51
|
Effects of proactive interference on olfactory memory in dogs. Learn Behav 2023; 51:108-119. [PMID: 36624335 DOI: 10.3758/s13420-022-00555-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2022] [Indexed: 01/11/2023]
Abstract
Proactive interference (PI) occurs when memories of past events or stimuli intrude in the present moment, causing working memory (WM) errors. These errors are often measured through WM tests such as matching-to-sample (MTS). When the repetition of individual stimuli increases, there is a greater chance of these intrusions, and thus there can be a decrease in accuracy in such tasks. In two experiments, we explored the nature of PI on dog working memory. First, we manipulated the size of the set of odors (2, 6, trial-unique) used to construct each session to maximize (2-odor set) and minimize (trial-unique) within-session proactive interference during an olfactory MTS task. Matching-to-sample accuracy decreased with greater PI. Second, we adapted procedures originally designed for pigeons and rhesus macaques to determine the locus of PI in dogs. To test for proactive interference, probe trials were inserted into MTS sessions where sample odors from earlier trials reappeared as incorrect comparisons. Incorrect responses on these probe trials indicated proactive interference. These probe tests were conducted with a 0-s or 20-s retention interval in separate sessions. We found that dogs performed worse on the matching task when the source of interference (odor stimulus) was from the immediately preceding trial compared with when they were from trials further back in the session but only for the 0-s retention interval. These results are compared with previous work examining the effects of proactive interference on working memory in other species.
Collapse
|
52
|
Imagine this: Visualising a recent meal as bigger reduces subsequent snack intake. Appetite 2023; 181:106411. [PMID: 36463986 DOI: 10.1016/j.appet.2022.106411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/02/2022]
Abstract
Remembering a recent meal reduces subsequent intake of palatable snacks (i.e. the meal-recall effect), however, little is known about the factors which can potentiate this effect. The present experiment investigated whether a stronger meal-recall effect would be observed if recent consumption would be recalled in greater detail, than if it was recalled briefly. Moreover, it was investigated whether imagining a meal as bigger and more satiating than in reality could potentiate the meal-recall effect, and lead to lower intake. It was also explored whether mental visualisation tasks of a recent meal would affect the remembered portion size. Participants (N = 151) ate lunch at the laboratory, and then returned 3 h later to perform the imagination tasks and to participate in a bogus taste test (during which intake was covertly measured). Participants in the two main imagination task groups recalled the lunch meal and then either recalled the consumption episode in great detail or imagined the meal was larger and more filling than in reality. The results showed that imagining a recent meal as larger significantly reduced the quantity of biscuits eaten. However, contrary to the hypotheses, recalling a consumption episode in detail did not decrease snack intake. It was also shown that imagining a recent meal as larger than in reality did not lead participants to overestimate the true size of the meal. In fact, portion size estimations were significantly underestimated in that group. There were no significant estimation differences in any of the other groups. The results of this study suggest that the meal-recall effect can be an effective strategy to reduce food intake and may be amenable to strategic manipulation to enhance efficacy, but seems prone to disruption.
Collapse
|
53
|
Learning predictably changing spatial patterns across days in a food-caching bird. Anim Behav 2023. [DOI: 10.1016/j.anbehav.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
54
|
Georgiou A, Katkov M, Tsodyks M. Forgetting dynamics for items of different categories. Learn Mem 2023; 30:43-47. [PMID: 36828553 PMCID: PMC9987155 DOI: 10.1101/lm.053713.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/23/2023] [Indexed: 02/26/2023]
Abstract
How the dynamic evolution of forgetting changes for different material types is unexplored. By using a common experimental paradigm with stimuli of different types, we were able to directly cross-examine the emerging dynamics and found that even though the presentation sets differ minimally by design, the obtained curves appear to fall on a discrete spectrum. We also show that the resulting curves do not depend on physical time but rather on the number of items shown. All measured curves were compatible with our previously developed mathematical model, hinting to a potential common underlying mechanism of forgetting.
Collapse
Affiliation(s)
- Antonios Georgiou
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mikhail Katkov
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
- Department of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540, USA
| | - Misha Tsodyks
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
- Department of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540, USA
| |
Collapse
|
55
|
Bruno D, Jauregi Zinkunegi A, Kollmorgen G, Suridjan I, Wild N, Carlsson C, Bendlin B, Okonkwo O, Chin N, Hermann BP, Asthana S, Zetterberg H, Blennow K, Langhough R, Johnson SC, Mueller KD. The recency ratio assessed by story recall is associated with cerebrospinal fluid levels of neurodegeneration biomarkers. Cortex 2023; 159:167-174. [PMID: 36630749 PMCID: PMC9931664 DOI: 10.1016/j.cortex.2022.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/11/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
Recency refers to the information learned at the end of a study list or task. Recency forgetting, as tracked by the ratio between recency recall in immediate and delayed conditions, i.e., the recency ratio (Rr), has been applied to list-learning tasks, demonstrating its efficacy in predicting cognitive decline, conversion to mild cognitive impairment (MCI), and cerebrospinal fluid (CSF) biomarkers of neurodegeneration. However, little is known as to whether Rr can be effectively applied to story recall tasks. To address this question, data were extracted from the database of the Alzheimer's Disease Research Center at the University of Wisconsin - Madison. A total of 212 participants were included in the study. CSF biomarkers were amyloid-beta (Aβ) 40 and 42, phosphorylated (p) and total (t) tau, neurofilament light (NFL), neurogranin (Ng), and α-synuclein (a-syn). Story Recall was measured with the Logical Memory Test (LMT). We carried out Bayesian regression analyses with Rr, and other LMT scores as predictors; and CSF biomarkers (including the Aβ42/40 and p-tau/Aβ42 ratios) as outcomes. Results showed that models including Rr consistently provided best fits with the data, with few exceptions. These findings demonstrate the applicability of Rr to story recall and its sensitivity to CSF biomarkers of neurodegeneration, and encourage its inclusion when evaluating risk of neurodegeneration with story recall.
Collapse
Affiliation(s)
- Davide Bruno
- School of Psychology, Liverpool John Moores University, UK.
| | | | | | | | | | - Cynthia Carlsson
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA; Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; Geriatric Research Education and Clinical Center, William S. Middleton Veterans Hospital, Madison, WI, USA
| | - Barbara Bendlin
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Ozioma Okonkwo
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Nathaniel Chin
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA; Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA
| | - Bruce P Hermann
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA; Department of Neurology, University of Wisconsin - Madison, Madison, WI, USA
| | - Sanjay Asthana
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA; Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Rebecca Langhough
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA; Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Sterling C Johnson
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA; Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; Geriatric Research Education and Clinical Center, William S. Middleton Veterans Hospital, Madison, WI, USA
| | - Kimberly D Mueller
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA; Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA; Department of Communication Sciences and Disorders, University of Wisconsin - Madison, Madison, WI, USA
| |
Collapse
|
56
|
Mercer T, Shaw R, Fisher L. Sources and mechanisms of modality-specific distraction in visual short-term memory. VISUAL COGNITION 2023. [DOI: 10.1080/13506285.2022.2162174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Tom Mercer
- School of Psychology, University of Wolverhampton, Wolverhampton, UK
| | - Raegan Shaw
- School of Psychology, University of Wolverhampton, Wolverhampton, UK
| | - Luke Fisher
- School of Psychology, Aston University, Birmingham, UK
| |
Collapse
|
57
|
Maxim P, Brown TI. Toward an Understanding of Cognitive Mapping Ability Through Manipulations and Measurement of Schemas and Stress. Top Cogn Sci 2023; 15:75-101. [PMID: 34612588 DOI: 10.1111/tops.12576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 02/01/2023]
Abstract
Daily function depends on an ability to mentally map our environment. Environmental factors such as visibility and layout, and internal factors such as psychological stress, can challenge spatial memory and efficient navigation. Importantly, people vary dramatically in their ability to navigate flexibly and overcome such challenges. In this paper, we present an overview of "schema theory" and our view of its relevance to navigational memory research. We review several studies from our group and others, that integrate manipulations of environmental complexity and affective state in order to gain a richer understanding of the mechanisms that underlie individual differences in navigational memory. Our most recent data explicitly link such individual differences to ideas rooted in schema theory, and we discuss the potential for this work to advance our understanding of cognitive decline with aging. The data from this body of work highlight the powerful impacts of individual cognitive traits and affective states on the way people take advantage of environmental features and adopt navigational strategies.
Collapse
Affiliation(s)
- Paulina Maxim
- School of Psychology, Georgia Institute of Technology
| | | |
Collapse
|
58
|
van Rijn E, Gouws A, Walker SA, Knowland VCP, Cairney SA, Gaskell MG, Henderson LM. Do naps benefit novel word learning? Developmental differences and white matter correlates. Cortex 2023; 158:37-60. [PMID: 36434978 DOI: 10.1016/j.cortex.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 07/04/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022]
Abstract
Memory representations of newly learned words undergo changes during nocturnal sleep, as evidenced by improvements in explicit recall and lexical integration (i.e., after sleep, novel words compete with existing words during online word recognition). Some studies have revealed larger sleep-benefits in children relative to adults. However, whether daytime naps play a similar facilitatory role is unclear. We investigated the effect of a daytime nap (relative to wake) on explicit memory (recall/recognition) and lexical integration (lexical competition) of newly learned novel words in young adults and children aged 10-12 years, also exploring white matter correlates of the pre- and post-nap effects of word learning in the child group with diffusion weighted MRI. In both age groups, a nap maintained explicit memory of novel words and wake led to forgetting. However, there was an age group interaction when comparing change in recall over the nap: children showed a slight improvement whereas adults showed a slight decline. There was no evidence of lexical integration at any point. Although children spent proportionally more time in slow-wave sleep (SWS) than adults, neither SWS nor spindle parameters correlated with over-nap changes in word learning. For children, increased fractional anisotropy (FA) in the uncinate fasciculus and arcuate fasciculus were associated with the recognition of novel words immediately after learning, and FA in the right arcuate fasciculus was further associated with changes in recall of novel words over a nap, supporting the importance of these tracts in the word learning and consolidation process. These findings point to a protective role of naps in word learning (at least under the present conditions), and emphasize the need to better understand both the active and passive roles that sleep plays in supporting vocabulary consolidation over development.
Collapse
Affiliation(s)
- E van Rijn
- Department of Psychology, University of York, York, United Kingdom.
| | - A Gouws
- Department of Psychology, University of York, York, United Kingdom.
| | - S A Walker
- Department of Psychology, University of York, York, United Kingdom.
| | - V C P Knowland
- Department of Psychology, University of York, York, United Kingdom.
| | - S A Cairney
- Department of Psychology, University of York, York, United Kingdom.
| | - M G Gaskell
- Department of Psychology, University of York, York, United Kingdom.
| | - L M Henderson
- Department of Psychology, University of York, York, United Kingdom.
| |
Collapse
|
59
|
Burdack J, Schöllhorn WI. Cognitive Enhancement through Differential Rope Skipping after Math Lesson. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:205. [PMID: 36612527 PMCID: PMC9819879 DOI: 10.3390/ijerph20010205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Numerous studies have shown cognitive enhancement through sport and physical exercise. Despite the variety of studies, the extent to which physical activity before or after a cognitive learning session leads to more effective cognitive enhancement remains largely unresolved. Moreover, little attention has been paid to the dependence of the motor learning approach then applied. In this study, we compare the influence of differential with uniformly rope skipping directly succeeding an acquisition phase in arithmetic mathematics. For three weeks 26 pupils, 14 female, 12 male, and 13.9 ± 0.7 years old, completed nine 15 min exercises in arithmetic math, each followed by 3 min rope skipping with heart rate measurement. Arithmetic performance was tested in a pre-, post- and retention test design. The results showed a statistically significant difference between the differential and the control groups within the development of arithmetic performance, especially in the retention test. There was no statistical difference in heart rate. It is suggested that the results provide evidence for sustainable improvements of cognitive learning performance by means of highly variable rope skipping.
Collapse
|
60
|
Quent JA, Henson RN. Novel immersive virtual reality experiences do not produce retroactive memory benefits for unrelated material. Q J Exp Psychol (Hove) 2022; 75:2197-2210. [PMID: 35135390 PMCID: PMC9619268 DOI: 10.1177/17470218221082491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 12/17/2021] [Accepted: 01/10/2022] [Indexed: 11/17/2022]
Abstract
The experience of novelty can enhance memory for information that occurs close in time, even if not directly related to the experience-a phenomenon called "behavioural tagging." For example, an animal exposed to a novel spatial environment shows improved memory for other information presented previously. This has been linked to neurochemical modulations induced by novelty, which affect consolidation of memories for experiences that were encoded around the same time. Neurophysiological research in animals has shown that novelty benefits weakly encoded but not strongly encoded information. However, a benefit that is selective to weak memories seems difficult to reconcile with studies in humans that have reported that novelty improves recollection, but not familiarity. One possibility is that the novelty increases activity in hippocampus, which is also associated with processes that enable recollection. This is consistent with another prediction of behavioural tagging theory, namely that novelty only enhances consolidation of information that converges on the same neuronal population. However, no study has directly explored the relationship between encoding strength and retrieval quality (recollection versus familiarity). We examined the effects of exposure to a novel immersive virtual reality environment on memory for words presented immediately beforehand, under either deep or shallow encoding tasks, and by testing both recall memory immediately, and recognition memory with remember/know instructions the next day. However, Bayes factors showed no evidence to support the behavioural tagging predictions: that novelty would improve memory, particularly for shallowly encoded words, and this improvement would differentially affect familiarity versus recollection.
Collapse
Affiliation(s)
| | - Richard N Henson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| |
Collapse
|
61
|
Bai H, Huang H, Zhao N, Gu H, Li Y, Zou W, Wu T, Huang X. Small G protein RAC-2 regulates forgetting via the JNK-1 signalling pathway in Caenorhabditis elegans. Eur J Neurosci 2022; 56:6162-6173. [PMID: 36321581 DOI: 10.1111/ejn.15855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 10/05/2022] [Accepted: 10/18/2022] [Indexed: 11/23/2022]
Abstract
Although forgetting was once regarded as a passive decline in memory and an occasional source of embarrassment, recent research suggests that it is an active biological process of removing outdated or irrelevant memories via activation of specific genes and signal transduction pathways. Rho family G proteins are known to have a role in synaptic plasticity mediated by the actin cytoskeleton. However, the current study reveals that another Rho guanosine triphosphate enzyme (GTPase), RAC-2, facilitates the occurrence of forgetting in Caenorhabditis elegans independent of actin dynamics. Functioning downstream of RAC-2 in the same signalling pathway, JNK-1 and its phosphorylated protein are required to positively regulate forgetting. The pan-neuronal rescue of RAC-2 or JNK-1, instead of AWC neuron-specific expression, reverses the delayed forgetting caused by the rac-2 mutation, which indicates that the involvement of RAC-2/JNK-1 in more than AWCs must be required. In summary, our work elucidates the action of the Rho GTPase RAC-2 and downstream JNK-1 as a potential novel pathway in forgetting in C. elegans.
Collapse
Affiliation(s)
- Hua Bai
- School of Medicine, and State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, China.,College of Public Health, Kunming Medical University, Kunming, China
| | - Hui Huang
- School of Medicine, and State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, China
| | - Ninghui Zhao
- Neurosurgery of the Second Hospital affiliated with Kunming Medical University, Kunming, China
| | - Huan Gu
- School of Medicine, and State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, China
| | - Yixin Li
- School of Medicine, and State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, China
| | - Wei Zou
- College of Public Health, Kunming Medical University, Kunming, China
| | - Tingting Wu
- Neurosurgery of the Second Hospital affiliated with Kunming Medical University, Kunming, China
| | - Xiaowei Huang
- School of Medicine, and State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, China
| |
Collapse
|
62
|
Pacozzi L, Knüsel L, Ruch S, Henke K. Inverse forgetting in unconscious episodic memory. Sci Rep 2022; 12:20595. [PMID: 36446829 PMCID: PMC9709067 DOI: 10.1038/s41598-022-25100-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Forming memories of experienced episodes calls upon the episodic memory system. Episodic encoding may proceed with and without awareness of episodes. While up to 60% of consciously encoded episodes are forgotten after 10 h, the fate of unconsciously encoded episodes is unknown. Here we track over 10 h, which are filled with sleep or daytime activities, the retention of unconsciously and consciously experienced episodes. The episodes were displayed in cartoon clips that were presented weakly and strongly masked for conscious and unconscious encoding, respectively. Clip retention was tested for distinct clips directly after encoding, 3 min and 10 h after encoding using a forced-choice test that demands deliberate responses in both consciousness conditions. When encoding was conscious, retrieval accuracy decreased by 25% from 3 min to 10 h, irrespective of sleep or wakefulness. When encoding was unconscious, retrieval accuracy increased from 3 min to 10 h and depended on sleep. Hence, opposite to the classic forgetting curve, unconsciously acquired episodic memories strengthen over time and hinge on sleep on the day of learning to gain influence over human behavior.
Collapse
Affiliation(s)
- Luca Pacozzi
- Institute of Psychology, University of Bern, 3012, Bern, Switzerland.
| | - Leona Knüsel
- Institute of Psychology, University of Bern, 3012, Bern, Switzerland
| | - Simon Ruch
- Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, University Hospital and University of Tuebingen, 72076, Tübingen, Germany
| | - Katharina Henke
- Institute of Psychology, University of Bern, 3012, Bern, Switzerland
| |
Collapse
|
63
|
Millar PR, Balota DA. Wakeful Rest Benefits Recall, but Not Recognition, of Incidentally Encoded Memory Stimuli in Younger and Older Adults. Brain Sci 2022; 12:brainsci12121609. [PMID: 36552069 PMCID: PMC9775546 DOI: 10.3390/brainsci12121609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
Older adults exhibit deficits in episodic memory tasks, which have often been attributed to encoding or retrieval deficits, with little attention to consolidation mechanisms. More recently, researchers have attempted to measure consolidation in the context of a behavioral experiment using the wakeful rest paradigm (i.e., a brief, quiet period of minimal stimulation, which facilitates memory performance, compared to a distractor task). Critically, older adults might not produce this effect, given established age differences in other episodic memory processes and mind-wandering. In three experiments, we directly compared younger and older adults in modified versions of the wakeful rest paradigm. Critically, we utilized incidental encoding procedures (all experiments) and abstract shape stimuli (in Experiment 3) to limit the possibility of retrieval practice or maintenance rehearsal as potential confounding mechanisms in producing the wakeful rest effect. Wakeful rest reliably and equally benefited recall of incidentally encoded words in both younger and older adults. In contrast, wakeful rest had no benefit for standard accuracy measures of recognition performance in verbal stimuli, although there was an effect in response latencies for non-verbal stimuli. Overall, these results suggest that the benefits of wakeful rest on episodic retrieval are preserved across age groups, and hence support age-independence in potential consolidation mechanisms as measured by wakeful rest. Further, these benefits do not appear to be dependent on the intentionality of encoding or variations in distractor task types. Finally, the lack of wakeful rest benefits on recognition performance might be driven by theoretical constraints on the effect or methodological limitations of recognition memory testing in the current paradigm.
Collapse
Affiliation(s)
- Peter R. Millar
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Correspondence:
| | - David A. Balota
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
64
|
Rivera-Lares K, Logie R, Baddeley A, Della Sala S. Rate of forgetting is independent of initial degree of learning. Mem Cognit 2022; 50:1706-1718. [PMID: 34993921 PMCID: PMC8735725 DOI: 10.3758/s13421-021-01271-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2021] [Indexed: 12/30/2022]
Abstract
It is commonly assumed that the rate of forgetting depends on initial degree of learning. Hence, comparison of forgetting across groups is usually carried out equating initial performance. However, these matching procedures add confounding variables. In four experiments, following Slamecka and McElree (1983, Exp 3), we challenge this assumption through manipulating initial acquisition by varying the number of presentations of the material and studying the effect on rate of subsequent forgetting. A set of 36 sentences was presented either visually or auditorily. Different participants were exposed to the material two, four or six times. Forgetting was measured by means of a cued recall test at three time-intervals (30 s, 1 day and 1 week in experiments 1 and 2; 30 s, 1 day, and 3 days in experiments 3 and 4). A different subset of 12 sentences was tested at each delay. The outcome of these experiments showed that the initial acquisition depends on number of learning trials. However, the rate of forgetting proved to be independent of initial acquisition. This pattern remains constant across modalities of presentation and of the number of learning trials. The conclusion is that forgetting does not depend on initial acquisition.
Collapse
Affiliation(s)
- Karim Rivera-Lares
- Human Cognitive Neuroscience, Psychology Department, University of Edinburgh, Edinburgh, UK.
| | - Robert Logie
- Human Cognitive Neuroscience, Psychology Department, University of Edinburgh, Edinburgh, UK
| | - Alan Baddeley
- Department of Psychology, University of York, Heslington, York, UK
| | - Sergio Della Sala
- Human Cognitive Neuroscience, Psychology Department, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
65
|
Quevedo Pütter J, Erdfelder E. Alcohol-Induced Retrograde Facilitation? Exp Psychol 2022; 69:335-350. [PMID: 36809161 PMCID: PMC10388238 DOI: 10.1027/1618-3169/a000569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Somewhat counterintuitively, alcohol consumption following learning of new information has been shown to enhance performance on a delayed subsequent memory test. This phenomenon has become known as the retrograde facilitation effect (Parker et al., 1981). Although conceptually replicated repeatedly, serious methodological problems are associated with most previous demonstrations of retrograde facilitation. Moreover, two potential explanations have been proposed, the interference and the consolidation hypothesis. So far, empirical evidence for and against both hypotheses is inconclusive (Wixted, 2004). To scrutinize the existence of the effect, we conducted a pre-registered replication that avoided common methodological pitfalls. In addition, we used Küpper-Tetzel and Erdfelder's (2012) multinomial processing tree (MPT) model to disentangle encoding, maintenance, and retrieval contributions to memory performance. With a total sample size of N = 93, we found no evidence for retrograde facilitation in overall cued or free recall of previously presented word pairs. In line with this, MPT analyses also showed no reliable difference in maintenance probabilities. However, MPT analyses revealed a robust alcohol advantage in retrieval. We conclude that alcohol-induced retrograde facilitation might exist and be driven by an underlying retrieval benefit. Future research is needed to investigate potential moderators and mediators of the effect explicitly.
Collapse
Affiliation(s)
- J Quevedo Pütter
- Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany
| | - E Erdfelder
- Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany
| |
Collapse
|
66
|
King O, Nicosia J. The effects of wakeful rest on memory consolidation in an online memory study. Front Psychol 2022; 13:932592. [PMID: 36389509 PMCID: PMC9642069 DOI: 10.3389/fpsyg.2022.932592] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/23/2022] [Indexed: 03/27/2024] Open
Abstract
Memory consolidation is the process in which memory traces are strengthened over time for later retrieval. Although some theories hold that consolidation can only occur during sleep, accumulating evidence suggests that brief periods of wakeful rest may also facilitate consolidation. Interestingly, however, Varma and colleagues reported that a demanding 2-back task following encoding produced a similar performance to a wakeful reset condition. We tested whether participants' recall would be best following a wakeful rest condition as compared to other distractor conditions, consistent with the extant wakeful rest literature, or whether we would replicate the finding by Varma and colleagues such that participants' memory benefitted from both a rest and a 2-back task following encoding. Across two experiments, we used similar (Experiment 1) and the same (Experiment 2) encoding material as used the one by Varma and colleagues, employed a wakeful rest condition adapted for online testing, and compared participants' recall across post-encoding conditions. In the first experiment, we used a between-subjects design and compared participants' cued recall performance following a period of wakeful rest, a 2-back task, or a rest + sounds condition. The second experiment more closely replicated the experimental design used by Varma and colleagues using a within-subjects manipulation. Ultimately, our findings more consistently aligned with the canonical wakeful rest finding, such that recall was better following the rest condition than all other post-encoding conditions. These results support the notion that wakeful rest may allow for consolidation by protecting recently encoded information from interference, thereby improving memory performance.
Collapse
Affiliation(s)
- Olivia King
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, United States
| | - Jessica Nicosia
- Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
67
|
Vogt KM, Pryor KO. Anesthesia and the neurobiology of fear and posttraumatic stress disorder. Curr Opin Anaesthesiol 2022; 35:593-599. [PMID: 35993581 PMCID: PMC9469898 DOI: 10.1097/aco.0000000000001176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE OF REVIEW Dysfunction of fear memory systems underlie a cluster of clinically important and highly prevalent psychological morbidities seen in perioperative and critical care patients, most archetypally posttraumatic stress disorder (PTSD). Several sedative-hypnotics and analgesics are known to modulate fear systems, and it is theoretically plausible that clinical decisions of the anesthesiologist could impact psychological outcomes. This review aims to provide a focused synthesis of relevant literature from multiple fields of research. RECENT FINDINGS There is evidence in some contexts that unconscious fear memory systems are less sensitive to anesthetics than are conscious memory systems. Opiates may suppress the activation of fear systems and have benefit in the prevention of PTSD following trauma. There is inconsistent evidence that the use of propofol and benzodiazepines for sedation following trauma may potentiate the development of PTSD relative to other drugs. The benefits of ketamine seen in the treatment of major depression are not clearly replicated in PTSD-cluster psychopathologies, and its effects on fear processes are complex. SUMMARY There are multiple theoretical mechanisms by which anesthetic drugs can modulate fear systems and clinically important fear-based psychopathologies. The current state of research provides some evidence to support further hypothesis investigation. However, the absence of effectiveness studies and the inconsistent signals from smaller studies provide insufficient evidence to currently offer firm clinical guidance.
Collapse
Affiliation(s)
- Keith M. Vogt
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, School of Medicine
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh
- Center for the Neural Basis of Cognition
- Clinical and Translational Science Institute, University of Pittsburgh
| | - Kane O. Pryor
- Department of Anesthesiology, Weill Cornell Medicine
| |
Collapse
|
68
|
Rachet-Jacquet L. Do breaks from surgery improve the performance of orthopaedic surgeons? JOURNAL OF HEALTH ECONOMICS 2022; 85:102667. [PMID: 36030749 DOI: 10.1016/j.jhealeco.2022.102667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
This paper explores whether breaks from surgical practice impact surgeons' performance. Using a large panel of orthopaedic surgeons in England, I estimate the effect of surgeons' breaks, measured by the number of days since their last surgery, on the health outcomes of emergency patients admitted after a hip fracture. To identify a causal effect, I implement a surgeon fixed effects model and exploit the quasi-exogenous variation in breaks from unanticipated emergency hip fracture admissions. Results show that short breaks of four to six days reduce 30-day mortality rates by around six percent relative to no breaks. Notably, short breaks also affect the type of surgery carried out, holding patient characteristics fixed. Overall, these findings show that the organisation of surgeons' activity is a possible determinant of the quality of care provided.
Collapse
Affiliation(s)
- Laurie Rachet-Jacquet
- Centre for Health Economics, University of York, Heslington, York YO10 5DD, United Kingdom.
| |
Collapse
|
69
|
García-Rueda L, Poch C, Campo P. Forgetting Details in Visual Long-Term Memory: Decay or Interference? Front Behav Neurosci 2022; 16:887321. [PMID: 35928790 PMCID: PMC9345118 DOI: 10.3389/fnbeh.2022.887321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/15/2022] [Indexed: 11/20/2022] Open
Abstract
Two main explanations for memory loss have been proposed. On the one hand, decay theories consider that over time memory fades away. On the other hand, interference theories sustain that when similar memories are encoded, they become more prone to confusion. The interference is greater as the degree of similarity between memories increases, and as the number of similar traces increases too. To reduce interference, the pattern separation process allows the brain to separate similar memories and build detailed memory representations that are less easily confused. Nonetheless, with time, we tend to remember more general aspects of experiences, which also affects our ability to discriminate. We present the results of one experiment in which brain activity was recorded by EEG while two groups of healthy participants performed a visual memory discrimination task. This task assesses the ability to differentiate new but similar information from previously learned information and thus avoid interference. Unlike previous studies, we used a paradigm that was specifically designed to assess the impact of the number of items (2 or 6) of each category stored in memory, as well as the time elapsed after the study phase (20 min or 24 h), on recognition memory for objects. Behaviorally, our results suggest that mnemonic discrimination is not modulated by the passage of time, but by the number of stored events. ERP results show a reduced amplitude in posterior regions between 500 and 700 ms when comparing short and long delays. We also observe a more positive activity in a centro-posterior region in the 500–700 ms window at retrieval when participants store more items. Interestingly, amplitudes for old hits and similar false alarms were greater than amplitudes for correctly rejected new items between 500 and 700 ms. This finding indicates that a recollection-based process operates in both true and false recognition. We also found that the waveforms for correct rejections of similar lures and the waveforms for correct rejections of new items were comparable.
Collapse
Affiliation(s)
- Laura García-Rueda
- Departamento de Anatomía, Histología y Neurociencia, Universidad Autónoma de Madrid, Madrid, Spain
| | - Claudia Poch
- Facultad de Lenguas y Educación, Universidad de Nebrija, Madrid, Spain
| | - Pablo Campo
- Department of Basic Psychology, Universidad Autónoma de Madrid, Madrid, Spain
- *Correspondence: Pablo Campo
| |
Collapse
|
70
|
Harkotte M, Contreras MP, Inostroza M, Born J. Effects of Information Load on Schema and Episodic Memory Formation. Front Behav Neurosci 2022; 16:923713. [PMID: 35903219 PMCID: PMC9315445 DOI: 10.3389/fnbeh.2022.923713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/14/2022] [Indexed: 12/14/2022] Open
Abstract
The formation of semantic memories is assumed to result from the abstraction of general, schema-like knowledge across multiple experiences, while at the same time, episodic details from individual experiences are forgotten. Against this backdrop, our study examined the effects of information load (high vs. low) during encoding on the formation of episodic and schema memory using an elaborated version of an object-place recognition (OPR) task in rats. The task allowed for the abstraction of a spatial rule across four (low information load) or eight (high information load) encoding episodes (spaced apart by a 20 min interval) in which the rats could freely explore two objects in an open field arena. After this encoding phase, animals were left undisturbed for 24 h and then tested either for the expression of schema memory, i.e., for the spatial rule, or memory for an individual encoding episode. Rats in the high information load condition exhibited a more robust schema memory for the spatial rule than in the low information load condition. In contrast, rats in the low load condition showed more robust memory for individual learning episodes than in the high information load condition. Our findings of opposing effects might point to an information-load-dependent competitive relationship between processes of schema and episodic memory formation, although other explanations are possible.
Collapse
Affiliation(s)
- Maximilian Harkotte
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, Tübingen, Germany
| | - María P. Contreras
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Marion Inostroza
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen (IDM), Tübingen, Germany
- Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- *Correspondence: Jan Born
| |
Collapse
|
71
|
Radvansky G, O'Rear AE. EXPRESS: Event Model Retrieval and Daily Interference. Q J Exp Psychol (Hove) 2022; 76:995-1010. [PMID: 35754331 DOI: 10.1177/17470218221112222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The differential fan effect was used to assess the influence of periods of daily, generalized interference. Experiment 1 replicated the differential forgetting effect as a control for the other experiments. Experiment 2 involved fact learning in either the morning or the evening with a 12-hour testing delay. It might be expected that experiencing more generalized interference during the retention interval would impair memory, but no differences in response times were observed, and only very small differences in the error rates were observed. Experiment 3 replicated Experiment 2 but with a 24-hour delay. In this way, the influence on memory of the proximity of daily, generalized inference to the learning experience could be assessed. Although one might expect worse memory when more interference occurred closer to the learning phase, no clear differences were observed. This is consistent with the idea that event model memory is relatively stable soon after encoding.
Collapse
|
72
|
Cockcroft JP, Berens SC, Gaskell MG, Horner AJ. Schematic information influences memory and generalisation behaviour for schema-relevant and -irrelevant information. Cognition 2022; 227:105203. [PMID: 35717767 DOI: 10.1016/j.cognition.2022.105203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 04/25/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022]
Abstract
Schemas modulate memory performance for schema-congruent and -incongruent information. However, it is assumed they do not influence behaviour for information irrelevant to themselves. We assessed memory and generalisation behaviour for information related to an underlying pattern, where a schema could be extracted (schema-relevant), and information that was unrelated and therefore irrelevant to the extracted schema (schema-irrelevant). Using precision measures of long-term memory, where participants learnt associations between words and locations around a circle, we assessed memory and generalisation for schema-relevant and -irrelevant information. Words belonged to two semantic categories: human-made and natural. For one category, word-locations were clustered around one point on the circle (clustered condition), while the other category had word-locations randomly distributed (non-clustered condition). The presence of an underlying pattern in the clustered condition allows for the extraction of a schema that can support both memory and generalisation. At test, participants were presented with old (memory) and new (generalisation) words, requiring them to identify a remembered location or make a best guess. The presence of the clustered pattern modulated memory and generalisation. In the clustered condition, participants placed old and new words in locations consistent with the underlying pattern. In contrast, for the non-clustered condition, participants were less likely to place old and new non-clustered words in locations consistent with the clustered condition. Therefore, we provide evidence that the presence of schematic information modulates memory and generalisation for schema-relevant and -irrelevant information. Our results highlight the need to carefully construct appropriate schema-irrelevant control conditions such that behaviour in these conditions is not modulated by the presence of a schema. Theoretically, models of schema processing need to account for how the presence of schematic information can have consequences for information that is irrelevant to itself.
Collapse
Affiliation(s)
- Jamie P Cockcroft
- Department of Psychology, University of York, UK; York Biomedical Research Institute, University of York, UK
| | | | | | - Aidan J Horner
- Department of Psychology, University of York, UK; York Biomedical Research Institute, University of York, UK.
| |
Collapse
|
73
|
Antony JW, Romero A, Vierra AH, Luenser RS, Hawkins RD, Bennion KA. Semantic relatedness retroactively boosts memory and promotes memory interdependence across episodes. eLife 2022; 11:e72519. [PMID: 35704025 PMCID: PMC9203053 DOI: 10.7554/elife.72519] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 05/01/2022] [Indexed: 12/22/2022] Open
Abstract
Two fundamental issues in memory research concern when later experiences strengthen or weaken initial memories and when the two memories become linked or remain independent. A promising candidate for explaining these issues is semantic relatedness. Here, across five paired-associate learning experiments (N=1000), we systematically varied the semantic relatedness between initial and later cues, initial and later targets, or both. We found that learning retroactively benefited long-term memory performance for semantically related words (vs. unshown control words), and these benefits increased as a function of relatedness. Critically, memory dependence between initial and later pairs also increased with relatedness, suggesting that pre-existing semantic relationships promote interdependence for memories formed across episodes. We also found that modest retroactive benefits, but not interdependencies, emerged when subjects learned via studying rather than practice testing. These findings demonstrate that semantic relatedness during new learning retroactively strengthens old associations while scaffolding new ones into well-fortified memory traces.
Collapse
Affiliation(s)
- James W Antony
- Center for Neuroscience, University of California, DavisDavisUnited States
- Department of Psychology and Child Development, California Polytechnic State UniversitySan Luis ObispoUnited States
| | - America Romero
- Department of Psychology and Child Development, California Polytechnic State UniversitySan Luis ObispoUnited States
| | - Anthony H Vierra
- Department of Psychology and Child Development, California Polytechnic State UniversitySan Luis ObispoUnited States
| | - Rebecca S Luenser
- Department of Psychology and Child Development, California Polytechnic State UniversitySan Luis ObispoUnited States
| | - Robert D Hawkins
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Kelly A Bennion
- Department of Psychology and Child Development, California Polytechnic State UniversitySan Luis ObispoUnited States
| |
Collapse
|
74
|
Rinaudo M, Natale F, La Greca F, Spinelli M, Farsetti A, Paciello F, Fusco S, Grassi C. Hippocampal Estrogen Signaling Mediates Sex Differences in Retroactive Interference. Biomedicines 2022; 10:biomedicines10061387. [PMID: 35740410 PMCID: PMC9219958 DOI: 10.3390/biomedicines10061387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
Despite being a crucial physiological function of the brain, the mechanisms underlying forgetting are still poorly understood. Estrogens play a critical role in different brain functions, including memory. However, the effects of sex hormones on forgetting vulnerabilitymediated by retroactive interference (RI), a phenomenon in which newly acquired information interferes with the retrieval of already stored information, are still poorly understood. The aim of our study was to characterize the sex differences in interference-mediated forgetting and identify the underlying molecular mechanisms. We found that adult male C57bl/6 mice showed a higher susceptibility to RI-dependent memory loss than females. The preference index (PI) in the NOR paradigm was 52.7 ± 5.9% in males and 62.3 ± 13.0% in females. The resistance to RI in female mice was mediated by estrogen signaling involving estrogen receptor α activation in the dorsal hippocampus. Accordingly, following RI, females showed higher phosphorylation levels (+30%) of extracellular signal-regulated kinase1/2 (ERK1/2) in the hippocampus. Pharmacological inhibition of ERK1/2 made female mice prone to RI. The PI was 70.6 ± 11.0% in vehicle-injected mice and 47.4 ± 10.8% following PD98059 administration. Collectively, our data suggest that hippocampal estrogen α receptor-ERK1/2 signaling is critically involved in a pattern separation mechanism that inhibits object-related RI in female mice.
Collapse
Affiliation(s)
- Marco Rinaudo
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.N.); (F.L.G.); (M.S.); (F.P.); (S.F.); (C.G.)
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Correspondence:
| | - Francesca Natale
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.N.); (F.L.G.); (M.S.); (F.P.); (S.F.); (C.G.)
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco La Greca
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.N.); (F.L.G.); (M.S.); (F.P.); (S.F.); (C.G.)
| | - Matteo Spinelli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.N.); (F.L.G.); (M.S.); (F.P.); (S.F.); (C.G.)
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Antonella Farsetti
- Institute for System Analysis and Computer Science “A. Ruberti” (IASI), National Research Council (CNR), 00185 Rome, Italy;
| | - Fabiola Paciello
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.N.); (F.L.G.); (M.S.); (F.P.); (S.F.); (C.G.)
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Salvatore Fusco
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.N.); (F.L.G.); (M.S.); (F.P.); (S.F.); (C.G.)
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.N.); (F.L.G.); (M.S.); (F.P.); (S.F.); (C.G.)
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
75
|
Mo H, Wang L, Chen Y, Zhang X, Huang N, Liu T, Hu W, Zhong Y, Li Q. Age-related memory vulnerability to interfering stimuli is caused by gradual loss of MAPK-dependent protection in Drosophila. Aging Cell 2022; 21:e13628. [PMID: 35570367 PMCID: PMC9197400 DOI: 10.1111/acel.13628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 03/14/2022] [Accepted: 04/28/2022] [Indexed: 11/30/2022] Open
Abstract
Age‐related memory impairment (AMI) is a common phenomenon across species. Vulnerability to interfering stimuli has been proposed to be an important cause of AMI. However, the molecular mechanisms underlying this vulnerability‐related AMI remain unknown. Here we show that learning‐activated MAPK signals are gradually lost with age, leading to vulnerability‐related AMI in Drosophila. Young flies (2‐ or 3‐day‐old) exhibited a significant increase in phosphorylated MAPK levels within 15 min after learning, whereas aged flies (25‐day‐old) did not. Compared to 3‐day‐old flies, significant 1 h memory impairments were observed in 15‐, 20‐, and 30‐day‐old flies, but not in 10‐day‐old flies. However, with post‐learning interfering stimuli such as cooling or electric stimuli, 10‐day‐old flies had worse memory performance at 1 h than 3‐day‐old flies, showing a premature AMI phenomenon. Increasing learning‐activated MAPK signals through acute transgene expression in mushroom body (MB) neurons restored physiological trace of 1 h memory in a pair of MB output neurons in aged flies. Decreasing such signals in young flies mimicked the impairment of 1 h memory trace in aged flies. Restoring learning‐activated MAPK signals in MB neurons in aged flies significantly suppressed AMI even with interfering stimuli. Thus, our data suggest that age‐related loss of learning‐activated neuronal MAPK signals causes memory vulnerability to interfering stimuli, thereby leading to AMI.
Collapse
Affiliation(s)
- Han Mo
- School of Life Sciences IDG/McGovern Institute for Brain Research Tsinghua University Beijing China
- Tsinghua‐Peking Center for Life Sciences Beijing China
| | - Linghan Wang
- School of Life Sciences IDG/McGovern Institute for Brain Research Tsinghua University Beijing China
- Tsinghua‐Peking Center for Life Sciences Beijing China
| | - Yuting Chen
- School of Life Sciences IDG/McGovern Institute for Brain Research Tsinghua University Beijing China
- Tsinghua‐Peking Center for Life Sciences Beijing China
| | - Xuchen Zhang
- School of Life Sciences IDG/McGovern Institute for Brain Research Tsinghua University Beijing China
- Tsinghua‐Peking Center for Life Sciences Beijing China
| | - Ning Huang
- School of Life Sciences IDG/McGovern Institute for Brain Research Tsinghua University Beijing China
- Tsinghua‐Peking Center for Life Sciences Beijing China
| | - Tingting Liu
- School of Life Sciences IDG/McGovern Institute for Brain Research Tsinghua University Beijing China
- Tsinghua‐Peking Center for Life Sciences Beijing China
| | - Wantong Hu
- School of Life Sciences IDG/McGovern Institute for Brain Research Tsinghua University Beijing China
- Tsinghua‐Peking Center for Life Sciences Beijing China
| | - Yi Zhong
- School of Life Sciences IDG/McGovern Institute for Brain Research Tsinghua University Beijing China
- Tsinghua‐Peking Center for Life Sciences Beijing China
| | - Qian Li
- School of Life Sciences IDG/McGovern Institute for Brain Research Tsinghua University Beijing China
- Tsinghua‐Peking Center for Life Sciences Beijing China
| |
Collapse
|
76
|
The effect of interference, offline sleep, and wake on spatial statistical learning. Neurobiol Learn Mem 2022; 193:107650. [DOI: 10.1016/j.nlm.2022.107650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 04/22/2022] [Accepted: 06/03/2022] [Indexed: 11/23/2022]
|
77
|
Bruno D, Jauregi Zinkunegi A, Pomara N, Zetterberg H, Blennow K, Koscik RL, Carlsson C, Bendlin B, Okonkwo O, Hermann BP, Johnson SC, Mueller KD. Cross-sectional associations of CSF tau levels with Rey's AVLT: A recency ratio study. Neuropsychology 2022. [PMID: 35604714 DOI: 10.1037/neu0000821.advanceonlinepublication] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
OBJECTIVE The preeminent in vivo cerebrospinal fluid (CSF) biomarkers of Alzheimer's disease (AD) are amyloid β 1-42 (Aβ42), phosphorylated Tau (p-tau), and total Tau (t-tau). The goal of this study was to examine how well traditional (total and delayed recall) and process-based (recency ratio [Rr]) measures derived from Rey's Auditory Verbal Learning test (AVLT) were associated with these biomarkers. METHOD Data from 235 participants (Mage = 65.5, SD = 6.9), who ranged from cognitively unimpaired to mild cognitive impairment, and for whom CSF values were available, were extracted from the Wisconsin Registry for Alzheimer's Prevention. Bayesian regression analyses were carried out using CSF scores as outcomes, AVLT scores as predictors, and controlling for demographic data and diagnosis. RESULTS We found moderate evidence that Rr was associated with both CSF p-tau (Bayesian factor [BFM] = 5.55) and t-tau (BFM = 7.28), above and beyond the control variables, while it did not correlate with CSF Aβ42 levels. In contrast, total and delayed recall scores were not linked with any of the AD biomarkers, in separate analyses. When comparing all memory predictors in a single regression, Rr remained the strongest predictor of CSF t-tau levels (BFM = 3.57). CONCLUSIONS Our findings suggest that Rr may be a better cognitive measure than commonly used AVLT scores to assess CSF levels of p-tau and t-tau in nondemented individuals. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Collapse
|
78
|
Manns JR. Challenges facing fMRI studies of systems consolidation. Cogn Neurosci 2022; 13:149-150. [PMID: 35575197 DOI: 10.1080/17588928.2022.2076074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Tallman and colleagues (this issue) report fMRI findings in support of the classic view of memory consolidation over its main challenger, the multiple trace theory. The present commentary highlights some of the obstacles facing any fMRI study of memory consolidation and notes which challenges were tackled by Tallman and colleagues and which challenges might be insurmountable.
Collapse
Affiliation(s)
- Joseph R Manns
- Department of Psychology, Emory University, Atlanta, GA, USA
| |
Collapse
|
79
|
Zhang J, Whitehurst LN, Mednick SC. The Role of Sleep for Episodic Memory Consolidation: Stabilizing or Rescuing? Neurobiol Learn Mem 2022; 191:107621. [DOI: 10.1016/j.nlm.2022.107621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 03/01/2022] [Accepted: 04/04/2022] [Indexed: 12/25/2022]
|
80
|
Leong CWY, Leow JWS, Grunstein RR, Naismith SL, Teh JZ, D'Rozario AL, Saini B. A systematic scoping review of the effects of central nervous system active drugs on sleep spindles and sleep-dependent memory consolidation. Sleep Med Rev 2022; 62:101605. [PMID: 35313262 DOI: 10.1016/j.smrv.2022.101605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/15/2022] [Accepted: 01/26/2022] [Indexed: 11/26/2022]
Abstract
Sleep spindles are key electroencephalogram (EEG) oscillatory events that occur during non-rapid eye movement (NREM) sleep. Deficits in sleep spindles are present in populations with sleep and neurological disorders, and in severe mental illness. Pharmacological manipulation of these waveforms is of growing interest with therapeutic potential in targeting spindle deficits relating to memory impairment. This review integrates studies that provide insight into the feasibility of manipulating sleep spindles by using psychoactive drug classes, with consequent effects on sleep-dependent memory. Most studies showed that benzodiazepines and Z-drugs consistently enhanced sleep spindle activity unlike other psychoactive drug classes reviewed. However, how these spindle enhancements translate into improved sleep-dependent memory remains to be fully elucidated. From the few studies that examined both spindles and memory, preliminary evidence suggests that zolpidem may have some therapeutic potential to enhance declarative memory through boosting sleep spindle activity. There is a greater need to standardise methodological approaches for identifying and quantifying spindle activity as well as more exploratory studies to elucidate the role of spindle enhancement for other types of memory.
Collapse
Affiliation(s)
- Celeste W Y Leong
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Josiah W S Leow
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Ronald R Grunstein
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia; Royal Prince Alfred Hospital, and Sydney Health Partners, NSW; Sydney Medical School, The University of Sydney, NSW, Australia
| | - Sharon L Naismith
- School of Psychology, Faculty of Science, Brain and Mind Centre and Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Jun Z Teh
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia; School of Psychology, Faculty of Science, Brain and Mind Centre and Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Angela L D'Rozario
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia; Sydney Medical School, The University of Sydney, NSW, Australia; School of Psychology, Faculty of Science, Brain and Mind Centre and Charles Perkins Centre, The University of Sydney, NSW, Australia.
| | - Bandana Saini
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
81
|
The Novel Analogue of Modafinil CE-158 Protects Social Memory against Interference and Triggers the Release of Dopamine in the Nucleus Accumbens of Mice. Biomolecules 2022; 12:biom12040506. [PMID: 35454095 PMCID: PMC9033101 DOI: 10.3390/biom12040506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/10/2022] [Accepted: 03/24/2022] [Indexed: 11/28/2022] Open
Abstract
Previous studies have shown that atypical dopamine-transporter-inhibitors such as modafinil and its analogues modify behavioral and cognitive functions in rodents. Here, we tested potential promnestic effects of the novel, more dopamine-transporter selective modafinil analogue CE-158 in the social discrimination memory task in male mice. Systemic administration of CE-158 1 h before the social learning event prevented the impairment of social-recognition memory following retroactive interference 3 h after the learning session of a juvenile conspecific. This effect was dose-dependent, as mice treated with 10 mg/kg, but not with 1 mg/kg CE-158, were able to discriminate between the novel and familiar conspecific despite the presentation of an interference stimulus, both 3 h and 6 h post learning. However, when 10 mg/kg of the drug was administered after learning, CE-158 failed to prevent social memory from interference. Paralleling these behavioral effects, the systemic administration of 10 mg/kg CE-158 caused a rapid and sustained elevation of extracellular dopamine in the nucleus accumbens, a brain area where dopaminergic signaling plays a key role in learning and memory function, of freely moving mice, while 1 mg/kg was not sufficient for altering dopamine levels. Taken together, our findings suggest promnestic effects of the novel dopamine-transporter-inhibitor CE-158 in a social recognition memory test that may be in part mediated via increased dopamine-neurotransmission in the nucleus accumbens. Thus, selective-dopamine-transporter-inhibitors such as CE-158 may represent interesting drug candidates for the treatment of memory complaints observed in humans with cognitive impairments and dementia.
Collapse
|
82
|
Yalnizyan-Carson A, Richards BA. Forgetting Enhances Episodic Control With Structured Memories. Front Comput Neurosci 2022; 16:757244. [PMID: 35399916 PMCID: PMC8991683 DOI: 10.3389/fncom.2022.757244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Forgetting is a normal process in healthy brains, and evidence suggests that the mammalian brain forgets more than is required based on limitations of mnemonic capacity. Episodic memories, in particular, are liable to be forgotten over time. Researchers have hypothesized that it may be beneficial for decision making to forget episodic memories over time. Reinforcement learning offers a normative framework in which to test such hypotheses. Here, we show that a reinforcement learning agent that uses an episodic memory cache to find rewards in maze environments can forget a large percentage of older memories without any performance impairments, if they utilize mnemonic representations that contain structural information about space. Moreover, we show that some forgetting can actually provide a benefit in performance compared to agents with unbounded memories. Our analyses of the agents show that forgetting reduces the influence of outdated information and states which are not frequently visited on the policies produced by the episodic control system. These results support the hypothesis that some degree of forgetting can be beneficial for decision making, which can help to explain why the brain forgets more than is required by capacity limitations.
Collapse
Affiliation(s)
- Annik Yalnizyan-Carson
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Montreal Institute for Learning Algorithms (MILA), Montreal, QC, Canada
- *Correspondence: Annik Yalnizyan-Carson
| | - Blake A. Richards
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Montreal Institute for Learning Algorithms (MILA), Montreal, QC, Canada
- Montreal Neurological Institute, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- School of Computer Science, McGill University, Montreal, QC, Canada
| |
Collapse
|
83
|
Stricker NH, Stricker JL, Karstens AJ, Geske JR, Fields JA, Hassenstab J, Schwarz CG, Tosakulwong N, Wiste HJ, Jack CR, Kantarci K, Mielke MM. A novel computer adaptive word list memory test optimized for remote assessment: Psychometric properties and associations with neurodegenerative biomarkers in older women without dementia. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2022; 14:e12299. [PMID: 35280963 PMCID: PMC8905660 DOI: 10.1002/dad2.12299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 11/18/2022]
Abstract
Introduction This study established the psychometric properties and preliminary validity of the Stricker Learning Span (SLS), a novel computer adaptive word list memory test designed for remote assessment and optimized for smartphone use. Methods Women enrolled in the Mayo Clinic Specialized Center of Research Excellence (SCORE) were recruited via e-mail or phone to complete two remote cognitive testing sessions. Convergent validity was assessed through correlation with previously administered in-person neuropsychological tests (n = 96, ages 55-79) and criterion validity through associations with magnetic resonance imaging measures of neurodegeneration sensitive to Alzheimer's disease (n = 47). Results SLS performance significantly correlated with the Auditory Verbal Learning Test and measures of neurodegeneration (temporal meta-regions of interest and entorhinal cortical thickness, adjusting for age and education). Test-retest reliabilities across two sessions were 0.71-0.76 (two-way mixed intraclass correlation coefficients). Discussion The SLS is a valid and reliable self-administered memory test that shows promise for remote assessment of aging and neurodegenerative disorders.
Collapse
Affiliation(s)
- Nikki H. Stricker
- Department of Psychiatry and PsychologyMayo ClinicRochesterMinnesotaUSA
| | - John L. Stricker
- Department of Psychiatry and PsychologyMayo ClinicRochesterMinnesotaUSA
- Department of Information TechnologyMayo ClinicRochesterMinnesotaUSA
| | - Aimee J. Karstens
- Department of Psychiatry and PsychologyMayo ClinicRochesterMinnesotaUSA
| | - Jennifer R. Geske
- Department of Quantitative Health SciencesMayo ClinicRochesterMinnesotaUSA
| | - Julie A. Fields
- Department of Psychiatry and PsychologyMayo ClinicRochesterMinnesotaUSA
| | - Jason Hassenstab
- Department of Neurology and Psychological & Brain SciencesWashington University in St. LouisSt. LouisMissouriUSA
| | | | | | - Heather J. Wiste
- Department of Quantitative Health SciencesMayo ClinicRochesterMinnesotaUSA
| | | | | | - Michelle M. Mielke
- Department of Quantitative Health SciencesMayo ClinicRochesterMinnesotaUSA
- Department of NeurologyMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
84
|
Liu H, Wu T, Canales XG, Wu M, Choi MK, Duan F, Calarco JA, Zhang Y. Forgetting generates a novel state that is reactivatable. SCIENCE ADVANCES 2022; 8:eabi9071. [PMID: 35148188 PMCID: PMC8836790 DOI: 10.1126/sciadv.abi9071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 12/21/2021] [Indexed: 05/21/2023]
Abstract
Forgetting is defined as a time-dependent decline of a memory. However, it is not clear whether forgetting reverses the learning process to return the brain to the naive state. Here, using the aversive olfactory learning of pathogenic bacteria in C. elegans, we show that forgetting generates a novel state of the nervous system that is distinct from the naive state or the learned state. A transient exposure to the training condition or training odorants reactivates this novel state to elicit the previously learned behavior. An AMPA receptor and a type II serotonin receptor act in the central neuron of the learning circuit to decrease and increase the speed to reach this novel state, respectively. Together, our study systematically characterizes forgetting and uncovers conserved mechanisms underlying the rate of forgetting.
Collapse
Affiliation(s)
- He Liu
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Taihong Wu
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Xicotencatl Gracida Canales
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Min Wu
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Myung-Kyu Choi
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Fengyun Duan
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - John A. Calarco
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Yun Zhang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
85
|
Age-related changes in sleep-dependent novel word consolidation. Acta Psychol (Amst) 2022; 222:103478. [PMID: 34954541 PMCID: PMC8771760 DOI: 10.1016/j.actpsy.2021.103478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 02/03/2023] Open
Abstract
Learning new words is a vital, life-long process that benefits from memory consolidation during sleep in young adults. In aging populations, promoting vocabulary learning is an attractive strategy to improve quality of life and workplace longevity by improving the integration of new technology and the associated terminology. Decreases in sleep quality and quantity with aging may diminish sleep-dependent memory consolidation for word learning. Alternatively, given that older adults outperform young adults on vocabulary-based tasks, and that strength of memory encoding (how well older adults learn) predicts sleep-dependent memory consolidation, word learning may uniquely benefit from sleep in older adults. We assessed age-related changes in memory for novel English word-definition pairs recalled following intervals spent asleep and awake. While sleep was shown to fully preserve memory for word/definition pairs in young adults (N = 53, asleep = 32, awake = 21, 18-30 years), older adults (N = 45, asleep = 21, awake = 24, 58-75 years) forgot items equally over wake and sleep intervals but preserved the accuracy of typed responses better following sleep. However, this was modulated by the strength of encoded memories: the proportion of high strength items consolidated increased for older adults following sleep compared to wake. Older adults consolidated a lower proportion of medium strength items across both sleep and wake intervals compared to young adults. Our results contribute to growing evidence that encoding strength is crucially important to understand the expression of sleep-dependent benefits in older adults and assert the need for sufficiently sensitive performance metrics in aging research.
Collapse
|
86
|
Ryan TJ, Frankland PW. Forgetting as a form of adaptive engram cell plasticity. Nat Rev Neurosci 2022; 23:173-186. [PMID: 35027710 DOI: 10.1038/s41583-021-00548-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2021] [Indexed: 12/30/2022]
Abstract
One leading hypothesis suggests that memories are stored in ensembles of neurons (or 'engram cells') and that successful recall involves reactivation of these ensembles. A logical extension of this idea is that forgetting occurs when engram cells cannot be reactivated. Forms of 'natural forgetting' vary considerably in terms of their underlying mechanisms, time course and reversibility. However, we suggest that all forms of forgetting involve circuit remodelling that switches engram cells from an accessible state (where they can be reactivated by natural recall cues) to an inaccessible state (where they cannot). In many cases, forgetting rates are modulated by environmental conditions and we therefore propose that forgetting is a form of neuroplasticity that alters engram cell accessibility in a manner that is sensitive to mismatches between expectations and the environment. Moreover, we hypothesize that disease states associated with forgetting may hijack natural forgetting mechanisms, resulting in reduced engram cell accessibility and memory loss.
Collapse
Affiliation(s)
- Tomás J Ryan
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland. .,Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland. .,Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Melbourne, Victoria, Australia. .,Child & Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario, Canada.
| | - Paul W Frankland
- Child & Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario, Canada. .,Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada. .,Department of Psychology, University of Toronto, Toronto, Ontario, Canada. .,Department of Physiology, University of Toronto, Toronto, Ontario, Canada. .,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
87
|
Yuan X. Evidence of the Spacing Effect and Influences on Perceptions of Learning and Science Curricula. Cureus 2022; 14:e21201. [PMID: 35047318 PMCID: PMC8759977 DOI: 10.7759/cureus.21201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2022] [Indexed: 11/20/2022] Open
Abstract
The conventional science curricula generally favour educational practices that yield high scores on immediate examination, though it may not accurately predict students’ long-term academic achievement. In view of the pre-exam cramming phenomenon, this article shows the evidence of spacing effect in science education and probes into its theoretical mechanisms, effectiveness in experimental settings, and current applications in science learning. In brief, spacing works by repeatedly presenting the learning material across various temporal intervals. This paper suggests that spacing could significantly result in greater memory strength by alleviating multiple neurocognitive and behavioural properties of learning that are hampered by cramming. Together with the analysis of its relevance in science education, the spacing effect may further provide leverages for promoting long-term conceptual understanding and reflective skill development. However, there are many reasons that students and teachers may not be aware of or fully appreciate its benefits. Finally, this article discusses systemic barriers to why spaced repetition is underutilized in science curricula.
Collapse
|
88
|
Optimism and pessimism in optimised replay. PLoS Comput Biol 2022; 18:e1009634. [PMID: 35020718 PMCID: PMC8809607 DOI: 10.1371/journal.pcbi.1009634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/02/2022] [Accepted: 11/12/2021] [Indexed: 11/24/2022] Open
Abstract
The replay of task-relevant trajectories is known to contribute to memory consolidation and improved task performance. A wide variety of experimental data show that the content of replayed sequences is highly specific and can be modulated by reward as well as other prominent task variables. However, the rules governing the choice of sequences to be replayed still remain poorly understood. One recent theoretical suggestion is that the prioritization of replay experiences in decision-making problems is based on their effect on the choice of action. We show that this implies that subjects should replay sub-optimal actions that they dysfunctionally choose rather than optimal ones, when, by being forgetful, they experience large amounts of uncertainty in their internal models of the world. We use this to account for recent experimental data demonstrating exactly pessimal replay, fitting model parameters to the individual subjects’ choices. When animals are asleep or restfully awake, populations of neurons in their brains recapitulate activity associated with extended behaviourally-relevant experiences. This process is called replay, and it has been established for a long time in rodents, and very recently in humans, to be important for good performance in decision-making tasks. The specific experiences which are replayed during those epochs follow highly ordered patterns, but the mechanisms which establish their priority are still not fully understood. One promising theoretical suggestion is that each replay experience is chosen in such a way that the learning that ensues is most helpful for the subsequent performance of the animal. A very recent study reported a surprising result that humans who achieved high performance in a planning task tended to replay actions they found to be sub-optimal, and that this was associated with a useful deprecation of those actions in subsequent performance. In this study, we examine the nature of this pessimized form of replay and show that it is exactly appropriate for forgetful agents. We analyse the role of forgetting for replay choices of our model, and verify our predictions using human subject data.
Collapse
|
89
|
Abstract
By linking the past with the future, our memories define our sense of identity. Because human memory engages the conscious realm, its examination has historically been approached from language and introspection and proceeded largely along separate parallel paths in humans and other animals. Here, we first highlight the achievements and limitations of this mind-based approach and make the case for a new brain-based understanding of declarative memory with a focus on hippocampal physiology. Next, we discuss the interleaved nature and common physiological mechanisms of navigation in real and mental spacetime. We suggest that a distinguishing feature of memory types is whether they subserve actions for single or multiple uses. Finally, in contrast to the persisting view of the mind as a highly plastic blank slate ready for the world to make its imprint, we hypothesize that neuronal networks are endowed with a reservoir of neural trajectories, and the challenge faced by the brain is how to select and match preexisting neuronal trajectories with events in the world.
Collapse
Affiliation(s)
- György Buzsáki
- Neuroscience Institute and Department of Neurology, NYU Grossman School of Medicine, New York University, New York, NY 10016, USA;
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Sam McKenzie
- Department of Neurosciences, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Lila Davachi
- Department of Psychology, Columbia University, New York, NY 10027, USA
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962, USA
| |
Collapse
|
90
|
Gilad T, Dorfman A, Subach A, Libbrecht R, Foitzik S, Scharf I. Evidence for the effect of brief exposure to food, but not learning interference, on maze solving in desert ants. Integr Zool 2021; 17:704-714. [PMID: 34958517 DOI: 10.1111/1749-4877.12622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Theories of forgetting highlight two active mechanisms through which animals forget prior knowledge by reciprocal disruption of memories. According to "proactive interference", information learned previously interferes with the acquisition of new information, whereas "retroactive interference" suggests that newly gathered information interferes with already existing information. Our goal was to examine the possible effect of both mechanisms in the desert ant Cataglyphis niger, which does not use pheromone recruitment, when learning spatial information while searching for food in a maze. Our experiment indicated that neither proactive nor retroactive interference took place in this system although this awaits confirmation with individual-level learning assays. Rather, the ants' persistence or readiness to search for food grew with successive runs in the maze. Elevated persistence led to more ant workers arriving at the food when retested a day later, even if the maze was shifted between runs. We support this finding in a second experiment, where ant workers reached the food reward at the maze end in higher numbers after encountering food in the maze entry compared to a treatment, in which food was present only at the maze end. This result suggests that spatial learning and search persistence are two parallel behavioral mechanisms, both assisting foraging ants. We suggest that their relative contribution should depend on habitat complexity. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tomer Gilad
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Arik Dorfman
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Aziz Subach
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Romain Libbrecht
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Inon Scharf
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
91
|
Remme MWH, Bergmann U, Alevi D, Schreiber S, Sprekeler H, Kempter R. Hebbian plasticity in parallel synaptic pathways: A circuit mechanism for systems memory consolidation. PLoS Comput Biol 2021; 17:e1009681. [PMID: 34874938 PMCID: PMC8683039 DOI: 10.1371/journal.pcbi.1009681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 12/17/2021] [Accepted: 11/24/2021] [Indexed: 12/03/2022] Open
Abstract
Systems memory consolidation involves the transfer of memories across brain regions and the transformation of memory content. For example, declarative memories that transiently depend on the hippocampal formation are transformed into long-term memory traces in neocortical networks, and procedural memories are transformed within cortico-striatal networks. These consolidation processes are thought to rely on replay and repetition of recently acquired memories, but the cellular and network mechanisms that mediate the changes of memories are poorly understood. Here, we suggest that systems memory consolidation could arise from Hebbian plasticity in networks with parallel synaptic pathways-two ubiquitous features of neural circuits in the brain. We explore this hypothesis in the context of hippocampus-dependent memories. Using computational models and mathematical analyses, we illustrate how memories are transferred across circuits and discuss why their representations could change. The analyses suggest that Hebbian plasticity mediates consolidation by transferring a linear approximation of a previously acquired memory into a parallel pathway. Our modelling results are further in quantitative agreement with lesion studies in rodents. Moreover, a hierarchical iteration of the mechanism yields power-law forgetting-as observed in psychophysical studies in humans. The predicted circuit mechanism thus bridges spatial scales from single cells to cortical areas and time scales from milliseconds to years.
Collapse
Affiliation(s)
- Michiel W. H. Remme
- Department of Biology, Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Urs Bergmann
- Department of Biology, Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Denis Alevi
- Department for Electrical Engineering and Computer Science, Technische Universität Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Susanne Schreiber
- Department of Biology, Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Henning Sprekeler
- Department for Electrical Engineering and Computer Science, Technische Universität Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
- Excellence Cluster Science of Intelligence, Berlin, Germany
| | - Richard Kempter
- Department of Biology, Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
| |
Collapse
|
92
|
Huynh Cong S, Kerzel D. Attentional templates are protected from retroactive interference during visual search: Converging evidence from event-related potentials. Neuropsychologia 2021; 162:108026. [PMID: 34547308 DOI: 10.1016/j.neuropsychologia.2021.108026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 11/15/2022]
Abstract
Attentional templates are stored representations of target features that guide visual search. Target features may remain fixed or change on every trial, requiring sustained or transient templates, respectively. In separate blocks of trials, two sustained templates guide visual search as efficiently as two transient templates. In mixed blocks, however, the transient template interferes with the sustained template, impairing its efficiency in guiding visual search. Here, we hypothesized that the priority of the sustained template would increase when threatened by interference, eventually restoring efficient guidance of visual search. Participants memorized two possible target colors before the onset of the search display. At encoding, we assessed attentional selection of the two possible target colors with the N2pc. During subsequent maintenance, we measured the CDA as an index of resource allocation in working memory. In Experiment 1, the CDA was smaller with sustained than transient templates in separate blocks, but similar in mixed blocks. Thus, the sustained template received more working memory resources when maintained concurrently with an interfering transient template, suggesting that it was prioritized. In Experiment 2, the priority of the sustained template was further increased as it guided visual search in 80% of cases. The N2pc to possible target colors matching the sustained template was enhanced both at encoding and during visual search, thus eliminating interference from the transient template. Therefore, sustained templates are not necessarily less efficient than transient templates. Rather, prioritization through attentional selection at encoding and resource allocation during maintenance may restore efficient guidance of visual search.
Collapse
|
93
|
Castillo Díaz F, Caffino L, Fumagalli F. Bidirectional role of dopamine in learning and memory-active forgetting. Neurosci Biobehav Rev 2021; 131:953-963. [PMID: 34655655 DOI: 10.1016/j.neubiorev.2021.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022]
Abstract
Dopaminergic neurons projecting from the Substantia Nigra to the Striatum play a critical role in motor functions while dopaminergic neurons originating in the Ventral Tegmental Area (VTA) and projecting to the Nucleus Accumbens, Hippocampus and other cortical structures regulate rewarding learning. While VTA mainly consists of dopaminergic neurons, excitatory (glutamate) and inhibitory (GABA) VTA-neurons have also been described: these neurons may also modulate and contribute to shape the final dopaminergic response, which is critical for memory formation. However, given the large amount of information that is handled daily by our brain, it is essential that irrelevant information be deleted. Recently, apart from the well-established role of dopamine (DA) in learning, it has been shown that DA plays a critical role in the intrinsic active forgetting mechanisms that control storage information, contributing to the deletion of a consolidated memory. These new insights may be instrumental to identify therapies for those disorders that involve memory alterations.
Collapse
Affiliation(s)
- Fernando Castillo Díaz
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy.
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| |
Collapse
|
94
|
Examining the transition of novel information toward familiarity. Neuropsychologia 2021; 161:107993. [PMID: 34411595 DOI: 10.1016/j.neuropsychologia.2021.107993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/14/2021] [Accepted: 08/15/2021] [Indexed: 11/23/2022]
Abstract
Throughout their lives, humans encounter multiple instances of new information that can be inconsistent with prior knowledge (novel). Over time, the once-novel information becomes integrated into their established knowledge base, shifting from novelty to familiarity. In this study, we investigated the processes by which the first steps of this transition take place. We hypothesized that the neural representations of initially novel items gradually change over the course of repeated presentations, expressing a shift toward familiarity. We further assumed that this shift could be traced by examining neural patterns using fMRI. In two experiments, while being scanned, participants read noun-adjective word pairs that were either consistent or inconsistent with their prior knowledge. Stimuli were repeated 3-6 times within the scans. Employing mass univariate and multivariate similarity analyses, we showed that the neural representations associated with the initial presentation of familiar versus novel objects differed in lateral frontal and temporal regions, the medial prefrontal cortex, and the medial temporal lobe. Importantly, the neural representations of novel stimuli gradually changed throughout repetitions until they became indistinguishable from their respective familiar items. We interpret these findings as indicating that an early phase of familiarization can be completed within a few repetitions. This initial familiarization can then serve as the prerequisite to the integration of novel items into existing knowledge. Future empirical and theoretical works can build on the current findings to develop a comprehensive model of the transition from novelty to familiarity.
Collapse
|
95
|
Helleringer S, Liu L, Chu Y, Rodrigues A, Fisker AB. Biases in Survey Estimates of Neonatal Mortality: Results From a Validation Study in Urban Areas of Guinea-Bissau. Demography 2021; 57:1705-1726. [PMID: 32914335 DOI: 10.1007/s13524-020-00911-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Neonatal deaths (occurring within 28 days of birth) account for close to one-half of all deaths among children under age 5 worldwide. In most low- and middle-income countries, data on neonatal deaths come primarily from household surveys. We conducted a validation study of survey data on neonatal mortality in Guinea-Bissau (West Africa). We used records from an urban health and demographic surveillance system (HDSS) that monitors child survival prospectively as our reference data set. We selected a stratified sample of 599 women aged 15-49 among residents of the HDSS and collected the birth histories of 422 participants. We cross-tabulated survey and HDSS data. We used a mathematical model to investigate biases in survey estimates of neonatal mortality. Reporting errors in survey data might lead to estimates of the neonatal mortality rate that are too high, which may limit our ability to track progress toward global health objectives.
Collapse
Affiliation(s)
- Stéphane Helleringer
- Division of Social Science Program on Social Research and Public Policy, New York University - Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates.
| | - Li Liu
- Department of Population, Family and Reproductive Health, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Yue Chu
- Department of Sociology, The Ohio State University, Columbus, OH, USA
| | | | - Ane Barent Fisker
- Bandim Health Project, Bissau, Guinea-Bissau
- University of Southern Denmark, Odense, Denmark
| |
Collapse
|
96
|
Role of hippocampal NF-κB and GluN2B in the memory acquisition impairment of experiences gathered prior to cocaine administration in rats. Sci Rep 2021; 11:20033. [PMID: 34625609 PMCID: PMC8501066 DOI: 10.1038/s41598-021-99448-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 09/16/2021] [Indexed: 12/24/2022] Open
Abstract
Cocaine can induce severe neurobehavioral changes, among others, the ones involved in learning and memory processes. It is known that during drug consumption, cocaine-associated memory and learning processes take place. However, much less is known about the effects of this drug upon the mechanisms involved in forgetting.The present report focuses on the mechanisms by which cocaine affects memory consolidation of experiences acquired prior to drug administration. We also study the involvement of hippocampus in these processes, with special interest on the role of Nuclear factor kappa B (NF-κB), N-methyl-D-aspartate glutamate receptor 2B (GluN2B), and their relationship with other proteins, such as cyclic AMP response element binding protein (CREB). For this purpose, we developed a rat experimental model of chronic cocaine administration in which spatial memory and the expression or activity of several proteins in the hippocampus were assessed after 36 days of drug administration. We report an impairment in memory acquisition of experiences gathered prior to cocaine administration, associated to an increase in GluN2B expression in the hippocampus. We also demonstrate a decrease in NF-κB activity, as well as in the expression of the active form of CREB, confirming the role of these transcription factors in the cocaine-induced memory impairment.
Collapse
|
97
|
Cialdini RB, Lasky-Fink J, Demaine LJ, Barrett DW, Sagarin BJ, Rogers T. Poison Parasite Counter: Turning Duplicitous Mass Communications Into Self-Negating Memory-Retrieval Cues. Psychol Sci 2021; 32:1811-1829. [PMID: 34592110 DOI: 10.1177/09567976211015182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Disinformation in politics, advertising, and mass communications has proliferated in recent years. Few counterargumentation strategies have proven effective at undermining a deceptive message over time. This article introduces the Poison Parasite Counter (PPC), a cognitive-science-based strategy for durably countering deceptive communications. The PPC involves inserting a strong (poisonous) counter-message, just once, into a close replica of a deceptive rival's original communication. In parasitic fashion, the original communication then "hosts" the counter-message, which is recalled on each reexposure to the original communication. The strategy harnesses associative memory to turn the original communication into a retrieval cue for a negating counter-message. Seven experiments (N = 3,679 adults) show that the PPC lastingly undermines a duplicitous rival's original communication, influencing judgments of communicator honesty and favorability as well as real political donations.
Collapse
Affiliation(s)
| | | | - Linda J Demaine
- Sandra Day O'Connor College of Law, Arizona State University
| | | | | | | |
Collapse
|
98
|
A Brief Period of Wakeful Rest after Learning Enhances Verbal Memory in Stroke Survivors. J Int Neuropsychol Soc 2021; 27:929-938. [PMID: 33423703 DOI: 10.1017/s1355617720001307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Accumulating evidence suggests that wakeful rest (a period of minimal cognitive stimulation) enhances memory in clinical populations with memory impairment. However, no study has previously examined the efficacy of this technique in stroke survivors, despite the high prevalence of post-stroke memory difficulties. We aimed to investigate whether wakeful rest enhances verbal memory in stroke survivors and healthy controls. METHOD Twenty-four stroke survivors and 24 healthy controls were presented with two short stories; one story was followed by a 10-minute period of wakeful rest and the other was followed by a 10-minute visual interference task. A mixed factorial analysis of variance (ANOVA) with pairwise comparisons was used to compare participants' story retention at two time points. RESULTS After 15-30 minutes, stroke survivors (p = .002, d = .73), and healthy controls (p = .001, d = .76) retained more information from the story followed by wakeful rest, compared with the story followed by an interference task. While wakeful rest remained the superior condition in healthy controls after 7 days (p = .01, d = .58), the beneficial effect was not maintained in stroke survivors (p = .35, d = .19). CONCLUSIONS Wakeful rest is a promising technique, which significantly enhanced verbal memory after 15-30 minutes in both groups; however, no significant benefit of wakeful rest was observed after 7 days in stroke survivors. Preliminary findings suggest that wakeful rest enhances early memory consolidation processes by protecting against the effects of interference after learning in stroke survivors.
Collapse
|
99
|
Relearning can eliminate the effect of retrieval-induced forgetting. PSYCHOLOGICAL RESEARCH 2021; 86:1725-1736. [PMID: 34591179 DOI: 10.1007/s00426-021-01601-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
The retrieval of a subset of items can cause the forgetting of other, non-retrieved items, a phenomenon known as retrieval-induced forgetting. Initial work suggested that giving people the opportunity to restudy non-retrieved items following retrieval practice is sufficient to eliminate the effect of retrieval-induced forgetting, but more recent work has suggested otherwise. If retrieval-induced forgetting is not eliminated by restudy, then such a finding would have important implications for understanding the theoretical nature of retrieval-induced forgetting. It would suggest, for example, that retrieval-induced forgetting reflects more than the temporary reduction in the accessibility of non-retrieved items in memory. The two experiments reported here sought to clarify this issue, with the results suggesting that retrieval-induced forgetting can be eliminated by restudy. Indeed, retrieval-induced forgetting was eliminated by restudy even when the forgetting effect was produced by three rounds of retrieval practice instead of one round of retrieval practice. These findings are consistent with the idea that retrieval-induced forgetting, at least under the conditions of the current experiments, reflects a temporary reduction in the accessibility of non-retrieved items in memory.
Collapse
|
100
|
Hu Z, Zhou W, Yang J. The effect of encoding task on the forgetting of object gist and details. PLoS One 2021; 16:e0255474. [PMID: 34550983 PMCID: PMC8457468 DOI: 10.1371/journal.pone.0255474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 07/18/2021] [Indexed: 11/19/2022] Open
Abstract
One important feature of episodic memory is that it contains fine-grained and vividly recollected details. How to improve and maintain detailed information over time has been one of the central issues in memory research. Previous studies have inconsistent findings on whether detailed memory is forgotten more rapidly than gist memory. In this study, we investigated to what extent different encoding tasks modulated forgetting of gist and detailed information. In three experiments, participants were presented pictures of common objects and were asked to name them (Experiment 1), describe the details about them (Experiment 2) or imagine scenes associated with them (Experiment 3). After intervals of 10 minutes, one day, one week and one month, gist and detailed memories of the pictures were tested and assessed using a remember/know/guess judgement. The results showed that after the naming task, gist and detailed memories were forgotten at a similar rate, but after the description and the imagination tasks, detailed memory was forgotten at a slower rate than gist memory. The forgetting rate of gist memory was the slowest after the naming task, while that of detailed memory was the slowest after the description task. In addition, when three experiments were compared, the naming task enhanced the contributions of recollection and familiarity for gist memory, while the description task enhanced the contribution of familiarity for detailed memory. These results reveal the importance of the encoding task in the forgetting of gist and detailed information, and suggest a possible way to maintain perceptual details of objects at longer intervals.
Collapse
Affiliation(s)
- Zhongyu Hu
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Wenxi Zhou
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Jiongjiong Yang
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
- * E-mail:
| |
Collapse
|