51
|
Intestinal Mucosal Mast Cells: Key Modulators of Barrier Function and Homeostasis. Cells 2019; 8:cells8020135. [PMID: 30744042 PMCID: PMC6407111 DOI: 10.3390/cells8020135] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal tract harbours the largest population of mast cells in the body; this highly specialised leukocyte cell type is able to adapt its phenotype and function to the microenvironment in which it resides. Mast cells react to external and internal stimuli thanks to the variety of receptors they express, and carry out effector and regulatory tasks by means of the mediators of different natures they produce. Mast cells are fundamental elements of the intestinal barrier as they regulate epithelial function and integrity, modulate both innate and adaptive mucosal immunity, and maintain neuro-immune interactions, which are key to functioning of the gut. Disruption of the intestinal barrier is associated with increased passage of luminal antigens into the mucosa, which further facilitates mucosal mast cell activation, inflammatory responses, and altered mast cell⁻enteric nerve interaction. Despite intensive research showing gut dysfunction to be associated with increased intestinal permeability and mucosal mast cell activation, the specific mechanisms linking mast cell activity with altered intestinal barrier in human disease remain unclear. This review describes the role played by mast cells in control of the intestinal mucosal barrier and their contribution to digestive diseases.
Collapse
|
52
|
Tikoo S, Barki N, Jain R, Zulkhernain NS, Buhner S, Schemann M, Weninger W. Imaging of mast cells. Immunol Rev 2019; 282:58-72. [PMID: 29431206 DOI: 10.1111/imr.12631] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mast cells are a part of the innate immune system implicated in allergic reactions and the regulation of host-pathogen interactions. The distribution, morphology and biochemical composition of mast cells has been studied in detail in vitro and on tissue sections both at the light microscopic and ultrastructural level. More recently, the development of fluorescent reporter strains and intravital imaging modalities has enabled first glimpses of the real-time behavior of mast cells in situ. In this review, we describe commonly used imaging approaches to study mast cells in cell culture as well as within normal and diseased tissues. We further describe the interrogation of mast cell function via imaging by providing a detailed description of mast cell-nerve plexus interactions in the intestinal tract. Together, visualizing mast cells has expanded our view of these cells in health and disease.
Collapse
Affiliation(s)
- Shweta Tikoo
- The Centenary Institute, Newtown, NSW, Australia.,Discipline of Dermatology, Sydney Medical School, Sydney, NSW, Australia
| | - Natasja Barki
- LS Human Biology, Technical University München, München, Germany
| | - Rohit Jain
- The Centenary Institute, Newtown, NSW, Australia.,Discipline of Dermatology, Sydney Medical School, Sydney, NSW, Australia
| | | | - Sabine Buhner
- LS Human Biology, Technical University München, München, Germany
| | - Michael Schemann
- LS Human Biology, Technical University München, München, Germany
| | - Wolfgang Weninger
- The Centenary Institute, Newtown, NSW, Australia.,Discipline of Dermatology, Sydney Medical School, Sydney, NSW, Australia.,Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| |
Collapse
|
53
|
Zhang L, Song J, Bai T, Wang R, Hou X. Sustained pain hypersensitivity in the stressed colon: Role of mast cell-derived nerve growth factor-mediated enteric synaptic plasticity. Neurogastroenterol Motil 2018; 30:e13430. [PMID: 30069980 DOI: 10.1111/nmo.13430] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 05/23/2018] [Accepted: 06/22/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Sustained pain hypersensitivity is the hallmark of stressed colon which could be partially explained by central sensitization with synaptic plasticity, the key mechanism of memory. We previously identified that synaptic plasticity of enteric nerve system (ENS) contributed to peripheral pain maintaining in the gut. However, the mechanisms of enteric "memory" formation remain elusive. METHODS In this study, rats were exposed to water avoidance stress (WAS) or sham stress (SS), with cromolyn sodium or physiological saline injected intraperitoneally 30 minutes before stress every day. The abdominal withdrawal reflex scores, mesenteric afferent nerve activity, enteric neural c-fos expression, and enteric synaptic plasticity were assessed, and mast cell infiltration and degranulation. Furthermore, colonic mucosal mediators-induced enteric synaptic plasticity and the role of mast cell-derived nerve growth factor (NGF), tryptase, and histamine were investigated via ex vivo longitudinal muscle-myenteric plexus (LMMP) organotypic culture. KEY RESULTS It is shown that mast cell stabilizing inhibited WAS-induced visceral hypersensitivity through enhancing visceral pain threshold, decreasing spontaneous and distention-induced mesenteric afferent firing, and downregulating enteric neural activation (c-fos). Importantly, WAS led to evident enteric synaptic plasticity, but decreased by cromolyn. Water avoidance stress-derived mucosal supernatants markedly enhanced the c-fos expression and enteric synaptic plasticity in LMMP tissues, which could be eliminated by mast cell inhibition or NGF neutralization, but not tryptase or histamine blocking. CONCLUSIONS & INFERENCES In conclusion, mast cells/NGF pathway may be the key regulator of synaptic plasticity of ENS and participate in the formation of chronic stress-induced sustained visceral hypersensitivity.
Collapse
Affiliation(s)
- L Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - J Song
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - T Bai
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - R Wang
- Department of Gerontology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - X Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
54
|
Creekmore AL, Hong S, Zhu S, Xue J, Wiley JW. Chronic stress-associated visceral hyperalgesia correlates with severity of intestinal barrier dysfunction. Pain 2018; 159:1777-1789. [PMID: 29912860 PMCID: PMC6097612 DOI: 10.1097/j.pain.0000000000001271] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In humans, chronic psychological stress is associated with increased intestinal paracellular permeability and visceral hyperalgesia, which is recapitulated in the chronic intermittent water avoidance stress (WAS) rat model. However, it is unknown whether enhanced visceral pain and permeability are intrinsically linked and correlate. Treatment of rats with lubiprostone during WAS significantly reduced WAS-induced changes in intestinal epithelial paracellular permeability and visceral hyperalgesia in a subpopulation of rats. Lubiprostone also prevented WAS-induced decreases in the epithelial tight junction protein, occludin (Ocln). To address the question of whether the magnitude of visceral pain correlates with the extent of altered intestinal permeability, we measured both end points in the same animal because of well-described individual differences in pain response. Our studies demonstrate that visceral pain and increased colon permeability positively correlate (0.6008, P = 0.0084). Finally, exposure of the distal colon in control animals to Ocln siRNA in vivo revealed that knockdown of Ocln protein inversely correlated with increased paracellular permeability and enhanced visceral pain similar to the levels observed in WAS-responsive rats. These data support that Ocln plays a potentially significant role in the development of stress-induced increased colon permeability. We believe this is the first demonstration that the level of chronic stress-associated visceral hyperalgesia directly correlates with the magnitude of altered colon epithelial paracellular permeability.
Collapse
Affiliation(s)
| | | | | | | | - John W. Wiley
- Corresponding Author: John W Wiley, MD, University of Michigan Medical School, 1150 W Medical Center Drive, 9301A MSRB III, Ann Arbor MI 48109-5648, 734-615-6621,
| |
Collapse
|
55
|
Tunc B, Filik L, Altıntas E, Turhan N, Ulker A, Dağlı Ü. Mucosal Mast Cells in Irritable Bowel Syndrome and Inflammatory Bowel Disease. ACTA MEDICA (HRADEC KRÁLOVÉ) 2018. [DOI: 10.14712/18059694.2018.46] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Even though exciting progresses have been until now, further studies are necessary to clearly understand the significance of MMC. Mast cells are thought to participate in the pathogenesis of inflammatory bowel disease and irritable bowel syndrome. However, their role in the pathogenesis remains unsettled. The specific aims of this study were to (1) examine mucosal mast cell counts in the cecum in patient with IBS, and IBD (2) compare MMC between the disease groups. We showed increased MMC count in IBS.
Collapse
|
56
|
Priyadarshini S, Pradhan B, Griebel P, Aich P. Cortisol regulates immune and metabolic processes in murine adipocytes and macrophages through HTR2c and HTR5a serotonin receptors. Eur J Cell Biol 2018; 97:483-492. [PMID: 30097291 DOI: 10.1016/j.ejcb.2018.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 12/22/2022] Open
Abstract
Epidemiological studies implicate stress as an important factor contributing to the increasing prevalence of metabolic disorders. Studies have correlated visceral obesity and atherosclerosis with hyper-cortisolemia, a sequela of chronic psychological stress in humans and animals. Although several hormonal markers of stress have been associated with various metabolic disorders, the mechanism by which these hormones alter metabolic functions have not been established. We used an in vitro model system, culturing 3T3-L1 pre-adipocytes and RAW 264.7 macrophages in the presence or absence of cortisol, to analyze cell signaling pathways mediating changes in metabolic functions. Our analysis revealed that cortisol up-regulated the expression and function of two serotonin (S) receptors, HTR2c and HTR5a. HTR2c and HTR5a were also directly involved in mediating cortisol enhanced adipogenesis when pre-adipocytes were cultured alone or in the presence of macrophages. Finally, cortisol treatment of pre-adipocytes co-cultured with macrophages enhanced adipogenesis in both macrophages and pre-adipocytes.
Collapse
Affiliation(s)
- Sushri Priyadarshini
- School of Biological Sciences, National Institute of Science Education and Research (NISER), HBNI, PO- Bhimpur-Padanpur, Jatni, Khurda, Odisha, 752050, India
| | - Biswaranjan Pradhan
- School of Biological Sciences, National Institute of Science Education and Research (NISER), HBNI, PO- Bhimpur-Padanpur, Jatni, Khurda, Odisha, 752050, India
| | - Philip Griebel
- VIDO-Intervac, University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada; School of Public Health, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Palok Aich
- School of Biological Sciences, National Institute of Science Education and Research (NISER), HBNI, PO- Bhimpur-Padanpur, Jatni, Khurda, Odisha, 752050, India.
| |
Collapse
|
57
|
Mast Cells Exert Anti-Inflammatory Effects in an IL10 -/- Model of Spontaneous Colitis. Mediators Inflamm 2018; 2018:7817360. [PMID: 29849494 PMCID: PMC5932457 DOI: 10.1155/2018/7817360] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/27/2018] [Accepted: 03/04/2018] [Indexed: 12/14/2022] Open
Abstract
Mast cells are well established as divergent modulators of inflammation and immunosuppression, but their role in inflammatory bowel disease (IBD) remains to be fully defined. While previous studies have demonstrated a proinflammatory role for mast cells in acute models of chemical colitis, more recent investigations have shown that mast cell deficiency can exacerbate inflammation in spontaneous colitis models, thus suggesting a potential anti-inflammatory role of mast cells in IBD. Here, we tested the hypothesis that in chronic, spontaneous colitis, mast cells are protective. We compared colitis and intestinal barrier function in IL10−/− mice to mast cell deficient/IL10−/− (double knockout (DKO): KitWsh/Wsh × IL10−/−) mice. Compared with IL10−/− mice, DKO mice exhibited more severe colitis as assessed by increased colitis scores, mucosal hypertrophy, intestinal permeability, and colonic cytokine production. PCR array analyses demonstrated enhanced expression of numerous cytokine and chemokine genes and downregulation of anti-inflammatory genes (e.g., Tgfb2, Bmp2, Bmp4, Bmp6, and Bmp7) in the colonic mucosa of DKO mice. Systemic reconstitution of DKO mice with bone marrow-derived mast cells resulted in significant amelioration of IL10−/−-mediated colitis and intestinal barrier injury. Together, the results presented here demonstrate that mast cells exert anti-inflammatory properties in an established model of chronic, spontaneous IBD. Given the previously established proinflammatory role of mast cells in acute chemical colitis models, the present findings provide new insight into the divergent roles of mast cells in modulating inflammation during different stages of colitis. Further investigation of the mechanism of the anti-inflammatory role of the mast cells may elucidate novel therapies.
Collapse
|
58
|
Martin CR, Osadchiy V, Kalani A, Mayer EA. The Brain-Gut-Microbiome Axis. Cell Mol Gastroenterol Hepatol 2018; 6:133-148. [PMID: 30023410 PMCID: PMC6047317 DOI: 10.1016/j.jcmgh.2018.04.003] [Citation(s) in RCA: 760] [Impact Index Per Article: 108.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 04/04/2018] [Indexed: 12/12/2022]
Abstract
Preclinical and clinical studies have shown bidirectional interactions within the brain-gut-microbiome axis. Gut microbes communicate to the central nervous system through at least 3 parallel and interacting channels involving nervous, endocrine, and immune signaling mechanisms. The brain can affect the community structure and function of the gut microbiota through the autonomic nervous system, by modulating regional gut motility, intestinal transit and secretion, and gut permeability, and potentially through the luminal secretion of hormones that directly modulate microbial gene expression. A systems biological model is proposed that posits circular communication loops amid the brain, gut, and gut microbiome, and in which perturbation at any level can propagate dysregulation throughout the circuit. A series of largely preclinical observations implicates alterations in brain-gut-microbiome communication in the pathogenesis and pathophysiology of irritable bowel syndrome, obesity, and several psychiatric and neurologic disorders. Continued research holds the promise of identifying novel therapeutic targets and developing treatment strategies to address some of the most debilitating, costly, and poorly understood diseases.
Collapse
Key Words
- 2BA, secondary bile acid
- 5-HT, serotonin
- ANS, autonomic nervous system
- ASD, autism spectrum disorder
- BBB, blood-brain barrier
- BGM, brain-gut-microbiome
- CNS, central nervous system
- ECC, enterochromaffin cell
- EEC, enteroendocrine cell
- FFAR, free fatty acid receptor
- FGF, fibroblast growth factor
- FXR, farnesoid X receptor
- GF, germ-free
- GI, gastrointestinal
- GLP-1, glucagon-like peptide-1
- GPR, G-protein–coupled receptor
- IBS, irritable bowel syndrome
- Intestinal Permeability
- Irritable Bowel Syndrome
- LPS, lipopolysaccharide
- SCFA, short-chain fatty acid
- SPF, specific-pathogen-free
- Serotonin
- Stress
- TGR5, G protein-coupled bile acid receptor
- Trp, tryptophan
Collapse
Affiliation(s)
| | | | | | - Emeran A. Mayer
- Correspondence Address correspondence to: Emeran A. Mayer, MD, G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California at Los Angeles, MC737818-10833 Le Conte Avenue, Los Angeles, California 90095-7378. fax: (310) 825-1919.
| |
Collapse
|
59
|
Rosengren M, Thörnqvist PO, Winberg S, Sundell K. The brain-gut axis of fish: Rainbow trout with low and high cortisol response show innate differences in intestinal integrity and brain gene expression. Gen Comp Endocrinol 2018; 257:235-245. [PMID: 28947388 DOI: 10.1016/j.ygcen.2017.09.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/23/2017] [Accepted: 09/21/2017] [Indexed: 11/16/2022]
Abstract
In fish, the stress hormone cortisol is released through the action of the hypothalamic pituitary interrenal axis (HPI-axis). The reactivity of this axis differs between individuals and previous studies have linked this to different behavioural characteristics and stress coping styles. In the current study, low and high responding (LR and HR) rainbow trout in terms of cortisol release during stress were identified, using a repeated confinements stress test. The expression of stress related genes in the forebrain and the integrity of the stress sensitive primary barrier of the intestine was examined. The HR trout displayed higher expression levels of mineralocorticoid and serotonergic receptors and serotonergic re-uptake pumps in the telencephalon during both basal and stressed conditions. This confirms that HPI-axis reactivity is linked also to other neuronal behavioural modulators, as both the serotonergic and the corticoid system in the telencephalon are involved in behavioural reactivity and cognitive processes. Involvement of the HPI-axis in the brain-gut-axis was also found. LR trout displayed a lower integrity in the primary barrier of the intestine during basal conditions compared to the HR trout. However, following stress exposure, LR trout showed an unexpected increase in intestinal integrity whereas the HR trout instead suffered a reduction. This could make the LR individuals more susceptible to pathogens during basal conditions where instead HR individuals would be more vulnerable during stressed conditions. We hypothesize that these barrier differences are caused by regulation/effects on tight junction proteins possibly controlled by secondary effects of cortisol on the intestinal immune barrier or differences in parasympathetic reactivity.
Collapse
Affiliation(s)
- Malin Rosengren
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box: 463, SE-405 31 Gothenburg, Sweden.
| | - Per-Ove Thörnqvist
- Department of Neuroscience, Uppsala University, PO Box: 593, SE-75124 Uppsala, Sweden.
| | - Svante Winberg
- Department of Neuroscience, Uppsala University, PO Box: 593, SE-75124 Uppsala, Sweden.
| | - Kristina Sundell
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box: 463, SE-405 31 Gothenburg, Sweden.
| |
Collapse
|
60
|
Hattay P, Prusator DK, Johnson AC, Greenwood-Van Meerveld B. Stereotaxic Exposure of the Central Nucleus of the Amygdala to Corticosterone Increases Colonic Permeability and Reduces Nerve-Mediated Active Ion Transport in Rats. Front Neurosci 2018; 12:543. [PMID: 30154689 PMCID: PMC6103380 DOI: 10.3389/fnins.2018.00543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/18/2018] [Indexed: 12/25/2022] Open
Abstract
Background: Irritable bowel syndrome (IBS) is characterized by visceral pain and abnormal bowel habits that are worsened during stress. Evidence also suggests altered intestinal barrier function in IBS. Previously, we demonstrated that stereotaxic application of the stress hormone corticosterone (CORT) onto the central nucleus of the amygdala (CeA) induces colonic hyperalgesia and anxiety-like behavior in a rat model, however the effect on intestinal permeability and mucosal function remain to be evaluated. Methods: Male Fischer 344 rats underwent bilateral stereotaxic implantation of CORT or inert cholesterol (CHOL)-containing micropellets (30 μg) onto the dorsal margin of the CeA. Seven days later, colonic tissue was isolated to assess tissue permeability in modified Ussing chambers via transepithelial electrical resistance (TEER) and macromolecular flux of horseradish peroxidase (HRP). Secretory responses to electrical field stimulation (EFS) of submucosal enteric nerves as well as activation with forskolin were used to assess movements of ions across the isolated colonic tissues. In a separate cohort, colonic histology, and mast cell infiltration was assessed. Key Results: Compared to CHOL-implanted controls, we determined that exposing the CeA to elevated levels of CORT significantly increased macromolecular flux across the colonic epithelial layer without changing TEER. Nerve-mediated but not cAMP-mediated active transport was inhibited in response to elevated amygdala CORT. There were no histological changes or increases in mast cell infiltration within colonic tissue from CORT treated animals. Conclusion and Inferences: These observations support a novel role for the CeA as a modulator of nerve-mediated colonic epithelial function.
Collapse
Affiliation(s)
- Priya Hattay
- Oklahoma Center for Neurosciences and Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Dawn K. Prusator
- Oklahoma Center for Neurosciences and Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | | | - Beverley Greenwood-Van Meerveld
- Oklahoma Center for Neurosciences and Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Veterans Affairs Medical Center, Oklahoma City, OK, United States
- *Correspondence: Beverley Greenwood-Van Meerveld
| |
Collapse
|
61
|
Ganda Mall JP, Casado-Bedmar M, Winberg ME, Brummer RJ, Schoultz I, Keita ÅV. A β-Glucan-Based Dietary Fiber Reduces Mast Cell-Induced Hyperpermeability in Ileum From Patients With Crohn's Disease and Control Subjects. Inflamm Bowel Dis 2017; 24:166-178. [PMID: 29272475 PMCID: PMC6166688 DOI: 10.1093/ibd/izx002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Administration of β-glucan has shown immune-enhancing effects. Our aim was to investigate whether β-glucan could attenuate mast cell (MC)-induced hyperpermeability in follicle-associated epithelium (FAE) and villus epithelium (VE) of patients with Crohn's disease (CD) and in noninflammatory bowel disease (IBD)-controls. Further, we studied mechanisms of β-glucan uptake and effects on MCs in vitro. METHODS Segments of FAE and VE from 8 CD patients and 9 controls were mounted in Ussing chambers. Effects of the MC-degranulator compound 48/80 (C48/80) and yeast-derived β-1,3/1,6 glucan on hyperpermeability were investigated. Translocation of β-glucan and colocalization with immune cells were studied by immunofluorescence. Caco-2-cl1- and FAE-cultures were used to investigate β-glucan-uptake using endocytosis inhibitors and HMC-1.1 to study effects on MCs. RESULTS β-glucan significantly attenuated MC-induced paracellular hyperpermeability in CD and controls. Transcellular hyperpermeability was only significantly attenuated in VE. Baseline paracellular permeability was higher in FAE than VE in both groups, P<0.05, and exhibited a more pronounced effect by C48/80 and β-glucan P<0.05. No difference was observed between CD and controls. In vitro studies showed increased passage, P<0.05, of β-glucan through FAE-culture compared to Caco-2-cl1. Passage was mildly attenuated by the inhibitor methyl-β-cyclodextrin. HMC-1.1 experiments showed a trend to decreasing MC-degranulation and levels of TNF-α but not IL-6 by β-glucan. Immunofluorescence revealed more β-glucan-uptake and higher percentage of macrophages and dendritic cells close to β-glucan in VE of CD compared to controls. CONCLUSIONS We demonstrated beneficial effects of β-glucan on intestinal barrier function and increased β-glucan-passage through FAE model. Our results provide important and novel knowledge on possible applications of β-glucan in health disorders and diseases characterized by intestinal barrier dysfunction.
Collapse
Affiliation(s)
- John-Peter Ganda Mall
- School of Medical Sciences, Nutrition-Gut-Brain Interactions Research Centre, Örebro University, Örebro, Sweden
| | - Maite Casado-Bedmar
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Martin E Winberg
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Robert J Brummer
- School of Medical Sciences, Nutrition-Gut-Brain Interactions Research Centre, Örebro University, Örebro, Sweden
| | - Ida Schoultz
- School of Medical Sciences, Nutrition-Gut-Brain Interactions Research Centre, Örebro University, Örebro, Sweden
| | - Åsa V Keita
- School of Medical Sciences, Nutrition-Gut-Brain Interactions Research Centre, Örebro University, Örebro, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
62
|
McLeod DS, Bhutto I, Edwards MM, Gedam M, Baldeosingh R, Lutty GA. Mast Cell-Derived Tryptase in Geographic Atrophy. Invest Ophthalmol Vis Sci 2017; 58:5887-5896. [PMID: 29164232 PMCID: PMC5699534 DOI: 10.1167/iovs.17-22989] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/14/2017] [Indexed: 11/25/2022] Open
Abstract
Purpose Our previous study demonstrated significantly more degranulating mast cells (MCs) in choroids from subjects with age-related macular degeneration compared to aged controls. This study examined the immunolocalization of tryptase, the most abundant MC secretory granule-derived serine protease, in aged control eyes and eyes with geographic atrophy (GA). Methods Postmortem human eyes with and without GA were obtained from the National Disease Research Interchange. Tissue was fixed, cryopreserved, sectioned, and immunostained with a monoclonal antibody against tryptase. Sections were imaged on a Zeiss 710 Confocal Microscope. Results In the posterior pole of all aged control eyes, tryptase was confined to choroidal MCs, which were located primarily in Sattler's layer. In eyes with GA, many MCs were located in the inner choroid near choriocapillaris and Bruch's membrane (BM). Tryptase was found not only in MCs but also diffusely around them in stroma, suggesting they had degranulated. In contrast with aged control eyes, eyes with GA also had strong tryptase staining in BM. Tryptase was observed within BM in regions of RPE atrophy, at the border of atrophy, and extending well into the nonatrophic region. Conclusions Our results demonstrate that tryptase, released during choroidal MC degranulation, binds to BM in GA in advance of RPE atrophy. Tryptase activates MMPs that can degrade extracellular matrix (ECM) and basement membrane components found in BM. ECM modifications are likely to have a profound effect on the function and health of RPE and choroidal thinning in GA.
Collapse
Affiliation(s)
- D. Scott McLeod
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, Maryland, United States
| | - Imran Bhutto
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, Maryland, United States
| | - Malia M. Edwards
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, Maryland, United States
| | - Manasee Gedam
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, Maryland, United States
| | - Rajkumar Baldeosingh
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, Maryland, United States
| | - Gerard A. Lutty
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, Maryland, United States
| |
Collapse
|
63
|
Gastrointestinal Motility, Mucosal Mast Cell, and Intestinal Histology in Rats: Effect of Prednisone. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4637621. [PMID: 29057260 PMCID: PMC5625752 DOI: 10.1155/2017/4637621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 07/20/2017] [Accepted: 08/13/2017] [Indexed: 12/20/2022]
Abstract
Our aim was to verify the effects of prednisone related to gastrointestinal motility, intestinal histology, and mucosal mast cells in rats. Two-month-old male Wistar rats were randomly assigned to control group (vehicle) animals receiving saline 0.9% (n = 7) or treated orally with 0.625 mg/kg/day of prednisone (n = 7) or 2.5 mg/kg/day of prednisone (n = 7) during 15 days. Mast cells and other histologic analyses were performed in order to correlate to gastric emptying, cecum arrival, and small intestine transit evaluated by Alternating Current Biosusceptometry. Results showed that prednisone in adult rats increased the frequency of gastric contractions, hastened gastric emptying, slowed small intestinal transit, and reduced mucosal mast cells. Histologically, the treatment with both doses of prednisone decreased villus height, whereas longitudinal and circular muscles and crypt depth were not affected. These findings indicate an impairment of intestinal absorption which may be linked to several GI dysfunctions and symptoms. The relationship between gastrointestinal motor disorders and cellular immunity needs to be clarified in experimental studies since prednisone is one of the most prescribed glucocorticoids worldwide.
Collapse
|
64
|
Zhu H, Pi D, Leng W, Wang X, Hu CAA, Hou Y, Xiong J, Wang C, Qin Q, Liu Y. Asparagine preserves intestinal barrier function from LPS-induced injury and regulates CRF/CRFR signaling pathway. Innate Immun 2017; 23:546-556. [PMID: 28728455 DOI: 10.1177/1753425917721631] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Stress causes intestinal inflammation and barrier dysfunction. Corticotrophin-releasing factor (CRF)/CRF receptor (CRFR) signaling pathway has been shown to be important for stress-induced intestinal mucosal alteration. L-Asparagine (ASN) is a powerful stimulator of ornithine decarboxylase and cell proliferation in a variety of cell types, including colonic cells. In the present study, we investigated whether dietary ASN supplementation could alleviate the damage of intestinal barrier function caused by LPS through modulation of CRF/CRFR signaling pathway. Twenty-four weaned pigs were randomly divided into one of four treatments: (1) non-challenged control; (2) Escherichia coli LPS challenged control; (3) LPS + 0.5% ASN; (4) LPS + 1.0% ASN. LPS stress induced villous atrophy, intestinal morphology disruption and decreased claudin-1 expression. ASN supplementation increased intestinal claudin-1 protein expression and alleviated villous atrophy and intestinal morphology impairment caused by LPS stress. In addition, ASN supplementation increased the number of intestinal intraepithelial lymphocytes and reversed the elevations of intestinal mast cell number and neutrophil number induced by LPS stress. Moreover, ASN decreased the mRNA expression of intestinal CRF, glucocorticoid receptors and tryptase. These results indicate that ASN attenuates intestinal barrier dysfunction induced by LPS stress, and regulates CRF/CRFR1 signaling pathway and mast cell activation.
Collapse
Affiliation(s)
- Huiling Zhu
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Dingan Pi
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Weibo Leng
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Xiuying Wang
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Chien-An Andy Hu
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China.,2 Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Yongqing Hou
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Jianglin Xiong
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Chunwei Wang
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Qin Qin
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Yulan Liu
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
65
|
Hattay P, Prusator DK, Tran L, Greenwood-Van Meerveld B. Psychological stress-induced colonic barrier dysfunction: Role of immune-mediated mechanisms. Neurogastroenterol Motil 2017; 29. [PMID: 28300333 DOI: 10.1111/nmo.13043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/09/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Evidence suggests that patients with irritable bowel syndrome (IBS) exhibit increases in gut permeability and alterations in tight junction (TJ) protein expression. Although psychological stress worsens IBS symptoms, the mechanisms by which stress enhances gut permeability and affects TJ protein expression remain to be determined. Here, we test the hypothesis that chronic intermittent psychological stress activates the release of proinflammatory cytokines to alter TJ proteins and promotes increased gut permeability. METHODS Male Fischer-344 rats were subjected to 1 hour of water avoidance stress (WAS) or SHAM stress per day for 7 days. Following the stress protocol, colonic permeability was measured via transepithelial electrical resistance (TEER) and macromolecular flux of horseradish peroxidase (HRP). In tissue isolated from rats exposed to the WAS or SHAM stress, TJ proteins claudin-2, junctional adhesion molecule-A (JAM-A) and zonula occluden-1 (ZO-1) were measured via Western blotting, histological appearance of the colonic segments was assessed via hematoxylin and eosin staining, and an inflammatory cytokine panel was quantified via quantitative reverse transcription-polymerase chain reaction. KEY RESULTS Repetitive daily exposure to WAS decreased the TEER, increased the macromolecular flux of HRP, and altered the expression of claudin-2, JAM-A and ZO-1 proteins within colonic tissue compared to SHAM controls. In the absence of a histologically defined inflammation, the cytokine profiles of WAS-treated animals revealed an increase in interleukin-1β and tumor necrosis factor (TNF)-α. Subsequent analysis revealed a significant positive correlation between TNF-α and expression of TJ protein claudin-2. CONCLUSIONS & INFERENCES Our findings suggest that chronic stress increases colonic permeability via sub-inflammatory cytokine-mediated remodeling of TJ protein expression.
Collapse
Affiliation(s)
- P Hattay
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - D K Prusator
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - L Tran
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - B Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,VA Medical Center, Oklahoma City, OK, USA.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
66
|
Mason BL. Feeding Systems and the Gut Microbiome: Gut-Brain Interactions With Relevance to Psychiatric Conditions. PSYCHOSOMATICS 2017; 58:574-580. [PMID: 28716445 DOI: 10.1016/j.psym.2017.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND Physical and mental health is dependent on the environment, and feeding is a prime example of this environmental exchange. While the hypothalamus controls both feeding behavior and the stress response, the integration of the neural control centers and the peripheral gut allows for disruption in the gastrointestinal systems and dysfunctional communication to the brain. OBJECTIVE The purpose of this review is to familiarize clinicians with the physiology controlling feeding behavior and its implications for psychiatric conditions, such as anorexia nervosa and depression. Growing understanding of how integrated bacterial life is in the body has shown that gut bacteria regulate basic physiologic processes and are implicated in various disease states and contribute to regulation of mood. Responses to stress have effects on feeding behavior and mood and the regulation of the stress response by the gut microbiota could contribute to the dysfunction seen in patients with psychiatric illnesses. CONCLUSIONS Gut microbiota may contribute to dysfunction in psychiatric illnesses. New opportunities to modulate existing gut microbiota using probiotics could be novel targets for clinical interventions.
Collapse
Affiliation(s)
- Brittany L Mason
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX.
| |
Collapse
|
67
|
Boeckxstaens GE, Wouters MM. Neuroimmune factors in functional gastrointestinal disorders: A focus on irritable bowel syndrome. Neurogastroenterol Motil 2017; 29. [PMID: 28027594 DOI: 10.1111/nmo.13007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/11/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Abnormal abdominal pain perception is the most bothersome and difficult to treat symptom of functional gastrointestinal disorders (FGIDs). Visceral pain stimuli are perceived and transmitted by afferent neurons residing in the dorsal root ganglia that have sensory nerve endings in the gut wall and mesentery. Accumulating evidence indicates that peripheral activation and sensitization of these sensory nerve endings by bioactive mediators released by activated immune cells, in particular mast cells, can lead to aberrant neuroimmune interactions and the development and maintenance of visceral hypersensitivity. Besides direct neuronal activation, low concentrations of proteases, histamine, and serotonin can chronically sensitize nociceptors, such as TRP channels, leading to persistent aberrant pain perception. PURPOSE This review discusses the potential mechanisms underlying aberrant neuroimmune interactions in peripheral sensitization of sensory nerves. A better understanding of the cells, mediators, and molecular mechanisms triggering persistent aberrant neuroimmune interactions brings new insights into their contribution to the physiology and pathophysiology of visceral pain perception and provides novel opportunities for more efficient therapeutic treatments for these disorders.
Collapse
Affiliation(s)
- G E Boeckxstaens
- Translational Research Center for Gastrointestinal Disorders (TARGID), Leuven University, Leuven, Belgium
| | - M M Wouters
- Translational Research Center for Gastrointestinal Disorders (TARGID), Leuven University, Leuven, Belgium
| |
Collapse
|
68
|
de Almeida AAC, Silva RO, Nicolau LAD, de Brito TV, de Sousa DP, Barbosa ALDR, de Freitas RM, Lopes LDS, Medeiros JVR, Ferreira PMP. Physio-pharmacological Investigations About the Anti-inflammatory and Antinociceptive Efficacy of (+)-Limonene Epoxide. Inflammation 2017; 40:511-522. [PMID: 28091830 DOI: 10.1007/s10753-016-0496-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
D-limonene epoxidation generates (+)-limonene epoxide, an understudied compound in the pharmacologically point of view. Herein, we investigated the anti-inflammatory and antinociceptive potentialities of (+)-limonene epoxide and suggested a mechanism of action. The anti-inflammatory potential was analyzed using agents to induce paw edema, permeability, and myeloperoxidase (MPO) activity. Pro-inflammatory cytokines and cell migration of peritoneal cells were also assessed. Antinociceptive effects were evaluated by writhing test induced by acetic acid, formalin, and hot plate assays and contribution of opioid pathways. Pretreated animals with (+)-limonene epoxide showed reduced carrageenan-induced paw edema in all doses (25, 50, and 75 mg/kg) (P < 0.05). At 75 mg/kg, it suppressed edema provoked by compound 48/80, histamine, prostaglandin E2, and serotonin and reduced permeability determined by Evans blue and MPO activity. It also reduced leukocytes, neutrophils, and IL-1β levels in the peritoneal cavity in comparison with carrageenan group (P < 0.05). (+)-Limonene epoxide diminished abdominal contortions induced by acetic acid (78.9%) and paw licking times in both 1 (41.8%) and 2 (51.5%) phases and a pretreatment with naloxone (3 mg/kg) reverted the antinociceptive action in morphine- and (+)-limonene epoxide-treated groups (P < 0.05). Additionally, it enlarged response times to the thermal stimulus after 60 and 90 min. In conclusion, (+)-limonene epoxide inhibited release/activity of inflammatory mediators, vascular permeability, migration of neutrophils and displayed systemic and peripheral analgesic-dependent effects of the opioid system.
Collapse
Affiliation(s)
| | - Renan Oliveira Silva
- Laboratory of Pharmacology of Inflammation and Cancer, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Lucas Antonio Duarte Nicolau
- Laboratory of Pharmacology of Inflammation and Cancer, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Tarcísio Vieira de Brito
- Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina, Brazil.,Biotechnology and Biodiversity Center Research (BIOTEC), Federal University of Piauí, Parnaíba, Brazil
| | | | - André Luiz Dos Reis Barbosa
- Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina, Brazil.,Biotechnology and Biodiversity Center Research (BIOTEC), Federal University of Piauí, Parnaíba, Brazil
| | - Rivelilson Mendes de Freitas
- Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina, Brazil.,Department of Pharmacy, Federal University of Piauí, Teresina, Brazil
| | | | - Jand-Venes Rolim Medeiros
- Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina, Brazil.,Biotechnology and Biodiversity Center Research (BIOTEC), Federal University of Piauí, Parnaíba, Brazil
| | - Paulo Michel Pinheiro Ferreira
- Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina, Brazil. .,Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Brazil.
| |
Collapse
|
69
|
Wang W, Xin H, Fang X, Dou H, Liu F, Huang D, Han S, Fei G, Zhu L, Zha S, Zhang H, Ke M. Isomalto-oligosaccharides ameliorate visceral hyperalgesia with repair damage of ileal epithelial ultrastructure in rats. PLoS One 2017; 12:e0175276. [PMID: 28437458 PMCID: PMC5402968 DOI: 10.1371/journal.pone.0175276] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 03/23/2017] [Indexed: 12/12/2022] Open
Abstract
Background Treatment of irritable bowel syndrome (IBS) with probiotics has achieved effectiveness to a certain extent. Whether prebiotics will work is still unclear. This study aimed to investigate the therapeutic effects of the prebiotic isomalto-oligosaccharides (IMO) on visceral hypersensitivity (VHS) in rats and to explore potential mechanism. Methods Water avoidance stress (WAS) was used to induce VHS in rats. The score for the abdominal withdrawal reflex (AWR) was determined while colorectal distension and compared between VHS group and control group in order to validate VHS preparation. Rats with VHS were then divided into an IMO-treated group (intragastric 5% IMO, 2 mL/d, 14 days) and a water-control group (intragastric water). After treatment, AWR score and intestinal transit rate (ITR) were determined, stool culture was performed, the ultrastructure of the ileum epithelium was observed with scanning electron microscopy (SEM), and serum cytokines were measured. Results WAS significantly increased AWR score responding to colorectal distension, and lowered the pain threshold. IMO treatment improved VHS with a reduction in AWR score on graded colorectal distension and an increase in pain threshold. SEM showed damages on the ileal epithelial ultrastructure in VHS rats, which was attenuated by IMO treatment. ITR, fecal microbiota and serum cytokine levels were comparable among control group, water-control group, and IMO-treated rats. Conclusion In this randomized placebo-controlled study, the results showed that IMO ameliorated WAS-induced visceral hyperalgesia in rats, this effect may be attributed to the repair of damages on intestinal epithelial ultrastructure.
Collapse
Affiliation(s)
- Weida Wang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haiwei Xin
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiucai Fang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail:
| | - Hongtao Dou
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fangyi Liu
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dan Huang
- Department of Gastroenterology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shaomei Han
- Department of Epidemiology and Statistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Guijun Fei
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liming Zhu
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shenghua Zha
- Beijing Tongrentang Health-Pharmaceutical Co., Ltd., Beijing, China
| | - Hong Zhang
- Beijing Tongrentang Health-Pharmaceutical Co., Ltd., Beijing, China
| | - Meiyun Ke
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
70
|
Abstract
Communication between the brain and gut is not one-way, but a bidirectional highway whereby reciprocal signals between the two organ systems are exchanged to coordinate function. The messengers of this complex dialogue include neural, metabolic, endocrine and immune mediators responsive to diverse environmental cues, including nutrients and components of the intestinal microbiota (microbiota-gut-brain axis). We are now starting to understand how perturbation of these systems affects transition between health and disease. The pathological repercussions of disordered gut-brain dialogue are probably especially pertinent in functional gastrointestinal diseases, including IBS and functional dyspepsia. New insights into these pathways might lead to novel treatment strategies in these common gastrointestinal diseases. In this Review, we consider the role of the immune system as the gatekeeper and master regulator of brain-gut and gut-brain communications. Although adaptive immunity (T cells in particular) participates in this process, there is an emerging role for cells of the innate immune compartment (including innate lymphoid cells and cells of the mononuclear phagocyte system). We will also consider how these key immune cells interact with the specific components of the enteric and central nervous systems, and rapidly respond to environmental variables, including the microbiota, to alter gut homeostasis.
Collapse
|
71
|
Bhattarai Y, Muniz Pedrogo DA, Kashyap PC. Irritable bowel syndrome: a gut microbiota-related disorder? Am J Physiol Gastrointest Liver Physiol 2017; 312:G52-G62. [PMID: 27881403 PMCID: PMC5283907 DOI: 10.1152/ajpgi.00338.2016] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/07/2016] [Accepted: 11/16/2016] [Indexed: 01/31/2023]
Abstract
Irritable bowel syndrome (IBS) is one of the most common gastrointestinal (GI) disorders. Despite its prevalence, the pathophysiology of IBS is not well understood although multiple peripheral and central factors are implicated. Recent studies suggest a role for alterations in gut microbiota in IBS. Significant advances in next-generation sequencing technology and bioinformatics and the declining cost have now allowed us to better investigate the role of gut microbiota in IBS. In the following review, we propose gut microbiota as a unifying factor in the pathophysiology of IBS. We first describe how gut microbiota can be influenced by factors predisposing individuals to IBS such as host genetics, stress, diet, antibiotics, and early life experiences. We then highlight the known effects of gut microbiota on mechanisms implicated in the pathophysiology of IBS including disrupted gut brain axis (GBA), visceral hypersensitivity (VH), altered GI motility, epithelial barrier dysfunction, and immune activation. While there are several gaps in the field that preclude us from connecting the dots to establish causation, we hope this overview will allow us to identify and fill in the voids.
Collapse
Affiliation(s)
- Yogesh Bhattarai
- 1Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota; and ,2Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - David A. Muniz Pedrogo
- 1Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota; and ,2Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Purna C. Kashyap
- 1Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota; and ,2Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
72
|
Lee KN, Lee OY. The Role of Mast Cells in Irritable Bowel Syndrome. Gastroenterol Res Pract 2016; 2016:2031480. [PMID: 28115927 PMCID: PMC5225338 DOI: 10.1155/2016/2031480] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/18/2016] [Accepted: 12/05/2016] [Indexed: 12/20/2022] Open
Abstract
Irritable bowel syndrome (IBS) is one of the most common functional gastrointestinal disorders, but its treatment is unsatisfactory as its pathophysiology is multifactorial. The putative factors of IBS pathophysiology are visceral hypersensitivity and intestinal dysmotility, also including psychological factors, dysregulated gut-brain axis, intestinal microbiota alterations, impaired intestinal permeability, and mucosal immune alterations. Recently, mucosal immune alterations have received much attention with the role of mast cells in IBS. Mast cells are abundant in the intestines and function as intestinal gatekeepers at the interface between the luminal environment in the intestine and the internal milieu under the intestinal epithelium. As a gatekeeper at the interface, mast cells communicate with the adjacent cells such as epithelial, neuronal, and other immune cells throughout the mediators released when they themselves are activated. Many studies have suggested that mast cells play a role in the pathophysiology of IBS. This review will focus on studies of the role of mast cell in IBS and the limitations of studies and will also consider future directions.
Collapse
Affiliation(s)
- Kang Nyeong Lee
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Oh Young Lee
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
73
|
Choi HW, Bowen SE, Miao Y, Chan CY, Miao EA, Abrink M, Moeser AJ, Abraham SN. Loss of Bladder Epithelium Induced by Cytolytic Mast Cell Granules. Immunity 2016; 45:1258-1269. [PMID: 27939674 DOI: 10.1016/j.immuni.2016.11.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 08/20/2016] [Accepted: 09/13/2016] [Indexed: 01/09/2023]
Abstract
Programmed death and shedding of epithelial cells is a powerful defense mechanism to reduce bacterial burden during infection but this activity cannot be indiscriminate because of the critical barrier function of the epithelium. We report that during cystitis, shedding of infected bladder epithelial cells (BECs) was preceded by the recruitment of mast cells (MCs) directly underneath the superficial epithelium where they docked and extruded their granules. MCs were responding to interleukin-1β (IL-1β) secreted by BECs after inflammasome and caspase-1 signaling. Upon uptake of granule-associated chymase (mouse MC protease 4 [mMCPT4]), BECs underwent caspase-1-associated cytolysis and exfoliation. Thus, infected epithelial cells require a specific cue for cytolysis from recruited sentinel inflammatory cells before shedding.
Collapse
Affiliation(s)
- Hae Woong Choi
- Department of Pathology, Duke University, Durham, NC 27710, USA.
| | - Samantha E Bowen
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | - Yuxuan Miao
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | - Cheryl Y Chan
- Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore 169857, Singapore
| | - Edward A Miao
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Magnus Abrink
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Adam J Moeser
- Departments of Large Animal Clinical Sciences and Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Soman N Abraham
- Department of Pathology, Duke University, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA; Department of Immunology, Duke University, Durham, NC 27710, USA; Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore 169857, Singapore
| |
Collapse
|
74
|
Pellissier S, Bonaz B. The Place of Stress and Emotions in the Irritable Bowel Syndrome. VITAMINS AND HORMONES 2016; 103:327-354. [PMID: 28061975 DOI: 10.1016/bs.vh.2016.09.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Our emotional state can have many consequences on our somatic health and well-being. Negative emotions such as anxiety play a major role in gut functioning due to the bidirectional communications between gut and brain, namely, the brain-gut axis. The irritable bowel syndrome (IBS), characterized by an unusual visceral hypersensitivity, is the most common disorder encountered by gastroenterologists. Among the main symptoms, the presence of current or recurrent abdominal pain or discomfort associated with bloating and altered bowel habits characterizes this syndrome that could strongly alter the quality of life. This chapter will present the physiopathology of IBS and explain how stress influences gastrointestinal functions (permeability, motility, microbiota, sensitivity, secretion) and how it could be predominantly involved in IBS. This chapter will also describe the role of the autonomic nervous system and the hypothalamic-pituitary axis through vagal tone and cortisol homeostasis. An analysis is made about how emotions and feelings are involved in the disruption of homeostasis, and we will see to what extent the balance between vagal tone and cortisol may reflect dysfunctions of the brain-gut homeostasis. Finally, the interest of therapeutic treatments focused on stress reduction and vagal tone enforcement is discussed.
Collapse
Affiliation(s)
- S Pellissier
- Laboratoire Interuniversitaire de Psychologie, Personnalité, Cognition, Changement Social, Université Savoie Mont-Blanc, Chambéry, France.
| | - B Bonaz
- Clinique Universitaire d'Hépato-Gastroentérologie, CHU de Grenoble, Grenoble 09, France; Université Grenoble Alpes, Grenoble Institut des Neurosciences, Fonctions Cérébrales et Neuromodulation, INSERM, Grenoble 09, France
| |
Collapse
|
75
|
Lee JY, Kim N, Kim YS, Nam RH, Ham MH, Lee HS, Jo W, Shim Y, Choi YJ, Yoon H, Shin CM, Lee DH. Repeated Water Avoidance Stress Alters Mucosal Mast Cell Counts, Interleukin-1β Levels with Sex Differences in the Distal Colon of Wistar Rats. J Neurogastroenterol Motil 2016; 22:694-704. [PMID: 27466288 PMCID: PMC5056580 DOI: 10.5056/jnm16007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 05/23/2016] [Accepted: 06/14/2016] [Indexed: 12/13/2022] Open
Abstract
Background/Aims This study was aimed at evaluating differences in the effects of repeated water avoidance stress (rWAS) on colonic movement, mucosal mast cell counts, cytokine levels, and visceromotor response (VMR) to colorectal distension (CRD) in rats of both sexes. Methods Wistar rats were divided into stress and no-stress groups. Rats in the stress group were exposed to rWAS (1 hr/day) for 10 days. Mucosal mast cells were immunohistochemically stained with anti-mast cell tryptase antibody and counted. The colonic mucosal cytokine levels were measured with enzyme-linked immunosorbent assay. The VMR to CRD (visceral analgesia) was assessed by using a barostat and noninvasive manometry. Results The mean number of fecal pellets in the rWAS group increased significantly as compared with that in the no-stress group in both sexes. After adjustment for body weight, the female rats had a significantly higher pellet output than the male rats. The mucosal mast cell count of the female rWAS group was higher than that of the male rWAS group (13.0 ± 0.9 vs 8.8 ± 0.6; P < 0.001). The colonic mucosal interleukin-1β level was also higher only in the female rats of the rWAS group than in those of the no-stress group. On days 10 and 11, a decrease in VMR to CRD was observed at 40 and 60 mmHg in both sexes of the rWAS group, without a sex-based difference. Conclusions The colonic response to stress appeared to be more sensitive in the female rats than in the male rats. However, stress-induced visceral analgesia had no sex-related difference and the underlying mechanism needs to be further evaluated.
Collapse
Affiliation(s)
- Ju Yup Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Korea.,Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Korea
| | - Yong Sung Kim
- Department of Gastroenterology and Digestive Disease Research Institute, Wonkwang University School of Medicine, Iksan, Jeollabuk-do, Korea
| | - Ryoung Hee Nam
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Korea
| | - Min Hee Ham
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Korea
| | - Wonjun Jo
- Department of BioNano Technology and Gachon BioNano Research Institute, Gachon University, Seongnam, Gyeonggi-do, Korea
| | - Youngkwang Shim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Korea
| | - Yoon Jin Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Korea
| | - Hyuk Yoon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Korea
| | - Cheol Min Shin
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Korea
| | - Dong Ho Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Korea
| |
Collapse
|
76
|
Sarkar A, Lehto SM, Harty S, Dinan TG, Cryan JF, Burnet PWJ. Psychobiotics and the Manipulation of Bacteria-Gut-Brain Signals. Trends Neurosci 2016; 39:763-781. [PMID: 27793434 PMCID: PMC5102282 DOI: 10.1016/j.tins.2016.09.002] [Citation(s) in RCA: 620] [Impact Index Per Article: 68.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/01/2016] [Accepted: 09/06/2016] [Indexed: 02/07/2023]
Abstract
Psychobiotics were previously defined as live bacteria (probiotics) which, when ingested, confer mental health benefits through interactions with commensal gut bacteria. We expand this definition to encompass prebiotics, which enhance the growth of beneficial gut bacteria. We review probiotic and prebiotic effects on emotional, cognitive, systemic, and neural variables relevant to health and disease. We discuss gut–brain signalling mechanisms enabling psychobiotic effects, such as metabolite production. Overall, knowledge of how the microbiome responds to exogenous influence remains limited. We tabulate several important research questions and issues, exploration of which will generate both mechanistic insights and facilitate future psychobiotic development. We suggest the definition of psychobiotics be expanded beyond probiotics and prebiotics to include other means of influencing the microbiome. Psychobiotics are beneficial bacteria (probiotics) or support for such bacteria (prebiotics) that influence bacteria–brain relationships. Psychobiotics exert anxiolytic and antidepressant effects characterised by changes in emotional, cognitive, systemic, and neural indices. Bacteria–brain communication channels through which psychobiotics exert effects include the enteric nervous system and the immune system. Current unknowns include dose-responses and long-term effects. The definition of psychobiotics should be expanded to any exogenous influence whose effect on the brain is bacterially-mediated.
Collapse
Affiliation(s)
- Amar Sarkar
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3UD, UK
| | - Soili M Lehto
- Institute of Clinical Medicine/Psychiatry, University of Eastern Finland, FI-70211, Kuopio, Finland; Department of Psychiatry, Kuopio University Hospital, FI-70211, Kuopio, Finland
| | - Siobhán Harty
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3UD, UK
| | - Timothy G Dinan
- Department of Psychiatry, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | |
Collapse
|
77
|
The Gut-Brain Axis, BDNF, NMDA and CNS Disorders. Neurochem Res 2016; 41:2819-2835. [PMID: 27553784 DOI: 10.1007/s11064-016-2039-1] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/09/2016] [Accepted: 08/17/2016] [Indexed: 02/08/2023]
Abstract
Gastro-intestinal (GI) microbiota and the 'gut-brain axis' are proving to be increasingly relevant to early brain development and the emergence of psychiatric disorders. This review focuses on the influence of the GI tract on Brain-Derived Neurotrophic Factor (BDNF) and its relationship with receptors for N-methyl-D-aspartate (NMDAR), as these are believed to be involved in synaptic plasticity and cognitive function. NMDAR may be associated with the development of schizophrenia and a range of other psychopathologies including neurodegenerative disorders, depression and dementias. An analysis of the routes and mechanisms by which the GI microbiota contribute to the pathophysiology of BDNF-induced NMDAR dysfunction could yield new insights relevant to developing novel therapeutics for schizophrenia and related disorders. In the absence of GI microbes, central BDNF levels are reduced and this inhibits the maintenance of NMDAR production. A reduction of NMDAR input onto GABA inhibitory interneurons causes disinhibition of glutamatergic output which disrupts the central signal-to-noise ratio and leads to aberrant synaptic behaviour and cognitive deficits. Gut microbiota can modulate BDNF function in the CNS, via changes in neurotransmitter function by affecting modulatory mechanisms such as the kynurenine pathway, or by changes in the availability and actions of short chain fatty acids (SCFAs) in the brain. Interrupting these cycles by inducing changes in the gut microbiota using probiotics, prebiotics or antimicrobial drugs has been found promising as a preventative or therapeutic measure to counteract behavioural deficits and these may be useful to supplement the actions of drugs in the treatment of CNS disorders.
Collapse
|
78
|
Pérez-Bosque A, Polo J, Torrallardona D. Spray dried plasma as an alternative to antibiotics in piglet feeds, mode of action and biosafety. Porcine Health Manag 2016; 2:16. [PMID: 28405442 PMCID: PMC5382520 DOI: 10.1186/s40813-016-0034-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/03/2016] [Indexed: 12/22/2022] Open
Abstract
The use of growth promoting and therapeutic antibiotics in piglet feed has been a concerning subject over the last few decades because of the risk of generating antimicrobial resistance that could be transferred to humans. As a result, many products have been proposed as potential alternatives to the use of antibiotics, and among these, spray dried plasma is considered one of the most promising. However, there have been concerns about its biosafety, particularly during periods of emergence or re-emergence of swine diseases in different regions of the world, such as the recent porcine epidemic diarrhea virus outbreak in North America. The objectives of this paper are to review recent publications about the use of spray dried plasma as an alternative to antibiotics in weaned pig diets, the possible mechanisms of action of spray dried plasma, and the existing evidence related to the biosafety of spray dried animal plasma. Particular attention is given to studies in which spray dried plasma has been directly compared to antibiotics or other alternative antimicrobial products. Several studies on the possible modes of action for spray dried plasma, such as preservation of gut barrier function or modulation of the immune response, are also reviewed. Finally, the paper focuses on the review of the existing studies on the risks of disease transmission with the use of spray dried plasma from porcine origin. Overall, spray dried plasma is a promising alternative to in-feed antimicrobials for piglets, particularly during the early stages of the post-weaning phase. Additionally, there is enough evidence to support that commercial spray dried porcine plasma is a safe product for pigs.
Collapse
Affiliation(s)
- Anna Pérez-Bosque
- Grup de Fisiologia digestiva i adaptacions nutricionals, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Institut de Recerca en Nutrició i Seguretat Alimentària, Universitat de Barcelona (UB), Barcelona, Spain
| | | | - David Torrallardona
- IRTA, Animal Nutrition and Welfare, Mas de Bover, Ctra. Reus-El Morell, km. 3.8, E-43120 Constantí, Tarragona, Spain
| |
Collapse
|
79
|
Abstract
BACKGROUND Beginning at birth, the microbes in the gut perform essential duties related to the digestion and metabolism of food, the development and activation of the immune system, and the production of neurotransmitters that affect behavior and cognitive function. OBJECTIVES The objectives of this review are to (a) provide a brief overview of the microbiome and the "microbiome-gut-brain axis"; (b) discuss factors known to affect the composition of the infant microbiome: mode of delivery, antibiotic exposure, and infant-feeding patterns; and (c) present research priorities for nursing science and clinical implications for infant health and neurocognitive development. DISCUSSION The gut microbiome influences immunological, endocrine, and neural pathways and plays an important role in infant development. Several factors influence colonization of the infant gut microbiome. Different microbial colonization patterns are associated with vaginal versus surgical birth, exposure to antibiotics, and infant-feeding patterns. Because of extensive physiological influence, infant microbial colonization patterns have the potential to impact physical and neurocognitive development and life course disease risk. Understanding these influences will inform newborn care and parental education.
Collapse
|
80
|
Pigrau M, Rodiño-Janeiro BK, Casado-Bedmar M, Lobo B, Vicario M, Santos J, Alonso-Cotoner C. The joint power of sex and stress to modulate brain-gut-microbiota axis and intestinal barrier homeostasis: implications for irritable bowel syndrome. Neurogastroenterol Motil 2016; 28:463-86. [PMID: 26556786 DOI: 10.1111/nmo.12717] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/05/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Intestinal homeostasis is a dynamic process that takes place at the interface between the lumen and the mucosa of the gastrointestinal tract, where a constant scrutiny for antigens and toxins derived from food and microorganisms is carried out by the vast gut-associated immune system. Intestinal homeostasis is preserved by the ability of the mucus layer and the mucosal barrier to keep the passage of small-sized and antigenic molecules across the epithelium highly selective. When combined and preserved, immune surveillance and barrier's selective permeability, the host capacity of preventing the development of intestinal inflammation is optimized, and viceversa. In addition, the brain-gut-microbiome axis, a multidirectional communication system that integrates distant and local regulatory networks through neural, immunological, metabolic, and hormonal signaling pathways, also regulates intestinal function. Dysfunction of the brain-gut-microbiome axis may induce the loss of gut mucosal homeostasis, leading to uncontrolled permeation of toxins and immunogenic particles, increasing the risk of appearance of intestinal inflammation, mucosal damage, and gut disorders. Irritable bowel syndrome is prevalent stress-sensitive gastrointestinal disorder that shows a female predominance. Interestingly, the role of stress, sex and gonadal hormones in the regulation of intestinal mucosal and the brain-gut-microbiome axis functioning is being increasingly recognized. PURPOSE We aim to critically review the evidence linking sex, and stress to intestinal barrier and brain-gut-microbiome axis dysfunction and the implications for irritable bowel syndrome.
Collapse
Affiliation(s)
- M Pigrau
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada.,Laboratory of Neuro-immuno-gastroenterology, Digestive Diseases Research Unit. Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitario Vall d'Hebron & Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - B K Rodiño-Janeiro
- Laboratory of Neuro-immuno-gastroenterology, Digestive Diseases Research Unit. Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitario Vall d'Hebron & Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - M Casado-Bedmar
- Laboratory of Neuro-immuno-gastroenterology, Digestive Diseases Research Unit. Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitario Vall d'Hebron & Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - B Lobo
- Laboratory of Neuro-immuno-gastroenterology, Digestive Diseases Research Unit. Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitario Vall d'Hebron & Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - M Vicario
- Laboratory of Neuro-immuno-gastroenterology, Digestive Diseases Research Unit. Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitario Vall d'Hebron & Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - J Santos
- Laboratory of Neuro-immuno-gastroenterology, Digestive Diseases Research Unit. Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitario Vall d'Hebron & Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - C Alonso-Cotoner
- Laboratory of Neuro-immuno-gastroenterology, Digestive Diseases Research Unit. Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitario Vall d'Hebron & Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| |
Collapse
|
81
|
Petra AI, Panagiotidou S, Hatziagelaki E, Stewart JM, Conti P, Theoharides TC. Gut-Microbiota-Brain Axis and Its Effect on Neuropsychiatric Disorders With Suspected Immune Dysregulation. Clin Ther 2016; 37:984-95. [PMID: 26046241 DOI: 10.1016/j.clinthera.2015.04.002] [Citation(s) in RCA: 384] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/04/2015] [Accepted: 04/07/2015] [Indexed: 12/15/2022]
Abstract
PURPOSE Gut microbiota regulate intestinal function and health. However, mounting evidence indicates that they can also influence the immune and nervous systems and vice versa. This article reviews the bidirectional relationship between the gut microbiota and the brain, termed the microbiota-gut-brain (MGB) axis, and discusses how it contributes to the pathogenesis of certain disorders that may involve brain inflammation. METHODS Articles were identified with a search of Medline (starting in 1980) by using the key words anxiety, attention-deficit hypersensitivity disorder (ADHD), autism, cytokines, depression, gut, hypothalamic-pituitary-adrenal (HPA) axis, inflammation, immune system, microbiota, nervous system, neurologic, neurotransmitters, neuroimmune conditions, psychiatric, and stress. FINDINGS Various afferent or efferent pathways are involved in the MGB axis. Antibiotics, environmental and infectious agents, intestinal neurotransmitters/neuromodulators, sensory vagal fibers, cytokines, and essential metabolites all convey information to the central nervous system about the intestinal state. Conversely, the hypothalamic-pituitary-adrenal axis, the central nervous system regulatory areas of satiety, and neuropeptides released from sensory nerve fibers affect the gut microbiota composition directly or through nutrient availability. Such interactions seem to influence the pathogenesis of a number of disorders in which inflammation is implicated, such as mood disorder, autism-spectrum disorders, attention-deficit hypersensitivity disorder, multiple sclerosis, and obesity. IMPLICATIONS Recognition of the relationship between the MGB axis and the neuroimmune systems provides a novel approach for better understanding and management of these disorders. Appropriate preventive measures early in life or corrective measures such as use of psychobiotics, fecal microbiota transplantation, and flavonoids are discussed.
Collapse
Affiliation(s)
- Anastasia I Petra
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, Massachusetts
| | - Smaro Panagiotidou
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, Massachusetts
| | - Erifili Hatziagelaki
- Second Department of Internal Medicine, Attikon General Hospital, Athens Medical School, Athens, Greece
| | - Julia M Stewart
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, Massachusetts
| | - Pio Conti
- Department of Medical Sciences, Immunology Division, University of Chieti, Via dei Vestini, Chieti, Italy
| | - Theoharis C Theoharides
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, Massachusetts; Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts; Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts.
| |
Collapse
|
82
|
Aziz Q, Fass R, Gyawali CP, Miwa H, Pandolfino JE, Zerbib F. Functional Esophageal Disorders. Gastroenterology 2016; 150:S0016-5085(16)00178-5. [PMID: 27144625 DOI: 10.1053/j.gastro.2016.02.012] [Citation(s) in RCA: 357] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 02/09/2016] [Indexed: 02/06/2023]
Abstract
Functional esophageal disorders consist of a disease category that present with esophageal symptoms (heartburn, chest pain, dysphagia, globus) not explained by mechanical obstruction (stricture, tumor, eosinophilic esophagitis), major motor disorders (achalasia, EGJ outflow obstruction, absent contractility, distal esophageal spasm, jackhammer esophagus), or gastroesophageal reflux disease (GERD). While mechanisms responsible are unclear, it is theorized that visceral hypersensitivity and hypervigilance play an important role in symptom generation, in the context of normal or borderline function. Treatments directed at improving borderline motor dysfunction or reducing reflux burden to sub-normal levels have limited success in symptom improvement. In contrast, strategies focused on modulating peripheral triggering and central perception are mechanistically viable and clinically meaningful. However, outcome data from these treatment options are limited. Future research needs to focus on understanding mechanisms underlying visceral hypersensitivity and hypervigilance so that appropriate targets and therapies can be developed.
Collapse
Affiliation(s)
- Qasim Aziz
- Barts and The London School of Medicine and Dentistry, Professor, Wingate Institute of Neurogastroneterology, Centre for Neuroscience and Trauma, Blizard Institute, Queen Mary University of London UK, London UK
| | - Ronnie Fass
- MetroHalth Medical Center, The Esophageal and Swallowing Center, Professor, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - C Prakash Gyawali
- Division of Gastroenterology, Professor, University Washington University School of Medicine, St. Louis, MO, USA
| | - Hiroto Miwa
- Division of Upper Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo, Japan
| | - John E Pandolfino
- Chief and Professor, Division of Medicine-Gastroenterology and Hepatology, Feinberg School of Medicine Center, Northwestern University, Chicago, Illinois, USA.
| | - Frank Zerbib
- CHU de Bordeaux, Professor, Gastroenterology Department, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
83
|
El Aidy S, Stilling R, Dinan TG, Cryan JF. Microbiome to Brain: Unravelling the Multidirectional Axes of Communication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 874:301-36. [PMID: 26589226 DOI: 10.1007/978-3-319-20215-0_15] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The gut microbiome plays a crucial role in host physiology. Disruption of its community structure and function can have wide-ranging effects making it critical to understand exactly how the interactive dialogue between the host and its microbiota is regulated to maintain homeostasis. An array of multidirectional signalling molecules is clearly involved in the host-microbiome communication. This interactive signalling not only impacts the gastrointestinal tract, where the majority of microbiota resides, but also extends to affect other host systems including the brain and liver as well as the microbiome itself. Understanding the mechanistic principles of this inter-kingdom signalling is fundamental to unravelling how our supraorganism function to maintain wellbeing, subsequently opening up new avenues for microbiome manipulation to favour desirable mental health outcome.
Collapse
Affiliation(s)
- Sahar El Aidy
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Roman Stilling
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.,Department of Psychiatry, University College Cork, Cork, Ireland
| | - John F Cryan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland. .,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
84
|
Wouters MM, Vicario M, Santos J. The role of mast cells in functional GI disorders. Gut 2016; 65:155-68. [PMID: 26194403 DOI: 10.1136/gutjnl-2015-309151] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 06/30/2015] [Indexed: 02/06/2023]
Abstract
Functional gastrointestinal disorders (FGIDs) are characterized by chronic complaints arising from disorganized brain-gut interactions leading to dysmotility and hypersensitivity. The two most prevalent FGIDs, affecting up to 16-26% of worldwide population, are functional dyspepsia and irritable bowel syndrome. Their etiopathogenic mechanisms remain unclear, however, recent observations reveal low-grade mucosal inflammation and immune activation, in association with impaired epithelial barrier function and aberrant neuronal sensitivity. These findings come to challenge the traditional view of FGIDs as pure functional disorders, and relate the origin to a tangible organic substrate. The mucosal inflammatory infiltrate is dominated by mast cells, eosinophils and intraepithelial lymphocytes in the intestine of FGIDs. It is well established that mast cell activation can generate epithelial and neuro-muscular dysfunction and promote visceral hypersensitivity and altered motility patterns in FGIDs, postoperative ileus, food allergy and inflammatory bowel disease. This review will discuss the role of mucosal mast cells in the gastrointestinal tract with a specific focus on recent advances in disease mechanisms and clinical management in irritable bowel syndrome and functional dyspepsia.
Collapse
Affiliation(s)
- Mira M Wouters
- Translational Research Center for Gastrointestinal Disorders (TARGID), University Hospital Leuven, Leuven, Belgium
| | - Maria Vicario
- Neuro-immuno-gastroenterology Laboratory, Digestive Diseases Research Unit. Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall d'Hebron & Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Javier Santos
- Neuro-immuno-gastroenterology Laboratory, Digestive Diseases Research Unit. Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall d'Hebron & Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| |
Collapse
|
85
|
Martín-Hernández D, Caso JR, Bris ÁG, Maus SR, Madrigal JLM, García-Bueno B, MacDowell KS, Alou L, Gómez-Lus ML, Leza JC. Bacterial translocation affects intracellular neuroinflammatory pathways in a depression-like model in rats. Neuropharmacology 2015; 103:122-33. [PMID: 26686392 DOI: 10.1016/j.neuropharm.2015.12.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 11/30/2015] [Accepted: 12/07/2015] [Indexed: 11/20/2022]
Abstract
Recent studies have suggested that depression is accompanied by an increased intestinal permeability which would be related to the inflammatory pathophysiology of the disease. This study aimed to evaluate whether experimental depression presents with bacterial translocation that in turn can lead to the TLR-4 in the brain affecting the mitogen-activated protein kinases (MAPK) and antioxidant pathways. Male Wistar rats were exposed to chronic mild stress (CMS) and the intestinal integrity, presence of bacteria in tissues and plasma lipopolysaccharide levels were analyzed. We also studied the expression in the prefrontal cortex of activated forms of MAPK and some of their activation controllers and the effects of CMS on the antioxidant Nrf2 pathway. Our results indicate that after exposure to a CMS protocol there is increased intestinal permeability and bacterial translocation. CMS also increases the expression of the activated form of the MAPK p38 while decreasing the expression of the antioxidant transcription factor Nrf2. The actions of antibiotic administration to prevent bacterial translocation on elements of the MAPK and Nrf2 pathways indicate that the translocated bacteria are playing a role in these effects. In effect, our results propose a role of the translocated bacteria in the pathophysiology of depression through the p38 MAPK pathway which could aggravate the neuroinflammation and the oxidative/nitrosative damage present in this pathology. Moreover, our results reveal that the antioxidant factor Nrf2 and its activators may be involved in the consequences of the CMS on the brain.
Collapse
Affiliation(s)
- David Martín-Hernández
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (UCM), Avda. Complutense, 28040 Madrid, Spain
| | - Javier R Caso
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (UCM), Avda. Complutense, 28040 Madrid, Spain; Department of Psychiatry, School of Medicine, Universidad Complutense de Madrid, Avda. Complutense, 28040 Madrid, Spain.
| | - Álvaro G Bris
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (UCM), Avda. Complutense, 28040 Madrid, Spain
| | - Sandra R Maus
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (UCM), Avda. Complutense, 28040 Madrid, Spain
| | - José L M Madrigal
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (UCM), Avda. Complutense, 28040 Madrid, Spain
| | - Borja García-Bueno
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (UCM), Avda. Complutense, 28040 Madrid, Spain
| | - Karina S MacDowell
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (UCM), Avda. Complutense, 28040 Madrid, Spain
| | - Luis Alou
- Department of Medicine - Microbiology, School of Medicine, Universidad Complutense de Madrid, Avda. Complutense, 28040 Madrid, Spain
| | - Maria Luisa Gómez-Lus
- Department of Medicine - Microbiology, School of Medicine, Universidad Complutense de Madrid, Avda. Complutense, 28040 Madrid, Spain
| | - Juan C Leza
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto de Investigación Neuroquímica (UCM), Avda. Complutense, 28040 Madrid, Spain.
| |
Collapse
|
86
|
Balseiro-Gomez S, Flores JA, Acosta J, Ramirez-Ponce MP, Ales E. Identification of a New Exo-Endocytic Mechanism Triggered by Corticotropin-Releasing Hormone in Mast Cells. THE JOURNAL OF IMMUNOLOGY 2015. [PMID: 26202981 DOI: 10.4049/jimmunol.1500253] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The key role of mast cells (MC), either in development of inflammatory pathologies or in response to environmental stress, has been widely reported in recent years. Previous studies have described the effects of corticotropin-releasing hormone (CRH), which is released from inflamed tissues by cellular stress signals, on MC degranulation, a process possibly driven by selective secretion of mediators (piecemeal degranulation). In this study, we introduce a novel granular exo-endocytic pathway induced by CRH on peritoneal MC. We found that CRH triggers substantial exocytosis, which is even stronger than that induced by Ag stimulation and is characterized by large quantal size release events. Membrane fluorescence increases during stimulation in the presence of FM1-43 dye, corroborating the strength of this exocytosis, given that discrete upward fluorescence steps are often observed and suggesting that secretory granules are preferentially released by compound exocytosis. Additionally, the presence of a depot of large tubular organelles in the cytoplasm suggests that the exocytotic process is tightly coupled to a fast compound endocytosis. This CRH-stimulated mechanism is mediated through activation of adenylate cyclase and an increase of cAMP and intracellular Ca(2+), as evidenced by the fact that the effect of CRH is mimicked by forskolin and 8-bromo-cAMP. Thus, these outcomes constitute new evidence for the critical role of MC in pathophysiological conditions within a cellular stress environment and an alternative membrane trafficking route mediated by CRH.
Collapse
Affiliation(s)
- Santiago Balseiro-Gomez
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain
| | - Juan A Flores
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain
| | - Jorge Acosta
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain
| | - M Pilar Ramirez-Ponce
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain
| | - Eva Ales
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain
| |
Collapse
|
87
|
Berdún S, Bombuy E, Estrada O, Mans E, Rychter J, Clavé P, Vergara P. Peritoneal mast cell degranulation and gastrointestinal recovery in patients undergoing colorectal surgery. Neurogastroenterol Motil 2015; 27:764-74. [PMID: 25677271 DOI: 10.1111/nmo.12525] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 01/14/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Degranulation of peritoneal mast cells (MCs) induced by intestinal manipulation has been proposed as a pathophysiological factor in postoperative ileus (POI). We aimed to explore the relationship between peritoneal and colonic MC degranulation and gastrointestinal (GI) recovery following colectomy. METHODS Patients undergoing elective laparoscopic cholecystectomy (using a laparoscope and small abdominal incisions, n = 14), and elective laparoscopic (n = 32) or open partial colectomy (through a large abdominal incision, n = 10) were studied. MC protease tryptase and chymase were studied in peritoneal fluid at the beginning, middle, and end of each surgical intervention. Density of MCs in colectomy samples were examined and oro-caecal transit time by breath test, GI function recovery by clinical composite endpoint GI-2 and association between MC proteases and clinical recovery. KEY RESULTS Open and laparoscopic colectomy caused greater peritoneal release of tryptase and chymase (323.0 ng/mL [IQR: 53.05-381.4] and 118.6 ng/mL [IQR: 53.60-240.3]), than cholecystectomy (41.64 ng/mL [IQR: 11.17-90.93]) at the end of the surgical intervention. However, there were no differences between laparoscopic and open colectomy. Increased peritoneal protease release during surgery was observed in patients who developed POI after colectomy. CONCLUSIONS & INFERENCES Colorectal surgery causes protease release from peritoneal MCs. Protease release does not differ between both types of colectomy (laparoscopy vs laparotomy). However, MC activation is increased in colectomy patients developing POI. Therefore, degranulation of peritoneal MCs as a factor contributing to human POI after colectomy might be considered in future studies as a target to avoid POI.
Collapse
Affiliation(s)
- S Berdún
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - E Bombuy
- Department of Surgery, Consorci Sanitari del Maresme (CSdM) - Hospital de Mataró, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - O Estrada
- Department of Surgery, Consorci Sanitari del Maresme (CSdM) - Hospital de Mataró, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - E Mans
- Department of Surgery, Consorci Sanitari del Maresme (CSdM) - Hospital de Mataró, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - J Rychter
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Barcelona, Spain
| | - P Clavé
- Department of Surgery, Consorci Sanitari del Maresme (CSdM) - Hospital de Mataró, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Barcelona, Spain
| | - P Vergara
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Barcelona, Spain
| |
Collapse
|
88
|
Zhong CJ, Wang K, Zhang L, Yang CQ, Zhang K, Zhou SP, Duan LP. Mast cell activation is involved in stress-induced epithelial barrier dysfunction in the esophagus. J Dig Dis 2015; 16:186-96. [PMID: 25565566 DOI: 10.1111/1751-2980.12226] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE We aimed to investigate the role of mast cell in stress-induced barrier dysfunction in the esophagus and its possible pathway involved using mast cell-deficient (Ws/Ws) rats. METHODS Ws/Ws rats and normal (+/+) rats were submitted to chronic restraint stress (CRS) 2 h/day for 7 days. Tissues were obtained from distal esophagus. Mast cells were counted under Alcian blue-safranin O stain. Activation of mast cells was assessed using transmission electron microscope. Esophageal epithelial barrier dysfunction was evaluated by measuring intercellular spaces (ICS) and by quantifying tight junction (TJ) proteins. The localization and expression of mast cell-derived tryptase and proteinase activated receptor 2 (PAR-2) were assessed. RESULTS A higher number of mast cells and higher proportion of activated mast cells were observed in CRS +/+ rats compared with non-stress controls. Increased ICS and decreased expression of some TJ proteins were observed in the CRS +/+ rats but not in the CRS Ws/Ws rats. Tryptase and its receptor PAR-2 were found elevated concomitantly by nearly 100% in CRS +/+ rats, but not in CRS Ws/Ws rats. CONCLUSIONS Mast cells play an important role in stress-induced epithelial barrier dysfunction in esophagus. The mechanism may involve the activation of PAR-2 by mast cell-derived tryptase, causing proinflammatory responses and the subsequent disruption of the epithelial TJ proteins and a disturbed cytoskeleton function, resulting in dilated intercellular spaces.
Collapse
Affiliation(s)
- Chan Juan Zhong
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
89
|
Afrin LB, Khoruts A. Mast Cell Activation Disease and Microbiotic Interactions. Clin Ther 2015; 37:941-53. [PMID: 25773459 DOI: 10.1016/j.clinthera.2015.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/03/2015] [Accepted: 02/03/2015] [Indexed: 02/07/2023]
Abstract
PURPOSE This article reviews the diagnostically challenging presentation of mast cell activation disease (MCAD) and current thoughts regarding interactions between microbiota and MCs. METHODS A search for all studies on interactions between mast cells, mast cell activation disease, and microbiota published on pubmed.gov and scholar.google.com between 1960 and 2015 was conducted using the search terms mast cell, mastocyte, mastocytosis, mast cell activation, mast cell activation disease, mast cell activation syndrome, microbiome, microbiota. A manual review of the references from identified studies was also conducted. Studies were excluded if they were not accessible electronically or by interlibrary loan. FINDINGS Research increasingly is revealing essential involvement of MCs in normal human biology and in human disease. Via many methods, normal MCs-present sparsely in every tissue-sense their environment and reactively exert influences that, directly and indirectly, locally and remotely, improve health. The dysfunctional MCs of the "iceberg" of MCAD, on the other hand, sense abnormally, react abnormally, activate constitutively, and sometimes (in mastocytosis, the "tip" of the MCAD iceberg) even proliferate neoplastically. MCAD causes chronic multisystem illness generally, but not necessarily, of an inflammatory ± allergic theme and with great variability in behavior among patients and within any patient over time. Furthermore, the range of signals to which MCs respond and react include signals from the body's microbiota, and regardless of whether an MCAD patient has clonal mastocytosis or the bulk of the iceberg now known as MC activation syndrome (also suspected to be clonal but without significant MC proliferation), dysfunctional MCs interact as dysfunctionally with those microbiota as they interact with other human tissues, potentially leading to many adverse consequences. IMPLICATIONS Interactions between microbiota and MCs are complex at baseline. The potential for both pathology and benefit may be amplified when compositionally variant microbiota interact with aberrant MCs in various types of MCAD. More research is needed to better understand and leverage these interactions.
Collapse
Affiliation(s)
- Lawrence B Afrin
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, Minnesota.
| | - Alexander Khoruts
- Division of Gastroenterology and Center for Immunology, BioTechnology Institute, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
90
|
Spreadbury I, Ochoa-Cortes F, Ibeakanma C, Martin N, Hurlbut D, Vanner SJ. Concurrent psychological stress and infectious colitis is key to sustaining enhanced peripheral sensory signaling. Neurogastroenterol Motil 2015; 27:347-55. [PMID: 25521605 DOI: 10.1111/nmo.12497] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 11/24/2014] [Indexed: 02/08/2023]
Abstract
BACKGROUND The development of postinfectious-irritable bowel syndrome is associated with psychological stress but this relationship is poorly understood. The mouse Citrobacter rodentium model enhances the postinfectious excitability of colonic nociceptors, which can be further amplified by water-avoidance stress (WAS). This study tested whether concurrent infectious colitis and chronic stress enhance and sustain nociceptor excitability more than stress after resolution of infection. METHODS Male C57 mice were gavaged with C. rodentium. WAS (1 h/day) was performed at different time-points relative to the infection. After the final session of WAS, T9-T13 colonic-projecting DRG neurons were isolated, cultured overnight and patch-clamped to assess excitability. To investigate potential mechanisms, histological damage scores and colonic cytokine production were assessed. KEY RESULTS WAS more than 30 days after C. rodentium infection produced no greater DRG excitability than WAS in uninfected mice. However, when overlapped with chronic stress (3 sessions of WAS; 7 days before, 9 days during and 9 days after C. rodentium or sham gavage), C. rodentium significantly enhanced DRG excitability vs saline-gavaged chronically stressed mice. Bodyweights and colonic damage scores were unchanged. Both WAS and C. rodentium gavage were found to significantly alter colonic cytokines at postinfection day 30. CONCLUSIONS & INFERENCES Chronic stress and infectious colitis combine in an additive manner to heighten and prolong the sensitivity of visceral nociceptors. The effect relies on temporal coincidence of stress and infection, does not involve substantial exacerbation of inflammation, and may involve combined direct stress hormone and immune signaling on DRG neurons.
Collapse
Affiliation(s)
- I Spreadbury
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, ON, Canada
| | | | | | | | | | | |
Collapse
|
91
|
Rodiño-Janeiro BK, Alonso-Cotoner C, Pigrau M, Lobo B, Vicario M, Santos J. Role of Corticotropin-releasing Factor in Gastrointestinal Permeability. J Neurogastroenterol Motil 2015; 21:33-50. [PMID: 25537677 PMCID: PMC4288093 DOI: 10.5056/jnm14084] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 12/11/2022] Open
Abstract
The interface between the intestinal lumen and the mucosa is the location where the majority of ingested immunogenic particles face the scrutiny of the vast gastrointestinal immune system. Upon regular physiological conditions, the intestinal micro-flora and the epithelial barrier are well prepared to process daily a huge amount of food-derived antigens and non-immunogenic particles. Similarly, they are ready to prevent environmental toxins and microbial antigens to penetrate further and interact with the mucosal-associated immune system. These functions promote the development of proper immune responses and oral tolerance and prevent disease and inflammation. Brain-gut axis structures participate in the processing and execution of response signals to external and internal stimuli. The brain-gut axis integrates local and distant regulatory networks and super-systems that serve key housekeeping physiological functions including the balanced functioning of the intestinal barrier. Disturbance of the brain-gut axis may induce intestinal barrier dysfunction, increasing the risk of uncontrolled immunological reactions, which may indeed trigger transient mucosal inflammation and gut disease. There is a large body of evidence indicating that stress, through the brain-gut axis, may cause intestinal barrier dysfunction, mainly via the systemic and peripheral release of corticotropin-releasing factor. In this review, we describe the role of stress and corticotropin-releasing factor in the regulation of gastrointestinal permeability, and discuss the link to both health and pathological conditions.
Collapse
Affiliation(s)
- Bruno K Rodiño-Janeiro
- Neuro-Immuno-Gastroenterology Group, Digestive Diseases Research Unit, Gastroenterology Department, Hospital Universitari Vall d'Hebron, Vall d' Hebron Research Institute; and Department of Medicine, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| | - Carmen Alonso-Cotoner
- Neuro-Immuno-Gastroenterology Group, Digestive Diseases Research Unit, Gastroenterology Department, Hospital Universitari Vall d'Hebron, Vall d' Hebron Research Institute; and Department of Medicine, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| | - Marc Pigrau
- Neuro-Immuno-Gastroenterology Group, Digestive Diseases Research Unit, Gastroenterology Department, Hospital Universitari Vall d'Hebron, Vall d' Hebron Research Institute; and Department of Medicine, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| | - Beatriz Lobo
- Neuro-Immuno-Gastroenterology Group, Digestive Diseases Research Unit, Gastroenterology Department, Hospital Universitari Vall d'Hebron, Vall d' Hebron Research Institute; and Department of Medicine, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| | - María Vicario
- Neuro-Immuno-Gastroenterology Group, Digestive Diseases Research Unit, Gastroenterology Department, Hospital Universitari Vall d'Hebron, Vall d' Hebron Research Institute; and Department of Medicine, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| | - Javier Santos
- Neuro-Immuno-Gastroenterology Group, Digestive Diseases Research Unit, Gastroenterology Department, Hospital Universitari Vall d'Hebron, Vall d' Hebron Research Institute; and Department of Medicine, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| |
Collapse
|
92
|
Abstract
Mast cells (MCs) are tissue-resident immune cells that carry out protective roles against pathogens. In disease states, such as inflammatory bowel disease, these granulocytes release a diverse array of mediators that contribute to inflammatory processes. They also participate in wound repair and tissue remodeling. In this review, the composition of MCs and how their phenotypes can be altered during inflammation of the gastrointestinal tract is detailed. Animal and human clinical studies that have implicated the participation of MCs in inflammatory bowel disease are reviewed, including the contribution of the cell's mediators to clinical symptoms, stress-triggered inflammation, and fistula and strictures. Studies that have focused on negating the proinflammatory roles of MCs and their mediators in animal models suggest new targets for therapies for patients with inflammatory bowel disease.
Collapse
|
93
|
Horn N, Ruch F, Miller G, Ajuwon KM, Adeola O. Impact of acute water and feed deprivation events on growth performance, intestinal characteristics, and serum stress markers in weaned pigs1. J Anim Sci 2014; 92:4407-16. [PMID: 25184845 DOI: 10.2527/jas.2014-7673] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- N. Horn
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - F. Ruch
- Enzyvia, LLC, Sheridan, IN 46069
| | | | - K. M. Ajuwon
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - O. Adeola
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
94
|
Da Silva S, Robbe-Masselot C, Ait-Belgnaoui A, Mancuso A, Mercade-Loubière M, Salvador-Cartier C, Gillet M, Ferrier L, Loubière P, Dague E, Theodorou V, Mercier-Bonin M. Stress disrupts intestinal mucus barrier in rats via mucin O-glycosylation shift: prevention by a probiotic treatment. Am J Physiol Gastrointest Liver Physiol 2014; 307:G420-9. [PMID: 24970779 DOI: 10.1152/ajpgi.00290.2013] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite well-known intestinal epithelial barrier impairment and visceral hypersensitivity in irritable bowel syndrome (IBS) patients and IBS-like models, structural and physical changes in the mucus layer remain poorly understood. Using a water avoidance stress (WAS) model, we aimed at evaluating whether 1) WAS modified gut permeability, visceral sensitivity, mucin expression, biochemical structure of O-glycans, and related mucus physical properties, and 2) whether Lactobacillus farciminis treatment prevented these alterations. Wistar rats received orally L. farciminis or vehicle for 14 days; at day 10, they were submitted to either sham or 4-day WAS. Intestinal paracellular permeability and visceral sensitivity were measured in vivo. The number of goblet cells and Muc2 expression were evaluated by histology and immunohistochemistry, respectively. Mucosal adhesion of L. farciminis was determined ex situ. The mucin O-glycosylation profile was obtained by mass spectrometry. Surface imaging of intestinal mucus was performed at nanoscale by atomic force microscopy. WAS induced gut hyperpermeability and visceral hypersensitivity but did not modify either the number of intestinal goblet cells or Muc2 expression. In contrast, O-glycosylation of mucins was strongly affected, with the appearance of elongated polylactosaminic chain containing O-glycan structures, associated with flattening and loss of the mucus layer cohesive properties. L. farciminis bound to intestinal Muc2 and prevented WAS-induced functional alterations and changes in mucin O-glycosylation and mucus physical properties. WAS-induced functional changes were associated with mucus alterations resulting from a shift in O-glycosylation rather than from changes in mucin expression. L. farciminis treatment prevented these alterations, conferring epithelial and mucus barrier strengthening.
Collapse
Affiliation(s)
- Stéphanie Da Silva
- Université de Toulouse; INSA, UPS, INP; LISBP, Toulouse, France; INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France; CNRS, UMR5504, Toulouse, France; INRA, EI-Purpan, UMR 1331 TOXALIM, Equipe de NeuroGastroentérologie et Nutrition, Toulouse, France
| | - Catherine Robbe-Masselot
- Université de Lille 1, Unité de Glycobiologie Structurale et Fonctionnelle, UGSF, Villeneuve d'Ascq, France; CNRS, UMR 8576, Villeneuve d'Ascq, France; and
| | - Afifa Ait-Belgnaoui
- INRA, EI-Purpan, UMR 1331 TOXALIM, Equipe de NeuroGastroentérologie et Nutrition, Toulouse, France; Lallemand SA, Blagnac, France
| | - Alessandro Mancuso
- Université de Lille 1, Unité de Glycobiologie Structurale et Fonctionnelle, UGSF, Villeneuve d'Ascq, France; CNRS, UMR 8576, Villeneuve d'Ascq, France; and
| | - Myriam Mercade-Loubière
- Université de Toulouse; INSA, UPS, INP; LISBP, Toulouse, France; INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France; CNRS, UMR5504, Toulouse, France
| | | | - Marion Gillet
- INRA, EI-Purpan, UMR 1331 TOXALIM, Equipe de NeuroGastroentérologie et Nutrition, Toulouse, France
| | - Laurent Ferrier
- INRA, EI-Purpan, UMR 1331 TOXALIM, Equipe de NeuroGastroentérologie et Nutrition, Toulouse, France
| | - Pascal Loubière
- Université de Toulouse; INSA, UPS, INP; LISBP, Toulouse, France; INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France; CNRS, UMR5504, Toulouse, France
| | - Etienne Dague
- CNRS; LAAS; Toulouse, France; CNRS; ITAV-UMS3039; F31106 Toulouse, France; and Université de Toulouse; UPS, INSA, INP, ISAE; UT1, UTM, LAAS, ITAV; Toulouse, France
| | - Vassilia Theodorou
- INRA, EI-Purpan, UMR 1331 TOXALIM, Equipe de NeuroGastroentérologie et Nutrition, Toulouse, France;
| | - Muriel Mercier-Bonin
- Université de Toulouse; INSA, UPS, INP; LISBP, Toulouse, France; INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France; CNRS, UMR5504, Toulouse, France
| |
Collapse
|
95
|
Toll-like receptor 4 regulates chronic stress-induced visceral pain in mice. Biol Psychiatry 2014; 76:340-8. [PMID: 24331544 DOI: 10.1016/j.biopsych.2013.11.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 10/15/2013] [Accepted: 11/02/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND Functional gastrointestinal disorders, which have visceral hypersensitivity as a core symptom, are frequently comorbid with stress-related psychiatric disorders. Increasing evidence points to a key role for toll-like receptor 4 (TLR4) in chronic pain states of somatic origin. However, the central contribution of TLR4 in visceral pain sensation remains elusive. METHODS With pharmacological and genetic approaches, we investigated the involvement of TLR4 in the modulation of visceral pain. The TLR4-deficient and wild-type mice were exposed to chronic stress. Visceral pain was evaluated with colorectal distension. Protein expression levels for TLR4, Cd11b, and glial fibrillary acidic protein (glial cells markers) were quantified in the lumbar region of the spinal cord, prefrontal cortex (PFC), and hippocampus. To evaluate the effect of blocking TLR4 on visceral nociception, TAK-242, a selective TLR4 antagonist, was administered peripherally (intravenous) and centrally (intracerebroventricular and intra-PFC) (n = 10-12/experimental group). RESULTS The TLR4 deficiency reduced visceral pain and prevented the development of chronic psychosocial stress-induced visceral hypersensitivity. Increased expression of TLR4 coupled with enhanced glia activation in the PFC and increased levels of proinflammatory cytokines were observed after chronic stress in wild-type mice. Administration of a TLR4 specific antagonist, TAK-242, attenuated visceral pain sensation in animals with functional TLR4 when administrated centrally and peripherally. Moreover, intra-PFC TAK-242 administration also counteracted chronic stress-induced visceral hypersensitivity. CONCLUSIONS Our results reveal a novel role for TLR4 within the PFC in the modulation of visceral nociception and point to TLR4 as a potential therapeutic target for the development of drugs to treat visceral hypersensitivity.
Collapse
|
96
|
Meleine M, Matricon J. Gender-related differences in irritable bowel syndrome: Potential mechanisms of sex hormones. World J Gastroenterol 2014; 20:6725-6743. [PMID: 24944465 PMCID: PMC4051914 DOI: 10.3748/wjg.v20.i22.6725] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/08/2014] [Accepted: 03/19/2014] [Indexed: 02/06/2023] Open
Abstract
According to epidemiological studies, twice as many women as men are affected by irritable bowel syndrome (IBS) in western countries, suggesting a role for sex hormones in IBS pathophysiology. Despite growing evidence about the implications of sex hormones in IBS symptom modulation, data on mechanisms by which they influence disease development are sparse. This review aims to determine the state of knowledge about the role of sex hormones in sensorimotor dysfunctions and to address the possible interplay of sex hormones with common risk factors associated with IBS. The scientific bibliography was searched using the following keywords: irritable bowel syndrome, sex, gender, ovarian hormone, estradiol, progesterone, testosterone, symptoms, pain, sensitivity, motility, permeability, stress, immune system, brain activity, spinal, supraspinal, imaging. Ovarian hormones variations along the menstrual cycle affect sensorimotor gastrointestinal function in both healthy and IBS populations. They can modulate pain processing by interacting with neuromodulator systems and the emotional system responsible for visceral pain perception. These hormones can also modulate the susceptibility to stress, which is a pivotal factor in IBS occurrence and symptom severity. For instance, estrogen-dependent hyper-responsiveness to stress can promote immune activation or impairments of gut barrier function. In conclusion, whereas it is important to keep in mind that ovarian hormones cannot be considered as a causal factor of IBS, they arguably modulate IBS onset and symptomatology. However, our understanding of the underlying mechanisms remains limited and studies assessing the link between IBS symptoms and ovarian hormone levels are needed to improve our knowledge of the disease evolution with regard to gender. Further studies assessing the role of male hormones are also needed to understand fully the role of sex hormones in IBS. Finally, investigation of brain-gut interactions is critical to decipher how stress, ovarian hormones, and female brain processing of pain can translate into gut dysfunctions.
Collapse
|
97
|
Wang Y, Kasper LH. The role of microbiome in central nervous system disorders. Brain Behav Immun 2014; 38:1-12. [PMID: 24370461 PMCID: PMC4062078 DOI: 10.1016/j.bbi.2013.12.015] [Citation(s) in RCA: 535] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/19/2013] [Accepted: 12/19/2013] [Indexed: 12/12/2022] Open
Abstract
Mammals live in a co-evolutionary association with the plethora of microorganisms that reside at a variety of tissue microenvironments. The microbiome represents the collective genomes of these co-existing microorganisms, which is shaped by host factors such as genetics and nutrients but in turn is able to influence host biology in health and disease. Niche-specific microbiome, prominently the gut microbiome, has the capacity to effect both local and distal sites within the host. The gut microbiome has played a crucial role in the bidirectional gut-brain axis that integrates the gut and central nervous system (CNS) activities, and thus the concept of microbiome-gut-brain axis is emerging. Studies are revealing how diverse forms of neuro-immune and neuro-psychiatric disorders are correlated with or modulated by variations of microbiome, microbiota-derived products and exogenous antibiotics and probiotics. The microbiome poises the peripheral immune homeostasis and predisposes host susceptibility to CNS autoimmune diseases such as multiple sclerosis. Neural, endocrine and metabolic mechanisms are also critical mediators of the microbiome-CNS signaling, which are more involved in neuro-psychiatric disorders such as autism, depression, anxiety, stress. Research on the role of microbiome in CNS disorders deepens our academic knowledge about host-microbiome commensalism in central regulation and in practicality, holds conceivable promise for developing novel prognostic and therapeutic avenues for CNS disorders.
Collapse
Affiliation(s)
- Yan Wang
- Departments of Microbiology/Immunology and Medicine, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Lloyd H. Kasper
- Departments of Microbiology/Immunology and Medicine, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
98
|
Yan XJ, Feng CC, Liu Q, Zhang LY, Dong X, Liu ZL, Cao ZJ, Mo JZ, Li Y, Fang JY, Chen SL. Vagal Afferents Mediate Antinociception of Estrogen in a Rat Model of Visceral Pain: The Involvement of Intestinal Mucosal Mast Cells and 5-Hydroxytryptamine 3 Signaling. THE JOURNAL OF PAIN 2014; 15:204-17. [DOI: 10.1016/j.jpain.2013.10.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 09/14/2013] [Accepted: 10/31/2013] [Indexed: 12/19/2022]
|
99
|
Influence of stressor-induced nervous system activation on the intestinal microbiota and the importance for immunomodulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 817:255-76. [PMID: 24997038 DOI: 10.1007/978-1-4939-0897-4_12] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The body is colonized by a vast population of genetically diverse microbes, the majority of which reside within the intestines to comprise the intestinal microbiota. During periods of homeostasis, these microbes reside within stable climax communities, but exposure to physical, physiological, as well as psychological stressors can significantly impact the structure of the intestinal microbiota. This has been demonstrated in humans and laboratory animals, with the most consistent finding being a reduction in the abundance of bacteria in the genus Lactobacillus. Whether stressor exposure also changes the function of the microbiota, has not been as highly studied. The studies presented in this review suggest that stressor-induced disruption of the intestinal microbiota leads to increased susceptibility to enteric infection and overproduction of inflammatory mediators that can induce behavioral abnormalities, such as anxiety-like behavior. Studies involving germfree mice also demonstrate that the microbiota are necessary for stressor-induced increases in innate immunity to occur. Exposing mice to a social stressor enhances splenic macrophage microbicidal activity, but this effect fails to occur in germfree mice. These studies suggest a paradigm in which stressor exposure alters homeostatic interactions between the intestinal microbiota and mucosal immune system and leads to the translocation of pathogenic, and/or commensal, microbes from the lumen of the intestines to the interior of the body where they trigger systemic inflammatory responses and anxiety-like behavior. Restoring homeostasis in the intestines, either by removing the microbiota or by administering probiotic microorganisms, can ameliorate the stressor effects.
Collapse
|
100
|
Conde-Sieira M, Muñoz JLP, López-Patiño MA, Gesto M, Soengas JL, Míguez JM. Oral administration of melatonin counteracts several of the effects of chronic stress in rainbow trout. Domest Anim Endocrinol 2014; 46:26-36. [PMID: 24411181 DOI: 10.1016/j.domaniend.2013.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 09/12/2013] [Accepted: 10/04/2013] [Indexed: 01/16/2023]
Abstract
To assess a possible antistress role of melatonin in fish, we orally administered melatonin to rainbow trout for 10 d and then kept the fish under normal or high stocking density conditions during the last 4 d. Food intake; biochemical parameters in plasma (cortisol, glucose, and lactate concentrations); liver (glucose and glycogen concentrations, and glycogen synthase activity); enzyme activities of amylase, lipase, and protease in foregut and midgut; and content of the hypothalamic neurotransmitters dopamine and serotonin, as well as their oxidized metabolites, 3,4-dihydroxyphenylacetic acid and 5-hydroxy-3-indoleacetic acid, were evaluated under those conditions. High stocking density conditions alone induced changes indicative of stress conditions in plasma cortisol concentrations, liver glycogenolytic potential, the activities of some digestive enzymes, and the 3,4-dihydroxyphenylacetic acid-to-dopamine and 5-hydroxy-3-indoleacetic acid-to-serotonin ratios in the hypothalamus. Melatonin treatment in nonstressed fish induced an increase in liver glycogenolytic potential, increased the activity of some digestive enzymes, and enhanced serotoninergic and dopaminergic metabolism in hypothalamus. The presence of melatonin in stressed fish resulted in a significant interaction with cortisol concentrations in plasma, glycogen content, and glycogen synthase activity in liver and dopaminergic and serotoninergic metabolism in the hypothalamus. In general, the presence of melatonin mitigated several of the effects induced by stress, supporting an antistress role for melatonin in rainbow trout.
Collapse
Affiliation(s)
- M Conde-Sieira
- Animal Physiology Laboratory, Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo, E-36310 Vigo, Spain
| | - J L P Muñoz
- I-Mar Center, University of Lagos, Puerto Montt, Casilla 557, Chile
| | - M A López-Patiño
- Animal Physiology Laboratory, Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo, E-36310 Vigo, Spain
| | - M Gesto
- Animal Physiology Laboratory, Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo, E-36310 Vigo, Spain
| | - J L Soengas
- Animal Physiology Laboratory, Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo, E-36310 Vigo, Spain
| | - J M Míguez
- Animal Physiology Laboratory, Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo, E-36310 Vigo, Spain.
| |
Collapse
|