51
|
Castro GNDS, de Souza RDN, da Silva ACM, Laureano-Melo R, da Silva Côrtes W, Capim SL, de Almeida Vasconcellos MLA, Marinho BG. Analgesic and Anti-inflammatory Potential of the New Tetrahydropyran Derivative (2s,6s)-6-ethyl-tetrahydro-2h-pyran-2-yl) Methanol. Antiinflamm Antiallergy Agents Med Chem 2024; 23:105-117. [PMID: 38409717 DOI: 10.2174/0118715230282982240202052127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND The development of analgesic and anti-inflammatory drugs plays a crucial role in modern medicine, aiming to alleviate pain and reduce inflammation in patients. Opioids and nonsteroidal anti-inflammatory drugs are groups of drugs conventionally used to treat pain and inflammation, but a wide range of adverse effects and ineffectiveness in some pathological conditions leads us to search for new drugs with analgesic and anti-inflammatory properties. OBJECTIVES In this regard, the authors intend to investigate the ((2s,6s)-6-ethyl-tetrahydro-2h-pyran- 2-yl) methanol compound (LS20) on pain and acute inflammation. METHODS Male Swiss mice were evaluated using acetic acid-induced abdominal writhing, formalin, and tail-flick as models of nociceptive evaluation and edema paw, air pouch and cell culture as models of inflammatory evaluation besides the rotarod test for assessment of motor impairment. RESULTS The compound showed an effect on the acetic acid-induced abdominal writhing, formalin and tail-flick tests. Studying the mechanism of action, reversion of the antinociceptive effect of the compound was observed from previous intraperitoneal administration of selective and non-selective opioid antagonists on the tail flick test. In addition, the compound induced an antiedematogenic effect and reduced leukocyte migration and the production of pro-inflammatory cytokines in the air pouch model. LS20 was able to maintain cell viability, in addition to reducing cell production of TNF-α and IL-6. CONCLUSION In summary, the LS20 compound presented an antinociceptive effect, demonstrating the participation of the opioid system and an anti-inflammatory effect related to the inhibition of pro-inflammatory cytokine production. The compound also demonstrated safety at the cellular level.
Collapse
Affiliation(s)
- Gustavo Nunes de Santana Castro
- Laboratório de Farmacologia da Inflamação e Nocicepção, Programa de Pós-Graduação em Medicina Veterinária, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brasil
| | - Raquel do Nascimento de Souza
- Laboratório de Cultura de Células, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brasil
| | - Alba Cenélia Matos da Silva
- Laboratório de Cultura de Células, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brasil
| | - Roberto Laureano-Melo
- Laboratório de Fisiofarmacologia Comportamental, Centro Universitário de Barra Mansa, Barra Mansa, RJ, Brasil
| | - Wellington da Silva Côrtes
- Laboratório de Psicofarmacologia e Comportamento, Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brasil
| | - Saulo Luis Capim
- Instituto Federal de Educação, Ciência e Tecnologia Baiano, Federal Institute Baiano, Campus Catu, BA, Brasil
| | | | - Bruno Guimarães Marinho
- Laboratório de Farmacologia da Inflamação e Nocicepção, Programa de Pós-Graduação em Medicina Veterinária, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brasil
- Laboratório de Cultura de Células, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brasil
- Laboratório de Psicofarmacologia e Comportamento, Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brasil
| |
Collapse
|
52
|
Wang A, Murphy J, Shteynman L, Daksla N, Gupta A, Bergese S. Novel Opioids in the Setting of Acute Postoperative Pain: A Narrative Review. Pharmaceuticals (Basel) 2023; 17:29. [PMID: 38256863 PMCID: PMC10819619 DOI: 10.3390/ph17010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Although traditional opioids such as morphine and oxycodone are commonly used in the management of acute postoperative pain, novel opioids may play a role as alternatives that provide potent pain relief while minimizing adverse effects. In this review, we discuss the mechanisms of action, findings from preclinical studies and clinical trials, and potential advantages of several novel opioids. The more established include oliceridine (biased ligand activity to activate analgesia and downregulate opioid-related adverse events), tapentadol (mu-opioid agonist and norepinephrine reuptake inhibitor), and cebranopadol (mu-opioid agonist with nociceptin opioid peptide activity)-all of which have demonstrated success in the clinical setting when compared to traditional opioids. On the other hand, dinalbuphine sebacate (DNS; semi-synthetic mu partial antagonist and kappa agonist), dual enkephalinase inhibitors (STR-324, PL37, and PL265), and endomorphin-1 analog (CYT-1010) have shown good efficacy in preclinical studies with future plans for clinical trials. Rather than relying solely on mu-opioid receptor agonism to relieve pain and risk opioid-related adverse events (ORAEs), novel opioids make use of alternative mechanisms of action to treat pain while maintaining a safer side-effect profile, such as lower incidence of nausea, vomiting, sedation, and respiratory depression as well as reduced abuse potential.
Collapse
Affiliation(s)
- Ashley Wang
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA; (A.W.); (N.D.); (A.G.)
| | - Jasper Murphy
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (J.M.); (L.S.)
| | - Lana Shteynman
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (J.M.); (L.S.)
| | - Neil Daksla
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA; (A.W.); (N.D.); (A.G.)
| | - Abhishek Gupta
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA; (A.W.); (N.D.); (A.G.)
| | - Sergio Bergese
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA; (A.W.); (N.D.); (A.G.)
- Department of Neurosurgery, Stony Brook University Hospital, Stony Brook, NY 11794, USA
| |
Collapse
|
53
|
Qi Y, Nelson TS, Prasoon P, Norris C, Taylor BK. Contribution of µ Opioid Receptor-expressing Dorsal Horn Interneurons to Neuropathic Pain-like Behavior in Mice. Anesthesiology 2023; 139:840-857. [PMID: 37566700 PMCID: PMC10840648 DOI: 10.1097/aln.0000000000004735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
BACKGROUND Intersectional genetics have yielded tremendous advances in our understanding of molecularly identified subpopulations and circuits within the dorsal horn in neuropathic pain. The authors tested the hypothesis that spinal µ opioid receptor-expressing neurons (Oprm1-expressing neurons) contribute to behavioral hypersensitivity and neuronal sensitization in the spared nerve injury model in mice. METHODS The authors coupled the use of Oprm1Cre transgenic reporter mice with whole cell patch clamp electrophysiology in lumbar spinal cord slices to evaluate the neuronal activity of Oprm1-expressing neurons in the spared nerve injury model of neuropathic pain. The authors used a chemogenetic approach to activate or inhibit Oprm1-expressing neurons, followed by the assessment of behavioral signs of neuropathic pain. RESULTS The authors reveal that spared nerve injury yielded a robust neuroplasticity of Oprm1-expressing neurons. Spared nerve injury reduced Oprm1 gene expression in the dorsal horn as well as the responsiveness of Oprm1-expressing neurons to the selective µ agonist (D-Ala2, N-MePhe4, Gly-ol)-enkephalin (DAMGO). Spared nerve injury sensitized Oprm1-expressing neurons, as reflected by an increase in their intrinsic excitability (rheobase, sham 38.62 ± 25.87 pA [n = 29]; spared nerve injury, 18.33 ± 10.29 pA [n = 29], P = 0.0026) and spontaneous synaptic activity (spontaneous excitatory postsynaptic current frequency in delayed firing neurons: sham, 0.81 ± 0.67 Hz [n = 14]; spared nerve injury, 1.74 ± 1.68 Hz [n = 10], P = 0.0466), and light brush-induced coexpression of the immediate early gene product, Fos in laminae I to II (%Fos/tdTomato+: sham, 0.42 ± 0.57% [n = 3]; spared nerve injury, 28.26 ± 1.92% [n = 3], P = 0.0001). Chemogenetic activation of Oprm1-expressing neurons produced mechanical hypersensitivity in uninjured mice (saline, 2.91 ± 1.08 g [n = 6]; clozapine N-oxide, 0.65 ± 0.34 g [n = 6], P = 0.0006), while chemogenetic inhibition reduced behavioral signs of mechanical hypersensitivity (saline, 0.38 ± 0.37 g [n = 6]; clozapine N-oxide, 1.05 ± 0.42 g [n = 6], P = 0.0052) and cold hypersensitivity (saline, 6.89 ± 0.88 s [n = 5] vs. clozapine N-oxide, 2.31 ± 0.52 s [n = 5], P = 0.0017). CONCLUSIONS The authors conclude that nerve injury sensitizes pronociceptive µ opioid receptor-expressing neurons in mouse dorsal horn. Nonopioid strategies to inhibit these interneurons might yield new treatments for neuropathic pain. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Yanmei Qi
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to end Opioid Misuse, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tyler S. Nelson
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to end Opioid Misuse, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Pranav Prasoon
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to end Opioid Misuse, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Christopher Norris
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to end Opioid Misuse, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bradley K. Taylor
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to end Opioid Misuse, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
54
|
Ona G, Reverte I, Rossi GN, Dos Santos RG, Hallak JE, Colomina MT, Bouso JC. Main targets of ibogaine and noribogaine associated with its putative anti-addictive effects: A mechanistic overview. J Psychopharmacol 2023; 37:1190-1200. [PMID: 37937505 DOI: 10.1177/02698811231200882] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
BACKGROUND There is a growing interest in studying ibogaine (IBO) as a potential treatment for substance use disorders (SUDs). However, its clinical use has been hindered for mainly two reasons: First, the lack of randomized, controlled studies informing about its safety and efficacy. And second, IBO's mechanisms of action remain obscure. It has been challenging to elucidate a predominant mechanism of action responsible for its anti-addictive effects. OBJECTIVE To describe the main targets of IBO and its main metabolite, noribogaine (NOR), in relation to their putative anti-addictive effects, reviewing the updated literature available. METHODS A comprehensive search involving MEDLINE and Google Scholar was undertaken, selecting papers published until July 2022. The inclusion criteria were both theoretical and experimental studies about the pharmacology of IBO. Additional publications were identified in the references of the initial papers. RESULTS IBO and its main metabolite, NOR, can modulate several targets associated with SUDs. Instead of identifying key targets, the action of IBO should be understood as a complex modulation of multiple receptor systems, leading to potential synergies. The elucidation of IBO's pharmacology could be enhanced through the application of methodologies rooted in the polypharmacology paradigm. Such approaches possess the capability to describe multifaceted patterns within multi-target drugs. CONCLUSION IBO displays complex effects through multiple targets. The information detailed here should guide future research on both mechanistic and therapeutic studies.
Collapse
Affiliation(s)
- Genís Ona
- International Center for Ethnobotanical Education, Research, and Service (ICEERS), Barcelona, Spain
- Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, Tarragona, Spain
- Medical Anthropology Research Center (MARC), Universitat Rovira i Virgili, Tarragona, Spain
| | - Ingrid Reverte
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Giordano N Rossi
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Rafael G Dos Santos
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- National Institute for Translational Medicine (INCT-TM), CNPq, Ribeirão Preto (SP), Brazil
| | - Jaime Ec Hallak
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- National Institute for Translational Medicine (INCT-TM), CNPq, Ribeirão Preto (SP), Brazil
| | - Maria Teresa Colomina
- Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, Tarragona, Spain
| | - José Carlos Bouso
- International Center for Ethnobotanical Education, Research, and Service (ICEERS), Barcelona, Spain
- Medical Anthropology Research Center (MARC), Universitat Rovira i Virgili, Tarragona, Spain
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
55
|
Bao JD, Rosser MA, Park SH, Baker AK, Martucci KT. Interplay between noxious heat sensitivity and temporal summation magnitude in patients with fibromyalgia and long-term opioid use. Front Neurosci 2023; 17:1275921. [PMID: 37901425 PMCID: PMC10600517 DOI: 10.3389/fnins.2023.1275921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction In chronic pain conditions such as fibromyalgia (FM), pain amplification within the central nervous system, or "central sensitization," may contribute to the development and maintenance of chronic pain. Chronic pain treatments include opioid therapy, and opioid therapy may maladaptively increase central sensitization, particularly in patients who take opioids long-term. However, it has remained unknown how central sensitization is impacted in patients who use opioids long-term. Methods To investigate how long-term opioid therapy affects central sensitization, we used the validated measure of temporal summation. The temporal summation measurement consists of applying a series of noxious stimuli to a patient's skin and then calculating changes in the patient's pain rating to each stimulus. Using this measurement, we evaluated temporal summation in study participants with fibromyalgia who take opioids long-term (i.e., greater than 90 days duration; n = 24, opioid-FM). We compared opioid-FM responses to 2 control groups: participants with fibromyalgia who do not take opioids (n = 33, non-opioid FM), and healthy controls (n = 31). For the temporal summation measurement, we applied a series of 10 noxious heat stimuli (sensitivity-adjusted temperatures) to the ventral forearm (2s duration of each stimulus, applied once every 3 s). Additionally, we collected responses to standard pain and cognitive-affective questionnaires to assess pain severity and other factors. Results and discussion Group differences in sensitivity-adjusted stimulus temperatures were observed, with only the non-opioid FM group requiring significantly lower stimulus temperatures (The opioid-FM group also required lower temperatures, but not significantly different from the control group). However, all 3 groups exhibited similar magnitudes of temporal summation. Across combined FM groups, temporal summation negatively correlated with pain severity (r = -0.31, p = 0.021). Within the opioid-FM group, higher pain sensitivity to heat (i.e., lower sensitivity-adjusted temperatures) showed a trend relationship with higher opioid dosage (r = -0.45, p = 0.036), potentially reflective of opioid-related hyperalgesia. Our findings also indicated that heightened pain severity may skew sensitivity-adjusted temporal summation, thereby limiting its utility for measuring central sensitization. Overall, in participants taking opioids, temporal summation may be influenced by hypersensitivity to heat pain, which appeared to vary with opioid dosage.
Collapse
Affiliation(s)
- Jason D. Bao
- Human Affect and Pain Neuroscience Laboratory, Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
- Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, United States
| | - Morgan A. Rosser
- Department of Anesthesiology, Biostatistics Group, Duke University School of Medicine, Durham, NC, United States
| | - Su Hyoun Park
- Human Affect and Pain Neuroscience Laboratory, Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
- Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, United States
| | - Anne K. Baker
- Human Affect and Pain Neuroscience Laboratory, Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
- Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, United States
| | - Katherine T. Martucci
- Human Affect and Pain Neuroscience Laboratory, Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
- Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
56
|
Zhang JJ, Song CG, Wang M, Zhang GQ, Wang B, Chen X, Lin P, Zhu YM, Sun ZC, Wang YZ, Jiang JL, Li L, Yang XM, Chen ZN. Monoclonal antibody targeting mu-opioid receptor attenuates morphine tolerance via enhancing morphine-induced receptor endocytosis. J Pharm Anal 2023; 13:1135-1152. [PMID: 38024852 PMCID: PMC10657976 DOI: 10.1016/j.jpha.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/28/2023] [Accepted: 06/20/2023] [Indexed: 12/01/2023] Open
Abstract
Morphine is a frequently used analgesic that activates the mu-opioid receptor (MOR), which has prominent side effects of tolerance. Although the inefficiency of morphine in inducing the endocytosis of MOR underlies the development of morphine tolerance, currently, there is no effective therapy to treat morphine tolerance. In the current study, we aimed to develop a monoclonal antibody (mAb) precisely targeting MOR and to determine its therapeutic efficacy on morphine tolerance and the underlying molecular mechanisms. We successfully prepared a mAb targeting MOR, named 3A5C7, by hybridoma technique using a strategy of deoxyribonucleic acid immunization combined with cell immunization, and identified it as an immunoglobulin G mAb with high specificity and affinity for MOR and binding ability to antigens with spatial conformation. Treatment of two cell lines, HEK293T and SH-SY5Y, with 3A5C7 enhanced morphine-induced MOR endocytosis via a G protein-coupled receptor kinase 2 (GRK2)/β-arrestin2-dependent mechanism, as demonstrated by immunofluorescence staining, flow cytometry, Western blotting, coimmunoprecipitation, and small interfering ribonucleic acid (siRNA)-based knockdown. This mAb also allowed MOR recycling from cytoplasm to plasma membrane and attenuated morphine-induced phosphorylation of MOR. We established an in vitro morphine tolerance model using differentiated SH-SY5Y cells induced by retinoic acid. Western blot, enzyme-linked immunosorbent assays, and siRNA-based knockdown revealed that 3A5C7 mAb diminished hyperactivation of adenylate cyclase, the in vitro biomarker of morphine tolerance, via the GRK2/β-arrestin2 pathway. Furthermore, in vivo hotplate test demonstrated that chronic intrathecal administration of 3A5C7 significantly alleviated morphine tolerance in mice, and withdrawal jumping test revealed that both chronic and acute 3A5C7 intrathecal administration attenuated morphine dependence. Finally, intrathecal electroporation of silencing short hairpin RNA illustrated that the in vivo anti-tolerance and anti-dependence efficacy of 3A5C7 was mediated by enhanced morphine-induced MOR endocytosis via GRK2/β-arrestin2 pathway. Collectively, our study provided a therapeutic mAb, 3A5C7, targeting MOR to treat morphine tolerance, mediated by enhancing morphine-induced MOR endocytosis. The mAb 3A5C7 demonstrates promising translational value to treat clinical morphine tolerance.
Collapse
Affiliation(s)
- Jia-Jia Zhang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Chang-Geng Song
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Miao Wang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Gai-Qin Zhang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Bin Wang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xi Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710032, China
| | - Peng Lin
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Yu-Meng Zhu
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhi-Chuan Sun
- Department of Neurosurgery, Xi'an Daxing Hospital, Xi'an, 710032, China
| | - Ya-Zhou Wang
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Jian-Li Jiang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Ling Li
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiang-Min Yang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhi-Nan Chen
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
57
|
Todorov P, Georgieva S, Tchekalarova J, Peneva P, Mateeva P, Assenov B, Dzhambazova E, Pechlivanova D. Synthesis, characterization and evaluation of anti-hyperalgesia, anticonvulsant and antioxidant activity of novel VV-hemorphin-5 analogs. Arch Pharm (Weinheim) 2023; 356:e2300267. [PMID: 37532631 DOI: 10.1002/ardp.202300267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/04/2023] [Accepted: 07/17/2023] [Indexed: 08/04/2023]
Abstract
Two series of new VV-hemorphin-5 analogs with structures Val-Val-Tyr-Xxx-Trp-Thr-Gln-NH2 and Adam-Val-Val-Tyr-Xxx-Trp-Thr-Gln-NH2 , where Xxx is Ac5c (1-aminocyclopentane-1-carboxylic acid), Ac6c (1-aminocyclohexane-1-carboxylic acid), Ac7c (1-aminocycloheptane-1-carboxylic acid), and Adam is the low-molecular-weight lipophilic adamantyl building block, were synthesized, characterized electrochemically and evaluated for antioxidant, anti-hyperalgesia, and anticonvulsant activity. The design of the compounds followed the strategy to improve the propensity for aqueous solubility and/or to increase their affinity for the target receptor or enzyme. The partition coefficient value shows that the peptide scaffold goes from hydrophilic to lipophilic with the increasing size of the cycloalkane ring and even more with the introduction of the adamantane. The peptides C5-V and C7-V were the only analogs that provoked an immediate antinociceptive effect changing the mechanical pain threshold. The six new peptide analogs produced a significant and long-lasting carrageenan model of inflammatory pain in rats. While the adamantane hemorphin analog Ad7-V was the only compound with the potency to suppress psychomotor seizures in the 6-Hz test, the C6-V and Ad6-V exhibited protective activity against the seizure spread in the maximal electroshock seizure test in mice. The active analogs did not show neurotoxicity or sedative effects. Our results revealed a structure-related specific activity of a newly designed hemorphin analog that could be used as a template for future modification and preparation of compounds with potential analgesic and anticonvulsant activity.
Collapse
Affiliation(s)
- Petar Todorov
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, Sofia, Bulgaria
| | - Stela Georgieva
- Department of Analytical Chemistry, University of Chemical Technology and Metallurgy, Sofia, Bulgaria
| | - Jana Tchekalarova
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, Sofia, Bulgaria
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Petia Peneva
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, Sofia, Bulgaria
| | - Polina Mateeva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Borislav Assenov
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
- Faculty of Medicine, Sofia University "St. Kliment Ohridski", Sofia, Bulgaria
| | - Elena Dzhambazova
- Faculty of Medicine, Sofia University "St. Kliment Ohridski", Sofia, Bulgaria
| | - Daniela Pechlivanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
- Faculty of Medicine, Sofia University "St. Kliment Ohridski", Sofia, Bulgaria
| |
Collapse
|
58
|
Kaczmarska A, Kwiatkowska D, Skrzypek KK, Kowalewski ZT, Jaworecka K, Reich A. Pathomechanism of Pruritus in Psoriasis and Atopic Dermatitis: Novel Approaches, Similarities and Differences. Int J Mol Sci 2023; 24:14734. [PMID: 37834183 PMCID: PMC10573181 DOI: 10.3390/ijms241914734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Pruritus is defined as an unpleasant sensation that elicits a desire to scratch. Nearly a third of the world's population may suffer from pruritus during their lifetime. This symptom is widely observed in numerous inflammatory skin diseases-e.g., approximately 70-90% of patients with psoriasis and almost every patient with atopic dermatitis suffer from pruritus. Although the pathogenesis of atopic dermatitis and psoriasis is different, the complex intricacies between several biochemical mediators, enzymes, and pathways seem to play a crucial role in both conditions. Despite the high prevalence of pruritus in the general population, the pathogenesis of this symptom in various conditions remains elusive. This review aims to summarize current knowledge about the pathogenesis of pruritus in psoriasis and atopic dermatitis. Each molecule involved in the pruritic pathway would merit a separate chapter or even an entire book, however, in the current review we have concentrated on some reports which we found crucial in the understanding of pruritus. However, the pathomechanism of pruritus is an extremely complex and intricate process. Moreover, many of these signaling pathways are currently undergoing detailed analysis or are still unexplained. As a result, it is currently difficult to take an objective view of how far we have come in elucidating the pathogenesis of pruritus in the described diseases. Nevertheless, considerable progress has been made in recent years.
Collapse
Affiliation(s)
- Agnieszka Kaczmarska
- Department of Dermatology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-055 Rzeszów, Poland; (A.K.); (D.K.); (K.J.)
| | - Dominika Kwiatkowska
- Department of Dermatology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-055 Rzeszów, Poland; (A.K.); (D.K.); (K.J.)
| | | | | | - Kamila Jaworecka
- Department of Dermatology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-055 Rzeszów, Poland; (A.K.); (D.K.); (K.J.)
| | - Adam Reich
- Department of Dermatology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-055 Rzeszów, Poland; (A.K.); (D.K.); (K.J.)
| |
Collapse
|
59
|
Zhou JS, Peng GF, Liang WD, Chen Z, Liu YY, Wang BY, Guo ML, Deng YL, Ye JM, Zhong ML, Wang LF. Recent advances in the study of anesthesia-and analgesia-related mechanisms of S-ketamine. Front Pharmacol 2023; 14:1228895. [PMID: 37781698 PMCID: PMC10539608 DOI: 10.3389/fphar.2023.1228895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Ketamine is a racemic mixture of equal amounts of R-ketamine and S-ketamine and is well known to anesthesiologists for its unique dissociative anesthetic properties. The pharmacological properties of ketamine, namely, its sympathetic excitation, mild respiratory depression, and potent analgesia, are still highly valued in its use as an anesthetic for some patients. In particular, since its advent, S-ketamine has been widely used as an anesthetic in many countries due to its increased affinity for NMDA receptors and its enhanced anesthetic and analgesic effects. However, the anesthetic and analgesic mechanisms of S-ketamine are not fully understood. In addition to antagonizing NMDA receptors, a variety of other receptors or channels may be involved, but there are no relevant mechanistic summaries in the literature. Therefore, the purpose of this paper is to review the mechanisms of action of S-ketamine on relevant receptors and systems in the body that result in its pharmacological properties, such as anesthesia and analgesia, with the aim of providing a reference for its clinical applications and research.
Collapse
Affiliation(s)
- Jian-shun Zhou
- The First Clinical Medical College of Gannan Medical University, Ganzhou, China
| | - Guan-fa Peng
- The First Clinical Medical College of Gannan Medical University, Ganzhou, China
| | - Wei-dong Liang
- Department of Anesthesiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Anesthesiology, Ganzhou, China
| | - Zhen Chen
- The First Clinical Medical College of Gannan Medical University, Ganzhou, China
| | - Ying-ying Liu
- The First Clinical Medical College of Gannan Medical University, Ganzhou, China
| | - Bing-yu Wang
- The First Clinical Medical College of Gannan Medical University, Ganzhou, China
| | - Ming-ling Guo
- The First Clinical Medical College of Gannan Medical University, Ganzhou, China
| | - Yun-ling Deng
- Department of Anesthesiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Anesthesiology, Ganzhou, China
| | - Jun-ming Ye
- Department of Anesthesiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Anesthesiology, Ganzhou, China
| | - Mao-lin Zhong
- Department of Anesthesiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Anesthesiology, Ganzhou, China
| | - Li-feng Wang
- Department of Anesthesiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Anesthesiology, Ganzhou, China
| |
Collapse
|
60
|
Wess J, Oteng AB, Rivera-Gonzalez O, Gurevich EV, Gurevich VV. β-Arrestins: Structure, Function, Physiology, and Pharmacological Perspectives. Pharmacol Rev 2023; 75:854-884. [PMID: 37028945 PMCID: PMC10441628 DOI: 10.1124/pharmrev.121.000302] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
The two β-arrestins, β-arrestin-1 and -2 (systematic names: arrestin-2 and -3, respectively), are multifunctional intracellular proteins that regulate the activity of a very large number of cellular signaling pathways and physiologic functions. The two proteins were discovered for their ability to disrupt signaling via G protein-coupled receptors (GPCRs) via binding to the activated receptors. However, it is now well recognized that both β-arrestins can also act as direct modulators of numerous cellular processes via either GPCR-dependent or -independent mechanisms. Recent structural, biophysical, and biochemical studies have provided novel insights into how β-arrestins bind to activated GPCRs and downstream effector proteins. Studies with β-arrestin mutant mice have identified numerous physiologic and pathophysiological processes regulated by β-arrestin-1 and/or -2. Following a short summary of recent structural studies, this review primarily focuses on β-arrestin-regulated physiologic functions, with particular focus on the central nervous system and the roles of β-arrestins in carcinogenesis and key metabolic processes including the maintenance of glucose and energy homeostasis. This review also highlights potential therapeutic implications of these studies and discusses strategies that could prove useful for targeting specific β-arrestin-regulated signaling pathways for therapeutic purposes. SIGNIFICANCE STATEMENT: The two β-arrestins, structurally closely related intracellular proteins that are evolutionarily highly conserved, have emerged as multifunctional proteins able to regulate a vast array of cellular and physiological functions. The outcome of studies with β-arrestin mutant mice and cultured cells, complemented by novel insights into β-arrestin structure and function, should pave the way for the development of novel classes of therapeutically useful drugs capable of regulating specific β-arrestin functions.
Collapse
Affiliation(s)
- Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Antwi-Boasiako Oteng
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Osvaldo Rivera-Gonzalez
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Eugenia V Gurevich
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Vsevolod V Gurevich
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| |
Collapse
|
61
|
Daoud N, Mateos DL, Riley MA, Siegel JB. Computational Drug Design of Novel Agonists of the μ -Opioid Receptor to Inhibit Pain Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.25.554876. [PMID: 37662242 PMCID: PMC10473735 DOI: 10.1101/2023.08.25.554876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Opioids such as Morphine, Codeine, Hydrocodone, and Oxycodone target the μ-opioid receptor, a G-protein-coupled receptor (GPCR), blocking the transmission of nociceptive signals. In this study, four opioids were analyzed for ADMET properties and molecular interactions with a GPCR crystal structure (PDB ID: 8EF6). This aided in the computational design of two novel drug candidates with improved docking scores and ADMET properties when compared to Hydrocodone. Homology analysis indicated that a Mus musculus (house mouse) animal model could be used in the preclinical studies of these drug candidates in the development of safer and more effective opioid drugs for pain management with reduced side effects.
Collapse
Affiliation(s)
- Nancy Daoud
- Department of Chemistry, University of California Davis, Davis, California, United States of America
| | - Diego Lopez Mateos
- Department of Physiology and Membrane Biology, University of California Davis, Davis, California, United States of America
- Biophysics Graduate Group, University of California Davis, Davis, California, United States of America
| | - Mary A Riley
- Microbiology Graduate Group, University of California Davis, Davis, California, United States of America
- Genome Center, University of California Davis, Davis, California, United States of America
| | - Justin B Siegel
- Department of Chemistry, University of California Davis, Davis, California, United States of America
- Microbiology Graduate Group, University of California Davis, Davis, California, United States of America
- Genome Center, University of California Davis, Davis, California, United States of America
- Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, California, United States of America
| |
Collapse
|
62
|
Németh E, Gyuricza B, Forgács V, Cumming P, Henriksen G, Marton J, Bauer B, Mikecz P, Fekete A. Optimization of a Nucleophilic Two-Step Radiosynthesis of 6- O-(2-[ 18F]fluoroethyl)-6- O-desmethyl-diprenorphine ([ 18F]FE-DPN) for PET Imaging of Brain Opioid Receptors. Int J Mol Sci 2023; 24:13152. [PMID: 37685958 PMCID: PMC10487412 DOI: 10.3390/ijms241713152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
We have established a method for nucleophilic one-pot, two-step radiosynthesis of the popular opioid receptor radioligand 6-O-(2-[18F]fluoroethyl)-6-O-desmethyl-diprenorphine ([18F]FE-DPN) from the novel precursor 6-O-(2-tosyloxyethyl)-6-O-desmethyl- 3-O-trityl-diprenorphine (TE-TDDPN), which we designate as the Henriksen precursor. We undertook an optimization of the synthesis conditions, aiming to enhance the accessibility of [18F]FE-DPN for positron emission tomography (PET) studies of μ-opioid receptors. Herein, we report an optimized direct nucleophilic 18F-fluorination and the deprotection conditions for a fully automated radiosynthesis of [18F]FE-DPN on a modified GE Tracerlab FX FE synthesis panel. Starting from 1-1.5 GBq of [18F]fluoride and applying an Oasis Max 1cc cartridge for fluorine-18 trapping with a reduced amount of K2CO3 (5.06 μmol K+ ion), [18F]FE-DPN ([18F]11) was produced with 44.5 ± 10.6 RCY (decay-corrected), high radiochemical purity (>99%), and a molar activity of 32.2 ± 11.8 GBq/μmol in 60-65 min.
Collapse
Affiliation(s)
- Enikő Németh
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98, H-4032 Debrecen, Hungary; (E.N.); (B.G.); (V.F.)
| | - Barbara Gyuricza
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98, H-4032 Debrecen, Hungary; (E.N.); (B.G.); (V.F.)
| | - Viktória Forgács
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98, H-4032 Debrecen, Hungary; (E.N.); (B.G.); (V.F.)
| | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Freiburgstraße 18, CH-3010 Bern, Switzerland;
- School of Psychology and Counselling, Queensland University of Technology, Brisbane QLD-4059, Australia
| | - Gjermund Henriksen
- Norwegian Medical Cyclotron Centre Ltd., Sognsvannsveien 20, N-0372 Oslo, Norway;
- Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
- Institute of Physics, University of Oslo, Sem Sælands Vei 24, N-0371 Oslo, Norway
| | - János Marton
- ABX Advanced Biochemical Compounds Biomedizinische Forschungsreagenzien GmbH, Heinrich-Glaeser-Strasse 10-14, D-01454 Radeberg, Germany; (J.M.); (B.B.)
| | - Beate Bauer
- ABX Advanced Biochemical Compounds Biomedizinische Forschungsreagenzien GmbH, Heinrich-Glaeser-Strasse 10-14, D-01454 Radeberg, Germany; (J.M.); (B.B.)
| | - Pál Mikecz
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98, H-4032 Debrecen, Hungary; (E.N.); (B.G.); (V.F.)
| | - Anikó Fekete
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98, H-4032 Debrecen, Hungary; (E.N.); (B.G.); (V.F.)
| |
Collapse
|
63
|
De Rosa F, Giannatiempo B, Charlier B, Coglianese A, Mensitieri F, Gaudino G, Cozzolino A, Filippelli A, Piazza O, Dal Piaz F, Izzo V. Pharmacological Treatments and Therapeutic Drug Monitoring in Patients with Chronic Pain. Pharmaceutics 2023; 15:2088. [PMID: 37631302 PMCID: PMC10457775 DOI: 10.3390/pharmaceutics15082088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/29/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Pain is an unpleasant sensory and emotional experience that affects every aspect of a patient's life and which may be treated through different pharmacological and non-pharmacological approaches. Analgesics are the drugs most commonly used to treat pain, and in specific situations, the use of opioids may be considered with caution. These drugs, in fact, do not always induce optimal analgesia in patients, and several problems are associated with their use. The purpose of this narrative review is to describe the pharmacological approaches currently used for the management of chronic pain. We review several aspects, from the pain-scale-based methods currently available to assess the type and intensity of pain, to the most frequently administered drugs (non-narcotic analgesics and narcotic analgesics), whose pharmacological characteristics are briefly reported. Overall, we attempt to provide an overview of different pharmacological treatments while also illustrating the relevant guidelines and indications. We then report the strategies that may be used to reduce problems related to opioid use. Specifically, we focus our attention on therapeutic drug monitoring (TDM), a tool that could help clinicians select the most suitable drug and dose to be used for each patient. The actual potential of using TDM to optimize and personalize opioid-based pain treatments is finally discussed based on recent scientific reports.
Collapse
Affiliation(s)
- Federica De Rosa
- Department of Medicine, Surgery and Dentistry, Postgraduate School of Clinical Pharmacology and Toxicology, University of Salerno, 84084 Fisciano, Italy; (F.D.R.); (B.G.); (B.C.); (A.C.); (A.F.)
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy; (A.C.); (O.P.)
| | - Bruno Giannatiempo
- Department of Medicine, Surgery and Dentistry, Postgraduate School of Clinical Pharmacology and Toxicology, University of Salerno, 84084 Fisciano, Italy; (F.D.R.); (B.G.); (B.C.); (A.C.); (A.F.)
| | - Bruno Charlier
- Department of Medicine, Surgery and Dentistry, Postgraduate School of Clinical Pharmacology and Toxicology, University of Salerno, 84084 Fisciano, Italy; (F.D.R.); (B.G.); (B.C.); (A.C.); (A.F.)
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy; (A.C.); (O.P.)
| | - Albino Coglianese
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy; (A.C.); (O.P.)
- Department of Medicine, Surgery and Dentistry, Postgraduate School of Clinical Pathology and Clinical Biochemistry, University of Salerno, 84084 Fisciano, Italy
| | - Francesca Mensitieri
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Fisciano, Italy; (F.M.); (G.G.)
| | - Giulia Gaudino
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Fisciano, Italy; (F.M.); (G.G.)
| | - Armando Cozzolino
- Department of Medicine, Surgery and Dentistry, Postgraduate School of Clinical Pharmacology and Toxicology, University of Salerno, 84084 Fisciano, Italy; (F.D.R.); (B.G.); (B.C.); (A.C.); (A.F.)
| | - Amelia Filippelli
- Department of Medicine, Surgery and Dentistry, Postgraduate School of Clinical Pharmacology and Toxicology, University of Salerno, 84084 Fisciano, Italy; (F.D.R.); (B.G.); (B.C.); (A.C.); (A.F.)
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy; (A.C.); (O.P.)
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Fisciano, Italy; (F.M.); (G.G.)
| | - Ornella Piazza
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy; (A.C.); (O.P.)
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Fisciano, Italy; (F.M.); (G.G.)
| | - Fabrizio Dal Piaz
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy; (A.C.); (O.P.)
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Fisciano, Italy; (F.M.); (G.G.)
| | - Viviana Izzo
- University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy; (A.C.); (O.P.)
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Fisciano, Italy; (F.M.); (G.G.)
| |
Collapse
|
64
|
Martyniak A, Wędrychowicz A, Tomasik PJ. Endogenous Opioids in Crohn's Disease. Biomedicines 2023; 11:2037. [PMID: 37509676 PMCID: PMC10377721 DOI: 10.3390/biomedicines11072037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Caring for patients with Crohn's disease (CD) is a serious challenge in modern medicine. The increasing incidence of CD among adolescents and the severe course of the disease create the need for new methods of diagnosis and therapy. Endogenous opioids are a group of low molecular weight chemical compounds with analgesic and anti-inflammatory properties. Endorphins, enkephalins, and dynorphins may have potentially beneficial effects on the course of CD. Previous research data on this topic are inconsistent. Some authors have reported an increase in the concentration of leukocytes during the course of inflammatory bowel disease (IBD) while others have described a downward trend, explained by DPP-IV enzyme activity. Even fewer data are available on plasma endo-opioid level. There is also a lack of comprehensive studies that have assessed the endo-opioid system in patients with IBD. Therefore, the objective of this study was to measure the serum concentrations of human β-endorphin, human proenkephalin (A), and human big dynorphin in CD patients in the acute phase of the disease, during hospital treatment, and in the remission state. All determinations were performed using ELISA kits. The results of our study showed that the concentrations of all the tested endo-opioids, especially β-endorphin and proenkephalin (A), were reduced in adolescents with CD compared to those in the healthy control group, during the acute phase of the disease, and in the remission state. Modulation of the endogenous opioid system and the use of selective nonnarcotic agonists of opioid receptors seems to be promising goals in the future treatment of CD.
Collapse
Affiliation(s)
- Adrian Martyniak
- Department of Clinical Biochemistry, Pediatric Institute, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Andrzej Wędrychowicz
- Department of Pediatrics, Gastroenterology and Nutrition, Pediatric Institute, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Przemysław J Tomasik
- Department of Clinical Biochemistry, Pediatric Institute, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland
| |
Collapse
|
65
|
Schmidhammer H, Al-Khrasani M, Fürst S, Spetea M. Peripheralization Strategies Applied to Morphinans and Implications for Improved Treatment of Pain. Molecules 2023; 28:4761. [PMID: 37375318 PMCID: PMC10301144 DOI: 10.3390/molecules28124761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Opioids are considered the most effective analgesics for the treatment of moderate to severe acute and chronic pain. However, the inadequate benefit/risk ratio of currently available opioids, together with the current 'opioid crisis', warrant consideration on new opioid analgesic discovery strategies. Targeting peripheral opioid receptors as effective means of treating pain and avoiding the centrally mediated side effects represents a research area of substantial and continuous attention. Among clinically used analgesics, opioids from the class of morphinans (i.e., morphine and structurally related analogues) are of utmost clinical importance as analgesic drugs activating the mu-opioid receptor. In this review, we focus on peripheralization strategies applied to N-methylmorphinans to limit their ability to cross the blood-brain barrier, thus minimizing central exposure and the associated undesired side effects. Chemical modifications to the morphinan scaffold to increase hydrophilicity of known and new opioids, and nanocarrier-based approaches to selectively deliver opioids, such as morphine, to the peripheral tissue are discussed. The preclinical and clinical research activities have allowed for the characterization of a variety of compounds that show low central nervous system penetration, and therefore an improved side effect profile, yet maintaining the desired opioid-related antinociceptive activity. Such peripheral opioid analgesics may represent alternatives to presently available drugs for an efficient and safer pain therapy.
Collapse
Affiliation(s)
- Helmut Schmidhammer
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria;
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1445 Budapest, Hungary; (M.A.-K.); (S.F.)
| | - Susanna Fürst
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1445 Budapest, Hungary; (M.A.-K.); (S.F.)
| | - Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria;
| |
Collapse
|
66
|
Schep LJ, Slaughter RJ, Watts M, Mackenzie E, Gee P. The clinical toxicology of ketamine. Clin Toxicol (Phila) 2023:1-14. [PMID: 37267048 DOI: 10.1080/15563650.2023.2212125] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 06/04/2023]
Abstract
INTRODUCTION Ketamine is a pharmaceutical drug possessing both analgesic and anaesthetic properties. As an anaesthetic, it induces anaesthesia by producing analgesia with a state of altered consciousness while maintaining airway tone, respiratory drive, and hemodynamic stability. At lower doses, it has psychoactive properties and has gained popularity as a recreational drug. OBJECTIVES To review the epidemiology, mechanisms of toxicity, pharmacokinetics, clinical features, diagnosis and management of ketamine toxicity. METHODS Both OVID MEDLINE (January 1950-April 2023) and Web of Science (1900-April 2023) databases were searched using the term "ketamine" in combination with the keywords "pharmacokinetics", "kinetics", "poisoning", "poison", "toxicity", "ingestion", "adverse effects", "overdose", and "intoxication". Furthermore, bibliographies of identified articles were screened for additional relevant studies. These searches produced 5,268 non-duplicate citations; 185 articles (case reports, case series, pharmacokinetic studies, animal studies pertinent to pharmacology, and reviews) were considered relevant. Those excluded were other animal investigations, therapeutic human clinical investigations, commentaries, editorials, cases with no clinical relevance and post-mortem investigations. EPIDEMIOLOGY Following its introduction into medical practice in the early 1970s, ketamine has become a popular recreational drug. Its use has become associated with the dance culture, electronic and dubstep dance events. MECHANISM OF ACTION Ketamine acts primarily as a non-competitive antagonist on the glutamate N-methyl-D-aspartate receptor, causing the loss of responsiveness that is associated with clinical ketamine dissociative anaesthesia. PHARMACOKINETICS Absorption of ketamine is rapid though the rate of uptake and bioavailability is determined by the route of exposure. Ketamine is metabolized extensively in the liver. Initially, both isomers are metabolized to their major active metabolite, norketamine, by CYP2B6, CYP3A4 and CYP2C9 isoforms. The hydroxylation of the cyclohexan-1-one ring of norketamine to the three positional isomers of hydroxynorketamine occurs by CYP2B6 and CYP2A6. The dehydronorketamine metabolite occurs either by direct dehydrogenation from norketamine via CYP2B6 metabolism or non-enzymatic dehydration of hydroxynorketamine. Norketamine, the dehydronorketamine isomers, and hydroxynorketamine have pharmacological activity. The elimination of ketamine is primarily by the kidneys, though unchanged ketamine accounts for only a small percentage in the urine. The half-life of ketamine in humans is between 1.5 and 5 h. CLINICAL FEATURES Acute adverse effects following recreational use are diverse and can include impaired consciousness, dizziness, irrational behaviour, hallucinations, abdominal pain and vomiting. Chronic use can result in impaired verbal information processing, cystitis and cholangiopathy. DIAGNOSIS The diagnosis of acute ketamine intoxication is typically made on the basis of the patient's history, clinical features, such as vomiting, sialorrhea, or laryngospasm, along with neuropsychiatric features. Chronic effects of ketamine toxicity can result in cholangiopathy and cystitis, which can be confirmed by endoscopic retrograde cholangiopancreatography and cystoscopy, respectively. MANAGEMENT Treatment of acute clinical toxicity is predominantly supportive with empiric management of specific adverse effects. Benzodiazepines are recommended as initial treatment to reduce agitation, excess neuromuscular activity and blood pressure. Management of cystitis is multidisciplinary and multi-tiered, following a stepwise approach of pharmacotherapy and surgery. Management of cholangiopathy may require pain management and, where necessary, biliary stenting to alleviate obstructions. Chronic effects of ketamine toxicity are typically reversible, with management focusing on abstinence. CONCLUSIONS Ketamine is a dissociative drug employed predominantly in emergency medicine; it has also become popular as a recreational drug. Its recreational use can result in acute neuropsychiatric effects, whereas chronic use can result in cystitis and cholangiopathy.
Collapse
Affiliation(s)
- Leo J Schep
- Professional Practice Fellow, Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | - Martin Watts
- Emergency Department, Southland Hospital, Invercargill, New Zealand
| | - Elliot Mackenzie
- Obstetrics and Gynaecology, Women and Childrens Health. Dunedin Public Hospital, Dunedin, New Zealand
| | - Paul Gee
- National Poisons Centre, University of Otago, Dunedin, New Zealand
- Emergency Department, Christchurch Hospital, Christchurch, New Zealand
| |
Collapse
|
67
|
Lambert DG. Opioids and opioid receptors; understanding pharmacological mechanisms as a key to therapeutic advances and mitigation of the misuse crisis. BJA OPEN 2023; 6:100141. [PMID: 37588171 PMCID: PMC10430815 DOI: 10.1016/j.bjao.2023.100141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 08/18/2023]
Abstract
Opioids are a mainstay in acute pain management and produce their effects and side effects (e.g., tolerance, opioid-use disorder and immune suppression) by interaction with opioid receptors. I will discuss opioid pharmacology in some controversial areas of enquiry of anaesthetic relevance. The main opioid target is the µ (mu,MOP) receptor but other members of the opioid receptor family, δ (delta; DOP) and κ (kappa; KOP) opioid receptors also produce analgesic actions. These are naloxone-sensitive. There is important clinical development relating to the Nociceptin/Orphanin FQ (NOP) receptor, an opioid receptor that is not naloxone-sensitive. Better understanding of the drivers for opioid effects and side effects may facilitate separation of side effects and production of safer drugs. Opioids bind to the receptor orthosteric site to produce their effects and can engage monomer or homo-, heterodimer receptors. Some ligands can drive one intracellular pathway over another. This is the basis of biased agonism (or functional selectivity). Opioid actions at the orthosteric site can be modulated allosterically and positive allosteric modulators that enhance opioid action are in development. As well as targeting ligand-receptor interaction and transduction, modulating receptor expression and hence function is also tractable. There is evidence for epigenetic associations with different types of pain and also substance misuse. As long as the opioid narrative is defined by the 'opioid crisis' the drive to remove them could gather pace. This will deny use where they are effective, and access to morphine for pain relief in low income countries.
Collapse
|
68
|
Cibulsky SM, Wille T, Funk R, Sokolowski D, Gagnon C, Lafontaine M, Brevett C, Jabbour R, Cox J, Russell DR, Jett DA, Thomas JD, Nelson LS. Public health and medical preparedness for mass casualties from the deliberate release of synthetic opioids. Front Public Health 2023; 11:1158479. [PMID: 37250077 PMCID: PMC10213671 DOI: 10.3389/fpubh.2023.1158479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
The large amounts of opioids and the emergence of increasingly potent illicitly manufactured synthetic opioids circulating in the unregulated drug supply in North America and Europe are fueling not only the ongoing public health crisis of overdose deaths but also raise the risk of another type of disaster: deliberate opioid release with the intention to cause mass harm. Synthetic opioids are highly potent, rapidly acting, can cause fatal ventilatory depression, are widely available, and have the potential to be disseminated for mass exposure, for example, if effectively formulated, via inhalation or ingestion. As in many other chemical incidents, the health consequences of a deliberate release of synthetic opioid would manifest quickly, within minutes. Such an incident is unlikely, but the consequences could be grave. Awareness of the risk of this type of incident and preparedness to respond are required to save lives and reduce illness. Coordinated planning across the entire local community emergency response system is also critical. The ability to rapidly recognize the opioid toxidrome, education on personal protective actions, and training in medical management of individuals experiencing an opioid overdose are key components of preparedness for an opioid mass casualty incident.
Collapse
Affiliation(s)
- Susan M. Cibulsky
- Chemical Events Working Group of the Global Health Security Initiative, Public Health Agency of Canada, Ottawa, ON, Canada
- Administration for Strategic Preparedness and Response, US Department of Health and Human Services, Boston, MA, United States
| | - Timo Wille
- Chemical Events Working Group of the Global Health Security Initiative, Public Health Agency of Canada, Ottawa, ON, Canada
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
- Bundeswehr Medical Academy, Munich, Germany
| | - Renée Funk
- Chemical Events Working Group of the Global Health Security Initiative, Public Health Agency of Canada, Ottawa, ON, Canada
- Centers for Disease Control and Prevention and Agency for Toxic Substances and Disease Registry, US Department of Health and Human Services, Atlanta, GA, United States
| | - Danny Sokolowski
- Chemical Events Working Group of the Global Health Security Initiative, Public Health Agency of Canada, Ottawa, ON, Canada
- Chemical Emergency Management and Toxicovigilance Division, Health Canada, Ottawa, ON, Canada
| | - Christine Gagnon
- Chemical Events Working Group of the Global Health Security Initiative, Public Health Agency of Canada, Ottawa, ON, Canada
- Battelle Memorial Institute, Columbus, OH, United States
| | - Marc Lafontaine
- Chemical Events Working Group of the Global Health Security Initiative, Public Health Agency of Canada, Ottawa, ON, Canada
- Chemical Emergency Management and Toxicovigilance Division, Health Canada, Ottawa, ON, Canada
| | - Carol Brevett
- Battelle Memorial Institute, Columbus, OH, United States
| | - Rabih Jabbour
- Chemical Security Analysis Center, US Department of Homeland Security, Aberdeen Proving Ground, MD, United States
| | - Jessica Cox
- Chemical Security Analysis Center, US Department of Homeland Security, Aberdeen Proving Ground, MD, United States
| | - David R. Russell
- Chemical Events Working Group of the Global Health Security Initiative, Public Health Agency of Canada, Ottawa, ON, Canada
- Chemicals and Environmental Hazards Directorate (Wales), UK Health Security Agency, Cardiff, Wales, United Kingdom
| | - David A. Jett
- Chemical Events Working Group of the Global Health Security Initiative, Public Health Agency of Canada, Ottawa, ON, Canada
- National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, United States
| | - Jerry D. Thomas
- National Center for Environmental Health, Centers for Disease Control and Prevention, US Department of Health and Human Services, Atlanta, GA, United States
| | - Lewis S. Nelson
- Department of Emergency Medicine, Rutgers New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
69
|
Milella MS, D'Ottavio G, De Pirro S, Barra M, Caprioli D, Badiani A. Heroin and its metabolites: relevance to heroin use disorder. Transl Psychiatry 2023; 13:120. [PMID: 37031205 PMCID: PMC10082801 DOI: 10.1038/s41398-023-02406-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/10/2023] Open
Abstract
Heroin is an opioid agonist commonly abused for its rewarding effects. Since its synthesis at the end of the nineteenth century, its popularity as a recreational drug has ebbed and flowed. In the last three decades, heroin use has increased again, and yet the pharmacology of heroin is still poorly understood. After entering the body, heroin is rapidly deacetylated to 6-monoacetylmorphine (6-MAM), which is then deacetylated to morphine. Thus, drug addiction literature has long settled on the notion that heroin is little more than a pro-drug. In contrast to these former views, we will argue for a more complex interplay among heroin and its active metabolites: 6-MAM, morphine, and morphine-6-glucuronide (M6G). In particular, we propose that the complex temporal pattern of heroin effects results from the sequential, only partially overlapping, actions not only of 6-MAM, morphine, and M6G, but also of heroin per se, which, therefore, should not be seen as a mere brain-delivery system for its active metabolites. We will first review the literature concerning the pharmacokinetics and pharmacodynamics of heroin and its metabolites, then examine their neural and behavioral effects, and finally discuss the possible implications of these data for a better understanding of opioid reward and heroin addiction. By so doing we hope to highlight research topics to be investigated by future clinical and pre-clinical studies.
Collapse
Affiliation(s)
- Michele Stanislaw Milella
- Toxicology Unit, Policlinico Umberto I University Hospital, Rome, Italy.
- Laboratory affiliated to the Institute Pasteur Italia-Fondazione Cenci Bolognetti-Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.
| | - Ginevra D'Ottavio
- Laboratory affiliated to the Institute Pasteur Italia-Fondazione Cenci Bolognetti-Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Silvana De Pirro
- Laboratory affiliated to the Institute Pasteur Italia-Fondazione Cenci Bolognetti-Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- Norwegian Centre for Addiction Research (SERAF), Faculty of Medicine, University of Oslo, Oslo, Norway
- Sussex Addiction and Intervention Centre (SARIC), School of Psychology, University of Sussex, Brighton, UK
| | | | - Daniele Caprioli
- Laboratory affiliated to the Institute Pasteur Italia-Fondazione Cenci Bolognetti-Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.
| | - Aldo Badiani
- Laboratory affiliated to the Institute Pasteur Italia-Fondazione Cenci Bolognetti-Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.
- Sussex Addiction and Intervention Centre (SARIC), School of Psychology, University of Sussex, Brighton, UK.
- Fondazione Villa Maraini, Rome, Italy.
| |
Collapse
|
70
|
Lee MT, Mackie K, Chiou LC. Alternative pain management via endocannabinoids in the time of the opioid epidemic: Peripheral neuromodulation and pharmacological interventions. Br J Pharmacol 2023; 180:894-909. [PMID: 34877650 PMCID: PMC9170838 DOI: 10.1111/bph.15771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 01/18/2023] Open
Abstract
The use of opioids in pain management is hampered by the emergence of analgesic tolerance, which leads to increased dosing and side effects, both of which have contributed to the opioid epidemic. One promising potential approach to limit opioid analgesic tolerance is activating the endocannabinoid system in the CNS, via activation of CB1 receptors in the descending pain inhibitory pathway. In this review, we first discuss preclinical and clinical evidence revealing the potential of pharmacological activation of CB1 receptors in modulating opioid tolerance, including activation by phytocannabinoids, synthetic CB1 receptor agonists, endocannabinoid degradation enzyme inhibitors, and recently discovered positive allosteric modulators of CB1 receptors. On the other hand, as non-pharmacological pain relief is advocated by the US-NIH to combat the opioid epidemic, we also discuss contributions of peripheral neuromodulation, involving the electrostimulation of peripheral nerves, in addressing chronic pain and opioid tolerance. The involvement of supraspinal endocannabinoid systems in peripheral neuromodulation-induced analgesia is also discussed. LINKED ARTICLES: This article is part of a themed issue on Advances in Opioid Pharmacology at the Time of the Opioid Epidemic. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.7/issuetoc.
Collapse
Grants
- MOST 108-2321-B-002-005 Ministry of Science and Technology, Taiwan
- MOST 107-2811-B-002-008 Ministry of Science and Technology, Taiwan
- R01 DA041229 NIDA NIH HHS
- MOST 107-2321-B-002-010 Ministry of Science and Technology, Taiwan
- R01 DA047858 NIDA NIH HHS
- 107M4022-3 Ministry of Education, Taiwan
- MOST 106-2321-B-002-019 Ministry of Science and Technology, Taiwan
- NHRI-EX111-11114NI National Health Research Institutes, Taiwan
- FRGS/1/2021/WAB13/UCSI/02/1 Ministry of Higher Education, Malaysia
- R21 DA042584 NIDA NIH HHS
- REIG-FPS-2020/065 UCSI University Research Excellence and Innovation Grant, Malaysia
- NHRI-EX109-10733NI National Health Research Institutes, Taiwan
- MOST 104-2745-B-002-004 Ministry of Science and Technology, Taiwan
- MOST 109-2320-B-002-042-MY3 Ministry of Science and Technology, Taiwan
- MOST 107-2811-B-002 -008 Ministry of Science and Technology, Taiwan
- MOST 108-2320-B-002-029-MY3 Ministry of Science and Technology, Taiwan
Collapse
Affiliation(s)
- Ming Tatt Lee
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Ken Mackie
- Gill Center for Biomolecular Research, Indiana University, Bloomington, Indiana 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana 47405, USA
| | - Lih-Chu Chiou
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
71
|
Wala-Zielińska K, Świerczyńska-Mróz K, Krajewski PK, Nowicka-Suszko D, Krajewska M, Szepietowski JC. Endogenous Opioid Imbalance as a Potential Factor Involved in the Pathogenesis of Chronic Kidney Disease-Associated Pruritus in Dialysis Patients. J Clin Med 2023; 12:2474. [PMID: 37048558 PMCID: PMC10094828 DOI: 10.3390/jcm12072474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Chronic pruritus is one of the most common symptoms of dermatological diseases. It may occur in the course of other disorders, such as kidney disease. Chronic kidney disease-associated pruritus (CKD-aP) most often affects people with end-stage renal disease. The etiology of this condition is still not fully understood, but researchers are currently focusing on a thorough analysis of the association between disturbed opioid balance and increased neuronal signaling leading to pruritus. The aim of this study is to assess the concentration of endogenous opioids in dialysis patients with and without pruritus and in the control group, and to determine the correlation between the concentration of these substances and the occurrence and severity of itching. The study involved 126 dialysis patients and 50 healthy controls. Patients were divided into groups with pruritus (n = 62) and without pruritus (n = 64). The severity of pruritus was assessed using the NRS scale. The concentration of endogenous opioids was determined using the ELISA. The concentration of met-enkephalin was higher in the group of patients with pruritus compared to the control group. Moreover, significantly lower levels of β-endorphin and dynorphin A were observed in the group of dialysis patients compared to the control group. In addition, a statistically significant difference was seen between the β-endorphin concentration in the group of dialysis patients with pruritus compared to the group without pruritus. The ratio of β-endorphin/dynorphin A concentrations was significantly lower in the group of patients with pruritus compared to patients without pruritus and the control group. No correlations were found between serum level of studied opioids and the severity of pruritus. The concentrations of the studied opioids did not correlate with the severity of pruritus. Observed opioid imbalance may affect the occurrence of CKD-aP in dialysis patients, but a thorough understanding of the mechanism of action of these substances in the sensation of pruritus is necessary to assess the possibility of finding a new therapeutic target.
Collapse
Affiliation(s)
- Kamila Wala-Zielińska
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.W.-Z.)
| | - Karolina Świerczyńska-Mróz
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.W.-Z.)
| | - Piotr K. Krajewski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.W.-Z.)
| | - Danuta Nowicka-Suszko
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.W.-Z.)
| | - Magdalena Krajewska
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Jacek C. Szepietowski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.W.-Z.)
| |
Collapse
|
72
|
Li L, Chen J, Li YQ. The Downregulation of Opioid Receptors and Neuropathic Pain. Int J Mol Sci 2023; 24:ijms24065981. [PMID: 36983055 PMCID: PMC10053236 DOI: 10.3390/ijms24065981] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Neuropathic pain (NP) refers to pain caused by primary or secondary damage or dysfunction of the peripheral or central nervous system, which seriously affects the physical and mental health of 7-10% of the general population. The etiology and pathogenesis of NP are complex; as such, NP has been a hot topic in clinical medicine and basic research for a long time, with researchers aiming to find a cure by studying it. Opioids are the most commonly used painkillers in clinical practice but are regarded as third-line drugs for NP in various guidelines due to the low efficacy caused by the imbalance of opioid receptor internalization and their possible side effects. Therefore, this literature review aims to evaluate the role of the downregulation of opioid receptors in the development of NP from the perspective of dorsal root ganglion, spinal cord, and supraspinal regions. We also discuss the reasons for the poor efficacy of opioids, given the commonness of opioid tolerance caused by NP and/or repeated opioid treatments, an angle that has received little attention to date; in-depth understanding might provide a new method for the treatment of NP.
Collapse
Affiliation(s)
- Lin Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, No. 169, West Changle Road, Xi'an 710032, China
| | - Jing Chen
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, No. 169, West Changle Road, Xi'an 710032, China
| | - Yun-Qing Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, No. 169, West Changle Road, Xi'an 710032, China
| |
Collapse
|
73
|
Wang QQ, Sun QR, Ji XY, Tang Y, Zhang K, Wang XQ, Li HR, Huang XZ, Zhang B. The combined analgesic, sedative, and anti-gastric cancer mechanisms of Tinospora sagittata var. yunnanensis (S. Y. Hu) H. S. Lo based on integrated ethnopharmacological data. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115990. [PMID: 36509262 DOI: 10.1016/j.jep.2022.115990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE As a Yi medicine for eliminating wind to relieve pain, Tinospora sagittata var. yunnanensis (S. Y. Hu) H. S. Lo (TSY) is widely used to treat sore throat, stomach pain, bone and muscle injuries, and tumors; however, the material basis and mechanism of action remain unclear. AIM OF THE STUDY This study aims to investigate the potential active compounds of TSY and related pharmacological mechanisms against gastric cancer using a multitarget strategy. MATERIALS AND METHODS The main chemical components of TSY were collected through a literature review and database searches. The components were further screened for ADMET properties, and their targets were predicted using network pharmacology (admetSAR) and substructure-drug-target network-based inference (SDTNBI) approaches in silico. The pharmacological mechanism of action of TSY extract for pain relief, sedation, and anti-gastric cancer activities were identified via in vivo and in vitro biochemical analyses. RESULTS Here, 28 chemical components were identified, 7 active compounds were selected, and 75 targets of TSY extract were predicted. A compound-target-disease network topological approach revealed that the predicted targets are highly related to the digestive system and nervous system. Network pharmacology results suggested that the anti-gastric cancer activity of TSY was highly correlated with its analgesic and sedative targets and MAPK. In vivo experiments confirmed that TSY extract not only reduced the number of voluntary activities in the mouse model but also exhibited a synergistic effect on sodium pentobarbital-induced sleep, reduced the number of mice exhibiting writhing responses to acetic acid, and increased the hot plate pain threshold of mice. Thus, TSY extract exhibits good analgesic and sedative effects. The TSY extract inhibited HGC-27 cell proliferation and induced apoptosis by regulating apoptotic proteins (BAX, BCL-2 and BCL-XL) in vitro. CONCLUSIONS TSY exhibits combined analgesic, sedative, and anti-gastric cancer activities.
Collapse
Affiliation(s)
- Qian-Qian Wang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, PR China; Key Laboratory of Xinjiang Phytomedicine Resources and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832002, PR China.
| | - Qin-Rong Sun
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, PR China; Key Laboratory of Xinjiang Phytomedicine Resources and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832002, PR China.
| | - Xin-Ye Ji
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832002, PR China.
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China.
| | - Ke Zhang
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832002, PR China.
| | - Xiao-Qin Wang
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832002, PR China.
| | - Hong-Rui Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming, 650504, PR China.
| | - Xiang-Zhong Huang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming, 650504, PR China.
| | - Bo Zhang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, PR China.
| |
Collapse
|
74
|
Morioka F, Fujii S, Kamata H, Shima N, Tsuboi K, Katagi M, Sato T. Postmortem examination and toxicological analysis for acute metonitazene intoxication in Japan: A case report. Leg Med (Tokyo) 2023; 61:102216. [PMID: 36801590 DOI: 10.1016/j.legalmed.2023.102216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/22/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
Benzoimidazole analgesics (Nitazenes, NZs) are opioid receptor agonists that exhibit very strong pharmacological effects at minute doses, and their abuse has recently become a concern worldwide. Although no deaths involving NZs had been reported in Japan to date, we recently experienced an autopsy case of a middle-aged man who was determined to have died from poisoning by metonitazene (MNZ), a type of NZs. There were traces of suspected illegal drug use around the body. Autopsy findings were consistent with acute drug intoxication as the cause of death, but it was difficult to identify the causative drugs by simple qualitative drug screening. Analysis of compounds recovered from the scene where the body was found identified MNZ, and its abuse was suspected. Quantitative toxicological analysis of urine and blood was performed using a liquid chromatography high-resolution tandem mass spectrometer (LC-HR-MS/MS). Results showed that MNZ concentrations in blood and urine were 6.0 and 5.2 ng/mL, respectively. Other drugs detected in blood were within therapeutic ranges. Quantitated blood MNZ concentration in the present case was in the similar range as those reported in overseas NZs-related deaths. There were no other findings that could have contributed to the cause of death, and the decedent was judged to have died of acute MNZ intoxication. Emergence of NZs distribution has been recognized in Japan similarly to overseas; early investigation of their pharmacological effects as well as crackdown on their distribution is strongly desired.
Collapse
Affiliation(s)
- Fumiya Morioka
- Department of Legal Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan.
| | - Shihoko Fujii
- Forensic Science Laboratory, Osaka Prefectural Police HQ, Osaka, Japan
| | - Hiroe Kamata
- Forensic Science Laboratory, Osaka Prefectural Police HQ, Osaka, Japan
| | - Noriaki Shima
- Forensic Science Laboratory, Osaka Prefectural Police HQ, Osaka, Japan
| | - Kento Tsuboi
- Department of Legal Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Munehiro Katagi
- Department of Legal Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Takako Sato
- Department of Legal Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| |
Collapse
|
75
|
ElShebiney SA, Elgohary R, Kenawy SH, El-Bassyouni GT, Hamzawy EMA. Zinc oxide calcium silicate composite attenuates acute tramadol toxicity in mice. BMC Pharmacol Toxicol 2023; 24:9. [PMID: 36759887 PMCID: PMC9912638 DOI: 10.1186/s40360-023-00647-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Seizures are considered to be the most common symptom encountered in emergency- rushed tramadol-poisoned patients; accounting for 8% of the drug-induced seizure cases. Although, diazepam clears these seizures, the risk of central respiratory depression cannot be overlooked. Henceforth, three adsorbing composites were examined in a tramadol acute intoxication mouse model. METHODS Calcium Silicate (Wollastonite) either non-doped or wet doped with iron oxide (3%Fe2O3) or zinc oxide (30% ZnO) were prepared. The composites' adsorption capacity for tramadol was determined in vitro. Tramadol intoxication was induced in Swiss albino mice by a parenteral dose of 120 mg/kg. Proposed treatments were administered within 1 min at 5 increasing doses, i.p. The next 30 min, seizures were monitored as an intoxication symptom. Plasma tramadol concentration was recorded after two hours of administration. RESULTS The 3% Fe2O3-containing composite (CSFe3), was found to be composed of mainly wollastonite with very little alpha-hematite. On the other hand, hardystonite and wellimite were developed in the 30%ZnO-containing composite (CSZn3). Micro-round and irregular nano-sized microstructures were established (The particle size of CS was 56 nm, CSFe3 was 49 nm, and CSZn3 was 42 nm). The CSZn3 adsorption capacity reached 1497 mg of tramadol for each gram. Tramadol concentration was reduced in plasma and seizures were inhibited after its administration to mice at three doses. CONCLUSION The calcium silicate composite doped with ZnO presented a good resolution of tramadol-induced seizures accompanied by detoxification of blood, indicating its potential for application in such cases. Further studies are required.
Collapse
Affiliation(s)
- Shaimaa A. ElShebiney
- grid.419725.c0000 0001 2151 8157Narcotics, Ergogenics, and Poisons Department, National Research Centre, 33-El-Buhouth St., 12622 Dokki, Giza, Egypt
| | - Rania Elgohary
- grid.419725.c0000 0001 2151 8157Narcotics, Ergogenics, and Poisons Department, National Research Centre, 33-El-Buhouth St., 12622 Dokki, Giza, Egypt
| | - Sayed H. Kenawy
- grid.419725.c0000 0001 2151 8157Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Buhouth St, Dokki, Giza, 12622 Egypt
| | - Gehan T. El-Bassyouni
- grid.419725.c0000 0001 2151 8157Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Buhouth St, Dokki, Giza, 12622 Egypt
| | - Esmat M. A. Hamzawy
- grid.419725.c0000 0001 2151 8157Glass Research Department, National Research Centre, 33 El Buhouth St, Dokki, Giza, 12622 Egypt
| |
Collapse
|
76
|
Sung CS, Cheng HJ, Chen NF, Tang SH, Kuo HM, Sung PJ, Chen WF, Wen ZH. Antinociceptive Effects of Aaptamine, a Sponge Component, on Peripheral Neuropathy in Rats. Mar Drugs 2023; 21:md21020113. [PMID: 36827154 PMCID: PMC9963100 DOI: 10.3390/md21020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Aaptamine, a natural marine compound isolated from the sea sponge, has various biological activities, including delta-opioid agonist properties. However, the effects of aaptamine in neuropathic pain remain unclear. In the present study, we used a chronic constriction injury (CCI)-induced peripheral neuropathic rat model to explore the analgesic effects of intrathecal aaptamine administration. We also investigated cellular angiogenesis and lactate dehydrogenase A (LDHA) expression in the ipsilateral lumbar spinal cord after aaptamine administration in CCI rats by immunohistofluorescence. The results showed that aaptamine alleviates CCI-induced nociceptive sensitization, allodynia, and hyperalgesia. Moreover, aaptamine significantly downregulated CCI-induced vascular endothelial growth factor (VEGF), cluster of differentiation 31 (CD31), and LDHA expression in the spinal cord. Double immunofluorescent staining showed that the spinal VEGF and LDHA majorly expressed on astrocytes and neurons, respectively, in CCI rats and inhibited by aaptamine. Collectively, our results indicate aaptamine's potential as an analgesic agent for neuropathic pain. Furthermore, inhibition of astrocyte-derived angiogenesis and neuronal LDHA expression might be beneficial in neuropathy.
Collapse
Affiliation(s)
- Chun-Sung Sung
- Department of Anesthesiology, Division of Pain Management, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hao-Jung Cheng
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
| | - Nan-Fu Chen
- Department of Surgery, Division of Neurosurgery, Kaohsiung Armed Forces General Hospital, Kaohsiung 802301, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
| | - Shih-Hsuan Tang
- Department of Anesthesiology, Division of Pain Management, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Hsiao-Mei Kuo
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
| | - Ping-Jyun Sung
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
- National Museum of Marine Biology and Aquarium, Pingtung 944401, Taiwan
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Wu-Fu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan
- Correspondence: (W.-F.C.); (Z.-H.W.)
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
- Correspondence: (W.-F.C.); (Z.-H.W.)
| |
Collapse
|
77
|
Kelly E, Conibear A, Henderson G. Biased Agonism: Lessons from Studies of Opioid Receptor Agonists. Annu Rev Pharmacol Toxicol 2023; 63:491-515. [PMID: 36170657 DOI: 10.1146/annurev-pharmtox-052120-091058] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In ligand bias different agonist drugs are thought to produce distinct signaling outputs when activating the same receptor. If these signaling outputs mediate therapeutic versus adverse drug effects, then agonists that selectively activate the therapeutic signaling pathway would be extremely beneficial. It has long been thought that μ-opioid receptor agonists that selectively activate G protein- over β-arrestin-dependent signaling pathways would produce effective analgesia without the adverse effects such as respiratory depression. However, more recent data indicate that most of the therapeutic and adverse effects of agonist-induced activation of the μ-opioid receptor are actually mediated by the G protein-dependent signaling pathway, and that a number of drugs described as G protein biased in fact may not be biased, but instead may be low-intrinsic-efficacy agonists. In this review we discuss the current state of the field of bias at the μ-opioid receptor and other opioid receptor subtypes.
Collapse
Affiliation(s)
- Eamonn Kelly
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom;
| | - Alexandra Conibear
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom;
| | - Graeme Henderson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom;
| |
Collapse
|
78
|
Röderer P, Belu A, Heidrich L, Siobal M, Isensee J, Prolingheuer J, Janocha E, Valdor M, Hagendorf S, Bahrenberg G, Opitz T, Segschneider M, Haupt S, Nitzsche A, Brüstle O, Hucho T. Emergence of nociceptive functionality and opioid signaling in human induced pluripotent stem cell-derived sensory neurons. Pain 2023:00006396-990000000-00249. [PMID: 36727909 DOI: 10.1097/j.pain.0000000000002860] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/15/2022] [Indexed: 02/03/2023]
Abstract
ABSTRACT Induced pluripotent stem cells (iPSCs) have enabled the generation of various difficult-to-access cell types such as human nociceptors. A key challenge associated with human iPSC-derived nociceptors (hiPSCdNs) is their prolonged functional maturation. While numerous studies have addressed the expression of classic neuronal markers and ion channels in hiPSCdNs, the temporal development of key signaling cascades regulating nociceptor activity has remained largely unexplored. In this study, we used an immunocytochemical high-content imaging approach alongside electrophysiological staging to assess metabotropic and ionotropic signaling of large scale-generated hiPSCdNs across 70 days of in vitro differentiation. During this period, the resting membrane potential became more hyperpolarized, while rheobase, action potential peak amplitude, and membrane capacitance increased. After 70 days, hiPSCdNs exhibited robust physiological responses induced by GABA, pH shift, ATP, and capsaicin. Direct activation of protein kinase A type II (PKA-II) through adenylyl cyclase stimulation with forskolin resulted in PKA-II activation at all time points. Depolarization-induced activation of PKA-II emerged after 35 days of differentiation. However, effective inhibition of forskolin-induced PKA-II activation by opioid receptor agonists required 70 days of in vitro differentiation. Our results identify a pronounced time difference between early expression of functionally important ion channels and emergence of regulatory metabotropic sensitizing and desensitizing signaling only at advanced stages of in vitro cultivation, suggesting an independent regulation of ionotropic and metabotropic signaling. These data are relevant for devising future studies into the development and regulation of human nociceptor function and for defining time windows suitable for hiPSCdN-based drug discovery.
Collapse
Affiliation(s)
- Pascal Röderer
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn
- LIFE & BRAIN GmbH, Cellomics Unit, Bonn, Germany, Germany
| | - Andreea Belu
- Translational Pain Research, Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Luzia Heidrich
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn
- LIFE & BRAIN GmbH, Cellomics Unit, Bonn, Germany, Germany
| | - Maike Siobal
- Translational Pain Research, Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jörg Isensee
- Translational Pain Research, Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jonathan Prolingheuer
- Translational Pain Research, Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | | | | | | | - Thoralf Opitz
- Institute of Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany
| | - Michaela Segschneider
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn
| | - Simone Haupt
- LIFE & BRAIN GmbH, Cellomics Unit, Bonn, Germany, Germany
| | - Anja Nitzsche
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn
- LIFE & BRAIN GmbH, Cellomics Unit, Bonn, Germany, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn
- LIFE & BRAIN GmbH, Cellomics Unit, Bonn, Germany, Germany
| | - Tim Hucho
- Translational Pain Research, Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
79
|
Nieto CT, Manchado A, Belda L, Diez D, Garrido NM. 2-Phenethylamines in Medicinal Chemistry: A Review. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020855. [PMID: 36677913 PMCID: PMC9864394 DOI: 10.3390/molecules28020855] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
A concise review covering updated presence and role of 2-phenethylamines in medicinal chemistry is presented. Open-chain, flexible alicyclic amine derivatives of this motif are enumerated in key therapeutic targets, listing medicinal chemistry hits and appealing screening compounds. Latest reports in discovering new bioactive 2-phenethylamines by research groups are covered too.
Collapse
|
80
|
Puls K, Wolber G. Solving an Old Puzzle: Elucidation and Evaluation of the Binding Mode of Salvinorin A at the Kappa Opioid Receptor. Molecules 2023; 28:718. [PMID: 36677775 PMCID: PMC9861206 DOI: 10.3390/molecules28020718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 01/13/2023] Open
Abstract
The natural product Salvinorin A (SalA) was the first nitrogen-lacking agonist discovered for the opioid receptors and exhibits high selectivity for the kappa opioid receptor (KOR) turning SalA into a promising analgesic to overcome the current opioid crisis. Since SalA's suffers from poor pharmacokinetic properties, particularly the absence of gastrointestinal bioavailability, fast metabolic inactivation, and subsequent short duration of action, the rational design of new tailored analogs with improved clinical usability is highly desired. Despite being known for decades, the binding mode of SalA within the KOR remains elusive as several conflicting binding modes of SalA were proposed hindering the rational design of new analgesics. In this study, we rationally determined the binding mode of SalA to the active state KOR by in silico experiments (docking, molecular dynamics simulations, dynophores) in the context of all available mutagenesis studies and structure-activity relationship (SAR) data. To the best of our knowledge, this is the first comprehensive evaluation of SalA's binding mode since the determination of the active state KOR crystal structure. SalA binds above the morphinan binding site with its furan pointing toward the intracellular core while the C2-acetoxy group is oriented toward the extracellular loop 2 (ECL2). SalA is solely stabilized within the binding pocket by hydrogen bonds (C210ECL2, Y3127.35, Y3137.36) and hydrophobic contacts (V1182.63, I1393.33, I2946.55, I3167.39). With the disruption of this interaction pattern or the establishment of additional interactions within the binding site, we were able to rationalize the experimental data for selected analogs. We surmise the C2-substituent interactions as important for SalA and its analogs to be experimentally active, albeit with moderate frequency within MD simulations of SalA. We further identified the non-conserved residues 2.63, 7.35, and 7.36 responsible for the KOR subtype selectivity of SalA. We are confident that the elucidation of the SalA binding mode will promote the understanding of KOR activation and facilitate the development of novel analgesics that are urgently needed.
Collapse
Affiliation(s)
| | - Gerhard Wolber
- Department of Biology, Chemistry and Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| |
Collapse
|
81
|
Zhai Z, Zhu Z, Kong F, Xie D, Cai J, Dai J, Zhong Y, Gan Y, Zheng S, Xu Y, Sun T. Distinguish the Characteristic Mechanism of 3 Drug Pairs of Corydalis Rhizome in Ameliorating Angina Pectoris: Network Pharmacology and Meta-Analysis. Nat Prod Commun 2023. [DOI: 10.1177/1934578x231152309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Objective: Angina pectoris (AP), affecting over 523 million people, can be alleviated by corydalis rhizome (CR), usually combined with chuanxiong rhizome (CXR), angelica dahuricae radix (ADR), or astragali radix (AR) to enhance the effect. This study aims to distinguish the different mechanisms among 3 drug pairs to treat AP. Methods: The drug pair-disease intersection targets, compound targets, protein–protein interaction (PPI), and herb-compound-target-pathway network were obtained by Cytoscape, STRING, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses ( http://www.kegg.jp/ or http://www.genome.jp/kegg/ ). Importantly, with principal component analysis (PCA), the key point of KEGG and GO were explored and supported, while by meta-analysis, the different mechanisms of the drug pairs on AP were discovered. Results: JUN, SRC, PIK3CA, and MAPK1 as PPI core network of CR-AP, (CR-CXR)-AP, (CR-ADR)-AP, and (CR-AR)-AP. (highest confidence > 0.9). 10, 45, 35, and 21 key compounds, and 68, 123, 117, and 97 core targets were obtained from CR-AP, (CR-CXR)-AP, (CR-ADR)-AP, and (CR-AR)-AP based on more than 2-fold median value for degree and betweenness centrality, more than the median of closeness centrality. The core pathways of (CR-CXR)-AP and (CR-AR)-AP cover “fluid shear stress and atherosclerosis” and the “pathways in cancer”, while (CR-ADR)-AP was found as the “pathways in cancer” by PCA and KEGG ( P < .01). The core biological processes of (BP) (CR-CXR)-AP, (CR-ADR)-AP, and (CR-AR)-AP were all enriched in the “circulatory system process” by PCA and GO ( P < .01). Moreover, meta-analysis indicated the significant differences ( P < .05) of the 3 drug pairs. Conclusion: CR-CXR, CR-ADR, or CR-AR outperformed CR-AP in AP mitigation. Furthermore, meta-analysis revealed, CR-CXR was superior to alleviating AP by affecting “circulatory system process” and “fluid shear stress and atherosclerosis”, particularly the targets PTGS1, PTGS2, ADRB2, ADRA2C, and NOS, when compared with the drug pair of CR-ADR and the CR-AR.
Collapse
Affiliation(s)
- Zhenwei Zhai
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhishan Zhu
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fanjing Kong
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Danni Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Cai
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingyi Dai
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanmei Zhong
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanxiong Gan
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shichao Zheng
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Xu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Sun
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
82
|
Ortiz MI. Synergistic interaction and activation of the opioid receptor-NO-cGMP-K + channel pathway on peripheral antinociception induced by the α-Bisabolol-diclofenac combination. Front Pharmacol 2023; 14:1158236. [PMID: 37124202 PMCID: PMC10133703 DOI: 10.3389/fphar.2023.1158236] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/06/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction: The local peripheral combination of analgesic drugs with herbal derivatives may have beneficial effects. Information on the action mechanism of these interactions between drugs is scarce. Therefore, the main of the present study was to determine the pharmacological interaction and action mechanism of the combination α-Bisabolol and diclofenac. Methods: Rats were injected in the dorsal surface of the right hind paw with 1% formalin. Rats received subcutaneous injections in the dorsal surface of paw of vehicles or increasing doses of α-Bisabolol, diclofenac or their combination before formalin injection into the paw. Antinociception of the α-Bisabolol + diclofenac combination was evaluated with and without the local treatment of naloxone, metformin, NG-nitro-L-arginine methyl ester (L-NAME), 1H- (1,2,4)-oxadiazolo (4,2-a) quinoxalin-1-one (ODQ), glibenclamide, glipizide, 4-aminopyridine, tetraethylammonium, apamin, or charybdotoxin. Results: α-Bisabolol, diclofenac or α-Bisabolol-diclofenac combinations produced significant antinociception in the rat (p < 0.05). The experimental effective dose (ED) value of 109.2 µg/paw was different significantly of the theoretical effective dose (ED) of 245.7 µg/paw (synergism). Blockers significantly reverted the antinociception produced by the synergistic combination of α-Bisabolol and diclofenac. Discussion: Data showed a synergism of the α-Bisabolol-diclofenac combination and the activation of the opioid receptor-Nitric Oxide-cyclic GMP-K+ channels pathway and a biguanide-dependent mechanism in order to produce the potentiation of its peripheral antinociception in the formalin test.
Collapse
|
83
|
Daksla N, Wang A, Jin Z, Gupta A, Bergese SD. Oliceridine for the Management of Moderate to Severe Acute Postoperative Pain: A Narrative Review. Drug Des Devel Ther 2023; 17:875-886. [PMID: 36987403 PMCID: PMC10040154 DOI: 10.2147/dddt.s372612] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/11/2023] [Indexed: 03/30/2023] Open
Abstract
Despite current advances in acute postoperative pain management, prevalence remains high. Inadequate treatment could lead to poor outcomes and even progression to chronic pain. Opioids have traditionally been the mainstay for treatment of moderate to severe acute pain. However, their use has been associated with opioid-related adverse events (ORAEs), such as respiratory depression, sedation, nausea, vomiting, pruritus, and decreased bowel motility. In addition, their liberal use has been implicated in the current opioid epidemic. As a result, there has been renewed interest in multimodal analgesia to target different mechanisms of action in order to achieve a synergistic effect and minimize opioid usage. Oliceridine is a novel mu-opioid receptor agonist that is part of a new class of biased ligands that selectively activate G-protein signaling and downregulate β-arrestin recruitment. Since G-protein signaling has been associated with analgesia while β-arrestin recruitment has been associated with ORAEs, there is potential for a wider therapeutic window. In this review, we will discuss the clinical evidence behind oliceridine and its potential role in acute postoperative pain management. We have systematically searched the PubMed database using the keywords oliceridine, olinvyk, and trv130. All articles identified were reviewed and evaluated, and all clinical trials were included.
Collapse
Affiliation(s)
- Neil Daksla
- Department of Anesthesiology, Stony Brook University Health Science Center, Stony Brook, NY, 11794-8480, USA
| | - Ashley Wang
- Department of Anesthesiology, Stony Brook University Health Science Center, Stony Brook, NY, 11794-8480, USA
| | - Zhaosheng Jin
- Department of Anesthesiology, Stony Brook University Health Science Center, Stony Brook, NY, 11794-8480, USA
| | - Abhishek Gupta
- Department of Anesthesiology, Stony Brook University Health Science Center, Stony Brook, NY, 11794-8480, USA
| | - Sergio D Bergese
- Department of Anesthesiology, Stony Brook University Health Science Center, Stony Brook, NY, 11794-8480, USA
- Department of Neurosurgery, Stony Brook University Health Science Center, Stony Brook, NY, 11794-8480, USA
- Correspondence: Sergio D Bergese, Department of Anesthesiology, Stony Brook University School of Medicine, Health Sciences Center, Level 4, Room 060, Stony Brook, NY, 11794, USA, Tel +1 631 444-2979, Fax +1 631 444-2907, Email
| |
Collapse
|
84
|
Arylcyclohexylamine Derivatives: Pharmacokinetic, Pharmacodynamic, Clinical and Forensic Aspects. Int J Mol Sci 2022; 23:ijms232415574. [PMID: 36555217 PMCID: PMC9779550 DOI: 10.3390/ijms232415574] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
Since the 2000s, an increasing number of new psychoactive substances (NPS) have appeared on the drug market. Arylcyclohexylamine (ACH) compounds such as ketamine, phencyclidine and eticyclidine derivatives are of particular concern, given their rapidly increasing use and the absence of detailed toxicity data. First used mainly for their pharmacological properties in anesthesia, their recreational use is increasing. ACH derivatives have an antagonistic activity against the N-methyl-D-aspartate receptor, which leads to dissociative effects (dissociation of body and mind). Synthetic ketamine derivatives produced in Asia are now arriving in Europe, where most are not listed as narcotics and are, thus, legal. These structural derivatives have pharmacokinetic and pharmacodynamic properties that are sometimes very different from ketamine. Here, we describe the pharmacology, epidemiology, chemistry and metabolism of ACH derivatives, and we review the case reports on intoxication.
Collapse
|
85
|
Giakomidi D, Khemiri S, Mahbuba W, McVey DG, Al-Janabi F, Guerrini R, Calo G, Ye S, Lambert DG. Nociceptin/Orphanin FQ receptor expression in primary human umbilical vein endothelial cells is not regulated by exposure to breast cancer cell media or angiogenic stimuli. BJA OPEN 2022; 4:100110. [PMID: 37588788 PMCID: PMC10430811 DOI: 10.1016/j.bjao.2022.100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/20/2022] [Indexed: 08/18/2023]
Abstract
Background Opioid receptors are naloxone-sensitive (MOP [mu: μ], DOP [delta: δ], and KOP [kappa: κ]) and naloxone-insensitive Nociceptin/Orphanin FQ (N/OFQ) peptide receptor (NOP). Clinically, most opioid analgesics target MOP. Angiogenesis is the formation of new blood vessels and involves endothelial cell activation, proliferation, and migration. The effect of opioids on this process is controversial with no data for NOP receptor ligands. Methods We used patient-derived human umbilical vein endothelial cells (HUVECs) treated with media from the Michigan Cancer Foundation-7 (MCF-7) breast cancer cells or vascular endothelial growth factor (VEGF; 10 ng ml-1) and fibroblast growth factor (FGF; 10 ng ml-1) as angiogenic stimuli. We have measured (i) NOP/MOP messenger RNA, (ii) receptor protein using N/OFQATTO594 and DermorphinATTO488 as fluorescent probes for NOP and MOP, and (iii) NOP/MOP function in a wound healing assay (crude measure of migration that occurs during angiogenesis). Results HUVEC lines from 32 patients were used. Using all 32 lines, mRNA for NOP but not MOP was detected. This was unaffected by media from MCF-7 cells or VEGF/FGF. There was no binding of either N/OFQATTO594(NOP) or DermorphinATTO488(MOP) in the absence or presence of angiogenic stimuli (six lines tested). In the absence of MOP mRNA, this was expected. Whilst MCF-7 conditioned medium (not VEGF/FGF) reduced wound healing per se (14 lines tested), there was no effect of N/OFQ (NOP ligand) or morphine (MOP ligand). Conclusions Media from MCF-7 breast cancer cells or VEGF/FGF as angiogenic stimuli did not influence NOP translation into receptor protein. MOP was absent. In the absence of constitutive or inducible MOP/NOP, there was no effect on wound healing as a measure of angiogenesis.
Collapse
Affiliation(s)
- Despina Giakomidi
- Department of Cardiovascular Sciences, Anaesthesia, Critical Care and Pain Management, Hodgkin Building, University of Leicester, Leicester, UK
| | - Sonja Khemiri
- Department of Cardiovascular Sciences, Anaesthesia, Critical Care and Pain Management, Hodgkin Building, University of Leicester, Leicester, UK
| | - Wadhah Mahbuba
- Department of Cardiovascular Sciences, Anaesthesia, Critical Care and Pain Management, Hodgkin Building, University of Leicester, Leicester, UK
| | - David G. McVey
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Fatin Al-Janabi
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Remo Guerrini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Girolamo Calo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Shu Ye
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - David G. Lambert
- Department of Cardiovascular Sciences, Anaesthesia, Critical Care and Pain Management, Hodgkin Building, University of Leicester, Leicester, UK
| |
Collapse
|
86
|
Caminski ES, Antunes FTT, Souza IA, Dallegrave E, Zamponi GW. Regulation of N-type calcium channels by nociceptin receptors and its possible role in neurological disorders. Mol Brain 2022; 15:95. [PMID: 36434658 PMCID: PMC9700961 DOI: 10.1186/s13041-022-00982-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
Activation of nociceptin opioid peptide receptors (NOP, a.k.a. opioid-like receptor-1, ORL-1) by the ligand nociceptin/orphanin FQ, leads to G protein-dependent regulation of Cav2.2 (N-type) voltage-gated calcium channels (VGCCs). This typically causes a reduction in calcium currents, triggering changes in presynaptic calcium levels and thus neurotransmission. Because of the widespread expression patterns of NOP and VGCCs across multiple brain regions, the dorsal horn of the spinal cord, and the dorsal root ganglia, this results in the alteration of numerous neurophysiological features. Here we review the regulation of N-type calcium channels by the NOP-nociceptin system in the context of neurological conditions such as anxiety, addiction, and pain.
Collapse
Affiliation(s)
- Emanuelle Sistherenn Caminski
- grid.412344.40000 0004 0444 6202Graduate Program in Health Sciences, Laboratory of Research in Toxicology (LAPETOX), Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS Brazil
| | - Flavia Tasmin Techera Antunes
- grid.22072.350000 0004 1936 7697Department of Clinical Neurosciences, University of Calgary, Calgary, AB Canada ,grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB Canada
| | - Ivana Assis Souza
- grid.22072.350000 0004 1936 7697Department of Clinical Neurosciences, University of Calgary, Calgary, AB Canada ,grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB Canada
| | - Eliane Dallegrave
- grid.412344.40000 0004 0444 6202Graduate Program in Health Sciences, Laboratory of Research in Toxicology (LAPETOX), Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS Brazil
| | - Gerald W. Zamponi
- grid.22072.350000 0004 1936 7697Department of Clinical Neurosciences, University of Calgary, Calgary, AB Canada ,grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB Canada
| |
Collapse
|
87
|
Ślusarz MJ. Molecular insights into the mechanism of sugar-modified enkephalin binding to opioid receptors. Comput Biol Chem 2022; 101:107783. [DOI: 10.1016/j.compbiolchem.2022.107783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
|
88
|
Caniceiro AB, Bueschbell B, Schiedel AC, Moreira IS. Class A and C GPCR Dimers in Neurodegenerative Diseases. Curr Neuropharmacol 2022; 20:2081-2141. [PMID: 35339177 PMCID: PMC9886835 DOI: 10.2174/1570159x20666220327221830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/21/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative diseases affect over 30 million people worldwide with an ascending trend. Most individuals suffering from these irreversible brain damages belong to the elderly population, with onset between 50 and 60 years. Although the pathophysiology of such diseases is partially known, it remains unclear upon which point a disease turns degenerative. Moreover, current therapeutics can treat some of the symptoms but often have severe side effects and become less effective in long-term treatment. For many neurodegenerative diseases, the involvement of G proteincoupled receptors (GPCRs), which are key players of neuronal transmission and plasticity, has become clearer and holds great promise in elucidating their biological mechanism. With this review, we introduce and summarize class A and class C GPCRs, known to form heterodimers or oligomers to increase their signalling repertoire. Additionally, the examples discussed here were shown to display relevant alterations in brain signalling and had already been associated with the pathophysiology of certain neurodegenerative diseases. Lastly, we classified the heterodimers into two categories of crosstalk, positive or negative, for which there is known evidence.
Collapse
Affiliation(s)
- Ana B. Caniceiro
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Beatriz Bueschbell
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Anke C. Schiedel
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany;
| | - Irina S. Moreira
- University of Coimbra, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; ,Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal,Address correspondence to this author at the Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal; E-mail:
| |
Collapse
|
89
|
Higginbotham JA, Markovic T, Massaly N, Morón JA. Endogenous opioid systems alterations in pain and opioid use disorder. Front Syst Neurosci 2022; 16:1014768. [PMID: 36341476 PMCID: PMC9628214 DOI: 10.3389/fnsys.2022.1014768] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
Decades of research advances have established a central role for endogenous opioid systems in regulating reward processing, mood, motivation, learning and memory, gastrointestinal function, and pain relief. Endogenous opioid systems are present ubiquitously throughout the central and peripheral nervous system. They are composed of four families, namely the μ (MOPR), κ (KOPR), δ (DOPR), and nociceptin/orphanin FQ (NOPR) opioid receptors systems. These receptors signal through the action of their endogenous opioid peptides β-endorphins, dynorphins, enkephalins, and nociceptins, respectfully, to maintain homeostasis under normal physiological states. Due to their prominent role in pain regulation, exogenous opioids-primarily targeting the MOPR, have been historically used in medicine as analgesics, but their ability to produce euphoric effects also present high risks for abuse. The ability of pain and opioid use to perturb endogenous opioid system function, particularly within the central nervous system, may increase the likelihood of developing opioid use disorder (OUD). Today, the opioid crisis represents a major social, economic, and public health concern. In this review, we summarize the current state of the literature on the function, expression, pharmacology, and regulation of endogenous opioid systems in pain. Additionally, we discuss the adaptations in the endogenous opioid systems upon use of exogenous opioids which contribute to the development of OUD. Finally, we describe the intricate relationship between pain, endogenous opioid systems, and the proclivity for opioid misuse, as well as potential advances in generating safer and more efficient pain therapies.
Collapse
Affiliation(s)
- Jessica A. Higginbotham
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
- Pain Center, Washington University in St. Louis, St. Louis, MO, United States
- School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Tamara Markovic
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nicolas Massaly
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
- Pain Center, Washington University in St. Louis, St. Louis, MO, United States
- School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Jose A. Morón
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
- Pain Center, Washington University in St. Louis, St. Louis, MO, United States
- School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
90
|
Indermuhle P, Zelko M, Mori C, Chiu SH. Use of Scheduled Nonopioid Analgesia to Decrease Inpatient Opioid Consumption After Scheduled Cesarean Birth. Nurs Womens Health 2022; 26:344-352. [PMID: 36084712 DOI: 10.1016/j.nwh.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/20/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To compare opioid use and pain scores in women who had scheduled cesarean birth before and after implementing a scheduled nonopioid analgesia practice guideline. DESIGN Quality improvement project with a comparison of pre-/postintervention. SETTING/LOCAL PROBLEM A 170-bed community hospital where the administration of postcesarean pain medications was unstandardized. PARTICIPANTS Convenience sample of 175 individuals who were scheduled for cesarean birth (106 in preintervention group and 69 in postimplementation group). INTERVENTION/MEASUREMENTS All participants had received a dose of 150 mcg of intrathecal morphine intraoperatively. Care of participants in the postimplementation group included a new practice guideline using preoperative oral acetaminophen 1 g and postoperative intravenous ketorolac 30 mg that transitioned to ibuprofen 600 mg orally every 6 hours until discharge. Acetaminophen 1 g every 6 hours also continued until discharge. For breakthrough pain, oxycodone 5 mg to 10 mg was available. RESULTS Results were analyzed using the chi-square and t test. There was a statistical difference in the mean milligram morphine equivalent consumed after scheduled cesarean birth (preintervention = 21.15 vs. postintervention = 3.91, p < .001). Postimplementation, 84.1% of participants did not consume any opioids beyond the intrathecal dose compared to 47.2% of participants preintervention. Mean pain scores decreased from 2.49 to 1.62 (p < .001), and there was an observed decrease of the highest reported pain score from 5.39 to 4.03 (p < .001). CONCLUSION The results of this project support the current literature indicating that the administration of a scheduled nonopioid multimodal analgesia regimen to individuals with scheduled cesarean birth is an effective postoperative pain management strategy. This approach to managing surgical birth pain can decrease subjective reports of pain and overall opioid consumption during the hospital stay.
Collapse
|
91
|
Celik MÖ, Negrete R, Di Rosso R, Machelska H, Stein C. Amelioration of injury-induced tissue acidosis by a nonsteroidal analgesic attenuates antinociceptive effects of the pH-dependent opioid agonist NFEPP. Sci Rep 2022; 12:15172. [PMID: 36071140 PMCID: PMC9452500 DOI: 10.1038/s41598-022-19568-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/31/2022] [Indexed: 11/09/2022] Open
Abstract
Opioid agonists are powerful drugs for managing pain. However, their central side effects are limiting their use and drugs with similar potency, but a lower risk profile are needed. (±)-N-(3-fluoro-1-phenethylpiperidine-4-yl)-N-phenylpropionamide (NFEPP) is a novel opioid agonist that preferentially activates opioid receptors at acidic extracellular pH. NFEPP was designed to activate peripheral opioid receptors in injured tissue, therefore precluding side effects elicited at normal pH in brain or intestinal wall. Considering the common combination of opioids and nonsteroidal anti-inflammatory drugs (NSAIDs) in multimodal analgesia, we investigated the interaction between NFEPP and a widely prescribed prototypical NSAID, diclofenac (DCF), in a rat model of unilateral hindpaw inflammation induced by complete Freund’s adjuvant. We evaluated the effects of systemically applied DCF on the paw tissue pH, on the expression of inflammatory mediators in immune cells from inflamed paws and on the expression of opioid receptors in dorsal root ganglia. Additionally, we investigated the antinociceptive efficacy of NFEPP injected into the inflamed paws after DCF treatment. We found that DCF reduced inflammation-induced nociceptive responses and tissue acidosis, but did not change the mRNA expression of IL-1β, TNF-α, IL-6, IL-4, NGF, or of mu-, delta-, or kappa-opioid receptors. The treatment with DCF moderately reduced the antinociceptive efficacy of NFEPP, suggesting a correlation between an increase in local tissue pH and the decreased antinociceptive effect of this pH-sensitive opioid agonist.
Collapse
Affiliation(s)
- Melih Ö Celik
- Department of Experimental Anesthesiology (CBF), Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany.
| | - Roger Negrete
- Department of Experimental Anesthesiology (CBF), Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Riccardo Di Rosso
- Department of Experimental Anesthesiology (CBF), Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Halina Machelska
- Department of Experimental Anesthesiology (CBF), Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Christoph Stein
- Department of Experimental Anesthesiology (CBF), Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| |
Collapse
|
92
|
Bedene A, Dahan A, Rosendaal FR, van Dorp ELA. Opioid epidemic: lessons learned and updated recommendations for misuse involving prescription versus non-prescription opioids. Expert Rev Clin Pharmacol 2022; 15:1081-1094. [PMID: 36068971 DOI: 10.1080/17512433.2022.2114898] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION In the past decades, the opioid crisis has heavily impacted parts of the US society and has been followed by an increase in the use of opioids worldwide. It is of paramount importance that we explore the origins of the US opioid epidemic to develop best practices to tackle the rising tide of opioid overdoses. AREAS COVERED In this expert review, we discuss opioid (over)prescription, change in perception of pain, and false advertisement of opioid safety as the leading causes of the US opioid epidemic. Then, we review the evidence about opioid dependence and addiction potential and provide current knowledge about predictors of aberrant opioid-related behavior. Lastly, we discuss different approaches that were considered or undertaken to combat the rising tide of opioid-related deaths by regulatory bodies, pharmaceutical companies, and health-care professionals. For this expert review, we considered published articles relevant to the topic under investigation that we retrieved from Medline or Google scholar electronic database. EXPERT OPINION The opioid epidemic is a dynamic process with many underlying mechanisms. Therefore, no single approach may be best suited to combat it. In our opinion, the best way forward is to employ multiple strategies to tackle different underlying mechanisms.
Collapse
Affiliation(s)
- Ajda Bedene
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Eveline L A van Dorp
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
93
|
Tian X, Zhang J, Wang S, Gao H, Sun Y, Liu X, Fu W, Tan B, Su R. Tyrosine 7.43 is important for mu-opioid receptor downstream signaling pathways activated by fentanyl. Front Pharmacol 2022; 13:919325. [PMID: 36120357 PMCID: PMC9478952 DOI: 10.3389/fphar.2022.919325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
G protein–coupled receptors can signal through both G proteins and ß-arrestin2. For the µ-opioid receptor (MOR), early experimental evidence from a single study suggested that G protein signaling mediates analgesia and sedation, whereas ß-arrestin signaling mediates respiratory depression and constipation. Then, receptor mutations were used to clarify which residues interact with ligands to selectively regulate signals in a ligand-specific manner. However, there is no systematic study on how to determine these residues and clarify the molecular mechanism of their influence on signal pathways. We have therefore used molecular docking to predict the amino acid sites that affect the binding of ligands and MOR. Then, the corresponding sites were mutated to determine the effect of the structural determinant of MOR on Gi/o protein and ß-arrestin pathways. The pharmacological and animal behavioral experiments in combination with molecular dynamics simulations were used to elucidate the molecular mechanism of key residues governing the signaling. Without affecting ligand binding to MOR, MORY7.43A attenuated the activation of both Gi/o protein and ß-arrestin signaling pathways stimulated by fentanyl, whereas it did not change these two pathways stimulated by morphine. Likewise, the activation peak time of extracellular regulated protein kinases was significantly prolonged at MORY7.43A compared with that at MORwildtype stimulated by fentanyl, but there was no difference stimulated by morphine. In addition, MORY7.43A significantly enhanced analgesia by fentanyl but not by morphine in the mice behavioral experiment. Furthermore, the molecular dynamics simulations showed that H6 moves toward the cellular membrane. H6 of the fentanyl–Y7.43A system moved outward more than that in the morphine–Y7.43A system. Y7.43 mutation disrupted hydrophobic interactions between W6.48 and Y7.43 in the fentanyl–Y7.43A system but not in the morphine–Y7.43A system. Our results have disclosed novel mechanisms of Y7.43 mutation affecting MOR signaling pathways. Y7.43 mutation reduced the activation of the Gi/o protein pathway and blocked the ß-arrestin2 recruitment, increased the H6 outward movement of MOR, and disrupted hydrophobic interactions. This may be responsible for the enhanced fentanyl analgesia. These findings are conducive to designing new drugs from the perspective of ligand and receptor binding, and Y7.43 is also expected to be a key site to structure optimization of synthesized compounds.
Collapse
Affiliation(s)
- Xiangyun Tian
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Junjie Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Shaowen Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Huan Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- School of Pharmacy, Yantai University, Yantai, China
| | - Yi Sun
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xiaoqian Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Wei Fu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Bo Tan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- *Correspondence: Bo Tan, , ; Ruibin Su, ,
| | - Ruibin Su
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- *Correspondence: Bo Tan, , ; Ruibin Su, ,
| |
Collapse
|
94
|
Zhang J, Song C, Dai J, Li L, Yang X, Chen Z. Mechanism of opioid addiction and its intervention therapy: Focusing on the reward circuitry and mu-opioid receptor. MedComm (Beijing) 2022; 3:e148. [PMID: 35774845 PMCID: PMC9218544 DOI: 10.1002/mco2.148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 11/09/2022] Open
Abstract
Opioid abuse and addiction have become a global pandemic, posing tremendous health and social burdens. The rewarding effects and the occurrence of withdrawal symptoms are the two mainstays of opioid addiction. Mu-opioid receptors (MORs), a member of opioid receptors, play important roles in opioid addiction, mediating both the rewarding effects of opioids and opioid withdrawal syndrome (OWS). The underlying mechanism of MOR-mediated opioid rewarding effects and withdrawal syndrome is of vital importance to understand the nature of opioid addiction and also provides theoretical basis for targeting MORs to treat drug addiction. In this review, we first briefly introduce the basic concepts of MORs, including their structure, distribution in the nervous system, endogenous ligands, and functional characteristics. We focused on the brain circuitry and molecular mechanism of MORs-mediated opioid reward and withdrawal. The neuroanatomical and functional elements of the neural circuitry of the reward system underlying opioid addiction were thoroughly discussed, and the roles of MOR within the reward circuitry were also elaborated. Furthermore, we interrogated the roles of MORs in OWS, along with the structural basis and molecular adaptions of MORs-mediated withdrawal syndrome. Finally, current treatment strategies for opioid addiction targeting MORs were also presented.
Collapse
Affiliation(s)
- Jia‐Jia Zhang
- National Translational Science Center for Molecular Medicine & Department of Cell BiologyThe Fourth Military Medical UniversityXi'anChina
| | - Chang‐Geng Song
- Department of NeurologyXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Ji‐Min Dai
- Department of Hepatobiliary SurgeryXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Ling Li
- National Translational Science Center for Molecular Medicine & Department of Cell BiologyThe Fourth Military Medical UniversityXi'anChina
| | - Xiang‐Min Yang
- National Translational Science Center for Molecular Medicine & Department of Cell BiologyThe Fourth Military Medical UniversityXi'anChina
| | - Zhi‐Nan Chen
- National Translational Science Center for Molecular Medicine & Department of Cell BiologyThe Fourth Military Medical UniversityXi'anChina
| |
Collapse
|
95
|
Santos MS, Santos PDJ, Vasconcelos ABS, Gomes ACA, de Oliveira LM, Souza PRM, Heredia‐Elvar JR, Da Silva‐Grigoletto ME. Neuroendocrine effects of a single bout of functional and core stabilization training in women with chronic nonspecific low back pain: A crossover study. Physiol Rep 2022; 10:e15365. [PMID: 36065850 PMCID: PMC9446407 DOI: 10.14814/phy2.15365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023] Open
Abstract
Exercise-induced hypoalgesia (EIH) is characterized as the pain reduction after an exercise session and it seems to be related to the release of plasma β-endorphin. In this sense, the core stabilization training (CT) has been suggested for patients with chronic nonspecific low back pain (CNSLBP), but it is unclear whether it induces EIH. Patients with CNSLBP have neuromotor dysfunctions that can affect the performance of functional tasks, thus, performing functional training (FT) could improve motor control and promote EIH, since functional training uses multi-joint exercises that aim to improve the functionality of actions performed in daily life. EIH is usually assessed using quantitative sensory tests (QST) such as conditioned pain modulation, pressure pain threshold, and temporal summation. Thus, the sum of parameters from quantitative sensory tests and plasma β-endorphin would make it possible to understand what the neuroendocrine effects of FT and CT session are. Our study compared the acute effect of CT and FT on the EIH and plasma β-endorphin release, and correlated plasma β-endorphin with quantitative sensory testing in patients with CNSLBP. Eighteen women performed two training sessions (CT and FT) with an interval of 48 h between sessions. EIH was assessed by QST and plasma β-endorphin levels. Results showed that only FT significantly increased plasma β-endorphin (FT p < 0.01; CT p = 0.45), which correlated with pain pressure threshold (PPT) and conditioned pain modulation (CPM). However, QST values were not different in women with CNSLBP after CT or FT protocols. Plasma β-endorphin correlated with PPT and CPM, however, the same did not occur with a temporal summation.
Collapse
Affiliation(s)
- Marta Silva Santos
- Department of Physical Education, Functional Training GroupFederal University of SergipeSão CristóvãoBrazil
| | - Poliana de Jesus Santos
- Department of Physical Education, Functional Training GroupFederal University of SergipeSão CristóvãoBrazil
| | | | - Ana Carolina Amado Gomes
- Institute of Biological Sciences, Laboratory of Immunology and Genomics of ParasitesFederal University of Minas GeraisBelo HorizonteBrazil
| | - Luciana Maria de Oliveira
- Department of Morphology, Laboratory of Entomology and Tropical ParasitologyFederal University of SergipeSão CristóvãoBrazil
| | | | | | | |
Collapse
|
96
|
Cata JP, Uhelski ML, Gorur A, Bhoir S, Ilsin N, Dougherty PM. The µ-Opioid Receptor in Cancer and Its Role in Perineural Invasion: A Short Review and New Evidence. Adv Biol (Weinh) 2022; 6:e2200020. [PMID: 35531616 DOI: 10.1002/adbi.202200020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/15/2022] [Indexed: 01/28/2023]
Abstract
Cancer is a significant public health problem worldwide. While there has been a steady decrease in the cancer death rate over the last two decades, the number of survivors has increased and, thus, cancer-related sequela. Pain affects the life of patients with cancer and survivors. Prescription opioids continue as the analgesic of choice to treat moderate-to-severe cancer-related pain. There has been controversy on whether opioids impact cancer progression by acting on cancer cells or the tumor microenvironment. The μ-opioid receptor is the site of action of prescription opioids. This receptor can participate in an important mechanism of cancer spread, such as perineural invasion. In this review, current evidence on the role of the μ-opioid receptor in cancer growth is summarized and preliminary evidence about its effect on the cross-talk between sensory neurons and malignant cells is provided.
Collapse
Affiliation(s)
- Juan P Cata
- Department of Anesthesiology and Perioperative Medicine, The University of Texas-MD Anderson Cancer Center, Houston, TX, 77030, USA.,Anesthesiology and Surgical Oncology Research Group, Houston, TX, 77030, USA
| | - Megan L Uhelski
- Department of Pain Medicine, The University of Texas-MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Aysegul Gorur
- Department of Investigational Cancer Therapeutics, The University of Texas-MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Siddhant Bhoir
- Department of Anesthesiology and Perioperative Medicine, The University of Texas-MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Nisa Ilsin
- Department of Anesthesiology and Perioperative Medicine, The University of Texas-MD Anderson Cancer Center, Houston, TX, 77030, USA.,Rice University, Houston, TX, 77005, USA
| | - Patrick M Dougherty
- Department of Pain Medicine, The University of Texas-MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
97
|
Xiao K, Zheng Q, Bao L. Fentanyl activates ovarian cancer and alleviates chemotherapy-induced toxicity via opioid receptor-dependent activation of EGFR. BMC Anesthesiol 2022; 22:268. [PMID: 35999506 PMCID: PMC9396929 DOI: 10.1186/s12871-022-01812-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/11/2022] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND Fentanyl is an opioid analgesic and is widely used in ovarian cancer patients for pain management. Although increasing evidence has suggested the direct role of fentanyl on cancer, little is known on the effect of fentanyl on ovarian cancer cells. METHODS Proliferation, migration and apoptosis assays were performed in ovarian cancer cells after fentanyl treatment. Xenograft mouse model was generated to investigate the in vivo efficacy of fentanyl. Combination index was analyzed for the combination of fentanyl and chemotherapeutic drugs. Immunoblotting approach was used to analyze signaling involved in fentanyl's action focusing on EGFR. RESULTS Fentanyl at nanomolar concentration does-dependently increased migration and proliferation of a panel of ovarian cancer cell lines. Fentanyl at the same concentrations either did not or stimulated proliferation to a less extent in normal cells than in ovarian cancer cells. Consistently, fentanyl significantly promoted ovarian cancer growth in vivo. The combination of fentanyl with cisplatin or paclitaxel was antagonist in inhibiting cell proliferation. Although fentanyl did not affect cell apoptosis, it significantly alleviated ovarian cancer cell death induced by chemotherapeutic drugs. Mechanistically, fentanyl specifically activated EGFR and its-mediated downstream pathways. Knockdown of EGFR abolished the stimulatory effects of fentanyl on ovarian cancer cells. We finally demonstrated that the activation of EGFR by fentanyl is associated with opioid µ receptor system. CONCLUSIONS Fentanyl activates ovarian cancer via simulating EGFR signaling pathways in an opioid µ receptor-dependent manner. The activation of EGFR signaling by fentanyl may provide a new guide in clinical use of fentanyl in ovarian cancer patients.
Collapse
Affiliation(s)
- Kai Xiao
- Department of Anesthesia, Wuhan Fourth Hospital, 473 Hanzheng Street, Qiaokou District, Wuhan, 430033, Hubei, China
| | - Qinghong Zheng
- Department of Anesthesia, Wuhan Fourth Hospital, 473 Hanzheng Street, Qiaokou District, Wuhan, 430033, Hubei, China
| | - Lei Bao
- Department of Anesthesia, Wuhan Fourth Hospital, 473 Hanzheng Street, Qiaokou District, Wuhan, 430033, Hubei, China.
| |
Collapse
|
98
|
Zhang X, Sun MY, Zhang X, Guo CR, Lei YT, Wang WH, Fan YZ, Cao P, Li CZ, Wang R, Li XH, Yu Y, Yang XN. Dynamic recognition of naloxone, morphine and endomorphin1 in the same pocket of µ-opioid receptors. Front Mol Biosci 2022; 9:925404. [PMID: 36052166 PMCID: PMC9424762 DOI: 10.3389/fmolb.2022.925404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Morphine, the most widely used analgesic, relieves severe pain by activating the μ-opioid receptor (MOR), whereas naloxone, with only slight structural changes compared to morphine, exhibits inhibitory effect, and is used to treat opioid abuse. The mechanism by which the MOR distinguishes between the two is unclear. Molecular dynamics (MD) simulations on a 1-μs time scale and metadynamics-enhanced conformational sampling are used here to determine the different interactions of these two ligands with MOR: morphine adjusted its pose by continuously flipping deeper into the pocket, whereas naloxone failed to penetrate deeper because its allyl group conflicts with several residues of MOR. The endogenous peptide ligand endomorphin-1 (EM-1) underwent almost no significant conformational changes during the MD simulations. To validate these processes, we employed GIRK4S143T, a MOR-activated Gβγ-protein effector, in combination with mutagenesis and electrophysiological recordings. We verified the role of some key residues in the dynamic recognition of naloxone and morphine and identified the key residue I322, which leads to differential recognition of morphine and naloxone while assisting EM-1 in activating MOR. Reducing the side chain size of I322 (MORI322A) transformed naloxone from an inhibitor directly into an agonist of MOR, and I322A also significantly attenuated the potency of MOR on EM-1, confirming that binding deep in the pocket is critical for the agonistic effect of MOR. This finding reveals a dynamic mechanism for the response of MOR to different ligands and provides a basis for the discovery of new ligands for MOR at the atomic level.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Basic Medicine and Clinical Pharmacy and State Key laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Meng-Yang Sun
- Department of Basic Medicine and Clinical Pharmacy and State Key laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xue Zhang
- Department of Basic Medicine and Clinical Pharmacy and State Key laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Chang-Run Guo
- Department of Basic Medicine and Clinical Pharmacy and State Key laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yun-Tao Lei
- Department of Basic Medicine and Clinical Pharmacy and State Key laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Wen-Hui Wang
- Department of Basic Medicine and Clinical Pharmacy and State Key laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Ying-Zhe Fan
- Putuo Hospital, Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Peng Cao
- Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chang-Zhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xing-Hua Li
- Department of Basic Medicine and Clinical Pharmacy and State Key laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Ye Yu
- Department of Basic Medicine and Clinical Pharmacy and State Key laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao-Na Yang
- Department of Basic Medicine and Clinical Pharmacy and State Key laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
99
|
Uenoyama Y, Tsuchida H, Nagae M, Inoue N, Tsukamura H. Opioidergic pathways and kisspeptin in the regulation of female reproduction in mammals. Front Neurosci 2022; 16:958377. [PMID: 36033602 PMCID: PMC9404872 DOI: 10.3389/fnins.2022.958377] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Endogenous opioid peptides have attracted attention as critical neuropeptides in the central mechanism regulating female reproduction ever since the discovery that arcuate dynorphin neurons that coexpress kisspeptin and neurokinin B (NKB), which are also known as kisspeptin/neurokinin B/dynorphin (KNDy) neurons, play a role as a master regulator of pulsatile gonadotropin-releasing hormone (GnRH) release in mammals. In this study, we first focus on the role of dynorphin released by KNDy neurons in the GnRH pulse generation. Second, we provide a historical overview of studies on endogenous opioid peptides. Third, we discuss how endogenous opioid peptides modulate tonic GnRH/gonadotropin release in female mammals as a mediator of inhibitory internal and external cues, such as ovarian steroids, nutritional status, or stress, on reproduction. Then, we discuss the role of endogenous opioid peptides in GnRH surge generation in female mammals.
Collapse
|
100
|
Park HS, Byun BJ, Kang YK. Exploring Conformational Preferences of Leu-enkephalin Using the Conformational Search and Double-Hybrid DFT Energy Calculations. ACS OMEGA 2022; 7:27755-27768. [PMID: 35967045 PMCID: PMC9366962 DOI: 10.1021/acsomega.2c03942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
The conformational preferences of Leu-enkephalin (Leu-Enk) were explored by the conformational search and density functional theory (DFT) calculations. By a combination of low-energy conformers of each residue, the initial structures of the neutral Leu-Enk were generated and optimized using the ECEPP3 force field in the gas phase. These structures were reoptimized at the HF/3-21G(d) and M06-2X levels of theory with 6-31G(d) and 6-31+G(d) basis functions. We finally located the 139 structures with the relative energy <10 kcal mol-1 in the gas phase, from which the structures of the corresponding zwitterionic Leu-Enk were generated and reoptimized at the M06-2X/6-31+G(d) level of theory using the implicit solvation model based on density (SMD) in water. The conformational preferences of Leu-Enk were analyzed using Gibbs free energies corrected by single-point energies calculated at the double-hybrid DSD-PBEP86-D3BJ/def2-TZVP level of theory in the gas phase and in water. The neutral Leu-Enk dominantly adopted a folded structure in the gas phase stabilized by three H-bonds with a βII'-bend-like motif at the Gly3-Phe4 sequence and a close contact between the side chains of Phe4 and Leu5. The zwitterionic Leu-Enk exhibited a folded structure in water stabilized by three H-bonds with double β-bends such as a βII' bend at the Gly2-Gly3 sequence and a βI bend at the Gly3-Phe4 sequence. The calculated ensemble-averaged distance between CGly2 α and CLeu5 α of the zwitterionic Leu-Enk in water is consistent with the value estimated from the simulated annealing using the distance constraints derived from nuclear Overhauser effect spectroscopy (NOESY) spectra in water. Interestingly, the preferred conformations of the neutral and zwitterionic Leu-Enk are new folded structures not predicted by earlier computational studies. According to the refined model of the zwitterionic Leu-Enk bound to δ-opioid receptor (δOR), there were favorable interactions of the terminal charged groups of Leu-Enk with the side chains of charged residues of δOR as well as a favorable CAryl···H interaction of the Phe4 residue of Leu-Enk with Trp284 of δOR. Hence, these favorable interactions would induce the folded structure of the zwitterionic Leu-Enk with double β-bends isolated in water into the "bioactive conformation" like an extended structure when binding to δOR.
Collapse
Affiliation(s)
- Hae Sook Park
- Department
of Nursing, Cheju Halla University, 38 Halladaehak-ro, Jeju, Jeju-do 63092, Republic of Korea
| | - Byung Jin Byun
- Drug
Discovery Center, JW Pharmaceutical Co.
Ltd., 2477 Nambusunhwan-ro, Seocho-gu, Seoul 06725, Republic
of Korea
| | - Young Kee Kang
- Department
of Chemistry, Chungbuk National University, 1 Chungdae-ro,
Seowon-gu, Cheongju, Chungbuk 28644, Republic of Korea
| |
Collapse
|