51
|
Roussel C, De Paepe K, Galia W, De Bodt J, Chalancon S, Leriche F, Ballet N, Denis S, Alric M, Van de Wiele T, Blanquet-Diot S. Spatial and temporal modulation of enterotoxigenic E. coli H10407 pathogenesis and interplay with microbiota in human gut models. BMC Biol 2020; 18:141. [PMID: 33054775 PMCID: PMC7559199 DOI: 10.1186/s12915-020-00860-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/31/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Enterotoxigenic Escherichia coli (ETEC) substantially contributes to the burden of diarrheal illnesses in developing countries. With the use of complementary in vitro models of the human digestive environment, TNO gastrointestinal model (TIM-1), and Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME), we provided the first detailed report on the spatial-temporal modulation of ETEC H10407 survival, virulence, and its interplay with gut microbiota. These systems integrate the main physicochemical parameters of the human upper digestion (TIM-1) and simulate the ileum vs ascending colon microbial communities and luminal vs mucosal microenvironments, captured from six fecal donors (M-SHIME). RESULTS A loss of ETEC viability was noticed upon gastric digestion, while a growth renewal was found at the end of jejunal and ileal digestion. The remarkable ETEC mucosal attachment helped to maintain luminal concentrations above 6 log10 mL-1 in the ileum and ascending colon up to 5 days post-infection. Seven ETEC virulence genes were monitored. Most of them were switched on in the stomach and switched off in the TIM-1 ileal effluents and in a late post-infectious stage in the M-SHIME ascending colon. No heat-labile enterotoxin production was measured in the stomach in contrast to the ileum and ascending colon. Using 16S rRNA gene-based amplicon sequencing, ETEC infection modulated the microbial community structure of the ileum mucus and ascending colon lumen. CONCLUSIONS This study provides a better understanding of the interplay between ETEC and gastrointestinal cues and may serve to complete knowledge on ETEC pathogenesis and inspire novel prophylactic strategies for diarrheal diseases.
Collapse
Affiliation(s)
- Charlène Roussel
- Université Clermont Auvergne, UMR UCA-INRA 454 MEDIS, Microbiology Digestive Environment and Health, Clermont-Ferrand, France.,CMET, Center for Microbial Ecology and Technology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kim De Paepe
- CMET, Center for Microbial Ecology and Technology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Wessam Galia
- UMR 5557 Microbial Ecology, Research Group on Bacterial Opportunistic Pathogens and Environment, CNRS, VetAgro Sup, Lyon, France
| | - Jana De Bodt
- CMET, Center for Microbial Ecology and Technology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Sandrine Chalancon
- Université Clermont Auvergne, UMR UCA-INRA 454 MEDIS, Microbiology Digestive Environment and Health, Clermont-Ferrand, France
| | | | - Nathalie Ballet
- Lesaffre International, Lesaffre Group, Marcq-en-Baroeul, France
| | - Sylvain Denis
- Université Clermont Auvergne, UMR UCA-INRA 454 MEDIS, Microbiology Digestive Environment and Health, Clermont-Ferrand, France
| | - Monique Alric
- Université Clermont Auvergne, UMR UCA-INRA 454 MEDIS, Microbiology Digestive Environment and Health, Clermont-Ferrand, France
| | - Tom Van de Wiele
- CMET, Center for Microbial Ecology and Technology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | - Stéphanie Blanquet-Diot
- Université Clermont Auvergne, UMR UCA-INRA 454 MEDIS, Microbiology Digestive Environment and Health, Clermont-Ferrand, France.
| |
Collapse
|
52
|
Ramamurthy T, Nandy RK, Mukhopadhyay AK, Dutta S, Mutreja A, Okamoto K, Miyoshi SI, Nair GB, Ghosh A. Virulence Regulation and Innate Host Response in the Pathogenicity of Vibrio cholerae. Front Cell Infect Microbiol 2020; 10:572096. [PMID: 33102256 PMCID: PMC7554612 DOI: 10.3389/fcimb.2020.572096] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023] Open
Abstract
The human pathogen Vibrio cholerae is the causative agent of severe diarrheal disease known as cholera. Of the more than 200 "O" serogroups of this pathogen, O1 and O139 cause cholera outbreaks and epidemics. The rest of the serogroups, collectively known as non-O1/non-O139 cause sporadic moderate or mild diarrhea and also systemic infections. Pathogenic V. cholerae circulates between nutrient-rich human gut and nutrient-deprived aquatic environment. As an autochthonous bacterium in the environment and as a human pathogen, V. cholerae maintains its survival and proliferation in these two niches. Growth in the gastrointestinal tract involves expression of several genes that provide bacterial resistance against host factors. An intricate regulatory program involving extracellular signaling inputs is also controlling this function. On the other hand, the ability to store carbon as glycogen facilitates bacterial fitness in the aquatic environment. To initiate the infection, V. cholerae must colonize the small intestine after successfully passing through the acid barrier in the stomach and survive in the presence of bile and antimicrobial peptides in the intestinal lumen and mucus, respectively. In V. cholerae, virulence is a multilocus phenomenon with a large functionally associated network. More than 200 proteins have been identified that are functionally linked to the virulence-associated genes of the pathogen. Several of these genes have a role to play in virulence and/or in functions that have importance in the human host or the environment. A total of 524 genes are differentially expressed in classical and El Tor strains, the two biotypes of V. cholerae serogroup O1. Within the host, many immune and biological factors are able to induce genes that are responsible for survival, colonization, and virulence. The innate host immune response to V. cholerae infection includes activation of several immune protein complexes, receptor-mediated signaling pathways, and other bactericidal proteins. This article presents an overview of regulation of important virulence factors in V. cholerae and host response in the context of pathogenesis.
Collapse
Affiliation(s)
| | - Ranjan K Nandy
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Asish K Mukhopadhyay
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shanta Dutta
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Ankur Mutreja
- Global Health-Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Keinosuke Okamoto
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.,Collaborative Research Center of Okayama University for Infectious Diseases in India, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shin-Ichi Miyoshi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - G Balakrish Nair
- Microbiome Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Amit Ghosh
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
53
|
Engevik MA, Banks LD, Engevik KA, Chang-Graham AL, Perry JL, Hutchinson DS, Ajami NJ, Petrosino JF, Hyser JM. Rotavirus infection induces glycan availability to promote ileum-specific changes in the microbiome aiding rotavirus virulence. Gut Microbes 2020; 11:1324-1347. [PMID: 32404017 PMCID: PMC7524290 DOI: 10.1080/19490976.2020.1754714] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Multiple studies have identified changes within the gut microbiome in response to diarrheal-inducing bacterial pathogens. However, examination of the microbiome in response to viral pathogens remains understudied. Compounding this, many studies use fecal samples to assess microbiome composition; which may not accurately mirror changes within the small intestine, the primary site for most enteric virus infections. As a result, the functional significance of small intestinal microbiome shifts during infection is not well defined. To address these gaps, rotavirus-infected neonatal mice were examined for changes in bacterial community dynamics, host gene expression, and tissue recovery during infection. Profiling bacterial communities using 16S rRNA sequencing suggested significant and distinct changes in ileal communities in response to rotavirus infection, with no significant changes for other gastrointestinal (GI) compartments. At 1-d post-infection, we observed a loss in Lactobacillus species from the ileum, but an increase in Bacteroides and Akkermansia, both of which exhibit mucin-digesting capabilities. Concomitant with the bacterial community shifts, we observed a loss of mucin-filled goblet cells in the small intestine at d 1, with recovery occurring by d 3. Rotavirus infection of mucin-producing cell lines and human intestinal enteroids (HIEs) stimulated release of stored mucin granules, similar to in vivo findings. In vitro, incubation of mucins with Bacteroides or Akkermansia members resulted in significant glycan degradation, which altered the binding capacity of rotavirus in silico and in vitro. Taken together, these data suggest that the response to and recovery from rotavirus-diarrhea is unique between sub-compartments of the GI tract and may be influenced by mucin-degrading microbes.
Collapse
Affiliation(s)
- Melinda A. Engevik
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA,Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
| | - Lori D. Banks
- Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, Houston, TX, USA,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Kristen A. Engevik
- Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, Houston, TX, USA,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Alexandra L. Chang-Graham
- Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, Houston, TX, USA,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Jacob L. Perry
- Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, Houston, TX, USA,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Diane S. Hutchinson
- Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, Houston, TX, USA,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Nadim J. Ajami
- Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, Houston, TX, USA,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Joseph F. Petrosino
- Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, Houston, TX, USA,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Joseph M. Hyser
- Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, Houston, TX, USA,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA,CONTACT Joseph M. Hyser 1 Baylor Plaza, HoustonTX77030, USA
| |
Collapse
|
54
|
Walters WA, Reyes F, Soto GM, Reynolds ND, Fraser JA, Aviles R, Tribble DR, Irvin AP, Kelley-Loughnane N, Gutierrez RL, Riddle MS, Ley RE, Goodson MS, Simons MP. Epidemiology and associated microbiota changes in deployed military personnel at high risk of traveler's diarrhea. PLoS One 2020; 15:e0236703. [PMID: 32785284 PMCID: PMC7423091 DOI: 10.1371/journal.pone.0236703] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Travelers’ diarrhea (TD) is the most prevalent illness encountered by deployed military personnel and has a major impact on military operations, from reduced job performance to lost duty days. Frequently, the etiology of TD is unknown and, with underreporting of cases, it is difficult to accurately assess its impact. An increasing number of ailments include an altered or aberrant gut microbiome. To better understand the relationships between long-term deployments and TD, we studied military personnel during two nine-month deployment cycles in 2015–2016 to Honduras. To collect data on the prevalence of diarrhea and impact on duty, a total of 1173 personnel completed questionnaires at the end of their deployment. 56.7% reported reduced performance and 21.1% reported lost duty days. We conducted a passive surveillance study of all cases of diarrhea reporting to the medical unit with 152 total cases and a similar pattern of etiology. Enteroaggregative E. coli (EAEC, 52/152), enterotoxigenic E. coli (ETEC, 50/152), and enteropathogenic E. coli (EPEC, 35/152) were the most prevalent pathogens detected. An active longitudinal surveillance of 67 subjects also identified diarrheagenic E. coli as the primary etiology (7/16 EPEC, 7/16 EAEC, and 6/16 ETEC). Eleven subjects were recruited into a nested longitudinal substudy to examine gut microbiome changes associated with deployment. A 16S rRNA amplicon survey of fecal samples showed differentially abundant baseline taxa for subjects who contracted TD versus those who did not, as well as detection of taxa positively associated with self-reported gastrointestinal distress. Disrupted microbiota was also qualitatively observable for weeks preceding and following the incidents of TD. These findings illustrate the complex etiology of diarrhea amongst military personnel in deployed settings and its impacts on job performance. Potential factors of resistance or susceptibility can provide a foundation for future clinical trials to evaluate prevention and treatment strategies.
Collapse
Affiliation(s)
| | | | - Giselle M. Soto
- U.S. Naval Medical Research Unit No. 6 (NAMRU-6),Callao, Lima, Peru
| | - Nathanael D. Reynolds
- Infectious Diseases Directorate, U.S. Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Jamie A. Fraser
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | | | - David R. Tribble
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Adam P. Irvin
- 711 Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, OH, United States of America
| | - Nancy Kelley-Loughnane
- 711 Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, OH, United States of America
| | - Ramiro L. Gutierrez
- Infectious Diseases Directorate, U.S. Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Mark S. Riddle
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Ruth E. Ley
- Max Planck Institute for Developmental Biology, Tuebingen, Germany
| | - Michael S. Goodson
- 711 Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, OH, United States of America
- * E-mail:
| | - Mark P. Simons
- Infectious Diseases Directorate, U.S. Naval Medical Research Center, Silver Spring, MD, United States of America
| |
Collapse
|
55
|
Luminal and Mucosal Microbiota of the Cecum and Large Colon of Healthy and Diarrheic Horses. Animals (Basel) 2020; 10:ani10081403. [PMID: 32806591 PMCID: PMC7460328 DOI: 10.3390/ani10081403] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Acute diarrhea (colitis) is a major problem in adult horses and the role of the intestinal bacteria (microbiota) is still poorly understood in this species. The aim of this study was to compare the mucosal and luminal content microbiota of the cecum and colon of healthy and diarrheic horses. We concluded that microbial dysbiosis (changes in the normal microbiota composition) occurs in horses with colitis at different levels of the intestinal tract and microbiota composition is different between the mucosa and luminal content of diarrheic horses. Changes in species associated with dysbiosis could be used in the future for disease diagnosis, prognosis and treatment of equine colitis. Abstract The aim of this study was to compare the mucosal and luminal content microbiota of the cecum and colon of healthy and diarrheic horses. Marked differences in the richness and in the community composition between the mucosal and luminal microbiota of the cecum and large colon of horses with colitis were observed. Microbial dysbiosis occurs in horses with colitis at different levels of the intestinal tract, and microbiota composition is different between the mucosa and luminal content of diarrheic horses. The changes in some key taxa associated with dysbiosis in the equine intestinal microbiota, such as Escherichia, Fusobacterium and Lactobacillus, deserve further inquiry in order to determine their utility for disease diagnosis and treatment.
Collapse
|
56
|
De R, Mukhopadhyay AK, Dutta S. Metagenomic analysis of gut microbiome and resistome of diarrheal fecal samples from Kolkata, India, reveals the core and variable microbiota including signatures of microbial dark matter. Gut Pathog 2020; 12:32. [PMID: 32655699 PMCID: PMC7339541 DOI: 10.1186/s13099-020-00371-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Metagenomic analysis of the gut microbiome and resistome is instrumental for understanding the dynamics of diarrheal pathogenesis and antimicrobial resistance transmission (AMR). Metagenomic sequencing of 20 diarrheal fecal samples from Kolkata was conducted to understand the core and variable gut microbiota. Five of these samples were used for resistome analysis. The pilot study was conducted to determine a microbiota signature and the source of antimicrobial resistance genes (ARGs) in the diarrheal gut. RESULTS 16S rRNA amplicon sequencing was performed using Illumina MiSeq platform and analysed using the MGnify pipeline. The Genome Taxonomy Database (GTDB-Tk) was used for bacterial taxonomic identification. Diarrheal etiology was determined by culture method. Phylum Firmicutes, Bacteroidetes, Proteobacteria and Actinobacteria were consistently present in 20 samples. Firmicutes was the most abundant phylum in 11 samples. The Bacteroidetes/Firmicutes ratio was less than 1 in 18 samples. 584 genera were observed. 18 of these were present in all the 20 samples. Proteobacteria was the dominant phylum in 6 samples associated with Vibrio cholerae infection. Conservation of operational taxonomic units (OTUs) among all the samples indicated the existence of a core microbiome. Asymptomatic carriage of pathogens like Vibrio cholerae and Helicobacter pylori was found. Signature of Candidate phyla or "microbial dark matter" occurred. Significant correlation of relative abundance of bacterial families of commensals and pathogens were found. Whole-genome sequencing (WGS) on Illumina MiSeq system and assembly of raw reads using metaSPAdes v3.9.1 was performed to study the resistome of 5 samples. ABRicate was used to assign ARG function. 491 resistance determinants were identified. In 80% of the samples tetracycline resistance was the most abundant resistance determinant. High abundance of ARGs against β-lactams, aminoglycosides, quinolones and macrolides was found. Eschericia sp. was the major contributor of ARGs. CONCLUSIONS This is the first comparative study of the gut microbiome associated with different diarrheal pathogens. It presents the first catalogue of different bacterial taxa representing the core and variable microbiome in acute diarrheal patients. The study helped to define a trend in the gut microbiota signature associated with diarrhea and revealed which ARGs are abundantly present and the metagenome-assembled genomes (MAGs) contributing to AMR.
Collapse
Affiliation(s)
- Rituparna De
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | | - Shanta Dutta
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
57
|
Levade I, Saber MM, Midani FS, Chowdhury F, Khan AI, Begum YA, Ryan ET, David LA, Calderwood SB, Harris JB, LaRocque RC, Qadri F, Shapiro BJ, Weil AA. Predicting Vibrio cholerae Infection and Disease Severity Using Metagenomics in a Prospective Cohort Study. J Infect Dis 2020; 223:342-351. [PMID: 32610345 PMCID: PMC7857355 DOI: 10.1093/infdis/jiaa358] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Susceptibility to Vibrio cholerae infection is affected by blood group, age, and preexisting immunity, but these factors only partially explain who becomes infected. A recent study used 16S ribosomal RNA amplicon sequencing to quantify the composition of the gut microbiome and identify predictive biomarkers of infection with limited taxonomic resolution. METHODS To achieve increased resolution of gut microbial factors associated with V. cholerae susceptibility and identify predictors of symptomatic disease, we applied deep shotgun metagenomic sequencing to a cohort of household contacts of patients with cholera. RESULTS Using machine learning, we resolved species, strains, gene families, and cellular pathways in the microbiome at the time of exposure to V. cholerae to identify markers that predict infection and symptoms. Use of metagenomic features improved the precision and accuracy of prediction relative to 16S sequencing. We also predicted disease severity, although with greater uncertainty than our infection prediction. Species within the genera Prevotella and Bifidobacterium predicted protection from infection, and genes involved in iron metabolism were also correlated with protection. CONCLUSION Our results highlight the power of metagenomics to predict disease outcomes and suggest specific species and genes for experimental testing to investigate mechanisms of microbiome-related protection from cholera.
Collapse
Affiliation(s)
- Inès Levade
- Department of Biological Sciences, University of Montreal, Montreal, Quebec, Canada
| | - Morteza M Saber
- Department of Biological Sciences, University of Montreal, Montreal, Quebec, Canada
| | - Firas S Midani
- Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina, USA,Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, USA,Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Fahima Chowdhury
- Center for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Ashraful I Khan
- Center for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Yasmin A Begum
- Center for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Edward T Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Lawrence A David
- Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina, USA,Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, USA,Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA,Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Stephen B Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA,Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jason B Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Regina C LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Firdausi Qadri
- Center for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - B Jesse Shapiro
- Department of Biological Sciences, University of Montreal, Montreal, Quebec, Canada,Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada,McGill Genome Centre, Montreal, Quebec, Canada,Correspondence: B. Jesse Shapiro, McGill University, Montreal, Quebec, Canada ()
| | - Ana A Weil
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| |
Collapse
|
58
|
Alavi S, Mitchell JD, Cho JY, Liu R, Macbeth JC, Hsiao A. Interpersonal Gut Microbiome Variation Drives Susceptibility and Resistance to Cholera Infection. Cell 2020; 181:1533-1546.e13. [PMID: 32631492 PMCID: PMC7394201 DOI: 10.1016/j.cell.2020.05.036] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/16/2020] [Accepted: 05/18/2020] [Indexed: 12/17/2022]
Abstract
The gut microbiome is the resident microbial community of the gastrointestinal tract. This community is highly diverse, but how microbial diversity confers resistance or susceptibility to intestinal pathogens is poorly understood. Using transplantation of human microbiomes into several animal models of infection, we show that key microbiome species shape the chemical environment of the gut through the activity of the enzyme bile salt hydrolase. The activity of this enzyme reduced colonization by the major human diarrheal pathogen Vibrio cholerae by degrading the bile salt taurocholate that activates the expression of virulence genes. The absence of these functions and species permits increased infection loads on a personal microbiome-specific basis. These findings suggest new targets for individualized preventative strategies of V. cholerae infection through modulating the structure and function of the gut microbiome.
Collapse
Affiliation(s)
- Salma Alavi
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, USA
| | - Jonathan D Mitchell
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, USA
| | - Jennifer Y Cho
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, USA; Department of Biochemistry, University of California, Riverside, Riverside, CA, USA
| | - Rui Liu
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, USA; Graduate Program in Genetics, Genomics, and Bioinformatics, University of California, Riverside, Riverside, CA, USA
| | - John C Macbeth
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, USA; Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, USA
| | - Ansel Hsiao
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
59
|
Alexandrova L, Haque F, Rodriguez P, Marrazzo AC, Grembi JA, Ramachandran V, Hryckowian AJ, Adams CM, Siddique MSA, Khan AI, Qadri F, Andrews JR, Rahman M, Spormann AM, Schoolnik GK, Chien A, Nelson EJ. Identification of Widespread Antibiotic Exposure in Patients With Cholera Correlates With Clinically Relevant Microbiota Changes. J Infect Dis 2020; 220:1655-1666. [PMID: 31192364 PMCID: PMC6782107 DOI: 10.1093/infdis/jiz299] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/11/2019] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND A first step to combating antimicrobial resistance in enteric pathogens is to establish an objective assessment of antibiotic exposure. Our goal was to develop and evaluate a liquid chromatography-ion trap mass spectrometry (LC/MS) method to determine antibiotic exposure in patients with cholera. METHODS A priority list for targeted LC/MS was generated from medication-vendor surveys in Bangladesh. A study of patients with and those without cholera was conducted to collect and analyze paired urine and stool samples. RESULTS Among 845 patients, 11% (90) were Vibrio cholerae positive; among these 90 patients, analysis of stool specimens revealed ≥1 antibiotic in 86% and ≥2 antibiotics in 52%. Among 44 patients with cholera and paired urine and stool specimens, ≥1 antibiotic was detected in 98% and ≥2 antibiotics were detected in 84%, despite 55% self-reporting medication use. Compared with LC/MS, a low-cost antimicrobial detection bioassay lacked a sufficient negative predictive value (10%; 95% confidence interval, 6%-16%). Detection of guideline-recommended antibiotics in stool specimens did (for azithromycin; P = .040) and did not (for ciprofloxacin) correlate with V. cholerae suppression. A nonrecommended antibiotic (metronidazole) was associated with decreases in anaerobes (ie, Prevotella organisms; P < .001). CONCLUSION These findings suggest that there may be no true negative control group when attempting to account for antibiotic exposure in settings like those in this study.
Collapse
Affiliation(s)
- Ludmila Alexandrova
- Vincent Coates Foundation Mass Spectrometry Laboratory, School of Medicine, Stanford University, California
| | - Farhana Haque
- Institute of Epidemiology, Disease Control, and Research, Ministry of Health and Family Welfare, Government of Bangladesh, Dhaka, Bangladesh
| | - Patricia Rodriguez
- Department of Pediatrics, University of Florida, Gainesville.,Department of Environmental and Global Health, University of Florida, Gainesville
| | - Ashton C Marrazzo
- Department of Pediatrics, University of Florida, Gainesville.,Department of Environmental and Global Health, University of Florida, Gainesville
| | - Jessica A Grembi
- Department of Civil and Environmental Engineering, School of Medicine, Stanford University, California
| | - Vasavi Ramachandran
- Department of Pediatrics, School of Medicine, Stanford University, California
| | - Andrew J Hryckowian
- Department of Microbiology, School of Medicine, Stanford University, California
| | - Christopher M Adams
- Vincent Coates Foundation Mass Spectrometry Laboratory, School of Medicine, Stanford University, California
| | - Md Shah A Siddique
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Ashraful I Khan
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Firdausi Qadri
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Jason R Andrews
- Department of Medicine, School of Medicine, Stanford University, California
| | - Mahmudur Rahman
- Institute of Epidemiology, Disease Control, and Research, Ministry of Health and Family Welfare, Government of Bangladesh, Dhaka, Bangladesh
| | - Alfred M Spormann
- Department of Civil and Environmental Engineering, School of Medicine, Stanford University, California
| | - Gary K Schoolnik
- Department of Medicine, School of Medicine, Stanford University, California
| | - Allis Chien
- Vincent Coates Foundation Mass Spectrometry Laboratory, School of Medicine, Stanford University, California
| | - Eric J Nelson
- Department of Pediatrics, School of Medicine, Stanford University, California
| |
Collapse
|
60
|
Asnicar F, Thomas AM, Beghini F, Mengoni C, Manara S, Manghi P, Zhu Q, Bolzan M, Cumbo F, May U, Sanders JG, Zolfo M, Kopylova E, Pasolli E, Knight R, Mirarab S, Huttenhower C, Segata N. Precise phylogenetic analysis of microbial isolates and genomes from metagenomes using PhyloPhlAn 3.0. Nat Commun 2020; 11:2500. [PMID: 32427907 PMCID: PMC7237447 DOI: 10.1038/s41467-020-16366-7] [Citation(s) in RCA: 367] [Impact Index Per Article: 91.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 04/27/2020] [Indexed: 01/10/2023] Open
Abstract
Microbial genomes are available at an ever-increasing pace, as cultivation and sequencing become cheaper and obtaining metagenome-assembled genomes (MAGs) becomes more effective. Phylogenetic placement methods to contextualize hundreds of thousands of genomes must thus be efficiently scalable and sensitive from closely related strains to divergent phyla. We present PhyloPhlAn 3.0, an accurate, rapid, and easy-to-use method for large-scale microbial genome characterization and phylogenetic analysis at multiple levels of resolution. PhyloPhlAn 3.0 can assign genomes from isolate sequencing or MAGs to species-level genome bins built from >230,000 publically available sequences. For individual clades of interest, it reconstructs strain-level phylogenies from among the closest species using clade-specific maximally informative markers. At the other extreme of resolution, it scales to large phylogenies comprising >17,000 microbial species. Examples including Staphylococcus aureus isolates, gut metagenomes, and meta-analyses demonstrate the ability of PhyloPhlAn 3.0 to support genomic and metagenomic analyses.
Collapse
Affiliation(s)
| | | | | | | | - Serena Manara
- Department CIBIO, University of Trento, Trento, Italy
| | - Paolo Manghi
- Department CIBIO, University of Trento, Trento, Italy
| | - Qiyun Zhu
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Mattia Bolzan
- Department CIBIO, University of Trento, Trento, Italy
- PreBiomics s.r.l, Trento, Italy
| | - Fabio Cumbo
- Department CIBIO, University of Trento, Trento, Italy
| | - Uyen May
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Jon G Sanders
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Cornell Institute for Host-Microbe Interaction and Disease, Cornell University, Ithaca, NY, USA
| | - Moreno Zolfo
- Department CIBIO, University of Trento, Trento, Italy
| | - Evguenia Kopylova
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Clarity Genomics BVBA, Sint-Michielskaai 34, 2000, Antwerpen, Belgium
| | - Edoardo Pasolli
- Department CIBIO, University of Trento, Trento, Italy
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Siavash Mirarab
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy.
| |
Collapse
|
61
|
Intestinal microbiome analysis demonstrates azithromycin post-treatment effects improve when combined with lactulose. World J Pediatr 2020; 16:168-176. [PMID: 31583533 DOI: 10.1007/s12519-019-00315-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/10/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Next-generation sequencing has revolutionized our perspective on the gut microbiome composition, revealing the true extent of the adverse effects of antibiotics. The impact of antibiotic treatment on gut microbiota must be considered and researched to provide grounds for establishing new treatment strategies that are less devastating on commensal bacteria. This study investigates the impact on gut microbiome when a commonly used antibiotic, azithromycin is administered, as well as uncovers the benefits induced when it is used in combination with lactulose, a prebiotic known to enhance the proliferation of commensal microbes. METHODS 16S rRNA gene sequencing analysis of stool samples obtained from 87 children treated with azithromycin in combination with or without lactulose have been determined. Children's gut microbial profile was established at the pre- and post-treatment stage. RESULTS Azithromycin caused an increase in the relative abundance of opportunistic pathogens such as Streptococcus that was evident 60 days after treatment. While few days after treatment, children who also received lactulose started to show a higher relative abundance of saccharolytic bacteria such as Lactobacillus, Enterococcus, Anaerostipes, Blautia and Roseburia, providing a protective role against opportunistic pathogens. In addition, azithromycin-prebiotic combination was able to provide a phylogenetic profile more similar to the pre-treatment stage. CONCLUSION It is suggested that during azithromycin treatment, lactulose is able to reinstate the microbiome equilibrium much faster as it promotes saccharolytic microbes and provides a homeostatic effect that minimizes the opportunistic pathogen colonization.
Collapse
|
62
|
Wang R, Deng Y, Deng Q, Sun D, Fang Z, Sun L, Wang Y, Gooneratne R. Vibrio parahaemolyticus Infection in Mice Reduces Protective Gut Microbiota, Augmenting Disease Pathways. Front Microbiol 2020; 11:73. [PMID: 32082289 PMCID: PMC7002474 DOI: 10.3389/fmicb.2020.00073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/14/2020] [Indexed: 12/30/2022] Open
Abstract
Vibrio parahaemolyticus (Vp), a major food-borne pathogen, is responsible for severe infections such as gastroenteritis and septicemia, which may be accompanied by life-threatening complications. While studies have evaluated factors that affect the virulence of the pathogen, none have investigated the interaction of Vp with gut microbiota. To address this knowledge gap, we compared the effect of Vp on gut bacterial community structure, immunity, liver and kidney function, in pseudo germ-free (PGF) mice and normal (control) mice. Significant damage to the ileum was observed in normal mice compared with the PGF mice. The inflammatory factors IL-1β, IL-6, and TNF-α in normal mice were ∼2.5-fold higher than in the PGF mice, and liver (ALT, AST, ALP) and kidney (BUN) function indices were ∼1.6-fold higher. The Vp infection substantially reduced species composition and richness of the gut microbial communities. In particular, there was a shift in keystone taxa, from protective species of genera Bacteroides, Lactobacillus, Bifidobacterium, and Akkermansia in the gut of control mice to opportunistic pathogens Enterobacteriaceae, Proteus, Prevotella, and Sutterella in Vp-infected mice, thus affecting microbiota-related biological functions in the mice. Specifically, pathways involved in infectious diseases and ion channels were significantly augmented in infected mice, while the pathways involved in metabolism, digestion and cell growth declined. We propose that the normal mice are more prone to Vp infection because of the alteration in gut-microbe-mediated functions. All these effects reduce intestinal resistance, with marked damage to the gut lining and pathogen leakage into the blood culminating in liver and kidney damage. These findings greatly advance our understanding of the mechanisms underlying interactions between Vp, the gut microbiota and the infected host.
Collapse
Affiliation(s)
- Rundong Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang, China.,School of Chemistry and Chemical Engineering, Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, Lingnan Normal University, Zhanjiang, China
| | - Yijia Deng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang, China
| | - Qi Deng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang, China
| | - Dongfang Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang, China
| | - Zhijia Fang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang, China
| | - Lijun Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang, China
| | - Yaling Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang, China
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| |
Collapse
|
63
|
Wu J, Gan Y, Li M, Chen L, Liang J, Zhuo J, Luo H, Xu N, Wu X, Wu Q, Lin Z, Su Z, Liu Y. Patchouli alcohol attenuates 5-fluorouracil-induced intestinal mucositis via TLR2/MyD88/NF-kB pathway and regulation of microbiota. Biomed Pharmacother 2020; 124:109883. [PMID: 32004938 DOI: 10.1016/j.biopha.2020.109883] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 02/09/2023] Open
Abstract
Intestinal mucositis causes great suffering to cancer patients who undergo chemotherapy and radiotherapy. Owing to the uncertain side effects of anticancer drugs to attenuate patients' intestinal mucositis, many studies focused on traditional Chinese medicine (TCM). Patchouli alcohol (PA) is an active compound extracted from Pogostemon cablin, and has potent gastrointestinal protective effect. However, whether PA has an effect on intestinal mucositis is still unknown. Therefore, we established a rat model of intestinal mucositis via intraperitoneal injection of 5-fluorouracil, and intragastrically administrated PA (10, 20, and 40 mg/kg) to evaluate the effect of PA on intestinal mucositis. The routine observation (body weight, food intake, and diarrhea) in rats was used to detect whether PA had an effect on intestinal mucositis. Levels of inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-10, and MPO), mucosal barrier proteins (zonula occludens -1 (ZO-1), claudin-1, occludin, myosin light chain (MLC), and mucin-2) and intestinal microbiota were determined to elucidate the underlying mechanism of PA action on intestinal mucositis in rats. The results showed that PA could effectively improve body weight, food intake, and diarrhea in intestinal mucositis rats, preliminary confirming PA efficacy. Further experiments revealed that PA not only decreased the levels of TNF-α, IL-1β, IL-6, and MPO but also increased the level of IL-10 significantly. In addition, the expression of mucosal barrier proteins and microbiota community were also improved after PA treatment in diseased rats. Hence, PA may prevent the development and progression of intestinal mucositis by improving inflammation, protecting mucosal barrier, and regulating intestinal microbiota.
Collapse
Affiliation(s)
- Jiazhen Wu
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yuxuan Gan
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Muxia Li
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Liping Chen
- Faculty of Health Sciences, University of Macau, Macao, China
| | - Jiali Liang
- Faculty of Science and Engineering, Macquarie University, Balaclava Road, Macquarie Park, NSW, Sydney, 2109, Australia
| | - Jianyi Zhuo
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Huijuan Luo
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Nan Xu
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xue Wu
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Qiduan Wu
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhixiu Lin
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ziren Su
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Dongguan & Guangzhou University of Chinese Medicine Cooperative Academy of Mathematical Engineering for Chinese Medicine, Dongguan, 523808, China.
| | - Yuhong Liu
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
64
|
Abstract
Vibrio cholerae is a noninvasive pathogen that colonizes the small intestine and produces cholera toxin, causing severe secretory diarrhea. Cholera results in long lasting immunity, and recent studies have improved our understanding of the antigenic repertoire of V. cholerae Interactions between the host, V. cholerae, and the intestinal microbiome are now recognized as factors which impact susceptibility to cholera and the ability to mount a successful immune response to vaccination. Here, we review recent data and corresponding models to describe immune responses to V. cholerae infection and explain how the host microbiome may impact the pathogenesis of V. cholerae In the ongoing battle against cholera, the intestinal microbiome represents a frontier for new approaches to intervention and prevention.
Collapse
|
65
|
Tett A, Huang KD, Asnicar F, Fehlner-Peach H, Pasolli E, Karcher N, Armanini F, Manghi P, Bonham K, Zolfo M, De Filippis F, Magnabosco C, Bonneau R, Lusingu J, Amuasi J, Reinhard K, Rattei T, Boulund F, Engstrand L, Zink A, Collado MC, Littman DR, Eibach D, Ercolini D, Rota-Stabelli O, Huttenhower C, Maixner F, Segata N. The Prevotella copri Complex Comprises Four Distinct Clades Underrepresented in Westernized Populations. Cell Host Microbe 2019; 26:666-679.e7. [PMID: 31607556 PMCID: PMC6854460 DOI: 10.1016/j.chom.2019.08.018] [Citation(s) in RCA: 251] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/05/2019] [Accepted: 08/28/2019] [Indexed: 12/29/2022]
Abstract
Prevotella copri is a common human gut microbe that has been both positively and negatively associated with host health. In a cross-continent meta-analysis exploiting >6,500 metagenomes, we obtained >1,000 genomes and explored the genetic and population structure of P. copri. P. copri encompasses four distinct clades (>10% inter-clade genetic divergence) that we propose constitute the P. copri complex, and all clades were confirmed by isolate sequencing. These clades are nearly ubiquitous and co-present in non-Westernized populations. Genomic analysis showed substantial functional diversity in the complex with notable differences in carbohydrate metabolism, suggesting that multi-generational dietary modifications may be driving reduced prevalence in Westernized populations. Analysis of ancient metagenomes highlighted patterns of P. copri presence consistent with modern non-Westernized populations and a clade delineation time pre-dating human migratory waves out of Africa. These findings reveal that P. copri exhibits a high diversity that is underrepresented in Western-lifestyle populations.
Collapse
Affiliation(s)
- Adrian Tett
- CIBIO Department, University of Trento, 38123 Trento, Italy.
| | - Kun D Huang
- CIBIO Department, University of Trento, 38123 Trento, Italy; Department of Sustainable Agro-Ecosystems and Bioresources, Fondazione Edmund Mach, 1 38010 S, San Michele all'Adige, Italy
| | | | - Hannah Fehlner-Peach
- Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | - Paolo Manghi
- CIBIO Department, University of Trento, 38123 Trento, Italy
| | - Kevin Bonham
- The Broad Institute of MIT and Harvard, Cambridge, MA 02115, USA; Department of Agricultural Sciences, University of Naples "Federico II", Portici, Italy
| | - Moreno Zolfo
- CIBIO Department, University of Trento, 38123 Trento, Italy
| | - Francesca De Filippis
- Department of Agricultural Sciences, University of Naples "Federico II", Portici, Italy; Task Force on Microbiome Studies, University of Naples "Federico II", Naples, Italy
| | - Cara Magnabosco
- Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA
| | - Richard Bonneau
- Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA; Departments of Biology and Computer Science, New York University, New York, NY 10003, USA
| | - John Lusingu
- National Institute for Medical Research, Tanga Centre, Tanzania
| | - John Amuasi
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Ghana
| | - Karl Reinhard
- Hardin Hall, School of Natural Resources, University of Nebraska, Lincoln, NE 68583-0987, USA
| | - Thomas Rattei
- CUBE - Division of Computational Systems Biology, Department of Microbiology and Ecosystem Science, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Fredrik Boulund
- Centre for Translational Microbiome Research, Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, 171 65 Solna, Stockholm, Sweden
| | - Lars Engstrand
- Institute for Mummy Studies, EURAC Research, Viale Druso 1, 39100 Bolzano, Italy
| | - Albert Zink
- Institute for Mummy Studies, EURAC Research, Viale Druso 1, 39100 Bolzano, Italy
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), 46980 Paterna, Valencia, Spain
| | - Dan R Littman
- Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Daniel Eibach
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; German Center for Infection Research, Hamburg-Borstel-Lübeck-Riems, 20359 Hamburg, Germany
| | - Danilo Ercolini
- Department of Agricultural Sciences, University of Naples "Federico II", Portici, Italy; Task Force on Microbiome Studies, University of Naples "Federico II", Naples, Italy
| | - Omar Rota-Stabelli
- Department of Sustainable Agro-Ecosystems and Bioresources, Fondazione Edmund Mach, 1 38010 S, San Michele all'Adige, Italy
| | - Curtis Huttenhower
- The Broad Institute of MIT and Harvard, Cambridge, MA 02115, USA; Biostatistics Department, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Frank Maixner
- Institute for Mummy Studies, EURAC Research, Viale Druso 1, 39100 Bolzano, Italy
| | - Nicola Segata
- CIBIO Department, University of Trento, 38123 Trento, Italy.
| |
Collapse
|
66
|
Hildebrand F, Moitinho-Silva L, Blasche S, Jahn MT, Gossmann TI, Huerta-Cepas J, Hercog R, Luetge M, Bahram M, Pryszlak A, Alves RJ, Waszak SM, Zhu A, Ye L, Costea PI, Aalvink S, Belzer C, Forslund SK, Sunagawa S, Hentschel U, Merten C, Patil KR, Benes V, Bork P. Antibiotics-induced monodominance of a novel gut bacterial order. Gut 2019; 68:1781-1790. [PMID: 30658995 PMCID: PMC6839795 DOI: 10.1136/gutjnl-2018-317715] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 01/21/2023]
Abstract
OBJECTIVE The composition of the healthy human adult gut microbiome is relatively stable over prolonged periods, and representatives of the most highly abundant and prevalent species have been cultured and described. However, microbial abundances can change on perturbations, such as antibiotics intake, enabling the identification and characterisation of otherwise low abundant species. DESIGN Analysing gut microbial time-series data, we used shotgun metagenomics to create strain level taxonomic and functional profiles. Community dynamics were modelled postintervention with a focus on conditionally rare taxa and previously unknown bacteria. RESULTS In response to a commonly prescribed cephalosporin (ceftriaxone), we observe a strong compositional shift in one subject, in which a previously unknown species, UBorkfalki ceftriaxensis, was identified, blooming to 92% relative abundance. The genome assembly reveals that this species (1) belongs to a so far undescribed order of Firmicutes, (2) is ubiquitously present at low abundances in at least one third of adults, (3) is opportunistically growing, being ecologically similar to typical probiotic species and (4) is stably associated to healthy hosts as determined by single nucleotide variation analysis. It was the first coloniser after the antibiotic intervention that led to a long-lasting microbial community shift and likely permanent loss of nine commensals. CONCLUSION The bloom of UB. ceftriaxensis and a subsequent one of Parabacteroides distasonis demonstrate the existence of monodominance community states in the gut. Our study points to an undiscovered wealth of low abundant but common taxa in the human gut and calls for more highly resolved longitudinal studies, in particular on ecosystem perturbations.
Collapse
Affiliation(s)
- Falk Hildebrand
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Lucas Moitinho-Silva
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Sonja Blasche
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Martin T Jahn
- RD3 Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | | | - Jaime Huerta-Cepas
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Computational systems biology and genomics, Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Rajna Hercog
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Mechthild Luetge
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Botany, Institute of Ecology and Earth Sciences, Tartu University, Tartu, Estonia
| | - Anna Pryszlak
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Renato J Alves
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Structural and Computational Biology Unit, Joint PhD degree between EMBL and Heidelberg University, Heidelberg, Germany
| | - Sebastian M Waszak
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Ana Zhu
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Host Microbiota Interactions Laboratory, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Lumeng Ye
- Biotechnology Dept., GenScript Corporation (NanJing), NanJing, China
| | - Paul Igor Costea
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Steven Aalvink
- Institute of Microbiology, Wagenigen University, Wageningen, Netherlands
| | - Clara Belzer
- Institute of Microbiology, Wagenigen University, Wageningen, Netherlands
| | - Sofia K Forslund
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Experimental and ClinicalResearch Centre, Max Delbrück Centre for Molecular Medicine, Berlin, Germany
| | - Shinichi Sunagawa
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Ute Hentschel
- RD3 Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Christoph Merten
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Kiran Raosaheb Patil
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Vladimir Benes
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany
| |
Collapse
|
67
|
Wagar LE, Bolen CR, Sigal N, Lopez Angel CJ, Guan L, Kirkpatrick BD, Haque R, Tibshirani RJ, Parsonnet J, Petri WA, Davis MM. Increased T Cell Differentiation and Cytolytic Function in Bangladeshi Compared to American Children. Front Immunol 2019; 10:2239. [PMID: 31620139 PMCID: PMC6763580 DOI: 10.3389/fimmu.2019.02239] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 09/04/2019] [Indexed: 01/03/2023] Open
Abstract
During the first 5 years of life, children are especially vulnerable to infection-related morbidity and mortality. Conversely, the Hygiene Hypothesis suggests that a lack of exposure to infectious agents early in life could explain the increasing incidence of allergies and autoimmunity in high-income countries. Understanding these phenomena, however, is hampered by a lack of comprehensive, direct immune monitoring in children with differing degrees of microbial exposure. Using mass cytometry, we provide an in-depth profile of the peripheral blood mononuclear cells (PBMCs) of children in regions at the extremes of exposure: the San Francisco Bay Area, USA and an economically poor district of Dhaka, Bangladesh. Despite variability in clinical health, functional characteristics of PBMCs were similar in Bangladeshi and American children at 1 year of age. However, by 2–3 years of age, Bangladeshi children's immune cells often demonstrated altered activation and cytokine production profiles upon stimulation with PMA-ionomycin, with an overall immune trajectory more in line with American adults. Conversely, immune responses in children from the US remained steady. Using principal component analysis, donor location, ethnic background, and cytomegalovirus infection status were found to account for some of the variation identified among samples. Within Bangladeshi 1-year-olds, stunting (as measured by height-for-age z-scores) was found to be associated with IL-8 and TGFβ expression in PMA-ionomycin stimulated samples. Combined, these findings provide important insights into the immune systems of children in high vs. low microbial exposure environments and suggest an important role for IL-8 and TGFβ in mitigating the microbial challenges faced by the Bangladeshi children.
Collapse
Affiliation(s)
- Lisa E Wagar
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
| | - Christopher R Bolen
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
| | - Natalia Sigal
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA, United States
| | - Cesar J Lopez Angel
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
| | - Leying Guan
- Data Sciences and Statistics, Stanford University, Stanford, CA, United States
| | - Beth D Kirkpatrick
- Department of Microbiology and Molecular Genetics, University of Vermont College of Medicine and Vaccine Testing Center, Burlington, VT, United States
| | - Rashidul Haque
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Robert J Tibshirani
- Data Sciences and Statistics, Stanford University, Stanford, CA, United States
| | - Julie Parsonnet
- Departments of Medicine and of Health Research and Policy, Stanford University, Stanford, CA, United States
| | - William A Petri
- Department of Medicine, Pathology, and Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Mark M Davis
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States.,Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA, United States.,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
68
|
Midani FS, Weil AA, Chowdhury F, Begum YA, Khan AI, Debela MD, Durand HK, Reese AT, Nimmagadda SN, Silverman JD, Ellis CN, Ryan ET, Calderwood SB, Harris JB, Qadri F, David LA, LaRocque RC. Human Gut Microbiota Predicts Susceptibility to Vibrio cholerae Infection. J Infect Dis 2019; 218:645-653. [PMID: 29659916 DOI: 10.1093/infdis/jiy192] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 04/10/2018] [Indexed: 12/20/2022] Open
Abstract
Background Cholera is a public health problem worldwide, and the risk factors for infection are only partially understood. Methods We prospectively studied household contacts of patients with cholera to compare those who were infected to those who were not. We constructed predictive machine learning models of susceptibility, using baseline gut microbiota data. We identified bacterial taxa associated with susceptibility to Vibrio cholerae infection and tested these taxa for interactions with V. cholerae in vitro. Results We found that machine learning models based on gut microbiota, as well as models based on known clinical and epidemiological risk factors, predicted V. cholerae infection. A predictive gut microbiota of roughly 100 bacterial taxa discriminated between contacts who developed infection and those who did not. Susceptibility to cholera was associated with depleted levels of microbes from the phylum Bacteroidetes. By contrast, a microbe associated with cholera by our modeling framework, Paracoccus aminovorans, promoted the in vitro growth of V. cholerae. Gut microbiota structure, clinical outcome, and age were also linked. Conclusion These findings support the hypothesis that abnormal gut microbial communities are a host factor related to V. cholerae susceptibility.
Collapse
Affiliation(s)
- Firas S Midani
- Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina.,Center for Genomic and Computational Biology, Duke University, Durham, North Carolina.,Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina
| | - Ana A Weil
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Fahima Chowdhury
- Mucosal Immunology and Vaccinology Laboratory, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka
| | - Yasmin A Begum
- Mucosal Immunology and Vaccinology Laboratory, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka
| | - Ashraful I Khan
- Mucosal Immunology and Vaccinology Laboratory, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka
| | - Meti D Debela
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts
| | - Heather K Durand
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina
| | - Aspen T Reese
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina.,Department of Biology, Duke University, Durham, North Carolina
| | - Sai N Nimmagadda
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Justin D Silverman
- Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina.,Center for Genomic and Computational Biology, Duke University, Durham, North Carolina.,Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina.,Medical Scientist Training Program, Duke University, Durham, North Carolina
| | - Crystal N Ellis
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts.,Massachusetts College of Pharmacy and Health Sciences University, Boston
| | - Edward T Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts.,Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts
| | - Stephen B Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts
| | - Jason B Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Firdausi Qadri
- Mucosal Immunology and Vaccinology Laboratory, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka
| | - Lawrence A David
- Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina.,Center for Genomic and Computational Biology, Duke University, Durham, North Carolina.,Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina.,Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Regina C LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
69
|
Yang B, Lu P, Li MX, Cai XL, Xiong WY, Hou HJ, Ha XQ. A meta-analysis of the effects of probiotics and synbiotics in children with acute diarrhea. Medicine (Baltimore) 2019; 98:e16618. [PMID: 31517810 PMCID: PMC6750275 DOI: 10.1097/md.0000000000016618] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE This meta-analysis assessed the effectiveness of probiotics and synbiotics for acute diarrhea (AD) in children and investigated probiotic formulations, types of interventions, and country factors. METHODS Randomized, double-blind, placebo-controlled trials evaluating the effects of probiotics or synbiotics on AD were analyzed. We followed the recommendations of the Cochrane Handbook and the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statement. The risks of systematic errors (bias) and random errors were assessed, and the overall quality of the evidence was evaluated using the Grades of Recommendations Assessment, Development, and Evaluation (GRADE) approach. RESULTS The meta-analysis included 34 studies with 4911 patients. Five and 29 studies presented the results of synbiotic and probiotic interventions, respectively. After intervention, the durations of diarrhea (weighted mean difference (WMD) = -16.63 [-20.16; -12.51]) and hospitalization (risk ratio (RR) = 0.59 [0.48; 0.73]) were shorter, the stool frequency on day 3 (WMD = -0.98 [-1.55; -0.40]) was decreased, and the incidence of diarrhea lasting 3 days was lower in the probiotic and synbiotic groups than in the control groups. Furthermore, in the subgroup analyses, synbiotics were more effective than probiotics at reducing the durations of diarrhea and hospitalization, and Saccharomyces and Bifidobacterium were more effective than Lactobacillus at reducing the duration of diarrhea. CONCLUSION This meta-analysis supports the potential beneficial roles of probiotics and synbiotics for AD in children. Further research is needed to determine problems associated with probiotic/synbiotic mixtures and appropriate dosages.
Collapse
Affiliation(s)
- Bo Yang
- Department of Clinical Laboratory, The People's Liberation Arimy Joint Service Support Unit 940 Hospital
- School of Clinical Medicine, Gansu University of Traditional Chinese Medicine (TCM), Lanzhou
| | - Ping Lu
- School of Clinical Medicine, Capital Medical University, Beijing
| | - Mei-Xuan Li
- Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiao-Ling Cai
- Department of Clinical Laboratory, The People's Liberation Arimy Joint Service Support Unit 940 Hospital
| | - Wan-Yuan Xiong
- School of Clinical Medicine, Gansu University of Traditional Chinese Medicine (TCM), Lanzhou
| | - Huai-Jing Hou
- School of Clinical Medicine, Gansu University of Traditional Chinese Medicine (TCM), Lanzhou
| | - Xiao-Qin Ha
- Department of Clinical Laboratory, The People's Liberation Arimy Joint Service Support Unit 940 Hospital
| |
Collapse
|
70
|
Abstract
Colonization of the gut by virulent Vibrio cholerae is suppressed by probiotic-like activity of a live cholera vaccine candidate and Lactococcus lactis in two animal models (Hubbard et al. and Mao et al., this issue).
Collapse
Affiliation(s)
- Robert H Hall
- National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
71
|
Exposure of the Host-Associated Microbiome to Nutrient-Rich Conditions May Lead to Dysbiosis and Disease Development-an Evolutionary Perspective. mBio 2019; 10:mBio.00355-19. [PMID: 31088923 PMCID: PMC6520449 DOI: 10.1128/mbio.00355-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Inflammatory diseases, such as inflammatory bowel diseases, are dramatically increasing worldwide, but an understanding of the underlying factors is lacking. We here present an ecoevolutionary perspective on the emergence of inflammatory diseases. Inflammatory diseases, such as inflammatory bowel diseases, are dramatically increasing worldwide, but an understanding of the underlying factors is lacking. We here present an ecoevolutionary perspective on the emergence of inflammatory diseases. We propose that adaptation has led to fine-tuned host-microbe interactions, which are maintained by secreted host metabolites nourishing the associated microbes. A constant elevation of nutrients in the gut environment leads to an increased activity and changed functionality of the microbiota, thus severely disturbing host-microbe interactions and leading to dysbiosis and disease development. In the past, starvation and pathogen infections, causing diarrhea, were common incidences that reset the gut bacterial community to its “human-specific-baseline.” However, these natural clearing mechanisms have been virtually eradicated in developed countries, allowing a constant uncontrolled growth of bacteria. This leads to an increase of bacterial products that stimulate the immune system and ultimately might initiate inflammatory reactions.
Collapse
|
72
|
Schulfer AF, Schluter J, Zhang Y, Brown Q, Pathmasiri W, McRitchie S, Sumner S, Li H, Xavier JB, Blaser MJ. The impact of early-life sub-therapeutic antibiotic treatment (STAT) on excessive weight is robust despite transfer of intestinal microbes. THE ISME JOURNAL 2019; 13:1280-1292. [PMID: 30651608 PMCID: PMC6474226 DOI: 10.1038/s41396-019-0349-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 12/07/2018] [Accepted: 12/31/2018] [Indexed: 01/12/2023]
Abstract
The high-fat, high-calorie diets of westernized cultures contribute to the global obesity epidemic, and early life exposure to antibiotics may potentiate those dietary effects. Previous experiments with mice had shown that sub-therapeutic antibiotic treatment (STAT)-even restricted to early life-affected the gut microbiota, altered host metabolism, and increased adiposity throughout the lifetime of the animals. Here we carried out a large-scale cohousing experiment to investigate whether cohousing STAT and untreated (Control) mice would transfer the STAT-perturbed microbiota and transmit its impact on weight. We exposed pregnant dams and their young offspring to either low-dose penicillin (STAT) or water (Control) until weaning, and then followed the offspring as they grew and endured a switch from normal to high-fat diet at week 17 of life. Cohousing, which started at week 4, rapidly approximated the microbiota within cages, lowering the weight of STAT mice relative to non-cohoused mice. The effect, however, varied between cages, and was restricted to the first 16 weeks when diet consisted of normal chow. Once mice switched to high-fat diet, the microbiota α- and β-diversity expanded and the effect of cohousing faded: STAT mice, again, were heavier than control mice independently of cohousing. Metabolomics revealed serum metabolites associated with STAT exposure, but no significant differences were detected in glucose or insulin tolerance. Our results show that cohousing can partly ameliorate the impact of STAT on the gut microbiota but not prevent increased weight with high-fat diet. These observations have implications for microbiota therapies aimed to resolve the collateral damage of antibiotics and their load on human obesity.
Collapse
Affiliation(s)
- Anjelique F Schulfer
- Department of Medicine, New York University Langone Medical Center, New York, NY, 10016, USA
| | - Jonas Schluter
- Computational Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Yilong Zhang
- Department of Population Health, New York University Langone Medical Center, New York, NY, 10016, USA
| | - Quincy Brown
- Department of Medicine, New York University Langone Medical Center, New York, NY, 10016, USA
| | - Wimal Pathmasiri
- Eastern Regional Comprehensive Metabolomics Resource Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Susan McRitchie
- Eastern Regional Comprehensive Metabolomics Resource Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Susan Sumner
- Eastern Regional Comprehensive Metabolomics Resource Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Huilin Li
- Department of Population Health, New York University Langone Medical Center, New York, NY, 10016, USA
| | - Joao B Xavier
- Computational Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA.
| | - Martin J Blaser
- Department of Medicine, New York University Langone Medical Center, New York, NY, 10016, USA.
- New York Harbor Veterans Affairs Medical Center, New York, NY, 10010, USA.
| |
Collapse
|
73
|
Liu CS, Liang X, Wei XH, Jin Z, Chen FL, Tang QF, Tan XM. Gegen Qinlian Decoction Treats Diarrhea in Piglets by Modulating Gut Microbiota and Short-Chain Fatty Acids. Front Microbiol 2019; 10:825. [PMID: 31057525 PMCID: PMC6482297 DOI: 10.3389/fmicb.2019.00825] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 04/01/2019] [Indexed: 12/22/2022] Open
Abstract
Gut microbiota and its metabolites, short-chain fatty acids (SCFAs), play important roles in diarrheal diseases. Gegen Qinlian decoction (GQD), a Chinese herb formula, has been widely used to treat infectious diarrhea for centuries. However, little is known about the mechanism underlying its efficacy and whether it is mediated by gut microbiota and SCFAs. In this study, the composition of gut microbiota from bacterial diarrheal piglets was assessed using 16S rRNA analysis. The concentrations of fecal SCFAs were determined using a gas chromatography-mass spectrometer (GC-MS). The expression of mucosal pro-inflammatory cytokines in the colon was ascertained. Results showed that GQD reverses the reduction in the richness of gut microbiota, changes its structure, and significantly increases the relative abundances of SCFA-producing bacteria, including Akkermansia, Bacteroides, Clostridium, Ruminococcus, and Phascolarctobacterium. Moreover, GQD increased the levels of fecal SCFAs, including acetic acid, propionic acid, and butyric acid. GQD thus attenuates diarrhea in piglets. Further, our results suggest that the SCFAs could help to attenuate mucosal pro-inflammatory responses following GQD treatment by inhibiting histone deacetylase and the NF-κB pathway. We thus suggseted that gut microbiota play an important role during diarrhea treatment, an effect may be promoted by the GQD-induced structural changes of the gut microbial community and production of SCFAs. The increased levels of SCFAs probably provide further help to attenuate mucosal inflammation and diarrhea. In conclusion, our study might provide evidence that GQD treats diarrhea maybe involved in modulating gut microbiota and increasing SCFA levels.
Collapse
Affiliation(s)
- Chang-Shun Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, China.,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, China
| | - Xiao Liang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, China.,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, China
| | - Xiao-Han Wei
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, China.,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, China
| | - Zhen Jin
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, China.,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, China
| | - Fei-Long Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, China.,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, China
| | - Qing-Fa Tang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, China.,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, China
| | - Xiao-Mei Tan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, China.,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, China
| |
Collapse
|
74
|
Leo S, Lazarevic V, Gaïa N, Estellat C, Girard M, Matheron S, Armand-Lefèvre L, Andremont A, Schrenzel J, Ruppé E. The intestinal microbiota predisposes to traveler's diarrhea and to the carriage of multidrug-resistant Enterobacteriaceae after traveling to tropical regions. Gut Microbes 2019; 10:631-641. [PMID: 30714464 PMCID: PMC6748584 DOI: 10.1080/19490976.2018.1564431] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The risk of acquisition of multidrug-resistant Enterobacteriaceae (MRE) and of occurrence of diarrhea is high when traveling to tropical regions. The relationships between these phenomena and the composition of human gut microbiota have not yet been assessed. Here, we investigated the dynamics of changes of metabolically active microbiota by sequencing total RNA from fecal samples taken before and after travel to tropical regions. We included 43 subjects who could provide fecal samples before and after a travel to tropical regions. When found positive by culturing for any MRE after travel, the subjects sent an additional sample 1 month later. In all, 104 fecal samples were considered (43 before travel, 43 at return, 18 one month after travel). We extracted the whole RNA, performed retrotranscription and sequenced the cDNA (MiSeq 2x300bp). The reads were mapped to the reference operational taxonomic units (OTUs) and species/strains using the 16S Greengenes and 23S SILVA databases. We found that the occurrence of diarrhea during the travel was associated with a higher relative abundance of Prevotella copri before departure and after return. The composition of microbiota, before travel as well as at return, was not correlated with the acquisition of MRE. However, the clearance of MRE one month after return was linked to a specific pattern of bacterial species that was also found before and after return. In conclusion, we found specific OTUs associated to a higher risk of diarrhea during a stay in tropical regions and to a faster clearance of MRE after their acquisition.
Collapse
Affiliation(s)
- Stefano Leo
- Genomic Research Laboratory, Service des Maladies Infectieuses, Hôpitaux Universitaires de Genève, Genève, Suisse
| | - Vladimir Lazarevic
- Genomic Research Laboratory, Service des Maladies Infectieuses, Hôpitaux Universitaires de Genève, Genève, Suisse
| | - Nadia Gaïa
- Genomic Research Laboratory, Service des Maladies Infectieuses, Hôpitaux Universitaires de Genève, Genève, Suisse
| | - Candice Estellat
- AP-HP, Hôpital Bichat, Département d’Epidémiologie et Recherche Clinique, URC Paris-Nord, F-75018 Paris, France,INSERM, CIC 1425-EC, UMR1123, F-75018 Paris, France,Université Paris Diderot, UMR 1123, Sorbonne Paris Cité, F-75018 Paris, France
| | - Myriam Girard
- Genomic Research Laboratory, Service des Maladies Infectieuses, Hôpitaux Universitaires de Genève, Genève, Suisse
| | - Sophie Matheron
- AP-HP, Hôpital Bichat, Service des Maladies Infectieuses et Tropicales, F-75018 Paris, France,INSERM and Université Paris Diderot, UMR 1137 IAME, F-75018 Paris, France,Laboratoire de Bactériologie, AP-HP, Hôpital Bichat
| | - Laurence Armand-Lefèvre
- INSERM and Université Paris Diderot, UMR 1137 IAME, F-75018 Paris, France,Laboratoire de Bactériologie, AP-HP, Hôpital Bichat
| | - Antoine Andremont
- INSERM and Université Paris Diderot, UMR 1137 IAME, F-75018 Paris, France,AP-HP, Hôpital Bichat, Laboratoire de Bactèriologie, F-75018 Paris, France
| | - Jacques Schrenzel
- Genomic Research Laboratory, Service des Maladies Infectieuses, Hôpitaux Universitaires de Genève, Genève, Suisse
| | - Etienne Ruppé
- Genomic Research Laboratory, Service des Maladies Infectieuses, Hôpitaux Universitaires de Genève, Genève, Suisse,CONTACT Etienne Ruppé IAME, EVRest team, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Bichat - Claude Bernard, HUPNVS, Assistance Publique - Hôpitaux de Paris, 46 rue Henri Huchard, Paris 75877-Cedex 18
| |
Collapse
|
75
|
Levade I, Terrat Y, Leducq JB, Weil AA, Mayo-Smith LM, Chowdhury F, Khan AI, Boncy J, Buteau J, Ivers LC, Ryan ET, Charles RC, Calderwood SB, Qadri F, Harris JB, LaRocque RC, Shapiro BJ. Vibrio cholerae genomic diversity within and between patients. Microb Genom 2019; 3. [PMID: 29306353 PMCID: PMC5761273 DOI: 10.1099/mgen.0.000142] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cholera is a severe, water-borne diarrhoeal disease caused by toxin-producing strains of the bacterium Vibrio cholerae. Comparative genomics has revealed 'waves' of cholera transmission and evolution, in which clones are successively replaced over decades and centuries. However, the extent of V. cholerae genetic diversity within an epidemic or even within an individual patient is poorly understood. Here, we characterized V. cholerae genomic diversity at a micro-epidemiological level within and between individual patients from Bangladesh and Haiti. To capture within-patient diversity, we isolated multiple (8 to 20) V. cholerae colonies from each of eight patients, sequenced their genomes and identified point mutations and gene gain/loss events. We found limited but detectable diversity at the level of point mutations within hosts (zero to three single nucleotide variants within each patient), and comparatively higher gene content variation within hosts (at least one gain/loss event per patient, and up to 103 events in one patient). Much of the gene content variation appeared to be due to gain and loss of phage and plasmids within the V. cholerae population, with occasional exchanges between V. cholerae and other members of the gut microbiota. We also show that certain intra-host variants have phenotypic consequences. For example, the acquisition of a Bacteroides plasmid and non-synonymous mutations in a sensor histidine kinase gene both reduced biofilm formation, an important trait for environmental survival. Together, our results show that V. cholerae is measurably evolving within patients, with possible implications for disease outcomes and transmission dynamics.
Collapse
Affiliation(s)
- Inès Levade
- 1Department of Biological Sciences, University of Montreal, Montreal, Quebec, Canada
| | - Yves Terrat
- 1Department of Biological Sciences, University of Montreal, Montreal, Quebec, Canada
| | - Jean-Baptiste Leducq
- 1Department of Biological Sciences, University of Montreal, Montreal, Quebec, Canada
| | - Ana A Weil
- 2Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.,3Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Leslie M Mayo-Smith
- 2Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Fahima Chowdhury
- 4Center for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Ashraful I Khan
- 4Center for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Jacques Boncy
- 5National Public Health Laboratory, Ministry of Public Health and Population, Port-au-Prince, Haiti
| | - Josiane Buteau
- 5National Public Health Laboratory, Ministry of Public Health and Population, Port-au-Prince, Haiti
| | - Louise C Ivers
- 3Department of Medicine, Harvard Medical School, Boston, MA, USA.,6Division of Global Health Equity, Brigham and Women's Hospital, Boston, MA, USA.,7Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
| | - Edward T Ryan
- 2Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.,3Department of Medicine, Harvard Medical School, Boston, MA, USA.,8Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | - Richelle C Charles
- 2Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.,3Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Stephen B Calderwood
- 2Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.,3Department of Medicine, Harvard Medical School, Boston, MA, USA.,9Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Firdausi Qadri
- 4Center for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Jason B Harris
- 2Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.,10Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Regina C LaRocque
- 2Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.,3Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - B Jesse Shapiro
- 1Department of Biological Sciences, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
76
|
Megaphages infect Prevotella and variants are widespread in gut microbiomes. Nat Microbiol 2019; 4:693-700. [PMID: 30692672 PMCID: PMC6784885 DOI: 10.1038/s41564-018-0338-9] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 12/05/2018] [Indexed: 02/06/2023]
Abstract
Bacteriophages (phages) dramatically shape microbial community composition, redistribute nutrients via host lysis and drive evolution through horizontal gene transfer. Despite their importance, much remains to be learned about phages in the human microbiome. We investigated the gut microbiomes of humans from Bangladesh and Tanzania, two African baboon social groups and Danish pigs; many of these microbiomes contain phages belonging to a clade with genomes >540 kilobases in length, the largest yet reported in the human microbiome and close to the maximum size ever reported for phages. We refer to these as Lak phages. CRISPR spacer targeting indicates that Lak phages infect bacteria of the genus Prevotella. We manually curated to completion 15 distinct Lak phage genomes recovered from metagenomes. The genomes display several interesting features, including use of an alternative genetic code, large intergenic regions that are highly expressed and up to 35 putative transfer RNAs, some of which contain enigmatic introns. Different individuals have distinct phage genotypes, and shifts in variant frequencies over consecutive sampling days reflect changes in the relative abundance of phage subpopulations. Recent homologous recombination has resulted in extensive genome admixture of nine baboon Lak phage populations. We infer that Lak phages are widespread in gut communities that contain the Prevotella species, and conclude that megaphages, with fascinating and underexplored biology, may be common but largely overlooked components of human and animal gut microbiomes.
Collapse
|
77
|
Uhr GT, Dohnalová L, Thaiss CA. The Dimension of Time in Host-Microbiome Interactions. mSystems 2019; 4:e00216-18. [PMID: 30801030 PMCID: PMC6381226 DOI: 10.1128/msystems.00216-18] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/30/2019] [Indexed: 02/06/2023] Open
Abstract
The intestinal microbiota contains trillions of commensal microorganisms that shape multiple aspects of host physiology and disease. In contrast to the host's genome, the microbiome is amenable to change over the course of an organism's lifetime, providing an opportunity to therapeutically modulate the microbiome's impact on human pathophysiology. In this Perspective, we highlight environmental factors that regulate the temporal dynamics of the intestinal microbiome, with a particular focus on the different time scales at which they act. We propose that the identification of transient and intermediate states of microbiome responses to perturbations is essential for understanding the rules that govern the behavior of this ecosystem. The delineation of microbiome dynamics is also helpful for distinguishing cause and effect in microbiome responses to environmental stimuli. Understanding the dimension of time in host-microbiome interactions is therefore critical for therapeutic strategies that aim at short-term or long-term engineering of the intestinal microbial community.
Collapse
Affiliation(s)
- Giulia T. Uhr
- Microbiology Department, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lenka Dohnalová
- Microbiology Department, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christoph A. Thaiss
- Microbiology Department, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
78
|
Mortensen MS, Hebbelstrup Jensen B, Williams J, Brejnrod AD, O'Brien Andersen L, Röser D, Andreassen BU, Petersen AM, Stensvold CR, Sørensen SJ, Krogfelt KA. Stability and resilience of the intestinal microbiota in children in daycare - a 12 month cohort study. BMC Microbiol 2018; 18:223. [PMID: 30579350 PMCID: PMC6303881 DOI: 10.1186/s12866-018-1367-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 12/04/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND We performed a 12-month cohort study of the stability and resilience of the intestinal microbiota of healthy children in daycare in Denmark in relation to diarrheal events and exposure to known risk factors for gastrointestinal health such as travelling and antibiotic use. In addition, we analyzed how gut microbiota recover from such exposures. RESULTS We monitored 32 children in daycare aged 1-6 years. Fecal samples were submitted every second month during a one-year observational period. Information regarding exposures and diarrheal episodes was obtained through questionnaires. Bacterial communities were identified using 16S rRNA gene sequencing. The core microbiota (mean abundance > 95%) dominated the intestinal microbiota, and none of the tested exposures (diarrheal events, travel, antibiotic use) were associated with decreases in the relative abundance of the core microbiota. Samples exhibited lower intra-individual variation than inter-individual variation. Half of all the variation between samples was explained by which child a sample originated from. Age explained 7.6-9.6% of the variation, while traveling, diarrheal events, and antibiotic use explained minor parts of the beta diversity. We found an age-dependent increase of alpha diversity in children aged 1-3 years, and while diarrheal events caused a decrease in alpha diversity, a recovery time of 40-45 days was observed. Among children having had a diarrheal event, we observed a 10x higher relative abundance of Prevotella. After travelling, a higher abundance of two Bacteroides species and 40% less Lachnospiraceae were seen. Antibiotic use did not correlate with changes in the abundance of any bacteria. CONCLUSION We present data showing that Danish children in daycare have stable intestinal microbiota, resilient to the exposures investigated. An early age-dependent increase in the diversity was demonstrated. Diarrheal episodes decreased alpha diversity with an estimated recovery time of 40-45 days.
Collapse
Affiliation(s)
- Martin Steen Mortensen
- Department of Biology, Section of Microbiology, Copenhagen University, Copenhagen, Denmark
| | - Betina Hebbelstrup Jensen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, DK2300, Copenhagen S, Artillerivej 5, Denmark.,Department of Internal Medicine, Amager Hospital, Copenhagen, Denmark
| | - Jeanne Williams
- Department of Biology, Section of Microbiology, Copenhagen University, Copenhagen, Denmark
| | - Asker Daniel Brejnrod
- Department of Biology, Section of Microbiology, Copenhagen University, Copenhagen, Denmark
| | - Lee O'Brien Andersen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, DK2300, Copenhagen S, Artillerivej 5, Denmark
| | - Dennis Röser
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, DK2300, Copenhagen S, Artillerivej 5, Denmark.,Department of Pediatrics, Hvidovre Hospital, Copenhagen, Denmark
| | | | - Andreas Munk Petersen
- Department of Clinical Microbiology, Hvidovre Hospital, Copenhagen, Denmark.,Department of Gastroenterology, Hvidovre Hospital, Copenhagen, Denmark
| | - Christen Rune Stensvold
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, DK2300, Copenhagen S, Artillerivej 5, Denmark
| | | | - Karen Angeliki Krogfelt
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, DK2300, Copenhagen S, Artillerivej 5, Denmark.
| |
Collapse
|
79
|
Bin P, Tang Z, Liu S, Chen S, Xia Y, Liu J, Wu H, Zhu G. Intestinal microbiota mediates Enterotoxigenic Escherichia coli-induced diarrhea in piglets. BMC Vet Res 2018; 14:385. [PMID: 30518356 PMCID: PMC6282381 DOI: 10.1186/s12917-018-1704-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/21/2018] [Indexed: 12/31/2022] Open
Abstract
Background Enterotoxigenic Escherichia coli (ETEC) causes diarrhea in humans, cows, and pigs. The gut microbiota underlies pathology of several infectious diseases yet the role of the gut microbiota in the pathogenesis of ETEC-induced diarrhea is unknown. Results By using an ETEC induced diarrheal model in piglet, we profiled the jejunal and fecal microbiota using metagenomics and 16S rRNA sequencing. A jejunal microbiota transplantation experiment was conducted to determine the role of the gut microbiota in ETEC-induced diarrhea. ETEC-induced diarrhea influenced the structure and function of gut microbiota. Diarrheal piglets had lower Bacteroidetes: Firmicutes ratio and microbiota diversity in the jejunum and feces, and lower percentage of Prevotella in the feces, but higher Lactococcus in the jejunum and higher Escherichia-Shigella in the feces. The transplantation of the jejunal microbiota from diarrheal piglets to uninfected piglets leaded to diarrhea after transplantation. Microbiota transplantation experiments also supported the notion that dysbiosis of gut microbiota is involved in the immune responses in ETEC-induced diarrhea. Conclusion We conclude that ETEC infection influences the gut microbiota and the dysbiosis of gut microbiota after ETEC infection mediates the immune responses in ETEC infection. Electronic supplementary material The online version of this article (10.1186/s12917-018-1704-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peng Bin
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhiyi Tang
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Shaojuan Liu
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Shuai Chen
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, 410125, People's Republic of China
| | - Yaoyao Xia
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, 410125, People's Republic of China
| | - Jiaqi Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Hucong Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Guoqiang Zhu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.
| |
Collapse
|
80
|
Silverman JD, Durand HK, Bloom RJ, Mukherjee S, David LA. Dynamic linear models guide design and analysis of microbiota studies within artificial human guts. MICROBIOME 2018; 6:202. [PMID: 30419949 PMCID: PMC6233358 DOI: 10.1186/s40168-018-0584-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/23/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Artificial gut models provide unique opportunities to study human-associated microbiota. Outstanding questions for these models' fundamental biology include the timescales on which microbiota vary and the factors that drive such change. Answering these questions though requires overcoming analytical obstacles like estimating the effects of technical variation on observed microbiota dynamics, as well as the lack of appropriate benchmark datasets. RESULTS To address these obstacles, we created a modeling framework based on multinomial logistic-normal dynamic linear models (MALLARDs) and performed dense longitudinal sampling of four replicate artificial human guts over the course of 1 month. The resulting analyses revealed how the ratio of biological variation to technical variation from sample processing depends on sampling frequency. In particular, we find that at hourly sampling frequencies, 76% of observed variation could be ascribed to technical sources, which could also skew the observed covariation between taxa. We also found that the artificial guts demonstrated replicable trajectories even after a recovery from a transient feed disruption. Additionally, we observed irregular sub-daily oscillatory dynamics associated with the bacterial family Enterobacteriaceae within all four replicate vessels. CONCLUSIONS Our analyses suggest that, beyond variation due to sequence counting, technical variation from sample processing can obscure temporal variation from biological sources in artificial gut studies. Our analyses also supported hypotheses that human gut microbiota fluctuates on sub-daily timescales in the absence of a host and that microbiota can follow replicable trajectories in the presence of environmental driving forces. Finally, multiple aspects of our approach are generalizable and could ultimately be used to facilitate the design and analysis of longitudinal microbiota studies in vivo.
Collapse
Affiliation(s)
- Justin D. Silverman
- Program in Computational Biology and Bioinformatics, Duke University, CIEMAS, Room 2171, 101 Science Drive, Box 3382, Durham, NC 27708 USA
- Medical Scientist Training Program, Duke University, Durham, NC 27708 USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708 USA
| | - Heather K. Durand
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27708 USA
| | - Rachael J. Bloom
- University Program in Genetics and Genomics, Duke University, Durham, NC 27708 USA
| | - Sayan Mukherjee
- Program in Computational Biology and Bioinformatics, Duke University, CIEMAS, Room 2171, 101 Science Drive, Box 3382, Durham, NC 27708 USA
- Departments of Statistical Science, Mathematics, Computer Science, Biostatistics & Bioinformatics, Duke University, Durham, NC 27708 USA
| | - Lawrence A. David
- Program in Computational Biology and Bioinformatics, Duke University, CIEMAS, Room 2171, 101 Science Drive, Box 3382, Durham, NC 27708 USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708 USA
- University Program in Genetics and Genomics, Duke University, Durham, NC 27708 USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27708 USA
| |
Collapse
|
81
|
Pearce SC, Coia HG, Karl JP, Pantoja-Feliciano IG, Zachos NC, Racicot K. Intestinal in vitro and ex vivo Models to Study Host-Microbiome Interactions and Acute Stressors. Front Physiol 2018; 9:1584. [PMID: 30483150 PMCID: PMC6240795 DOI: 10.3389/fphys.2018.01584] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022] Open
Abstract
The gut microbiome is extremely important for maintaining homeostasis with host intestinal epithelial, neuronal, and immune cells and this host-microbe interaction is critical during times of stress or disease. Environmental, nutritional, and cognitive stress are just a few factors known to influence the gut microbiota and are thought to induce microbial dysbiosis. Research on this bidirectional relationship as it pertains to health and disease is extensive and rapidly expanding in both in vivo and in vitro/ex vivo models. However, far less work has been devoted to studying effects of host-microbe interactions on acute stressors and performance, the underlying mechanisms, and the modulatory effects of different stressors on both the host and the microbiome. Additionally, the use of in vitro/ex vivo models to study the gut microbiome and human performance has not been researched extensively nor reviewed. Therefore, this review aims to examine current evidence concerning the current status of in vitro and ex vivo host models, the impact of acute stressors on gut physiology/microbiota as well as potential impacts on human performance and how we can parlay this information for DoD relevance as well as the broader scientific community. Models reviewed include widely utilized intestinal cell models from human and animal models that have been applied in the past for stress or microbiology research as well as ex vivo organ/tissue culture models and new innovative models including organ-on-a-chip and co-culture models.
Collapse
Affiliation(s)
- Sarah C Pearce
- Performance Nutrition Team, Combat Feeding Directorate, Natick Soldier Research, Development and Engineering Center, Natick, MA, United States
| | - Heidi G Coia
- National Research Council, The National Academies of Sciences, Engineering, and Medicine, Washington, DC, United States.,711th Human Performance Wing, Airforce Research Laboratory, Airman Systems Directorate, Human-Centered ISR Division, Molecular Mechanisms Branch, Wright-Patterson Air Force Base, Dayton, OH, United States
| | - J P Karl
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Ida G Pantoja-Feliciano
- Soldier Protection and Optimization Directorate, Natick Soldier Research, Development and Engineering Center, Natick, MA, United States
| | - Nicholas C Zachos
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kenneth Racicot
- Performance Nutrition Team, Combat Feeding Directorate, Natick Soldier Research, Development and Engineering Center, Natick, MA, United States
| |
Collapse
|
82
|
Zhu Q, Dupont CL, Jones MB, Pham KM, Jiang ZD, DuPont HL, Highlander SK. Visualization-assisted binning of metagenome assemblies reveals potential new pathogenic profiles in idiopathic travelers' diarrhea. MICROBIOME 2018; 6:201. [PMID: 30409177 PMCID: PMC6225641 DOI: 10.1186/s40168-018-0579-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/17/2018] [Indexed: 05/29/2023]
Abstract
BACKGROUND Travelers' diarrhea (TD) is often caused by enterotoxigenic Escherichia coli, enteroaggregative E. coli, other bacterial pathogens, Norovirus, and occasionally parasites. Nevertheless, standard diagnostic methods fail to identify pathogens in more than 40% of TD patients. It is predicted that new pathogens may be causative agents of the disease. RESULTS We performed a comprehensive amplicon and whole genome shotgun (WGS) metagenomic study of the fecal microbiomes from 23 TD patients and seven healthy travelers, all of which were negative for the known etiologic agents of TD based on standard microbiological and immunological assays. Abnormal and diverse taxonomic profiles in TD samples were revealed. WGS reads were assembled and the resulting contigs were visualized using multiple query types. A semi-manual workflow was applied to isolate independent genomes from metagenomic pools. A total of 565 genome bins were extracted, 320 of which were complete enough to be characterized as cellular genomes; 160 were viral genomes. We made predictions of the etiology of disease for many of the individual subjects based on the properties and features of the recovered genomes. Multiple patients with low-diversity metagenomes were predominated by one to several E. coli strains. Functional annotation allowed prediction of pathogenic type in many cases. Five patients were co-infected with E. coli and other members of Enterobacteriaceae, including Enterobacter, Klebsiella, and Citrobacter; these may represent blooms of organisms that appear following secretory diarrhea. New "dark matter" microbes were observed in multiple samples. In one, we identified a novel TM7 genome that phylogenetically clustered with a sludge isolate; it carries genes encoding potential virulence factors. In multiple samples, we observed high proportions of putative novel viral genomes, some of which form clusters with the ubiquitous gut virus, crAssphage. The total relative abundance of viruses was significantly higher in healthy travelers versus TD patients. CONCLUSION Our study highlights the strength of assembly-based metagenomics, especially the manually curated, visualization-assisted binning of contigs, in resolving unusual and under-characterized pathogenic profiles of human-associated microbiomes. Results show that TD may be polymicrobial, with multiple novel cellular and viral strains as potential players in the diarrheal disease.
Collapse
Affiliation(s)
- Qiyun Zhu
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA 92037 USA
- Department of Pediatrics, University of California San Diego, 9500 Gillman Drive #0763, La Jolla, CA 92093 USA
| | | | - Marcus B. Jones
- Human Longevity, Inc., 4570 Executive Drive, La Jolla, CA 92121 USA
- Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591 USA
| | - Kevin M. Pham
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA 92037 USA
- 2132 Calaveras Ave, Davis, CA 95616 USA
| | - Zhi-Dong Jiang
- University of Texas School of Public Health, 7000 Fannin St., Houston, TX 77030 USA
| | - Herbert L. DuPont
- University of Texas School of Public Health, 7000 Fannin St., Houston, TX 77030 USA
| | - Sarah K. Highlander
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA 92037 USA
- Pathogen and Microbiome Division, Translational Genomics Research Institute, 3051 W. Shamrell Blvd., Suite 106, Flagstaff, AZ 86005 USA
| |
Collapse
|
83
|
Probiotic Product Enhances Susceptibility of Mice to Cryptosporidiosis. Appl Environ Microbiol 2018; 84:AEM.01408-18. [PMID: 30171003 DOI: 10.1128/aem.01408-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/13/2018] [Indexed: 12/11/2022] Open
Abstract
Cryptosporidiosis, a leading cause of diarrhea among infants, is caused by apicomplexan parasites classified in the genus Cryptosporidium The lack of effective drugs is motivating research to develop alternative treatments. With this aim, the impact of probiotics on the course of cryptosporidiosis was investigated. The native intestinal microbiota of specific pathogen-free immunosuppressed mice was initially depleted with orally administered antibiotics. A commercially available probiotic product intended for human consumption was subsequently added to the drinking water. Mice were infected with Cryptosporidium parvum oocysts. On average, mice treated with the probiotic product developed more severe infections. The probiotics significantly altered the fecal microbiota, but no direct association between ingestion of probiotic bacteria and their abundance in fecal microbiota was observed. These results suggest that probiotics indirectly altered the intestinal microenvironment or the intestinal epithelium in a way that favored proliferation of C. parvum IMPORTANCE The results of our study show that C. parvum responded to changes in the intestinal microenvironment induced by a nutritional supplement. This outcome paves the way for research to identify nutritional interventions aimed at limiting the impact of cryptosporidiosis.
Collapse
|
84
|
Baker KK, Senesac R, Sewell D, Gupta AS, Cumming O, Mumma J. Fecal Fingerprints of Enteric Pathogen Contamination in Public Environments of Kisumu, Kenya, Associated with Human Sanitation Conditions and Domestic Animals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:10263-10274. [PMID: 30106283 PMCID: PMC6557411 DOI: 10.1021/acs.est.8b01528] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Young children are infected by a diverse range of enteric pathogens in high disease burden settings, suggesting pathogen contamination of the environment is equally diverse. This study aimed to characterize across- and within-neighborhood diversity in enteric pathogen contamination of public domains in urban informal settlements of Kisumu, Kenya, and to assess the relationship between pathogen detection patterns and human and domestic animal sanitation conditions. Microbial contamination of soil and surface water from 166 public sites in three Kisumu neighborhoods was measured by enterococcal assays and quantitative reverse transcription polymerase chain reaction (qRT-PCR) for 19 enteric pathogens. Regression was used to assess the association between observed sanitary indicators of contamination with enterococci and pathogen presence and concentration, and pathogen diversity. Seventeen types of pathogens were detected in Kisumu public domains. Enteric pathogens were codetected in 33% of soil and 65% of surface water samples. Greater pathogen diversity was associated with the presence of domestic animal feces but not with human open defecation, deteriorating latrines, flies, or disposal of human feces. Sanitary conditions were not associated with enterococcal bacteria, specific pathogen concentrations, or "any pathogen". Young children played at 40% of observed sites. Managing domestic animal feces may be required to reduce enteric pathogen environmental contamination in high-burden settings.
Collapse
Affiliation(s)
- Kelly K. Baker
- Department of Occupational and Environmental Health
- Corresponding Author Phone: (001) 319-384-4008;.
| | - Reid Senesac
- Department of Occupational and Environmental Health
| | | | - Ananya Sen Gupta
- Department of Electrical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Oliver Cumming
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Jane Mumma
- Department of Community Nutrition, Great Lakes University of Kisumu, 40100 Kisumu, Kenya
| |
Collapse
|
85
|
Karl JP, Hatch AM, Arcidiacono SM, Pearce SC, Pantoja-Feliciano IG, Doherty LA, Soares JW. Effects of Psychological, Environmental and Physical Stressors on the Gut Microbiota. Front Microbiol 2018; 9:2013. [PMID: 30258412 PMCID: PMC6143810 DOI: 10.3389/fmicb.2018.02013] [Citation(s) in RCA: 275] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/09/2018] [Indexed: 12/13/2022] Open
Abstract
Stress, a ubiquitous part of daily human life, has varied biological effects which are increasingly recognized as including modulation of commensal microorganisms residing in the gastrointestinal tract, the gut microbiota. In turn, the gut microbiota influences the host stress response and associated sequelae, thereby implicating the gut microbiota as an important mediator of host health. This narrative review aims to summarize evidence concerning the impact of psychological, environmental, and physical stressors on gut microbiota composition and function. The stressors reviewed include psychological stress, circadian disruption, sleep deprivation, environmental extremes (high altitude, heat, and cold), environmental pathogens, toxicants, pollutants, and noise, physical activity, and diet (nutrient composition and food restriction). Stressors were selected for their direct relevance to military personnel, a population that is commonly exposed to these stressors, often at extremes, and in combination. However, the selected stressors are also common, alone or in combination, in some civilian populations. Evidence from preclinical studies collectively indicates that the reviewed stressors alter the composition, function and metabolic activity of the gut microbiota, but that effects vary across stressors, and can include effects that may be beneficial or detrimental to host health. Translation of these findings to humans is largely lacking at present. This gap precludes concluding with certainty that transient or cumulative exposures to psychological, environmental, and physical stressors have any consistent, meaningful impact on the human gut microbiota. However, provocative preclinical evidence highlights a need for translational research aiming to elucidate the impact of stressors on the human gut microbiota, and how the gut microbiota can be manipulated, for example by using nutrition, to mitigate adverse stress responses.
Collapse
Affiliation(s)
- J. Philip Karl
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Adrienne M. Hatch
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Steven M. Arcidiacono
- Soldier Performance Optimization, Natick Soldier Research, Development and Engineering Center, Natick, MA, United States
| | - Sarah C. Pearce
- Combat Feeding Directorate, Natick Soldier Research, Development and Engineering Center, Natick, MA, United States
| | - Ida G. Pantoja-Feliciano
- Soldier Performance Optimization, Natick Soldier Research, Development and Engineering Center, Natick, MA, United States
| | - Laurel A. Doherty
- Soldier Performance Optimization, Natick Soldier Research, Development and Engineering Center, Natick, MA, United States
| | - Jason W. Soares
- Soldier Performance Optimization, Natick Soldier Research, Development and Engineering Center, Natick, MA, United States
| |
Collapse
|
86
|
Kieser S, Sarker SA, Sakwinska O, Foata F, Sultana S, Khan Z, Islam S, Porta N, Combremont S, Betrisey B, Fournier C, Charpagne A, Descombes P, Mercenier A, Berger B, Brüssow H. Bangladeshi children with acute diarrhoea show faecal microbiomes with increased Streptococcus abundance, irrespective of diarrhoea aetiology. Environ Microbiol 2018; 20:2256-2269. [PMID: 29786169 DOI: 10.1111/1462-2920.14274] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 05/08/2018] [Indexed: 12/22/2022]
Abstract
We report streptococcal dysbiosis in acute diarrhoea irrespective of aetiology. Compared with 20 healthy local controls, 71 Bangladeshi children hospitalized with acute diarrhoea (AD) of viral, mixed viral/bacterial, bacterial and unknown aetiology showed a significantly decreased bacterial diversity with loss of pathways characteristic for the healthy distal colon microbiome (mannan degradation, methylerythritol phosphate and thiamin biosynthesis), an increased proportion of faecal streptococci belonging to the Streptococcus bovis and Streptococcus salivarius species complexes, and an increased level of E. coli-associated virulence genes. No enteropathogens could be attributed to a subgroup of patients. Elevated lytic coliphage DNA was detected in 2 out of 5 investigated enteroaggregative E. coli (EAEC)-infected patients. Streptococcal outgrowth in AD is discussed as a potential nutrient-driven consequence of glucose provided with oral rehydration solution.
Collapse
Affiliation(s)
- Silas Kieser
- Gut Ecosystem Department, Institute of Nutritional Science, Nestlé Research Centre, Vers-chez-les-Blanc, CH-1000, Lausanne 26, Switzerland
| | - Shafiqul A Sarker
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Nutrition and Clinical Services Division, 68 Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka 1212, Bangladesh
| | - Olga Sakwinska
- Gut Ecosystem Department, Institute of Nutritional Science, Nestlé Research Centre, Vers-chez-les-Blanc, CH-1000, Lausanne 26, Switzerland
| | - Francis Foata
- Gut Ecosystem Department, Institute of Nutritional Science, Nestlé Research Centre, Vers-chez-les-Blanc, CH-1000, Lausanne 26, Switzerland
| | - Shamima Sultana
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Nutrition and Clinical Services Division, 68 Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka 1212, Bangladesh
| | - Zeenat Khan
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Nutrition and Clinical Services Division, 68 Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka 1212, Bangladesh
| | - Shoheb Islam
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Nutrition and Clinical Services Division, 68 Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka 1212, Bangladesh
| | - Nadine Porta
- Gut Ecosystem Department, Institute of Nutritional Science, Nestlé Research Centre, Vers-chez-les-Blanc, CH-1000, Lausanne 26, Switzerland
| | - Séverine Combremont
- Gut Ecosystem Department, Institute of Nutritional Science, Nestlé Research Centre, Vers-chez-les-Blanc, CH-1000, Lausanne 26, Switzerland
| | - Bertrand Betrisey
- Nestlé Institute of Health Sciences, EPFL Innovation Park, CH-1015, Lausanne, Switzerland
| | - Coralie Fournier
- Nestlé Institute of Health Sciences, EPFL Innovation Park, CH-1015, Lausanne, Switzerland
| | - Aline Charpagne
- Nestlé Institute of Health Sciences, EPFL Innovation Park, CH-1015, Lausanne, Switzerland
| | - Patrick Descombes
- Nestlé Institute of Health Sciences, EPFL Innovation Park, CH-1015, Lausanne, Switzerland
| | - Annick Mercenier
- Gut Ecosystem Department, Institute of Nutritional Science, Nestlé Research Centre, Vers-chez-les-Blanc, CH-1000, Lausanne 26, Switzerland
| | - Bernard Berger
- Gut Ecosystem Department, Institute of Nutritional Science, Nestlé Research Centre, Vers-chez-les-Blanc, CH-1000, Lausanne 26, Switzerland
| | - Harald Brüssow
- Gut Ecosystem Department, Institute of Nutritional Science, Nestlé Research Centre, Vers-chez-les-Blanc, CH-1000, Lausanne 26, Switzerland
| |
Collapse
|
87
|
Responses of the Human Gut Escherichia coli Population to Pathogen and Antibiotic Disturbances. mSystems 2018; 3:mSystems00047-18. [PMID: 30057943 PMCID: PMC6060285 DOI: 10.1128/msystems.00047-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/06/2018] [Indexed: 11/23/2022] Open
Abstract
Research on human-associated E. coli tends to focus on pathogens, such as enterotoxigenic E. coli (ETEC) strains, which are a leading cause of diarrhea in developing countries. However, the severity of disease caused by these pathogens is thought to be influenced by the microbiome. The nonpathogenic E. coli community that resides in the human gastrointestinal tract may play a role in pathogen colonization and disease severity and may become a reservoir for virulence and antibiotic resistance genes. Our study used whole-genome sequencing of E. coli before, during, and after challenge with an archetype ETEC isolate, H10407, and antibiotic treatment to explore the diversity and resiliency of the resident E. coli population in response to the ecological disturbances caused by pathogen invasion and antibiotic treatment. Studies of Escherichia coli in the human gastrointestinal tract have focused on pathogens, such as diarrhea-causing enterotoxigenic E. coli (ETEC), while overlooking the resident, nonpathogenic E. coli community. Relatively few genomes of nonpathogenic E. coli strains are available for comparative genomic analysis, and the ecology of these strains is poorly understood. This study examined the diversity and dynamics of resident human gastrointestinal E. coli communities in the face of the ecological challenges presented by pathogen (ETEC) challenge, as well as of antibiotic treatment. Whole-genome sequences obtained from E. coli isolates from before, during, and after ETEC challenge were used in phylogenomic and comparative genomic analyses to examine the diversity of the resident E. coli communities, as well as the dynamics of the challenge strain, H10407, a well-studied ETEC strain (serotype O78:H11) that produces both heat-labile and heat-stable enterotoxins. ETEC failed to become the dominant E. coli clone in two of the six challenge subjects, each of whom exhibited limited or no clinical presentation of diarrhea. The E. coli communities of the remaining four subjects became ETEC dominant during the challenge but reverted to their original, subject-specific populations following antibiotic treatment, suggesting resiliency of the resident E. coli population following major ecological disruptions. This resiliency is likely due in part to the abundance of antibiotic-resistant ST131 E. coli strains in the resident populations. This report provides valuable insights into the potential interactions of members of the gastrointestinal microbiome and its responses to challenge by an external pathogen and by antibiotic exposure. IMPORTANCE Research on human-associated E. coli tends to focus on pathogens, such as enterotoxigenic E. coli (ETEC) strains, which are a leading cause of diarrhea in developing countries. However, the severity of disease caused by these pathogens is thought to be influenced by the microbiome. The nonpathogenic E. coli community that resides in the human gastrointestinal tract may play a role in pathogen colonization and disease severity and may become a reservoir for virulence and antibiotic resistance genes. Our study used whole-genome sequencing of E. coli before, during, and after challenge with an archetype ETEC isolate, H10407, and antibiotic treatment to explore the diversity and resiliency of the resident E. coli population in response to the ecological disturbances caused by pathogen invasion and antibiotic treatment.
Collapse
|
88
|
Kriss M, Hazleton KZ, Nusbacher NM, Martin CG, Lozupone CA. Low diversity gut microbiota dysbiosis: drivers, functional implications and recovery. Curr Opin Microbiol 2018; 44:34-40. [PMID: 30036705 DOI: 10.1016/j.mib.2018.07.003] [Citation(s) in RCA: 245] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/07/2018] [Accepted: 07/11/2018] [Indexed: 02/07/2023]
Abstract
Dysbiosis, an imbalance in microbial communities, is linked with disease when this imbalance disturbs microbiota functions essential for maintaining health or introduces processes that promote disease. Dysbiosis in disease is predicted when microbiota differ compositionally from a healthy control population, but only truly defined when these differences are mechanistically related to adverse phenotypes. For the human gut microbiota, dysbiosis varies across diseases. One common manifestation is replacement of the complex community of anaerobes typical of the healthy adult gut microbiome with a community of lower overall microbial diversity and increased facultative anaerobes. Here we review diseases in which low-diversity dysbiosis has been observed and mechanistically linked with disease, with a particular focus on liver disease, inflammatory bowel disease, and Clostridium difficile infection.
Collapse
Affiliation(s)
- Michael Kriss
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado, 12700 East 19th Avenue, Campus Box B146, Aurora, CO 80045, USA
| | - Keith Z Hazleton
- Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Colorado, 13123 East 16th Avenue, Aurora, CO 80045, USA; Digestive Health Institute, Children's Hospital Colorado, 13123 East 16th Avenue, Aurora, CO 80045, USA
| | - Nichole M Nusbacher
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado, 12700 East 19th Avenue, Campus Box 8617, Aurora, CO 80045, USA
| | - Casey G Martin
- Department of Immunology and Microbiology, University of Colorado, 12700 East 19th Avenue,Campus Box 8617, Aurora, CO 80045, USA
| | - Catherine A Lozupone
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado, 12700 East 19th Avenue, Campus Box 8617, Aurora, CO 80045, USA.
| |
Collapse
|
89
|
A unified conceptual framework for prediction and control of microbiomes. Curr Opin Microbiol 2018; 44:20-27. [PMID: 30007202 DOI: 10.1016/j.mib.2018.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/22/2018] [Accepted: 06/27/2018] [Indexed: 12/15/2022]
Abstract
Microbiomes impact nearly all systems on Earth, and despite vast differences among systems, we contend that it is possible and highly beneficial to develop a unified conceptual framework for understanding microbiome dynamics that is applicable across systems. The ability to robustly predict and control environmental and human microbiomes would provide impactful opportunities to sustain and improve the health of ecosystems and humans alike. Doing so requires understanding the processes governing microbiome temporal dynamics, which currently presents an enormous challenge. We contend, however, that new opportunities can emerge by placing studies of both environmental and human microbiome temporal dynamics in the context of a unified conceptual framework. Our conceptual framework poses that factors influencing the temporal dynamics of microbiomes can be grouped into three broad categories: biotic and abiotic history, internal dynamics, and external forcing factors. Both environmental and human microbiome science study these factors, but not in a coordinated or consistent way. Here we discuss opportunities for greater crosstalk across these domains, such as leveraging specific ecological concepts from environmental microbiome science to guide optimization of strategies to manipulate human microbiomes towards improved health. To achieve unified understanding, it is necessary to have a common body of theory developed from explicit iteration between models and molecular-based characterization of microbiome dynamics across systems. Only through such model-experiment iteration will we eventually achieve prediction and control across microbiomes that impact ecosystem sustainability and human health.
Collapse
|
90
|
Reese AT, Cho EH, Klitzman B, Nichols SP, Wisniewski NA, Villa MM, Durand HK, Jiang S, Midani FS, Nimmagadda SN, O'Connell TM, Wright JP, Deshusses MA, David LA. Antibiotic-induced changes in the microbiota disrupt redox dynamics in the gut. eLife 2018; 7:35987. [PMID: 29916366 PMCID: PMC6008055 DOI: 10.7554/elife.35987] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/26/2018] [Indexed: 12/18/2022] Open
Abstract
How host and microbial factors combine to structure gut microbial communities remains incompletely understood. Redox potential is an important environmental feature affected by both host and microbial actions. We assessed how antibiotics, which can impact host and microbial function, change redox state and how this contributes to post-antibiotic succession. We showed gut redox potential increased within hours of an antibiotic dose in mice. Host and microbial functioning changed under treatment, but shifts in redox potentials could be attributed specifically to bacterial suppression in a host-free ex vivo human gut microbiota model. Redox dynamics were linked to blooms of the bacterial family Enterobacteriaceae. Ecological succession to pre-treatment composition was associated with recovery of gut redox, but also required dispersal from unaffected gut communities. As bacterial competition for electron acceptors can be a key ecological factor structuring gut communities, these results support the potential for manipulating gut microbiota through managing bacterial respiration. The gut is home to a large and diverse community of bacteria and other microbes, known as the gut microbiota. The makeup of this community is important for the health of both the host and its residents. For instance, many gut bacteria help to digest food or keep disease-causing bacteria in check. In return, the host provides them with nutrients. When this balance is disturbed, the host is exposed to risks such as infections. In particular, treatments with antibiotics that kill gut bacteria can lead to side effects like diarrhea, because the gut becomes recolonized with harmful bacteria including Clostridium difficile and Salmonella. Reese et al. have now investigated what happens to the gut environment after antibiotic treatment and how the gut microbiota recovers. Mice treated with broad-spectrum antibiotics showed an increase in the “redox potential” of their gut environment. Redox potential captures a number of measures of the chemical makeup of an environment, and provides an estimate for how efficiently some bacteria in that environment can grow. Some of the change in redox potential came from the host’s own immune system releasing chemicals as it reacted to the effects of the treatment. However, Reese et al. found that treating gut bacteria in an artificial gut – which has no immune system – also increased the redox potential. This experiment suggests that bacteria actively shape their chemical environment in the gut. After the treatment, bacteria that thrive under high redox potentials, which include some disease-causing species, recovered first and fastest. This, in turn, helped to bring redox potential back to how it was before the treatment. Although the gut’s chemical environment recovered, some bacterial species were wiped out by the antibiotic treatment. The microbiota only returned to its previous state when the treated mice were housed together with non-treated mice. This was expected because mice that live together commonly exchange microbes, for instance by eating each other’s feces, and the treated mice received new species to replenish their microbiota. These findings are important because they show that the chemical environment shapes and is shaped by the bacterial communities in the gut. Future research may investigate if altering redox potential in the gut could help to keep the microbiota healthier in infections and diseases of the digestive tract.
Collapse
Affiliation(s)
- Aspen T Reese
- Department of Biology, Duke University, Durham, United States.,Department of Molecular Genetics and Microbiology, Duke University, Durham, United States
| | - Eugenia H Cho
- Department of Bioengineering, University of Pennsylvania, Philadelphia, United States
| | - Bruce Klitzman
- Department of Surgery, Duke University Medical Center, Durham, United States
| | | | | | - Max M Villa
- Department of Molecular Genetics and Microbiology, Duke University, Durham, United States
| | - Heather K Durand
- Department of Molecular Genetics and Microbiology, Duke University, Durham, United States
| | - Sharon Jiang
- Department of Molecular Genetics and Microbiology, Duke University, Durham, United States
| | - Firas S Midani
- Program in Computational Biology and Bioinformatics, Duke University, Durham, United States
| | - Sai N Nimmagadda
- Department of Biomedical Engineering, Duke University, Durham, United States
| | - Thomas M O'Connell
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, United States
| | - Justin P Wright
- Department of Biology, Duke University, Durham, United States
| | - Marc A Deshusses
- Department of Civil and Environmental Engineering, Duke University, Durham, United States
| | - Lawrence A David
- Department of Molecular Genetics and Microbiology, Duke University, Durham, United States.,Program in Computational Biology and Bioinformatics, Duke University, Durham, United States.,Department of Biomedical Engineering, Duke University, Durham, United States.,Center for Genomic and Computational Biology, Duke University, Durham, United States
| |
Collapse
|
91
|
Analysis of 19 Highly Conserved Vibrio cholerae Bacteriophages Isolated from Environmental and Patient Sources Over a Twelve-Year Period. Viruses 2018; 10:v10060299. [PMID: 29857590 PMCID: PMC6024749 DOI: 10.3390/v10060299] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/23/2018] [Accepted: 05/30/2018] [Indexed: 12/28/2022] Open
Abstract
The Vibrio cholerae biotype “El Tor” is responsible for all of the current epidemic and endemic cholera outbreaks worldwide. These outbreaks are clonal, and it is hypothesized that they originate from the coastal areas near the Bay of Bengal, where the lytic bacteriophage ICP1 (International Centre for Diarrhoeal Disease Research, Bangladesh cholera phage 1) specifically preys upon these pathogenic outbreak strains. ICP1 has also been the dominant bacteriophage found in cholera patient stools since 2001. However, little is known about the genomic differences between the ICP1 strains that have been collected over time. Here, we elucidate the pan-genome and the phylogeny of the ICP1 strains by aligning, annotating, and analyzing the genomes of 19 distinct isolates that were collected between 2001 and 2012. Our results reveal that the ICP1 isolates are highly conserved and possess a large core-genome as well as a smaller, somewhat flexible accessory-genome. Despite its overall conservation, ICP1 strains have managed to acquire a number of unknown genes, as well as a CRISPR-Cas system which is known to be critical for its ongoing struggle for co-evolutionary dominance over its host. This study describes a foundation on which to construct future molecular and bioinformatic studies of these V. cholerae-associated bacteriophages.
Collapse
|
92
|
Brüssow H. Environmental microbiology: Too much food for thought? - An argument for reductionism. Environ Microbiol 2018; 20:1929-1935. [PMID: 29626370 DOI: 10.1111/1462-2920.14125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 03/31/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Harald Brüssow
- Editor of Microbial Biotechnology, KU Leuven, Laboratory of Gene Technology, Leuven, Belgium
| |
Collapse
|
93
|
The Vibrio cholerae type VI secretion system can modulate host intestinal mechanics to displace gut bacterial symbionts. Proc Natl Acad Sci U S A 2018; 115:E3779-E3787. [PMID: 29610339 DOI: 10.1073/pnas.1720133115] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Host-associated microbiota help defend against bacterial pathogens; however, the mechanisms by which pathogens overcome this defense remain largely unknown. We developed a zebrafish model and used live imaging to directly study how the human pathogen Vibrio cholerae invades the intestine. The gut microbiota of fish monocolonized by symbiotic strain Aeromonas veronii was displaced by V. cholerae expressing its type VI secretion system (T6SS), a syringe-like apparatus that deploys effector proteins into target cells. Surprisingly, displacement was independent of T6SS-mediated killing of A. veronii, driven instead by T6SS-induced enhancement of zebrafish intestinal movements that led to expulsion of the resident microbiota by the host. Deleting an actin cross-linking domain from the T6SS apparatus returned intestinal motility to normal and thwarted expulsion, without weakening V. cholerae's ability to kill A. veronii in vitro. Our finding that bacteria can manipulate host physiology to influence intermicrobial competition has implications for both pathogenesis and microbiome engineering.
Collapse
|
94
|
Kuo SM. Does Modification of the Large Intestinal Microbiome Contribute to the Anti-Inflammatory Activity of Fermentable Fiber? Curr Dev Nutr 2018; 2:nzx004. [PMID: 30377676 PMCID: PMC6201682 DOI: 10.3945/cdn.117.001180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 11/21/2017] [Indexed: 12/16/2022] Open
Abstract
Fiber is an inadequately understood and insufficiently consumed nutrient. This review examines the possible causal relation between fiber-induced microbiome changes and the anti-inflammatory activity of fiber. To demonstrate the dominant role of fermentable plant fiber in shaping the intestinal microbiome, animal and human fiber-feeding studies are reviewed. Using culture-, PCR-, and sequencing-based microbial analyses, a higher prevalence of Bifidobacterium and Lactobacillus genera was observed from the feeding of different types of fermentable fiber. This finding was reported in studies performed on several host species including human. Health conditions and medications that are linked to intestinal microbial alterations likely also change the nutrient environment of the large intestine. The unique gene clusters of Bifidobacterium and Lactobacillus that enable the catabolism of plant glycans and the ability of Bifidobacterium and Lactobacillus to reduce the colonization of proteobacteria probably contribute to their prevalence in a fiber-rich intestinal environment. The fiber-induced microbiome changes could contribute to the anti-inflammatory activity of fiber. Although most studies did not measure fecal microbial density or total daily fecal microbial output (colon microbial load), limited evidence suggests that the increase in intestinal commensal microbial load plays an important role in the anti-inflammatory activity of fiber. Various probiotic supplements, including Bifidobacterium and Lactobacillus, showed anti-inflammatory activity only in the presence of fiber, which promoted microbial growth as indicated by increasing plasma short-chain fatty acids. Probiotics alone or pure fiber administered under sterile conditions showed no anti-inflammatory activity. The potential mechanisms that could mediate the anti-inflammatory effect of common microbial metabolites are reviewed, but more in vivo trials are needed. Future studies including simultaneous microbial composition and load measurements are also important.
Collapse
Affiliation(s)
- Shiu-Ming Kuo
- Department of Exercise and Nutrition Sciences, University at Buffalo, SUNY, Buffalo, NY
| |
Collapse
|
95
|
The spatial and metabolic basis of colony size variation. ISME JOURNAL 2018; 12:669-680. [PMID: 29367665 PMCID: PMC5864198 DOI: 10.1038/s41396-017-0038-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 11/15/2022]
Abstract
Spatial structure impacts microbial growth and interactions, with ecological and evolutionary consequences. It is therefore important to quantitatively understand how spatial proximity affects interactions in different environments. We tested how proximity influences colony size when either Escherichia coli or Salmonella enterica are grown on various carbon sources. The importance of colony location changed with species and carbon source. Spatially explicit, genome-scale metabolic modeling recapitulated observed colony size variation. Competitors that determine territory size, according to Voronoi diagrams, were the most important drivers of variation in colony size. However, the relative importance of different competitors changed through time. Further, the effect of location increased when colonies took up resources quickly relative to the diffusion of limiting resources. These analyses made it apparent that the importance of location was smaller than expected for experiments with S. enterica growing on glucose. The accumulation of toxic byproducts appeared to limit the growth of large colonies and reduced variation in colony size. Our work provides an experimentally and theoretically grounded understanding of how location interacts with metabolism and diffusion to influence microbial interactions.
Collapse
|
96
|
Analysis of the Human Mucosal Response to Cholera Reveals Sustained Activation of Innate Immune Signaling Pathways. Infect Immun 2018; 86:IAI.00594-17. [PMID: 29133347 DOI: 10.1128/iai.00594-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/03/2017] [Indexed: 12/16/2022] Open
Abstract
To better understand the innate immune response to Vibrio cholerae infection, we tracked gene expression in the duodenal mucosa of 11 Bangladeshi adults with cholera, using biopsy specimens obtained immediately after rehydration and 30 and 180 days later. We identified differentially expressed genes and performed an analysis to predict differentially regulated pathways and upstream regulators. During acute cholera, there was a broad increase in the expression of genes associated with innate immunity, including activation of the NF-κB, mitogen-activated protein kinase (MAPK), and Toll-like receptor (TLR)-mediated signaling pathways, which, unexpectedly, persisted even 30 days after infection. Focusing on early differences in gene expression, we identified 37 genes that were differentially expressed on days 2 and 30 across the 11 participants. These genes included the endosomal Toll-like receptor gene TLR8, which was expressed in lamina propria cells. Underscoring a potential role for endosomal TLR-mediated signaling in vivo, our pathway analysis found that interferon regulatory factor 7 and beta 1 and alpha 2 interferons were among the top upstream regulators activated during cholera. Among the innate immune effectors, we found that the gene for DUOX2, an NADPH oxidase involved in the maintenance of intestinal homeostasis, was upregulated in intestinal epithelial cells during cholera. Notably, the observed increases in DUOX2 and TLR8 expression were also modeled in vitro when Caco-2 or THP-1 cells, respectively, were stimulated with live V. cholerae but not with heat-killed organisms or cholera toxin alone. These previously unidentified features of the innate immune response to V. cholerae extend our understanding of the mucosal immune signaling pathways and effectors activated in vivo following cholera.
Collapse
|
97
|
The HC, Florez de Sessions P, Jie S, Pham Thanh D, Thompson CN, Nguyen Ngoc Minh C, Chu CW, Tran TA, Thomson NR, Thwaites GE, Rabaa MA, Hibberd M, Baker S. Assessing gut microbiota perturbations during the early phase of infectious diarrhea in Vietnamese children. Gut Microbes 2018; 9:38-54. [PMID: 28767339 PMCID: PMC5914913 DOI: 10.1080/19490976.2017.1361093] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 02/06/2023] Open
Abstract
Diarrheal diseases remain the second most common cause of mortality in young children in developing countries. Efforts have been made to explore the impact of diarrhea on bacterial communities in the human gut, but a thorough understanding has been impeded by inadequate resolution in bacterial identification and the examination of only few etiological agents. Here, by profiling an extended region of the 16S rRNA gene in the fecal microbiome, we aimed to elucidate the nature of gut microbiome perturbations during the early phase of infectious diarrhea caused by various etiological agents in Vietnamese children. Fecal samples from 145 diarrheal cases with a confirmed infectious etiology before antimicrobial therapy and 54 control subjects were analyzed. We found that the diarrheal fecal microbiota could be robustly categorized into 4 microbial configurations that either generally resembled or were highly divergent from a healthy state. Factors such as age, nutritional status, breastfeeding, and the etiology of the infection were significantly associated with these microbial community structures. We observed a consistent elevation of Fusobacterium mortiferum, Escherichia, and oral microorganisms in all diarrheal fecal microbiome configurations, proposing similar mechanistic interactions, even in the absence of global dysbiosis. We additionally found that Bifidobacterium pseudocatenulatum was significantly depleted during dysenteric diarrhea regardless of the etiological agent, suggesting that further investigations into the use of this species as a dysentery-orientated probiotic therapy are warranted. Our findings contribute to the understanding of the complex influence of infectious diarrhea on gut microbiome and identify new opportunities for therapeutic interventions.
Collapse
Affiliation(s)
- Hao Chung The
- Department of Enteric Infections, The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | - Song Jie
- The Genome Institute of Singapore, GIS Efficient Rapid Microbial Sequencing (GERMS), Singapore
| | - Duy Pham Thanh
- Department of Enteric Infections, The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Corinne N. Thompson
- Department of Enteric Infections, The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Oxford University, Oxford, United Kingdom
- The London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Chau Nguyen Ngoc Minh
- Department of Enteric Infections, The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Collins Wenhan Chu
- The Genome Institute of Singapore, GIS Efficient Rapid Microbial Sequencing (GERMS), Singapore
| | - Tuan-Anh Tran
- Department of Enteric Infections, The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Nicholas R. Thomson
- The London School of Hygiene and Tropical Medicine, London, United Kingdom
- Infection Genomics, The Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Guy E. Thwaites
- Department of Enteric Infections, The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Oxford University, Oxford, United Kingdom
| | - Maia A. Rabaa
- Department of Enteric Infections, The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Oxford University, Oxford, United Kingdom
| | - Martin Hibberd
- The Genome Institute of Singapore, GIS Efficient Rapid Microbial Sequencing (GERMS), Singapore
- The London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Stephen Baker
- Department of Enteric Infections, The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Oxford University, Oxford, United Kingdom
- The Department of Medicine, The University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
98
|
Dinleyici EC, Martínez-Martínez D, Kara A, Karbuz A, Dalgic N, Metin O, Yazar AS, Guven S, Kurugol Z, Turel O, Kucukkoc M, Yasa O, Eren M, Ozen M, Martí JM, P. Garay C, Vandenplas Y, Moya A. Time Series Analysis of the Microbiota of Children Suffering From Acute Infectious Diarrhea and Their Recovery After Treatment. Front Microbiol 2018; 9:1230. [PMID: 29946306 PMCID: PMC6005867 DOI: 10.3389/fmicb.2018.01230] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 05/22/2018] [Indexed: 02/05/2023] Open
Abstract
Gut microbiota is closely related to acute infectious diarrhea, one of the leading causes of mortality and morbidity in children worldwide. Understanding the dynamics of the recovery from this disease is of clinical interest. This work aims to correlate the dynamics of gut microbiota with the evolution of children who were suffering from acute infectious diarrhea caused by a rotavirus, and their recovery after the administration of a probiotic, Saccharomyces boulardii CNCM I-745. The experiment involved 10 children with acute infectious diarrhea caused by a rotavirus, and six healthy children, all aged between 3 and 4 years. The children who suffered the rotavirus infection received S. boulardii CNCM I-745 twice daily for the first 5 days of the experiment. Fecal samples were collected from each participant at 0, 3, 5, 10, and 30 days after probiotic administration. Microbial composition was characterized by 16S rRNA gene sequencing. Alpha and beta diversity were calculated, along with dynamical analysis based on Taylor's law to assess the temporal stability of the microbiota. All children infected with the rotavirus stopped having diarrhea at day 3 after the intervention. We observed low alpha diversities in the first 5 days (p-value < 0.05, Wilcoxon test), larger at 10 and 30 days after probiotic treatment. Canonical correspondence analysis (CCA) showed differences in the gut microbiota of healthy children and of those who suffered from acute diarrhea in the first days (p-value < 0.05, ADONIS test), but not in the last days of the experiment. Temporal variability was larger in children infected with the rotavirus than in healthy ones. In particular, Gammaproteobacteria class was found to be abundant in children with acute diarrhea. We identified the microbiota transition from a diseased state to a healthy one with time, whose characterization may lead to relevant clinical data. This work highlights the importance of using time series for the study of dysbiosis related to diarrhea.
Collapse
Affiliation(s)
- Ener C. Dinleyici
- Department of Pediatrics, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | | | - Ates Kara
- Pediatric Infectious Disease Unit, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Adem Karbuz
- Department of Pediatrics, Okmeydani Education and Research Hospital, Istanbul, Turkey
| | - Nazan Dalgic
- Division of Pediatric Infectious Diseases, Sisli Etfal Training and Research Hospital, Istanbul, Turkey
| | - Ozge Metin
- Division of Pediatric Infectious Diseases, Konya Training and Research Hospital, Konya, Turkey
| | - Ahmet S. Yazar
- Department of Pediatrics, Umraniye Education and Research Hospital, Istanbul, Turkey
| | - Sirin Guven
- Department of Pediatrics, Umraniye Education and Research Hospital, Istanbul, Turkey
| | - Zafer Kurugol
- Department of Pediatrics, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Ozden Turel
- Department of Pediatric Infectious Disease Unit, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Mehmet Kucukkoc
- Department of Pediatric Infectious Disease Unit, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Olcay Yasa
- Department of Pediatrics, Goztepe Training and Research Hospital, SB Istanbul Medeniyet University, Istanbul, Turkey
| | - Makbule Eren
- Department of Pediatrics, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Metehan Ozen
- Department of Pediatrics, Acibadem University Faculty of Medicine, Istanbul, Turkey
| | - Jose Manuel Martí
- Institute for Integrative Systems Biology, Catedrático José Beltrán, Valencia, Spain
| | - Carlos P. Garay
- Institute for Integrative Systems Biology, Catedrático José Beltrán, Valencia, Spain
| | - Yvan Vandenplas
- Department of Pediatrics, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Andrés Moya
- Institute for Integrative Systems Biology, Catedrático José Beltrán, Valencia, Spain
- Area de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO-Salud Pública), Valencia, Spain
- CIBER en Epidemiología y Salud Pública (CIBEResp), Madrid, Spain
- *Correspondence: Andrés Moya
| |
Collapse
|
99
|
Comparative Analysis of Bacterial Community Composition and Structure in Clinically Symptomatic and Asymptomatic Central Venous Catheters. mSphere 2017; 2:mSphere00146-17. [PMID: 28959736 PMCID: PMC5615130 DOI: 10.1128/msphere.00146-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/17/2017] [Indexed: 01/03/2023] Open
Abstract
Totally implanted venous access ports (TIVAPs) are commonly used catheters for the management of acute or chronic pathologies. Although these devices improve health care, repeated use of this type of device for venous access over long periods of time is also associated with risk of colonization and infection by pathogenic bacteria, often originating from skin. However, although the skin microbiota is composed of both pathogenic and nonpathogenic bacteria, the extent and the consequences of TIVAP colonization by nonpathogenic bacteria have rarely been studied. Here, we used culture-dependent and 16S rRNA gene-based culture-independent approaches to identify differences in bacterial colonization of TIVAPs obtained from two French hospitals. To explore the relationships between nonpathogenic organisms colonizing TIVAPs and the potential risk of infection, we analyzed the bacterial community parameters between TIVAPs suspected (symptomatic) or not (asymptomatic) of infection. Although we did not find a particular species assemblage or community marker to distinguish infection risk on an individual sample level, we identified differences in bacterial community composition, diversity, and structure between clinically symptomatic and asymptomatic TIVAPs that could be explored further. This study therefore provides a new view of bacterial communities and colonization patterns in intravascular TIVAPs and suggests that microbial ecology approaches could improve our understanding of device-associated infections and could be a prognostic tool to monitor the evolution of bacterial communities in implants and their potential susceptibility to infections. IMPORTANCE Totally implanted venous access ports (TIVAPs) are commonly used implants for the management of acute or chronic pathologies. Although their use improves the patient's health care and quality of life, they are associated with a risk of infection and subsequent clinical complications, often leading to implant removal. While all TIVAPs appear to be colonized, only a fraction become infected, and the relationship between nonpathogenic organisms colonizing TIVAPs and the potential risk of infection is unknown. We explored bacteria present on TIVAPs implanted in patients with or without signs of TIVAP infection and identified differences in phylum composition and community structure. Our data suggest that the microbial ecology of intravascular devices could be predictive of TIVAP infection status and that ultimately a microbial ecological signature could be identified as a tool to predict TIVAP infection susceptibility and improve clinical management.
Collapse
|
100
|
Sarker SA, Ahmed T, Brüssow H. Persistent diarrhea: a persistent infection with enteropathogens or a gut commensal dysbiosis? Environ Microbiol 2017; 19:3789-3801. [PMID: 28752952 DOI: 10.1111/1462-2920.13873] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 07/24/2017] [Indexed: 12/17/2022]
Abstract
In children from developing countries 5-10% of acute diarrhea (AD) episodes develop into persistent diarrhea (PD) defined by > 14 days of diarrhea duration. PD represents a major health burden leading to growth faltering. It is also associated with half of all diarrhea mortality. A rational intervention is thus crucial, but depends on an understanding of the pathogenesis of PD, which is still lacking. Many surveys were conducted in Latin America and in South Asia; they differ, however, with respect to enteropathogens associated with PD. Enteroaggregative strains of Escherichia coli (EAEC) were identified by several studies, but they may reflect selection by the frequent antibiotic use during the preceding AD episode. Epidemiologists have in fact identified antibiotic misuse as a major risk factor for PD. Together with the effectiveness of empirical treatment based on nutritional interventions with lactose-reduced and lactose-free diets and particularly complex plant polysaccharides from green banana, one might suspect a role of commensal gut microbiota dysbiosis instead of a persistent infection with enteropathogens in many PD cases. An analysis of the commensal gut microbiota development in persistent diarrhea during nutritional interventions is likely to increase our understanding of PD pathogenesis.
Collapse
Affiliation(s)
- Shafiqul A Sarker
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Tahmeed Ahmed
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Harald Brüssow
- Nutrition and Health Institute, Gut Ecosystem Department, Host-Microbe Interaction Group Nestlé Research Centre, CH-1000 Lausanne 26, Switzerland
| |
Collapse
|