system that enables biological substances to be specifically delivered to the target at high concentrations by receptor/ligand interactions during development.
Collapse
Affiliation(s)
- Katsue Suzuki‐Inoue
- Department of Clinical and Laboratory MedicineFaculty of MedicineUniversity of YamanashiChuoJapan
| | - Nagaharu Tsukiji
- Department of Clinical and Laboratory MedicineFaculty of MedicineUniversity of YamanashiChuoJapan
| |
Collapse
|
89
|
Page MJ, Pretorius E. A Champion of Host Defense: A Generic Large-Scale Cause for Platelet Dysfunction and Depletion in Infection. Semin Thromb Hemost 2020; 46:302-319. [PMID: 32279287 PMCID: PMC7339151 DOI: 10.1055/s-0040-1708827] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Thrombocytopenia is commonly associated with sepsis and infections, which in turn are characterized by a profound immune reaction to the invading pathogen. Platelets are one of the cellular entities that exert considerable immune, antibacterial, and antiviral actions, and are therefore active participants in the host response. Platelets are sensitive to surrounding inflammatory stimuli and contribute to the immune response by multiple mechanisms, including endowing the endothelium with a proinflammatory phenotype, enhancing and amplifying leukocyte recruitment and inflammation, promoting the effector functions of immune cells, and ensuring an optimal adaptive immune response. During infection, pathogens and their products influence the platelet response and can even be toxic. However, platelets are able to sense and engage bacteria and viruses to assist in their removal and destruction. Platelets greatly contribute to host defense by multiple mechanisms, including forming immune complexes and aggregates, shedding their granular content, and internalizing pathogens and subsequently being marked for removal. These processes, and the nature of platelet function in general, cause the platelet to be irreversibly consumed in the execution of its duty. An exaggerated systemic inflammatory response to infection can drive platelet dysfunction, where platelets are inappropriately activated and face immunological destruction. While thrombocytopenia may arise by condition-specific mechanisms that cause an imbalance between platelet production and removal, this review evaluates a generic large-scale mechanism for platelet depletion as a repercussion of its involvement at the nexus of responses to infection.
Collapse
Affiliation(s)
- Martin J Page
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Etheresia Pretorius
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
90
|
Real F, Capron C, Sennepin A, Arrigucci R, Zhu A, Sannier G, Zheng J, Xu L, Massé JM, Greffe S, Cazabat M, Donoso M, Delobel P, Izopet J, Eugenin E, Gennaro ML, Rouveix E, Cramer Bordé E, Bomsel M. Platelets from HIV-infected individuals on antiretroviral drug therapy with poor CD4+ T cell recovery can harbor replication-competent HIV despite viral suppression. Sci Transl Med 2020; 12:12/535/eaat6263. [DOI: 10.1126/scitranslmed.aat6263] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/23/2019] [Accepted: 10/01/2019] [Indexed: 12/24/2022]
Abstract
In addition to hemostasis, human platelets have several immune functions and interact with infectious pathogens including HIV in vitro. Here, we report that platelets from HIV-infected individuals on combined antiretroviral drug therapy (ART) with low blood CD4+ T cell counts (<350 cells/μl) contained replication-competent HIV despite viral suppression. In vitro, human platelets harboring HIV propagated the virus to macrophages, a process that could be prevented with the biologic abciximab, an anti–integrin αIIb/β3 Fab. Furthermore, in our cohort, 88% of HIV-infected individuals on ART with viral suppression and with platelets containing HIV were poor immunological responders with CD4+ T cell counts remaining below <350 cells/μl for more than one year. Our study suggests that platelets may be transient carriers of HIV and may provide an alternative pathway for HIV dissemination in HIV-infected individuals on ART with viral suppression and poor CD4+ T cell recovery.
Collapse
Affiliation(s)
- Fernando Real
- Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Université de Paris, Paris, France
- INSERM U1016, Paris, France
- CNRS UMR8104, Paris, France
| | | | - Alexis Sennepin
- Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Université de Paris, Paris, France
- INSERM U1016, Paris, France
- CNRS UMR8104, Paris, France
| | - Riccardo Arrigucci
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Aiwei Zhu
- Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Université de Paris, Paris, France
- INSERM U1016, Paris, France
- CNRS UMR8104, Paris, France
| | - Gérémy Sannier
- Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Université de Paris, Paris, France
- INSERM U1016, Paris, France
- CNRS UMR8104, Paris, France
| | - Jonathan Zheng
- Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Université de Paris, Paris, France
- INSERM U1016, Paris, France
- CNRS UMR8104, Paris, France
| | - Lin Xu
- Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Université de Paris, Paris, France
- INSERM U1016, Paris, France
- CNRS UMR8104, Paris, France
| | - Jean-Marc Massé
- INSERM U1016, Paris, France
- CNRS UMR8104, Paris, France
- Electron Microscopy Platform, Institut Cochin, Université de Paris, Paris, France
| | - Ségolène Greffe
- Department of Internal Medicine, Hôpital Ambroise Paré, Boulogne, France
| | - Michelle Cazabat
- CHU de Toulouse, Hôpital Purpan, Laboratoire de Virologie, Toulouse, France
| | - Maribel Donoso
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Pierre Delobel
- INSERM U1043, Toulouse, France
- Université Toulouse III Paul-Sabatier, Faculté de Médecine Toulouse-Purpan, Toulouse, France
- CHU de Toulouse, Hôpital Purpan, Service des Maladies Infectieuses et Tropicales, Toulouse, France
| | - Jacques Izopet
- CHU de Toulouse, Hôpital Purpan, Laboratoire de Virologie, Toulouse, France
- INSERM U1043, Toulouse, France
- Université Toulouse III Paul-Sabatier, Faculté de Médecine Toulouse-Purpan, Toulouse, France
| | - Eliseo Eugenin
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Maria Laura Gennaro
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Elisabeth Rouveix
- Department of Internal Medicine, Hôpital Ambroise Paré, Boulogne, France
| | - Elisabeth Cramer Bordé
- Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Université de Paris, Paris, France
- INSERM U1016, Paris, France
- Hôpital Ambroise Paré, Boulogne-Billancourt, France
| | - Morgane Bomsel
- Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Université de Paris, Paris, France
- INSERM U1016, Paris, France
- CNRS UMR8104, Paris, France
| |
Collapse
|
91
|
Sung PS, Hsieh SL. CLEC2 and CLEC5A: Pathogenic Host Factors in Acute Viral Infections. Front Immunol 2019; 10:2867. [PMID: 31867016 PMCID: PMC6909378 DOI: 10.3389/fimmu.2019.02867] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/22/2019] [Indexed: 12/11/2022] Open
Abstract
The protective roles of endosomal toll-like receptors (TLRs) and cytosolic nucleic acid sensors are well elucidated, but the pathogenic host factors during viral infections remain unclear. Spleen tyrosine kinase (Syk)-coupled C-type lectins (CLECs) CLEC2 and CLEC5A are highly expressed on platelets and myeloid cells, respectively. CLEC2 has been shown to recognize snake venom aggretin and the endogenous ligand podoplanin and acts as a critical regulator in the development and immunothrombosis. Although CLEC2 has been reported to interact with type I immunodeficiency virus (HIV-1), its role in viral infections is still unclear. CLEC5A binds to fucose and mannose moieties of dengue virus membrane glycans, as well as to N-acetylglucosamine (GlcNAc)/N-acetylmuramic acid (MurNAc) disaccharides that form the backbone of L. monocytogenes peptidoglycans. Recently, we demonstrated that both CLEC2 and CLEC5A are critical in microbe-induced “neutrophil extracellular trap” (NET) formation and proinflammatory cytokine production. Moreover, activation of CLEC2 by dengue virus (DV) and H5N1 influenza virus (IAV) induces the release of extracellular vesicles (EVs), which further enhance NETosis and proinflammatory cytokine production via CLEC5A and Toll-like receptor 2 (TLR2). These findings not only illustrate the immunomodulatory effects of EVs during platelet-leukocyte interactions, but also demonstrate the critical roles of CLEC2 and CLEC5A in acute viral infections.
Collapse
Affiliation(s)
- Pei-Shan Sung
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Shie-Liang Hsieh
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
92
|
Xu L, Liu F, Li C, Li S, Wu H, Guo B, Gu J, Wang L. Fucoidan suppresses the gastric cancer cell malignant phenotype and production of TGF-β1 via CLEC-2. Glycobiology 2019; 30:301-311. [DOI: 10.1093/glycob/cwz097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/12/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022] Open
Abstract
Abstract
The sulfated polysaccharide fucoidan displays excellent anticancer properties with low toxicity in many kinds of cancers. However, its detailed pharmacological effect and mechanism of action in gastric carcinoma remains unclear. In this study, we found that fucoidan could suppress gastric cancer (GC) cell growth, as well as cell migration and invasion. A cytokine expression screen demonstrated that transforming growth factor beta 1 (TGF-β1) secretion was decreased in fucoidan-treated cells. Fucoidan has been reported to be a platelet agonist for the C-type lectin-like receptor 2 (CLEC-2), and our previous research found that upregulation of CLEC-2 inhibited GC progression. Here, we confirmed that fucoidan, combined with CLEC-2, significantly increased CLEC-2 expression in GC cells via the transcription factor caudal type homeobox transcription factor 2, an important regulator of gut homeostasis. In addition, the inhibitory effect of fucoidan on the GC cell malignant phenotype and TGF-β1 secretion could be restored by knocking down CLEC-2. Thus, our data suggest that fucoidan targets CLEC-2 to exert antitumorigenesis and antimetastatic activity, suggesting that fucoidan is a promising treatment for gastric carcinoma.
Collapse
Affiliation(s)
- Ling Xu
- NHC Key Laboratory of Glycoconjugate Research, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Fenglin Liu
- Department of General Surgery, Zhongshan Hospital, 180 Fenglin Road, Fudan University, Shanghai 20032, China
| | - Can Li
- NHC Key Laboratory of Glycoconjugate Research, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Shuxuan Li
- NHC Key Laboratory of Glycoconjugate Research, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Hao Wu
- NHC Key Laboratory of Glycoconjugate Research, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Bao Guo
- NHC Key Laboratory of Glycoconjugate Research, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Jianxin Gu
- NHC Key Laboratory of Glycoconjugate Research, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Lan Wang
- NHC Key Laboratory of Glycoconjugate Research, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| |
Collapse
|
93
|
McDonald B, Dunbar M. Platelets and Intravascular Immunity: Guardians of the Vascular Space During Bloodstream Infections and Sepsis. Front Immunol 2019; 10:2400. [PMID: 31681291 PMCID: PMC6797619 DOI: 10.3389/fimmu.2019.02400] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022] Open
Abstract
Despite their humble origins as anuclear fragments of megakaryocytes, platelets have emerged as versatile mediators of thrombosis and immunity. The diverse spectrum of platelet functions are on full display during the host response to severe infection and sepsis, with platelets taking center-stage in the intravascular immune response to blood-borne pathogens. Platelets are endowed with a comprehensive armamentarium of pathogen detection systems that enable them to function as sentinels in the bloodstream for rapid identification of microbial invasion. Through both autonomous anti-microbial effector functions and collaborations with other innate immune cells, platelets orchestrate a complex intravascular immune defense system that protects against bacterial dissemination. As with any powerful immune defense system, dysregulation of platelet-mediated intravascular immunity can lead to profound collateral damage to host cells and tissues, resulting in sepsis-associated organ dysfunction. In this article, the cellular and molecular contributions of platelets to intravascular immune defenses in sepsis will be reviewed, including the roles of platelets in surveillance of the microcirculation and elicitation of protective anti-bacterial responses. Mechanisms of platelet-mediated thromboinflammatory organ dysfunction will be explored, with linkages to clinical biomarkers of platelet homeostasis that aid in the diagnosis and prognostication of human sepsis. Lastly, we discuss novel therapeutic opportunities that take advantage of our evolving understanding of platelets and intravascular immunity in severe infection.
Collapse
Affiliation(s)
- Braedon McDonald
- Department of Critical Care Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mary Dunbar
- Department of Pediatrics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
94
|
Cobalt hematoporphyrin inhibits CLEC-2-podoplanin interaction, tumor metastasis, and arterial/venous thrombosis in mice. Blood Adv 2019; 2:2214-2225. [PMID: 30190281 DOI: 10.1182/bloodadvances.2018016261] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 08/13/2018] [Indexed: 01/26/2023] Open
Abstract
The platelet activation receptor C-type lectin-like receptor 2 (CLEC-2) interacts with podoplanin on the surface of certain types of tumor cells, and this interaction facilitates tumor metastasis. CLEC-2 is also involved in thrombus formation and its stabilization. Because CLEC-2-depleted mice are protected from experimental lung metastasis and thrombus formation and do not show increased bleeding time, CLEC-2 may serve as a good target for antimetastatic or antithrombotic drugs. We screened 6770 compounds for their capability to inhibit CLEC-2-podoplanin binding using an enzyme-linked immunosorbent assay. In the first screening round, 63 compounds were identified and further evaluated by flow cytometry using CLEC-2-expressing cells. We identified protoporphyrin IX (H2-PP) as the most potent inhibitor and modified its hematoporphyrin moiety to be complexed with cobalt (cobalt hematoporphyrin [Co-HP]), which resulted in an inhibitory potency much stronger than that of H2-PP. Surface plasmon resonance analysis and molecular docking study showed that Co-HP binds directly to CLEC-2 at N120, N210, and K211, previously unknown podoplanin-binding sites; this binding was confirmed by analysis of CLEC-2 mutants with alterations in N120 and/or K211. Co-HP at a concentration of 1.53 μM inhibited platelet aggregation mediated through CLEC-2, but not that mediated through other receptors. IV administration of Co-HP to mice significantly inhibited hematogenous metastasis of podoplanin-expressing B16F10 cells to the lung as well as in vivo arterial and venous thrombosis, without a significant increase in tail-bleeding time. Thus, Co-HP may be a promising molecule for antimetastatic and antiplatelet treatment that does not cause bleeding tendency.
Collapse
|
95
|
Abstract
Dysregulation of lymphocyte function, accumulation of autoantibodies and defective clearance of circulating immune complexes and apoptotic cells are hallmarks of systemic lupus erythematosus (SLE). Moreover, it is now evident that an intricate interplay between the adaptive and innate immune systems contributes to the pathogenesis of SLE, ultimately resulting in chronic inflammation and organ damage. Platelets circulate in the blood and are chiefly recognized for their role in the prevention of bleeding and promotion of haemostasis; however, accumulating evidence points to a role for platelets in both adaptive and innate immunity. Through a broad repertoire of receptors, platelets respond promptly to immune complexes, complement and damage-associated molecular patterns, and represent a major reservoir of immunomodulatory molecules in the circulation. Furthermore, evidence suggests that platelets are activated in patients with SLE, and that they could contribute to the circulatory autoantigenic load through the release of microparticles and mitochondrial antigens. Herein, we highlight how platelets contribute to the immune response and review evidence implicating platelets in the pathogenesis of SLE.
Collapse
|
96
|
Kerrigan SW, Devine T, Fitzpatrick G, Thachil J, Cox D. Early Host Interactions That Drive the Dysregulated Response in Sepsis. Front Immunol 2019; 10:1748. [PMID: 31447831 PMCID: PMC6691039 DOI: 10.3389/fimmu.2019.01748] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/10/2019] [Indexed: 01/18/2023] Open
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. While many individual cells and systems in the body are involved in driving the excessive and sometimes sustained host response, pathogen engagement with endothelial cells and platelets early in sepsis progression, are believed to be key. Significant progress has been made in establishing key molecular interactions between platelets and pathogens and endothelial cells and pathogens. This review will explore the growing number of compensatory connections between bacteria and viruses with platelets and endothelial cells and how a better understanding of these interactions are informing the field of potential novel ways to treat the dysregulated host response during sepsis.
Collapse
Affiliation(s)
- Steven W Kerrigan
- Cardiovascular Infection Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland.,School of Pharmacy, Royal College of Surgeons in Ireland, Dublin, Ireland.,Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Tatyana Devine
- Cardiovascular Infection Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland.,Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Glenn Fitzpatrick
- Cardiovascular Infection Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland.,School of Pharmacy, Royal College of Surgeons in Ireland, Dublin, Ireland.,Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jecko Thachil
- Department of Haematology, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Dermot Cox
- Cardiovascular Infection Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland.,Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
97
|
Varaden D, Moodley J, Onyangunga OA, Naicker T. Morphometric image analysis of placental C-type lectin domain family 2, member D (CLEC2D) immuno-expression in HIV associated pre-eclampsia. Eur J Obstet Gynecol Reprod Biol X 2019; 3:100039. [PMID: 31403127 PMCID: PMC6687384 DOI: 10.1016/j.eurox.2019.100039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 04/11/2019] [Accepted: 04/29/2019] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE C-type lectin domain family 2, member D (CLEC2D) is implicated in the immune response. Pre-eclampsia and HIV infection have opposing immune responses. In view of the high prevalence of HIV infection and pre-eclampsia in South Africa, this study assessed the placental immuno-expression of CLEC2D in HIV associated pre-eclampsia. METHOD Placental tissue was obtained from 60 pregnancies which were categorized according to pregnancy type (pre-eclamptic or normotensive) and HIV status (positive or negative). Immunohistochemistry and morphometric image analysis were used to evaluate placental CLEC2D immuno-expression. RESULTS CLEC2D expression was significantly decreased in the conducting villi of pre-eclamptic vs normotensive placentae (p = 0.0418) but was increased in the exchange villi, albeit non-significant (p = 0.4948). HIV positive status intensified placental CLEC2D immuno-expression in conducting (p = 0.0312) and exchange (p = 0.0025) villi. CLEC2D expression was significantly different in exchange vs conducting villi (p < 0.0001) and across study groups (p = 0.0003). Normotensive; HIV negative placentae (control) had a non-significant difference in CLEC2D expression across villi types, however significant difference was noted within the remaining groups: normotensive; HIV positive (p < 0.05), pre-eclamptic; HIV positive (p < 0.01 and pre-eclamptic; HIV negative (p < 0.001). CONCLUSION The contrasting expression of CLEC2D in HIV infection and pre-eclampsia is demonstrative of the immunosuppressive and pro-inflammatory roles of the respective pathologies. However, this implication may be confounded by highly active anti-retroviral treatment (HAART).
Collapse
Affiliation(s)
- Deneshree Varaden
- Optics and Imaging Centre, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| | - Jagidesa Moodley
- Womens Health and HIV Research Unit, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| | - Onankoy A. Onyangunga
- Optics and Imaging Centre, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| | - Thajasvarie Naicker
- Optics and Imaging Centre, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| |
Collapse
|
98
|
Guo M, Zhang H, Lv QW, Huang HB, Shen LJ. Higher plasma C-type lectin-like receptor 2 concentrations for prediction of higher risk of 30-day mortality in isolated severe blunt traumatic brain injury. Clin Chim Acta 2019; 496:1-6. [PMID: 31202718 DOI: 10.1016/j.cca.2019.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/08/2019] [Accepted: 06/12/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND Platelet activation is implicated in secondary brain injury following traumatic brain injury (TBI). C-type lectin-like receptor 2 (CLEC-2) is extensively expressed on platelets and participates in platelet activation. We investigate dthe prognostic significance of plasma CLEC-2 in TBI patients. METHODS One hundred and six patients with isolated severe blunt TBI and 106 healthy controls were prospectively investigated. Plasma CLEC-2 concentrations were detected and Glasgow coma scale (GCS) scores were recorded. The relationship between plasma CLEC-2 concentrations and 30-day mortality in addition to overall survival was determined using multivariate models. RESULTS Patients exhibited a substantially higher concentration of plasma CLEC-2 than healthy controls. Among patients, plasma CLEC-2 concentrations were remarkably increased in the GCS scores- and Rotterdam computerized tomography classification- dependent manner. As compared with survivors within posttraumatic 30 days, plasma CLEC-2 concentrations were remarkably raised in non-survivors. Rising plasma CLEC-2 concentration was independently associated with an enhanced risk of 30-day mortality and short overall survival time. Plasma CLEC-2 concentrations had a significantly high area under receiver operating characteristic curve for predicting 30-day mortality. CONCLUSIONS Incremental plasma CLEC-2 concentrations are intimately related to increasing trauma severity, in close association with increased 30-day death, indicating the prognostic role of plasma CLEC-2 in TBI.
Collapse
Affiliation(s)
- Mi Guo
- Department of Neurosurgery, Shengzhou People's Hospital, Shengzhou branch Hospital of The First Affiliated Hospital of Zhejiang University, 666 Dangui Road, Shengzhou 312400, Zhejiang Province, China.
| | - Han Zhang
- Department of Neurosurgery, Shengzhou People's Hospital, Shengzhou branch Hospital of The First Affiliated Hospital of Zhejiang University, 666 Dangui Road, Shengzhou 312400, Zhejiang Province, China
| | - Qing-Wei Lv
- Department of Neurosurgery, Shengzhou People's Hospital, Shengzhou branch Hospital of The First Affiliated Hospital of Zhejiang University, 666 Dangui Road, Shengzhou 312400, Zhejiang Province, China
| | - Hang-Bin Huang
- Department of Neurosurgery, Shengzhou People's Hospital, Shengzhou branch Hospital of The First Affiliated Hospital of Zhejiang University, 666 Dangui Road, Shengzhou 312400, Zhejiang Province, China
| | - Liang-Jun Shen
- Department of Neurosurgery, Shengzhou People's Hospital, Shengzhou branch Hospital of The First Affiliated Hospital of Zhejiang University, 666 Dangui Road, Shengzhou 312400, Zhejiang Province, China
| |
Collapse
|
99
|
Soluble CLEC-2 is generated independently of ADAM10 and is increased in plasma in acute coronary syndrome: comparison with soluble GPVI. Int J Hematol 2019; 110:285-294. [PMID: 31165998 DOI: 10.1007/s12185-019-02680-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 10/26/2022]
Abstract
Soluble forms of platelet membrane proteins are released upon platelet activation. We previously reported that soluble C-type lectin-like receptor 2 (sCLEC-2) is released as a shed fragment (Shed CLEC-2) or as a whole molecule associated with platelet microparticles (MP-CLEC-2). In contrast, soluble glycoprotein VI (sGPVI) is released as a shed fragment (Shed GPVI), but not as a microparticle-associated form (MP-GPVI). However, mechanism of sCLEC-2 generation or plasma sCLEC-2 has not been fully elucidated. Experiments using metalloproteinase inhibitors/stimulators revealed that ADAM10/17 induce GPVI shedding, but not CLEC-2 shedding, and that shed CLEC-2 was partially generated by MMP-2. Although MP-GPVI was not generated, it was generated in the presence of the ADAM10 inhibitor. Moreover, antibodies against the cytoplasmic or extracellular domain of GPVI revealed the presence of the GPVI cytoplasmic domain, but not the extracellular domain, in the microparticles. These findings suggest that most of the GPVI on microparticles are induced to shed by ADAM10; MP-GPVI is thus undetected. Plasma sCLEC-2 level was 1/32 of plasma sGPVI level in normal subjects, but both soluble proteins significantly increased in plasma of patients with acute coronary syndrome. Thus, sCLEC-2 and sGPVI are released by different mechanisms and released in vivo upon platelet activation.
Collapse
|
100
|
Sung PS, Huang TF, Hsieh SL. Extracellular vesicles from CLEC2-activated platelets enhance dengue virus-induced lethality via CLEC5A/TLR2. Nat Commun 2019; 10:2402. [PMID: 31160588 PMCID: PMC6546763 DOI: 10.1038/s41467-019-10360-4] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 05/08/2019] [Indexed: 01/08/2023] Open
Abstract
Platelet-leukocyte interactions amplify inflammatory reactions, but the underlying mechanism is still unclear. CLEC5A and CLEC2 are spleen tyrosine kinase (Syk)-coupled C-type lectin receptors, abundantly expressed by leukocytes and platelets, respectively. Whereas CLEC5A is a pattern recognition receptor (PRR) to flaviviruses and bacteria, CLEC2 is the receptor for platelet-activating snake venom aggretin. Here we show that dengue virus (DV) activates platelets via CLEC2 to release extracellular vesicles (EVs), including exosomes (EXOs) and microvesicles (MVs). DV-induced EXOs (DV-EXOs) and MVs (DV-MVs) further activate CLEC5A and TLR2 on neutrophils and macrophages, thereby induce neutrophil extracellular trap (NET) formation and proinflammatory cytokine release. Compared to stat1-/- mice, simultaneous blockade of CLEC5A and TLR2 effectively attenuates DV-induced inflammatory response and increases survival rate from 30 to 90%. The identification of critical roles of CLEC2 and CLEC5A/TLR2 in platelet-leukocyte interactions will support the development of novel strategies to treat acute viral infection in the future.
Collapse
Affiliation(s)
- Pei-Shan Sung
- Institute of Clinical Medicine, National Yang-Ming University, 11221, Taipei, Taiwan
| | - Tur-Fu Huang
- Department of Medicine, Mackay Medical College, 25245, New Taipei City, Taiwan.,Department of Pharmacology, College of Medicine, National Taiwan University, 10051, Taipei, Taiwan
| | - Shie-Liang Hsieh
- Institute of Clinical Medicine, National Yang-Ming University, 11221, Taipei, Taiwan. .,Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan. .,Department of Medical Research, Taipei Veterans General Hospital, 11217, Taipei, Taiwan.
| |
Collapse
|