51
|
Understanding Rice- Magnaporthe Oryzae Interaction in Resistant and Susceptible Cultivars of Rice under Panicle Blast Infection Using a Time-Course Transcriptome Analysis. Genes (Basel) 2021; 12:genes12020301. [PMID: 33672641 PMCID: PMC7924189 DOI: 10.3390/genes12020301] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 01/21/2023] Open
Abstract
Rice blast is a global threat to food security with up to 50% yield losses. Panicle blast is a more severe form of rice blast and the response of rice plant to leaf and panicle blast is distinct in different genotypes. To understand the specific response of rice in panicle blast, transcriptome analysis of blast resistant cultivar Tetep, and susceptible cultivar HP2216 was carried out using RNA-Seq approach after 48, 72 and 96 h of infection with Magnaporthe oryzae along with mock inoculation. Transcriptome data analysis of infected panicle tissues revealed that 3553 genes differentially expressed in HP2216 and 2491 genes in Tetep, which must be the responsible factor behind the differential disease response. The defense responsive genes are involved mainly in defense pathways namely, hormonal regulation, synthesis of reactive oxygen species, secondary metabolites and cell wall modification. The common differentially expressed genes in both the cultivars were defense responsive transcription factors, NBS-LRR genes, kinases, pathogenesis related genes and peroxidases. In Tetep, cell wall strengthening pathway represented by PMR5, dirigent, tubulin, cell wall proteins, chitinases, and proteases was found to be specifically enriched. Additionally, many novel genes having DOMON, VWF, and PCaP1 domains which are specific to cell membrane were highly expressed only in Tetep post infection, suggesting their role in panicle blast resistance. Thus, our study shows that panicle blast resistance is a complex phenomenon contributed by early defense response through ROS production and detoxification, MAPK and LRR signaling, accumulation of antimicrobial compounds and secondary metabolites, and cell wall strengthening to prevent the entry and spread of the fungi. The present investigation provided valuable candidate genes that can unravel the mechanisms of panicle blast resistance and help in the rice blast breeding program.
Collapse
|
52
|
Lee K, Lee JG, Min K, Choi JH, Lim S, Lee EJ. Transcriptome Analysis of the Fruit of Two Strawberry Cultivars "Sunnyberry" and "Kingsberry" That Show Different Susceptibility to Botrytis cinerea after Harvest. Int J Mol Sci 2021; 22:ijms22041518. [PMID: 33546320 PMCID: PMC7913547 DOI: 10.3390/ijms22041518] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
Gray mold (Botrytis cinerea) is a fungal plant pathogen causing postharvest decay in strawberry fruit. Here, we conducted a comparative transcriptome analysis to identify differences in gene expression between the immature-green (IG) and mature-red (MR) stages of the “Sunnyberry” (gray mold-resistant) and “Kingsberry” (gray mold susceptible) strawberry cultivars. Most of the genes involved in lignin and alkane-type wax biosynthesis were relatively upregulated in “Sunnyberry”. However, pathogenesis-related proteins encoding R- and antioxidant-related genes were comparatively upregulated in “Kingsberry”. Analysis of gene expression and physiological traits in the presence and absence of B. cinerea inoculation revealed that the defense response patterns significantly differed between IG and MR rather than the cultivars. “Kingsberry” showed higher antioxidant induction at IG and upregulated hemicellulose-strengthening and R genes at MR. Hence, “Sunnyberry” and “Kingsberry” differed mainly in terms of the expression levels of the genes forming cuticle, wax, and lignin and controlling the defense responses. These discrepancies might explain the relative difference between these strawberry cultivars in terms of their postharvest responses to B. cinerea.
Collapse
Affiliation(s)
- Kyuweon Lee
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (K.L.); (J.G.L.); (K.M.)
| | - Jeong Gu Lee
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (K.L.); (J.G.L.); (K.M.)
| | - Kyeonglim Min
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (K.L.); (J.G.L.); (K.M.)
| | - Jeong Hee Choi
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Korea;
| | - Sooyeon Lim
- National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju-gun 55365, Korea;
| | - Eun Jin Lee
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (K.L.); (J.G.L.); (K.M.)
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Correspondence:
| |
Collapse
|
53
|
Cui Y, Ge Q, Zhao P, Chen W, Sang X, Zhao Y, Chen Q, Wang H. Rapid Mining of Candidate Genes for Verticillium Wilt Resistance in Cotton Based on BSA-Seq Analysis. FRONTIERS IN PLANT SCIENCE 2021; 12:703011. [PMID: 34691091 PMCID: PMC8531640 DOI: 10.3389/fpls.2021.703011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/24/2021] [Indexed: 05/05/2023]
Abstract
Cotton is a globally important cash crop. Verticillium wilt (VW) is commonly known as "cancer" of cotton and causes serious loss of yield and fiber quality in cotton production around the world. Here, we performed a BSA-seq analysis using an F2:3 segregation population to identify the candidate loci involved in VW resistance. Two QTLs (qvw-D05-1 and qvw-D05-2) related to VW resistance in cotton were identified using two resistant/susceptible bulks from the F2 segregation population constructed by crossing the resistant cultivar ZZM2 with the susceptible cultivar J11. A total of 30stop-lost SNPs and 42 stop-gained SNPs, which included 17 genes, were screened in the qvw-D05-2 region by SnpEff analysis. Further analysis of the transcriptome data and qRT-PCR revealed that the expression level of Ghir_D05G037630 (designated as GhDRP) varied significantly at certain time points after infection with V. dahliae. The virus-induced gene silencing of GhDRP resulted in higher susceptibility of the plants to V. dahliae than the control, suggesting that GhDRP is involved in the resistance to V. dahlia infection. This study provides a method for rapid mining of quantitative trait loci and screening of candidate genes, as well as enriches the genomic information and gene resources for the molecular breeding of disease resistance in cotton.
Collapse
Affiliation(s)
- Yanli Cui
- Engineering Research Centre of Cotton, Ministry of Education, Xinjiang Agricultural University, Ürümqi, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Qun Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Pei Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Wei Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiaohui Sang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yunlei Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- *Correspondence: Yunlei Zhao,
| | - Quanjia Chen
- Engineering Research Centre of Cotton, Ministry of Education, Xinjiang Agricultural University, Ürümqi, China
- Quanjia Chen,
| | - Hongmei Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Hongmei Wang,
| |
Collapse
|
54
|
Transcription Factor CfSte12 of Colletotrichum fructicola Is a Key Regulator of Early Apple Glomerella Leaf Spot Pathogenesis. Appl Environ Microbiol 2020; 87:AEM.02212-20. [PMID: 33067192 DOI: 10.1128/aem.02212-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
Glomerella leaf spot (GLS), caused by Colletotrichum fructicola, is a rapidly emerging disease leading to defoliation, fruit spot, and storage fruit rot on apple in China. Little is known about the mechanisms of GLS pathogenesis. Early transcriptome analysis revealed that expression of the zinc finger transcription factor Ste12 gene in C. fructicola (CfSte12) was upregulated in appressoria and leaf infection. To investigate functions of CfSte12 during pathogenesis, we constructed gene deletion mutants (ΔCfSte12) by homologous recombination. Phenotypic analysis revealed that CfSte12 was involved in pathogenesis of nonwounded apple fruit and leaf, as well as wounded apple fruit. Subsequent histological studies revealed that loss of pathogenicity by ΔCfSte12 on apple leaf was expressed as defects of conidium germination, appressorium development, and appressorium-mediated penetration. Further RNA sequencing-based transcriptome comparison revealed that CfSte12 modulates the expression of genes related to appressorium function (e.g., genes for the tetraspanin PLS1, Gas1-like proteins, cutinases, and melanin biosynthesis) and candidate effectors likely involved in plant interaction. In sum, our results demonstrated that CfSte12 is a key regulator of early apple GLS pathogenesis in C. fructicola In addition, CfSte12 is also needed for sexual development of perithecia and ascospores.IMPORTANCE Glomerella leaf spot (GLS) is an emerging fungal disease of apple that causes huge economic losses in Asia, North America, and South America. The damage inflicted by GLS manifests in rapid necrosis of leaves, severe defoliation, and necrotic spot on the fruit surface. However, few studies have addressed mechanisms of GLS pathogenesis. In this study, we identified and characterized a key pathogenicity-related transcription factor, CfSte12, of Colletotrichum fructicola that contributes to GLS pathogenesis. We provide evidence that the CfSte12 protein regulates many important pathogenic processes of GLS, including conidium germination, appressorium formation, appressorium-mediated penetration, and colonization. CfSte12 also impacts development of structures needed for sexual reproduction which are vital for the GLS disease cycle. These results reveal a key pathogenicity-related transcription factor, CfSte12, in C. fructicola that causes GLS.
Collapse
|
55
|
Ren R, Yang X, Song A, Li C, Yang H, Kang Y. Control of Phytophthora melonis damping-off treated with 24-epibrassinolide and a histological study of cucumber hypocotyl. PROTOPLASMA 2020; 257:1519-1529. [PMID: 32621043 DOI: 10.1007/s00709-020-01523-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
The oomycete Phytophthora melonis causes a severe disease in cucumber plants in Asia. In this study, the diameter of cucumber hypocotyl in the resistant variety 'Shantou qing gua' was significantly larger than that of the susceptible variety 'Zhongnong No. 20'. The significantly lower incidence of disease and less invasive hyphae on the epidermis and transverse section of hypocotyls in P plants of the resistant variety than those in susceptible cultivars were also observed. Brassinosteroids are a class of phytohormones that affect plant growth and development and are involved in regulating plant resistance to a variety of biotic and abiotic stresses. 24-Epibrassinolide root drenching significantly enhanced the thickening of cucumber hypocotyl. Thick hypocotyls showed strong resistance to P. melonis, indicating that it significantly reduced the incidence of disease and retarded the hyphae extension for both resistant and susceptible cucumbers. 24-Epibrassinolide pretreatment had no significant effect on the elongation of cucumber hypocotyl. Further histological observation showed that under the condition of infection with P. melonis, exogenous 24-epibrassinolide could induce lignin deposition in external phloem and xylem vessel cell wall of the cucumber hypocotyl vascular bundle. There is also an accumulation of callose in the external phloem sieve plate, which activates the resistance responses in cell walls. It is worth mentioning that in both inoculated and uninoculated conditions, exogenous 24-epibrassinolide enhanced lignin formation in external phloem and xylem vessel cell wall of the vascular bundle. This increased the content of lignin in hypocotyl as well as the number of vascular bundles in the hypocotyl base. The above results show that 24-epibrassinolide constitutively regulates the thickening of cucumber hypocotyl and the development of vascular bundle, hence preventing phytophthora infection and inducing plant resistance to disease.
Collapse
Affiliation(s)
- Rongrong Ren
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Xian Yang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Aiting Song
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Chenchen Li
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Haijun Yang
- Center of Experimental Teaching for Common Basic Courses, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| | - Yunyan Kang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
56
|
Mahmood K, Orabi J, Kristensen PS, Sarup P, Jørgensen LN, Jahoor A. De novo transcriptome assembly, functional annotation, and expression profiling of rye (Secale cereale L.) hybrids inoculated with ergot (Claviceps purpurea). Sci Rep 2020; 10:13475. [PMID: 32778722 PMCID: PMC7417550 DOI: 10.1038/s41598-020-70406-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/24/2020] [Indexed: 12/22/2022] Open
Abstract
Rye is used as food, feed, and for bioenergy production and remain an essential grain crop for cool temperate zones in marginal soils. Ergot is known to cause severe problems in cross-pollinated rye by contamination of harvested grains. The molecular response of the underlying mechanisms of this disease is still poorly understood due to the complex infection pattern. RNA sequencing can provide astonishing details about the transcriptional landscape, hence we employed a transcriptomic approach to identify genes in the underlying mechanism of ergot infection in rye. In this study, we generated de novo assemblies from twelve biological samples of two rye hybrids with identified contrasting phenotypic responses to ergot infection. The final transcriptome of ergot susceptible (DH372) and moderately ergot resistant (Helltop) hybrids contain 208,690 and 192,116 contigs, respectively. By applying the BUSCO pipeline, we confirmed that these transcriptome assemblies contain more than 90% of gene representation of the available orthologue groups at Virdiplantae odb10. We employed a de novo assembled and the draft reference genome of rye to count the differentially expressed genes (DEGs) between the two hybrids with and without inoculation. The gene expression comparisons revealed that 228 genes were linked to ergot infection in both hybrids. The genome ontology enrichment analysis of DEGs associated them with metabolic processes, hydrolase activity, pectinesterase activity, cell wall modification, pollen development and pollen wall assembly. In addition, gene set enrichment analysis of DEGs linked them to cell wall modification and pectinesterase activity. These results suggest that a combination of different pathways, particularly cell wall modification and pectinesterase activity contribute to the underlying mechanism that might lead to resistance against ergot in rye. Our results may pave the way to select genetic material to improve resistance against ergot through better understanding of the mechanism of ergot infection at molecular level. Furthermore, the sequence data and de novo assemblies are valuable as scientific resources for future studies in rye.
Collapse
Affiliation(s)
- Khalid Mahmood
- Nordic Seed A/S, Grindsnabevej 25, 8300, Odder, Denmark. .,Department of Agroecology, Faculty of Science and Technology, Aarhus University, Forsøgsvej 1, Flakkebjerg, 4200, Slagelse, Denmark.
| | - Jihad Orabi
- Nordic Seed A/S, Grindsnabevej 25, 8300, Odder, Denmark
| | | | | | - Lise Nistrup Jørgensen
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Forsøgsvej 1, Flakkebjerg, 4200, Slagelse, Denmark
| | - Ahmed Jahoor
- Nordic Seed A/S, Grindsnabevej 25, 8300, Odder, Denmark.,Department of Plant Breeding, The Swedish University of Agricultural Sciences, 23053, Alnarp, Sweden
| |
Collapse
|
57
|
Molecular evidence for the involvement of cotton GhGLP2, in enhanced resistance to Verticillium and Fusarium Wilts and oxidative stress. Sci Rep 2020; 10:12510. [PMID: 32719475 PMCID: PMC7385154 DOI: 10.1038/s41598-020-68943-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/22/2020] [Indexed: 11/24/2022] Open
Abstract
Germin-like proteins (GLPs) are a diverse and ubiquitous family of plant glycoproteins belonging to the cupin super family; they play considerable roles in plant responses against various abiotic and biotic stresses. Here, we provide evidence that GLP2 protein from cotton (Gossypium hirsutum) functions in plant defense responses against Verticillium dahliae, Fusarium oxysporum and oxidative stress. Purified recombinant GhGLP2 exhibits superoxide dismutase (SOD) activity and inhibits spore germination of pathogens. Virus-induced silencing of GhGLP2 in cotton results in increased susceptibility to pathogens, plants exhibited severe wilt on leaves, enhanced vascular browning and suppressed callose deposition. Transgenic Arabidopsis (Arabidopsis thaliana) plants overexpressing GhGLP2 showed significant resistance to V. dahliae and F. oxysporum, with reduced mycelia growth, increased callose deposition and cell wall lignification at infection sites on leaves. The enhanced tolerance of GhGLP2-transgenic Arabidopsis to oxidative stress was investigated by methyl viologen and ammonium persulfate treatments, along with increased H2O2 production. Further, the expression of several defense-related genes (PDF1.2, LOX2, and VSP1) or oxidative stress-related genes (RbohD, RbohF) was triggered by GhGLP2. Thus, our results confirmed the involvement of GhGLP2 in plant defense response against Verticillium and Fusarium wilt pathogens and stress conditions.
Collapse
|
58
|
Tanaka S, Gollin I, Rössel N, Kahmann R. The functionally conserved effector Sta1 is a fungal cell wall protein required for virulence in Ustilago maydis. THE NEW PHYTOLOGIST 2020; 227:185-199. [PMID: 32112567 DOI: 10.1111/nph.16508] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
The biotrophic fungus Ustilago maydis causes the smut disease of maize. The interaction with its host and induction of characteristic tumors are governed largely by secreted effectors whose function is mostly unknown. To identify effectors with a prominent role in virulence, we used RNA sequencing and found that the gene sta1 is upregulated during early stages of infection. We characterized Sta1 by comparative genomics, reverse genetics, protein localization, stress assays, and microscopy. sta1 mutants show a dramatic reduction of virulence and show altered colonization of tissue neighboring the vascular bundles. Functional orthologues of Sta1 are found in related smut pathogens infecting monocot and dicot plants. Sta1 is secreted by budding cells but is attached to the cell wall of filamentous hyphae. Upon constitutive expression of Sta1, fungal filaments become susceptible to Congo red, β-glucanase, and chitinase, suggesting that Sta1 alters the structure of the fungal cell wall. Constitutive or delayed expression of sta1 during plant colonization negatively impacts on virulence. Our results suggest that Sta1 is a novel kind of effector, which needs to modify the hyphal cell wall to allow hyphae to be accommodated in tissue next to the vascular bundles.
Collapse
Affiliation(s)
- Shigeyuki Tanaka
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, D-35043, Marburg, Germany
| | - Isabelle Gollin
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, D-35043, Marburg, Germany
| | - Nicole Rössel
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, D-35043, Marburg, Germany
| | - Regine Kahmann
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, D-35043, Marburg, Germany
| |
Collapse
|
59
|
Rajamanickam S, Nakkeeran S. Flagellin of Bacillus amyloliquefaciens works as a resistance inducer against groundnut bud necrosis virus in chilli (Capsicum annuum L.). Arch Virol 2020; 165:1585-1597. [PMID: 32399789 DOI: 10.1007/s00705-020-04645-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/03/2020] [Indexed: 11/28/2022]
Abstract
Groundnut bud necrosis virus (GBNV), a member of the genus Tospovirus, has an extensive host range and is associated with necrosis disease of chilli (Capsicum annuum L.), which is a major threat to commercial production. Plant growth promoting rhizobacteria (PGPR) have been investigated for their antiviral activity in several crops and for their potential use in viral disease management. However, the microbial mechanisms associated with PGPR in triggered immunity against plant viruses have rarely been studied. To understand the innate immune responses activated by Bacillus spp. against GBNV, we studied microbe-associated molecular pattern (MAMP) triggered immunity (MTI) in chilli using transient expression of the flagellin gene of Bacillus amyloliquefaciens CRN9 from Agrobacterium clones, which also induced the expression of EAS1 gene transcripts coding for epi-aristolochene synthase, which is responsible for the accumulation of capsidiol phytoalexin. In addition, the transcript levels of WRKY33 transcription factor and salicylic acid (SA)-responsive defense genes such as NPR1, PAL, PO and SAR8.2 were increased. Jasmonate (JA)-responsive genes, viz., PDF, and LOX genes, were also upregulated in chilli plants challenged with GBNV. Further analysis revealed significant induction of these genes in chilli plants treated with B. amyloliquefaciens CRN9 and benzothiadiazole (BTH). The transcript levels of defense response genes and pathogenesis-related proteins were significantly higher in plants treated with Bacillus and BTH and remained significantly higher at 72 h post-inoculation and compared to the inoculated control. The plants treated with flagellin using the agrodrench method and exogenous treatment with B. amyloliquefaciens and BTH showed resistance to GBNV upon mechanical inoculation and a reduced virus titre which was confirmed by qPCR assays. Thus, transient expression of flagellin, a MAMP molecule from B. amyloliquefaciens CRN9, is able to trigger innate immunity and restrain virus growth in chilli via induced systemic resistance (ISR) activated by both the SA and JA/ET signalling pathways.
Collapse
Affiliation(s)
- S Rajamanickam
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, 641 003, India.
| | - S Nakkeeran
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, 641 003, India
| |
Collapse
|
60
|
Gě Q, Cūi Y, Lǐ J, Gōng J, Lú Q, Lǐ P, Shí Y, Shāng H, Liú À, Dèng X, Pān J, Chén Q, Yuán Y, Gǒng W. Disequilibrium evolution of the Fructose-1,6-bisphosphatase gene family leads to their functional biodiversity in Gossypium species. BMC Genomics 2020; 21:379. [PMID: 32482161 PMCID: PMC7262775 DOI: 10.1186/s12864-020-6773-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/06/2020] [Indexed: 11/26/2022] Open
Abstract
Background Fructose-1,6-bisphosphatase (FBP) is a key enzyme in the plant sucrose synthesis pathway, in the Calvin cycle, and plays an important role in photosynthesis regulation in green plants. However, no systemic analysis of FBPs has been reported in Gossypium species. Results A total of 41 FBP genes from four Gossypium species were identified and analyzed. These FBP genes were sorted into two groups and seven subgroups. Results revealed that FBP family genes were under purifying selection pressure that rendered FBP family members as being conserved evolutionarily, and there was no tandem or fragmental DNA duplication in FBP family genes. Collinearity analysis revealed that a FBP gene was located in a translocated DNA fragment and the whole FBP gene family was under disequilibrium evolution that led to a faster evolutionary progress of the members in G. barbadense and in At subgenome than those in other Gossypium species and in the Dt subgenome, respectively, in this study. Through RNA-seq analyses and qRT-PCR verification, different FBP genes had diversified biological functions in cotton fiber development (two genes in 0 DPA and 1DPA ovules and four genes in 20–25 DPA fibers), in plant responses to Verticillium wilt onset (two genes) and to salt stress (eight genes). Conclusion The FBP gene family displayed a disequilibrium evolution pattern in Gossypium species, which led to diversified functions affecting not only fiber development, but also responses to Verticillium wilt and salt stress. All of these findings provide the foundation for further study of the function of FBP genes in cotton fiber development and in environmental adaptability.
Collapse
Affiliation(s)
- Qún Gě
- College of Agriculture, Engineering Research Centre of Cotton of Ministry of Education, Xinjiang Agricultural University, Urumqi, China, 311 Nongda East Road, Urumqi, 830052, China.,State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yànli Cūi
- College of Agriculture, Engineering Research Centre of Cotton of Ministry of Education, Xinjiang Agricultural University, Urumqi, China, 311 Nongda East Road, Urumqi, 830052, China.,State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jùnwén Lǐ
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jǔwǔ Gōng
- College of Agriculture, Engineering Research Centre of Cotton of Ministry of Education, Xinjiang Agricultural University, Urumqi, China, 311 Nongda East Road, Urumqi, 830052, China.,State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Quánwěi Lú
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.,Research Base, State Key Laboratory of Cotton Biology, Anyang Institute of Technology, Anyang, China
| | - Péngtāo Lǐ
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.,Research Base, State Key Laboratory of Cotton Biology, Anyang Institute of Technology, Anyang, China
| | - Yùzhēn Shí
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Hǎihóng Shāng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.,Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Àiyīng Liú
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiǎoyīng Dèng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jìngtāo Pān
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Qúanjiā Chén
- College of Agriculture, Engineering Research Centre of Cotton of Ministry of Education, Xinjiang Agricultural University, Urumqi, China, 311 Nongda East Road, Urumqi, 830052, China.
| | - Yǒulù Yuán
- College of Agriculture, Engineering Research Centre of Cotton of Ministry of Education, Xinjiang Agricultural University, Urumqi, China, 311 Nongda East Road, Urumqi, 830052, China. .,State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China. .,Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China.
| | - Wànkuí Gǒng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China. .,Research Base, State Key Laboratory of Cotton Biology, Anyang Institute of Technology, Anyang, China.
| |
Collapse
|
61
|
Wanke A, Rovenich H, Schwanke F, Velte S, Becker S, Hehemann JH, Wawra S, Zuccaro A. Plant species-specific recognition of long and short β-1,3-linked glucans is mediated by different receptor systems. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:1142-1156. [PMID: 31925978 DOI: 10.1111/tpj.14688] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 12/26/2019] [Accepted: 01/06/2020] [Indexed: 05/21/2023]
Abstract
Plants survey their environment for the presence of potentially harmful or beneficial microbes. During colonization, cell surface receptors perceive microbe-derived or modified-self ligands and initiate appropriate responses. The recognition of fungal chitin oligomers and the subsequent activation of plant immunity are well described. In contrast, the mechanisms underlying β-glucan recognition and signaling activation remain largely unexplored. Here, we systematically tested immune responses towards different β-glucan structures and show that responses vary between plant species. While leaves of the monocots Hordeum vulgare and Brachypodium distachyon can recognize longer (laminarin) and shorter (laminarihexaose) β-1,3-glucans with responses of varying intensity, duration and timing, leaves of the dicot Nicotiana benthamiana activate immunity in response to long β-1,3-glucans, whereas Arabidopsis thaliana and Capsella rubella perceive short β-1,3-glucans. Hydrolysis of the β-1,6 side-branches of laminarin demonstrated that not the glycosidic decoration but rather the degree of polymerization plays a pivotal role in the recognition of long-chain β-glucans. Moreover, in contrast to the recognition of short β-1,3-glucans in A. thaliana, perception of long β-1,3-glucans in N. benthamiana and rice is independent of CERK1, indicating that β-glucan recognition may be mediated by multiple β-glucan receptor systems.
Collapse
Affiliation(s)
- Alan Wanke
- University of Cologne, Institute for Plant Sciences, 50679, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Hanna Rovenich
- University of Cologne, Institute for Plant Sciences, 50679, Cologne, Germany
- University of Cologne, Cluster of Excellence on Plant Sciences (CEPLAS), 50679, Cologne, Germany
| | - Florian Schwanke
- University of Cologne, Institute for Plant Sciences, 50679, Cologne, Germany
| | - Stefanie Velte
- University of Cologne, Institute for Plant Sciences, 50679, Cologne, Germany
| | - Stefan Becker
- Center for Marine Environmental Sciences, University of Bremen, MARUM, 28359, Bremen, Germany
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| | - Jan-Hendrik Hehemann
- Center for Marine Environmental Sciences, University of Bremen, MARUM, 28359, Bremen, Germany
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| | - Stephan Wawra
- University of Cologne, Institute for Plant Sciences, 50679, Cologne, Germany
- University of Cologne, Cluster of Excellence on Plant Sciences (CEPLAS), 50679, Cologne, Germany
| | - Alga Zuccaro
- University of Cologne, Institute for Plant Sciences, 50679, Cologne, Germany
- University of Cologne, Cluster of Excellence on Plant Sciences (CEPLAS), 50679, Cologne, Germany
| |
Collapse
|
62
|
A Post-Haustorial Defense Mechanism is Mediated by the Powdery Mildew Resistance Gene, PmG3M, Derived from Wild Emmer Wheat. Pathogens 2020; 9:pathogens9060418. [PMID: 32481482 PMCID: PMC7350345 DOI: 10.3390/pathogens9060418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 11/30/2022] Open
Abstract
The destructive wheat powdery mildew disease is caused by the fungal pathogen Blumeria graminis f. sp. tritici (Bgt). PmG3M, derived from wild emmer wheat Triticum dicoccoides accession G305-3M, is a major gene providing a wide-spectrum resistance against Bgt. PmG3M was previously mapped to wheat chromosome 6B using an F6 recombinant inbred line (RIL) mapping population generated by crossing G305-3M with the susceptible T. durum wheat cultivar Langdon (LDN). In the current study, we aimed to explore the defense mechanisms conferred by PmG3M against Bgt. Histopathology of fungal development was characterized in artificially inoculated leaves of G305-3M, LDN, and homozygous RILs using fluorescence and light microscopy. G305-3M exhibited H2O2 accumulation typical of a hypersensitive response, which resulted in programmed cell death (PCD) in Bgt-penetrated epidermal cells, while LDN showed well-developed colonies without PCD. In addition, we observed a post-haustorial resistance mechanism that arrested the development of fungal feeding structures and pathogen growth in both G305-3M and resistant RIL, while LDN and a susceptible RIL displayed fully developed digitated haustoria and massive accumulation of fungal biomass. In contrast, both G305-3M and LDN exhibited callose deposition in attempt to prevent fungal invasion, supporting this as a mechanism of a basal defense response not associated with PmG3M resistance mechanism per se. The presented results shed light on the resistance mechanisms conferred by PmG3M against wheat powdery mildew.
Collapse
|
63
|
Cacique IS, Pinto LFCC, Aucique-Pérez CE, Wordell Filho JA, Rodrigues FA. Physiological and biochemical insights into the basal level of resistance of two maize hybrids in response to Fusarium verticillioides infection. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 152:194-210. [PMID: 32422536 DOI: 10.1016/j.plaphy.2020.04.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
Fusarium stalk rot (FSR), caused by Fusarium verticillioides, is one of the most destructive diseases impacting maize yield worldwide. In this study, net carbon assimilation rate (A), stomatal conductance to water vapor (gs), transpiration rate (E), and internal CO2 concentration (Ci) were evaluated on leaves and the activities of enzymes (chitinase (CHI), β-1-3-glucanase (GLU), phenylalanine ammonia-lyase (PAL), polyphenoloxidase (PPO), catalase (CAT), ascorbate peroxidase (APX), peroxidase (POX)) as well the concentrations of total soluble phenolics (TSP), lignin-thioglycolic acid (LTGA) derivatives, and malondialdehyde (MDA) were evaluated in the internodes and nodes of plants from maize hybrids moderately resistant (BRS 1035) and susceptible (30F35Y) to FSR. The upward relative lesion length (URLL) and radial fungal colonization (RFC) were 46 and 29% lower for the BRS 1035 hybrid in comparison to 30F35Y hybrid, respectively, at 30 after inoculation (dai). For both hybrids, A, gs, and E values significantly decreased while the Ci values increased on infected leaves compared to noninoculated plants. Inoculated plants from BRS 1035 hybrid showed an increase in A compared to inoculated plants from 30F35Y hybrid, and the increase in Ci values was greater for plants from 30F35Y hybrid at 30 dai compared to plants from BRS 1035 hybrid. The CHI, GLU, PPO, CAT, APX, and POX activities increased for inoculated plants from both hybrids compared to the noninoculated plants. In the internodes region, the increase in the activities of CHI (during the infection process of F. verticillioides) and GLU (at earlier stages of F. verticillioides infection) was more pronounced for plants from BRS 1035 hybrid than for plants from 30F35Y hybrid. In the region of the nodes, activities of CHI (during the infection process of F. verticillioides), PAL (at 20 dai), PPO (at 30 dai), and CAT and POX (both at three dai) were more pronounced for plants from BRS 1035 hybrid than for plants from 30F35Y hybrid. In the internodes region, the lower TSP concentration at 30 dai was linked to a high concentration of LTGA derivatives for inoculated plants from BRS 1035 hybrid compared to inoculated plants from 30F35Y hybrid. Taking together, the results of the present study allowed to conclude that the infection by F. verticillioides triggered physiological and biochemical changes on the stalk of maize plants influencing photosynthesis on leaves. A more robust antioxidative metabolism for reactive oxygen species removal in association with an efficient and strong activity of defense enzymes helped to minimize the cellular damage caused by F. verticillioides infection resulting, therefore, in an increase in maize resistance to FSR.
Collapse
Affiliation(s)
- Isaias S Cacique
- Departamento de Fitopatologia, Laboratório da Interação Patógeno-Hospedeiro, Universidade Federal de Viçosa, Zip Code 36570-900, Viçosa, MG, Brazil
| | - Luiz F C C Pinto
- Departamento de Fitopatologia, Laboratório da Interação Patógeno-Hospedeiro, Universidade Federal de Viçosa, Zip Code 36570-900, Viçosa, MG, Brazil
| | - Carlos E Aucique-Pérez
- Departamento de Fitopatologia, Laboratório da Interação Patógeno-Hospedeiro, Universidade Federal de Viçosa, Zip Code 36570-900, Viçosa, MG, Brazil
| | - João A Wordell Filho
- Laboratório de Fitossanidade, EPAGRI/CEPAF, Zip Code 89801-970, Chapecó, Santa Catarina State, Brazil
| | - Fabrício A Rodrigues
- Departamento de Fitopatologia, Laboratório da Interação Patógeno-Hospedeiro, Universidade Federal de Viçosa, Zip Code 36570-900, Viçosa, MG, Brazil.
| |
Collapse
|
64
|
Bacete L, Hamann T. The Role of Mechanoperception in Plant Cell Wall Integrity Maintenance. PLANTS (BASEL, SWITZERLAND) 2020; 9:E574. [PMID: 32369932 PMCID: PMC7285163 DOI: 10.3390/plants9050574] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023]
Abstract
The plant cell walls surrounding all plant cells are highly dynamic structures, which change their composition and organization in response to chemical and physical stimuli originating both in the environment and in plants themselves. They are intricately involved in all interactions between plants and their environment while also providing adaptive structural support during plant growth and development. A key mechanism contributing to these adaptive changes is the cell wall integrity (CWI) maintenance mechanism. It monitors and maintains the functional integrity of cell walls by initiating adaptive changes in cellular and cell wall metabolism. Despite its importance, both our understanding of its mode of action and knowledge regarding the molecular components that form it are limited. Intriguingly, the available evidence implicates mechanosensing in the mechanism. Here, we provide an overview of the knowledge available regarding the molecular mechanisms involved in and discuss how mechanoperception and signal transduction may contribute to plant CWI maintenance.
Collapse
Affiliation(s)
| | - Thorsten Hamann
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 5 Høgskoleringen, 7491 Trondheim, Norway;
| |
Collapse
|
65
|
Zienkiewicz A, Gömann J, König S, Herrfurth C, Liu YT, Meldau D, Feussner I. Disruption of Arabidopsis neutral ceramidases 1 and 2 results in specific sphingolipid imbalances triggering different phytohormone-dependent plant cell death programmes. THE NEW PHYTOLOGIST 2020; 226:170-188. [PMID: 31758808 DOI: 10.1111/nph.16336] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/18/2019] [Indexed: 05/05/2023]
Abstract
Sphingolipids act as regulators of programmed cell death (PCD) and the plant defence response. The homeostasis between long-chain base (LCB) and ceramide (Cer) seems to play an important role in executions of PCD. Therefore, deciphering the role of neutral ceramidases (NCER) is crucial to identify the sphingolipid compounds that trigger and execute PCD. We performed comprehensive sphingolipid and phytohormone analyses of Arabidopsis ncer mutants, combined with gene expression profiling and microscopic analyses. While ncer1 exhibited early leaf senescence (developmentally controlled PCD - dPCD) and an increase in hydroxyceramides, ncer2 showed spontaneous cell death (pathogen-triggered PCD-like - pPCD) accompanied by an increase in LCB t18:0 at 35 d, respectively. Loss of NCER1 function resulted in accumulation of jasmonoyl-isoleucine (JA-Ile) in the leaves, whereas disruption of NCER2 was accompanied by higher levels of salicylic acid (SA) and increased sensitivity to Fumonisin B1 (FB1 ). All mutants were also found to activate plant defence pathways. These data strongly suggest that NCER1 hydrolyses ceramides whereas NCER2 functions as a ceramide synthase. Our results reveal an important role of NCER in the regulation of both dPCD and pPCD via a tight connection between the phytohormone and sphingolipid levels in these two processes.
Collapse
Affiliation(s)
- Agnieszka Zienkiewicz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, D-37077, Goettingen, Germany
- Centre of Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100, Toruń, Poland
| | - Jasmin Gömann
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, D-37077, Goettingen, Germany
| | - Stefanie König
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, D-37077, Goettingen, Germany
| | - Cornelia Herrfurth
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, D-37077, Goettingen, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, D-37077, Goettingen, Germany
| | - Yi-Tse Liu
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, D-37077, Goettingen, Germany
| | - Dorothea Meldau
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, D-37077, Goettingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, D-37077, Goettingen, Germany
- Department of Plant Biochemistry, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, D-37077, Goettingen, Germany
| |
Collapse
|
66
|
Peng Q, Wang Z, Liu P, Liang Y, Zhao Z, Li W, Liu X, Xia Y. Oxathiapiprolin, a Novel Chemical Inducer Activates the Plant Disease Resistance. Int J Mol Sci 2020; 21:E1223. [PMID: 32059380 PMCID: PMC7072870 DOI: 10.3390/ijms21041223] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 01/18/2023] Open
Abstract
Oxathiapiprolin was developed as a specific plant pathogenic oomycete inhibitor, previously shown to have highly curative and protective activities against the pepper Phytophthora blight disease under field and greenhouse tests. Therefore, it was hypothesized that oxathiapiprolin might potentially activate the plant disease resistance against pathogen infections. This study investigated the potential and related mechanism of oxathiapiprolin to activate the plant disease resistance using the bacterium Pseudomonas syringae pv tomato (Pst) and plant Arabidopsis interaction as the targeted system. Our results showed that oxathiapiprolin could activate the plant disease resistance against Pst DC3000, a non-target pathogen of oxathiapiprolin, in Arabidopsis, tobacco, and tomato plants. Our results also showed the enhanced callose deposition and H2O2 accumulation in the oxathiapiprolin-treated Arabidopsis under the induction of flg22 as the pathogen-associated molecular pattern (PAMP) treatment. Furthermore, increased levels of free salicylic acid (SA) and jasmonic acid (JA) were detected in the oxathiapiprolin-treated Arabidopsis plants compared to the mock-treated ones under the challenge of Pst DC3000. Besides, the gene expression results confirmed that at 24 h after the infiltration with Pst DC3000, the oxathiapiprolin-treated Arabidopsis plants had upregulated expression levels of the respiratory burst oxidase homolog D (RBOHD), JA-responsive gene (PDF1.2), and SA-responsive genes (PR1, PR2, and PR5) compared to the control. Taken together, oxathiapiprolin is identified as a novel chemical inducer which activates the plant disease resistance against Pst DC3000 by enhancing the callose deposition, H2O2 accumulation, and hormone SA and JA production.
Collapse
Affiliation(s)
- Qin Peng
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Q.P.); (Z.W.); (P.L.)
- Department of Plant Pathology, College of Food, Agricultural, and Environmental Science, The Ohio State University, Columbus, OH 43210, USA;
| | - Zhiwen Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Q.P.); (Z.W.); (P.L.)
| | - Pengfei Liu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Q.P.); (Z.W.); (P.L.)
| | - Yinping Liang
- College of Agronomy & Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu 611130, China;
| | - Zhenzhen Zhao
- Department of Plant Pathology, College of Food, Agricultural, and Environmental Science, The Ohio State University, Columbus, OH 43210, USA;
| | - Wenhui Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China;
| | - Xili Liu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Q.P.); (Z.W.); (P.L.)
| | - Ye Xia
- Department of Plant Pathology, College of Food, Agricultural, and Environmental Science, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
67
|
Villafana RT, Rampersad SN. Diversity, structure, and synteny of the cutinase gene of Colletotrichum species. Ecol Evol 2020; 10:1425-1443. [PMID: 32076525 PMCID: PMC7029052 DOI: 10.1002/ece3.5998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/20/2019] [Accepted: 12/20/2019] [Indexed: 11/12/2022] Open
Abstract
Colletotrichum species complexes are among the top 10 economically important fungal plant pathogens worldwide because they can infect climacteric and nonclimacteric fruit at the pre and/or postharvest stages. C. truncatum is the major pathogen responsible for anthracnose of green and red bell pepper fruit worldwide. C. brevisporum was recently reported to be a minor pathogen of red bell pepper fruit in Trinidad, but has recently been reported as pathogenic to other host species in other countries. The ability of these phytopathogens to produce and secrete cutinase is required for dismantling the cuticle of the host plant and, therefore, crucial to the necrotrophic phase of their infection strategy. In vitro bioassays using different lipid substrates confirmed the ability of C. truncatum and C. brevisporum isolates from green and red bell peppers to secrete cutinase. The diversity, structure and organization and synteny of the cutinase gene were determined among different Colletotrichum species. Cluster analysis indicated a low level of nucleotide variation among C. truncatum sequences. Nucleotide sequences of C. brevisporum were more related to C. truncatum cutinase nucleotide sequences than to C. gloeosporioides. Cluster patterns coincided with haplotype and there was evidence of significant positive selection with no recombination signatures. The structure of the cutinase gene included two exons with one intervening intron and, therefore, one splice variant. Although amino acid sequences were highly conserved among C. truncatum isolates, diversity "hot spots" were revealed when the 66-amino acid coding region of 200 fungal species was compared. Twenty cutinase orthologues were detected among different fungal species, whose common ancestor is Pezizomycotina and it is purported that these orthologues arose through a single gene duplication event prior to speciation. The cutinase domain was retained both in structure and arrangement among 34 different Colletotrichum species. The order of aligned genomic blocks between species and the arrangement of flanking protein domains were also conserved and shared for those domains immediately located at the N- and C-terminus of the cutinase domain. Among these were an RNA recognition motif, translation elongation factor, signal peptide, pentatricopeptide repeat, and Hsp70 family of chaperone proteins, all of which support the expression of the cutinase gene. The findings of this study are important to understanding the evolution of the cutinase gene in C. truncatum as a key component of the biotrophic-necrotrophic switch which may be useful in developing gene-targeting strategies to decrease the pathogenic potential of Colletotrichum species.
Collapse
Affiliation(s)
- Ria T. Villafana
- Faculty of Science and TechnologyDepartment of Life SciencesBiochemistry Research LabThe University of the West IndiesSt. AugustineTrinidad and Tobago – West Indies
| | - Sephra N. Rampersad
- Faculty of Science and TechnologyDepartment of Life SciencesBiochemistry Research LabThe University of the West IndiesSt. AugustineTrinidad and Tobago – West Indies
| |
Collapse
|
68
|
Oliva M, Hatan E, Kumar V, Galsurker O, Nisim-Levi A, Ovadia R, Galili G, Lewinsohn E, Elad Y, Alkan N, Oren-Shamir M. Increased phenylalanine levels in plant leaves reduces susceptibility to Botrytis cinerea. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 290:110289. [PMID: 31779900 DOI: 10.1016/j.plantsci.2019.110289] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 05/26/2023]
Abstract
Botrytis cinerea is a major plant pathogen, causing losses in crops during growth and storage. Here we show that increased accumulation of phenylalanine (Phe) and Phe-derived metabolites in plant leaves significantly reduces their susceptibility to B. cinerea. Arabidopsis, petunia and tomato plants were enriched with Phe by either overexpressing a feedback-insensitive E.coli DAHP synthase (AroG*), or by spraying or drenching detached leaves or whole plants with external Phe, prior to infection with B. cinerea. Metabolic analysis of Arabidopsis and petunia plants overexpressing AroG* as well as wt petunia plants treated externally with Phe, revealed an increase in Phe-derived phenylpropanoids accumulated in their leaves, and specifically in those inhibiting B. cinerea germination and growth, suggesting that different compounds reduce susceptibility to B. cinerea in different plants. Phe itself had no inhibitory effect on germination or growth of B. cinerea, and inhibition of Phe metabolism in petunia plants treated with external Phe prevented decreased susceptibility to the fungus. Thus, Phe metabolism into an array of metabolites, unique to each plant and plant organ, is the most probable cause for increased resistance to Botrytis. This mechanism may provide a basis for ecologically friendly control of a wide range of plant pathogens.
Collapse
Affiliation(s)
- Moran Oliva
- Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion, 7505101, Israel; Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Erel Hatan
- Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion, 7505101, Israel
| | - Varun Kumar
- Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion, 7505101, Israel
| | - Ortal Galsurker
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion, 7505101, Israel
| | - Ada Nisim-Levi
- Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion, 7505101, Israel
| | - Rinat Ovadia
- Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion, 7505101, Israel
| | - Gad Galili
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Efraim Lewinsohn
- Department of Vegetable Crops, Agriculture Research Organization, Newe Ya'ar Research Center, Volcani Center, Ramat Yishay, 30095, Israel
| | - Yigal Elad
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion, 7505101, Israel
| | - Noam Alkan
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion, 7505101, Israel
| | - Michal Oren-Shamir
- Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion, 7505101, Israel.
| |
Collapse
|
69
|
Tzortzakis N. Physiological and Proteomic Approaches to Address the Active Role of Botrytis cinerea Inoculation in Tomato Postharvest Ripening. Microorganisms 2019; 7:microorganisms7120681. [PMID: 31835786 PMCID: PMC6955909 DOI: 10.3390/microorganisms7120681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/03/2019] [Accepted: 12/08/2019] [Indexed: 11/16/2022] Open
Abstract
Botrytis cinerea is an unbearable postharvest threat with significant economic impacts. Necrotrophic B. cinerea can readily infect ripe fruit resulting in the rapid progression of symptoms of the disease. To unravel the mechanism by which tomato fruit opposes pathogen attack, we investigated the changes in quality-related attributes as a direct response (DR) or systemic response (SR) of infected tomatoes to the B. cinerea. Additionally, the SR of protein yield and composition were studied in fruit stored at 11 °C/90% relative humidity (RH) for one week. Fungal infection accelerated ripening with increased ethylene and respiration rates. Fruit softening, ascorbic acid and β-carotene increase were associated with DR but not with the SR of the pathogen. Pathogen infection increased lipid peroxidation, causing the production of hydrogen peroxide and oxidative stress, as fruit activated both enzymatic and non-enzymatic mechanisms to trigger stress. B. cinerea increased up to 6.6% the protein yield and downregulated at least 39 proteins. Proteins involved in fruit ripening, such as an ethylene biosynthetic enzyme, were increased in wound-inoculated fruit. Moreover, antioxidant proteins, such as ascorbate peroxidase-APX1 and superoxide dismutase-SOD, increased in infected tomatoes, as these proteins are involved in reactive oxygen species detoxification. Constitutively-expressed proteins tended to be either increased (chaperonin and malate dehydrogenase) or remained unaffected (dehydrin) by pathogen inoculation. Protein levels involved in the metabolism of carbohydrate, the pentose phosphate pathway, terpenoid and flavonoid biosynthesis were differently affected during the treatments. By enabling a better understanding of the fungal direct or systemic response on fruit quality and ripening through biochemical and proteome studies, we may improve the plant-pathogen interaction and complexity.
Collapse
Affiliation(s)
- Nikolaos Tzortzakis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Limassol, Cyprus
| |
Collapse
|
70
|
Sun CQ, Chen FD, Teng NJ, Yao YM, Shan X, Dai ZL. Transcriptomic and proteomic analysis reveals mechanisms of low pollen-pistil compatibility during water lily cross breeding. BMC PLANT BIOLOGY 2019; 19:542. [PMID: 31805858 PMCID: PMC6896271 DOI: 10.1186/s12870-019-2166-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/26/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND In water lily (Nymphaea) hybrid breeding, breeders often encounter non-viable seeds, which make it difficult to transfer desired or targeted genes of different Nymphaea germplasm. We found that pre-fertilization barriers were the main factor in the failure of the hybridization of Nymphaea. The mechanism of low compatibility between the pollen and stigma remains unclear; therefore, we studied the differences of stigma transcripts and proteomes at 0, 2, and 6 h after pollination (HAP). Moreover, some regulatory genes and functional proteins that may cause low pollen-pistil compatibility in Nymphaea were identified. RESULTS RNA-seq was performed for three comparisons (2 vs 0 HAP, 6 vs 2 HAP, 6 vs 0 HAP), and the number of differentially expressed genes (DEGs) was 8789 (4680 were up-regulated), 6401 (3020 were up-regulated), and 11,284 (6148 were up-regulated), respectively. Using label-free analysis, 75 (2 vs 0 HAP) proteins (43 increased and 32 decreased), nine (6 vs 2 HAP) proteins (three increased and six decreased), and 90 (6 vs 0 HAP) proteins (52 increased and 38 decreased) were defined as differentially expressed proteins (DEPs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that the DEGs and DEPs were mainly involved in cell wall organization or biogenesis, S-adenosylmethionine (SAM) metabolism, hydrogen peroxide decomposition and metabolism, reactive oxygen species (ROS) metabolism, secondary metabolism, secondary metabolite biosynthesis, and phenylpropanoid biosynthesis. CONCLUSIONS Our transcriptomic and proteomic analysis highlighted specific genes, incuding those in ROS metabolism, biosynthesis of flavonoids, SAM metabolism, cell wall organization or biogenesis and phenylpropanoid biosynthesis that warrant further study in investigations of the pollen-stigma interaction of water lily. This study strengthens our understanding of the mechanism of low pollen-pistil compatibility in Nymphaea at the molecular level, and provides a theoretical basis for overcoming the pre-fertilization barriers in Nymphaea in the future.
Collapse
Affiliation(s)
- Chun-Qing Sun
- Zhenjiang Institute of Agricultural Science in Jiangsu Hilly Areas, Jurong, 212400, China
| | - Fa-Di Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Nian-Jun Teng
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yue-Mei Yao
- Zhenjiang Institute of Agricultural Science in Jiangsu Hilly Areas, Jurong, 212400, China
| | - Xi Shan
- Zhenjiang Institute of Agricultural Science in Jiangsu Hilly Areas, Jurong, 212400, China
| | - Zhong-Liang Dai
- Zhenjiang Institute of Agricultural Science in Jiangsu Hilly Areas, Jurong, 212400, China.
| |
Collapse
|
71
|
Abraham N, Chitrampalam P, Nelson B, Sharma Poudel R, Chittem K, Borowicz P, Brueggeman R, Jain S, LeBoldus JM. Microscopic, Biochemical, and Molecular Comparisons of Moderately Resistant and Susceptible Populus Genotypes Inoculated with Sphaerulina musiva. PHYTOPATHOLOGY 2019; 109:2074-2086. [PMID: 31483223 DOI: 10.1094/phyto-03-19-0105-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sphaerulina musiva, the causal agent of Septoria leaf spot and stem canker, is responsible for mortality and yield loss in Populus plantations. However, little is known about the mode of infection and the mechanisms of resistance in this pathosystem. To characterize these phenomena, microscopic, biochemical, and transcriptome comparisons were performed between leaves of moderately resistant and susceptible genotypes of Populus inoculated with S. musiva conidia. Using scanning electron, cryofracture, and laser-scanning confocal microscopy, the infection and colonization of Populus leaves by S. musiva were examined across five time points (48 h, 96 h, 1 week, 2 weeks, and 3 weeks). The infection process was similar regardless of the host genotype. Differences in host colonization between susceptible and moderately resistant genotypes were apparent by 1 week postinoculation. However, the germination of conidia was greater on the susceptible than on the moderately resistant genotype (P < 0.008). Diaminobenzidine staining, a measure of hydrogen peroxide accumulation, was different (P < 0.001) between the host genotypes by 2 weeks postinoculation. Transcriptome differences between genotypes indicated that the speed and amplitude of the defense response were faster and more extensive in the moderately resistant genotype. Changes in gene expression support the microscopic and biochemical observations.
Collapse
Affiliation(s)
- Nivi Abraham
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108
| | | | - Berlin Nelson
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108
| | | | - Kishore Chittem
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108
| | - Pawel Borowicz
- Department of Animal Science, North Dakota State University, Fargo, ND 58105
| | - Robert Brueggeman
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108
| | - Shalu Jain
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108
| | - Jared Michael LeBoldus
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
- Department of Forest Engineering Resources and Management, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
72
|
Barbosa MS, da Silva Souza B, Silva Sales AC, de Sousa JDL, da Silva FDS, Araújo Mendes MG, da Costa KRL, de Oliveira TM, Daboit TC, de Oliveira JS. Antifungal Proteins from Plant Latex. Curr Protein Pept Sci 2019; 21:497-506. [PMID: 31746293 DOI: 10.2174/1389203720666191119101756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 06/26/2019] [Accepted: 11/13/2019] [Indexed: 01/29/2023]
Abstract
Latex, a milky fluid found in several plants, is widely used for many purposes, and its proteins have been investigated by researchers. Many studies have shown that latex produced by some plant species is a natural source of biologically active compounds, and many of the hydrolytic enzymes are related to health benefits. Research on the characterization and industrial and pharmaceutical utility of latex has progressed in recent years. Latex proteins are associated with plants' defense mechanisms, against attacks by fungi. In this respect, there are several biotechnological applications of antifungal proteins. Some findings reveal that antifungal proteins inhibit fungi by interrupting the synthesis of fungal cell walls or rupturing the membrane. Moreover, both phytopathogenic and clinical fungal strains are susceptible to latex proteins. The present review describes some important features of proteins isolated from plant latex which presented in vitro antifungal activities: protein classification, function, molecular weight, isoelectric point, as well as the fungal species that are inhibited by them. We also discuss their mechanisms of action.
Collapse
Affiliation(s)
- Mayck Silva Barbosa
- Laboratory of Biochemistry of Laticifer Plants, Federal University of Piaui, Campus Ministro Reis Velloso, Parnaiba- PI, Brazil
| | - Bruna da Silva Souza
- Laboratory of Biochemistry of Laticifer Plants, Federal University of Piaui, Campus Ministro Reis Velloso, Parnaiba- PI, Brazil
| | - Ana Clara Silva Sales
- Laboratory of Biochemistry of Laticifer Plants, Federal University of Piaui, Campus Ministro Reis Velloso, Parnaiba- PI, Brazil
| | - Jhoana D'arc Lopes de Sousa
- Laboratory of Biochemistry of Laticifer Plants, Federal University of Piaui, Campus Ministro Reis Velloso, Parnaiba- PI, Brazil
| | | | - Maria Gabriela Araújo Mendes
- Group of Advanced Studies in Medical Mycology, Federal University of Piaui, Campus Ministro Reis Velloso, Parnaiba-PI, Brazil
| | - Káritta Raquel Lustoza da Costa
- Group of Advanced Studies in Medical Mycology, Federal University of Piaui, Campus Ministro Reis Velloso, Parnaiba-PI, Brazil
| | - Taiane Maria de Oliveira
- Research Center on Biodiversity and Biotechnology, Federal University of Piaui, Campus Ministro Reis Velloso, Parnaiba-PI, Brazil
| | - Tatiane Caroline Daboit
- Group of Advanced Studies in Medical Mycology, Federal University of Piaui, Campus Ministro Reis Velloso, Parnaiba-PI, Brazil
| | - Jefferson Soares de Oliveira
- Laboratory of Biochemistry of Laticifer Plants, Federal University of Piaui, Campus Ministro Reis Velloso, Parnaiba- PI, Brazil
| |
Collapse
|
73
|
Fan C, Wang G, Wu L, Liu P, Huang J, Jin X, Zhang G, He Y, Peng L, Luo K, Feng S. Distinct cellulose and callose accumulation for enhanced bioethanol production and biotic stress resistance in OsSUS3 transgenic rice. Carbohydr Polym 2019; 232:115448. [PMID: 31952577 DOI: 10.1016/j.carbpol.2019.115448] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/01/2019] [Accepted: 10/04/2019] [Indexed: 01/21/2023]
Abstract
Genetic modification of plant cell walls is an effective approach to reduce lignocellulose recalcitrance in biofuel production, but it may affect plant stress response. Hence, it remains a challenge to reduce biomass recalcitrance and simultaneously enhance stress resistance. In this study, the OsSUS3-transgenic plants exhibited increased cell wall polysaccharides deposition and reduced cellulose crystallinity and xylose/arabinose proportion of hemicellulose, resulting in largely enhanced biomass saccharification and bioethanol production. Additionally, strengthening of the cell wall also contributed to plant biotic resistance. Notably, the transgenic plants increased stress-induced callose accumulation, and promoted the activation of innate immunity, leading to greatly improved multiple resistances to the most destructive diseases and a major pest. Hence, this study demonstrates a significant improvement both in bioethanol production and biotic stress resistance by regulating dynamic carbon partitioning for cellulose and callose biosynthesis in OsSUS3-transgenic plants. Meanwhile, it also provides a potential strategy for plant cell wall modification.
Collapse
Affiliation(s)
- Chunfen Fan
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715, China; Biomass & Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, 430070, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Guangya Wang
- Biomass & Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, 430070, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Leiming Wu
- Biomass & Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, 430070, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Peng Liu
- Biomass & Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, 430070, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jiangfeng Huang
- Biomass & Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, 430070, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China; Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China.
| | - Xiaohuan Jin
- Biomass & Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, 430070, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Guifeng Zhang
- Biomass & Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, 430070, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yueping He
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Liangcai Peng
- Biomass & Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, 430070, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Shengqiu Feng
- Biomass & Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, 430070, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
74
|
Wang W, Wang J, Wei Q, Li B, Zhong X, Hu T, Hu H, Bao C. Transcriptome-Wide Identification and Characterization of Circular RNAs in Leaves of Chinese Cabbage (Brassica rapa L. ssp. pekinensis) in Response to Calcium Deficiency-Induced Tip-burn. Sci Rep 2019; 9:14544. [PMID: 31601970 PMCID: PMC6787205 DOI: 10.1038/s41598-019-51190-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 09/26/2019] [Indexed: 12/11/2022] Open
Abstract
Circular RNA (circRNA) is a newly discovered non-coding RNA, which play significant roles in the function and transcriptional regulation of microRNA. To date, in Chinese cabbage, the functional characteristic of circRNAs in response to calcium deficiency-induced tip-burn have not been reported. In this study, 730 circRNAs were isolated from Chinese cabbage leaves, of which 23 and 22 were differentially expressed in different calcium deficiency stages compared with the control. Forty-six host genes of the differentially expressed circRNAs were identified, and one circRNA was found to act as miRNAs sponges. Based on the functional analysis of host genes and target mRNAs of the corresponding miRNAs, the identified circRNAs might participated in response to stimulus, electron carrier activity, ATPase activity, cell wall metabolism, transcription factors and plant hormone signal transduction. ABF2, a positive regulator of the abiotic stress response in the abscisic acid (ABA) pathway, may play a role in calcium deficiency tolerance through a circRNA regulatory pathway. Correspondingly, the concentration of ABA is also increased during the Ca2+ deficiency stress. Our results suggest that circRNAs participate in a broad range of biological processes and physiological functions in the response to calcium deficiency-induced tip-burn and provide a basis for further studies of the biological roles that circRNAs play in the plant stress response.
Collapse
Affiliation(s)
- Wuhong Wang
- Institute of Vegetable Research, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jinglei Wang
- Institute of Vegetable Research, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Qingzhen Wei
- Institute of Vegetable Research, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Biyuan Li
- Institute of Vegetable Research, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xinmin Zhong
- Institute of Vegetable Research, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Tianhua Hu
- Institute of Vegetable Research, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Haijiao Hu
- Institute of Vegetable Research, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Chonglai Bao
- Institute of Vegetable Research, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
75
|
Dai T, Chang X, Hu Z, Liang L, Sun M, Liu P, Liu X. Untargeted Metabolomics Based on GC-MS and Chemometrics: A New Tool for the Early Diagnosis of Strawberry Anthracnose Caused by Colletotrichum theobromicola. PLANT DISEASE 2019; 103:2541-2547. [PMID: 31432772 DOI: 10.1094/pdis-01-19-0219-re] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
To prevent the spread of anthracnose in strawberry plants and characterize the metabolic changes occurring during plant-pathogen interactions, we developed a method for the early diagnosis of disease based on an analysis of the metabolome by gas chromatography-mass spectrometry. An examination of the metabolic profile revealed 189 and 202 total ion chromatogram peaks for the control and inoculated plants, respectively. A partial least squares discriminant analysis (PLS-DA) model was conducted for the reliable and accurate discrimination between healthy and diseased strawberry plants, even in the absence of disease symptoms (e.g., early stages of infection). ANOVA (analysis of variance) and orthogonal partial least squares analysis (OPLS) identified 20 metabolites as tentative biomarkers of Colletotrichum theobromicola infection (e.g., citric acid, d-xylose, erythrose, galactose, gallic acid, malic acid, methyl α-galactopyranoside, phosphate, and shikimic acid). At least some of these potential biomarkers may be applicable for the early diagnosis of anthracnose in strawberry plants. Moreover, these metabolites may be useful for characterizing pathogen infections and plant defense responses. This study confirms the utility of metabolomics research for developing diagnostic tools and clarifying the mechanism underlying plant-pathogen interactions. Furthermore, the data presented herein may be relevant for developing new methods for preventing anthracnose in strawberry seedlings cultivated under field conditions.
Collapse
Affiliation(s)
- Tan Dai
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xunian Chang
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhihong Hu
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Li Liang
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Mingyou Sun
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Pengfei Liu
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xili Liu
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
76
|
Li J, Huang X, Huang H, Huo H, Nguyen CD, Pian R, Li H, Ouyang K, Chen X. Cloning and characterization of the lignin biosynthesis genes NcCSE and NcHCT from Neolamarckia cadamba. AMB Express 2019; 9:152. [PMID: 31542835 PMCID: PMC6754823 DOI: 10.1186/s13568-019-0860-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 08/19/2019] [Indexed: 12/01/2022] Open
Abstract
Neolamarckia cadamba is an important fast growing tree species used for pulping and wood material in industry for it’s desirable wood properties. As one of the most important content in wood, lignin provides structural integrity, strength, and hydrophobicity to the thickened cell walls and is the major factor contributing to biomass recalcitrance. It does not reduce the palatability of forage grass for animals, but it hinders the isolation of cellulose fibers and the efficient enzymatic depolymerization of cellulose and hemicellulose into fermentable sugars in biorefining processes by limiting the access by hydrolytic enzymes to their polysaccharide substrates. This work focused on analyzing the functions of NcCSE (Caffeoyl Shikimate Esterase, GenBank accession number: MG739672) and NcHCT (Hydroxycinnamoyl Transferase,GenBank accession number: MG739673) in the lignin biosynthetic process in order to improve the potential for utilization of leaves and wood from N. cadamba. The mutant phenotype of cse-2 was dramatically complemented to WT in the stable transgenic lines cse-35S::NcCSE, but overexpression of NcHCT in the cse-2 mutant did not have the same result as cse-35S::NcCSE, providing only partial complementation.
Collapse
|
77
|
Cheng W, Lin M, Qiu M, Kong L, Xu Y, Li Y, Wang Y, Ye W, Dong S, He S, Wang Y. Chitin synthase is involved in vegetative growth, asexual reproduction and pathogenesis of Phytophthora capsici and Phytophthora sojae. Environ Microbiol 2019; 21:4537-4547. [PMID: 31314944 DOI: 10.1111/1462-2920.14744] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 07/13/2019] [Accepted: 07/13/2019] [Indexed: 11/29/2022]
Abstract
Chitin is a structural and functional component of the fungal cell wall and also serves as a pathogen-associated molecular pattern (PAMP) that triggers the innate immune responses of host plants. However, no or very little chitin is found in the fungus-like oomycetes. In Phytophthora spp., the presence of chitin has not been demonstrated so far, although putative chitin synthase (CHS) genes, which encode the enzymes that synthesize chitin, are present in their genomes. Here, we revealed that chitin is present in the zoospores and released sporangia of Phytophthora, and this is most consistent with the transcriptional pattern of PcCHS in Phytophthora capsici and PsCHS1 in Phytophthora sojae. Disruption of the CHS genes indicated that PcCHS and PsCHS1, but not PsCHS2 (which exhibited very weak transcription), have similar functions involved in mycelial growth, sporangial production, zoospore release and the pathogenesis of P. capsici and P. sojae. We also suggest that chitin in the zoospores of P. capsici can act as a PAMP that is recognized by the chitin receptors AtLYK5 or AtCERK1 of Arabidopsis. These results provide new insights into the biological significance of chitin and CHSs in Phytophthora and help with the identification of potential targets for disease control.
Collapse
Affiliation(s)
- Wei Cheng
- National Education Minister Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Menglan Lin
- National Education Minister Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Min Qiu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Liang Kong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Yuanpeng Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Yaning Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Shuilin He
- National Education Minister Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
78
|
Chang C, Tian L, Ma L, Li W, Nasir F, Li X, Tran LSP, Tian C. Differential responses of molecular mechanisms and physiochemical characters in wild and cultivated soybeans against invasion by the pathogenic Fusarium oxysporum Schltdl. PHYSIOLOGIA PLANTARUM 2019; 166:1008-1025. [PMID: 30430602 DOI: 10.1111/ppl.12870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 05/07/2023]
Abstract
Cultivated soybean (Glycine max) was derived from the wild soybean (Glycine soja), which has genetic resources that can be critically important for improving plant stress resistance. However, little information is available pertaining to the molecular and physiochemical comparison between the cultivated and wild soybeans in response to the pathogenic Fusarium oxysporum Schltdl. In this study, we first used comparative phenotypic and paraffin section analyses to indicate that wild soybean is indeed more resistant to F. oxysporum than cultivated soybean. Genome-wide RNA-sequencing approach was then used to elucidate the genetic mechanisms underlying the differential physiological and biochemical responses of the cultivated soybean, and its relative, to F. oxysporum. A greater number of genes related to cell wall synthesis and hormone metabolism were significantly altered in wild soybean than in cultivated soybean under F. oxysporum infection. Accordingly, a higher accumulation of lignins was observed in wild soybean than cultivated soybean under F. oxysporum infection. Collectively, these results indicated that secondary metabolites and plant hormones may play a vital role in differentiating the response between cultivated and wild soybeans against the pathogen. These important findings may provide future direction to breeding programs to improve resistance to F. oxysporum in the elite soybean cultivars by taking advantage of the genetic resources within wild soybean germplasm.
Collapse
Affiliation(s)
- Chunling Chang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, 130102, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, 130102, China
| | - Lina Ma
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, 130102, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiqiang Li
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Fahad Nasir
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, 130102, China
| | - Xiujun Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, 130102, China
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Chunjie Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, 130102, China
| |
Collapse
|
79
|
Mahlein AK, Kuska MT, Thomas S, Wahabzada M, Behmann J, Rascher U, Kersting K. Quantitative and qualitative phenotyping of disease resistance of crops by hyperspectral sensors: seamless interlocking of phytopathology, sensors, and machine learning is needed! CURRENT OPINION IN PLANT BIOLOGY 2019; 50:156-162. [PMID: 31387067 DOI: 10.1016/j.pbi.2019.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/22/2019] [Accepted: 06/24/2019] [Indexed: 05/21/2023]
Abstract
Determination and characterization of resistance reactions of crops against fungal pathogens are essential to select resistant genotypes. In plant breeding, phenotyping of genotypes is realized by time consuming and expensive visual plant ratings. During resistance reactions and during pathogenesis plants initiate different structural and biochemical defence mechanisms, which partly affect the optical properties of plant organs. Recently, intensive research has been conducted to develop innovative optical methods for an assessment of compatible and incompatible plant pathogen interaction. These approaches, combining classical phytopathology or microbiology with technology driven methods - such as sensors, robotics, machine learning, and artificial intelligence - are summarized by the term digital phenotyping. In contrast to common visual rating, detection and assessment methods, optical sensors in combination with advanced data analysis methods are able to retrieve pathogen induced changes in the physiology of susceptible or resistant plants non-invasively and objectively. Phenotyping disease resistance aims different tasks. In an early breeding step, a qualitative assessment and characterization of specific resistance action is aimed to link it, for example, to a genetic marker. Later, during greenhouse and field screening, the assessment of the level of susceptibility of different genotypes is relevant. Within this review, recent advances of digital phenotyping technologies for the detection of subtle resistance reactions and resistance breeding are highlighted and methodological requirements are critically discussed.
Collapse
Affiliation(s)
- Anne-Katrin Mahlein
- Institute for Sugar Beet Research, Germany; INRES Plant Disease, University Bonn, Germany.
| | | | | | | | - Jan Behmann
- INRES Plant Disease, University Bonn, Germany
| | | | - Kristian Kersting
- Department of Computer Science, Technical University Darmstadt, Germany
| |
Collapse
|
80
|
Kundu A, Singh PK, Dey A, Ganguli S, Pal A. Complex molecular mechanisms underlying MYMIV-resistance in Vigna mungo revealed by comparative transcriptome profiling. Sci Rep 2019; 9:8858. [PMID: 31221982 PMCID: PMC6586629 DOI: 10.1038/s41598-019-45383-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/03/2019] [Indexed: 12/21/2022] Open
Abstract
Mungbean Yellow Mosaic India Virus (MYMIV)-infection creates major hindrance in V. mungo cultivation and poses significant threat to other grain legume production. Symptoms associated include severe patho-physiological alterations characterized by chlorotic foliar lesion accompanied by reduced growth. However, dissection of the host's defense machinery remains a tough challenge due to limited of host's genomic resources. A comparative RNA-Seq transcriptomes of resistant (VM84) and susceptible (T9) plants was carried out to identify genes potentially involved in V. mungo resistance against MYMIV. Distinct gene expression landscapes were observed in VM84 and T9 with 2158 and 1679 differentially expressed genes (DEGs), respectively. Transcriptomic responses in VM84 reflect a prompt and intense immune reaction demonstrating an efficient pathogen surveillance leading to activation of basal and induced immune responses. Functional analysis of the altered DEGs identified multiple regulatory pathways to be activated or repressed over time. Up-regulation of DEGs including NB-LRR, WRKY33, ankyrin, argonaute and NAC transcription factor revealed an insight on their potential roles in MYMIV-resistance; and qPCR validation shows a propensity of their accumulation in VM84. Analyses of the current RNA-Seq dataset contribute immensely to decipher molecular responses that underlie MYMIV-resistance and will aid in the improvement strategy of V. mungo and other legumes through comparative functional genomics.
Collapse
Affiliation(s)
- Anirban Kundu
- Division of Plant Biology, Bose Institute, Kolkata, 700054, India
- Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata, 7000118, India
| | | | - Avishek Dey
- Division of Plant Biology, Bose Institute, Kolkata, 700054, India
| | - Sayak Ganguli
- Theoretical and Computational Biology, AIIST, Palta, Kolkata, India
| | - Amita Pal
- Division of Plant Biology, Bose Institute, Kolkata, 700054, India.
| |
Collapse
|
81
|
Zhao J, Xia B, Meng Y, Yang Z, Pan L, Zhou M, Zhang X. Transcriptome Analysis to Shed Light on the Molecular Mechanisms of Early Responses to Cadmium in Roots and Leaves of King Grass ( Pennisetum americanum × P. purpureum). Int J Mol Sci 2019; 20:E2532. [PMID: 31126029 PMCID: PMC6567004 DOI: 10.3390/ijms20102532] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 11/28/2022] Open
Abstract
King grass, a hybrid grass between pearl millet and elephant grass, has many excellent characteristics such as high biomass yield, great stress tolerance, and enormous economic and ecological value, which makes it ideal for development of phytoremediation. At present, the physiological and molecular response of king grass to cadmium (Cd) stress is poorly understood. Transcriptome analysis of early response (3 h and 24 h) of king grass leaves and roots to high level Cd (100 µM) has been investigated and has shed light on the molecular mechanism underlying Cd stress response in this hybrid grass. Our comparative transcriptome analysis demonstrated that in combat with Cd stress, king grass roots have activated the glutathione metabolism pathway by up-regulating glutathione S-transferases (GSTs) which are a multifunctional family of phase II enzymes that detoxify a variety of environmental chemicals, reactive intermediates, and secondary products of oxidative damages. In roots, early inductions of phenylpropanoid biosynthesis and phenylalanine metabolism pathways were observed to be enriched in differentially expressed genes (DEGs). Meanwhile, oxidoreductase activities were significantly enriched in the first 3 h to bestow the plant cells with resistance to oxidative stress. We also found that transporter activities and jasmonic acid (JA)-signaling might be activated by Cd in king grass. Our study provided the first-hand information on genome-wide transcriptome profiling of king grass and novel insights on phytoremediation.
Collapse
Affiliation(s)
- Junming Zhao
- Department of Grassland Science, Sichuan Agricultural University, Chengdu 611130, China.
| | - Bo Xia
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634-0318, USA.
| | - Yu Meng
- College of Natural, Applied and Health Sciences, Wenzhou Kean University, Wenzhou 325060, China.
| | - Zhongfu Yang
- Department of Grassland Science, Sichuan Agricultural University, Chengdu 611130, China.
| | - Ling Pan
- Department of Grassland Science, Sichuan Agricultural University, Chengdu 611130, China.
| | - Man Zhou
- College of Natural, Applied and Health Sciences, Wenzhou Kean University, Wenzhou 325060, China.
| | - Xinquan Zhang
- Department of Grassland Science, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
82
|
Zhang Y, Yao JL, Feng H, Jiang J, Fan X, Jia YF, Wang R, Liu C. Identification of the defense-related gene VdWRKY53 from the wild grapevine Vitis davidii using RNA sequencing and ectopic expression analysis in Arabidopsis. Hereditas 2019; 156:14. [PMID: 31057347 PMCID: PMC6486689 DOI: 10.1186/s41065-019-0089-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/11/2019] [Indexed: 01/18/2023] Open
Abstract
Background Grapevine is an important fruit crop grown worldwide, and its cultivars are mostly derived from the European species Vitis vinifera, which has genes for high fruit quality and adaptation to a wide variety of climatic conditions. Disease resistance varies substantially across grapevine species; however, the molecular mechanisms underlying such variation remain uncharacterized. Results The anatomical structure and disease symptoms of grapevine leaves were analyzed for two grapevine species, and the critical period of resistance of grapevine to pathogenic bacteria was determined to be 12 h post inoculation (hpi). Differentially expressed genes (DEGs) were identified from transcriptome analysis of leaf samples obtained at 12 and 36 hpi, and the transcripts in four pathways (cell wall genes, LRR receptor-like genes, WRKY genes, and pathogenesis-related (PR) genes) were classified into four co-expression groups by using weighted correlation network analysis (WGCNA). The gene VdWRKY53, showing the highest transcript level, was introduced into Arabidopsis plants by using a vector containing the CaMV35S promoter. These procedures allowed identifying the key genes contributing to differences in disease resistance between a strongly resistant accession of a wild grapevine species Vitis davidii (VID) and a susceptible cultivar of V. vinifera, ‘Manicure Finger’ (VIV). Vitis davidii, but not VIV, showed a typical hypersensitive response after infection with a fungal pathogen (Coniella diplodiella) causing white rot disease. Further, 20 defense-related genes were identified, and their differential expression between the two grapevine species was confirmed using quantitative real-time PCR analysis. VdWRKY53, showing the highest transcript level, was selected for functional analysis and therefore over-expressed in Arabidopsis under the control of the CaMV35S promoter. The transgenic plants showed enhanced resistance to C. diplodiella and to two other pathogens, Pseudomonas syringae pv. tomato DC3000 and Golovinomyces cichoracearum. Conclusion The consistency of the results in VID and transgenic Arabidopsis indicated that VdWRKY53 might be involved in the activation of defense-related genes that enhance the resistance of these plants to pathogens. Thus, the over-expression of VdWRKY53 in transgenic grapevines might improve their resistance to pathogens. Electronic supplementary material The online version of this article (10.1186/s41065-019-0089-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ying Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou, 450009 China
| | - Jia-Long Yao
- 2The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Hu Feng
- Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou, 450009 China
| | - Jianfu Jiang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou, 450009 China
| | - Xiucai Fan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou, 450009 China
| | - Yun-Fei Jia
- Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou, 450009 China
| | - Ran Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou, 450009 China
| | - Chonghuai Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou, 450009 China
| |
Collapse
|
83
|
Li T, Shi D, Wu Q, Yin C, Li F, Shan Y, Duan X, Jiang Y. Mechanism of Cell Wall Polysaccharides Modification in Harvested 'Shatangju' Mandarin ( Citrus reticulate Blanco) Fruit Caused by Penicillium italicum. Biomolecules 2019; 9:biom9040160. [PMID: 31022937 PMCID: PMC6523094 DOI: 10.3390/biom9040160] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/21/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023] Open
Abstract
Modification of cell wall polysaccharide in the plant plays an important role in response to fungi infection. However, the mechanism of fungi infection on cell wall modification need further clarification. In this study, the effects of Penicillium italicum inoculation on 'shatangju' mandarin disease development and the potential mechanism of cell wall polysaccharides modification caused by P. italicum were investigated. Compared to the control fruit, P. italicum infection modified the cell wall polysaccharides, indicated by water-soluble pectin (WSP), acid-soluble pectin (ASP), hemicellulose and lignin contents change. P. italicum infection enhanced the activities of polygalacturonase (PG), pectin methylesterase (PME), and the expression levels of xyloglucanendotransglucosylase/hydrolase (XTH) and expansin, which might contribute to cell wall disassembly and cellular integrity damage. Additionally, higher accumulation of reactive oxygen species (ROS) via decreasing antioxidant metabolites and the activities of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) also contributed to the cell wall polysaccharides modification. Meanwhile, the gene expression levels of hydroxyproline-rich glycoprotein (HRGP) and germin-like protein (GLP) were inhibited by pathogen infection. Altogether, these findings suggested that cell wall degradation/modification caused by non-enzymatic and enzymatic factors was an important strategy for P. italicum to infect 'shatangju' mandarin.
Collapse
Affiliation(s)
- Taotao Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
- Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, Guangzhou 510650, China.
| | - Dingding Shi
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
- University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Qixian Wu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
- University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Chunxiao Yin
- Long Ping Branch, Graduate School of Hunan University, Changsha 410125, China.
| | - Fengjun Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
- University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Youxia Shan
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
- University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Xuewu Duan
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
- Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, Guangzhou 510650, China.
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
- Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, Guangzhou 510650, China.
| |
Collapse
|
84
|
Lu L, Ji L, Ma Q, Yang M, Li S, Tang Q, Qiao L, Li F, Guo Q, Wang C. Depression of Fungal Polygalacturonase Activity in Solanum lycopersicum Contributes to Antagonistic Yeast-Mediated Fruit Immunity to Botrytis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3293-3304. [PMID: 30785743 DOI: 10.1021/acs.jafc.9b00031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The acquisition of susceptibility to necrotrophy over the course of ripening is one of the critical factors limiting shelf life. In this study, phytopathology and molecular biology were employed to explore the roles of pectinase in fruit susceptibility and ripening. Solanum lycopersicum fruit softened dramatically from entirely green to 50% red, which was accompanied by a continuously high expressed SlPG2 gene. The necrotrophic fungus Botrytis cinerea further activated the expression of SlPGs and SlPMEs to accelerate cell wall disassembly, while most of the polygalacturonase inhibitor proteins encoding genes expression were postponed in ripe fruit following the pathogen attack. Pectin induced the antagonistic yeast to secrete pectinolytic enzymes to increase fruit resistance against gray mold. The activities of pathogenic pectinase of B. cinerea were correspondingly depressed in the pectin-inducible yeast enzyme elicited ripe fruit. These data suggest that pectinase is a molecular target for regulation of disease resistance during fruit ripening.
Collapse
Affiliation(s)
- Laifeng Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Institute for New Rural Development , Tianjin University of Science and Technology , Tianjin 300457 , P. R. China
| | - Lifeng Ji
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Institute for New Rural Development , Tianjin University of Science and Technology , Tianjin 300457 , P. R. China
| | - Qingqing Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Institute for New Rural Development , Tianjin University of Science and Technology , Tianjin 300457 , P. R. China
| | - Mingguan Yang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Institute for New Rural Development , Tianjin University of Science and Technology , Tianjin 300457 , P. R. China
| | - Shuhua Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Institute for New Rural Development , Tianjin University of Science and Technology , Tianjin 300457 , P. R. China
| | - Qiong Tang
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture , Zhejiang University , Hangzhou 310058 , China
| | - Liping Qiao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Institute for New Rural Development , Tianjin University of Science and Technology , Tianjin 300457 , P. R. China
| | - Fengjuan Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Institute for New Rural Development , Tianjin University of Science and Technology , Tianjin 300457 , P. R. China
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Institute for New Rural Development , Tianjin University of Science and Technology , Tianjin 300457 , P. R. China
| | - Changlu Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Institute for New Rural Development , Tianjin University of Science and Technology , Tianjin 300457 , P. R. China
| |
Collapse
|
85
|
Skiada V, Faccio A, Kavroulakis N, Genre A, Bonfante P, Papadopoulou KK. Colonization of legumes by an endophytic Fusarium solani strain FsK reveals common features to symbionts or pathogens. Fungal Genet Biol 2019; 127:60-74. [PMID: 30872027 DOI: 10.1016/j.fgb.2019.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/31/2019] [Accepted: 03/08/2019] [Indexed: 12/22/2022]
Abstract
Plant cellular responses to endophytic filamentous fungi are scarcely reported, with the majority of described colonization processes in plant-fungal interactions referring to either pathogens or true symbionts. Fusarium solani strain K (FsK) is a root endophyte of Solanum lycopersicum, which protects against root and foliar pathogens. Here, we investigate the association of FsK with two legumes (Lotus japonicus and Medicago truncatula) and report on colonization patterns and plant responses during the establishment of the interaction. L. japonicus plants colonized by FsK complete their life cycle and exhibit no apparent growth defects under normal conditions. We followed the growth of FsK within root-inoculated plants spatiotemporally and showed the capability of the endophyte to migrate to the stem. In a bipartite system comprising of the endophyte and either whole plants or root organ cultures, we studied the plant sub-cellular responses to FsK recognition, using optical, confocal and transmission electron microscopy. A polarized reorganization of the root cell occurs: endoplasmic reticulum/cytoplasm accumulation and nuclear placement at contact sites, occasional development of papillae underneath hyphopodia and membranous material rearrangements towards penetrating hyphae. Fungal hyphae proliferate within the vascular bundle of the plant. Plant cell death is involved in fungal colonization of the root. Our data suggest that the establishment of FsK within legume tissues requires fungal growth adaptations and plant cell-autonomous responses, known to occur during both symbiotic and pathogenic plant-fungal interactions. We highlight the overlooked plasticity of endophytic fungi upon plant colonization, and introduce a novel plant-endophyte association.
Collapse
Affiliation(s)
- Vasiliki Skiada
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Larissa 41500, Greece.
| | - Antonella Faccio
- Department of Life Sciences and Systems Biology, University of Torino, Torino 10125, Italy.
| | - Nektarios Kavroulakis
- Hellenic Agricultural Organization "Demeter", Institute for Olive Tree, Subtropical Plants and Viticulture, Agrokipio-Souda, 73100 Chania, Greece.
| | - Andrea Genre
- Department of Life Sciences and Systems Biology, University of Torino, Torino 10125, Italy.
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Torino, Torino 10125, Italy.
| | - Kalliope K Papadopoulou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Larissa 41500, Greece.
| |
Collapse
|
86
|
|
87
|
Czobor Á, Hajdinák P, Németh B, Piros B, Németh Á, Szarka A. Comparison of the response of alternative oxidase and uncoupling proteins to bacterial elicitor induced oxidative burst. PLoS One 2019; 14:e0210592. [PMID: 30629714 PMCID: PMC6328269 DOI: 10.1371/journal.pone.0210592] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/25/2018] [Indexed: 12/03/2022] Open
Abstract
Plant UCPs are proved to take part in the fine-tuning of mitochondrial ROS generation. It has emerged that mitochondrion can be an important early source of intracellular ROS during plant-pathogen interaction thus plant UCPs must also play key role in this redox fine-tuning during the early phase of plant-pathogen interaction. On the contrary of this well-established assumption, the expression of plant UCPs and their activity has not been investigated in elicitor induced oxidative burst. Thus, the level of plant UCPs both at RNA and protein level and their activity was investigated and compared to AOX as a reference in Arabidopsis thaliana cells due to bacterial harpin treatments. Similar to the expression and activity of AOX, the transcript level of UCP4, UCP5 and the UCP activity increased due to harpin treatment and the consequential oxidative burst. The expression of UCP4 and UCP5 elevated 15-18-fold after 1 h of treatment, then the activity of UCP reached its maximal value at 4h of treatment. The quite rapid activation of UCP due to harpin treatment gives another possibility to fine tune the redox balance of plant cell, furthermore explains the earlier observed rapid decrease of mitochondrial membrane potential and consequent decrease of ATP synthesis after harpin treatment.
Collapse
Affiliation(s)
- Ádám Czobor
- Department of Applied Biotechnology and Food Science, Laboratory of Biochemistry and Molecular Biology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Péter Hajdinák
- Department of Applied Biotechnology and Food Science, Laboratory of Biochemistry and Molecular Biology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Bence Németh
- Department of Applied Biotechnology and Food Science, Laboratory of Biochemistry and Molecular Biology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Borbála Piros
- Department of Applied Biotechnology and Food Science, Laboratory of Biochemistry and Molecular Biology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Áron Németh
- Department of Applied Biotechnology and Food Science, Fermentation Pilot Plant Laboratory, Budapest University of Technology and Economics, Budapest, Hungary
| | - András Szarka
- Department of Applied Biotechnology and Food Science, Laboratory of Biochemistry and Molecular Biology, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
88
|
Bönnighausen J, Schauer N, Schäfer W, Bormann J. Metabolic profiling of wheat rachis node infection by Fusarium graminearum - decoding deoxynivalenol-dependent susceptibility. THE NEW PHYTOLOGIST 2019; 221:459-469. [PMID: 30084118 DOI: 10.1111/nph.15377] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/09/2018] [Indexed: 05/20/2023]
Abstract
Fusarium graminearum is a filamentous ascomycete and the causal agent of Fusarium head blight on wheat that threatens food and feed production worldwide as infection reduces crop yield both quantitatively by interfering with kernel development and qualitatively by poisoning any remaining kernels with mycotoxins. In wheat, F. graminearum infects spikelets and colonizes the entire head by growing through the rachis node at the bottom of each spikelet. Without the mycotoxin deoxynivalenol (DON), the pathogen cannot penetrate the rachis node and wheat is able to resist colonization. Using a global metabolite profiling approach we compared the metabolic profile of rachis nodes inoculated with either water, the Fusarium graminearum wild-type or the DON-deficient ∆tri5 mutant. Extensive metabolic rearrangements mainly affect metabolites for general stress perception and signaling, reactive oxygen species (ROS) metabolism, cell wall composition, the tri-carbonic acid (TCA) cycle and γ-aminobutyric acid (GABA) shunt as well as sugar alcohols, amino acids, and storage carbohydrates. The results revealed specific, DON-related susceptibility factors. Wild-type infection resulted in an oxidative burst and the induction of plant programmed cell death, while spread of the DON-deficient mutant was blocked in a jasmonate (JA)-related defense reaction in concert with other factors. Hence, the ∆tri5 mutant is prone to defense reactions that are, in the case of a wild-type infection, not initiated.
Collapse
Affiliation(s)
- Jakob Bönnighausen
- Department of Molecular Phytopathology, Institute of Plant Science and Microbiology (IPM), University of Hamburg, Ohnhorststr. 18, D-22609, Hamburg, Germany
| | - Nicolas Schauer
- Metabolomic Discoveries GmbH, Am Mühlenberg 11, D-14476, Potsdam, Germany
| | - Wilhelm Schäfer
- Department of Molecular Phytopathology, Institute of Plant Science and Microbiology (IPM), University of Hamburg, Ohnhorststr. 18, D-22609, Hamburg, Germany
| | - Jörg Bormann
- Department of Molecular Phytopathology, Institute of Plant Science and Microbiology (IPM), University of Hamburg, Ohnhorststr. 18, D-22609, Hamburg, Germany
- Department for Cell Biology, University of Bremen, Leobener Str. NW2, 28359, Bremen, Germany
| |
Collapse
|
89
|
Quantitative Proteomics of Potato Leaves Infected with Phytophthora infestans Provides Insights into Coordinated and Altered Protein Expression during Early and Late Disease Stages. Int J Mol Sci 2019; 20:ijms20010136. [PMID: 30609684 PMCID: PMC6337297 DOI: 10.3390/ijms20010136] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/19/2018] [Accepted: 12/24/2018] [Indexed: 01/20/2023] Open
Abstract
In order to get a better understanding of protein association during Solanum tuberosum (cv. Sarpo Mira)–Phytophthora infestans incompatible interaction, we investigated the proteome dynamics of cv. Sarpo Mira, after foliar application of zoospore suspension from P. infestans isolate, at three key time-points: zero hours post inoculation (hpi) (Control), 48 hpi (EI), and 120 hpi (LI); divided into early and late disease stages by the tandem mass tagging (TMT) method. A total of 1229 differentially-expressed proteins (DEPs) were identified in cv. Sarpo Mira in a pairwise comparison of the two disease stages, including commonly shared DEPs, specific DEPs in early and late disease stages, respectively. Over 80% of the changes in protein abundance were up-regulated in the early stages of infection, whereas more DEPs (61%) were down-regulated in the later disease stage. Expression patterns, functional category, and enrichment tests highlighted significant coordination and enrichment of cell wall-associated defense response proteins during the early stage of infection. The late stage was characterized by a cellular protein modification process, membrane protein complex formation, and cell death induction. These results, together with phenotypic observations, provide further insight into the molecular mechanism of P. infestans resistance in potatos.
Collapse
|
90
|
Fahlberg P, Buhot N, Johansson ON, Andersson MX. Involvement of lipid transfer proteins in resistance against a non-host powdery mildew in Arabidopsis thaliana. MOLECULAR PLANT PATHOLOGY 2019; 20:69-77. [PMID: 30102837 PMCID: PMC6430466 DOI: 10.1111/mpp.12740] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Non-specific lipid transfer proteins (LTPs) are involved in the transport of lipophilic compounds to the cuticular surface in epidermal cells and in the defence against pathogens. The role of glycophosphatidylinositol (GPI)-anchored LTPs (LTPGs) in resistance against non-host mildews in Arabidopsis thaliana was investigated using reverse genetics. Loss of either LTPG1, LTPG2, LTPG5 or LTPG6 increased the susceptibility to penetration of the epidermal cell wall by Blumeria graminis f. sp. hordei (Bgh). However, no impact on pre-penetration defence against another non-host mildew, Erysiphe pisi (Ep), was observed. LTPG1 was localized to papillae at the sites of Bgh penetration. This study shows that, in addition to the previously known functions, LTPGs contribute to pre-invasive defence against certain non-host powdery mildew pathogens.
Collapse
Affiliation(s)
- Per Fahlberg
- Department of Biology and Environmental SciencesUniversity of GothenburgGothenburgSE‐405 30GöteborgSweden
| | - Nathalie Buhot
- Department of Biology and Environmental SciencesUniversity of GothenburgGothenburgSE‐405 30GöteborgSweden
| | - Oskar N. Johansson
- Department of Biology and Environmental SciencesUniversity of GothenburgGothenburgSE‐405 30GöteborgSweden
| | - Mats X. Andersson
- Department of Biology and Environmental SciencesUniversity of GothenburgGothenburgSE‐405 30GöteborgSweden
| |
Collapse
|
91
|
Hilbert M, Novero M, Rovenich H, Mari S, Grimm C, Bonfante P, Zuccaro A. MLO Differentially Regulates Barley Root Colonization by Beneficial Endophytic and Mycorrhizal Fungi. FRONTIERS IN PLANT SCIENCE 2019; 10:1678. [PMID: 32010163 PMCID: PMC6976535 DOI: 10.3389/fpls.2019.01678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/28/2019] [Indexed: 05/05/2023]
Abstract
Loss-of-function alleles of MLO (Mildew Resistance Locus O) confer broad-spectrum resistance to foliar infections by powdery mildew pathogens. Like pathogens, microbes that establish mutually beneficial relationships with their plant hosts, trigger the induction of some defense responses. Initially, barley colonization by the root endophyte Serendipita indica (syn. Piriformospora indica) is associated with enhanced defense gene expression and the formation of papillae at sites of hyphal penetration attempts. This phenotype is reminiscent of mlo-conditioned immunity in barley leaf tissue and raises the question whether MLO plays a regulatory role in the establishment of beneficial interactions. Here we show that S. indica colonization was significantly reduced in plants carrying mlo mutations compared to wild type controls. The reduction in fungal biomass was associated with the enhanced formation of papillae. Moreover, epidermal cells of S. indica-treated mlo plants displayed an early accumulation of iron in the epidermal layer suggesting increased basal defense activation in the barley mutant background. Correspondingly, the induction of host cell death during later colonization stages was impaired in mlo colonized plants, highlighting the importance of the early biotrophic growth phase for S. indica root colonization. In contrast, the arbuscular mycorrhizal fungus Funneliformis mosseae displayed a similar colonization morphology on mutant and wild type plants. However, the frequency of mycorrhization and number of arbuscules was higher in mlo-5 mutants. These findings suggest that MLO differentially regulates root colonization by endophytic and AM fungi.
Collapse
Affiliation(s)
- Magdalena Hilbert
- Department of Organismic Interactions, Max Planck Institute of Terrestrial Microbiology, Marburg, Germany
| | - Mara Novero
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Hanna Rovenich
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Stéphane Mari
- BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier, France
| | - Carolin Grimm
- Department of Organismic Interactions, Max Planck Institute of Terrestrial Microbiology, Marburg, Germany
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Alga Zuccaro
- Department of Organismic Interactions, Max Planck Institute of Terrestrial Microbiology, Marburg, Germany
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
- *Correspondence: Alga Zuccaro,
| |
Collapse
|
92
|
Husaini AM, Sakina A, Cambay SR. Host-Pathogen Interaction in Fusarium oxysporum Infections: Where Do We Stand? MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:889-898. [PMID: 29547356 DOI: 10.1094/mpmi-12-17-0302-cr] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Fusarium oxysporum, a ubiquitous soilborne pathogen, causes devastating vascular wilt in more than 100 plant species and ranks 5th among the top 10 fungal plant pathogens. It has emerged as a human pathogen, too, causing infections in immune-compromised patients. Therefore, it is important to gain insight into the molecular processes involved in the pathogenesis of this transkingdom pathogen. A complex network comprising interconnected and overlapping signal pathways-mitogen-activated protein kinase signaling pathways, Ras proteins, G-protein signaling components and their downstream pathways, components of the velvet (LaeA/VeA/VelB) complex, and cAMP pathways-is involved in perceiving the host. This network regulates the expression of various pathogenicity genes. However, plants have evolved an elaborate protection system to combat this attack. They, too, possess intricate mechanisms at the molecular level which, once triggered by pathogen attack, transduce signals to activate defense response. This review focuses on understanding and presenting a wholistic picture of the molecular mechanisms of F. oxysporum-host interactions in plant immunity.
Collapse
Affiliation(s)
- Amjad M Husaini
- 1 Genome Engineering Lab, Division of Plant Biotechnology, SKUAST-K, Shalimar, Jammu & Kashmir-190025, India
- 2 The Plant Chemetics Laboratory, Department of Plant Sciences, OX1 3RB South Parks Road, University of Oxford, U.K.; and
| | - Aafreen Sakina
- 1 Genome Engineering Lab, Division of Plant Biotechnology, SKUAST-K, Shalimar, Jammu & Kashmir-190025, India
| | - Souliha R Cambay
- 1 Genome Engineering Lab, Division of Plant Biotechnology, SKUAST-K, Shalimar, Jammu & Kashmir-190025, India
- 3 Division of Genetics, Indian Agricultural Research Institute, Pusa, New Delhi-110012, India
| |
Collapse
|
93
|
Feng H, Zhang M, Zhao Y, Li C, Song L, Huang L. Secreted peroxidases VmPODs play critical roles in the conidiation, H 2O 2 sensitivity and pathogenicity of Valsa mali. Fungal Genet Biol 2018; 119:20-28. [PMID: 30125671 DOI: 10.1016/j.fgb.2018.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/02/2018] [Accepted: 08/15/2018] [Indexed: 01/22/2023]
Abstract
Apple Valsa canker, caused by the necrotrophic pathogen Valsa mali, is a devastating disease of apples and causes great financial loss in East Asia. Improving the understanding of apple - V. mali interactions will contribute to disease management. In this study, three predicted secreted peroxidases (VmPOD1, VmPOD2 and VmPOD3) were uncovered based on the secretome and genome information of V. mali. Phylogenetic analysis showed that VmPOD1 is a catalase peroxidase, VmPOD2 is a chloroperoxidase, and VmPOD3 is a plant peroxidase-like peroxidase. The secretion function of the corresponding genes was confirmed using the yeast invertase secretion system. The deletion of VmPODs did not affect the vegetative growth when the mutants (ΔVmPOD1, ΔVmPOD2 and ΔVmPOD3) and the wild-type strain 03-8 were grown on PDA medium at 25 °C in the dark. However, the respective mutants showed impaired conidiation ability with fewer pycnidia, and all gene deletion mutants grew more slowly than 03-8 on PDA supplemented with H2O2 (Final concentration: 0.06 mol/L H2O2). In addition, VmPOD1 and VmPOD2 were found to be significantly up-regulated at an early infection stage, and VmPOD3 showed sustained high expression during the whole infection progress of V. mali. In addition, the virulence of ΔVmPOD3 was significantly reduced, implying that VmPOD3 plays a critical role during the interaction between V. mali and apple. All of the defective phenotypes could be nearly restored by re-introducing the wild-type VmPOD1, VmPOD2 or VmPOD3 allele. The results enhanced our understanding of the secreted peroxidase, which could also act as a type of virulence factor from the necrotrophic pathogen V. mali and provided new insight into the role of the pathogen-secreted peroxidase.
Collapse
Affiliation(s)
- Hao Feng
- College of Plant Protection and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mian Zhang
- College of Plant Protection and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuhuan Zhao
- College of Plant Protection and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chen Li
- College of Plant Protection and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linlin Song
- College of Plant Protection and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lili Huang
- College of Plant Protection and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
94
|
Rajaraman J, Douchkov D, Lück S, Hensel G, Nowara D, Pogoda M, Rutten T, Meitzel T, Brassac J, Höfle C, Hückelhoven R, Klinkenberg J, Trujillo M, Bauer E, Schmutzer T, Himmelbach A, Mascher M, Lazzari B, Stein N, Kumlehn J, Schweizer P. Evolutionarily conserved partial gene duplication in the Triticeae tribe of grasses confers pathogen resistance. Genome Biol 2018; 19:116. [PMID: 30111359 PMCID: PMC6092874 DOI: 10.1186/s13059-018-1472-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 07/04/2018] [Indexed: 11/11/2022] Open
Abstract
Background The large and highly repetitive genomes of the cultivated species Hordeum vulgare (barley), Triticum aestivum (wheat), and Secale cereale (rye) belonging to the Triticeae tribe of grasses appear to be particularly rich in gene-like sequences including partial duplicates. Most of them have been classified as putative pseudogenes. In this study we employ transient and stable gene silencing- and over-expression systems in barley to study the function of HvARM1 (for H. vulgare Armadillo 1), a partial gene duplicate of the U-box/armadillo-repeat E3 ligase HvPUB15 (for H. vulgare Plant U-Box 15). Results The partial ARM1 gene is derived from a gene-duplication event in a common ancestor of the Triticeae and contributes to quantitative host as well as nonhost resistance to the biotrophic powdery mildew fungus Blumeria graminis. In barley, allelic variants of HvARM1 but not of HvPUB15 are significantly associated with levels of powdery mildew infection. Both HvPUB15 and HvARM1 proteins interact in yeast and plant cells with the susceptibility-related, plastid-localized barley homologs of THF1 (for Thylakoid formation 1) and of ClpS1 (for Clp-protease adaptor S1) of Arabidopsis thaliana. A genome-wide scan for partial gene duplicates reveals further events in barley resulting in stress-regulated, potentially neo-functionalized, genes. Conclusion The results suggest neo-functionalization of the partial gene copy HvARM1 increases resistance against powdery mildew infection. It further links plastid function with susceptibility to biotrophic pathogen attack. These findings shed new light on a novel mechanism to employ partial duplication of protein-protein interaction domains to facilitate the expansion of immune signaling networks. Electronic supplementary material The online version of this article (10.1186/s13059-018-1472-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jeyaraman Rajaraman
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany.
| | - Dimitar Douchkov
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany.
| | - Stefanie Lück
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Götz Hensel
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Daniela Nowara
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Maria Pogoda
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Twan Rutten
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Tobias Meitzel
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Jonathan Brassac
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Caroline Höfle
- Technische Universität München, Emil-Ramann-Straße 2, D-85354, Freising, Germany
| | - Ralph Hückelhoven
- Technische Universität München, Emil-Ramann-Straße 2, D-85354, Freising, Germany
| | - Jörn Klinkenberg
- Leibniz Institut für Pflanzenbiochemie, Weinberg 3, D-06120, Halle (Saale), Germany
| | - Marco Trujillo
- Leibniz Institut für Pflanzenbiochemie, Weinberg 3, D-06120, Halle (Saale), Germany.,Albert-Ludwigs-Universität Freiburg, Institut für Biologie II, Zellbiologie, D-79104, Freiburg, Germany
| | - Eva Bauer
- Technische Universität München, Liesel-Beckmann-Straße 2, D-85354, Freising, Germany
| | - Thomas Schmutzer
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Axel Himmelbach
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Martin Mascher
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Barbara Lazzari
- Parco Technologico Padano, Via Einstein, Loc. Cascina Codazza, 26900, Lodi, Italy
| | - Nils Stein
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Jochen Kumlehn
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Patrick Schweizer
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| |
Collapse
|
95
|
Bandara YMAY, Weerasooriya DK, Liu S, Little CR. The Necrotrophic Fungus Macrophomina phaseolina Promotes Charcoal Rot Susceptibility in Grain Sorghum Through Induced Host Cell-Wall-Degrading Enzymes. PHYTOPATHOLOGY 2018; 108:948-956. [PMID: 29465007 DOI: 10.1094/phyto-12-17-0404-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The cell-wall-degrading enzymes (CWDE) secreted by necrotrophs are important virulence factors. Although not unequivocally demonstrated, it has been suggested that necrotrophs induce hosts to cooperate in disease development through manipulation of host CWDE. The necrotrophic fungus Macrophomina phaseolina causes charcoal rot disease in Sorghum bicolor. An RNA-seq experiment was conducted to investigate the behavior of sorghum CWDE-encoding genes after M. phaseolina inoculation. Results revealed M. phaseolina's ability to significantly upregulate pectin methylesterase-, polygalacturonase-, cellulase-, endoglucanase-, and glycosyl hydrolase-encoding genes in a charcoal rot-susceptible sorghum genotype (Tx7000) but not in a resistant genotype (SC599). For functional validation, crude enzyme mixtures were extracted from M. phaseolina- and mock-inoculated charcoal-rot-resistant (SC599 and SC35) and -susceptible (Tx7000 and BTx3042) sorghum genotype stalks. A gel diffusion assay (pectin substrate) revealed significantly increased pectin methylesterase activity in M. phaseolina-inoculated Tx7000 and BTx3042. Polygalacturonase activity was determined using a ruthenium red absorbance assay (535 nm). Significantly increased polygalacturonase activity was observed in two susceptible genotypes after M. phaseolina inoculation. The activity of cellulose-degrading enzymes was determined using a 2-cyanoacetamide fluorimetric assay (excitation and emission maxima at 331 and 383 nm, respectively). The assay revealed significantly increased cellulose-degrading enzyme activity in M. phaseolina-inoculated Tx7000 and BTx3042. These findings revealed M. phaseolina's ability to promote charcoal rot susceptibility in grain sorghum through induced host CWDE.
Collapse
Affiliation(s)
- Y M A Y Bandara
- First third, and fourth authors: Department of Plant Pathology, and second author: Department of Agronomy, Kansas State University, Manhattan 66506
| | - D K Weerasooriya
- First third, and fourth authors: Department of Plant Pathology, and second author: Department of Agronomy, Kansas State University, Manhattan 66506
| | - S Liu
- First third, and fourth authors: Department of Plant Pathology, and second author: Department of Agronomy, Kansas State University, Manhattan 66506
| | - C R Little
- First third, and fourth authors: Department of Plant Pathology, and second author: Department of Agronomy, Kansas State University, Manhattan 66506
| |
Collapse
|
96
|
González-Bosch C. Priming plant resistance by activation of redox-sensitive genes. Free Radic Biol Med 2018; 122:171-180. [PMID: 29277443 DOI: 10.1016/j.freeradbiomed.2017.12.028] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 12/31/2022]
Abstract
Priming by natural compounds is an interesting alternative for sustainable agriculture, which also contributes to explore the molecular mechanisms associated with stress tolerance. Although hosts and stress types eventually determine the mode of action of plant-priming agents, it highlights that many of them act on redox signalling. These include vitamins thiamine, riboflavin and quercetin; organic acids like pipecolic, azelaic and hexanoic; volatile organic compounds such as methyl jasmonate; cell wall components like chitosans and oligogalacturonides; H2O2, etc. This review provides data on how priming inducers promote stronger and faster responses to stress by modulating the oxidative environment, and interacting with signalling pathways mediated by salycilic acid, jasmonic acid and ethylene. The histone modifications involved in priming that affect the transcription of defence-related genes are also discussed. Despite the evolutionary distance between plants and animals, and the fact that the plant innate immunity takes place in each plant cell, they show many similarities in the molecular mechanisms that underlie pathogen perception and further signalling to activate defence responses. This review highlights the similarities between priming through redox signalling in plants and in mammalian cells. The strategies used by pathogens to manipulate the host´s recognition and the further activation of defences also show similarities in both kingdoms. Moreover, phytochemicals like sulforaphane and 12-oxo-phytodienoic acid prime both plant and mammalian responses by activating redox-sensitive genes. Hence research data into the priming of plant defences can provide additional information and a new viewpoint for priming mammalian defence, and vice versa.
Collapse
Affiliation(s)
- Carmen González-Bosch
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Instituto de Agroquímica y Tecnología de Alimentos (IATA/CSIC), Avenida Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
97
|
Marques JPR, Hoy JW, Appezzato-da-Glória B, Viveros AFG, Vieira MLC, Baisakh N. Sugarcane Cell Wall-Associated Defense Responses to Infection by Sporisorium scitamineum. FRONTIERS IN PLANT SCIENCE 2018; 9:698. [PMID: 29875793 PMCID: PMC5974332 DOI: 10.3389/fpls.2018.00698] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 05/07/2018] [Indexed: 05/08/2023]
Abstract
The plant cell wall is known to be the first barrier against plant pathogens. Detailed information about sugarcane cell wall-associated defense responses to infection by the causal agent of smut, Sporisorium scitamineum, is scarce. Herein, (immuno)histochemical analysis of two smut resistant and two susceptible sugarcane cultivars was conducted to understand host cell wall structural and compositional modifications in response to fungal infection. Results showed that the fungus grew on the surface and infected the outermost bud scale of both susceptible and resistant cultivars. The present findings also supported the existence of early (24 h after inoculation) and later (72-96 h after inoculation) inducible histopathological responses related to the cell wall modification in resistant cultivars. Lignin and phenolic compounds accumulated during early stages of infection. Later infection response was characterized by the formation of a protective barrier layer with lignin, cellulose and arabinoxylan in the cell walls. Overall, the results suggest possible induction of cell wall-modified responses in smut resistant cultivars to prevent initial entry of the fungus into the meristematic tissues.
Collapse
Affiliation(s)
- João P. R. Marques
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
- Genetics Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Jeffrey W. Hoy
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Beatriz Appezzato-da-Glória
- Biological Science Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Andrés F. G. Viveros
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Maria L. C. Vieira
- Genetics Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Niranjan Baisakh
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| |
Collapse
|
98
|
Bacete L, Mélida H, Miedes E, Molina A. Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:614-636. [PMID: 29266460 DOI: 10.1111/tpj.13807] [Citation(s) in RCA: 282] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/07/2017] [Accepted: 12/14/2017] [Indexed: 05/18/2023]
Abstract
Plants have evolved a repertoire of monitoring systems to sense plant morphogenesis and to face environmental changes and threats caused by different attackers. These systems integrate different signals into overreaching triggering pathways which coordinate developmental and defence-associated responses. The plant cell wall, a dynamic and complex structure surrounding every plant cell, has emerged recently as an essential component of plant monitoring systems, thus expanding its function as a passive defensive barrier. Plants have a dedicated mechanism for maintaining cell wall integrity (CWI) which comprises a diverse set of plasma membrane-resident sensors and pattern recognition receptors (PRRs). The PRRs perceive plant-derived ligands, such as peptides or wall glycans, known as damage-associated molecular patterns (DAMPs). These DAMPs function as 'danger' alert signals activating DAMP-triggered immunity (DTI), which shares signalling components and responses with the immune pathways triggered by non-self microbe-associated molecular patterns that mediate disease resistance. Alteration of CWI by impairment of the expression or activity of proteins involved in cell wall biosynthesis and/or remodelling, as occurs in some plant cell wall mutants, or by wall damage due to colonization by pathogens/pests, activates specific defensive and growth responses. Our current understanding of how these alterations of CWI are perceived by the wall monitoring systems is scarce and few plant sensors/PRRs and DAMPs have been characterized. The identification of these CWI sensors and PRR-DAMP pairs will help us to understand the immune functions of the wall monitoring system, and might allow the breeding of crop varieties and the design of agricultural strategies that would enhance crop disease resistance.
Collapse
Affiliation(s)
- Laura Bacete
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| | - Hugo Mélida
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Eva Miedes
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| |
Collapse
|
99
|
Fuerst EP, James MS, Pollard AT, Okubara PA. Defense Enzyme Responses in Dormant Wild Oat and Wheat Caryopses Challenged with a Seed Decay Pathogen. FRONTIERS IN PLANT SCIENCE 2018; 8:2259. [PMID: 29410673 PMCID: PMC5787103 DOI: 10.3389/fpls.2017.02259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/27/2017] [Indexed: 06/07/2023]
Abstract
Seeds have well-established passive physical and chemical defense mechanisms that protect their food reserves from decay-inducing organisms and herbivores. However, there are few studies evaluating potential biochemical defenses of dormant seeds against pathogens. Caryopsis decay by the pathogenic Fusarium avenaceum strain F.a.1 was relatively rapid in wild oat (Avena fatua L.) isoline "M73," with >50% decay after 8 days with almost no decay in wheat (Triticum aestivum L.) var. RL4137. Thus, this fungal strain has potential for selective decay of wild oat relative to wheat. To study defense enzyme activities, wild oat and wheat caryopses were incubated with F.a.1 for 2-3 days. Whole caryopses were incubated in assay reagents to measure extrinsic defense enzyme activities. Polyphenol oxidase, exochitinase, and peroxidase were induced in whole caryopses, but oxalate oxidase was reduced, in response to F.a.1 in both species. To evaluate whether defense enzyme activities were released from the caryopsis surface, caryopses were washed with buffer and enzyme activity was measured in the leachate. Significant activities of polyphenol oxidase, exochitinase, and peroxidase, but not oxalate oxidase, were leached from caryopses. Defense enzyme responses were qualitatively similar in the wild oat and wheat genotypes evaluated. Although the absolute enzyme activities were generally greater in whole caryopses than in leachates, the relative degree of induction of polyphenol oxidase, exochitinase, and peroxidase by F.a.1 was greater in caryopsis leachates, indicating that a disproportionate quantity of the induced activity was released into the environment from the caryopsis surface, consistent with their assumed role in defense. It is unlikely that the specific defense enzymes studied here play a key role in the differential susceptibility to decay by F.a.1 in these two genotypes since defense enzyme activities were greater in the more susceptible wild oat, compared to wheat. Results are consistent with the hypotheses that (1) dormant seeds are capable of mounting complex responses to pathogens, (2) a diversity of defense enzymes are involved in responses in multiple plant species, and (3) it is possible to identify fungi capable of selective decay of weed seeds without damaging crop seeds, a concept that may be applicable to weed management in the field. While earlier work on seed defenses demonstrated the presence of passive defenses, this work shows that dormant seeds are also quite responsive and capable of activating and releasing defense enzymes in response to a pathogen.
Collapse
Affiliation(s)
- E. Patrick Fuerst
- Department of Crop and Soil Sciences and Western Wheat Quality Laboratory, Washington State University, Pullman, WA, United States
| | - Matthew S. James
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Anne T. Pollard
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Patricia A. Okubara
- USDA-ARS Wheat Health, Genetics and Quality Research Unit, Washington State University, Pullman, WA, United States
| |
Collapse
|
100
|
Mélida H, Sopeña-Torres S, Bacete L, Garrido-Arandia M, Jordá L, López G, Muñoz-Barrios A, Pacios LF, Molina A. Non-branched β-1,3-glucan oligosaccharides trigger immune responses in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:34-49. [PMID: 29083116 DOI: 10.1111/tpj.13755] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/05/2017] [Accepted: 10/13/2017] [Indexed: 05/20/2023]
Abstract
Fungal cell walls, which are essential for environmental adaptation and host colonization by the fungus, have been evolutionarily selected by plants and animals as a source of microbe-associated molecular patterns (MAMPs) that, upon recognition by host pattern recognition receptors (PRRs), trigger immune responses conferring disease resistance. Chito-oligosaccharides [β-1,4-N-acetylglucosamine oligomers, (GlcNAc)n ] are the only glycosidic structures from fungal walls that have been well-demonstrated to function as MAMPs in plants. Perception of (GlcNAc)4-8 by Arabidopsis involves CERK1, LYK4 and LYK5, three of the eight members of the LysM PRR family. We found that a glucan-enriched wall fraction from the pathogenic fungus Plectosphaerella cucumerina which was devoid of GlcNAc activated immune responses in Arabidopsis wild-type plants but not in the cerk1 mutant. Using this differential response, we identified the non-branched 1,3-β-d-(Glc) hexasaccharide as a major fungal MAMP. Recognition of 1,3-β-d-(Glc)6 was impaired in cerk1 but not in mutants defective in either each of the LysM PRR family members or in the PRR-co-receptor BAK1. Transcriptomic analyses of Arabidopsis plants treated with 1,3-β-d-(Glc)6 further demonstrated that this fungal MAMP triggers the expression of immunity-associated genes. In silico docking analyses with molecular mechanics and solvation energy calculations corroborated that CERK1 can bind 1,3-β-d-(Glc)6 at effective concentrations similar to those of (GlcNAc)4 . These data support that plants, like animals, have selected as MAMPs the linear 1,3-β-d-glucans present in the walls of fungi and oomycetes. Our data also suggest that CERK1 functions as an immune co-receptor for linear 1,3-β-d-glucans in a similar way to its proposed function in the recognition of fungal chito-oligosaccharides and bacterial peptidoglycan MAMPs.
Collapse
Affiliation(s)
- Hugo Mélida
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
| | - Sara Sopeña-Torres
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
| | - Laura Bacete
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| | - María Garrido-Arandia
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
| | - Lucía Jordá
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| | - Gemma López
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
| | - Antonio Muñoz-Barrios
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| | - Luis F Pacios
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
- Departamento de Sistemas y Recursos Naturales, Escuela Técnica Superior de Ingeniería de Montes, UPM, 28040, Madrid, Spain
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| |
Collapse
|