51
|
Devos M, Grosbois J, Demeestere I. Interaction between PI3K/AKT and Hippo pathways during in vitro follicular activation and response to fragmentation and chemotherapy exposure using a mouse immature ovary model. Biol Reprod 2021; 102:717-729. [PMID: 31786608 DOI: 10.1093/biolre/ioz215] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/20/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022] Open
Abstract
Understanding and control of the massive and accelerated follicular growth that occurs during in vitro culture of ovarian tissue is a crucial step toward the development of efficient culture systems that offer an attractive alternative to ovarian tissue transplantation for fertility restoration in cancer survivors. One outstanding question focuses on processes that occur prior to cryopreservation, such as tissue sectioning or chemotherapeutic treatment, might exacerbate this follicular activation. Although the PI3K/AKT/mTOR pathway is well known as a major trigger of physiological and chemotherapy-induced follicular activation, studies have shown that disruption of Hippo pathway due to ovarian fragmentation acts as an additional stimulator. This study aimed to characterize the possible interactions between these pathways using post-natal day 3 mouse ovaries cultured for 4 or 48 h. Morphology, gene transcription, and protein levels were assessed to investigate the impact of sectioning or chemotherapy exposure (4-hydroperoxycyclophosphamide [4HC], 3 and 20 μM). The effect of an mTORC1 inhibitor, Everolimus, alone or as a 4HC co-treatment to prevent follicle activation was evaluated. The results showed that organ removal from its physiological environment was as effective as sectioning for disruption of Hippo pathway and induction of follicle activation. Both PI3K/AKT/mTOR and Hippo pathways were involved in chemotherapy-induced follicular activation and responded to fragmentation. Surprisingly, Everolimus was able to prevent the activation of both pathways during chemotherapy exposure, suggesting cross-talk between them. This study underscores the major involvement of PI3K/AKT/mTOR and Hippo pathways in in vitro follicle activation and provides evidence that both can be regulated using mTORC1 inhibitor.
Collapse
Affiliation(s)
- Melody Devos
- Research Laboratory on Human Reproduction, Université Libre de Bruxelles, Brussels, Belgium
| | - Johanne Grosbois
- Research Laboratory on Human Reproduction, Université Libre de Bruxelles, Brussels, Belgium
| | - Isabelle Demeestere
- Research Laboratory on Human Reproduction, Université Libre de Bruxelles, Brussels, Belgium.,Fertility Clinic, CUB-Erasme, Brussels, Belgium
| |
Collapse
|
52
|
Xue L, He W, Wang Z, Chen H, Wang Z, Wu H. Characterization of a newly established schwannoma cell line from a sporadic vestibular schwannoma patient. Am J Transl Res 2021; 13:8787-8803. [PMID: 34539995 PMCID: PMC8430072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
A stable, human sporadic vestibular schwannoma cell line is not currently available. By using a lentivirus-mediated transfection from a 41-year-old sporadic vestibular schwannoma patient, primary schwannoma cells were obtained, cultured and immortalized using the hHERT gene. The NF2 gene of the resulting JEI-001 cell line contains a specific Exon 5 mutation. The schwannoma cell origin of this cell line was confirmed using STR techniques and immunocytochemistry. A comparison between the primary tumor tissue and JEI-001 revealed a common mutation of the NF2 gene, which indicated that the JEI-001 cell line had retained most of its original tumor characteristics. The JEI-001 cell line was found to be non-tumorigenic in nude mice, but certain growth features had been altered, resulting in changes such as independence from the Schwann cell growth factors and a higher proliferation rate. This was the first known study to establish cell lines immortalized from human sporadic vestibular schwannoma that had different characteristics from that of HEI-193. This is a novel model system that can be used for the study of NF2 gene functions, in order to elaborate on the biological features of sporadic vestibular schwannoma, even including familial NF2 tumors, and to further explore the molecular pathogenesis and develop new adjuvant therapies.
Collapse
Affiliation(s)
- Lu Xue
- Department of Otolaryngology Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of MedicineShanghai 200011, China
- Ear Institute, Shanghai Jiaotong University School of MedicineShanghai 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseasesShanghai 200125, China
| | - Weiwei He
- Department of Otolaryngology Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of MedicineShanghai 200011, China
- Ear Institute, Shanghai Jiaotong University School of MedicineShanghai 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseasesShanghai 200125, China
| | - Zhigang Wang
- Department of Otolaryngology Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of MedicineShanghai 200011, China
- Ear Institute, Shanghai Jiaotong University School of MedicineShanghai 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseasesShanghai 200125, China
| | - Hongsai Chen
- Department of Otolaryngology Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of MedicineShanghai 200011, China
- Ear Institute, Shanghai Jiaotong University School of MedicineShanghai 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseasesShanghai 200125, China
| | - Zhaoyan Wang
- Department of Otolaryngology Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of MedicineShanghai 200011, China
- Ear Institute, Shanghai Jiaotong University School of MedicineShanghai 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseasesShanghai 200125, China
| | - Hao Wu
- Department of Otolaryngology Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of MedicineShanghai 200011, China
- Ear Institute, Shanghai Jiaotong University School of MedicineShanghai 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseasesShanghai 200125, China
| |
Collapse
|
53
|
Grosso S, Marini A, Gyuraszova K, Voorde JV, Sfakianos A, Garland GD, Tenor AR, Mordue R, Chernova T, Morone N, Sereno M, Smith CP, Officer L, Farahmand P, Rooney C, Sumpton D, Das M, Teodósio A, Ficken C, Martin MG, Spriggs RV, Sun XM, Bushell M, Sansom OJ, Murphy D, MacFarlane M, Le Quesne JPC, Willis AE. The pathogenesis of mesothelioma is driven by a dysregulated translatome. Nat Commun 2021; 12:4920. [PMID: 34389715 PMCID: PMC8363647 DOI: 10.1038/s41467-021-25173-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 07/25/2021] [Indexed: 12/22/2022] Open
Abstract
Malignant mesothelioma (MpM) is an aggressive, invariably fatal tumour that is causally linked with asbestos exposure. The disease primarily results from loss of tumour suppressor gene function and there are no 'druggable' driver oncogenes associated with MpM. To identify opportunities for management of this disease we have carried out polysome profiling to define the MpM translatome. We show that in MpM there is a selective increase in the translation of mRNAs encoding proteins required for ribosome assembly and mitochondrial biogenesis. This results in an enhanced rate of mRNA translation, abnormal mitochondrial morphology and oxygen consumption, and a reprogramming of metabolic outputs. These alterations delimit the cellular capacity for protein biosynthesis, accelerate growth and drive disease progression. Importantly, we show that inhibition of mRNA translation, particularly through combined pharmacological targeting of mTORC1 and 2, reverses these changes and inhibits malignant cell growth in vitro and in ex-vivo tumour tissue from patients with end-stage disease. Critically, we show that these pharmacological interventions prolong survival in animal models of asbestos-induced mesothelioma, providing the basis for a targeted, viable therapeutic option for patients with this incurable disease.
Collapse
Affiliation(s)
- Stefano Grosso
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Alberto Marini
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Katarina Gyuraszova
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, UK
| | | | | | - Gavin D Garland
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Angela Rubio Tenor
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Ryan Mordue
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Tanya Chernova
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Nobu Morone
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Marco Sereno
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Claire P Smith
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Leah Officer
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Pooyeh Farahmand
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, UK
| | - Claire Rooney
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, UK
| | - David Sumpton
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, UK
| | - Madhumita Das
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Ana Teodósio
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Catherine Ficken
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Maria Guerra Martin
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Ruth V Spriggs
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Xiao-Ming Sun
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Martin Bushell
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, UK
| | - Owen J Sansom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, UK
| | - Daniel Murphy
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| | - Marion MacFarlane
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK.
| | - John P C Le Quesne
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, UK.
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK.
- Glenfield Hospital, Groby Road, University Hospitals Leicester NHS Trust Leicester, Leicester, UK.
| | - Anne E Willis
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK.
| |
Collapse
|
54
|
Colciago A, Audano M, Bonalume V, Melfi V, Mohamed T, Reid AJ, Faroni A, Greer PA, Mitro N, Magnaghi V. Transcriptomic Profile Reveals Deregulation of Hearing-Loss Related Genes in Vestibular Schwannoma Cells Following Electromagnetic Field Exposure. Cells 2021; 10:cells10071840. [PMID: 34360009 PMCID: PMC8307028 DOI: 10.3390/cells10071840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/23/2022] Open
Abstract
Hearing loss (HL) is the most common sensory disorder in the world population. One common cause of HL is the presence of vestibular schwannoma (VS), a benign tumor of the VIII cranial nerve, arising from Schwann cell (SC) transformation. In the last decade, the increasing incidence of VS has been correlated to electromagnetic field (EMF) exposure, which might be considered a pathogenic cause of VS development and HL. Here, we explore the molecular mechanisms underlying the biologic changes of human SCs and/or their oncogenic transformation following EMF exposure. Through NGS technology and RNA-Seq transcriptomic analysis, we investigated the genomic profile and the differential display of HL-related genes after chronic EMF. We found that chronic EMF exposure modified the cell proliferation, in parallel with intracellular signaling and metabolic pathways changes, mostly related to translation and mitochondrial activities. Importantly, the expression of HL-related genes such as NEFL, TPRN, OTOGL, GJB2, and REST appeared to be deregulated in chronic EMF exposure. In conclusion, we suggest that, at a preclinical stage, EMF exposure might promote the transformation of VS cells and contribute to HL.
Collapse
Affiliation(s)
- Alessandra Colciago
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via G. Balzaretti 9, 20133 Milan, Italy; (A.C.); (M.A.); (V.B.); (V.M.); (T.M.); (N.M.)
| | - Matteo Audano
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via G. Balzaretti 9, 20133 Milan, Italy; (A.C.); (M.A.); (V.B.); (V.M.); (T.M.); (N.M.)
| | - Veronica Bonalume
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via G. Balzaretti 9, 20133 Milan, Italy; (A.C.); (M.A.); (V.B.); (V.M.); (T.M.); (N.M.)
| | - Valentina Melfi
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via G. Balzaretti 9, 20133 Milan, Italy; (A.C.); (M.A.); (V.B.); (V.M.); (T.M.); (N.M.)
| | - Tasnim Mohamed
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via G. Balzaretti 9, 20133 Milan, Italy; (A.C.); (M.A.); (V.B.); (V.M.); (T.M.); (N.M.)
| | - Adam J. Reid
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NQ, UK; (A.J.R.); (A.F.)
- Department of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Center, Manchester M13 9NQ, UK
| | - Alessandro Faroni
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NQ, UK; (A.J.R.); (A.F.)
| | - Peter A. Greer
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via G. Balzaretti 9, 20133 Milan, Italy; (A.C.); (M.A.); (V.B.); (V.M.); (T.M.); (N.M.)
| | - Valerio Magnaghi
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via G. Balzaretti 9, 20133 Milan, Italy; (A.C.); (M.A.); (V.B.); (V.M.); (T.M.); (N.M.)
- Correspondence: ; Tel.: +39-0250318414
| |
Collapse
|
55
|
Karajannis MA, Mauguen A, Maloku E, Xu Q, Dunbar EM, Plotkin SR, Yaffee A, Wang S, Roland JT, Sen C, Placantonakis DG, Golfinos JG, Allen JC, Vitanza NA, Chiriboga LA, Schneider RJ, Deng J, Neubert TA, Goldberg JD, Zagzag D, Giancotti FG, Blakeley JO. Phase 0 Clinical Trial of Everolimus in Patients with Vestibular Schwannoma or Meningioma. Mol Cancer Ther 2021; 20:1584-1591. [PMID: 34224367 DOI: 10.1158/1535-7163.mct-21-0143] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/18/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022]
Abstract
Inhibition of mTORC1 signaling has been shown to diminish growth of meningiomas and schwannomas in preclinical studies, and clinical data suggest that everolimus, an orally administered mTORC1 inhibitor, may slow tumor progression in a subset of patients with neurofibromatosis type 2 (NF2) with vestibular schwannoma. To assess the pharmacokinetics, pharmacodynamics, and potential mechanisms of treatment resistance, we performed a presurgical (phase 0) clinical trial of everolimus in patients undergoing elective surgery for vestibular schwannoma or meningiomas. Eligible patients with meningioma or vestibular schwannoma requiring tumor resection enrolled on study received everolimus 10 mg daily for 10 days immediately prior to surgery. Everolimus blood levels were determined immediately before and after surgery. Tumor samples were collected intraoperatively. Ten patients completed protocol therapy. Median pre- and postoperative blood levels of everolimus were found to be in a high therapeutic range (17.4 ng/mL and 9.4 ng/mL, respectively). Median tumor tissue drug concentration determined by mass spectrometry was 24.3 pg/mg (range, 9.2-169.2). We observed only partial inhibition of phospho-S6 in the treated tumors, indicating incomplete target inhibition compared with control tissues from untreated patients (P = 0.025). Everolimus led to incomplete inhibition of mTORC1 and downstream signaling. These data may explain the limited antitumor effect of everolimus observed in clinical studies for patients with NF2 and will inform the design of future preclinical and clinical studies targeting mTORC1 in meningiomas and schwannomas.
Collapse
Affiliation(s)
- Matthias A Karajannis
- Pediatric Neuro-Oncology Service, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Audrey Mauguen
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ekrem Maloku
- Division of Neuropathology, Department of Pathology, NYU Langone Health, New York, New York
| | - Qingwen Xu
- Department of Cancer Biology, MD Anderson Cancer Center, Houston, Texas
| | - Erin M Dunbar
- Neuro-Oncology, Piedmont Brain Tumor Center, Atlanta, Georgia
| | - Scott R Plotkin
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Anna Yaffee
- Department of Pediatrics, NYU Langone Health, New York, New York
| | - Shiyang Wang
- Department of Pediatrics, NYU Langone Health, New York, New York
| | - J Thomas Roland
- Department of Otolaryngology, NYU Langone Health, New York, New York.,Department of Neurosurgery, NYU Langone Health, New York, New York
| | - Chandranath Sen
- Department of Neurosurgery, NYU Langone Health, New York, New York
| | | | - John G Golfinos
- Department of Neurosurgery, NYU Langone Health, New York, New York
| | - Jeffrey C Allen
- Department of Pediatrics, NYU Langone Health, New York, New York
| | | | | | | | - Jingjing Deng
- Department of Cell Biology and Skirball Institute, NYU Langone Health, New York, New York
| | - Thomas A Neubert
- Department of Cell Biology and Skirball Institute, NYU Langone Health, New York, New York
| | - Judith D Goldberg
- Department of Population Health, NYU Langone Health, New York, New York
| | - David Zagzag
- Division of Neuropathology, Department of Pathology, NYU Langone Health, New York, New York.,Department of Neurosurgery, NYU Langone Health, New York, New York
| | | | | |
Collapse
|
56
|
Dougherty MC, Shibata SB, Hansen MR. The biological underpinnings of radiation therapy for vestibular schwannomas: Review of the literature. Laryngoscope Investig Otolaryngol 2021; 6:458-468. [PMID: 34195368 PMCID: PMC8223465 DOI: 10.1002/lio2.553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/05/2021] [Accepted: 03/12/2021] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Radiation therapy is a mainstay in the treatment of numerous neoplasms. Numerous publications have reported good clinical outcomes for primary radiation therapy for Vestibular Schwannomas (VS). However, there are relatively few pathologic specimens of VSs available to evaluate post-radiation, which has led to a relative dearth in research on the cellular mechanisms underlying the effects of radiation therapy on VSs. METHODS Here we review the latest literature on the complex biological effects of radiation therapy on these benign tumors-including resistance to oxidative stress, mechanisms of DNA damage repair, alterations in normal growth factor pathways, changes in surrounding vasculature, and alterations in immune responses following radiation. RESULTS Although VSs are highly radioresistant, radiotherapy is often successful in arresting their growth. CONCLUSION By better understanding the mechanisms underlying these effects, we could potentially harness such mechanisms in the future to potentiate the clinical effects of radiotherapy on VSs. LEVEL OF EVIDENCE N/A.
Collapse
Affiliation(s)
- Mark C. Dougherty
- Department of NeurosurgeryUniversity of Iowa Hospitals & ClinicsIowa CityIowaUSA
| | - Seiji B. Shibata
- Department of Otolaryngology, Keck School of Medicine of USCUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Marlan R. Hansen
- Department of Otolaryngology—Head & Neck SurgeryUniversity of Iowa Hospitals & ClinicsIowa CityIowaUSA
| |
Collapse
|
57
|
Johnson B, Leatherman J. Merlin and expanded integrate cell signaling that regulates cyst stem cell proliferation in the Drosophila testis niche. Dev Biol 2021; 477:133-144. [PMID: 34044021 DOI: 10.1016/j.ydbio.2021.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/13/2021] [Accepted: 05/16/2021] [Indexed: 09/30/2022]
Abstract
The Drosophila testis is a model organism stem cell niche in which two stem cell populations coordinate together to produce sperm; thus, these stem cells must be balanced in the niche. Merlin, a tumor-suppressor and human disease gene required for contact inhibition of proliferation, is known to limit the proliferation of the somatic cyst stem cells in the testis niche. Expanded encodes a protein that is structurally similar to Merlin in Drosophila, and is semi-redundant with Merlin in multiple tissues. We found that expanded depletion caused similar cyst lineage cell over-proliferation as observed with Merlin, and double mutants showed more severe phenotypes than either gene individually. Thus, these genes have partially redundant functions in the cyst lineage cells of this niche. We also expressed non-phosphorylatable constitutively "tumor suppressing" alleles of Merlin in cyst lineage cells, and surprisingly, we observed a similar cyst lineage over-proliferation phenotype. Merlin is known to impact multiple different signaling pathways to exert its effect on proliferation. We found that the Merlin loss of function phenotype was associated with an increase in MAPK/ERK signaling, consistent with Merlin's established role in transmembrane receptor inhibition. Constitutive Merlin displayed a reduction in both MAPK/ERK signaling and PI3K/Tor signaling. PI3K/Tor signaling is required for cyst cell differentiation, and inhibition of this pathway by Merlin activation phenocopied the Tor cyst lineage loss of function phenotype. Thus, Merlin impacts and integrates the activity of multiple signaling pathways in the testis niche. The ability of Merlin to dynamically change its activity via phosphorylation in response to local contact cues provides an intriguing mechanism whereby the signaling pathways that control these stem cells might be dynamically regulated in response to the division of a neighboring germ cell.
Collapse
Affiliation(s)
- Bryan Johnson
- School of Biological Sciences, University of Northern Colorado, Greeley, CO, USA
| | - Judith Leatherman
- School of Biological Sciences, University of Northern Colorado, Greeley, CO, USA.
| |
Collapse
|
58
|
Corona AM, Di L, Shah AH, Crespo R, Eichberg DG, Lu VM, Luther EM, Komotar RJ, Ivan ME. Current experimental therapies for atypical and malignant meningiomas. J Neurooncol 2021; 153:203-210. [PMID: 33950341 DOI: 10.1007/s11060-021-03759-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/13/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Atypical (WHO grade II) and malignant meningiomas (WHO Grade III) are a rare subset of primary intracranial tumors. Given their relatively high recurrence rate after surgical resection and radiotherapy, there has been a recent push to explore other adjuvant treatment options for these treatment-refractory tumors. Recent advances in molecular sequencing of tumors have elucidated new pathways and drug targets which are currently being studied. This article provides a thorough overview of novel investigational therapeutics including targeted therapy, immunotherapy, and new technological modalities for atypical and malignant meningiomas. METHODS We performed a comprehensive review of the available literature regarding preclinical and clinical evidence for emerging treatments for high grade meningiomas from 1980 to 2020 including contemporaneous clinical trials. RESULTS There is encouraging preclinical evidence regarding the efficacy of the emerging treatments discussed in this article. Several clinical trials are currently recruiting patients to translate targeted molecular therapy for meningiomas. Several clinical studies have suggested a clinical benefit of combinatorial treatment for these treatment-refractory tumors. CONCLUSION With numerous active clinical trials for high grade meningiomas, a meaningful improvement in the outcomes for these tumors may be on the horizon.
Collapse
Affiliation(s)
- Andres M Corona
- Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, 33136, USA.
| | - Long Di
- Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, 33136, USA
| | - Ashish H Shah
- Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, 33136, USA
| | - Raphael Crespo
- Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, 33136, USA
| | - Daniel G Eichberg
- Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, 33136, USA
| | - Victor M Lu
- Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, 33136, USA
| | - Evan M Luther
- Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, 33136, USA
| | - Ricardo J Komotar
- Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, 33136, USA.,Sylvester Comprehensive Cancer Center, 1475 NW 12th Avenue, Miami, FL, 33136, USA
| | - Michael E Ivan
- Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, 33136, USA.,Sylvester Comprehensive Cancer Center, 1475 NW 12th Avenue, Miami, FL, 33136, USA
| |
Collapse
|
59
|
Carruba G. Estrogens in Hepatocellular Carcinoma: Friends or Foes? Cancers (Basel) 2021; 13:cancers13092085. [PMID: 33925807 PMCID: PMC8123464 DOI: 10.3390/cancers13092085] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 01/06/2023] Open
Abstract
Simple Summary Today, we know that estrogen hormones are required for the development and function of many organs, such as the liver, in both males and females. However, in some circumstances, estrogen excess may be implicated in the appearance of various chronic diseases, including cancer. This review will inspect the results of several studies to better understand the mechanisms responsible for estrogens to change from protective into harmful hormones in human liver. Abstract Estrogens are recognized as key players in physiological regulation of various, classical and non-classical, target organs, and tissues, including liver development, homeostasis, and function. On the other hand, multiple, though dispersed, experimental evidence is highly suggestive for the implication of estrogen in development and progression of hepatocellular carcinoma. In this paper, data from our own studies and the current literature are reviewed to help understanding this apparent discrepancy.
Collapse
Affiliation(s)
- Giuseppe Carruba
- Servizio di Internazionalizzazione e Ricerca Sanitaria (SIRS), Azienda di Rilievo Nazionale e di Alta Specializzazione (ARNAS)-Civico, Di Cristina, Benfratelli-Palermo, Piazza N. Leotta 2, 90127 Palermo, Italy
| |
Collapse
|
60
|
Waldt N, Kesseler C, Fala P, John P, Kirches E, Angenstein F, Mawrin C. Crispr/Cas-based modeling of NF2 loss in meningioma cells. J Neurosci Methods 2021; 356:109141. [PMID: 33753124 DOI: 10.1016/j.jneumeth.2021.109141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/03/2021] [Accepted: 03/10/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Alterations of the neurofibromatosis type 2 gene (NF2) occur in more than fifty percent of sporadic meningiomas. Meningiomas develop frequently in the setting of the hereditary tumor syndrome NF2. Investigation of potential drug-based treatment options has been limited by the lack of appropriate in vitro and in vivo models. NEW METHODS Using Crispr/Cas gene editing, of the malignant meningioma cell line IOMM-Lee, we generated a pair of cell clones characterized by either stable knockout of NF2 and loss of the protein product merlin or retained merlin protein (transfected control without gRNA). RESULTS IOMM-Lee cells lacking NF2 showed reduced apoptosis and formed bigger colonies compared to control IOMM-Lee cells. Treatment of non-transfected IOMM-Lee cells with the focal adhesion kinase (FAK) inhibitor GSK2256098 resulted in reduced colony sizes. Orthotopic mouse xenografts showed the formation of convexity tumors typical for meningiomas with NF2-depleted and control cells. COMPARISON WITH EXISTING METHODS No orthotopic meningioma models with genetically-engineered cell pairs are available so far. CONCLUSION Our model based on Crispr/Cas-based gene editing provides paired meningioma cells suitable to study functional consequences and therapeutic accessibility of NF2/merlin loss.
Collapse
Affiliation(s)
- Natalie Waldt
- Department of Neuropathology, Otto-von-Guericke-University, Germany
| | | | - Paula Fala
- Department of Neuropathology, Otto-von-Guericke-University, Germany; State University of Medicine and Pharmacy "Nicolae Testemițanu", Chisinau, Republic of Moldova
| | - Peter John
- Department of Neuropathology, Otto-von-Guericke-University, Germany
| | - Elmar Kirches
- Department of Neuropathology, Otto-von-Guericke-University, Germany
| | - Frank Angenstein
- Functional Imaging Group, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 39118, Magdeburg, Germany; Leibniz Institute for Neurobiology (LIN), 39118, Magdeburg, Germany; Medical Faculty, Otto-von-Guericke-University, Germany
| | - Christian Mawrin
- Department of Neuropathology, Otto-von-Guericke-University, Germany; Center for Behavioral Brain Studies (CBBS), 39120, Magdeburg, Germany.
| |
Collapse
|
61
|
Farouk Sait S, Walsh MF, Karajannis MA. Genetic syndromes predisposing to pediatric brain tumors. Neurooncol Pract 2021; 8:375-390. [PMID: 34277017 DOI: 10.1093/nop/npab012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The application of high-throughput sequencing approaches including paired tumor/normal sampling with therapeutic intent has demonstrated that 8%-19% of pediatric CNS tumor patients harbor a germline alteration in a classical tumor predisposition gene (NF1, P53). In addition, large-scale germline sequencing studies in unselected cohorts of pediatric neuro-oncology patients have demonstrated novel candidate tumor predisposition genes (ELP1 alterations in sonic hedgehog medulloblastoma). Therefore, the possibility of an underlying tumor predisposition syndrome (TPS) should be considered in all pediatric patients diagnosed with a CNS tumor which carries critical implications including accurate prognostication, selection of optimal therapy, screening, risk reduction, and family planning. The Pediatric Cancer Working Group of the American Association for Cancer Research (AACR) recently published consensus screening recommendations for children with the most common TPS. In this review, we provide an overview of the most relevant as well as recently identified TPS associated with the most frequently encountered pediatric CNS tumors with an emphasis on pathogenesis, genetic testing, clinical features, and treatment implications.
Collapse
Affiliation(s)
- Sameer Farouk Sait
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Michael F Walsh
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Matthias A Karajannis
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
62
|
Sato T, Mukai S, Ikeda H, Mishiro-Sato E, Akao K, Kobayashi T, Hino O, Shimono W, Shibagaki Y, Hattori S, Sekido Y. Silencing of SmgGDS, a Novel mTORC1 Inducer That Binds to RHEBs, Inhibits Malignant Mesothelioma Cell Proliferation. Mol Cancer Res 2021; 19:921-931. [PMID: 33574130 DOI: 10.1158/1541-7786.mcr-20-0637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 12/15/2020] [Accepted: 02/04/2021] [Indexed: 11/16/2022]
Abstract
Malignant mesothelioma (MM) is an aggressive tumor that typically develops after a long latency following asbestos exposure. Although mechanistic target of rapamycin complex 1 (mTORC1) activation enhances MM cell growth, the mTORC1 inhibitor everolimus has shown limited efficacy in clinical trials of MM patients. We explored the mechanism underlying mTORC1 activation in MM cells and its effects on cell proliferation and progression. Analysis of the expression profiles of 87 MMs from The Cancer Genome Atlas revealed that 40 samples (46%) displayed altered expression of RPTOR (mTORC1 component) and genes immediately upstream that activate mTORC1. Among them, we focused on RHEB and RHEBL1, which encode direct activators of mTORC1. Exogenous RHEBL1 expression enhanced MM cell growth, indicating that RHEB-mTORC1 signaling acts as a pro-oncogenic cascade. We investigated molecules that directly activate RHEBs, identifying SmgGDS as a novel RHEB-binding protein. SmgGDS knockdown reduced mTORC1 activation and inhibited the proliferation of MM cells with mTORC1 activation. Interestingly, SmgGDS displayed high binding affinity with inactive GDP-bound RHEBL1, and its knockdown reduced cytosolic RHEBL1 without affecting its activation. These findings suggest that SmgGDS retains GDP-bound RHEBs in the cytosol, whereas GTP-bound RHEBs are localized on intracellular membranes to promote mTORC1 activation. We revealed a novel role for SmgGDS in the RHEB-mTORC1 pathway and its potential as a therapeutic target in MM with aberrant mTORC1 activation. IMPLICATIONS: Our data showing that SmgGDS regulates RHEB localization to activate mTORC1 indicate that SmgGDS can be used as a new therapeutic target for MM exhibiting mTORC1 activation.
Collapse
Affiliation(s)
- Tatsuhiro Sato
- Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Satomi Mukai
- Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Haruna Ikeda
- Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Emi Mishiro-Sato
- Division of Pathophysiology, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Ken Akao
- Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan.,Department of Respiratory Medicine, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Toshiyuki Kobayashi
- Department of Molecular Pathogenesis, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Okio Hino
- Department of Molecular Pathogenesis, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Wataru Shimono
- Division of Biochemistry, School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo, Japan
| | - Yoshio Shibagaki
- Division of Biochemistry, School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo, Japan
| | - Seisuke Hattori
- Division of Biochemistry, School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo, Japan
| | - Yoshitaka Sekido
- Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan. .,Division of Molecular and Cellular Oncology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
63
|
Beauchamp RL, Erdin S, Witt L, Jordan JT, Plotkin SR, Gusella JF, Ramesh V. mTOR kinase inhibition disrupts neuregulin 1-ERBB3 autocrine signaling and sensitizes NF2-deficient meningioma cellular models to IGF1R inhibition. J Biol Chem 2021; 296:100157. [PMID: 33273014 PMCID: PMC7949095 DOI: 10.1074/jbc.ra120.014960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/23/2020] [Accepted: 12/03/2020] [Indexed: 12/16/2022] Open
Abstract
Meningiomas (MNs), arising from the arachnoid/meningeal layer, are nonresponsive to chemotherapies, with ∼50% showing loss of the Neurofibromatosis 2 (NF2) tumor suppressor gene. Previously, we established NF2 loss activates mechanistic target of rapamycin complex 1 (mTORC1) and mechanistic target of rapamycin complex 2 (mTORC2) signaling, leading to clinical trials for NF2 and MN. Recently our omics studies identified activated ephrin (EPH) receptor and Src family kinases upon NF2 loss. Here, we report increased expression of several ligands in NF2-null human arachnoidal cells (ACs) and the MN cell line Ben-Men-1, particularly neuregulin-1/heregulin (NRG1), and confirm increased NRG1 secretion and activation of V-ERB-B avian erythroblastic leukemia viral oncogene homolog 3 (ERBB3) receptor kinase. Conditioned-medium from NF2-null ACs or exogenous NRG1 stimulated ERBB3, EPHA2, and mTORC1/2 signaling, suggesting pathway crosstalk. NF2-null cells treated with an ERBB3-neutralizing antibody partially downregulated mTOR pathway activation but showed no effect on viability. mTORC1/2 inhibitor treatment decreased NRG1 expression and downregulated ERBB3 while re-activating pAkt T308, suggesting a mechanism independent of NRG1-ERBB3 but likely involving activation of another upstream receptor kinase. Transcriptomics after mTORC1/2 inhibition confirmed decreased ERBB3/ERBB4 while revealing increased expression of insulin-like growth factor receptor 1 (IGF1R). Drug treatment co-targeting mTORC1/2 and IGF1R/insulin receptor attenuated pAkt T308 and showed synergistic effects on viability. Our findings indicate potential autocrine signaling where NF2 loss leads to secretion/activation of NRG1-ERBB3 signaling. mTORC1/2 inhibition downregulates NRG1-ERBB3, while upregulating pAkt T308 through an adaptive response involving IGF1R/insulin receptor and co-targeting these pathways may prove effective for treatment of NF2-deficient MN.
Collapse
MESH Headings
- Antibodies, Monoclonal, Humanized/pharmacology
- Autocrine Communication/genetics
- Benzamides/pharmacology
- Benzoxazoles/pharmacology
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Dose-Response Relationship, Drug
- Gene Expression Regulation
- Humans
- Lapatinib/pharmacology
- Meningeal Neoplasms/genetics
- Meningeal Neoplasms/metabolism
- Meningeal Neoplasms/pathology
- Meningioma/genetics
- Meningioma/metabolism
- Meningioma/pathology
- Morpholines/pharmacology
- Neuregulin-1/antagonists & inhibitors
- Neuregulin-1/genetics
- Neuregulin-1/metabolism
- Neurofibromin 2/deficiency
- Neurofibromin 2/genetics
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Pyrazoles/pharmacology
- Pyrimidines/pharmacology
- Receptor, EphA2/genetics
- Receptor, EphA2/metabolism
- Receptor, ErbB-3/antagonists & inhibitors
- Receptor, ErbB-3/genetics
- Receptor, ErbB-3/metabolism
- Receptor, IGF Type 1/antagonists & inhibitors
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Signal Transduction
- Sirolimus/pharmacology
- TOR Serine-Threonine Kinases/antagonists & inhibitors
- TOR Serine-Threonine Kinases/genetics
- TOR Serine-Threonine Kinases/metabolism
- Transcriptome
- Triazines/pharmacology
Collapse
Affiliation(s)
- Roberta L Beauchamp
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Serkan Erdin
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Luke Witt
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Justin T Jordan
- Department of Neurology and Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Scott R Plotkin
- Department of Neurology and Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - James F Gusella
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Vijaya Ramesh
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
64
|
Cui Y, Ma L, Schacke S, Yin JC, Hsueh YP, Jin H, Morrison H. Merlin cooperates with neurofibromin and Spred1 to suppress the Ras-Erk pathway. Hum Mol Genet 2020; 29:3793-3806. [PMID: 33331896 DOI: 10.1093/hmg/ddaa263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 12/22/2022] Open
Abstract
The Ras-Erk pathway is frequently overactivated in human tumors. Neurofibromatosis types 1 and 2 (NF1, NF2) are characterized by multiple tumors of Schwann cell origin. The NF1 tumor suppressor neurofibromin is a principal Ras-GAP accelerating Ras inactivation, whereas the NF2 tumor suppressor merlin is a scaffold protein coordinating multiple signaling pathways. We have previously reported that merlin interacts with Ras and p120RasGAP. Here, we show that merlin can also interact with the neurofibromin/Spred1 complex via merlin-binding sites present on both proteins. Further, merlin can directly bind to the Ras-binding domain (RBD) and the kinase domain (KiD) of Raf1. As the third component of the neurofibromin/Spred1 complex, merlin cannot increase the Ras-GAP activity; rather, it blocks Ras binding to Raf1 by functioning as a 'selective Ras barrier'. Merlin-deficient Schwann cells require the Ras-Erk pathway activity for proliferation. Accordingly, suppression of the Ras-Erk pathway likely contributes to merlin's tumor suppressor activity. Taken together, our results, and studies by others, support targeting or co-targeting of this pathway as a therapy for NF2 inactivation-related tumors.
Collapse
Affiliation(s)
- Yan Cui
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Lin Ma
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745 Jena, Germany.,College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Stephan Schacke
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Jiani C Yin
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou 310016, China
| | - Helen Morrison
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745 Jena, Germany.,Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743, Germany
| |
Collapse
|
65
|
Wilson TA, Huang L, Ramanathan D, Lopez-Gonzalez M, Pillai P, De Los Reyes K, Kumal M, Boling W. Review of Atypical and Anaplastic Meningiomas: Classification, Molecular Biology, and Management. Front Oncol 2020; 10:565582. [PMID: 33330036 PMCID: PMC7714950 DOI: 10.3389/fonc.2020.565582] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Although the majority of meningiomas are slow-growing and benign, atypical and anaplastic meningiomas behave aggressively with a penchant for recurrence. Standard of care includes surgical resection followed by adjuvant radiation in anaplastic and partially resected atypical meningiomas; however, the role of adjuvant radiation for incompletely resected atypical meningiomas remains debated. Despite maximum treatment, atypical, and anaplastic meningiomas have a strong proclivity for recurrence. Accumulating mutations over time, recurrent tumors behave more aggressively and often become refractory or no longer amenable to further surgical resection or radiation. Chemotherapy and other medical therapies are available as salvage treatment once standard options are exhausted; however, efficacy of these agents remains limited. This review discusses the risk factors, classification, and molecular biology of meningiomas as well as the current management strategies, novel therapeutic approaches, and future directions for managing atypical and anaplastic meningiomas.
Collapse
Affiliation(s)
| | - Lei Huang
- Loma Linda University, Loma Linda, CA, United States
| | | | | | - Promod Pillai
- Loma Linda University, Loma Linda, CA, United States
| | | | | | - Warren Boling
- Loma Linda University, Loma Linda, CA, United States
| |
Collapse
|
66
|
Abstract
PURPOSE OF REVIEW Meningioma is a common intracranial neoplasm currently classified in 15 histologic subtypes across 3 grades of malignancy. First-choice therapy for meningioma is maximum safe resection for grade I tumors, and surgery plus optional and mandatory adjuvant radiotherapy for grade II and III, respectively, given the increased rate of recurrence even in the event of complete resection. The WHO 2016 histopathologic grading of meningioma has been questioned due to subjectivity and its controversial predictive power for recurrence. RECENT FINDINGS Novel DNA methylation profiling has simplified classification into six classes that seem to improve prognostic accuracy. We review five main topics of molecular biology research regarding tumorigenesis and natural history of meningioma from the clinician's perspective: the histopathologic diagnostic features and pitfalls of the current tumor classification; the molecular integrated diagnosis supported by identification of genetic alterations and DNA methylation profiling; the general landscape of the various signaling pathways involved in meningioma formation; the pathogenic theories of the peri-tumoral edema present in meningioma and its therapy implications; and a summarized review on the current treatments and plausible targeted therapies directed to meningioma. It seems likely that molecular assessment will be introduced within the next update of the WHO classification of meningiomas, acknowledging the promising value of DNA methylation profiling. This integrated diagnostic protocol will simplify tumor subtype categorization and provide improved accuracy in predicting recurrence and outcome. Although much effort is being done in identifying key gene mutations, and elucidating specific intracellular signaling pathways involved in meningioma tumorigenesis, effective targeted therapies for recurrent meningiomas are still lacking.
Collapse
|
67
|
Together we stand, apart we fall: how cell-to-cell contact/interplay provides resistance to ferroptosis. Cell Death Dis 2020; 11:789. [PMID: 32968052 PMCID: PMC7511929 DOI: 10.1038/s41419-020-02994-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022]
Abstract
Contextualisation of the new type of cell death called “ferroptosis” opened a completely new avenue for the development of anti-cancer therapies. Cumulative fundamental research dating back to the mid-20th century, crowned by the extraordinary work of the group led by Dr. Stockwell from Columbia University in 2012, finally got its candidature to be applied in the clinical settings. Although the potential for clinical importance is undoubtedly growing every day, as showed by the increasing number of papers dealing with ferroptosis and its applications, long experience of cancer research and treatment taught us that caution is still necessary. The plasticity of the tumour cells, particularly acute, along with its involvement in the resistance mechanisms, that have been seen, to greater or lesser extent, for almost all currently used therapies, represents the biggest fascinations in biomedical research field and also the biggest challenge to achieving cures in cancer patients. Accordingly, the main features of fundamental research have to be vigilance and anticipation. In this review, we tried to summarize the literature data, accumulated in the past couple of years, which point out the pitfalls in which “ferroptosis inducers” can fall if used prematurely in the clinical settings, but at the same time can provide a great advantage in the exhausting battle with cancer resistance. This is the first comprehensive review focusing on the effects of the cell-to-cell contact/interplay in the development of resistance to ferroptosis, while the contribution of cell-born factors has been summarized previously so here we just listed them.
Collapse
|
68
|
Brastianos PK, Galanis E, Butowski N, Chan JW, Dunn IF, Goldbrunner R, Herold-Mende C, Ippen FM, Mawrin C, McDermott MW, Sloan A, Snyder J, Tabatabai G, Tatagiba M, Tonn JC, Wen PY, Aldape K, Nassiri F, Zadeh G, Jenkinson MD, Raleigh DR. Advances in multidisciplinary therapy for meningiomas. Neuro Oncol 2020; 21:i18-i31. [PMID: 30649489 DOI: 10.1093/neuonc/noy136] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Surgery has long been established as the first-line treatment for the majority of symptomatic and enlarging meningiomas, and evidence for its success is derived from retrospective case series. Despite surgical resection, a subset of meningiomas display aggressive behavior with early recurrences that are difficult to treat. The decision to radically resect meningiomas and involved structures is balanced against the risk for neurological injury in patients. Radiation therapy has largely been used as a complementary and safe therapeutic strategy in meningiomas with evidence primarily stemming from retrospective, single-institution reports. Two of the first cooperative group studies (RTOG 0539 and EORTC 22042) evaluating the outcomes of adjuvant radiation therapy in higher-risk meningiomas have shown promising preliminary results. Historically, systemic therapy has resulted in disappointing results in meningiomas. However, several clinical trials are under way evaluating the efficacy of chemotherapies, such as trabectedin, and novel molecular agents targeting Smoothened, AKT1, and focal adhesion kinase in patients with recurrent meningiomas.
Collapse
Affiliation(s)
- Priscilla K Brastianos
- Divisions of Hematology/Oncology & Neuro-Oncology, Departments of Medicine & Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Evanthia Galanis
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Nicholas Butowski
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Jason W Chan
- Department of Radiation Oncology, University of California, San Francisco, California, USA
| | - Ian F Dunn
- Center for Skull Base and Pituitary Surgery, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Roland Goldbrunner
- Department of General Neurosurgery, University Hospital Cologne, Cologne, Germany
| | | | - Franziska M Ippen
- Divisions of Hematology/Oncology & Neuro-Oncology, Departments of Medicine & Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Christian Mawrin
- Institute of Neuropathology, Otto-von-Guericke University, Magdeburg, Germany
| | - Michael W McDermott
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Andrew Sloan
- Department of Neurological Surgery, University Hospital-Case Medical Center, Cleveland, Ohio, USA
| | - James Snyder
- Department of Neurosurgery, Henry Ford Health System, Detroit, Michigan, USA
| | - Ghazaleh Tabatabai
- Interdisciplinary Division of Neuro-Oncology, Hertie Institute for Clinical Brain Research & Centre for CNS Tumors, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Eberhard Karls University, Tübingen, Germany
| | - Marcos Tatagiba
- Department of Neurosurgery, University Hospital Tübingen, Tübingen, Germany
| | - Joerg C Tonn
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Kenneth Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA.,MacFeeters-Hamilton Center for Neuro-Oncology, Princess Margaret Cancer Center, Toronto, Ontario, Canada
| | - Farshad Nassiri
- MacFeeters-Hamilton Center for Neuro-Oncology, Princess Margaret Cancer Center, Toronto, Ontario, Canada
| | - Gelareh Zadeh
- Division of Neurosurgery, University Health Network, University of Toronto, Ontario, Canada.,MacFeeters-Hamilton Center for Neuro-Oncology, Princess Margaret Cancer Center, Toronto, Ontario, Canada
| | - Michael D Jenkinson
- Department of Neurosurgery & Institute of Translational Medicine, The Walton Centre NHS Foundation Trust & University of Liverpool, Lower Lane, Liverpool, Merseyside, UK
| | - David R Raleigh
- Department of Neurological Surgery, University of California, San Francisco, California, USA.,Department of Radiation Oncology, University of California, San Francisco, California, USA
| | | |
Collapse
|
69
|
Long-term therapy with Bevacizumab in a young patient affected by NF2. Stop or continue treatment? An update of a case report and review of the literature. Anticancer Drugs 2020; 31:754-757. [PMID: 32697470 DOI: 10.1097/cad.0000000000000953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Neurofibromatosis type 2 (NF2) is an autosomal dominant condition caused by pathogenic variants in the NF2 gene. To date, cytotoxic chemotherapy has no established role in the treatment of NF-2. Historical case reports of malignant schwannomas have documented responses to chemotherapies with cyclophosphamide, vincristine and doxorubicin, in patients who develop pulmonary metastases. Recently, several studies proposed the use of anti-HER2, anti-EGFR, anti-platelet-derived growth factor receptors. As reported in our previous review of the literature, vascular endothelial growth factor (VEGF) and its receptor VEGFR-1 have been detected in schwannomas with the best results. We described the case of a young patient with NF2 treated for long time with Bevacizumab. Here, we report the update of the previous case report.
Collapse
|
70
|
Cordova C, Kurz SC. Advances in Molecular Classification and Therapeutic Opportunities in Meningiomas. Curr Oncol Rep 2020; 22:84. [PMID: 32617743 DOI: 10.1007/s11912-020-00937-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Our understanding of the genetic and epigenetic alterations in meningioma and the underlying tumor biology of meningioma has significantly changed over the past decade and resulted in revision of prognostically relevant meningioma subclasses within and beyond the WHO classification of CNS tumors. RECENT FINDINGS The 2016 WHO classification of CNS tumors recognizes WHO grade I, II, and III based on histopathological features. Recent work has identified genetic alterations with prognostic implications, including mutations of the TERT promoter, loss of function of the DMD gene, and inactivation of the tumor suppressor BAP-1. Studies of DNA methylation patterns in meningiomas have resulted in a novel and prognostically relevant meningioma subclassification schema. There have been major advances in our understanding of prognostically relevant genetic and epigenetic changes in meningioma which will hopefully allow for improvement in clinical trial design and the development of more effective therapies for meningioma.
Collapse
Affiliation(s)
- Christine Cordova
- Perlmutter Cancer Center, Brain and Spine Tumor Center, NYU Langone Health, 240 E. 38th Street, 19th floor, New York, NY, 10016, USA
| | - Sylvia C Kurz
- Perlmutter Cancer Center, Brain and Spine Tumor Center, NYU Langone Health, 240 E. 38th Street, 19th floor, New York, NY, 10016, USA.
| |
Collapse
|
71
|
Coy S, Rashid R, Stemmer-Rachamimov A, Santagata S. An update on the CNS manifestations of neurofibromatosis type 2. Acta Neuropathol 2020; 139:643-665. [PMID: 31161239 PMCID: PMC7038792 DOI: 10.1007/s00401-019-02029-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/23/2019] [Accepted: 05/25/2019] [Indexed: 12/21/2022]
Abstract
Neurofibromatosis type II (NF2) is a tumor predisposition syndrome characterized by the development of distinctive nervous system lesions. NF2 results from loss-of-function alterations in the NF2 gene on chromosome 22, with resultant dysfunction of its protein product merlin. NF2 is most commonly associated with the development of bilateral vestibular schwannomas; however, patients also have a predisposition to development of other tumors including meningiomas, ependymomas, and peripheral, spinal, and cranial nerve schwannomas. Patients may also develop other characteristic manifestations such as ocular lesions, neuropathies, meningioangiomatosis, and glial hamartia. NF2 has a highly variable clinical course, with some patients exhibiting a severe phenotype and development of multiple tumors at an early age, while others may be nearly asymptomatic throughout their lifetime. Despite the high morbidity associated with NF2 in severe cases, management of NF2-associated lesions primarily consists of surgical resection and treatment of symptoms, and there are currently no FDA-approved systemic therapies that address the underlying biology of the syndrome. Refinements to the diagnostic criteria of NF2 have been proposed over time due to increasing understanding of clinical and molecular data. Large-population studies have demonstrated that some features such as the development of gliomas and neurofibromas, currently included as diagnostic criteria, may require further clarification and modification. Meanwhile, burgeoning insights into the molecular biology of NF2 have shed light on the etiology and highly variable severity of the disease and suggested numerous putative molecular targets for therapeutic intervention. Here, we review the clinicopathologic features of NF2, current understanding of the molecular biology of NF2, particularly with regard to central nervous system lesions, ongoing therapeutic studies, and avenues for further research.
Collapse
Affiliation(s)
- Shannon Coy
- Division of Neuropathology, Department of Pathology, Brigham and Women's Hospital, Hale Building for Transformative Medicine, BTM8002P, 60 Fenwood Road, Boston, MA, 02115, USA
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Rumana Rashid
- Division of Neuropathology, Department of Pathology, Brigham and Women's Hospital, Hale Building for Transformative Medicine, BTM8002P, 60 Fenwood Road, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
- Laboratory for Systems Pharmacology, Harvard Program in Therapeutic Science, Boston, MA, USA
| | - Anat Stemmer-Rachamimov
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Sandro Santagata
- Division of Neuropathology, Department of Pathology, Brigham and Women's Hospital, Hale Building for Transformative Medicine, BTM8002P, 60 Fenwood Road, Boston, MA, 02115, USA.
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Laboratory for Systems Pharmacology, Harvard Program in Therapeutic Science, Boston, MA, USA.
- Ludwig Center at Harvard, Boston, MA, USA.
| |
Collapse
|
72
|
Yao L, Alahmari M, Temel Y, Hovinga K. Therapy of Sporadic and NF2-Related Vestibular Schwannoma. Cancers (Basel) 2020; 12:E835. [PMID: 32244314 PMCID: PMC7226024 DOI: 10.3390/cancers12040835] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022] Open
Abstract
Vestibular schwannoma (VS) is a benign primary brain tumor that occurs sporadic or as part of a genetic syndrome. The most common cause is the mutation of the NF2 tumor suppressor gene that is involved in the production of the protein merlin. Merlin plays a role in cell growth and cell adhesion. In patients with NF2, the VSs arise bilaterally and coincide with other brain tumors. In sporadic VS, the tumor is typically unilateral and does not coincide in combination with other tumors. MRI is the standard imaging technique and can be used to assess the size and aspect of the tumor as well as the progression of disease. The preferred management of large VS in both VS types is surgery with or without adjuvant radiation. The management for the medium- or small-sized VS includes wait and scan, radiotherapy and/or surgery. This choice depends on the preference of the patient and institutional protocols. The outcomes of surgical and radiotherapy treatments are improving due to progress in surgical equipment/approaches, advances in radiation delivery techniques and dose optimizations protocols. The main purpose of the management of VS is preserving function as long as possible in combination with tumor control.
Collapse
Affiliation(s)
- Longping Yao
- Department of Neurosurgery, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands; (L.Y.); (M.A.); (Y.T.)
| | - Mohammed Alahmari
- Department of Neurosurgery, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands; (L.Y.); (M.A.); (Y.T.)
- Department of Radiology, King Fahad Hospital of Imam Abdulrahman Bin Faisal University, P.O. Box 40046, 31952 AL-Khobar, Saudi Arabia
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands; (L.Y.); (M.A.); (Y.T.)
| | - Koos Hovinga
- Department of Neurosurgery, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands; (L.Y.); (M.A.); (Y.T.)
| |
Collapse
|
73
|
Abstract
Vestibular schwannoma (VS) is a Schwann cell-derived tumour arising from the vestibulocochlear nerve. Although benign, it represents a threat to intracranial structures due to mass effect and carries a small risk of malignant transformation. VS therefore represents an important healthcare burden. We review the literature regarding pathogenesis, risk factors, and diagnosis of VS. The current and future potential management strategies are also discussed. A narrative review of all relevant papers known to the authors was conducted. The majority of VS remain clinically stable and do not require interventional procedures. Nevertheless, various surgical techniques exist for removing VS, the most common of which are translabyrinthine and retrosigmoid approaches. Due to surgical risks such as hearing loss, facial nerve dysfunction, post-operative headache, and cerebrospinal fluid leakage, a "watch and rescan" approach is adopted for most patients. Radiotherapy is a useful alternative and has been shown to have a similar response for growth restriction. Due to the heterogeneous nature of VS, there is a lack of consensus regarding management of tumours that are too large for conservative management but too small to indicate surgery. Emerging biologic therapies, such as Bevacizumab, Everolimus, and Lapatinib, as well as anti-inflammatories like aspirin are promising potential treatments; however, long-term evidence of their efficacy is required. The knowledge base regarding VS continues to improve. With increased understanding of the pathogenesis of these tumors, we believe future work should focus on pharmacologic intervention. Biologic therapies aimed toward improved patient outcomes are particularly promising.
Collapse
|
74
|
Sagers JE, Beauchamp RL, Zhang Y, Vasilijic S, Wu L, DeSouza P, Seist R, Zhou W, Xu L, Ramesh V, Stankovic KM. Combination therapy with mTOR kinase inhibitor and dasatinib as a novel therapeutic strategy for vestibular schwannoma. Sci Rep 2020; 10:4211. [PMID: 32144278 PMCID: PMC7060236 DOI: 10.1038/s41598-020-60156-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 02/07/2020] [Indexed: 12/13/2022] Open
Abstract
Neurofibromatosis type 2 (NF2) is an inherited disorder characterized by bilateral vestibular schwannomas (VS) that arise from neoplastic Schwann cells (SCs). NF2-associated VSs are often accompanied by meningioma (MN), and the majority of NF2 patients show loss of the NF2 tumor suppressor. mTORC1 and mTORC2-specific serum/glucocorticoid-regulated kinase 1 (SGK1) are constitutively activated in MN with loss of NF2. In a recent high-throughput kinome screen in NF2-null human arachnoidal and meningioma cells, we showed activation of EPH RTKs, c-KIT, and SFK members independent of mTORC1/2 activation. Subsequently, we demonstrated in vitro and in vivo efficacy of combination therapy with the dual mTORC1/2 inhibitor AZD2014 and the multi-kinase inhibitor dasatinib. For these reasons, we investigated activated mTORC1/2 and EPH receptor-mediated signaling in sporadic and NF2-associated VS. Using primary human VS cells and a mouse allograft model of schwannoma, we evaluated the dual mTORC1/2 inhibitor AZD2014 and the tyrosine kinase inhibitor dasatinib as monotherapies and in combination. Escalating dose-response experiments on primary VS cells grown from 15 human tumors show that combination therapy with AZD2014 and dasatinib is more effective at reducing metabolic activity than either drug alone and exhibits a therapeutic effect at a physiologically reasonable concentration (~0.1 µM). In vivo, while AZD2014 and dasatinib each inhibit tumor growth alone, the effect of combination therapy exceeds that of either drug. Co-targeting the mTOR and EPH receptor pathways with these or similar compounds may constitute a novel therapeutic strategy for VS, a condition for which there is no FDA-approved pharmacotherapy.
Collapse
Affiliation(s)
- Jessica E Sagers
- Eaton-Peabody Laboratories and Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, 02114, USA.,Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, 02115, USA.,Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, 02115, USA
| | - Roberta L Beauchamp
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Yanling Zhang
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.,Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430023, China
| | - Sasa Vasilijic
- Eaton-Peabody Laboratories and Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, 02114, USA
| | - Limeng Wu
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.,Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Patrick DeSouza
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Richard Seist
- Eaton-Peabody Laboratories and Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, 02114, USA
| | - Wenjianlong Zhou
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Lei Xu
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
| | - Vijaya Ramesh
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA. .,Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
| | - Konstantina M Stankovic
- Eaton-Peabody Laboratories and Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, 02114, USA. .,Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, 02115, USA. .,Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
75
|
Deng J, Hua L, Han T, Tian M, Wang D, Tang H, Sun S, Chen H, Cheng H, Zhang T, Xie Q, Wan L, Zhu H, Gong Y. The CREB-binding protein inhibitor ICG-001: a promising therapeutic strategy in sporadic meningioma with NF2 mutations. Neurooncol Adv 2020; 2:vdz055. [PMID: 32642722 PMCID: PMC7212891 DOI: 10.1093/noajnl/vdz055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background Meningiomas with Neurofibromin 2 gene mutations (NF2-mutant meningiomas) account for ~40% of the sporadic meningiomas. However, there is still no effective drug treatment for the disease. Methods Expression profile of Merlin protein was explored through immunohistochemistry in a meningioma patient cohort (n = 346). A 20-agent library covering a wide range of meningioma relevant targets was tested using meningioma cell lines IOMM-Lee (NF2 wildtype) and CH157-MN (NF2 deficient). Therapeutic effects and biological mechanisms of the identified compound, ICG-001, in NF2-mutant meningiomas were further characterized in vitro and in patient-derived xenograft (PDX) models. Results Low Merlin expression was associated with meningioma proliferation and poor clinical outcomes in a large patient series. ICG-001, a cAMP-responsive element binding (CREB)-binding protein (CBP) inhibitor, selectively suppressed tumor growth of cells with low Merlin expression. Besides, ICG-001 mediated CH157-MN and IOMM-Lee growth inhibition primarily through robust induction of the G1 cell-cycle arrest. Treatment with ICG-001 alone significantly reduced the growth of NF2-mutant xenografts in mice, as well. We also provide further evidence that ICG-001 inhibits proliferation of NF2-mutant meningioma cells at least partly through attenuating the FOXM1-mediated Wnt/β-catenin signaling. Conclusions This study highlights the importance of ligand-mediated Wnt/β-catenin signaling as well as its drugable potency in NF2-mutant meningioma.
Collapse
Affiliation(s)
- Jiaojiao Deng
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lingyang Hua
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tao Han
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Mi Tian
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Daijun Wang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hailiang Tang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shuchen Sun
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hong Chen
- Department of Neuropathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Haixia Cheng
- Department of Neuropathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Tao Zhang
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qing Xie
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lixin Wan
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Hongda Zhu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ye Gong
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
76
|
Sudhan DR, Guerrero-Zotano A, Won H, González Ericsson P, Servetto A, Huerta-Rosario M, Ye D, Lee KM, Formisano L, Guo Y, Liu Q, Kinch LN, Red Brewer M, Dugger T, Koch J, Wick MJ, Cutler RE, Lalani AS, Bryce R, Auerbach A, Hanker AB, Arteaga CL. Hyperactivation of TORC1 Drives Resistance to the Pan-HER Tyrosine Kinase Inhibitor Neratinib in HER2-Mutant Cancers. Cancer Cell 2020; 37:183-199.e5. [PMID: 31978326 PMCID: PMC7301608 DOI: 10.1016/j.ccell.2019.12.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 09/30/2019] [Accepted: 12/24/2019] [Indexed: 02/07/2023]
Abstract
We developed neratinib-resistant HER2-mutant cancer cells by gradual dose escalation. RNA sequencing identified TORC1 signaling as an actionable mechanism of drug resistance. Primary and acquired neratinib resistance in HER2-mutant breast cancer patient-derived xenografts (PDXs) was also associated with TORC1 hyperactivity. Genetic suppression of RAPTOR or RHEB ablated P-S6 and restored sensitivity to the tyrosine kinase inhibitor. The combination of the TORC1 inhibitor everolimus and neratinib potently arrested the growth of neratinib-resistant xenografts and organoids established from neratinib-resistant PDXs. RNA and whole-exome sequencing revealed RAS-mediated TORC1 activation in a subset of neratinib-resistant models. DNA sequencing of HER2-mutant tumors clinically refractory to neratinib, as well as circulating tumor DNA profiling of patients who progressed on neratinib, showed enrichment of genomic alterations that converge to activate the mTOR pathway.
Collapse
Affiliation(s)
- Dhivya R Sudhan
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Helen Won
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Alberto Servetto
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mariela Huerta-Rosario
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dan Ye
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kyung-Min Lee
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Luigi Formisano
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yan Guo
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lisa N Kinch
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Monica Red Brewer
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Teresa Dugger
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James Koch
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | | | | | - Ariella B Hanker
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Carlos L Arteaga
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
77
|
Graillon T, Sanson M, Campello C, Idbaih A, Peyre M, Peyrière H, Basset N, Autran D, Roche C, Kalamarides M, Roche PH, Fuentes S, Tabouret E, Barrie M, Cohen A, Honoré S, Boucekine M, Baumstarck K, Figarella-Branger D, Barlier A, Dufour H, Chinot OL. Everolimus and Octreotide for Patients with Recurrent Meningioma: Results from the Phase II CEVOREM Trial. Clin Cancer Res 2020; 26:552-557. [PMID: 31969329 DOI: 10.1158/1078-0432.ccr-19-2109] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/04/2019] [Accepted: 11/15/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Aggressive meningiomas that progress after surgery/radiotherapy represent an unmet medical need. Strong and constant expression of SSTR2A receptors and activation of the Pi3K/Akt/mTOR pathway have been demonstrated in meningiomas. The combination of everolimus, an mTOR inhibitor, and octreotide, a somatostatin agonist, has shown additive antitumor effect in vitro. The phase II CEVOREM trial investigated the efficacy of this combination on recurrent meningiomas. PATIENTS AND METHODS Patients with documented recurrent tumor progression ineligible for further surgery/radiotherapy were eligible to receive octreotide (30 mg/d, day 1) and everolimus (10 mg/d, days 1-28). The primary endpoint was the 6-month progression-free survival rate (PFS6). The secondary endpoints were overall survival, response rate, tumor growth rate according to central review, and safety. RESULTS A total of 20 patients were enrolled, including 2 with World Health Organization (WHO) grade I tumors, 10 with WHO grade II tumors, and 8 with WHO grade III tumors; furthermore, 4 patients harbored NF2 germline mutation. The overall PFS6 was 55% [95% confidence interval (CI), 31.3%-73.5%], and overall 6- and 12-month survival rates were 90% (95% CI, 65.6%-97.4%) and 75% (95% CI, 50.0%-88.7%), respectively. A major decrease (>50%) was observed in the growth rate at 3 months in 78% of tumors. The median tumor growth rate decreased from 16.6%/3 months before inclusion to 0.02%/3 months at 3 months (P < 0.0002) and 0.48%/3 months at 6 months after treatment (P < 0.0003). CONCLUSIONS The combination of everolimus and octreotide was associated with clinical and radiological activity in aggressive meningiomas and warrants further studies. Decrease in the tumor volume growth rate should be considered a complementary and sensitive endpoint to select potentially effective drugs for recurrent meningiomas.
Collapse
Affiliation(s)
- Thomas Graillon
- Aix-Marseille Univ, APHM, CHU Timone, Neurosurgery department, Marseille, France. .,Aix Marseille Univ, INSERM, MMG, Marseille, France
| | - Marc Sanson
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - Chantal Campello
- Aix-Marseille Univ, APHM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service de Neuro-Oncologie, Marseille, France
| | - Ahmed Idbaih
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - Matthieu Peyre
- Sorbonne Université, CRICM INSERM U1127 CNRS UMR 7225, Equipe de Neuro-Oncologie expérimentale, AP-HP, Hôpital Pitié-Salpêtrière, Service de Neurochirurgie, Paris, France
| | - Hadrien Peyrière
- Aix-Marseille Univ, APHM, CHU Timone, Neurosurgery department, Marseille, France
| | - Noémie Basset
- APHM, Conception, Molecular Biology Department, APHM, Marseille, France
| | - Didier Autran
- Aix-Marseille Univ, APHM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service de Neuro-Oncologie, Marseille, France
| | - Catherine Roche
- APHM, Conception, Molecular Biology Department, APHM, Marseille, France
| | - Michel Kalamarides
- Sorbonne Université, CRICM INSERM U1127 CNRS UMR 7225, Equipe de Neuro-Oncologie expérimentale, AP-HP, Hôpital Pitié-Salpêtrière, Service de Neurochirurgie, Paris, France
| | | | - Stéphane Fuentes
- Aix-Marseille Univ, APHM, CHU Timone, Neurosurgery department, Marseille, France
| | - Emeline Tabouret
- Aix-Marseille Univ, APHM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service de Neuro-Oncologie, Marseille, France
| | - Maryline Barrie
- Aix-Marseille Univ, APHM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service de Neuro-Oncologie, Marseille, France
| | - Anita Cohen
- APHM, Timone, Pharmaceutical Expertise and Clinical Research Unit, Pharmacy Department, APHM, Timone, Marseille, France
| | - Stéphane Honoré
- APHM, Timone, Pharmaceutical Expertise and Clinical Research Unit, Pharmacy Department, APHM, Timone, Marseille, France
| | - Mohamed Boucekine
- Aix-Marseille Univ, School of medicine - La Timone Medical Campus, EA 3279 CEReSS - Health Service Research and Quality of Life Center
- 27 bd Jean Moulin cedex 05, Marseille, France
| | - Karine Baumstarck
- Aix-Marseille Univ, School of medicine - La Timone Medical Campus, EA 3279 CEReSS - Health Service Research and Quality of Life Center
- 27 bd Jean Moulin cedex 05, Marseille, France
| | - Dominique Figarella-Branger
- Aix-Marseille Univ, APHM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France
| | - Anne Barlier
- Aix Marseille Univ, INSERM, MMG, Marseille, France.,APHM, Conception, Molecular Biology Department, APHM, Marseille, France
| | - Henry Dufour
- Aix-Marseille Univ, APHM, CHU Timone, Neurosurgery department, Marseille, France.,Aix Marseille Univ, INSERM, MMG, Marseille, France
| | - Olivier Louis Chinot
- Aix-Marseille Univ, APHM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service de Neuro-Oncologie, Marseille, France
| |
Collapse
|
78
|
Gugel I, Ebner FH, Grimm F, Czemmel S, Paulsen F, Hagel C, Tatagiba M, Nahnsen S, Tabatabai G. Contribution of mTOR and PTEN to Radioresistance in Sporadic and NF2-Associated Vestibular Schwannomas: A Microarray and Pathway Analysis. Cancers (Basel) 2020; 12:cancers12010177. [PMID: 31936793 PMCID: PMC7016954 DOI: 10.3390/cancers12010177] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/07/2020] [Indexed: 01/29/2023] Open
Abstract
The use of radiation treatment has increased for both sporadic and neurofibromatosis type 2 (NF2)-associated vestibular schwannoma (VS). However, there are a subset of radioresistant tumors and systemic treatments that are seldom used in these patients. We investigated molecular alterations after radiation in three NF2-associated and five sporadically operated recurrent VS after primary irradiation. We compared these findings with 49 non-irradiated (36 sporadic and 13 NF2-associated) VS through gene-expression profiling and pathway analysis. Furthermore, we stained the key molecules of the distinct pathway by immunohistochemistry. A total of 195 differentially expressed genes in sporadic and NF2-related comparisons showed significant differences based on the criteria of p value < 0.05 and a two-fold change. These genes were involved in pathways that are known to be altered upon irradiation (e.g., mammalian target of rapamycin (mTOR), phosphatase and tensin homolog (PTEN) and vascular endothelial growth factor (VEGF) signaling). We observed a combined downregulation of PTEN signaling and an upregulation of mTOR signaling in progressive NF2-associated VS after irradiation. Immunostainings with mTOR and PTEN antibodies confirmed the respective molecular alterations. Taken together, mTOR inhibition might be a promising therapeutic strategy in NF2-associated VS progress after irradiation.
Collapse
Affiliation(s)
- Isabel Gugel
- Center for Neuro-Oncol., Comprehensive Cancer Center Tübingen Stuttgart, 72076 Tübingen, Germany
- Department of Neurosurgery, University Hospital Tübingen, 72076 Tübingen, Germany
- Centre of Neurofibromatosis and Rare Diseases, University Hospital Tübingen, 72076 Tübingen, Germany
- Interdisciplinary Division of Neuro-Oncol., University Hospital Tübingen, 72076 Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
- Correspondence: ; Tel.: +49-7071-2980325; Fax: +49-07071-295245
| | - Florian H. Ebner
- Department of Neurosurgery, Alfried Krupp Hospital, 45131 Essen, Germany
| | - Florian Grimm
- Center for Neuro-Oncol., Comprehensive Cancer Center Tübingen Stuttgart, 72076 Tübingen, Germany
- Department of Neurosurgery, University Hospital Tübingen, 72076 Tübingen, Germany
- Interdisciplinary Division of Neuro-Oncol., University Hospital Tübingen, 72076 Tübingen, Germany
| | - Stefan Czemmel
- Quantitative Biology Center (QBiC), University of Tübingen, 72076 Tübingen, Germany
| | - Frank Paulsen
- Center for Neuro-Oncol., Comprehensive Cancer Center Tübingen Stuttgart, 72076 Tübingen, Germany
- Interdisciplinary Division of Neuro-Oncol., University Hospital Tübingen, 72076 Tübingen, Germany
- Department of Radiation Oncology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Christian Hagel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Marcos Tatagiba
- Center for Neuro-Oncol., Comprehensive Cancer Center Tübingen Stuttgart, 72076 Tübingen, Germany
- Department of Neurosurgery, University Hospital Tübingen, 72076 Tübingen, Germany
- Centre of Neurofibromatosis and Rare Diseases, University Hospital Tübingen, 72076 Tübingen, Germany
- Interdisciplinary Division of Neuro-Oncol., University Hospital Tübingen, 72076 Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Sven Nahnsen
- Quantitative Biology Center (QBiC), University of Tübingen, 72076 Tübingen, Germany
| | - Ghazaleh Tabatabai
- Center for Neuro-Oncol., Comprehensive Cancer Center Tübingen Stuttgart, 72076 Tübingen, Germany
- Department of Neurosurgery, University Hospital Tübingen, 72076 Tübingen, Germany
- Interdisciplinary Division of Neuro-Oncol., University Hospital Tübingen, 72076 Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
79
|
Dent P, Booth L, Poklepovic A, Martinez J, Hoff DV, Hancock JF. Neratinib degrades MST4 via autophagy that reduces membrane stiffness and is essential for the inactivation of PI3K, ERK1/2, and YAP/TAZ signaling. J Cell Physiol 2020; 235:7889-7899. [PMID: 31912905 DOI: 10.1002/jcp.29443] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 12/31/2019] [Indexed: 12/11/2022]
Abstract
The irreversible ERBB1/2/4 inhibitor neratinib causes plasma membrane-associated K-RAS to mislocalize into intracellular vesicles liminal to the plasma membrane; this effect is enhanced by HDAC inhibitors and is now a Phase I trial (NCT03919292). The combination of neratinib and HDAC inhibitors killed pancreatic cancer and lymphoma T cells. Neratinib plus HDAC inhibitor exposure was as efficacious as (paclitaxel+gemcitabine) at killing pancreatic cancer cells. Neratinib reduced the phosphorylation of PAK1, Merlin, LATS1/2, AKT, mTOR, p70 S6K, and ERK1/2 which required expression of Rubicon, Beclin1, and Merlin. Neratinib altered pancreatic tumor cell morphology which was associated with MST4 degradation reduced Ezrin phosphorylation and enhanced phosphorylation of MAP4K4 and LATS1/2. Knockdown of the MAP4K4 activator and sensor of membrane rigidity RAP2A reduced basal LATS1/2 and YAP phosphorylation but did not prevent neratinib from stimulating LATS1/2 or YAP phosphorylation. Beclin1 knockdown prevented MST4 degradation, Ezrin dephosphorylation and neratinib-induced alterations in tumor cell morphology. Our findings demonstrate that neratinib enhances LATS1/2 phosphorylation independently of RAP2A/MAP4K4 and that MST4 degradation and Ezrin dephosphorylation may represent a universal trigger for the biological actions of neratinib.
Collapse
Affiliation(s)
- Paul Dent
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Laurence Booth
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | | | - Jennifer Martinez
- Inflammation & Autoimmunity Group, National Institute of Environmental Health Sciences, Triangle Park, North Carolina
| | - Daniel Von Hoff
- Translational Genomics Research Institute (TGEN), Phoenix, Arizona
| | - John F Hancock
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas
| |
Collapse
|
80
|
Al-Rashed M, Foshay K, Abedalthagafi M. Recent Advances in Meningioma Immunogenetics. Front Oncol 2020; 9:1472. [PMID: 31970090 PMCID: PMC6960175 DOI: 10.3389/fonc.2019.01472] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/09/2019] [Indexed: 12/26/2022] Open
Abstract
Meningiomas are relatively common, and typically benign intracranial tumors, which in many cases can be cured by surgical resection. However, less prevalent, high grade meningiomas, grow quickly, and recur frequently despite treatment, leading to poor patient outcomes. Across tumor grades, subjective guidelines for histological analysis can preclude accurate diagnosis, and an insufficient understanding of recurrence risk can cloud the choice of optimal treatment. Improved diagnostic and prognostic markers capable of discerning between the 15 heterogeneous WHO recognized meningioma subtypes are necessary to improve disease management and identify new targeted drug treatments. In this review, we show the advances in molecular profiling and immunophenotyping of meningiomas, which may lead to the development of new personalized therapeutic strategies.
Collapse
Affiliation(s)
- May Al-Rashed
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Kara Foshay
- Inova Neuroscience and Spine Institute, Inova Health Systems, Falls Church, VA, United States
- Virginia Commonwealth University School of Medicine, Inova Campus, Richmond, VA, United States
| | - Malak Abedalthagafi
- Genomics Research Department, Saudi Human Genome Project, King Fahad Medical City, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| |
Collapse
|
81
|
Martin P, Wagh V, Reis SA, Erdin S, Beauchamp RL, Shaikh G, Talkowski M, Thiele E, Sheridan SD, Haggarty SJ, Ramesh V. TSC patient-derived isogenic neural progenitor cells reveal altered early neurodevelopmental phenotypes and rapamycin-induced MNK-eIF4E signaling. Mol Autism 2020; 11:2. [PMID: 31921404 PMCID: PMC6945400 DOI: 10.1186/s13229-019-0311-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/29/2019] [Indexed: 12/21/2022] Open
Abstract
Background Tuberous sclerosis complex (TSC) is a neurodevelopmental disorder with frequent occurrence of epilepsy, autism spectrum disorder (ASD), intellectual disability (ID), and tumors in multiple organs. The aberrant activation of mTORC1 in TSC has led to treatment with mTORC1 inhibitor rapamycin as a lifelong therapy for tumors, but TSC-associated neurocognitive manifestations remain unaffected by rapamycin. Methods Here, we generated patient-specific, induced pluripotent stem cells (iPSCs) from a TSC patient with a heterozygous, germline, nonsense mutation in exon 15 of TSC1 and established an isogenic set of heterozygous (Het), null and corrected wildtype (Corr-WT) iPSCs using CRISPR/Cas9-mediated gene editing. We differentiated these iPSCs into neural progenitor cells (NPCs) and examined neurodevelopmental phenotypes, signaling and changes in gene expression by RNA-seq. Results Differentiated NPCs revealed enlarged cell size in TSC1-Het and Null NPCs, consistent with mTORC1 activation. TSC1-Het and Null NPCs also revealed enhanced proliferation and altered neurite outgrowth in a genotype-dependent manner, which was not reversed by rapamycin. Transcriptome analyses of TSC1-NPCs revealed differentially expressed genes that display a genotype-dependent linear response, i.e., genes upregulated/downregulated in Het were further increased/decreased in Null. In particular, genes linked to ASD, epilepsy, and ID were significantly upregulated or downregulated warranting further investigation. In TSC1-Het and Null NPCs, we also observed basal activation of ERK1/2, which was further activated upon rapamycin treatment. Rapamycin also increased MNK1/2-eIF4E signaling in TSC1-deficient NPCs. Conclusion MEK-ERK and MNK-eIF4E pathways regulate protein translation, and our results suggest that aberrant translation distinct in TSC1/2-deficient NPCs could play a role in neurodevelopmental defects. Our data showing upregulation of these signaling pathways by rapamycin support a strategy to combine a MEK or a MNK inhibitor with rapamycin that may be superior for TSC-associated CNS defects. Importantly, our generation of isogenic sets of NPCs from TSC patients provides a valuable platform for translatome and large-scale drug screening studies. Overall, our studies further support the notion that early developmental events such as NPC proliferation and initial process formation, such as neurite number and length that occur prior to neuronal differentiation, represent primary events in neurogenesis critical to disease pathogenesis of neurodevelopmental disorders such as ASD.
Collapse
Affiliation(s)
- Pauline Martin
- 1Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Vilas Wagh
- 2MERCK Research Laboratories, Boston, MA 02115 USA
| | - Surya A Reis
- 1Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Serkan Erdin
- 1Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Roberta L Beauchamp
- 1Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Ghalib Shaikh
- 1Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Michael Talkowski
- 1Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA.,3Department of Neurology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114 USA
| | - Elizabeth Thiele
- 3Department of Neurology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114 USA
| | - Steven D Sheridan
- 1Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA.,4Center for Quantitative Health, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Stephen J Haggarty
- 1Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA.,3Department of Neurology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114 USA
| | - Vijaya Ramesh
- 1Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA.,3Department of Neurology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114 USA
| |
Collapse
|
82
|
Zhu H, Miao Y, Shen Y, Guo J, Xie W, Zhao S, Dong W, Zhang Y, Li C. The clinical characteristics and molecular mechanism of pituitary adenoma associated with meningioma. J Transl Med 2019; 17:354. [PMID: 31665029 PMCID: PMC6821033 DOI: 10.1186/s12967-019-2103-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/18/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Pituitary adenoma and meningioma are the most common benign tumors in the central nervous system. Pituitary adenoma associated with meningioma (PAM) is a rare disease and the clinical features and mechanisms of PAM are unclear. METHODS We summarized the clinical data of 57 PAM patients and compared with sporadic pituitary adenoma (SPA) and sporadic meningioma (SM). 5 pituitary adenomas of PAM and 5 SPAs were performed ceRNA microarray. qRT-PCR, Western Blot, siMEN1 and rapamycin inhibition experiment were validated for ceRNA microarray. RESULTS Clinical variable analyses revealed that significant correlations between PAM and female sex as well as older age when compared with SPA and significant correlations between PAM and transitional meningioma as well as older age when compared with SM. Additionally, the characteristics of PAM were significantly different for MEN1 patients. Functional experiments showed lower expression of MEN1 can upregulate mTOR signaling, in accordance with the result of ceRNA microarray. Rapamycin treatment promotes apoptosis in primary pituitary adenoma and meningioma cells of PAM. CONCLUSIONS MEN1 plays an important role in PAM by upregulating mTOR signaling pathway. Rapamycin represents a potential therapeutic strategy for PAM in the future.
Collapse
Affiliation(s)
- Haibo Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, No. 119, South Fourth Ring West Road, Fengtai District, Beijing, 100070 China
| | - Yazhou Miao
- Beijing Neurosurgical Institute, Capital Medical University, No. 119, South Fourth Ring West Road, Fengtai District, Beijing, 100070 China
| | - Yutao Shen
- Beijing Neurosurgical Institute, Capital Medical University, No. 119, South Fourth Ring West Road, Fengtai District, Beijing, 100070 China
| | - Jing Guo
- Beijing Neurosurgical Institute, Capital Medical University, No. 119, South Fourth Ring West Road, Fengtai District, Beijing, 100070 China
| | - Weiyan Xie
- Beijing Neurosurgical Institute, Capital Medical University, No. 119, South Fourth Ring West Road, Fengtai District, Beijing, 100070 China
| | - Sida Zhao
- Beijing Neurosurgical Institute, Capital Medical University, No. 119, South Fourth Ring West Road, Fengtai District, Beijing, 100070 China
| | - Wei Dong
- Beijing Neurosurgical Institute, Capital Medical University, No. 119, South Fourth Ring West Road, Fengtai District, Beijing, 100070 China
| | - Yazhuo Zhang
- Beijing Neurosurgical Institute, Capital Medical University, No. 119, South Fourth Ring West Road, Fengtai District, Beijing, 100070 China
- Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, No. 119, South Fourth Ring West Road, Fengtai District, Beijing, 100070 China
- Beijing Institute for Brain Disorders Brain Tumor Center, No. 119, South Fourth Ring West Road, Fengtai District, Beijing, 100070 China
- China National Clinical Research Center for Neurological Diseases, No. 119, South Fourth Ring West Road, Fengtai District, Beijing, 100070 China
| | - Chuzhong Li
- Beijing Neurosurgical Institute, Capital Medical University, No. 119, South Fourth Ring West Road, Fengtai District, Beijing, 100070 China
- Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, No. 119, South Fourth Ring West Road, Fengtai District, Beijing, 100070 China
- Beijing Institute for Brain Disorders Brain Tumor Center, No. 119, South Fourth Ring West Road, Fengtai District, Beijing, 100070 China
- China National Clinical Research Center for Neurological Diseases, No. 119, South Fourth Ring West Road, Fengtai District, Beijing, 100070 China
| |
Collapse
|
83
|
Persistent Oxidative Stress in Vestibular Schwannomas After Stereotactic Radiation Therapy. Otol Neurotol 2019; 39:1184-1190. [PMID: 30106845 DOI: 10.1097/mao.0000000000001935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Stereotactic radiation therapy is increasingly used to treat vestibular schwannomas (VSs) primarily and to treat tumor remnants following microsurgery. Little data are available regarding the effects of radiation on VS cells. Tyrosine nitrosylation is a marker of oxidative stress following radiation in malignant tumors. It is not known how long irradiated tissue remains under oxidative stress, and if such modifications occur in benign neoplasms such as VSs treated with significantly lower doses of radiation. We immunostained sections from previously radiated VSs with an antibody that recognizes nitrosylated tyrosine residues to assess for ongoing oxidative stress. STUDY DESIGN Immunohistochemical analysis. METHODS Four VSs, which recurred after excision, were treated with stereotactic radiation therapy. Ultimately each tumor required salvage reresection for regrowth. Histologic sections of each tumor before and after radiation were immunolabeled with a monoclonal antibody specific to nitrotyrosine and compared. Two VSs that underwent reresection of a growing tumor remnant without previous radiation therapy served as additional controls. RESULTS Irradiated tumors enlarged in volume by 3.16 to 8.62 mL following radiation. Preradiation sections demonstrated little to no nitrotyrosine immunostaining. Three of four of irradiated VSs demonstrated increased nitrotyrosine immunostaining in the postradiation sections compared with preradiation tumor sections. Nonirradiated VSs did not label with the antinitrotyrosine antibody. CONCLUSIONS VSs exhibit oxidative stress up to 7 years after radiotherapy, yet these VSs continued to enlarge. Thus, VSs that grow following radiation appear to possess mechanisms for cell survival and proliferation despite radiation-induced oxidative stress.
Collapse
|
84
|
Lee S, Karas PJ, Hadley CC, Bayley V JC, Khan AB, Jalali A, Sweeney AD, Klisch TJ, Patel AJ. The Role of Merlin/NF2 Loss in Meningioma Biology. Cancers (Basel) 2019; 11:E1633. [PMID: 31652973 PMCID: PMC6893739 DOI: 10.3390/cancers11111633] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/17/2019] [Accepted: 10/19/2019] [Indexed: 02/06/2023] Open
Abstract
Mutations in the neurofibromin 2 (NF2) gene were among the first genetic alterations implicated in meningioma tumorigenesis, based on analysis of neurofibromatosis type 2 (NF2) patients who not only develop vestibular schwannomas but later have a high incidence of meningiomas. The NF2 gene product, merlin, is a tumor suppressor that is thought to link the actin cytoskeleton with plasma membrane proteins and mediate contact-dependent inhibition of proliferation. However, the early recognition of the crucial role of NF2 mutations in the pathogenesis of the majority of meningiomas has not yet translated into useful clinical insights, due to the complexity of merlin's many interacting partners and signaling pathways. Next-generation sequencing studies and increasingly sophisticated NF2-deletion-based in vitro and in vivo models have helped elucidate the consequences of merlin loss in meningioma pathogenesis. In this review, we seek to summarize recent findings and provide future directions toward potential therapeutics for this tumor.
Collapse
Affiliation(s)
- Sungho Lee
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Patrick J Karas
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Caroline C Hadley
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA.
| | - James C Bayley V
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA.
| | - A Basit Khan
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Ali Jalali
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Alex D Sweeney
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Tiemo J Klisch
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Akash J Patel
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA.
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX 77030, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
85
|
Angus SP, Oblinger JL, Stuhlmiller TJ, DeSouza PA, Beauchamp RL, Witt L, Chen X, Jordan JT, Gilbert TSK, Stemmer-Rachamimov A, Gusella JF, Plotkin SR, Haggarty SJ, Chang LS, Johnson GL, Ramesh V. EPH receptor signaling as a novel therapeutic target in NF2-deficient meningioma. Neuro Oncol 2019; 20:1185-1196. [PMID: 29982664 DOI: 10.1093/neuonc/noy046] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Meningiomas are the most common primary brain tumor in adults, and somatic loss of the neurofibromatosis 2 (NF2) tumor suppressor gene is a frequent genetic event. There is no effective treatment for tumors that recur or continue to grow despite surgery and/or radiation. Therefore, targeted therapies that either delay tumor progression or cause tumor shrinkage are much needed. Our earlier work established mammalian target of rapamycin complex mTORC1/mTORC2 activation in NF2-deficient meningiomas. Methods High-throughput kinome analyses were performed in NF2-null human arachnoidal and meningioma cell lines to identify functional kinome changes upon NF2 loss. Immunoblotting confirmed the activation of kinases and demonstrated effectiveness of drugs to block the activation. Drugs, singly and in combination, were screened in cells for their growth inhibitory activity. Antitumor drug efficacy was tested in an orthotopic meningioma model. Results Erythropoietin-producing hepatocellular receptor tyrosine kinases (EPH RTKs), c-KIT, and Src family kinase (SFK) members, which are biological targets of dasatinib, were among the top candidates activated in NF2-null cells. Dasatinib significantly inhibited phospho-EPH receptor A2 (pEPHA2), pEPHB1, c-KIT, and Src/SFK in NF2-null cells, showing no cross-talk with mTORC1/2 signaling. Posttreatment kinome analyses showed minimal adaptive changes. While dasatinib treatment showed some activity, dual mTORC1/2 inhibitor and its combination with dasatinib elicited stronger growth inhibition in meningiomas. Conclusion Co-targeting mTORC1/2 and EPH RTK/SFK pathways could be a novel effective treatment strategy for NF2-deficient meningiomas.
Collapse
Affiliation(s)
- Steven P Angus
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Janet L Oblinger
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Timothy J Stuhlmiller
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Patrick A DeSouza
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Roberta L Beauchamp
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Luke Witt
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Xin Chen
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Justin T Jordan
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Thomas S K Gilbert
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | | | - James F Gusella
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Scott R Plotkin
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Stephen J Haggarty
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Long-Sheng Chang
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Gary L Johnson
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Vijaya Ramesh
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | | |
Collapse
|
86
|
Karsy M, Azab MA, Abou-Al-Shaar H, Guan J, Eli I, Jensen RL, Ormond DR. Clinical potential of meningioma genomic insights: a practical review for neurosurgeons. Neurosurg Focus 2019; 44:E10. [PMID: 29852774 DOI: 10.3171/2018.2.focus1849] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Meningiomas are among the most common intracranial pathological conditions, accounting for 36% of intracranial lesions treated by neurosurgeons. Although the majority of these lesions are benign, the classical categorization of tumors by histological type or World Health Organization (WHO) grade has not fully captured the potential for meningioma progression and recurrence. Many targeted treatments have failed to generate a long-lasting effect on these tumors. Recently, several seminal studies evaluating the genomics of intracranial meningiomas have rapidly changed the understanding of the disease. The importance of NF2 (neurofibromin 2), TRAF7 (tumor necrosis factor [TNF] receptor-associated factor 7), KLF4 (Kruppel-like factor 4), AKT1, SMO (smoothened), PIK3CA (phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha), and POLR2 (RNA polymerase II subunit A) demonstrates that there are at least 6 distinct mutational classes of meningiomas. In addition, 6 methylation classes of meningioma have been appreciated, enabling improved prediction of prognosis compared with traditional WHO grades. Genomic studies have shed light on the nature of recurrent meningioma, distinct intracranial locations and mutational patterns, and a potential embryonic cancer stem cell-like origin. However, despite these exciting findings, the clinical relevance of these findings remains elusive. The authors review the key findings from recent genomic studies in meningiomas, specifically focusing on how these findings relate to clinical insights for the practicing neurosurgeon.
Collapse
Affiliation(s)
- Michael Karsy
- 1Department of Neurosurgery, Clinical Neurosciences Center, and
| | - Mohammed A Azab
- 1Department of Neurosurgery, Clinical Neurosciences Center, and
| | | | - Jian Guan
- 1Department of Neurosurgery, Clinical Neurosciences Center, and
| | - Ilyas Eli
- 1Department of Neurosurgery, Clinical Neurosciences Center, and
| | - Randy L Jensen
- 1Department of Neurosurgery, Clinical Neurosciences Center, and.,2Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah; and
| | - D Ryan Ormond
- 3Department of Neurosurgery, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
87
|
Kerr K, Qualmann K, Esquenazi Y, Hagan J, Kim DH. Familial Syndromes Involving Meningiomas Provide Mechanistic Insight Into Sporadic Disease. Neurosurgery 2019; 83:1107-1118. [PMID: 29660026 PMCID: PMC6235681 DOI: 10.1093/neuros/nyy121] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/12/2018] [Indexed: 12/20/2022] Open
Abstract
Currently, there is an incomplete understanding of the molecular pathogenesis of meningiomas, the most common primary brain tumor. Several familial syndromes are characterized by increased meningioma risk, and the genetics of these syndromes provides mechanistic insight into sporadic disease. The best defined of these syndromes is neurofibromatosis type 2, which is caused by a mutation in the NF2 gene and has a meningioma incidence of approximately 50%. This finding led to the subsequent discovery that NF2 loss-of-function occurs in up to 60% of sporadic tumors. Other important familial diseases with increased meningioma risk include nevoid basal cell carcinoma syndrome, multiple endocrine neoplasia 1 (MEN1), Cowden syndrome, Werner syndrome, BAP1 tumor predisposition syndrome, Rubinstein-Taybi syndrome, and familial meningiomatosis caused by germline mutations in the SMARCB1 and SMARCE1 genes. For each of these syndromes, the diagnostic criteria, incidence in the population, and frequency of meningioma are presented to review the relevant clinical information for these conditions. The genetic mutations, molecular pathway derangements, and relationship to sporadic disease for each syndrome are described in detail to identify targets for further investigation. Familial syndromes characterized by meningiomas often affect genes and pathways that are also implicated in a subset of sporadic cases, suggesting key molecular targets for therapeutic intervention. Further studies are needed to resolve the functional relevance of specific genes whose significance in sporadic disease remains to be elucidated.
Collapse
Affiliation(s)
- Keith Kerr
- Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center at Houston, Texas
| | - Krista Qualmann
- Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center at Houston, Texas
| | - Yoshua Esquenazi
- Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center at Houston, Texas
| | - John Hagan
- Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center at Houston, Texas
| | - Dong H Kim
- Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center at Houston, Texas
| |
Collapse
|
88
|
Pagani F, Colecchia M, Sepe P, Apollonio G, Claps M, Verzoni E, de Braud F, Procopio G. Collecting ducts carcinoma: An orphan disease. Literature overview and future perspectives. Cancer Treat Rev 2019; 79:101891. [PMID: 31491662 DOI: 10.1016/j.ctrv.2019.101891] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/22/2019] [Accepted: 08/24/2019] [Indexed: 12/28/2022]
Abstract
Collecting ducts carcinoma (CDC) is a rare and aggressive histological subtype of renal cancer accounting for only 1% of renal tumors. Usually patients present in bad clinical conditions due to a symptomatic disease with synchronous metastasis. Due to the rarity of CDC, data from prospective trials evaluating the best treatment for these patients are limited. The prognosis is poor with a median overall survival of around 11 months for patients with metastatic disease. The best treatment option today is considered a doublet chemotherapy with platinum salt plus gemcitabine as a result from a prospective phase II trial, but survival outcomes remain unsatisfactory. The interest in the in-depth understanding the biology of this orphan disease is growing, leading to find potential new biological-driven treatment approaches. Here we review the up-to-date literature evidences to address the best management of this rare and unfavorable clinical condition.
Collapse
Affiliation(s)
- Filippo Pagani
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maurizio Colecchia
- Department of Human Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Pierangela Sepe
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giulia Apollonio
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Melanie Claps
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elena Verzoni
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo de Braud
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giuseppe Procopio
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| |
Collapse
|
89
|
Chen J, Jiang C, Fu L, Zhu CL, Xiang YQ, Jiang LX, Chen Q, Liu WM, Chen JN, Zhang LY, Liu M, Chen C, Tang H, Wang B, Tsao SW, Kwong DLW, Guan XY. CHL1 suppresses tumor growth and metastasis in nasopharyngeal carcinoma by repressing PI3K/AKT signaling pathway via interaction with Integrin β1 and Merlin. Int J Biol Sci 2019; 15:1802-1815. [PMID: 31523184 PMCID: PMC6743306 DOI: 10.7150/ijbs.34785] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/19/2019] [Indexed: 01/24/2023] Open
Abstract
Deletion of Chromosome 3p is one of the most frequently detected genetic alterations in nasopharyngeal carcinoma (NPC). We reported the role of a novel 3p26.3 tumor suppressor gene (TSG) CHL1 in NPC. Down-regulation of CHL1 was detected in 4/6 of NPC cell lines and 71/95 (74.7%) in clinical tissues. Ectopic expressions of CHL1 in NPC cells significantly inhibit colony formation and cell motility in functional study. By up-regulating epithelial markers and down-regulating mesenchymal markers CHL1 could induce mesenchymal-epithelial transition (MET), a key step in preventing tumor invasion and metastasis. CHL1 could also cause the inactivation of RhoA/Rac1/Cdc42 signaling pathway and inhibit the formation of stress fiber, lamellipodia, and filopodia. CHL1 could co-localize with adhesion molecule Integrin-β1, the expression of CHL1 was positively correlated with Integrin-β1 and another known tumor suppressor gene (TSG) Merlin. Down-regulation of Integrin-β1 or Merlin was significantly correlated with the poor survival rate of NPC patients. Further mechanistic studies showed that CHL1 could directly interact with integrin-β1 and link to Merlin, leading to the inactivation of integrin β1-AKT pathway. In conclusion, CHL1 is a vital tumor suppressor in the carcinogenesis of NPC.
Collapse
Affiliation(s)
- Juan Chen
- Departments of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China;,Department of Clinical Oncology, The Seventh Affiliated Hospital, Sun Yat-sen University
| | - Chen Jiang
- Departments of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Li Fu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pharmacology and Shenzhen University International Cancer Research Centre, Shenzhen University school of Medicine, Shenzhen, China
| | - Cai-Lei Zhu
- Departments of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yan-Qun Xiang
- Department of Nasopharyngeal, Sun Yat-Sen Cancer Center, Guangzhou, China
| | - Ling-Xi Jiang
- Departments of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Qian Chen
- Departments of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wai Man Liu
- Departments of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jin-Na Chen
- Departments of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Li-Yi Zhang
- Departments of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ming Liu
- Departments of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chao Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Science and Technology of Huazhong University, Wuhan, China
| | - Hong Tang
- Departments of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Bo Wang
- Department of Clinical Oncology, The Seventh Affiliated Hospital, Sun Yat-sen University
| | - Sai Wah Tsao
- Departments of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Dora Lai-Wan Kwong
- Departments of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xin-Yuan Guan
- Departments of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China;,State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, China;,✉ Corresponding author: Xin-Yuan Guan, Department of Clinical Oncology, The University of Hong Kong, Room L10-56, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong, Tel: 852-3917-9782, E-Mail: ; or Dora Lai-Wan Kwong, Department of Clinical Oncology, University of Hong Kong, 1/F, Professorial Block, Queen Mary Hospital, Hong Kong, Tel: 852-28554521, E-mail:
| |
Collapse
|
90
|
Mandati V, Del Maestro L, Dingli F, Lombard B, Loew D, Molinie N, Romero S, Bouvard D, Louvard D, Gautreau AM, Pasmant E, Lallemand D. Phosphorylation of Merlin by Aurora A kinase appears necessary for mitotic progression. J Biol Chem 2019; 294:12992-13005. [PMID: 31296571 DOI: 10.1074/jbc.ra118.006937] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 06/25/2019] [Indexed: 01/01/2023] Open
Abstract
Although Merlin's function as a tumor suppressor and regulator of mitogenic signaling networks such as the Ras/rac, Akt, and Hippo pathways is well-documented, in mammals as well as in insects, its role during cell cycle progression remains unclear. In this study, using a combination of approaches, including FACS analysis, time-lapse imaging, immunofluorescence microscopy, and co-immunoprecipitation, we show that Ser-518 of Merlin is a substrate of the Aurora protein kinase A during mitosis and that its phosphorylation facilitates the phosphorylation of a newly discovered site, Thr-581. We found that the expression in HeLa cells of a Merlin variant that is phosphorylation-defective on both sites leads to a defect in centrosomes and mitotic spindles positioning during metaphase and delays the transition from metaphase to anaphase. We also show that the dual mitotic phosphorylation not only reduces Merlin binding to microtubules but also timely modulates ezrin interaction with the cytoskeleton. Finally, we identify several point mutants of Merlin associated with neurofibromatosis type 2 that display an aberrant phosphorylation profile along with defective α-tubulin-binding properties. Altogether, our findings of an Aurora A-mediated interaction of Merlin with α-tubulin and ezrin suggest a potential role for Merlin in cell cycle progression.
Collapse
Affiliation(s)
- Vinay Mandati
- CNRS, UMR144, Institute Curie, PSL Research University, F-75005 Paris, France
| | | | - Florent Dingli
- Laboratoire de Spectrométrie de Masse Protéomique, Institute Curie, PSL Research University, Paris, France
| | - Bérangère Lombard
- Laboratoire de Spectrométrie de Masse Protéomique, Institute Curie, PSL Research University, Paris, France
| | - Damarys Loew
- Laboratoire de Spectrométrie de Masse Protéomique, Institute Curie, PSL Research University, Paris, France
| | - Nicolas Molinie
- BIOC, CNRS UMR7654, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| | - Stephane Romero
- BIOC, CNRS UMR7654, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| | - Daniel Bouvard
- INSERM, Institut Albert Bonniot U823, F-38042 Grenoble, France
| | - Daniel Louvard
- CNRS, UMR144, Institute Curie, PSL Research University, F-75005 Paris, France
| | - Alexis M Gautreau
- BIOC, CNRS UMR7654, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| | - Eric Pasmant
- Institut Cochin, INSERM U1016, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Dominique Lallemand
- CNRS, UMR144, Institute Curie, PSL Research University, F-75005 Paris, France.
| |
Collapse
|
91
|
Behling F, Ries V, Skardelly M, Gepfner-Tuma I, Schuhmann M, Ebner FH, Tabatabai G, Bornemann A, Schittenhelm J, Tatagiba M. COX2 expression is associated with proliferation and tumor extension in vestibular schwannoma but is not influenced by acetylsalicylic acid intake. Acta Neuropathol Commun 2019; 7:105. [PMID: 31291992 PMCID: PMC6621994 DOI: 10.1186/s40478-019-0760-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 06/26/2019] [Indexed: 01/06/2023] Open
Abstract
Acetylsalicylic acid has been linked to a lower risk for different cancer types, presumably through its inhibitory effect on cyclooxygenase 2. This has also been investigated in vestibular schwannomas with promising results suggesting an antiproliferative effect and recently the intake has been recommended for vestibular schwannomas as a conservative treatment option. We constructed tissue microarrays from paraffin-embedded tissue samples of 1048 vestibular schwannomas and analyzed the expression of cyclooxygenase 2 and the proliferation marker MIB1 (Molecular Immunology Borstel) via immunohistochemistry together with clinical data (age, gender, tumor extension, prior radiotherapy, neurofibromatosis type 2, tumor recurrence, cyclooxygenase 2 responsive medication). Univariate analysis showed that cyclooxygenase 2 expression was increased with age, female gender, prior radiotherapy and larger tumor extension. MIB1 expression was also associated with higher cyclooxygenase 2 expression. Schwannomas of neurofibromatosis type 2 patients had lower cyclooxygenase 2 levels. Use of acetylsalicylic acid, non-steroidal anti-inflammatory drugs, glucocorticoids or other immunosuppressants did not show differences in cyclooxygenase 2 or MIB1 expression. Instead, cyclooxygenase 2 expression increases with tumor extension while MIB1 expression is not associated with tumor size. Overall, cyclooxygenase 2 expression is associated with proliferation but not influenced by regular intake of acetylsalicylic acid or other cyclooxygenase 2-responsive medications. Acetylsalicylic acid intake does not alter cyclooxygenase 2 expression and has no antiproliferative effect in vestibular.
Collapse
|
92
|
Abstract
PURPOSE OF REVIEW Meningiomas, the most common primary brain tumor, have historically been managed with surgery and radiation. Traditional chemotherapy has not been effective. Fortunately, recent advances in genetic sequencing have led to an improved understanding of the molecular drivers in meningioma. This article aims to discuss the diagnostic and therapeutic implications of recently discovered genetic alterations in meningiomas. RECENT FINDINGS Many of the recently discovered genetic alterations correlate with distinct clinical phenotypes. SMO, AKT and PIK3CA mutations are enriched in the anterior skull base. KLF4 mutations are specific for secretory histology, and BAP1 alterations are common in progressive rhabdoid meningiomas. Alterations in TERT, DMD and BAP1 correlate with poor clinical outcomes. Importantly, the discovery of clinically actionable alterations in a number of genes, including SMO, AKT1 and PIK3CA, has opened up novel potential avenues for therapeutic management of meningiomas. Overexpression of PD-L1 in higher grade meningiomas also provides preclinical support for the investigation of checkpoint blockade. SUMMARY The discovery of genetic alterations has improved our understanding of the natural history and classification of meningiomas. Clinical trials with several novel agents targeting driver mutations are currently accruing patients and they can lead to better treatment strategies.
Collapse
|
93
|
You MH, Jeon MJ, Kim TY, Kim WB, Shong YK, Kim WG. Expression of NF2 Modulates the Progression of BRAFV600E Mutated Thyroid Cancer Cells. Endocrinol Metab (Seoul) 2019; 34:203-212. [PMID: 31257748 PMCID: PMC6599905 DOI: 10.3803/enm.2019.34.2.203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND We previously reported the frequent neurofibromatosis 2 (NF2) gene mutations in anaplastic thyroid cancers in association with the BRAFV600E mutation. We aimed to investigate the role of NF2 in thyroid cancer with BRAF mutation. METHODS To identify the function of NF2 in thyroid cancers, we investigated the changes in cell proliferation, colon formation, migration and invasion of thyroid cancer cells (8505C, BHT101, and KTC-1) with BRAFV600E mutation after overexpression and knock-down of NF2. We also examined how cell proliferation changed when NF2 was mutagenized. Human NF2 expression in papillary thyroid carcinoma (PTC) was analyzed using the The Cancer Genome Atlas (TCGA) data. RESULTS First, NF2 was overexpressed in 8505C and KTC-1 cells. Compared to control, NF2 overexpressed group of both thyroid cancer cells showed significant inhibition in cell proliferation and colony formation. These results were also confirmed by cell migration and invasion assay. After knock-down of NF2 in 8505C cells, there were no significant changes in cell proliferation and colony formation, compared with the control group. However, after mutagenized S288* and Q470* sites of NF2 gene, the cell proliferation increased compared to NF2 overexpression group. In the analysis of TCGA data, the mRNA expression of NF2 was significantly decreased in PTCs with lateral cervical lymph node (LN) metastasis compared with PTCs without LN metastasis. CONCLUSION Our study suggests that NF2 might play a role as a tumor suppressor in thyroid cancer with BRAF mutation. More studies are needed to elucidate the mechanism how NF2 acts in thyroid cancer with BRAF mutation.
Collapse
Affiliation(s)
- Mi Hyeon You
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Min Ji Jeon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Tae Yong Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Won Bae Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Young Kee Shong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Won Gu Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
94
|
Fisher MJ, Belzberg AJ, de Blank P, De Raedt T, Elefteriou F, Ferner RE, Giovannini M, Harris GJ, Kalamarides M, Karajannis MA, Kim A, Lázaro C, Le LQ, Li W, Listernick R, Martin S, Morrison H, Pasmant E, Ratner N, Schorry E, Ullrich NJ, Viskochil D, Weiss B, Widemann BC, Zhu Y, Bakker A, Serra E. 2016 Children's Tumor Foundation conference on neurofibromatosis type 1, neurofibromatosis type 2, and schwannomatosis. Am J Med Genet A 2019; 176:1258-1269. [PMID: 29681099 DOI: 10.1002/ajmg.a.38675] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/13/2018] [Indexed: 12/13/2022]
Abstract
Organized and hosted by the Children's Tumor Foundation (CTF), the Neurofibromatosis (NF) conference is the premier annual gathering for clinicians and researchers interested in neurofibromatosis type 1 (NF1), neurofibromatosis type 2 (NF2), and schwannomatosis (SWN). The 2016 edition constituted a blend of clinical and basic aspects of NF research that helped in clarifying different advances in the field. The incorporation of next generation sequencing is changing the way genetic diagnostics is performed for NF and related disorders, providing solutions to problems like genetic heterogeneity, overlapping clinical manifestations, or the presence of mosaicism. The transformation from plexiform neurofibroma (PNF) to malignant peripheral nerve sheath tumor (MPNST) is being clarified, along with new management and treatments for benign and premalignant tumors. Promising new cellular and in vivo models for understanding the musculoskeletal abnormalities in NF1, the development of NF2 or SWN associated schwannomas, and clarifying the cells that give rise to NF1-associated optic pathway glioma were presented. The interaction of neurofibromin and SPRED1 was described comprehensively, providing functional insight that will help in the interpretation of pathogenicity of certain missense variants identified in NF1 and Legius syndrome patients. Novel promising imaging techniques are being developed, as well as new integrative and holistic management models for patients that take into account psychological, social, and biological factors. Importantly, new therapeutic approaches for schwannomas, meningiomas, ependymomas, PNF, and MPNST are being pursued. This report highlights the major advances that were presented at the 2016 CTF NF conference.
Collapse
Affiliation(s)
- Michael J Fisher
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, The Perelman School of Medicine at The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Allan J Belzberg
- Department of Neurosurgery, The Johns Hopkins Hospital, Baltimore, Maryland
| | - Peter de Blank
- Division of Oncology and Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Thomas De Raedt
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Florent Elefteriou
- Center for Skeletal Medicine and Biology, Department of Molecular and Human Genetics and Orthopedic Surgery, Baylor College of Medicine, Houston, Texas
| | - Rosalie E Ferner
- Neurofibromatosis Centre, Guy's and St. Thomas NHS Foundation Trust, London, United Kingdom
| | - Marco Giovannini
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Gordon J Harris
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Michel Kalamarides
- Department of Neurosurgery, Hospital Pitie-Salpetriere, AP-HP, Paris, France; Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
| | - Matthias A Karajannis
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - AeRang Kim
- Division of Oncology, Children's National Medical Center, Washington, District of Columbia
| | - Conxi Lázaro
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO-IDIBELL-CIBERONC), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Lu Q Le
- Department of Dermatology and Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| | - Wei Li
- Department of Pediatrics, Department of Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania
| | - Robert Listernick
- Division of Academic General Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Staci Martin
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Helen Morrison
- Leibniz Institute on Aging Research, Fritz Lipmann Institute, Jena, Germany
| | - Eric Pasmant
- EA7331 and Cochin Hospital, Paris Descartes University, Faculty of Pharmacy of Paris, France
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Elisabeth Schorry
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Nicole J Ullrich
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - David Viskochil
- Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Brian Weiss
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Brigitte C Widemann
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Yuan Zhu
- The Gilbert Family Neurofibromatosis Institute, Centers for Cancer and Immunology Research and Neuroscience Research, Children's National Medical Center, Washington, District of Columbia
| | | | - Eduard Serra
- Hereditary Cancer Group, The Institute for Health Science Research Germans Trias i Pujol (IGTP)-PMPPC, Barcelona, Spain
| |
Collapse
|
95
|
TARBP2-Enhanced Resistance during Tamoxifen Treatment in Breast Cancer. Cancers (Basel) 2019; 11:cancers11020210. [PMID: 30759864 PMCID: PMC6406945 DOI: 10.3390/cancers11020210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 02/07/2023] Open
Abstract
Tamoxifen is the most widely used hormone therapy in estrogen receptor-positive (ER+) breast cancer, which accounts for approximately 70% of all breast cancers. Although patients who receive tamoxifen therapy benefit with respect to an improved overall prognosis, resistance and cancer recurrence still occur and remain important clinical challenges. A recent study identified TAR (HIV-1) RNA binding protein 2 (TARBP2) as an oncogene that promotes breast cancer metastasis. In this study, we showed that TARBP2 is overexpressed in hormone therapy-resistant cells and breast cancer tissues, where it enhances tamoxifen resistance. Tamoxifen-induced TARBP2 expression results in the desensitization of ER+ breast cancer cells. Mechanistically, tamoxifen post-transcriptionally stabilizes TARBP2 protein through the downregulation of Merlin, a TARBP2-interacting protein known to enhance its proteasomal degradation. Tamoxifen-induced TARBP2 further stabilizes SOX2 protein to enhance desensitization of breast cancer cells to tamoxifen, while similar to TARBP2, its induction in cancer cells was also observed in metastatic tumor cells. Our results indicate that the TARBP2-SOX2 pathway is upregulated by tamoxifen-mediated Merlin downregulation, which subsequently induces tamoxifen resistance in ER+ breast cancer.
Collapse
|
96
|
Dunn J, Ferluga S, Sharma V, Futschik M, Hilton DA, Adams CL, Lasonder E, Hanemann CO. Proteomic analysis discovers the differential expression of novel proteins and phosphoproteins in meningioma including NEK9, HK2 and SET and deregulation of RNA metabolism. EBioMedicine 2018; 40:77-91. [PMID: 30594554 PMCID: PMC6412084 DOI: 10.1016/j.ebiom.2018.12.048] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 12/26/2022] Open
Abstract
Background Meningioma is the most frequent primary intracranial tumour. Surgical resection remains the main therapeutic option as pharmacological intervention is hampered by poor knowledge of their proteomic signature. There is an urgent need to identify new therapeutic targets and biomarkers of meningioma. Methods We performed proteomic profiling of grade I, II and III frozen meningioma specimens and three normal healthy human meninges using LC-MS/MS to analyse global proteins, enriched phosphoproteins and phosphopeptides. Differential expression and functional annotation of proteins was completed using Perseus, IPA® and DAVID. We validated differential expression of proteins and phosphoproteins by Western blot on a meningioma validation set and by immunohistochemistry. Findings We quantified 3888 proteins and 3074 phosphoproteins across all meningioma grades and normal meninges. Bioinformatics analysis revealed commonly upregulated proteins and phosphoproteins to be enriched in Gene Ontology terms associated with RNA metabolism. Validation studies confirmed significant overexpression of proteins such as EGFR and CKAP4 across all grades, as well as the aberrant activation of the downstream PI3K/AKT pathway, which seems differential between grades. Further, we validated upregulation of the total and activated phosphorylated form of the NIMA-related kinase, NEK9, involved in mitotic progression. Novel proteins identified and validated in meningioma included the nuclear proto-oncogene SET, the splicing factor SF2/ASF and the higher-grade specific protein, HK2, involved in cellular metabolism. Interpretation Overall, we generated a proteomic thesaurus of meningiomas for the identification of potential biomarkers and therapeutic targets. Fund This study was supported by Brain Tumour Research.
Collapse
Affiliation(s)
- Jemma Dunn
- Institute of Translational and Stratified Medicine, Plymouth University Peninsula Schools of Medicine and Dentistry, John Bull Building, Plymouth Science Park, Research Way, Derriford, Plymouth PL6 8BU, UK
| | - Sara Ferluga
- Institute of Translational and Stratified Medicine, Plymouth University Peninsula Schools of Medicine and Dentistry, John Bull Building, Plymouth Science Park, Research Way, Derriford, Plymouth PL6 8BU, UK
| | - Vikram Sharma
- School of Biomedical Science, Faculty of Medicine and Dentistry, University of Plymouth, Derriford Research Facility, Research Way, Derriford, Plymouth PL6 8BU, UK
| | - Matthias Futschik
- School of Biomedical Science, Faculty of Medicine and Dentistry, University of Plymouth, Derriford Research Facility, Research Way, Derriford, Plymouth PL6 8BU, UK
| | - David A Hilton
- Cellular and Anatomical Pathology, Plymouth Hospitals NHS Trust, Derriford Road, Plymouth PL6 8DH, UK
| | - Claire L Adams
- Institute of Translational and Stratified Medicine, Plymouth University Peninsula Schools of Medicine and Dentistry, John Bull Building, Plymouth Science Park, Research Way, Derriford, Plymouth PL6 8BU, UK
| | - Edwin Lasonder
- School of Biomedical Science, Faculty of Medicine and Dentistry, University of Plymouth, Derriford Research Facility, Research Way, Derriford, Plymouth PL6 8BU, UK
| | - C Oliver Hanemann
- Institute of Translational and Stratified Medicine, Plymouth University Peninsula Schools of Medicine and Dentistry, John Bull Building, Plymouth Science Park, Research Way, Derriford, Plymouth PL6 8BU, UK.
| |
Collapse
|
97
|
Barresi V, Lionti S, La Rocca L, Caliri S, Caffo M. High p-mTOR expression is associated with recurrence and shorter disease-free survival in atypical meningiomas. Neuropathology 2018; 39:22-29. [PMID: 30511495 DOI: 10.1111/neup.12524] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 10/06/2018] [Accepted: 10/06/2018] [Indexed: 01/15/2023]
Abstract
Due to their widely variable clinical behavior, the post-surgical treatment of atypical meningiomas is controversial. Therefore, prognostic factors able to identify high-risk cases, which may benefit from adjuvant treatments, are warranted. Mammalian target of rapamycin (mTOR) belongs to the PI3K-AKT pathway. Its phosphorylated form (p-mTOR Ser2448) is involved in cell growth, differentiation and tumorigenesis. The aim of this study was to evaluate p-mTOR Ser2448 expression and its eventual correlation with clinicopathological features, recurrence, or disease-free survival (DFS), in atypical meningiomas. p-mTOR immunohistochemical expression was analyzed in 48 atypical meningiomas and correlated with clinicopathological parameters and with DFS. Eighty-one percent of atypical meningiomas expressed p-mTOR Ser2448. High immuno-expression was significantly associated with recurrences (P = 0.01) and lower DFS (P = 0.01). The presence of brain invasion, high mitotic index plus sheeting, and Simpson grade were significant and independent prognostic variables at multivariate analysis. p-mTOR Ser2448 is expressed in atypical meningiomas. High expression predicts development of recurrences and shorter DFS in patients affected by these tumors. Since p-mTOR Ser2448 is a target of anti-neoplastic drugs, evaluation of its expression may be used, not only to identify atypical meningiomas at higher risk of recurrence, but also to select those to submit to adjuvant targeted chemotherapy.
Collapse
Affiliation(s)
- Valeria Barresi
- Departments of Pathology in Adulthood and Evolutive Age, University of Messina, Messina, Italy
| | - Simona Lionti
- Departments of Pathology in Adulthood and Evolutive Age, University of Messina, Messina, Italy
| | - Lilli La Rocca
- Departments of Pathology in Adulthood and Evolutive Age, University of Messina, Messina, Italy
| | - Samuel Caliri
- Departments of Pathology in Adulthood and Evolutive Age, University of Messina, Messina, Italy
| | - Maria Caffo
- Biomedical and Odontoiatric Sciences, and of Morphological and Functional Images, University of Messina, Messina, Italy
| |
Collapse
|
98
|
Dingare C, Niedzwetzki A, Klemmt PA, Godbersen S, Fuentes R, Mullins MC, Lecaudey V. The Hippo pathway effector Taz is required for cell morphogenesis and fertilization in zebrafish. Development 2018; 145:dev.167023. [PMID: 30327325 DOI: 10.1242/dev.167023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/09/2018] [Indexed: 12/12/2022]
Abstract
Hippo signaling is a critical pathway that integrates extrinsic and intrinsic mechanical cues to regulate organ size. Despite its essential role in organogenesis, little is known about its role in cell fate specification and differentiation. Here, we unravel a novel and unexpected role of the Hippo pathway effector Taz (wwtr1) in controlling the size, shape and fate of a unique cell in the zebrafish ovary. We show that wwtr1 mutant females are infertile. In teleosts, fertilization occurs through the micropyle, a funnel-like opening in the chorion, formed by a unique enlarged follicle cell, the micropylar cell (MC). We describe here, for the first time, the mechanism that underlies the differentiation of the MC. Our genetic analyses show that Taz is essential for MC fate acquisition and subsequent micropyle formation in zebrafish. We identify Taz as the first bona fide MC marker and show that Taz is specifically and strongly enriched in the MC precursor. Altogether, we performed the first genetic and molecular characterization of the MC and propose that Taz is a key regulator of MC fate.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Chaitanya Dingare
- Institute of Cell Biology and Neuroscience, Department of Developmental Biology of Vertebrates, Goethe Universität Frankfurt am Main, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany.,Developmental Biology, Institute for Biology I, Faculty of Biology, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Alina Niedzwetzki
- Institute of Cell Biology and Neuroscience, Department of Developmental Biology of Vertebrates, Goethe Universität Frankfurt am Main, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany
| | - Petra A Klemmt
- Institute of Cell Biology and Neuroscience, Department of Developmental Biology of Vertebrates, Goethe Universität Frankfurt am Main, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany
| | - Svenja Godbersen
- Developmental Biology, Institute for Biology I, Faculty of Biology, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Ricardo Fuentes
- University of Pennsylvania Perelman School of Medicine, Department of Cell and Developmental Biology, 421 Curie Blvd., Philadelphia, PA 19104, USA
| | - Mary C Mullins
- University of Pennsylvania Perelman School of Medicine, Department of Cell and Developmental Biology, 421 Curie Blvd., Philadelphia, PA 19104, USA
| | - Virginie Lecaudey
- Institute of Cell Biology and Neuroscience, Department of Developmental Biology of Vertebrates, Goethe Universität Frankfurt am Main, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany .,Developmental Biology, Institute for Biology I, Faculty of Biology, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
99
|
Goutagny S, Kalamarides M. Medical treatment in neurofibromatosis type 2. Review of the literature and presentation of clinical reports. Neurochirurgie 2018; 64:370-374. [DOI: 10.1016/j.neuchi.2016.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 08/26/2016] [Accepted: 09/02/2016] [Indexed: 10/20/2022]
|
100
|
Collord G, Tarpey P, Kurbatova N, Martincorena I, Moran S, Castro M, Nagy T, Bignell G, Maura F, Young MD, Berna J, Tubio JMC, McMurran CE, Young AMH, Sanders M, Noorani I, Price SJ, Watts C, Leipnitz E, Kirsch M, Schackert G, Pearson D, Devadass A, Ram Z, Collins VP, Allinson K, Jenkinson MD, Zakaria R, Syed K, Hanemann CO, Dunn J, McDermott MW, Kirollos RW, Vassiliou GS, Esteller M, Behjati S, Brazma A, Santarius T, McDermott U. An integrated genomic analysis of anaplastic meningioma identifies prognostic molecular signatures. Sci Rep 2018; 8:13537. [PMID: 30202034 PMCID: PMC6131140 DOI: 10.1038/s41598-018-31659-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/16/2018] [Indexed: 12/21/2022] Open
Abstract
Anaplastic meningioma is a rare and aggressive brain tumor characterised by intractable recurrences and dismal outcomes. Here, we present an integrated analysis of the whole genome, transcriptome and methylation profiles of primary and recurrent anaplastic meningioma. A key finding was the delineation of distinct molecular subgroups that were associated with diametrically opposed survival outcomes. Relative to lower grade meningiomas, anaplastic tumors harbored frequent driver mutations in SWI/SNF complex genes, which were confined to the poor prognosis subgroup. Aggressive disease was further characterised by transcriptional evidence of increased PRC2 activity, stemness and epithelial-to-mesenchymal transition. Our analyses discern biologically distinct variants of anaplastic meningioma with prognostic and therapeutic significance.
Collapse
Affiliation(s)
- Grace Collord
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Department of Paediatrics, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Patrick Tarpey
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Natalja Kurbatova
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, CB10 1SD, UK
| | - Inigo Martincorena
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Sebastian Moran
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Manuel Castro
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Tibor Nagy
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Graham Bignell
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Francesco Maura
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Matthew D Young
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Jorge Berna
- Mobile Genomes and Disease, Molecular Medicine and Chronic diseases Centre (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, 15706, Spain
| | - Jose M C Tubio
- Mobile Genomes and Disease, Molecular Medicine and Chronic diseases Centre (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, 15706, Spain
| | - Chris E McMurran
- Department of Neurosurgery, Department of Clinical Neuroscience, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Adam M H Young
- Department of Neurosurgery, Department of Clinical Neuroscience, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Mathijs Sanders
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Erasmus University Medical Center, Department of Hematology, Rotterdam, The Netherlands
| | - Imran Noorani
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Department of Neurosurgery, Department of Clinical Neuroscience, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Stephen J Price
- Department of Neurosurgery, Department of Clinical Neuroscience, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Colin Watts
- Department of Neurosurgery, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Elke Leipnitz
- Klinik und Poliklink für Neurochirurgie, "Carl Gustav Carus" Universitätsklinikum, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Matthias Kirsch
- Klinik und Poliklink für Neurochirurgie, "Carl Gustav Carus" Universitätsklinikum, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Gabriele Schackert
- Klinik und Poliklink für Neurochirurgie, "Carl Gustav Carus" Universitätsklinikum, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Danita Pearson
- Department of Pathology, Cambridge University Hospital, CB2 0QQ, Cambridge, UK
| | - Abel Devadass
- Department of Pathology, Cambridge University Hospital, CB2 0QQ, Cambridge, UK
| | - Zvi Ram
- Department of Neurosurgery, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - V Peter Collins
- Department of Pathology, Cambridge University Hospital, CB2 0QQ, Cambridge, UK
| | - Kieren Allinson
- Department of Pathology, Cambridge University Hospital, CB2 0QQ, Cambridge, UK
| | - Michael D Jenkinson
- Department of Neurosurgery, The Walton Centre, Liverpool, L9 7LJ, UK
- Institute of Translational Medicine, University of Liverpool, Liverpool, L9 7LJ, UK
| | - Rasheed Zakaria
- Department of Neurosurgery, The Walton Centre, Liverpool, L9 7LJ, UK
- Institute of Integrative Biology, University of Liverpool, Liverpool, L9 7LJ, UK
| | - Khaja Syed
- Department of Neurosurgery, The Walton Centre, Liverpool, L9 7LJ, UK
- Institute of Integrative Biology, University of Liverpool, Liverpool, L9 7LJ, UK
| | - C Oliver Hanemann
- Institute of Translational and Stratified Medicine, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth University, Plymouth, Devon, PL4 8AA, UK
| | - Jemma Dunn
- Institute of Translational and Stratified Medicine, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth University, Plymouth, Devon, PL4 8AA, UK
| | - Michael W McDermott
- Department of Neurosurgery, UCSF Medical Center, San Francisco, CA, 94143-0112, USA
| | - Ramez W Kirollos
- Department of Neurosurgery, Department of Clinical Neuroscience, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - George S Vassiliou
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Department of Haematology, Cambridge University Hospitals NHS Trust, Cambridge, CB2 0QQ, UK
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - Sam Behjati
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Department of Paediatrics, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Alvis Brazma
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, CB10 1SD, UK
| | - Thomas Santarius
- Department of Neurosurgery, Department of Clinical Neuroscience, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK.
| | - Ultan McDermott
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.
- Institute of Translational Medicine, University of Liverpool, Liverpool, L9 7LJ, UK.
- AstraZeneca, CRUK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK.
| |
Collapse
|