51
|
Vila JC, Goldford J, Estrela S, Bajic D, Sanchez-Gorostiaga A, Damian-Serrano A, Lu N, Marsland R, Rebolleda-Gomez M, Mehta P, Sanchez A. Metabolic similarity and the predictability of microbial community assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.25.564019. [PMID: 37961608 PMCID: PMC10634833 DOI: 10.1101/2023.10.25.564019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
When microbial communities form, their composition is shaped by selective pressures imposed by the environment. Can we predict which communities will assemble under different environmental conditions? Here, we hypothesize that quantitative similarities in metabolic traits across metabolically similar environments lead to predictable similarities in community composition. To that end, we measured the growth rate and by-product profile of a library of proteobacterial strains in a large number of single nutrient environments. We found that growth rates and secretion profiles were positively correlated across environments when the supplied substrate was metabolically similar. By analyzing hundreds of in-vitro communities experimentally assembled in an array of different synthetic environments, we then show that metabolically similar substrates select for taxonomically similar communities. These findings lead us to propose and then validate a comparative approach for quantitatively predicting the effects of novel substrates on the composition of complex microbial consortia.
Collapse
Affiliation(s)
- Jean C.C. Vila
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT USA
- Microbial Sciences Institute, Yale University, West Haven, CT, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Joshua Goldford
- Division of Geophysical and Planetary sciences,California Institute of Technology, Pasadena, CA, USA
| | - Sylvie Estrela
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT USA
- Microbial Sciences Institute, Yale University, West Haven, CT, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Djordje Bajic
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT USA
- Microbial Sciences Institute, Yale University, West Haven, CT, USA
- Section of Industrial Microbiology, Department of Biotechnology, Technical University Delft, Delft, The Netherlands
| | - Alicia Sanchez-Gorostiaga
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT USA
- Microbial Sciences Institute, Yale University, West Haven, CT, USA
- Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), Alcalá de Henares, Spain
| | - Alejandro Damian-Serrano
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT USA
- Department of Biology, University of Oregon, Eugene, OR, USA
| | - Nanxi Lu
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT USA
- Microbial Sciences Institute, Yale University, West Haven, CT, USA
| | - Robert Marsland
- Department of Physics, Boston University, Boston, MA 02215, USA
| | - Maria Rebolleda-Gomez
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT USA
- Microbial Sciences Institute, Yale University, West Haven, CT, USA
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California
| | - Pankaj Mehta
- Department of Physics, Boston University, Boston, MA 02215, USA
| | - Alvaro Sanchez
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT USA
- Microbial Sciences Institute, Yale University, West Haven, CT, USA
- Department of Microbial Biotechnology, National Center for Biotechnology CNB-CSIC; Madrid, Spain
- New address: Institute of Functional Biology & Genomics IBFG, CSIC & University of Salamanca; Salamanca, Spain
| |
Collapse
|
52
|
Gamble A, Olarte-Castillo XA, Whittaker GR. Backyard zoonoses: The roles of companion animals and peri-domestic wildlife. Sci Transl Med 2023; 15:eadj0037. [PMID: 37851821 DOI: 10.1126/scitranslmed.adj0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023]
Abstract
The spillover of human infectious diseases from animal reservoirs is now well appreciated. However, societal and climate-related changes are affecting the dynamics of such interfaces. In addition to the disruption of traditional wildlife habitats, in part because of climate change and human demographics and behavior, there is an increasing zoonotic disease risk from companion animals. This includes such factors as the awareness of animals kept as domestic pets and increasing populations of free-ranging animals in peri-domestic environments. This review presents background and commentary focusing on companion and peri-domestic animals as disease risk for humans, taking into account the human-animal interface and population dynamics between the animals themselves.
Collapse
Affiliation(s)
- Amandine Gamble
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Ximena A Olarte-Castillo
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Gary R Whittaker
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Atkinson Center for Sustainability, Cornell University, Ithaca, NY, USA
| |
Collapse
|
53
|
Nooruzzaman M, Diel DG. Infection Dynamics, Pathogenesis, and Immunity to SARS-CoV-2 in Naturally Susceptible Animal Species. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1195-1201. [PMID: 37782853 PMCID: PMC10558081 DOI: 10.4049/jimmunol.2300378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/13/2023] [Indexed: 10/04/2023]
Abstract
SARS-CoV-2, the causative agent of the COVID-19 pandemic, presents a broad host range. Domestic cats and white-tailed deer (WTD) are particularly susceptible to SARS-CoV-2 with multiple variant strains being associated with infections in these species. The virus replicates in the upper respiratory tract and in associated lymphoid tissues, and it is shed through oral and nasal secretions, which leads to efficient transmission of the virus to contact animals. Robust cell-mediated and humoral immune responses are induced upon infection in domestic cats, which curb the progression of clinical disease and are associated with control of infection. In WTD, high levels of neutralizing Abs are detected early upon infection. In this review, the current understanding of the infection dynamics, pathogenesis, and immune responses to SARS-CoV-2 infection in animals, with special focus on naturally susceptible felids and WTD, are discussed.
Collapse
Affiliation(s)
- Mohammed Nooruzzaman
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States of America
| | - Diego G. Diel
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States of America
| |
Collapse
|
54
|
Tewari D, Miller R, Livengood J, Wang L, Killian ML, Bustamante F, Kessler C, Thirumalapura N, Terio K, Torchetti M, Lantz K, Rosenberg J. SARS-CoV-2 Infection Dynamics in the Pittsburgh Zoo Wild Felids with Two Viral Variants (Delta and Alpha) during the 2021-2022 Pandemic in the United States. Animals (Basel) 2023; 13:3094. [PMID: 37835700 PMCID: PMC10571823 DOI: 10.3390/ani13193094] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/17/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been reported in multiple animal species besides humans. The goal of this study was to report clinical signs, infection progression, virus detection and antibody response in a group of wild felids housed in adjacent but neighboring areas at the Pittsburgh Zoo. Initially, five African lions (Panthera leo krugeri) housed together exhibited respiratory clinical signs with viral shedding in their feces in March of 2021 coinciding with infection of an animal keeper. During the second infection wave in December 2021, four Amur tigers (Panthera tigris altaica) and a Canadian lynx (Lynx canadensis) showed clinical signs and tested positive for viral RNA in feces. In infected animals, viral shedding in feces was variable lasting up to 5 weeks and clinical signs were observed for up to 4 weeks. Despite mounting an antibody response to initial exposure, lions exhibited respiratory clinical signs during the second infection wave, but none shed the virus in their feces. The lions were positive for alpha variant (B.1.1.7 lineage) during the first wave and the tiger and lynx were positive for delta variant (AY.25.1. lineage) during the second wave. The viruses recovered from felids were closely related to variants circulating in human populations at the time of the infection. Cheetahs (Acinonyx jubatus) in the park did not show either the clinical signs or the antibody response.
Collapse
Affiliation(s)
- Deepanker Tewari
- Pennsylvania Veterinary Laboratory, Pennsylvania Department of Agriculture, Harrisburg, PA 17110, USA (J.L.); (F.B.); (N.T.)
| | - Ryan Miller
- Pennsylvania Veterinary Laboratory, Pennsylvania Department of Agriculture, Harrisburg, PA 17110, USA (J.L.); (F.B.); (N.T.)
| | - Julia Livengood
- Pennsylvania Veterinary Laboratory, Pennsylvania Department of Agriculture, Harrisburg, PA 17110, USA (J.L.); (F.B.); (N.T.)
| | - Leyi Wang
- Illinois Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802, USA;
| | - Mary Lea Killian
- National Veterinary Services Laboratory, United States Department of Agriculture, Ames, IA 50010, USA; (M.L.K.); (M.T.); (K.L.)
| | - Felipe Bustamante
- Pennsylvania Veterinary Laboratory, Pennsylvania Department of Agriculture, Harrisburg, PA 17110, USA (J.L.); (F.B.); (N.T.)
| | - Candy Kessler
- Pennsylvania Veterinary Laboratory, Pennsylvania Department of Agriculture, Harrisburg, PA 17110, USA (J.L.); (F.B.); (N.T.)
| | - Nagaraja Thirumalapura
- Pennsylvania Veterinary Laboratory, Pennsylvania Department of Agriculture, Harrisburg, PA 17110, USA (J.L.); (F.B.); (N.T.)
| | - Karen Terio
- Zoological Pathology Program, University of Illinois, Brookfield, IL 60513, USA;
| | - Mia Torchetti
- National Veterinary Services Laboratory, United States Department of Agriculture, Ames, IA 50010, USA; (M.L.K.); (M.T.); (K.L.)
| | - Kristina Lantz
- National Veterinary Services Laboratory, United States Department of Agriculture, Ames, IA 50010, USA; (M.L.K.); (M.T.); (K.L.)
| | | |
Collapse
|
55
|
Naik R, Avula S, Palleti SK, Gummadi J, Ramachandran R, Chandramohan D, Dhillon G, Gill AS, Paiwal K, Shaik B, Balachandran M, Patel B, Gurugubelli S, Mariswamy Arun Kumar AK, Nanjundappa A, Bellamkonda M, Rathi K, Sakhamuri PL, Nassar M, Bali A. From Emergence to Endemicity: A Comprehensive Review of COVID-19. Cureus 2023; 15:e48046. [PMID: 37916248 PMCID: PMC10617653 DOI: 10.7759/cureus.48046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 11/03/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), later renamed coronavirus disease 2019 (COVID-19), was first identified in Wuhan, China, in early December 2019. Initially, the China office of the World Health Organization was informed of numerous cases of pneumonia of unidentified etiology in Wuhan, Hubei Province at the end of 2019. This would subsequently result in a global pandemic with millions of confirmed cases of COVID-19 and millions of deaths reported to the WHO. We have analyzed most of the data published since the beginning of the pandemic to compile this comprehensive review of SARS-CoV-2. We looked at the core ideas, such as the etiology, epidemiology, pathogenesis, clinical symptoms, diagnostics, histopathologic findings, consequences, therapies, and vaccines. We have also included the long-term effects and myths associated with some therapeutics of COVID-19. This study presents a comprehensive assessment of the SARS-CoV-2 virology, vaccines, medicines, and significant variants identified during the course of the pandemic. Our review article is intended to provide medical practitioners with a better understanding of the fundamental sciences, clinical treatment, and prevention of COVID-19. As of May 2023, this paper contains the most recent data made accessible.
Collapse
Affiliation(s)
- Roopa Naik
- Medicine, Geisinger Commonwealth School of Medicine, Scranton, USA
- Internal Medicine/Hospital Medicine, Geisinger Health System, Wilkes Barre, USA
| | - Sreekant Avula
- Diabetes, Endocrinology, and Metabolism, University of Minnesota, Minneapolis, USA
| | - Sujith K Palleti
- Nephrology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Jyotsna Gummadi
- Internal Medicine, MedStar Franklin Square Medical Center, Baltimore, USA
| | | | | | - Gagandeep Dhillon
- Physician Executive MBA, University of Tennessee, Knoxville, USA
- Internal Medicine, University of Maryland Baltimore Washington Medical Center, Glen Burnie, USA
| | | | - Kapil Paiwal
- Oral & Maxillofacial Pathology, Daswani Dental College & Research Center, Kota, IND
| | - Bushra Shaik
- Internal Medicine, Onslow Memorial Hospital, Jacksonville, USA
| | | | - Bhumika Patel
- Oral Medicine and Radiology, Howard University, Washington, D.C., USA
| | | | | | | | - Mahita Bellamkonda
- Hospital Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Kanika Rathi
- Internal Medicine, University of Florida, Gainesville, USA
| | | | - Mahmoud Nassar
- Endocrinology, Diabetes, and Metabolism, Jacobs School of Medicine and Biomedical Sciences, Buffalo, USA
| | - Atul Bali
- Internal Medicine/Nephrology, Geisinger Medical Center, Danville, USA
- Internal Medicine/Nephrology, Geisinger Health System, Wilkes-Barre, USA
- Medicine, Geisinger Commonwealth School of Medicine, Scranton, USA
| |
Collapse
|
56
|
Hou YJ, Chiba S, Leist SR, Meganck RM, Martinez DR, Schäfer A, Catanzaro NJ, Sontake V, West A, Edwards CE, Yount B, Lee RE, Gallant SC, Zost SJ, Powers J, Adams L, Kong EF, Mattocks M, Tata A, Randell SH, Tata PR, Halfmann P, Crowe JE, Kawaoka Y, Baric RS. Host range, transmissibility and antigenicity of a pangolin coronavirus. Nat Microbiol 2023; 8:1820-1833. [PMID: 37749254 PMCID: PMC10522490 DOI: 10.1038/s41564-023-01476-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 08/14/2023] [Indexed: 09/27/2023]
Abstract
The pathogenic and cross-species transmission potential of SARS-CoV-2-related coronaviruses (CoVs) remain poorly characterized. Here we recovered a wild-type pangolin (Pg) CoV GD strain including derivatives encoding reporter genes using reverse genetics. In primary human cells, PgCoV replicated efficiently but with reduced fitness and showed less efficient transmission via airborne route compared with SARS-CoV-2 in hamsters. PgCoV was potently inhibited by US Food and Drug Administration approved drugs, and neutralized by COVID-19 patient sera and SARS-CoV-2 therapeutic antibodies in vitro. A pan-Sarbecovirus antibody and SARS-CoV-2 S2P recombinant protein vaccine protected BALB/c mice from PgCoV infection. In K18-hACE2 mice, PgCoV infection caused severe clinical disease, but mice were protected by a SARS-CoV-2 human antibody. Efficient PgCoV replication in primary human cells and hACE2 mice, coupled with a capacity for airborne spread, highlights an emergence potential. However, low competitive fitness, pre-immune humans and the benefit of COVID-19 countermeasures should impede its ability to spread globally in human populations.
Collapse
Affiliation(s)
- Yixuan J Hou
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Moderna Inc., Cambridge, MA, USA
| | - Shiho Chiba
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rita M Meganck
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David R Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nicholas J Catanzaro
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Vishwaraj Sontake
- Department of Cell Biology, Regeneration Next Initiative, Duke University Medical Center, Durham, NC, USA
| | - Ande West
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Catlin E Edwards
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Boyd Yount
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rhianna E Lee
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Samuel C Gallant
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Seth J Zost
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John Powers
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lily Adams
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Edgar F Kong
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Melissa Mattocks
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Aleksandra Tata
- Department of Cell Biology, Regeneration Next Initiative, Duke University Medical Center, Durham, NC, USA
| | - Scott H Randell
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Purushothama R Tata
- Department of Cell Biology, Regeneration Next Initiative, Duke University Medical Center, Durham, NC, USA
| | - Peter Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
57
|
Wang X, Ding P, Sun C, Wang D, Zhu J, Wu W, Wei Y, Xiang R, Ding X, Luo L, Li M, Zhang W, Jin X, Sun J, Liu H, Chen D. Comparative analysis of single cell lung atlas of bat, cat, tiger, and pangolin. Cell Biol Toxicol 2023; 39:2431-2435. [PMID: 36169743 PMCID: PMC9516514 DOI: 10.1007/s10565-022-09771-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/26/2022] [Indexed: 11/03/2022]
Abstract
Horseshoe bats (Rhinolophus sinicus) might help maintain coronaviruses severely affecting human health, such as severe acute respiratory syndrome coronavirus (SARS-CoV). Bats may be more tolerant of viral infection than other mammals due to their unique immune system, but the exact mechanism remains to be fully explored. During the coronavirus disease 2019 (COVID-19) pandemic, multiple animal species were diseased by coronavirus infection, especially in the respiratory system. Herein, a comparative analysis with single nucleus transcriptomic data of the lungs across four species, including horseshoe bat, cat, tiger, and pangolin, were conducted. The distribution of entry factors for twenty-eight respiratory viruses was characterized for the four species. Our findings might increase our understanding of the immune background of horseshoe bats.
Collapse
Affiliation(s)
- Xiran Wang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Peiwen Ding
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengcheng Sun
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Daxi Wang
- BGI-Shenzhen, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, 518083, China
| | - Jiacheng Zhu
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wendi Wu
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Yanan Wei
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | | | - Xiangning Ding
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lihua Luo
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Wensheng Zhang
- School of Basic Medical Sciences, Binzhou Medical University, No. 346, Guanhai Road, Laishan District, Yantai City, Shandong, China
| | - Xin Jin
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| | - Huan Liu
- BGI-Shenzhen, Shenzhen, 518083, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Dongsheng Chen
- BGI-Shenzhen, Shenzhen, 518083, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
58
|
Poonsuk K, Loy D, Birn R, Buss B, Donahue M, Nordeen T, Sinclair K, Meduna L, Brodersen B, Loy JD. DETECTION OF SARS-COV-2 NEUTRALIZING ANTIBODIES IN RETROPHARYNGEAL LYMPH NODE EXUDATES OF WHITE-TAILED DEER (ODOCOILEUS VIRGINIANUS) FROM NEBRASKA, USA. J Wildl Dis 2023; 59:702-708. [PMID: 37768779 PMCID: PMC10913095 DOI: 10.7589/jwd-d-23-00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/08/2023] [Indexed: 09/30/2023]
Abstract
Disease surveillance testing for emerging zoonotic pathogens in wildlife is a key component in understanding the epidemiology of these agents and potential risk to human populations. Recent emergence of SARS-CoV-2 in humans, and subsequent detection of this virus in wildlife, highlights the need for developing new One Health surveillance strategies. We used lymph node exudate, a sample type that is routinely collected in hunter-harvested white-tailed deer (WTD, Odocoileus virginianus) for surveillance of chronic wasting disease, to assess anti-SARS-CoV-2 neutralizing antibodies. A total of 132 pairs of retropharyngeal lymph nodes collected from Nebraska WTD harvested in Nebraska, US, in 2019 (pre-SARS-CoV-2 pandemic) and 2021 (post-SARS-CoV-2 pandemic) were tested for SARS-CoV-2 with reverse transcription PCR. Thereafter, exudates obtained from these same lymph nodes were tested for SARS-CoV-2 neutralizing antibodies using a surrogate virus neutralization test. Neutralizing antibodies were detected in the exudates with high diagnostic specificity (100% at proposed cutoff of 40% inhibition). Application of this testing approach to samples collected for use in other disease surveillance activities may provide additional epidemiological data on SARS-CoV-2 exposure, and there is further potential to apply this sample type to detection of other pathogens of interest.
Collapse
Affiliation(s)
- Korakrit Poonsuk
- University of Nebraska–Lincoln, Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, 4040 E. Campus Loop N, Lincoln, Nebraska 68503, USA
| | - Duan Loy
- University of Nebraska–Lincoln, Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, 4040 E. Campus Loop N, Lincoln, Nebraska 68503, USA
| | - Rachael Birn
- Division of Public Health, Nebraska Department of Health and Human Services, 301 Centennial Mall S, Lincoln, Nebraska 68508, USA
- Council State and Territorial Epidemiologists, 2635 Century Pkwy NE no. 700, Atlanta, Georgia 30345, USA
| | - Bryan Buss
- Division of Public Health, Nebraska Department of Health and Human Services, 301 Centennial Mall S, Lincoln, Nebraska 68508, USA
- Division of State and Local Readiness, Center for Preparedness and Response, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, Georgia 30329, USA
| | - Matthew Donahue
- Division of Public Health, Nebraska Department of Health and Human Services, 301 Centennial Mall S, Lincoln, Nebraska 68508, USA
| | - Todd Nordeen
- Nebraska Game and Parks Commission, 2200 N. 33rd St., Lincoln, Nebraska 68503, USA
| | - Kylie Sinclair
- Nebraska Game and Parks Commission, 2200 N. 33rd St., Lincoln, Nebraska 68503, USA
| | - Luke Meduna
- Nebraska Game and Parks Commission, 2200 N. 33rd St., Lincoln, Nebraska 68503, USA
| | - Bruce Brodersen
- University of Nebraska–Lincoln, Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, 4040 E. Campus Loop N, Lincoln, Nebraska 68503, USA
| | - John Dustin Loy
- University of Nebraska–Lincoln, Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, 4040 E. Campus Loop N, Lincoln, Nebraska 68503, USA
| |
Collapse
|
59
|
Bartlett SL, Koeppel KN, Cushing AC, Bellon HF, Almagro V, Gyimesi ZS, Thies T, Hård T, Denitton D, Fox KZ, Vodička R, Wang L, Calle PP. GLOBAL RETROSPECTIVE REVIEW OF SEVERE ACUTE RESPIRATORY SYNDROME SARS COV-2 INFECTIONS IN NONDOMESTIC FELIDS: MARCH 2020-FEBRUARY 2021. J Zoo Wildl Med 2023; 54:607-616. [PMID: 37817628 DOI: 10.1638/2022-0141] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2023] [Indexed: 10/12/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in nondomestic felids have been documented in North America, South America, Africa, Europe, and Asia. Between March 2020 and February 2021, at nine institutions across three continents, infection was confirmed in 16 tigers (Panthera tigris), 14 lions (Panthera leo), three snow leopards (Panthera uncia), one cougar (Puma concolor), and one Amur leopard cat (Prionailurus bengalensis euptilurus) ranging from 2 to 21 yr old (average, 10 yr). Infection was suspected in an additional 12 tigers, 4 lions, and 9 cougars. Clinical signs (in order of most to least common) included coughing, ocular and/or nasal discharge, wheezing, sneezing, decreased appetite, lethargy, diarrhea, and vomiting. Most felids recovered uneventfully, but one geriatric tiger with comorbidities developed severe dyspnea and neurologic signs necessitating euthanasia. Clinical signs lasted 1-19 d (average, 8 d); one tiger was asymptomatic. Infection was confirmed by various methods, including antigen tests and/or polymerase chain reaction (PCR) of nasal or oral swabs, tracheal wash, and feces, or virus isolation from feces or tracheal wash. Infection status and resolution were determined by testing nasal swabs from awake animals, fecal PCR, and observation of clinical signs. Shedding of fecal viral RNA was significantly longer than duration of clinical signs. Postinfection seropositivity was confirmed by four institutions including 11 felids (5 lions, 6 tigers). In most instances, asymptomatic or presymptomatic keepers were the presumed or confirmed source of infection, although in some instances the infection source remains uncertain. Almost all infections occurred despite using cloth facemasks and disposable gloves when in proximity to the felids and during food preparation. Although transmission may have occurred during momentary lapses in personal protective equipment compliance, it seems probable that cloth masks are insufficient at preventing transmission of SARS-CoV-2 from humans to nondomestic felids. Surgical or higher grade masks may be warranted when working with nondomestic felids.
Collapse
Affiliation(s)
- Susan L Bartlett
- Wildlife Conservation Society, Zoological Health Program, Bronx, NY 10460, USA,
| | - Katja N Koeppel
- Department of Production Animal Studies and Centre for Veterinary Wildlife Research, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
| | - Andrew C Cushing
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | | | | | | | - Tammy Thies
- The Wildcat Sanctuary, Sandstone, MN 55072, USA
| | | | | | - Kami Z Fox
- Fort Wayne Children's Zoo, Fort Wayne, IN 46808, USA
| | - Roman Vodička
- Zoologická zahrada hl. m. Prahy, Prague Zoo, 171 00 Praha 7-Trója, Czech Republic
| | - Leyi Wang
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802, USA
| | - Paul P Calle
- Wildlife Conservation Society, Zoological Health Program, Bronx, NY 10460, USA
| |
Collapse
|
60
|
Ahn H, Calderon BM, Fan X, Gao Y, Horgan NL, Jiang N, Blohm DS, Hossain J, Rayyan NWK, Osman SH, Lin X, Currier M, Steel J, Wentworth DE, Zhou B, Liang B. Structural basis of the American mink ACE2 binding by Y453F trimeric spike glycoproteins of SARS-CoV-2. J Med Virol 2023; 95:e29163. [PMID: 37842796 DOI: 10.1002/jmv.29163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/17/2023]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) enters the host cell by binding to angiotensin-converting enzyme 2 (ACE2). While evolutionarily conserved, ACE2 receptors differ across various species and differential interactions with Spike (S) glycoproteins of SARS-CoV-2 viruses impact species specificity. Reverse zoonoses led to SARS-CoV-2 outbreaks on multiple American mink (Mustela vison) farms during the pandemic and gave rise to mink-associated S substitutions known for transmissibility between mink and zoonotic transmission to humans. In this study, we used bio-layer interferometry (BLI) to discern the differences in binding affinity between multiple human and mink-derived S glycoproteins of SARS-CoV-2 and their respective ACE2 receptors. Further, we conducted a structural analysis of a mink variant S glycoprotein and American mink ACE2 (mvACE2) using cryo-electron microscopy (cryo-EM), revealing four distinct conformations. We discovered a novel intermediary conformation where the mvACE2 receptor is bound to the receptor-binding domain (RBD) of the S glycoprotein in a "down" position, approximately 34° lower than previously reported "up" RBD. Finally, we compared residue interactions in the S-ACE2 complex interface of S glycoprotein conformations with varying RBD orientations. These findings provide valuable insights into the molecular mechanisms of SARS-CoV-2 entry.
Collapse
Affiliation(s)
- Hyunjun Ahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Brenda M Calderon
- COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Xiaoyu Fan
- COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Yunrong Gao
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Natalie L Horgan
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Nannan Jiang
- COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Dylan S Blohm
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jaber Hossain
- COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Nicole Wedad K Rayyan
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sarah H Osman
- COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Chamblee, Georgia, USA
| | - Xudong Lin
- COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Michael Currier
- COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - John Steel
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - David E Wentworth
- COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Bin Zhou
- COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Bo Liang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
61
|
Despres HW, Mills MG, Schmidt MM, Gov J, Perez Y, Jindrich M, Crawford AML, Kohl WT, Rosenblatt E, Kubinski HC, Simmons BC, Nippes MC, Goldenberg AJ, Murtha KE, Nicoloro S, Harris MJ, Feeley AC, Gelinas TK, Cronin MK, Frederick RS, Thomas M, Johnson ME, Murphy J, Lenzini EB, Carr PA, Berger DH, Mehta SP, Floreani CJ, Koval AC, Young AL, Fish JH, Wallace J, Chaney E, Ushay G, Ross RS, Vostal EM, Thisner MC, Gonet KE, Deane OC, Pelletiere KR, Rockafeller VC, Waterman M, Barry TW, Goering CC, Shipman SD, Shiers AC, Reilly CE, Duff AM, Madruga SL, Shirley DJ, Jerome KR, Pérez-Osorio AC, Greninger AL, Fortin N, Mosher BA, Bruce EA. Surveillance of Vermont wildlife in 2021-2022 reveals no detected SARS-CoV-2 viral RNA. Sci Rep 2023; 13:14683. [PMID: 37674004 PMCID: PMC10482933 DOI: 10.1038/s41598-023-39232-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/21/2023] [Indexed: 09/08/2023] Open
Abstract
Previous studies have documented natural infections of SARS-CoV-2 in various domestic and wild animals. More recently, studies have been published noting the susceptibility of members of the Cervidae family, and infections in both wild and captive cervid populations. In this study, we investigated the presence of SARS-CoV-2 in mammalian wildlife within the state of Vermont. 739 nasal or throat samples were collected from wildlife throughout the state during the 2021 and 2022 harvest season. Data was collected from red and gray foxes (Vulpes vulples and Urocyon cineroargentus, respectively), fishers (Martes pennati), river otters (Lutra canadensis), coyotes (Canis lantrans), bobcats (Lynx rufus rufus), black bears (Ursus americanus), and white-tailed deer (Odocoileus virginianus). Samples were tested for the presence of SARS-CoV-2 via quantitative RT-qPCR using the CDC N1/N2 primer set and/or the WHO-E gene primer set. Surprisingly, we initially detected a number of N1 and/or N2 positive samples with high cycle threshold values, though after conducting environmental swabbing of the laboratory and verifying with a second independent primer set (WHO-E) and PCR without reverse transcriptase, we showed that these were false positives due to plasmid contamination from a construct expressing the N gene in the general laboratory environment. Our final results indicate that no sampled wildlife were positive for SARS-CoV-2 RNA, and highlight the importance of physically separate locations for the processing of samples for surveillance and experiments that require the use of plasmid DNA containing the target RNA sequence. These negative findings are surprising, given that most published North America studies have found SARS-CoV-2 within their deer populations. The absence of SARS-CoV-2 RNA in populations sampled here may provide insights in to the various environmental and anthropogenic factors that reduce spillover and spread in North American's wildlife populations.
Collapse
Affiliation(s)
- Hannah W Despres
- Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Margaret G Mills
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Madaline M Schmidt
- Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Jolene Gov
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Yael Perez
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Mars Jindrich
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Allison M L Crawford
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Warren T Kohl
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Elias Rosenblatt
- Rubenstein School of Environment and Natural Resources, University of Vermont, 81 Carrigan Dr, Burlington, VT, 05405, USA
| | - Hannah C Kubinski
- Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Benjamin C Simmons
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Miles C Nippes
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Anne J Goldenberg
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Kristina E Murtha
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Samantha Nicoloro
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Mia J Harris
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Avery C Feeley
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Taylor K Gelinas
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Maeve K Cronin
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Robert S Frederick
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Matthew Thomas
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Meaghan E Johnson
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - James Murphy
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Elle B Lenzini
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Peter A Carr
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Danielle H Berger
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Soham P Mehta
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Christopher J Floreani
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Amelia C Koval
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Aleah L Young
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Jess H Fish
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Jack Wallace
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Ella Chaney
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Grace Ushay
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Rebecca S Ross
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Erin M Vostal
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Maya C Thisner
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Kyliegh E Gonet
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Owen C Deane
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Kari R Pelletiere
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Vegas C Rockafeller
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Madeline Waterman
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Tyler W Barry
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Catriona C Goering
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Sarah D Shipman
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Allie C Shiers
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Claire E Reilly
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Alanna M Duff
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Sarah L Madruga
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - David J Shirley
- Department of Engineering, Faraday, Inc., Burlington, VT, 05405, USA
| | - Keith R Jerome
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Ailyn C Pérez-Osorio
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Alexander L Greninger
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Nick Fortin
- Fish and Wildlife Department, Vermont Agency of Natural Resources, Rutland, VT, 05701, USA
| | - Brittany A Mosher
- Rubenstein School of Environment and Natural Resources, University of Vermont, 81 Carrigan Dr, Burlington, VT, 05405, USA.
| | - Emily A Bruce
- Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, 05405, USA.
| |
Collapse
|
62
|
Hunt EA, Schwartz S, Chinnici N. Passive Surveillance of SARS-CoV-2 in Adult Blacklegged Ticks ( Ixodes scapularis) from Northeast Pennsylvania. Life (Basel) 2023; 13:1857. [PMID: 37763261 PMCID: PMC10532621 DOI: 10.3390/life13091857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Monitoring the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in wildlife is vital to public health. White-tailed deer (Odocoileus virginianus) in the United States have tested positive for SARS-CoV-2, and their interactions with blacklegged ticks (Ixodes scapularis) raise the question of whether or not these ticks also carry SARS-CoV-2. In this study, 449 blacklegged ticks from Northeast Pennsylvania were collected in the fall of 2022 and tested via RT-qPCR for the presence of SARS-CoV-2. Fourteen ticks were amplified with late quantification cycles (Cq) using primers from two nucleocapsid genes (N1 and N2) via TaqMan assays. Three of these samples were amplified on a SYBR green assay during secondary testing. However, melt curve and gel electrophoresis analysis verified negative results for these three samples. Genetic sequencing was performed on one of the three samples to look for potential cross-reactions causing the amplification observed. However, no significant match was found in the NCBI database. Although all 449 blacklegged ticks were negative for SARS-CoV-2, I. scapularis should continue to be tested for COVID-19. If blacklegged ticks test positive for COVID-19 in the future, research should focus on determining the stability of SARS-CoV-2 with the tick vector and the potential for transmission through tick bites.
Collapse
Affiliation(s)
| | | | - Nicole Chinnici
- Dr. Jane Huffman Wildlife Genetics Institute, East Stroudsburg University, East Stroudsburg, PA 18301, USA; (E.A.H.); (S.S.)
| |
Collapse
|
63
|
Das T, Sikdar S, Chowdhury MHU, Nyma KJ, Adnan M. SARS-CoV-2 prevalence in domestic and wildlife animals: A genomic and docking based structural comprehensive review. Heliyon 2023; 9:e19345. [PMID: 37662720 PMCID: PMC10474441 DOI: 10.1016/j.heliyon.2023.e19345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 08/08/2023] [Accepted: 08/19/2023] [Indexed: 09/05/2023] Open
Abstract
The SARS-CoV-2 virus has been identified as the infectious agent that led to the COVID-19 pandemic, which the world has seen very recently. Researchers have linked the SARS-CoV-2 outbreak to bats for the zoonotic spread of the virus to humans. Coronaviruses have a crown-like shape and positive-sense RNA nucleic acid. It attaches its spike glycoprotein to the host angiotensin-converting enzyme 2 (ACE2) receptor. Coronavirus genome comprises 14 ORFs and 27 proteins, spike glycoprotein being one of the most critical proteins for viral pathogenesis. Many mammals and reptiles, including bats, pangolins, ferrets, snakes, and turtles, serve as the principal reservoirs for this virus. But many experimental investigations have shown that certain domestic animals, including pigs, chickens, dogs, cats, and others, may also be able to harbor this virus, whether they exhibit any symptoms. These animals act as reservoirs for SARS-CoV, facilitating its zoonotic cross-species transmission to other species, including humans. In this review, we performed a phylogenetic analysis with multiple sequence alignment and pairwise evolutionary distance analysis, which revealed the similarity of ACE2 receptors in humans, chimpanzees, domestic rabbits, house mice, and golden hamsters. Pairwise RMSD analysis of the spike protein from some commonly reported SARS-CoV revealed that bat and pangolin coronavirus shared the highest structural similarity with human coronavirus. In a further experiment, molecular docking confirmed a higher affinity of pig, bat, and pangolin coronavirus spike proteins' affinity to the human ACE2 receptor. Such comprehensive structural and genomic analysis can help us to forecast the next likely animal source of these coronaviruses that may infect humans. To combat these zoonotic illnesses, we need a one health strategy that considers the well-being of people and animals and the local ecosystem.
Collapse
Affiliation(s)
- Tuhin Das
- Department of Microbiology, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Suranjana Sikdar
- Department of Microbiology, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Md. Helal Uddin Chowdhury
- Ethnobotany and Pharmacognosy Lab, Department of Botany, University of Chittagong, Chattogram, 4331, Bangladesh
| | | | - Md. Adnan
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, 84112, United States
- Department of Pharmacy, International Islamic University Chittagong, Chattogram, 4318, Bangladesh
| |
Collapse
|
64
|
Tinto B, Revel J, Virolle L, Chenet B, Reboul Salze F, Ortega A, Beltrame M, Simonin Y. Monitoring SARS-CoV-2 Seroprevalence in Domestics and Exotic Animals in Southern France. Trop Med Infect Dis 2023; 8:426. [PMID: 37755888 PMCID: PMC10534723 DOI: 10.3390/tropicalmed8090426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
Since late 2019, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has emerged as a significant global threat to public health. Responsible for the COVID-19 pandemic, this new coronavirus has prompted extensive scientific research to comprehend its transmission dynamics, especially among humans. However, as our understanding deepens, it becomes increasingly clear that SARS-CoV-2's impact goes beyond human populations. Recent investigations have illuminated the transmission of the virus between humans and various animal species, raising important questions about zoonotic spillover events and their potential implications for both human and animal health. Our study set out to investigate the prevalence of SARS-CoV-2 in domestic animals (dogs and cats) and zoo animals in the south of France in 2021 and 2022, covering pre-Omicron and Omicron waves. We identified evidence of SARS-CoV-2 antibodies not only in domestic dogs and cats but also in several mammals in zoos. This study shows the importance of implementing surveillance measures, including serological studies, to identify and monitor cases of SARS-CoV-2 infection in animals.
Collapse
Affiliation(s)
- Bachirou Tinto
- Centre MURAZ, Institut National de Santé Publique (INSP), Bobo-Dioulasso 01, Burkina Faso;
- Pathogenesis and Control of Chronic Infections, University of Montpellier, INSERM, Etablissement Français du Sang, 34394 Montpellier, France;
| | - Justine Revel
- Pathogenesis and Control of Chronic Infections, University of Montpellier, INSERM, Etablissement Français du Sang, 34394 Montpellier, France;
| | - Laurie Virolle
- Parc de Lunaret—Zoo de Montpellier, 34090 Montpellier, France; (L.V.); (B.C.)
| | - Baptiste Chenet
- Parc de Lunaret—Zoo de Montpellier, 34090 Montpellier, France; (L.V.); (B.C.)
| | | | - Alix Ortega
- Sigean African Reserve, 11130 Sigean, France; (A.O.)
| | | | - Yannick Simonin
- Pathogenesis and Control of Chronic Infections, University of Montpellier, INSERM, Etablissement Français du Sang, 34394 Montpellier, France;
| |
Collapse
|
65
|
Yuan F, Chen C, Covaleda LM, Martins M, Reinhart JM, Sullivan DR, Diel DG, Fang Y. Development of monoclonal antibody-based blocking ELISA for detecting SARS-CoV-2 exposure in animals. mSphere 2023; 8:e0006723. [PMID: 37409816 PMCID: PMC10449516 DOI: 10.1128/msphere.00067-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/11/2023] [Indexed: 07/07/2023] Open
Abstract
The global pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a significant threat to public health. Besides humans, SARS-CoV-2 can infect several animal species. Highly sensitive and specific diagnostic reagents and assays are urgently needed for rapid detection and implementation of strategies for prevention and control of the infection in animals. In this study, we initially developed a panel of monoclonal antibodies (mAbs) against SARS-CoV-2 nucleocapsid protein. To detect SARS-CoV-2 antibodies in a broad spectrum of animal species, an mAb-based blocking enzyme-linked immunosorbent assay (bELISA) was developed. Test validation using a set of animal serum samples with known infection status obtained an optimal percentage of inhibition cut-off value of 17.6% with diagnostic sensitivity of 97.8% and diagnostic specificity of 98.9%. The assay demonstrates high repeatability as determined by a low coefficient of variation (7.23%, 4.89%, and 3.16%) between-runs, within-run, and within-plate, respectively. Testing of samples collected over time from experimentally infected cats showed that the bELISA was able to detect seroconversion as early as 7 days post-infection. Subsequently, the bELISA was applied for testing pet animals with coronavirus disease 2019 (COVID-19)-like symptoms and specific antibody responses were detected in two dogs. The panel of mAbs generated in this study provides a valuable tool for SARS-CoV-2 diagnostics and research. The mAb-based bELISA provides a serological test in aid of COVID-19 surveillance in animals. IMPORTANCE Antibody tests are commonly used as a diagnostic tool for detecting host immune response following infection. Serology (antibody) tests complement nucleic acid assays by providing a history of virus exposure, no matter symptoms developed from infection or the infection was asymptomatic. Serology tests for COVID-19 are in high demand, especially when the vaccines become available. They are important to determine the prevalence of the viral infection in a population and identify individuals who have been infected or vaccinated. ELISA is a simple and practically reliable serological test, which allows high-throughput implementation in surveillance studies. Several COVID-19 ELISA kits are available. However, they are mostly designed for human samples and species-specific secondary antibody is required for indirect ELISA format. This paper describes the development of an all species applicable monoclonal antibody (mAb)-based blocking ELISA to facilitate the detection and surveillance of COVID-19 in animals.
Collapse
Affiliation(s)
- Fangfeng Yuan
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Chi Chen
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Lina M. Covaleda
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Mathias Martins
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Jennifer M. Reinhart
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Drew R. Sullivan
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Medical District Veterinary Clinic, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Chicago, Illinois, USA
| | - Diego G. Diel
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Ying Fang
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
66
|
Jones S, Tyson GB, Orton RJ, Smollett K, Manna F, Kwok K, Suárez NM, Logan N, McDonald M, Bowie A, Filipe ADS, Willett BJ, Weir W, Hosie MJ. SARS-CoV-2 in Domestic UK Cats from Alpha to Omicron: Swab Surveillance and Case Reports. Viruses 2023; 15:1769. [PMID: 37632111 PMCID: PMC10459977 DOI: 10.3390/v15081769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Although domestic cats are susceptible to infection with SARS-CoV-2, the role of the virus in causing feline disease is less well defined. We conducted a large-scale study to identify SARS-CoV-2 infections in UK pet cats, using active and passive surveillance. Remnant feline respiratory swab samples, submitted for other pathogen testing between May 2021 and February 2023, were screened using RT-qPCR. In addition, we appealed to veterinarians for swab samples from cats suspected of having clinical SARS-CoV-2 infections. Bespoke testing for SARS-CoV-2 neutralising antibodies was also performed, on request, in suspected cases. One RT-qPCR-positive cat was identified by active surveillance (1/549, 0.18%), during the Delta wave (1/175, 0.57%). Passive surveillance detected one cat infected with the Alpha variant, and two of ten cats tested RT-qPCR-positive during the Delta wave. No cats tested RT-qPCR-positive after the emergence of Omicron BA.1 and its descendants although 374 were tested by active and eleven by passive surveillance. We describe four cases of SARS-CoV-2 infection in pet cats, identified by RT-qPCR and/or serology, that presented with a range of clinical signs, as well as their SARS-CoV-2 genome sequences. These cases demonstrate that, although uncommon in cats, a variety of clinical signs can occur.
Collapse
Affiliation(s)
- Sarah Jones
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (G.B.T.)
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK (W.W.)
| | - Grace B. Tyson
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (G.B.T.)
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK (W.W.)
| | - Richard J. Orton
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (G.B.T.)
| | - Katherine Smollett
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (G.B.T.)
| | - Federica Manna
- Bath Vet Referrals, Rosemary Lodge Veterinary Hospital, Wellsway, Bath BA2 5RL, UK
| | - Kirsty Kwok
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (G.B.T.)
| | - Nicolás M. Suárez
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (G.B.T.)
| | - Nicola Logan
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (G.B.T.)
| | - Michael McDonald
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK (W.W.)
| | - Andrea Bowie
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK (W.W.)
| | - Ana Da Silva Filipe
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (G.B.T.)
| | - Brian J. Willett
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (G.B.T.)
| | - William Weir
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK (W.W.)
| | - Margaret J. Hosie
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (G.B.T.)
| |
Collapse
|
67
|
Ehrlich M, Madden C, McBride DS, Nolting JM, Huey D, Kenney S, Wang Q, Saif LJ, Vlasova A, Dennis P, Lombardi D, Gibson S, McLaine A, Lauterbach S, Yaxley P, Winston JA, Diaz-Campos D, Pesapane R, Flint M, Flint J, Junge R, Faith SA, Bowman AS, Hale VL. Lack of SARS-CoV-2 Viral RNA Detection among a Convenience Sampling of Ohio Wildlife, Companion, and Agricultural Animals, 2020-2021. Animals (Basel) 2023; 13:2554. [PMID: 37627345 PMCID: PMC10451347 DOI: 10.3390/ani13162554] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in humans in late 2019 and spread rapidly, becoming a global pandemic. A zoonotic spillover event from animal to human was identified as the presumed origin. Subsequently, reports began emerging regarding spillback events resulting in SARS-CoV-2 infections in multiple animal species. These events highlighted critical links between animal and human health while also raising concerns about the development of new reservoir hosts and potential viral mutations that could alter the virulence and transmission or evade immune responses. Characterizing susceptibility, prevalence, and transmission between animal species became a priority to help protect animal and human health. In this study, we coalesced a large team of investigators and community partners to surveil for SARS-CoV-2 in domestic and free-ranging animals around Ohio between May 2020 and August 2021. We focused on species with known or predicted susceptibility to SARS-CoV-2 infection, highly congregated or medically compromised animals (e.g., shelters, barns, veterinary hospitals), and animals that had frequent contact with humans (e.g., pets, agricultural animals, zoo animals, or animals in wildlife hospitals). This included free-ranging deer (n = 76 individuals), free-ranging mink (n = 57), multiple species of bats (n = 59), and other wildlife in addition to domestic cats (n = 275) and pigs (n = 184). In total, we tested 792 individual animals (34 species) via rRT-PCR for SARS-CoV-2 RNA. SARS-CoV-2 viral RNA was not detected in any of the tested animals despite a major peak in human SARS-CoV-2 cases that occurred in Ohio subsequent to the peak of animal samplings. Importantly, we did not test for SARS-CoV-2 antibodies in this study, which limited our ability to assess exposure. While the results of this study were negative, the surveillance effort was critical and remains key to understanding, predicting, and preventing the re-emergence of SARS-CoV-2 in humans or animals.
Collapse
Affiliation(s)
- Margot Ehrlich
- College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Christopher Madden
- Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA (A.V.)
| | - Dillon S. McBride
- Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA (A.V.)
| | - Jacqueline M. Nolting
- Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA (A.V.)
| | - Devra Huey
- Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA (A.V.)
| | - Scott Kenney
- Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA (A.V.)
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
| | - Qiuhong Wang
- Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA (A.V.)
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
| | - Linda J. Saif
- Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA (A.V.)
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
| | - Anastasia Vlasova
- Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA (A.V.)
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
| | - Patricia Dennis
- Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA (A.V.)
- Cleveland Metroparks Zoo, Cleveland, OH 44109, USA
- Cleveland Metroparks, Cleveland, OH 44144, USA
| | | | | | - Alexis McLaine
- Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Sarah Lauterbach
- Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA (A.V.)
| | - Page Yaxley
- Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Jenessa A. Winston
- Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, The Ohio State University, Columbus, OH 43210, USA
| | - Dubraska Diaz-Campos
- Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Risa Pesapane
- Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA (A.V.)
- School of Environment and Natural Resources, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Mark Flint
- Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA (A.V.)
| | - Jaylene Flint
- Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA (A.V.)
| | - Randy Junge
- Columbus Zoo & Aquarium, Powell, OH 43065, USA
| | - Seth A. Faith
- Center of Microbiome Science, The Ohio State University, Columbus, OH 43210, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Andrew S. Bowman
- Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA (A.V.)
| | - Vanessa L. Hale
- Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA (A.V.)
- Center of Microbiome Science, The Ohio State University, Columbus, OH 43210, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
68
|
Fischer EAJ, Broens EM, Kooistra HS, De Rooij MMT, Stegeman JA, De Jong MCM. Contribution of cats and dogs to SARS-CoV-2 transmission in households. Front Vet Sci 2023; 10:1151772. [PMID: 37519992 PMCID: PMC10375487 DOI: 10.3389/fvets.2023.1151772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/13/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction SARS-CoV-2 is known to jump across species. The occurrence of transmission in households between humans and companion animals has been shown, but the contribution of companion animals to the overall transmission within a household is unknown. The basic reproduction number (R0) is an important indicator to quantify transmission. For a pathogen with multiple host species, such as SARS-CoV-2, the basic reproduction number needs to be calculated from the partial reproduction numbers for each combination of host species. Method In this study, the basic and partial reproduction numbers for SARS-CoV-2 were estimated by reanalyzing a survey of Dutch households with dogs and cats and minimally one SARS-CoV-2-infected human. Results For households with cats, a clear correlation between the number of cats and the basic reproduction number (Spearman's correlation: p 0.40, p-value: 1.4 × 10-5) was identified, while for dogs, the correlation was smaller and not significant (Spearman's correlation: p 0.12, p-value: 0.21). Partial reproduction numbers from cats or dogs to humans were 0.3 (0.0-2.0) and 0.3 (0.0-3.5) and from humans to cats or dogs were 0.6 (0.4-0.8) and 0.6 (0.4-0.9). Discussion Thus, the estimations of within-household transmission indicated the likelihood of transmission from these companion animals to humans and vice versa, but the observational nature of this study limited the ability to establish conclusive evidence. This study's findings support the advice provided during the pandemic to COVID-19 patients to maintain distance from companion animals as a precautionary measure and given the possibility of transmission, although there is an overall relatively limited impact on the pandemic when compared to human-to-human transmission.
Collapse
Affiliation(s)
| | - Els M. Broens
- Faculty Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Hans S. Kooistra
- Faculty Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | | | | | - Mart C. M. De Jong
- Department of Quantitative Veterinary Epidemiology, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
69
|
Devaux CA, Fantini J. ACE2 receptor polymorphism in humans and animals increases the risk of the emergence of SARS-CoV-2 variants during repeated intra- and inter-species host-switching of the virus. Front Microbiol 2023; 14:1199561. [PMID: 37520374 PMCID: PMC10373931 DOI: 10.3389/fmicb.2023.1199561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/23/2023] [Indexed: 08/01/2023] Open
Abstract
Like other coronaviruses, SARS-CoV-2 has ability to spread through human-to-human transmission and to circulate from humans to animals and from animals to humans. A high frequency of SARS-CoV-2 mutations has been observed in the viruses isolated from both humans and animals, suggesting a genetic fitness under positive selection in both ecological niches. The most documented positive selection force driving SARS-CoV-2 mutations is the host-specific immune response. However, after electrostatic interactions with lipid rafts, the first contact between the virus and host proteins is the viral spike-cellular receptor binding. Therefore, it is likely that the first level of selection pressure impacting viral fitness relates to the virus's affinity for its receptor, the angiotensin I converting enzyme 2 (ACE2). Although sufficiently conserved in a huge number of species to support binding of the viral spike with enough affinity to initiate fusion, ACE2 is highly polymorphic both among species and within a species. Here, we provide evidence suggesting that when the viral spike-ACE2 receptor interaction is not optimal, due to host-switching, mutations can be selected to improve the affinity of the spike for the ACE2 expressed by the new host. Notably, SARS-CoV-2 is mutation-prone in the spike receptor binding domain (RBD), allowing a better fit for ACE2 orthologs in animals. It is possibly that this may also be true for rare human alleles of ACE2 when the virus is spreading to billions of people. In this study, we present evidence that human subjects expressing the rare E329G allele of ACE2 with higher allele frequencies in European populations exhibit a improved affinity for the SARS-CoV-2 spike N501Y variant of the virus. This may suggest that this viral N501Y variant emerged in the human population after SARS-CoV-2 had infected a human carrying the rare E329G allele of ACE2. In addition, this viral evolution could impact viral replication as well as the ability of the adaptive humoral response to control infection with RBD-specific neutralizing antibodies. In a shifting landscape, this ACE2-driven genetic drift of SARS-CoV-2 which we have named the 'boomerang effect', could complicate the challenge of preventing COVID with a SARS-CoV-2 spike-derived vaccine.
Collapse
Affiliation(s)
- Christian A. Devaux
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, MEPHI, IHU–Méditerranée Infection, Marseille, France
- Centre National de la Recherche Scientifique (CNRS-SNC5039), Marseille, France
| | - Jacques Fantini
- INSERM UMR_S1072, Marseille, France, Aix-Marseille Université, Marseille, France
| |
Collapse
|
70
|
Hamdy ME, El Deeb AH, Hagag NM, Shahein MA, Alaidi O, Hussein HA. Interspecies transmission of SARS CoV-2 with special emphasis on viral mutations and ACE-2 receptor homology roles. Int J Vet Sci Med 2023; 11:55-86. [PMID: 37441062 PMCID: PMC10334861 DOI: 10.1080/23144599.2023.2222981] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 07/15/2023] Open
Abstract
COVID-19 outbreak was first reported in 2019, Wuhan, China. The spillover of the disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), to a wide range of pet, zoo, wild, and farm animals has emphasized potential zoonotic and reverse zoonotic viral transmission. Furthermore, it has evoked inquiries about susceptibility of different animal species to SARS-CoV-2 infection and role of these animals as viral reservoirs. Therefore, studying susceptible and non-susceptible hosts for SARS-CoV-2 infection could give a better understanding for the virus and will help in preventing further outbreaks. Here, we review structural aspects of SARS-CoV-2 spike protein, the effect of the different mutations observed in the spike protein, and the impact of ACE2 receptor variations in different animal hosts on inter-species transmission. Moreover, the SARS-CoV-2 spillover chain was reviewed. Combination of SARS-CoV-2 high mutation rate and homology of cellular ACE2 receptors enable the virus to transcend species barriers and facilitate its transmission between humans and animals.
Collapse
Affiliation(s)
- Mervat E. Hamdy
- Genome Research Unit, Animal Health Research Institute, Agriculture Research Centre, Giza, Egypt
| | - Ayman H. El Deeb
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Virology, Faculty of Veterinary Medicine, King Salman International University, South Sinai, Egypt
| | - Naglaa M. Hagag
- Genome Research Unit, Animal Health Research Institute, Agriculture Research Centre, Giza, Egypt
| | - Momtaz A. Shahein
- Department of Virology, Animal Health Research Institute, Agriculture Research Centre, Giza, Egypt
| | - Osama Alaidi
- Biocomplexity for Research and Consulting Co., Cairo, Egypt
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Hussein A. Hussein
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
71
|
Deng K, Nemser SM, Frost K, Goodman LB, Ip HS, Killian ML, Ulaszek J, Kiener S, Kmet M, Uhlig S, Hettwer K, Colson B, Nichani K, Schlierf A, Tkachenko A, Miller MR, Reddy R, Tyson GH. Successful Detection of Delta and Omicron Variants of SARS-CoV-2 by Veterinary Diagnostic Laboratory Participants in an Interlaboratory Comparison Exercise. J Appl Lab Med 2023; 8:726-741. [PMID: 37222567 PMCID: PMC11555767 DOI: 10.1093/jalm/jfad018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/17/2023] [Indexed: 05/25/2023]
Abstract
BACKGROUND Throughout the COVID-19 pandemic, veterinary diagnostic laboratories have tested diagnostic samples for SARS-CoV-2 both in animals and over 6 million human samples. An evaluation of the performance of those laboratories is needed using blinded test samples to ensure that laboratories report reliable data to the public. This interlaboratory comparison exercise (ILC3) builds on 2 prior exercises to assess whether veterinary diagnostic laboratories can detect Delta and Omicron variants spiked in canine nasal matrix or viral transport medium. METHODS The ILC organizer was an independent laboratory that prepared inactivated Delta variant at levels of 25 to 1000 copies per 50 µL of nasal matrix for blinded analysis. Omicron variant at 1000 copies per 50 µL of transport medium was also included. Feline infectious peritonitis virus (FIPV) RNA was used as a confounder for specificity assessment. Fourteen test samples were prepared for each participant. Participants used their routine diagnostic procedures for RNA extraction and real-time reverse transcriptase-PCR. Results were analyzed according to International Organization for Standardization (ISO) 16140-2:2016. RESULTS Overall, laboratories demonstrated 93% detection for Delta and 97% for Omicron at 1000 copies per 50 µL. Specificity was 97% for blank samples and 100% for blank samples with FIPV. No differences in Cycle Threshold (Ct) values were significant for samples with the same virus levels between N1 and N2 markers, nor between the 2 variants. CONCLUSIONS The results indicated that all ILC3 participants were able to detect both Delta and Omicron variants. The canine nasal matrix did not significantly affect SARS-CoV-2 detection.
Collapse
Affiliation(s)
- Kaiping Deng
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Bedford Park, IL, United States
| | - Sarah M. Nemser
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, United States
| | | | - Laura B. Goodman
- College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Hon S. Ip
- National Wildlife Health Center, U.S. Geological Survey, Madison, WI, United States
| | - Mary Lea Killian
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, U.S. Department of Agriculture, Ames, IA, United States
| | - Jodie Ulaszek
- Institute for Food Safety and Health, Illinois Institute of Technology, Bedford Park, IL, United States
| | - Shannon Kiener
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Bedford Park, IL, United States
| | - Matthew Kmet
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Bedford Park, IL, United States
| | | | | | | | | | | | - Andriy Tkachenko
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Megan R. Miller
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Ravinder Reddy
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Bedford Park, IL, United States
| | - Gregory H. Tyson
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, United States
| |
Collapse
|
72
|
Dusseldorp F, Bruins-van-Sonsbeek LGR, Buskermolen M, Niphuis H, Dirven M, Whelan J, Oude Munnink BB, Koopmans M, Fanoy EB, Sikkema RS, Tjon-A-Tsien A. SARS-CoV-2 in lions, gorillas and zookeepers in the Rotterdam Zoo, the Netherlands, a One Health investigation, November 2021. Euro Surveill 2023; 28:2200741. [PMID: 37440347 PMCID: PMC10347891 DOI: 10.2807/1560-7917.es.2023.28.28.2200741] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 03/07/2023] [Indexed: 07/15/2023] Open
Abstract
In November 2021, seven western lowland gorillas and four Asiatic lions were diagnosed with COVID-19 at Rotterdam Zoo. An outbreak investigation was undertaken to determine the source and extent of the outbreak and to identify possible transmission routes. Interviews were conducted with staff to identify human and animal contacts and cases, compliance with personal protective equipment (PPE) and potential transmission routes. Human and animal contacts and other animal species suspected to be susceptible to SARS-CoV-2 were tested for SARS-CoV-2 RNA. Positive samples were subjected to sequencing. All the gorillas and lions that could be tested (3/7 and 2/4, respectively) were RT-PCR positive between 12 November and 10 December 2021. No other animal species were SARS-CoV-2 RNA positive. Forty direct and indirect human contacts were identified. Two direct contacts tested RT-PCR positive 10 days after the first COVID-19 symptoms in animals. The zookeepers' viral genome sequences clustered with those of gorillas and lions. Personal protective equipment compliance was suboptimal at instances. Findings confirm transmission of SARS-CoV-2 among animals and between humans and animals but source and directionality could not be established. Zookeepers were the most likely source and should have periodic PPE training. Sick animals should promptly be tested and isolated/quarantined.
Collapse
Affiliation(s)
| | | | | | - Henk Niphuis
- Biomedical Primate Research Centre, Rijswijk, the Netherlands
| | | | - Jane Whelan
- Public Health Services Rotterdam Rijnmond, the Netherlands
| | - Bas B Oude Munnink
- Department of Viroscience, Erasmus MC, WHO Collaborating Centre for Arbovirus and Viral Hemorrhagic Fever Reference and Research, Rotterdam, the Netherlands
| | - Marion Koopmans
- Department of Viroscience, Erasmus MC, WHO Collaborating Centre for Arbovirus and Viral Hemorrhagic Fever Reference and Research, Rotterdam, the Netherlands
| | - Ewout B Fanoy
- Public Health Services Rotterdam Rijnmond, the Netherlands
| | - Reina S Sikkema
- Department of Viroscience, Erasmus MC, WHO Collaborating Centre for Arbovirus and Viral Hemorrhagic Fever Reference and Research, Rotterdam, the Netherlands
| | | |
Collapse
|
73
|
Ramasamy S, Gontu A, Neerukonda S, Ruggiero D, Morrow B, Gupta S, Amirthalingam S, Hardham JM, Lizer JT, Yon M, Nissly RH, Jakka P, Chothe SK, LaBella LC, Tewari D, Nair MS, Kuchipudi SV. SARS-CoV-2 Prevalence and Variant Surveillance among Cats in Pittsburgh, Pennsylvania, USA. Viruses 2023; 15:1493. [PMID: 37515180 PMCID: PMC10386599 DOI: 10.3390/v15071493] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infects many mammals, and SARS-CoV-2 circulation in nonhuman animals may increase the risk of novel variant emergence. Cats are highly susceptible to SARS-CoV-2 infection, and there were cases of virus transmission between cats and humans. The objective of this study was to assess the prevalence of SARS-CoV-2 variant infection of cats in an urban setting. We investigated the prevalence of SARS-CoV-2 variant infections in domestic and community cats in the city of Pittsburgh (n = 272). While no cats tested positive for SARS-CoV-2 viral RNA, 35 cats (12.86%) tested SARS-CoV-2-antibody-positive. Further, we compared a cat-specific experimental lateral flow assay (eLFA) and species-agnostic surrogate virus neutralization assay (sVNT) for SARS-CoV-2 antibody detection in cats (n = 71). The eLFA demonstrated 100% specificity compared to sVNT. The eLFA also showed 100% sensitivity for sera with >90% inhibition and 63.63% sensitivity for sera with 40-89% inhibition in sVNT. Using a variant-specific pseudovirus neutralization assay (pVNT) and antigen cartography, we found the presence of antibodies to pre-Omicron and Omicron SARS-CoV-2 variants. Hence, this approach proves valuable in identifying cat exposure to different SARS-CoV-2 variants. Our results highlight the continued exposure of cats to SARS-CoV-2 and warrant coordinated surveillance efforts.
Collapse
Affiliation(s)
- Santhamani Ramasamy
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Abhinay Gontu
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | | | - Diana Ruggiero
- S.R. Scientific LLC, 5854 Ellsworth Ave., Pittsburgh, PA 15232, USA
| | - Becky Morrow
- S.R. Scientific LLC, 5854 Ellsworth Ave., Pittsburgh, PA 15232, USA
- Frankie's Friends, 740 5th Ave, New Kensington, PA 15068, USA
| | - Sheweta Gupta
- S.R. Scientific LLC, 5854 Ellsworth Ave., Pittsburgh, PA 15232, USA
| | - Saranya Amirthalingam
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | - Michele Yon
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Ruth H Nissly
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Padmaja Jakka
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Shubhada K Chothe
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Lindsey C LaBella
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Deepanker Tewari
- Pennsylvania Department of Agriculture, Pennsylvania Veterinary Laboratory, Harrisburg, PA 17110, USA
| | - Meera Surendran Nair
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Suresh V Kuchipudi
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Huck Institute of Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
74
|
Cupertino MDC, Freitas AND, Meira GSB, Silva PAMD, Pires SDS, Cosendey TDA, Fernandes TM, Mayers NAJ, Siqueira-Batista R. COVID-19 and One Health: potential role of human and animals in SARS-CoV-2 life cycle. SCIENCE IN ONE HEALTH 2023; 2:100017. [PMID: 39077046 PMCID: PMC10238119 DOI: 10.1016/j.soh.2023.100017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 06/01/2023] [Indexed: 07/31/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes coronavirus disease 2019 (COVID-19) in humans has zoonotic tendencies, which can potentially provoke cross-species transmission, including human-to-animal and animal-to-human infection. Consequently, the objective was to analyze the scientific evidence regarding SARS-CoV-2 animal infections from potential human transmission. A systematic review was executed following the PRISMA guidelines, in the PubMed/MEDLINE, Google Scholar and LILACS, using the descriptors combined in the following way: (("SARS-CoV-2" OR "COVID-19" OR "2019-nCoV") AND (animals OR zoonosis)). The results contemplated the viral susceptibility of about thirty animal species when induced naturally and/or experimentally. The mink & hamster species demonstrated ostensible animal-to-human transmission. Overall, there have been more reports of human contamination by other species than human retransmission from the pathogen. The natural infection of the virus was discovered in domestic dogs & cats, wild cats, deer, minks, rabbits and hamsters. Several animals, including the African green monkeys and rabbits, manifested high levels of viremia, respiratory secretions and fecal excretions of infectious virus conducive to environmental/aerosol transmission. It is still inadequately documented the intrinsic role of such processes, such as the animals' involvement in viral mutations, the emergence of new variants/lineages and the role of the animal host species. Accordingly, this research model type, natural and experimental analysis on varying animal species, corroborates the link between the two aforementioned forms of transmission. Epidemiological surveillance through extensive sequencing of the viral genomes of infected animals and humans can reveal the SARS-CoV-2 transmission routes and anticipate appropriate prophylactic strategies.
Collapse
Affiliation(s)
- Marli do Carmo Cupertino
- School of Medicine, Faculdade Dinâmica do Vale do Piranga (FADIP), Ponte Nova, MG, Brazil
- Department of Medicine and Nursing, Federal University of Viçosa (UFV), Viçosa, MG, Brazil
- Department of Veterinary Medicine, Federal University of Viçosa (UFV), Viçosa, MG, Brazil
| | - Ana Nery Dias Freitas
- School of Medicine, Faculdade Dinâmica do Vale do Piranga (FADIP), Ponte Nova, MG, Brazil
| | | | | | - Sarah de Souza Pires
- School of Medicine, Faculdade Dinâmica do Vale do Piranga (FADIP), Ponte Nova, MG, Brazil
| | | | | | | | - Rodrigo Siqueira-Batista
- School of Medicine, Faculdade Dinâmica do Vale do Piranga (FADIP), Ponte Nova, MG, Brazil
- Department of Medicine and Nursing, Federal University of Viçosa (UFV), Viçosa, MG, Brazil
| |
Collapse
|
75
|
Italiya J, Bhavsar T, Černý J. Assessment and strategy development for SARS-CoV-2 screening in wildlife: A review. Vet World 2023; 16:1193-1200. [PMID: 37577208 PMCID: PMC10421538 DOI: 10.14202/vetworld.2023.1193-1200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/04/2023] [Indexed: 08/15/2023] Open
Abstract
Coronaviruses (members of the Coronaviridae family) are prominent in veterinary medicine, with several known infectious agents commonly reported. In contrast, human medicine has disregarded coronaviruses for an extended period. Within the past two decades, coronaviruses have caused three major outbreaks. One such outbreak was the coronavirus disease 2019 (COVID-19) caused by the coronavirus severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Over the 3-year COVID-19 outbreak, several instances of zooanthroponosis have been documented, which pose risks for virus modifications and possible re-emergence of the virus into the human population, causing a new epidemic and possible threats for vaccination or treatment failure. Therefore, widespread screening of animals is an essential technique for mitigating future risks and repercussions. However, mass detection of SARS-CoV-2 in wild animals might be challenging. In silico prediction modeling, experimental studies conducted on various animal species, and natural infection episodes recorded in various species might provide information on the potential threats to wildlife. They may be useful for diagnostic and mass screening purposes. In this review, the possible methods of wildlife screening, based on experimental data and environmental elements that might play a crucial role in its effective implementation, are reviewed.
Collapse
Affiliation(s)
- Jignesh Italiya
- Centre for Infectious Animal Diseases, Faculty of Tropical Agrisciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague – Suchdol, Czechia
| | - Tanvi Bhavsar
- Animal Physiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Jiří Černý
- Centre for Infectious Animal Diseases, Faculty of Tropical Agrisciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague – Suchdol, Czechia
| |
Collapse
|
76
|
Joffrin L, Cooreman T, Verheyen E, Vercammen F, Mariën J, Leirs H, Gryseels S. SARS-CoV-2 Surveillance between 2020 and 2021 of All Mammalian Species in Two Flemish Zoos (Antwerp Zoo and Planckendael Zoo). Vet Sci 2023; 10:382. [PMID: 37368768 DOI: 10.3390/vetsci10060382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
The COVID-19 pandemic has led to millions of human infections and deaths worldwide. Several other mammal species are also susceptible to SARS-CoV-2, and multiple instances of transmission from humans to pets, farmed mink, wildlife and zoo animals have been recorded. We conducted a systematic surveillance of SARS-CoV-2 in all mammal species in two zoos in Belgium between September and December 2020 and July 2021, in four sessions, and a targeted surveillance of selected mammal enclosures following SARS-CoV-2 infection in hippopotamuses in December 2021. A total of 1523 faecal samples from 103 mammal species were tested for SARS-CoV-2 via real-time PCR. None of the samples tested positive for SARS-CoV-2. Additional surrogate virus neutralisation tests conducted on 50 routinely collected serum samples from 26 mammal species were all negative. This study is the first to our knowledge to conduct active SARS-CoV-2 surveillance for several months in all mammal species of a zoo. We conclude that at the time of our investigation, none of the screened animals were excreting SARS-CoV-2.
Collapse
Affiliation(s)
- Léa Joffrin
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, 2610 Antwerp, Belgium
| | - Tine Cooreman
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, 2610 Antwerp, Belgium
| | - Erik Verheyen
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, 2610 Antwerp, Belgium
- OD Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, 1000 Brussels, Belgium
| | - Francis Vercammen
- Centre for Research and Conservation, Antwerp Zoo Society, 2018 Antwerp, Belgium
| | - Joachim Mariën
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, 2610 Antwerp, Belgium
| | - Herwig Leirs
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, 2610 Antwerp, Belgium
| | - Sophie Gryseels
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, 2610 Antwerp, Belgium
- OD Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, 1000 Brussels, Belgium
| |
Collapse
|
77
|
Van Leeuwen P, Falconer S, Veitch J, Pyott B, Hughes B, Zimmermann I, Schulte-Hostedde A. Zoos as Sentinels? A Meta-Analysis of Seroprevalence of Terrestrial Mammalian Viruses in Zoos. ECOHEALTH 2023:10.1007/s10393-023-01635-w. [PMID: 37247189 DOI: 10.1007/s10393-023-01635-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 03/24/2023] [Indexed: 05/30/2023]
Abstract
The One Health framework links animal, human, and environmental health, and focuses on emerging zoonotic pathogens. Understanding the interface between wildlife and human activity is critical due to the unpredictable nature of spillover of zoonotic pathogens from animals to humans. Zoos are important partners in One Health because of their contributions to education, conservation, and animal health monitoring. In addition, the housing of wildlife in captive and semi-natural settings makes zoos, especially relevant for detecting animal-related pathogens. A first step to determine the utility of zoos in contributing to pathogen surveillance is to survey the peer-reviewed literature. We, therefore, retrieved data from the previous 20 years and performed a meta-analysis to determine global patterns of viral seroprevalence in mammals housed in zoo collections from peer-reviewed literature. We analysed 50 articles, representing a total of 11,300 terrestrial mammals. Increased prevalence was found in viruses strictly targeting specific host taxonomy, especially in viruses transmitted through direct contact. Potentially complex patterns with geography were also identified, despite uneven sampling. This research highlights the role zoos could play in public health and encourages future standardized epidemiological surveillance of zoological collections.
Collapse
Affiliation(s)
- Pauline Van Leeuwen
- School of Natural Sciences, Laurentian University, c/o Dr. Albrecht Schulte-Hostedde, 935 Ramsey Lake Rd, Sudbury, ON, P3E 2C6, Canada.
- Conservation Genetics Laboratory, University of Liège, Liège, Belgium.
| | - Sarah Falconer
- School of Natural Sciences, Laurentian University, c/o Dr. Albrecht Schulte-Hostedde, 935 Ramsey Lake Rd, Sudbury, ON, P3E 2C6, Canada
| | - Jasmine Veitch
- W.M. Keck Science Department, Claremont McKenna College, Claremont, CA, USA
| | - Breanna Pyott
- School of Natural Sciences, Laurentian University, c/o Dr. Albrecht Schulte-Hostedde, 935 Ramsey Lake Rd, Sudbury, ON, P3E 2C6, Canada
| | - Bryan Hughes
- School of Natural Sciences, Laurentian University, c/o Dr. Albrecht Schulte-Hostedde, 935 Ramsey Lake Rd, Sudbury, ON, P3E 2C6, Canada
| | - Isabelle Zimmermann
- School of Natural Sciences, Laurentian University, c/o Dr. Albrecht Schulte-Hostedde, 935 Ramsey Lake Rd, Sudbury, ON, P3E 2C6, Canada
| | - Albrecht Schulte-Hostedde
- School of Natural Sciences, Laurentian University, c/o Dr. Albrecht Schulte-Hostedde, 935 Ramsey Lake Rd, Sudbury, ON, P3E 2C6, Canada
| |
Collapse
|
78
|
Robinson SJ, Kotwa JD, Jeeves SP, Himsworth CG, Pearl DL, Weese JS, Lindsay LR, Dibernardo A, Toledo NPL, Pickering BS, Goolia M, Chee HY, Blais-Savoie J, Chien E, Yim W, Yip L, Mubareka S, Jardine CM. Surveillance for SARS-CoV-2 in Norway Rats ( Rattus norvegicus) from Southern Ontario. Transbound Emerg Dis 2023; 2023:7631611. [PMID: 40303769 PMCID: PMC12016840 DOI: 10.1155/2023/7631611] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/09/2023] [Accepted: 03/18/2023] [Indexed: 01/05/2025]
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from wildlife has raised concerns about spillover from humans to animals, the establishment of novel wildlife reservoirs, and the potential for future outbreaks caused by variants of wildlife origin. Norway rats (Rattus norvegicus) are abundant in urban areas and live in close proximity to humans, providing the opportunity for spillover of SARS-CoV-2. Evidence of SARS-CoV-2 infection and exposure has been reported in Norway rats. We investigated SARS-CoV-2 infection and exposure in Norway rats from Southern Ontario, Canada. From October 2019 to June 2021, 224 rats were submitted by collaborating pest control companies. The majority of samples were collected in Windsor (79.9%; n = 179), Hamilton (13.8%; n = 31), and the Greater Toronto Area (5.8%; n = 13). Overall, 50.0% (n = 112) were female and most rats were sexually mature (55.8%; n = 125). Notably, 202 samples were collected prior to the emergence of variants of concern (VOC) and 22 were collected while the Alpha variant (B.1.1.7) was the predominant circulating VOC in humans. Nasal turbinate (n = 164) and small intestinal (n = 213) tissue samples were analyzed for SARS-CoV-2 RNA by RT-PCR. Thoracic cavity fluid samples (n = 213) were tested for neutralizing antibodies using a surrogate virus neutralization test (sVNT) (GenScript cPass); confirmatory plaque reduction neutralization test (PRNT) was conducted on presumptive positive samples. We did not detect SARS-CoV-2 RNA in any samples tested. Two out of eleven samples positive on sVNT had neutralizing antibodies confirmed positive by PRNT (1 : 40 and 1 : 320 PRNT70); both were collected prior to the emergence of VOC. It is imperative that efforts to control and monitor SARS-CoV-2 include surveillance of rats and other relevant wildlife species as novel variants continue to emerge.
Collapse
Affiliation(s)
- Sarah J. Robinson
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | | | - Simon P. Jeeves
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Chelsea G. Himsworth
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - David L. Pearl
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - J. Scott Weese
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - L. Robbin Lindsay
- Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | - Antonia Dibernardo
- Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | - Nikki P. L. Toledo
- Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | - Bradley S. Pickering
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Melissa Goolia
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | - Hsien-Yao Chee
- Sunnybrook Research Institute, Toronto, Ontario, Canada
- Global Health Research Center and Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | | | - Emily Chien
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Winfield Yim
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Lily Yip
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Samira Mubareka
- Sunnybrook Research Institute, Toronto, Ontario, Canada
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Claire M. Jardine
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- Canadian Wildlife Health Cooperative, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
79
|
Devaux CA, Fantini J. Unravelling Antigenic Cross-Reactions toward the World of Coronaviruses: Extent of the Stability of Shared Epitopes and SARS-CoV-2 Anti-Spike Cross-Neutralizing Antibodies. Pathogens 2023; 12:713. [PMID: 37242383 PMCID: PMC10220573 DOI: 10.3390/pathogens12050713] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The human immune repertoire retains the molecular memory of a very great diversity of target antigens (epitopes) and can recall this upon a second encounter with epitopes against which it has previously been primed. Although genetically diverse, proteins of coronaviruses exhibit sufficient conservation to lead to antigenic cross-reactions. In this review, our goal is to question whether pre-existing immunity against seasonal human coronaviruses (HCoVs) or exposure to animal CoVs has influenced the susceptibility of human populations to SARS-CoV-2 and/or had an impact upon the physiopathological outcome of COVID-19. With the hindsight that we now have regarding COVID-19, we conclude that although antigenic cross-reactions between different coronaviruses exist, cross-reactive antibody levels (titers) do not necessarily reflect on memory B cell frequencies and are not always directed against epitopes which confer cross-protection against SARS-CoV-2. Moreover, the immunological memory of these infections is short-term and occurs in only a small percentage of the population. Thus, in contrast to what might be observed in terms of cross-protection at the level of a single individual recently exposed to circulating coronaviruses, a pre-existing immunity against HCoVs or other CoVs can only have a very minor impact on SARS-CoV-2 circulation at the level of human populations.
Collapse
Affiliation(s)
- Christian A. Devaux
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM Institut Hospitalo-Universitaire—Méditerranée Infection, 13005 Marseille, France
- Centre National de la Recherche Scientifique (CNRS-SNC5039), 13009 Marseille, France
| | - Jacques Fantini
- Aix-Marseille Université, INSERM UMR_S 1072, 13015 Marseille, France
| |
Collapse
|
80
|
Chothe SK, Jakka P, Boorla VS, Ramasamy S, Gontu A, Nissly RH, Brown J, Turner G, Sewall BJ, Reeder DM, Field KA, Engiles JB, Amirthalingam S, Ravichandran A, LaBella L, Nair MS, Maranas CD, Kuchipudi SV. Little Brown Bats ( Myotis lucifugus) Support the Binding of SARS-CoV-2 Spike and Are Likely Susceptible to SARS-CoV-2 Infection. Viruses 2023; 15:v15051103. [PMID: 37243189 DOI: 10.3390/v15051103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), believed to have originated from a bat species, can infect a wide range of non-human hosts. Bats are known to harbor hundreds of coronaviruses capable of spillover into human populations. Recent studies have shown a significant variation in the susceptibility among bat species to SARS-CoV-2 infection. We show that little brown bats (LBB) express angiotensin-converting enzyme 2 receptor and the transmembrane serine protease 2, which are accessible to and support SARS-CoV-2 binding. All-atom molecular dynamics (MD) simulations revealed that LBB ACE2 formed strong electrostatic interactions with the RBD similar to human and cat ACE2 proteins. In summary, LBBs, a widely distributed North American bat species, could be at risk of SARS-CoV-2 infection and potentially serve as a natural reservoir. Finally, our framework, combining in vitro and in silico methods, is a useful tool to assess the SARS-CoV-2 susceptibility of bats and other animal species.
Collapse
Affiliation(s)
- Shubhada K Chothe
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Padmaja Jakka
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Veda Sheersh Boorla
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Santhamani Ramasamy
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Abhinay Gontu
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ruth H Nissly
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Justin Brown
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Pennsylvania Game Commission, 2001 Elmerton Ave, Harrisburg, PA 17110, USA
| | - Gregory Turner
- Pennsylvania Game Commission, 2001 Elmerton Ave, Harrisburg, PA 17110, USA
| | - Brent J Sewall
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
| | - DeeAnn M Reeder
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA
| | - Kenneth A Field
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA
| | - Julie B Engiles
- Departments of Pathobiology and Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA 19348, USA
| | - Saranya Amirthalingam
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Abirami Ravichandran
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Lindsey LaBella
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Meera Surendran Nair
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Suresh V Kuchipudi
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
81
|
Cui X, Fan K, Liang X, Gong W, Chen W, He B, Chen X, Wang H, Wang X, Zhang P, Lu X, Chen R, Lin K, Liu J, Zhai J, Liu DX, Shan F, Li Y, Chen RA, Meng H, Li X, Mi S, Jiang J, Zhou N, Chen Z, Zou JJ, Ge D, Yang Q, He K, Chen T, Wu YJ, Lu H, Irwin DM, Shen X, Hu Y, Lu X, Ding C, Guan Y, Tu C, Shen Y. Virus diversity, wildlife-domestic animal circulation and potential zoonotic viruses of small mammals, pangolins and zoo animals. Nat Commun 2023; 14:2488. [PMID: 37120646 PMCID: PMC10148632 DOI: 10.1038/s41467-023-38202-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/20/2023] [Indexed: 05/01/2023] Open
Abstract
Wildlife is reservoir of emerging viruses. Here we identified 27 families of mammalian viruses from 1981 wild animals and 194 zoo animals collected from south China between 2015 and 2022, isolated and characterized the pathogenicity of eight viruses. Bats harbor high diversity of coronaviruses, picornaviruses and astroviruses, and a potentially novel genus of Bornaviridae. In addition to the reported SARSr-CoV-2 and HKU4-CoV-like viruses, picornavirus and respiroviruses also likely circulate between bats and pangolins. Pikas harbor a new clade of Embecovirus and a new genus of arenaviruses. Further, the potential cross-species transmission of RNA viruses (paramyxovirus and astrovirus) and DNA viruses (pseudorabies virus, porcine circovirus 2, porcine circovirus 3 and parvovirus) between wildlife and domestic animals was identified, complicating wildlife protection and the prevention and control of these diseases in domestic animals. This study provides a nuanced view of the frequency of host-jumping events, as well as assessments of zoonotic risk.
Collapse
Affiliation(s)
- Xinyuan Cui
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Kewei Fan
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, College of Life Sciences, Longyan University, Longyan, 364012, China
| | - Xianghui Liang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Wenjie Gong
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Wu Chen
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | - Biao He
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Xiaoyuan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Hai Wang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xiao Wang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ping Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xingbang Lu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Rujian Chen
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Kaixiong Lin
- Fujian Meihuashan Institute of South China Tiger Breeding, Longyan, 364201, China
| | - Jiameng Liu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Junqiong Zhai
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | - Ding Xiang Liu
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, 526000, Guangdong, China
| | - Fen Shan
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | - Yuqi Li
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, College of Life Sciences, Longyan University, Longyan, 364012, China
| | - Rui Ai Chen
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, 526000, Guangdong, China
| | - Huifang Meng
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaobing Li
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, College of Life Sciences, Longyan University, Longyan, 364012, China
| | - Shijiang Mi
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Jianfeng Jiang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Niu Zhou
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | - Zujin Chen
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | - Jie-Jian Zou
- Guangdong Provincial Wildlife Monitoring and Rescue Center, Guangzhou, 510000, China
| | - Deyan Ge
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qisen Yang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kai He
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong, 510006, China
| | - Tengteng Chen
- Fujian Meihuashan Institute of South China Tiger Breeding, Longyan, 364201, China
| | - Ya-Jiang Wu
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | - Haoran Lu
- School of Mathematics, Sun Yat-sen University, Guangzhou, 510275, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S1A8, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, M5S1A8, Canada
| | - Xuejuan Shen
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yuanjia Hu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoman Lu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Chan Ding
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, 201106, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| | - Yi Guan
- Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College (SUMC), Shantou, 515041, China.
- Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong, China.
| | - Changchun Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| | - Yongyi Shen
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, 510642, China.
| |
Collapse
|
82
|
Despres HW, Mills MG, Schmidt MM, Gov J, Perez Y, Jindrich M, Crawford AML, Kohl WT, Rosenblatt E, Kubinski HC, Simmons BC, Nippes MC, Goldenberg AJ, Murtha KE, Nicoloro S, Harris MJ, Feeley AC, Gelinas TK, Cronin MK, Frederick RS, Thomas M, Johnson ME, Murphy J, Lenzini EB, Carr PA, Berger DH, Mehta SP, Floreani CJ, Koval AC, Young AL, Fish JH, Wallace J, Chaney E, Ushay G, Ross RS, Vostal EM, Thisner MC, Gonet KE, Deane OC, Pelletiere KR, Rockafeller VC, Waterman M, Barry TW, Goering CC, Shipman SD, Shiers AC, Reilly CE, Duff AM, Shirley DJ, Jerome KR, Pérez-Osorio AC, Greninger AL, Fortin N, Mosher BA, Bruce EA. Surveillance of Vermont wildlife in 2021-2022 reveals no detected SARS-CoV-2 viral RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538264. [PMID: 37162835 PMCID: PMC10168257 DOI: 10.1101/2023.04.25.538264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Previous studies have documented natural infections of SARS-CoV-2 in various domestic and wild animals. More recently, studies have been published noting the susceptibility of members of the Cervidae family, and infections in both wild and captive cervid populations. In this study, we investigated the presence of SARS-CoV-2 in mammalian wildlife within the state of Vermont. 739 nasal or throat samples were collected from wildlife throughout the state during the 2021 and 2022 harvest season. Data was collected from red and gray foxes ( Vulpes vulples and Urocyon cineroargentus , respectively), fishers ( Martes pennati ), river otters ( Lutra canadensis ), coyotes ( Canis lantrans ), bobcats ( Lynx rufus rufus ), black bears ( Ursus americanus ), and white-tailed deer ( Odocoileus virginianus ). Samples were tested for the presence of SARS-CoV-2 via quantitative RT-qPCR using the CDC N1/N2 primer set and/or the WHO-E gene primer set. Our results indicate that no sampled wildlife were positive for SARS-CoV-2. This finding is surprising, given that most published North America studies have found SARS-CoV-2 within their deer populations. The absence of SARS-CoV-2 RNA in populations sampled here may provide insights in to the various environmental and anthropogenic factors that reduce spillover and spread in North American's wildlife populations.
Collapse
Affiliation(s)
- Hannah W. Despres
- Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington VT, 05405, USA
| | - Margaret G. Mills
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA 98195, USA
| | - Madaline M. Schmidt
- Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington VT, 05405, USA
| | - Jolene Gov
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA 98195, USA
| | - Yael Perez
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA 98195, USA
| | - Mars Jindrich
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA 98195, USA
| | - Allison M. L. Crawford
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA 98195, USA
| | - Warren T. Kohl
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA 98195, USA
| | - Elias Rosenblatt
- Rubenstein School of Environment and Natural Resources, University of Vermont, 81 Carrigan Dr Burlington, VT 05405, USA
| | - Hannah C. Kubinski
- Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington VT, 05405, USA
| | - Benjamin C. Simmons
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Miles C. Nippes
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Anne J. Goldenberg
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Kristina E. Murtha
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Samantha Nicoloro
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Mia J. Harris
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Avery C. Feeley
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Taylor K. Gelinas
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Maeve K. Cronin
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Robert S. Frederick
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Matthew Thomas
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Meaghan E. Johnson
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - James Murphy
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Elle B. Lenzini
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Peter A. Carr
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Danielle H. Berger
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Soham P. Mehta
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | | | - Amelia C. Koval
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Aleah L. Young
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Jess H. Fish
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Jack Wallace
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Ella Chaney
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Grace Ushay
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Rebecca S. Ross
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Erin M. Vostal
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Maya C. Thisner
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Kyliegh E. Gonet
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Owen C. Deane
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Kari R. Pelletiere
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | | | - Madeline Waterman
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Tyler W. Barry
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Catriona C. Goering
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Sarah D. Shipman
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Allie C. Shiers
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Claire E. Reilly
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Alanna M. Duff
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | | | - Keith R. Jerome
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA 98195, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle WA 98109, USA
| | - Ailyn C. Pérez-Osorio
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA 98195, USA
| | - Alexander L. Greninger
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA 98195, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle WA 98109, USA
| | - Nick Fortin
- Vermont Agency of Natural Resources, Fish & Wildlife Department, Rutland, VT 05701
| | - Brittany A. Mosher
- Rubenstein School of Environment and Natural Resources, University of Vermont, 81 Carrigan Dr Burlington, VT 05405, USA
| | - Emily A. Bruce
- Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington VT, 05405, USA
| |
Collapse
|
83
|
Cui X, Wang Y, Zhai J, Xue M, Zheng C, Yu L. Future trajectory of SARS-CoV-2: Constant spillover back and forth between humans and animals. Virus Res 2023; 328:199075. [PMID: 36805410 PMCID: PMC9972147 DOI: 10.1016/j.virusres.2023.199075] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/05/2023] [Accepted: 02/14/2023] [Indexed: 02/23/2023]
Abstract
SARS-CoV-2, known as severe acute respiratory syndrome coronavirus 2, is causing a massive global public health dilemma. In particular, the outbreak of the Omicron variants of SARS-CoV-2 in several countries has aroused the great attention of the World Health Organization (WHO). As of February 1st, 2023, the WHO had counted 671,016,135 confirmed cases and 6,835,595 deaths worldwide. Despite effective vaccines and drug treatments, there is currently no way to completely and directly eliminate SARS-CoV-2. Moreover, frequent cases of SARS-CoV-2 infection in animals have also been reported. In this review, we suggest that SARS-CoV-2, as a zoonotic virus, may be frequently transmitted between animals and humans in the future, which provides a reference and warning for rational prevention and control of COVID-19.
Collapse
Affiliation(s)
- Xinhua Cui
- State Key Laboratory of Human-Animal Zoonotic infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | - Yang Wang
- State Key Laboratory of Human-Animal Zoonotic infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | - Jingbo Zhai
- Medical College, Inner Mongolia Minzu University, Tongliao, China; Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Chunfu Zheng
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China; Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.
| | - Lu Yu
- State Key Laboratory of Human-Animal Zoonotic infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
84
|
Gilbert M, Dvornicky-Raymond Z, Bodgener J. Disease threats to tigers and their prey. Front Ecol Evol 2023; 11. [DOI: 10.3389/fevo.2023.1135935] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
The contraction of the global tiger population over the last 100 years into small, often isolated subpopulations has made them increasingly vulnerable to the impact of disease. Despite this, the health of wild tigers continues to be insufficiently funded and explored. For example, canine distemper virus (CDV), has been associated with localized declines and increased risk of extinction, and yet has received little research attention in most tiger range countries. The emergence of new pathogenic threats has posed fresh challenges, including African swine fever virus (ASFV), which has the potential to devastate wild boar populations, and severe acute respiratory syndrome coronavirus (SARS-CoV2) with implications for tiger conservation that remain unknown. The objective of this review is to synthesize current research on the health of tigers and their prey that impacts the conservation of tigers in the wild. Published sources are interpreted based on three mechanisms through which disease can affect the viability of tiger populations: (1) by reducing the survival of adult tigers, (2) by reducing breeding productivity, and (3) by reducing the carrying capacity of tiger habitat through decreased prey abundance. Examples of CDV, SARS-CoV2, carnivore protoparvovirus 1 and ASFV are used to illustrate these processes and inform discussion of research and mitigation priorities.
Collapse
|
85
|
Li M, Du J, Liu W, Li Z, Lv F, Hu C, Dai Y, Zhang X, Zhang Z, Liu G, Pan Q, Yu Y, Wang X, Zhu P, Tan X, Garber PA, Zhou X. Comparative susceptibility of SARS-CoV-2, SARS-CoV, and MERS-CoV across mammals. THE ISME JOURNAL 2023; 17:549-560. [PMID: 36690780 PMCID: PMC9869846 DOI: 10.1038/s41396-023-01368-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/24/2023]
Abstract
Exploring wild reservoirs of pathogenic viruses is critical for their long-term control and for predicting future pandemic scenarios. Here, a comparative in vitro infection analysis was first performed on 83 cell cultures derived from 55 mammalian species using pseudotyped viruses bearing S proteins from SARS-CoV-2, SARS-CoV, and MERS-CoV. Cell cultures from Thomas's horseshoe bats, king horseshoe bats, green monkeys, and ferrets were found to be highly susceptible to SARS-CoV-2, SARS-CoV, and MERS-CoV pseudotyped viruses. Moreover, five variants (del69-70, D80Y, S98F, T572I, and Q675H), that beside spike receptor-binding domain can significantly alter the host tropism of SARS-CoV-2. An examination of phylogenetic signals of transduction rates revealed that closely related taxa generally have similar susceptibility to MERS-CoV but not to SARS-CoV and SARS-CoV-2 pseudotyped viruses. Additionally, we discovered that the expression of 95 genes, e.g., PZDK1 and APOBEC3, were commonly associated with the transduction rates of SARS-CoV, MERS-CoV, and SARS-CoV-2 pseudotyped viruses. This study provides basic documentation of the susceptibility, variants, and molecules that underlie the cross-species transmission of these coronaviruses.
Collapse
Affiliation(s)
- Meng Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Juan Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiqiang Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zihao Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Lv
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunyan Hu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yichen Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoxiao Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhan Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gaoming Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi Pan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Yu
- School of Life Sciences, University of Science and Technology of China, Anhui, China
| | - Xiao Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Pingfen Zhu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xu Tan
- Beijing Advanced Center for Structural Biology, Beijing Frontier Innovation Center, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Paul A Garber
- Department of Anthropology, Program in Ecology, Evolution, and Conservation Biology, University of Illinois, Urbana, IL, USA
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
86
|
Zhang H, Jin H, Yan F, Song Y, Dai J, Jiao C, Bai Y, Sun J, Liu D, Wang S, Zhang M, Lu J, Huang J, Huang P, Li Y, Xia X, Wang H. An inactivated recombinant rabies virus chimerically expressed RBD induces humoral and cellular immunity against SARS-CoV-2 and RABV. Virol Sin 2023; 38:244-256. [PMID: 36587795 PMCID: PMC9797420 DOI: 10.1016/j.virs.2022.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022] Open
Abstract
Many studies suggest that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can infect various animals and transmit among animals, and even to humans, posing a threat to humans and animals. There is an urgent need to develop inexpensive and efficient animal vaccines to prevent and control coronavirus disease 2019 (COVID-19) in animals. Rabies virus (RABV) is another important zoonotic pathogen that infects almost all warm-blooded animals and poses a great public health threat. The present study constructed two recombinant chimeric viruses expressing the S1 and RBD proteins of the SARS-CoV-2 Wuhan01 strain based on a reverse genetic system of the RABV SRV9 strain and evaluated their immunogenicity in mice, cats and dogs. The results showed that both inactivated recombinant viruses induced durable neutralizing antibodies against SARS-CoV-2 and RABV and a strong cellular immune response in mice. Notably, inactivated SRV-nCoV-RBD induced earlier antibody production than SRV-nCoV-S1, which was maintained at high levels for longer periods. Inactivated SRV-nCoV-RBD induced neutralizing antibodies against both SARS-CoV-2 and RABV in cats and dogs, with a relatively broad-spectrum cross-neutralization capability against the SARS-CoV-2 pseudoviruses including Alpha, Beta, Gamma, Delta, and Omicron, showing potential to be used as a safe bivalent vaccine candidate against COVID-19 and rabies in animals.
Collapse
Affiliation(s)
- Haili Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Hongli Jin
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China; Changchun Sino Biotechnology Co., Ltd., Changchun, 130012, China
| | - Feihu Yan
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Yumeng Song
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Jiaxin Dai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Cuicui Jiao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yujie Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Jingxuan Sun
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Di Liu
- Changchun Sino Biotechnology Co., Ltd., Changchun, 130012, China
| | - Shen Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Mengyao Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Jilong Lu
- Changchun Sino Biotechnology Co., Ltd., Changchun, 130012, China
| | - Jingbo Huang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Pei Huang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yuanyuan Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xianzhu Xia
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Hualei Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
87
|
Dunowska M. Cross-species transmission of coronaviruses with a focus on severe acute respiratory syndrome coronavirus 2 infection in animals: a review for the veterinary practitioner. N Z Vet J 2023:1-13. [PMID: 36927253 DOI: 10.1080/00480169.2023.2191349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
AbstractIn 2019 a novel coronavirus termed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged from an unidentified source and spread rapidly among humans worldwide. While many human infections are mild, some result in severe clinical disease that in a small proportion of infected people is fatal. The pandemic spread of SARS-CoV-2 has been facilitated by efficient human-to-human transmission of the virus, with no data to indicate that animals contributed to this global health crisis. However, a range of domesticated and wild animals are also susceptible to SARS-CoV-2 infection under both experimental and natural conditions. Humans are presumed to be the source of most animal infections thus far, although natural transmission between mink and between free-ranging deer has occurred, and occasional natural transmission between cats cannot be fully excluded. Considering the ongoing circulation of the virus among people, together with its capacity to evolve through mutation and recombination, the risk of the emergence of animal-adapted variants is not negligible. If such variants remain infectious to humans, this could lead to the establishment of an animal reservoir for the virus, which would complicate control efforts. As such, minimising human-to-animal transmission of SARS-CoV-2 should be considered as part of infection control efforts. The aim of this review is to summarise what is currently known about the species specificity of animal coronaviruses, with an emphasis on SARS-CoV-2, in the broader context of factors that facilitate cross-species transmission of viruses.
Collapse
Affiliation(s)
- M Dunowska
- Tāwharau Ora - School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
88
|
Borkakoti R, Karikalan M, Nehul SK, Jogi HR, Sharma K, Nautiyal S, Mishra R, Mahajan S, Biswas SK, Nandi S, Chander V, Pawde A, Saikumar G, Singh KP, Sharma GK. A retrospective study showing a high rate of seropositivity against SARS-CoV-2 in wild felines in India. Arch Virol 2023; 168:109. [PMID: 36914777 PMCID: PMC10010641 DOI: 10.1007/s00705-023-05735-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/09/2023] [Indexed: 03/16/2023]
Abstract
We report a high rate of seropositivity against SARS-CoV-2 in wild felines in India. Seropositivity was determined by microneutralization and plaque reduction neutralization assays in captive Asiatic lions, leopards, and Bengal tigers. The rate of seropositivity was positively correlated with that of the incidence in humans, suggesting the occurrence of large spillover events.
Collapse
Affiliation(s)
- Richa Borkakoti
- CADRAD, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, Bareilly, 243122, India
| | - M Karikalan
- Center for Wildlife Conservation Management and Disease Surveillance, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, Bareilly, 243122, India
| | | | - Harsh Rajeshbhai Jogi
- CADRAD, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, Bareilly, 243122, India
| | - Kirtika Sharma
- Center for Wildlife Conservation Management and Disease Surveillance, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, Bareilly, 243122, India
| | - Sushmita Nautiyal
- CADRAD, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, Bareilly, 243122, India
| | - Ragini Mishra
- CADRAD, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, Bareilly, 243122, India
| | - Sonalika Mahajan
- Biological Standardization Division, ICAR-Indian Veterinary Research Institute, Izatnagar Bareilly, Izatnagar Uttar Pradesh, 243122, Uttar Pradesh, India
| | - Sanchay Kumar Biswas
- CADRAD, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, Bareilly, 243122, India
| | - Sukdeb Nandi
- CADRAD, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, Bareilly, 243122, India
| | - Vishal Chander
- Division of Virology, ICAR-Indian Veterinary Research Institute, Mukteshwar, 263138, Uttarakhand, India
- CADRAD, ICAR-Indian Veterinary Research Institute Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Abhijit Pawde
- Center for Wildlife Conservation Management and Disease Surveillance, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, Bareilly, 243122, India
| | - G Saikumar
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, Bareilly, 243122, India
| | - Karam Pal Singh
- CADRAD, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, Bareilly, 243122, India
| | - Gaurav Kumar Sharma
- CADRAD, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, Bareilly, 243122, India.
| |
Collapse
|
89
|
Lopes LR. Cervids ACE2 Residues that Bind the Spike Protein can Provide Susceptibility to SARS-CoV-2. ECOHEALTH 2023; 20:9-17. [PMID: 37106170 PMCID: PMC10139662 DOI: 10.1007/s10393-023-01632-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/18/2023] [Accepted: 03/01/2023] [Indexed: 06/11/2023]
Abstract
The susceptibility of the white-tailed deer (WTD; Odocoileus virginianus) to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted cervids as coronavirus reservoirs. This study aimed to evaluate the angiotensin-converting enzyme 2 (ACE2) residues which bind the spike protein of SARS-CoV-2 from 16 cervids to predict their potential susceptibility to SARS-CoV-2 infection. Eleven out of 16 species presented identical ACE2 key residues to WTD ACE2. Four cervids presented K31N, a variant associated with low SARS-CoV-2 susceptibility. Large herding of cervids with ACE2 key residues identical to that of the WTD can result in extensive reservoirs of SARS-CoV-2. Cervids as potential reservoirs could favor SARS-CoV-2 adaptation and the emergence of new coronavirus strains.
Collapse
Affiliation(s)
- Luciano Rodrigo Lopes
- Bioinformatics and Bio-Data Science Division, Health Informatics Department, Universidade Federal de São Paulo - UNIFESP, Rua Botucatu 862 - Prédio Leal Prado (térreo), São Paulo, SP, 04023-062, Brazil.
| |
Collapse
|
90
|
Mesquita FP, Noronha Souza PF, Aragão DR, Diógenes EM, da Silva EL, Amaral JL, Freire VN, de Souza Collares Maia Castelo-Branco D, Montenegro RC. In silico analysis of ACE2 from different animal species provides new insights into SARS-CoV-2 species spillover. Future Virol 2023:10.2217/fvl-2022-0187. [PMID: 37064326 PMCID: PMC10096339 DOI: 10.2217/fvl-2022-0187] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/07/2023] [Indexed: 04/18/2023]
Abstract
Aim: This study aimed to analyze the phylogenetic relationships between the ACE2 of humans and other animals and investigate the potential interaction between SARS-CoV-2 RBD and ACE2 of different species. Materials & methods: The phylogenetic construction and molecular interactions were assessed using computational models. Results & conclusion: Despite the evolutionary distance, 11 species had a perfect fit for the interaction between their ACE2 and SARS-CoV-2 RBD (Chinchilla lanigera, Neovison vison, Rhinolophus sinicus, Emballonura alecto, Saccopteryx bilineata, Numida meleagris). Among them, the avian N. meleagris was reported for the first time in this study as a probable SARS-CoV-2 host due to the strong molecular interactions. Therefore, predicting potential hosts for SARS-CoV-2 for understanding the epidemiological cycle and proposal of surveillance strategies.
Collapse
Affiliation(s)
- Felipe Pantoja Mesquita
- Laboratory of Pharmacogenetics, Drug Research & Development Center (N.P.D.M.), Federal University of Ceará, Fortaleza, 60430-2752, Brazil
| | - Pedro Filho Noronha Souza
- Laboratory of Pharmacogenetics, Drug Research & Development Center (N.P.D.M.), Federal University of Ceará, Fortaleza, 60430-2752, Brazil
- Department of Biochemistry & Molecular Biology, Federal University of Ceará, Fortaleza, 60440-9003, Brazil
| | - Dyane Rocha Aragão
- Laboratory of Pharmacogenetics, Drug Research & Development Center (N.P.D.M.), Federal University of Ceará, Fortaleza, 60430-2752, Brazil
| | - Expedito Maia Diógenes
- Specialized Medical Mycology Center, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, 60430-1404, Brazil
| | - Emerson Lucena da Silva
- Laboratory of Pharmacogenetics, Drug Research & Development Center (N.P.D.M.), Federal University of Ceará, Fortaleza, 60430-2752, Brazil
| | - Jackson Lima Amaral
- Department of Biochemistry & Molecular Biology, Federal University of Ceará, Fortaleza, 60440-9003, Brazil
| | | | - Débora de Souza Collares Maia Castelo-Branco
- Specialized Medical Mycology Center, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, 60430-1404, Brazil
- Author for correspondence: Tel.: +55 (85) 3366 8033;
| | - Raquel Carvalho Montenegro
- Laboratory of Pharmacogenetics, Drug Research & Development Center (N.P.D.M.), Federal University of Ceará, Fortaleza, 60430-2752, Brazil
- Author for correspondence: Tel.: +55 (85) 3366 8033;
| |
Collapse
|
91
|
Kadi H, Kurucay HN, Elhag AE, Dogan F, Yildirim S, Tutuncu H, Muftuoglu B, Tamer C, Okur Gumusova S, Yazici Z, Mesquita JR, Albayrak H. A one-year extensive molecular survey on SARS-CoV-2 in companion animals of Turkey shows a lack of evidence for viral circulation in pet dogs and cats. Vet Anim Sci 2023; 19:100280. [PMID: 36582670 PMCID: PMC9792910 DOI: 10.1016/j.vas.2022.100280] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Current evidence have now demonstrated that SARS-CoV-2 infects a wide array of mammalian animals; however, the full range of hosts and the viral circulation in companion animals remains to be clarified. In this context, as no such evidenced cases have been reported from Turkey, we aimed to screen for SARS-CoV-2 nucleic acid in housed dogs and cats clinically evaluated for respiratory symptoms and reared in different locations of Samsun province in the black sea region of Turkey from July 2020 to July 2021. Nasal swabs were collected from a total of 415 pets (65 cats and 350 dogs) aged between 1 and 9 years old. All the specimens were tested for SARS-CoV-2 RNA presence by real-time RT-PCR targeting two genomic regions of SARS-CoV-2, but none showed positive results. Our findings suggest that SARS-CoV-2 does not circulate in local pets and is not responsible for respiratory symptoms. However, further comprehensive molecular and serological surveys are required to have a better picture of the zoonotic, reverse zoonotic and pathogenic consequences of the ongoing COVID-19 pandemic in Turkey.
Collapse
Affiliation(s)
- Hamza Kadi
- Department of Virology, Samsun Veterinary Control Institute, Ministry of Agriculture and Forestry, 55200 Atakum, Samsun, Turkey
| | - Hanne Nur Kurucay
- Department of Veterinary Virology, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55139 Atakum, Samsun, Turkey
| | - Ahmed Eisa Elhag
- Department of Veterinary Virology, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55139 Atakum, Samsun, Turkey
- Department of Preventive Medicine and Clinical Studies, Faculty of Veterinary Sciences, University of Gadarif, P.O.Box.449, 32211, Al Qadarif, Sudan
| | - Fatih Dogan
- Department of Virology, Samsun Veterinary Control Institute, Ministry of Agriculture and Forestry, 55200 Atakum, Samsun, Turkey
| | - Serdar Yildirim
- Department of Virology, Samsun Veterinary Control Institute, Ministry of Agriculture and Forestry, 55200 Atakum, Samsun, Turkey
| | - Hakan Tutuncu
- Department of Virology, Samsun Veterinary Control Institute, Ministry of Agriculture and Forestry, 55200 Atakum, Samsun, Turkey
| | - Bahadir Muftuoglu
- Department of Veterinary Experimental Animals, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55139 Atakum, Samsun, Turkey
| | - Cuneyt Tamer
- Department of Veterinary Virology, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55139 Atakum, Samsun, Turkey
| | - Semra Okur Gumusova
- Department of Veterinary Virology, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55139 Atakum, Samsun, Turkey
| | - Zafer Yazici
- Department of Veterinary Virology, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55139 Atakum, Samsun, Turkey
| | - João R. Mesquita
- ICBAS—School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Harun Albayrak
- Department of Veterinary Virology, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55139 Atakum, Samsun, Turkey
| |
Collapse
|
92
|
Hall JS, Hofmeister E, Ip HS, Nashold SW, Leon AE, Malavé CM, Falendysz EA, Rocke TE, Carossino M, Balasuriya U, Knowles S. Experimental Infection of Mexican Free-Tailed Bats ( Tadarida brasiliensis) with SARS-CoV-2. mSphere 2023; 8:e0026322. [PMID: 36598226 PMCID: PMC9942575 DOI: 10.1128/msphere.00263-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/10/2022] [Indexed: 01/05/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus is thought to have originated in wild bats from Asia, and as the resulting pandemic continues into its third year, concerns have been raised that the virus will expand its host range and infect North American wildlife species, including bats. Mexican free-tailed bats (Tadarida brasiliensis) live in large colonies in the southern United States, often in urban areas and, as such, could be exposed to the virus from infected humans. We experimentally challenged wild T. brasiliensis with SARS-CoV-2 to determine the susceptibility, reservoir potential, and population impacts of infection in this species. Of 10 bats oronasally inoculated with SARS-CoV-2, 5 became infected and orally excreted moderate amounts of virus for up to 18 days postinoculation. These five subjects all seroconverted and cleared the virus before the end of the study with no obvious clinical signs of disease. We additionally found no evidence of viral transmission to uninoculated subjects. These results indicate that while T. brasiliensis are susceptible to SARS-CoV-2 infection, infection of wild populations of T. brasiliensis would not likely cause mortality. However, the transmission of SARS-CoV-2 from T. brasiliensis to or from humans, or to other animal species, is a possibility requiring further investigation to better define. IMPORTANCE As the COVID-19 pandemic has continued for 3+ years, there has been increasing concern that the SARS-CoV-2 virus will enter wildlife populations and potentially create new reservoirs where the virus could adapt to a new host and create variants. This is particularly possible with species that reside in man-made structures, in proximity to infected human populations. Mexican free-tailed bats (Tadarida brasiliensis) live in large colonies, often in urban settings and, thus, can be exposed by infected humans and potentially transmit the virus to new hosts. We experimentally challenged T. brasiliensis with SARS-CoV-2 and revealed that they are susceptible to the virus and excrete moderate amounts for up to 18 days postinoculation. This is important information for wildlife biologists, wildlife rehabilitation workers, and the general public that may contact these animals.
Collapse
Affiliation(s)
- J. S. Hall
- U.S. Geological Survey, National Wildlife Health Center, Madison, Wisconsin, USA
| | - E. Hofmeister
- U.S. Geological Survey, National Wildlife Health Center, Madison, Wisconsin, USA
| | - H. S. Ip
- U.S. Geological Survey, National Wildlife Health Center, Madison, Wisconsin, USA
| | - S. W. Nashold
- U.S. Geological Survey, National Wildlife Health Center, Madison, Wisconsin, USA
| | - A. E. Leon
- U.S. Geological Survey, National Wildlife Health Center, Madison, Wisconsin, USA
| | - C. M. Malavé
- U.S. Geological Survey, National Wildlife Health Center, Madison, Wisconsin, USA
| | - E. A. Falendysz
- U.S. Geological Survey, National Wildlife Health Center, Madison, Wisconsin, USA
| | - T. E. Rocke
- U.S. Geological Survey, National Wildlife Health Center, Madison, Wisconsin, USA
| | - M. Carossino
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Health Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
- Department of Pathobiological Sciences, School of Veterinary Health Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - U. Balasuriya
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Health Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
- Department of Pathobiological Sciences, School of Veterinary Health Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - S. Knowles
- U.S. Geological Survey, National Wildlife Health Center, Madison, Wisconsin, USA
| |
Collapse
|
93
|
Santaniello A, Perruolo G, Cristiano S, Agognon AL, Cabaro S, Amato A, Dipineto L, Borrelli L, Formisano P, Fioretti A, Oriente F. SARS-CoV-2 Affects Both Humans and Animals: What Is the Potential Transmission Risk? A Literature Review. Microorganisms 2023; 11:microorganisms11020514. [PMID: 36838479 PMCID: PMC9959838 DOI: 10.3390/microorganisms11020514] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
In March 2020, the World Health Organization Department declared the coronavirus (COVID-19) outbreak a global pandemic, as a consequence of its rapid spread on all continents. The COVID-19 pandemic has been not only a health emergency but also a serious general problem as fear of contagion and severe restrictions put economic and social activity on hold in many countries. Considering the close link between human and animal health, COVID-19 might infect wild and companion animals, and spawn dangerous viral mutants that could jump back and pose an ulterior threat to us. The purpose of this review is to provide an overview of the pandemic, with a particular focus on the clinical manifestations in humans and animals, the different diagnosis methods, the potential transmission risks, and their potential direct impact on the human-animal relationship.
Collapse
Affiliation(s)
- Antonio Santaniello
- Department of Veterinary Medicine and Animal Production, Federico II University of Naples, 80134 Naples, Italy
- Correspondence: (A.S.); (S.C.); Tel.: +39-081-253-6134 (A.S.)
| | - Giuseppe Perruolo
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy
| | - Serena Cristiano
- Department of Veterinary Medicine and Animal Production, Federico II University of Naples, 80134 Naples, Italy
- Correspondence: (A.S.); (S.C.); Tel.: +39-081-253-6134 (A.S.)
| | - Ayewa Lawoe Agognon
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy
| | - Serena Cabaro
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy
| | - Alessia Amato
- Department of Veterinary Medicine and Animal Production, Federico II University of Naples, 80134 Naples, Italy
| | - Ludovico Dipineto
- Department of Veterinary Medicine and Animal Production, Federico II University of Naples, 80134 Naples, Italy
| | - Luca Borrelli
- Department of Veterinary Medicine and Animal Production, Federico II University of Naples, 80134 Naples, Italy
| | - Pietro Formisano
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy
| | - Alessandro Fioretti
- Department of Veterinary Medicine and Animal Production, Federico II University of Naples, 80134 Naples, Italy
| | - Francesco Oriente
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy
| |
Collapse
|
94
|
Pagani I, Ghezzi S, Alberti S, Poli G, Vicenzi E. Origin and evolution of SARS-CoV-2. EUROPEAN PHYSICAL JOURNAL PLUS 2023; 138:157. [PMID: 36811098 PMCID: PMC9933829 DOI: 10.1140/epjp/s13360-023-03719-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 01/19/2023] [Indexed: 05/14/2023]
Abstract
SARS-CoV-2 is a novel coronavirus that emerged in China at the end of 2019 causing the severe disease known as coronavirus disease 2019 (COVID-19). SARS-CoV-2, as to the previously highly pathogenic human coronaviruses named SARS-CoV, the etiological agent of severe acute respiratory syndrome (SARS), has a zoonotic origin, although SARS-CoV-2 precise chain of animal-to-human transmission remains undefined. Unlike the 2002-2003 pandemic caused by SARS-CoV whose extinction from the human population was achieved in eight months, SARS-CoV-2 has been spreading globally in an immunologically naïve population in an unprecedented manner. The efficient infection and replication of SARS-CoV-2 has resulted in the emergence of viral variants that have become predominant posing concerns about their containment as they are more infectious with variable pathogenicity in respect to the original virus. Although vaccine availability is limiting severe disease and death caused by SARS-CoV-2 infection, its extinction is far to be close and predictable. In this regard, the emersion of the Omicron viral variant in November 2021 was characterized by humoral immune escape and it has reinforced the importance of the global monitoring of SARS-CoV-2 evolution. Given the importance of the SARS-CoV-2 zoonotic origin, it will also be crucial to monitor the animal-human interface to be better prepared to cope with future infections of pandemic potential.
Collapse
Affiliation(s)
- Isabel Pagani
- Viral Pathogenesis and Biosafety Unit, Division of Immunology, Transplantation, and Infectious Diseases, San Raffaele Scientific Institute, Via Olgettina, 58, Milan, Italy
| | - Silvia Ghezzi
- Viral Pathogenesis and Biosafety Unit, Division of Immunology, Transplantation, and Infectious Diseases, San Raffaele Scientific Institute, Via Olgettina, 58, Milan, Italy
| | - Simone Alberti
- Viral Pathogenesis and Biosafety Unit, Division of Immunology, Transplantation, and Infectious Diseases, San Raffaele Scientific Institute, Via Olgettina, 58, Milan, Italy
| | - Guido Poli
- Human Immuno-Virology (H.I.V.) Unit, Division of Immunology, Transplantation, and Infectious Diseases, San Raffaele Scientific Institute, Via Olgettina, 58, Milan, Italy
- Vita-Salute San Raffaele University School of Medicine, Via Olgettina, 58, Milan, Italy
| | - Elisa Vicenzi
- Viral Pathogenesis and Biosafety Unit, Division of Immunology, Transplantation, and Infectious Diseases, San Raffaele Scientific Institute, Via Olgettina, 58, Milan, Italy
| |
Collapse
|
95
|
Powell DM, Edes AN. An Introduction to the Special Issue: “The Animals Will Play While the Visitors Are Away: What Happens When Zoos and Aquariums Are Closed to Visitors?”. JOURNAL OF ZOOLOGICAL AND BOTANICAL GARDENS 2023; 4:82-86. [DOI: 10.3390/jzbg4010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
Zoos and aquariums are cultural institutions that rely on a steady stream of paying visitors, whose patronage comes in the form of admission fees or product sales, for their financial health, a condition that is vital to their continued delivery on the modern zoological mission, one that includes not only recreation but also conservation, education, and research [...]
Collapse
Affiliation(s)
- David M. Powell
- Department of Reproductive and Behavioral Sciences, Saint Louis Zoo, St. Louis, MO 63110, USA
| | - Ashley N. Edes
- Department of Reproductive and Behavioral Sciences, Saint Louis Zoo, St. Louis, MO 63110, USA
| |
Collapse
|
96
|
Panzera Y, Mirazo S, Baz M, Techera C, Grecco S, Cancela F, Fuques E, Condon E, Calleros L, Camilo N, Fregossi A, Vaz I, Pessina P, Deshpande N, Pérez R, Benech A. Detection and genome characterisation of SARS-CoV-2 P.6 lineage in dogs and cats living with Uruguayan COVID-19 patients. Mem Inst Oswaldo Cruz 2023; 117:e220177. [PMID: 36651456 PMCID: PMC9870267 DOI: 10.1590/0074-02760220177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/07/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in domestic animals have occurred from the beginning of the pandemic to the present time. Therefore, from the perspective of One Health, investigating this topic is of global scientific and public interest. OBJECTIVES The present study aimed to determine the presence of SARS-CoV-2 in domestic animals whose owners had coronavirus disease 2019 (COVID-19). METHODS Nasopharyngeal and faecal samples were collected in Uruguay. Using quantitative polymerase chain reaction (qPCR), we analysed the presence of the SARS-CoV-2 genome. Complete genomes were obtained using ARTIC enrichment and Illumina sequencing. Sera samples were used for virus neutralisation assays. FINDINGS SARS-CoV-2 was detected in an asymptomatic dog and a cat. Viral genomes were identical and belonged to the P.6 Uruguayan SARS-CoV-2 lineage. Only antiserum from the infected cat contained neutralising antibodies against the ancestral SARS-CoV-2 strain and showed cross-reactivity against the Delta but not against the B.A.1 Omicron variant. MAIN CONCLUSIONS Domestic animals and the human SARS-CoV-2 P.6 variant comparison evidence a close relationship and gene flow between them. Different SARS-CoV-2 lineages infect dogs and cats, and no specific variants are adapted to domestic animals. This first record of SARS-CoV-2 in domestic animals from Uruguay supports regular surveillance of animals close to human hosts.
Collapse
Affiliation(s)
- Yanina Panzera
- Universidad de la República, Facultad de Ciencias, Instituto de Biología, Departamento de Biología Animal, Sección Genética Evolutiva, Montevideo, Uruguay,+ Corresponding author:
| | - Santiago Mirazo
- Universidad de la República, Facultad de Ciencias, Sección Virología, Montevideo, Uruguay,Universidad de la República, Facultad de Medicina, Instituto de Higiene, Departamento de Bacteriología y Virología, Montevideo, Uruguay
| | - Mariana Baz
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute, Melbourne, Victoria, Australia
| | - Claudia Techera
- Universidad de la República, Facultad de Ciencias, Instituto de Biología, Departamento de Biología Animal, Sección Genética Evolutiva, Montevideo, Uruguay
| | - Sofía Grecco
- Universidad de la República, Facultad de Ciencias, Instituto de Biología, Departamento de Biología Animal, Sección Genética Evolutiva, Montevideo, Uruguay
| | - Florencia Cancela
- Universidad de la República, Facultad de Ciencias, Sección Virología, Montevideo, Uruguay
| | - Eddie Fuques
- Universidad de la República, Facultad de Ciencias, Instituto de Biología, Departamento de Biología Animal, Sección Genética Evolutiva, Montevideo, Uruguay
| | - Emma Condon
- Universidad de la República, Facultad de Ciencias, Instituto de Biología, Departamento de Biología Animal, Sección Genética Evolutiva, Montevideo, Uruguay
| | - Lucía Calleros
- Universidad de la República, Facultad de Ciencias, Instituto de Biología, Departamento de Biología Animal, Sección Genética Evolutiva, Montevideo, Uruguay
| | - Natalia Camilo
- Universidad de la República, Facultad de Veterinaria, Unidad de Clínica y Hospital Veterinario, Montevideo, Uruguay
| | - Andrea Fregossi
- Universidad de la República, Facultad de Veterinaria, Unidad de Clínica y Hospital Veterinario, Montevideo, Uruguay
| | - Inés Vaz
- Universidad de la República, Facultad de Veterinaria, Unidad de Clínica y Hospital Veterinario, Montevideo, Uruguay
| | - Paula Pessina
- Universidad de la República, Facultad de Veterinaria, Laboratorio Clínico del Hospital Veterinario, Montevideo, Uruguay
| | - Nikita Deshpande
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute, Melbourne, Victoria, Australia
| | - Ruben Pérez
- Universidad de la República, Facultad de Ciencias, Instituto de Biología, Departamento de Biología Animal, Sección Genética Evolutiva, Montevideo, Uruguay
| | - Alejandro Benech
- Universidad de la República, Facultad de Veterinaria, Unidad de Clínica y Hospital Veterinario, Montevideo, Uruguay
| |
Collapse
|
97
|
SARS-CoV-2 Infection in Captive Hippos ( Hippopotamus amphibius), Belgium. Animals (Basel) 2023; 13:ani13020316. [PMID: 36670856 PMCID: PMC9855072 DOI: 10.3390/ani13020316] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/06/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Two adult female hippos in Zoo Antwerp who were naturally infected with SARS-CoV-2 showed nasal discharge for a few days. Virus was detected by immunocytochemistry and PCR in nasal swab samples and by PCR in faeces and pool water. Serology was also positive. No treatment was necessary.
Collapse
|
98
|
Porter AF, Purcell DFJ, Howden BP, Duchene S. Evolutionary rate of SARS-CoV-2 increases during zoonotic infection of farmed mink. Virus Evol 2023; 9:vead002. [PMID: 36751428 PMCID: PMC9896948 DOI: 10.1093/ve/vead002] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/11/2022] [Accepted: 01/08/2023] [Indexed: 01/12/2023] Open
Abstract
To investigate genetic signatures of adaptation to the mink host, we characterised the evolutionary rate heterogeneity in mink-associated severe acute respiratory syndrome coronaviruses (SARS-CoV-2). In 2020, the first detected anthropozoonotic spillover event of SARS-CoV-2 occurred in mink farms throughout Europe and North America. Both spill-back of mink-associated lineages into the human population and the spread into the surrounding wildlife were reported, highlighting the potential formation of a zoonotic reservoir. Our findings suggest that the evolutionary rate of SARS-CoV-2 underwent an episodic increase upon introduction into the mink host before returning to the normal range observed in humans. Furthermore, SARS-CoV-2 lineages could have circulated in the mink population for a month before detection, and during this period, evolutionary rate estimates were between 3 × 10-3 and 1.05 × 10-2 (95 per cent HPD, with a mean rate of 6.59 × 10-3) a four- to thirteen-fold increase compared to that in humans. As there is evidence for unique mutational patterns within mink-associated lineages, we explored the emergence of four mink-specific Spike protein amino acid substitutions Y453F, S1147L, F486L, and Q314K. We found that mutation Y453F emerged early in multiple mink outbreaks and that mutations F486L and Q314K may co-occur. We suggest that SARS-CoV-2 undergoes a brief, but considerable, increase in evolutionary rate in response to greater selective pressures during species jumps, which may lead to the occurrence of mink-specific mutations. These findings emphasise the necessity of ongoing surveillance of zoonotic SARS-CoV-2 infections in the future.
Collapse
Affiliation(s)
- Ashleigh F Porter
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Damian F J Purcell
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Benjamin P Howden
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC 3010, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Sebastian Duchene
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
99
|
LÉCU ALEXIS. SARS-Cov-2 Coronavirus Infection in Wild Animals. FOWLER' S ZOO AND WILD ANIMAL MEDICINE CURRENT THERAPY, VOLUME 10 2023:113-120. [DOI: 10.1016/b978-0-323-82852-9.00018-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
100
|
Sing A, Berger A. Cats – Revered and Reviled – and Associated Zoonoses. ZOONOSES: INFECTIONS AFFECTING HUMANS AND ANIMALS 2023:837-914. [DOI: 10.1007/978-3-031-27164-9_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|