51
|
Abstract
Background Recent evidence has depicted a role of macrophage migration inhibitory factor (MIF) in cardiac homeostasis under pathological conditions. This study was designed to evaluate the role of MIF in doxorubicin‐induced cardiomyopathy and the underlying mechanism involved with a focus on autophagy. Methods and Results Wild‐type (WT) and MIF knockout (MIF−/−) mice were given saline or doxorubicin (20 mg/kg cumulative, i.p.). A cohort of WT and MIF−/− mice was given rapamycin (6 mg/kg, i.p.) with or without bafilomycin A1 (BafA1, 3 μmol/kg per day, i.p.) for 1 week prior to doxorubicin challenge. To consolidate a role for MIF in the maintenance of cardiac homeostasis following doxorubicin challenge, recombinant mouse MIF (rmMIF) was given to MIF−/− mice challenged with or without doxorubicin. Echocardiographic, cardiomyocyte function, and intracellular Ca2+ handling were evaluated. Autophagy and apoptosis were examined. Mitochondrial morphology and function were examined using transmission electron microscopy, JC‐1 staining, MitoSOX Red fluorescence, and mitochondrial respiration complex assay. DHE staining was used to evaluate reactive oxygen species (ROS) generation. MIF knockout exacerbated doxorubicin‐induced mortality and cardiomyopathy (compromised fractional shortening, cardiomyocyte and mitochondrial function, apoptosis, and ROS generation). These detrimental effects of doxorubicin were accompanied by defective autophagolysosome formation, the effect of which was exacerbated by MIF knockout. Rapamycin pretreatment rescued doxorubicin‐induced cardiomyopathy in WT and MIF−/− mice. Blocking autophagolysosome formation using BafA1 negated the cardioprotective effect of rapamycin and rmMIF. Conclusions Our data suggest that MIF serves as an indispensable cardioprotective factor against doxorubicin‐induced cardiomyopathy with an underlying mechanism through facilitating autophagolysosome formation.
Collapse
Affiliation(s)
- Xihui Xu
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, School of Pharmacy, Laramie, WY
| | | | | |
Collapse
|
52
|
Neves FA, Cortez E, Bernardo AF, Mattos ABM, Vieira AK, Malafaia TDO, Thole AA, Rodrigues-Cunha ACDS, Garcia-Souza EP, Sichieri R, Moura AS. Heart energy metabolism impairment in Western-diet induced obese mice. J Nutr Biochem 2013; 25:50-7. [PMID: 24314865 DOI: 10.1016/j.jnutbio.2013.08.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 08/20/2013] [Accepted: 08/30/2013] [Indexed: 11/16/2022]
Abstract
Nutritional transition has contributed to growing obesity, mainly by changing eating habits of the population. The mechanisms by which diet-induced obesity leads to cardiac injury are not completely understood, but it is known that obesity is associated to impaired cardiac function and energy metabolism, increasing morbidity and mortality. Therefore, our study aimed to investigate the mechanisms underlying cardiac metabolism impairment related to Western diet-induced obesity. After weaning, male Swiss mice were fed a Western diet for 16 weeks in order to induce obesity. After this period, the content of proteins involved in heart energy metabolism GLUT1, cytosolic lysate and plasma membrane GLUT4, AMPK, pAMPK, IRβ, IRS-1, PGC-1α, CPT1 and UCP2 was evaluated. Also, the oxidative phosphorylation of myocardial fibers was measured by high-resolution respirometry. Mice in the Western diet group (WG) presented altered biometric parameters compared to those in control group, including higher body weight, increased myocardial lipid deposition and glucose intolerance, which demonstrate the obesogenic role of Western diet. WG presented increased CPT1 and UCP2 contents and decreased IRS-1, plasma membrane GLUT4 and PGC-1α contents. In addition, WG presented cardiac mitochondrial dysfunction and reduced biogenesis, demonstrating a lower capacity of carbohydrates and fatty acid oxidation and also decreased coupling between oxidative phosphorylation and adenosine triphosphate synthesis. Cardiac metabolism impairment related to Western diet-induced obesity is probably due to damaged myocardial oxidative capacity, reduced mitochondrial biogenesis and mitochondria uncoupling, which compromise the bioenergetic metabolism of heart.
Collapse
Affiliation(s)
- Fabiana A Neves
- Laboratory of Nutrition Physiology and Development, Department of Physiological Sciences, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Palomer X, Salvadó L, Barroso E, Vázquez-Carrera M. An overview of the crosstalk between inflammatory processes and metabolic dysregulation during diabetic cardiomyopathy. Int J Cardiol 2013; 168:3160-72. [PMID: 23932046 DOI: 10.1016/j.ijcard.2013.07.150] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 07/15/2013] [Indexed: 10/26/2022]
Abstract
Metabolic disorders such as obesity, insulin resistance and type 2 diabetes mellitus are all linked to cardiovascular diseases such as cardiac hypertrophy and heart failure. Diabetic cardiomyopathy in particular, is characterized by structural and functional alterations in the heart muscle of people with diabetes that finally lead to heart failure, and which is not directly attributable to coronary artery disease or hypertension. Several mechanisms have been involved in the pathogenesis of diabetic cardiomyopathy, such as alterations in myocardial energy metabolism and calcium signaling. Metabolic disturbances during diabetic cardiomyopathy are characterized by increased lipid oxidation, intramyocardial triglyceride accumulation, and reduced glucose utilization. Overall changes result in enhanced oxidative stress, mitochondrial dysfunction and apoptosis of the cardiomyocytes. On the other hand, the progression of heart failure and cardiac hypertrophy usually entails a local rise in cytokines in cardiac cells and the activation of the proinflammatory transcription factor nuclear factor (NF)-κB. Interestingly, increasing evidences are arising in the recent years that point to a potential link between chronic low-grade inflammation in the heart and metabolic dysregulation. Therefore, in this review we summarize recent new insights into the crosstalk between inflammatory processes and metabolic dysregulation in the failing heart during diabetes, paying special attention to the role of NF-κB and peroxisome proliferator activated receptors (PPARs). In addition, we briefly describe the role of the AMP-activated protein kinase (AMPK), sirtuin 1 (SIRT1) and other pathways regulating cardiac energy metabolism, as well as their relationship with diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Xavier Palomer
- Department of Pharmacology and Therapeutic Chemistry, IBUB (Institut de Biomedicina de la Universitat de Barcelona), Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Faculty of Pharmacy, University of Barcelona, Diagonal 643, Barcelona E-08028, Spain
| | | | | | | |
Collapse
|
54
|
Leifheit-Nestler M, Wagner NM, Gogiraju R, Didié M, Konstantinides S, Hasenfuss G, Schäfer K. Importance of leptin signaling and signal transducer and activator of transcription-3 activation in mediating the cardiac hypertrophy associated with obesity. J Transl Med 2013; 11:170. [PMID: 23841921 PMCID: PMC3717024 DOI: 10.1186/1479-5876-11-170] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 07/01/2013] [Indexed: 01/06/2023] Open
Abstract
Background The adipokine leptin and its receptor are expressed in the heart, and leptin has been shown to promote cardiomyocyte hypertrophy in vitro. Obesity is associated with hyperleptinemia and hypothalamic leptin resistance as well as an increased risk to develop cardiac hypertrophy and heart failure. However, the role of cardiac leptin signaling in mediating the cardiomyopathy associated with increased body weight is unclear, in particular, whether it develops subsequently to cardiac leptin resistance or overactivation of hypertrophic signaling pathways via elevated leptin levels. Methods The cardiac phenotype of high-fat diet (HFD)-induced obese wildtype (WT) mice was examined and compared to age-matched genetically obese leptin receptor (LepR)-deficient (LepRdb/db) or lean WT mice. To study the role of leptin-mediated STAT3 activation during obesity-induced cardiac remodeling, mice in which tyrosine residue 1138 within LepR had been replaced with a serine (LepRS1138) were also analyzed. Results Obesity was associated with hyperleptinemia and elevated cardiac leptin expression in both diet-induced and genetically obese mice. Enhanced LepR and STAT3 phosphorylation levels were detected in hearts of obese WT mice, but not in those with LepR mutations. Moreover, exogenous leptin continued to induce cardiac STAT3 activation in diet-induced obese mice. Although echocardiography revealed signs of cardiac hypertrophy in all obese mice, the increase in left ventricular (LV) mass and diameter was significantly more pronounced in LepRS1138 animals. LepRS1138 mice also exhibited an increased activation of signaling proteins downstream of LepR, including Jak2 (1.8-fold), Src kinase (1.7-fold), protein kinase B (1.3-fold) or C (1.6-fold). Histological analysis of hearts revealed that the inability of leptin to activate STAT3 in LepRdb/db and LepRS1138 mice was associated with reduced cardiac angiogenesis as well as increased apoptosis and fibrosis. Conclusions Our findings suggest that hearts from obese mice continue to respond to elevated circulating or cardiac leptin, which may mediate cardioprotection via LepR-induced STAT3 activation, whereas signals distinct from LepR-Tyr1138 promote cardiac hypertrophy. On the other hand, the presence of cardiac hypertrophy in obese mice with complete LepR signal disruption indicates that additional pathways also play a role.
Collapse
Affiliation(s)
- Maren Leifheit-Nestler
- Department of Cardiology and Pulmonary Medicine, Heart Research Center, Georg August University Medicine Goettingen, Robert Koch Strasse 40, D-37075, Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
55
|
Aurich AC, Niemann B, Pan R, Gruenler S, Issa H, Silber RE, Rohrbach S. Age-dependent effects of high fat-diet on murine left ventricles: role of palmitate. Basic Res Cardiol 2013; 108:369. [PMID: 23836256 DOI: 10.1007/s00395-013-0369-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 06/25/2013] [Accepted: 06/26/2013] [Indexed: 10/26/2022]
Abstract
Obesity-associated heart disease results in myocardial lipid accumulation leading to lipotoxicity. However, recent studies are suggestive of protective effects of high-fat diets (HFD). To determine whether age results in differential changes in diet-induced obesity, we fed young and old (3 and 18 months) male C57Bl/6 mice control diet, low-fat diet (both 10 kcal% fat) or HFD (45 kcal% fat) for 16 weeks, after which we analyzed LV function, mitochondrial changes, and potential modifiers of myocardial structure. HFD or age did not change LV systolic function, although a mildly increased BNP was observed in all old mice. This was associated with increased myocardial collagen, triglyceride, diacylglycerol, and ceramide content as well as higher caspase 3 activation in old mice with highest levels in old HFD mice. Pyruvate-dependent respiration and mitochondrial biogenesis were reduced in all old mice and in young HFD mice. Activation of AMPK, a strong inducer of mitochondrial biogenesis, was reduced in both HFD groups and in old control or LFD mice. Cardiomyocytes from old rats demonstrated significantly reduced AMPK activation, impaired mitochondrial biogenesis, higher ceramide content, and reduced viability after palmitate (C16:0) in vitro, while no major deleterious effects were observed in young cardiomyocytes. Aged but not young cardiomyocytes were unable to respond to higher palmitate with increased fatty acid oxidation. Thus, HFD results in cardiac structural alterations and accumulation of lipid intermediates predominantly in old mice, possibly due to the inability of old cardiomyocytes to adapt to high-fatty acid load.
Collapse
Affiliation(s)
- Anne-Cathleen Aurich
- Institute of Pathophysiology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | | | | | | | | | | | | |
Collapse
|
56
|
Böhm C, Benz V, Clemenz M, Sprang C, Höft B, Kintscher U, Foryst-Ludwig A. Sexual dimorphism in obesity-mediated left ventricular hypertrophy. Am J Physiol Heart Circ Physiol 2013; 305:H211-8. [PMID: 23666673 DOI: 10.1152/ajpheart.00593.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In the present study we investigated the influence of sex difference on the development of left ventricular hypertrophy (LVH) during obesity. Male and female C57BL/6J mice were fed for 15 and 25 wk with a high-fat diet (HFD) or low-fat control diet (LFD). Analysis of body composition, monitoring of body weight (BW), and echocardiographic analysis were performed, as well as analysis of expression of different adipocytokines in epicardial adipose tissue. The increment in left ventricular mass (LVM) after HFD (25 wk) was significantly stronger in male mice compared with female mice [LVM: male, 116.9 ± 2.9 (LFD) vs. 142.2 ± 9.3 mg (HFD); female, 84.3 ± 3.3 (LFD) vs. 93.9 ± 1.7 mg (HFD), Psex < 0.01]. In parallel, males developed a higher BW and fat mass after 25 wk HFD than female mice [BW: male, 33 ± 0.9 (LFD) vs. 53 ± 0.8 g (HFD); fat mass: male, 8.8 ± 0.9 (LFD) vs. 22.8 ± 0.7 g (HFD); BW: female, 22.5 ± 0.4 (LFD) vs. 33.7 ± 1.3 g (HFD); fat mass: female, 4.0 ± 0.2 (LFD) vs. 13.2 ± 1.2 g (HFD)] (P < 0.01 for BW+ fat mass female vs. male). The mRNA expression of adipocytokines in epicardial fat after 25 wk of diet showed higher levels of adiponectin (2.8-fold), leptin (4.2-fold), and vaspin (11.9-fold) in male mice compared with female mice (P < 0.05). To identify new adipose-derived molecular mediators of LVH, we further elucidated the cardiac impact of vaspin. Murine primary cardiac fibroblast proliferation was significantly induced by vaspin (1.8-fold, vaspin 1 μg/l, P < 0.05 vs. control) compared with 1.9-fold induction by angiotensin II (10 μM). The present study demonstrates a sex-dependent regulation of diet-induced LVH associated with sexual dimorphic expression of adipocytokines in epicardial adipose tissue.
Collapse
Affiliation(s)
- Christian Böhm
- Center for Cardiovascular Research, Department of Pharmacology and Metabolic Research, Charité-Universitätsmedizin Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
57
|
Joo KW, Kim S, Ahn SY, Chin HJ, Chae DW, Lee J, Han JS, Na KY. Dipeptidyl peptidase IV inhibitor attenuates kidney injury in rat remnant kidney. BMC Nephrol 2013; 14:98. [PMID: 23621921 PMCID: PMC3648384 DOI: 10.1186/1471-2369-14-98] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 04/24/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The inhibition of dipeptidyl peptidase (DPP) IV shows protective effects on tissue injury of the heart, lung, and kidney. Forkhead box O (FoxO) transcriptional factors regulate cellular differentiation, growth, survival, the cell cycle, metabolism, and oxidative stress. The aims of this study were to investigate whether the DPP IV inhibitor sitagliptin could attenuate kidney injury and to evaluate the status of FoxO3a signaling in the rat remnant kidney model. METHODS Rats were received two-step surgery of 5/6 renal mass reduction and fed on an oral dose of 200 mg/kg/day sitagliptin for 8 weeks. Before and after the administration of sitagliptin, physiologic parameters were measured. After 8 weeks of treatment, the kidneys were harvested. RESULTS The sitagliptin treatment attenuated renal dysfunction. A histological evaluation revealed that glomerulosclerosis and tubulointerstitial injury were significantly decreased by sitagliptin. Sitagliptin decreased DPP IV activity and increased the renal expression of glucagon-like peptide-1 receptor (GLP-1R). The subtotal nephrectomy led to the activation of phosphatidylinositol 3-kinase (PI3K)-Akt and FoxO3a phosphorylation, whereas sitagliptin treatment reversed these changes, resulting in PI3K-Akt pathway inactivation and FoxO3a dephosphorylation. The renal expression of catalase was increased and the phosphorylation of c-Jun N-terminal kinase (JNK) was decreased by sitagliptin. Sitagliptin treatment reduced apoptosis by decreasing cleaved caspase-3 and -9 and Bax levels and decreased macrophage infiltration. CONCLUSIONS In rat remnant kidneys, DPP IV inhibitor attenuated renal dysfunction and structural damage. A reduction of apoptosis, inflammation and an increase of antioxidant could be suggested as a renoprotective mechanism together with the activation of FoxO3a signaling. Therefore, DPP IV inhibitors might provide a promising approach for treating CKD, but their application in clinical practice remains to be investigated.
Collapse
Affiliation(s)
- Kwon Wook Joo
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Vatner SF, Park M, Yan L, Lee GJ, Lai L, Iwatsubo K, Ishikawa Y, Pessin J, Vatner DE. Adenylyl cyclase type 5 in cardiac disease, metabolism, and aging. Am J Physiol Heart Circ Physiol 2013; 305:H1-8. [PMID: 23624627 DOI: 10.1152/ajpheart.00080.2013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
G protein-coupled receptor/adenylyl cyclase (AC)/cAMP signaling is crucial for all cellular responses to physiological and pathophysiological stimuli. There are nine isoforms of membrane-bound AC, with type 5 being one of the two major isoforms in the heart. Since the role of AC in the heart in regulating cAMP and acute changes in inotropic and chronotropic state are well known, this review will address our current understanding of the distinct regulatory role of the AC5 isoform in response to chronic stress. Transgenic overexpression of AC5 in cardiomyocytes of the heart (AC5-Tg) improves baseline cardiac function but impairs the ability of the heart to withstand stress. For example, chronic catecholamine stimulation induces cardiomyopathy, which is more severe in AC5-Tg mice, mediated through the AC5/sirtuin 1/forkhead box O3a pathway. Conversely, disrupting AC5, i.e., AC5 knockout, protects the heart from chronic catecholamine cardiomyopathy as well as the cardiomyopathies resulting from chronic pressure overload or aging. Moreover, AC5 knockout results in a 30% increase in a healthy life span, resembling the most widely studied model of longevity, i.e., calorie restriction. These two models of longevity share similar gene regulation in the heart, muscle, liver, and brain in that they are both protected against diabetes, obesity, and diabetic and aging cardiomyopathy. A pharmacological inhibitor of AC5 also provides protection against cardiac stress, diabetes, and obesity. Thus AC5 inhibition has novel, potential therapeutic applicability to several diseases not only in the heart but also in aging, diabetes, and obesity.
Collapse
Affiliation(s)
- Stephen F Vatner
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Abstract
It is believed that cardiac remodeling due to geometric and structural changes is a major mechanism for the progression of heart failure in different pathologies including hypertension, hypertrophic cardiomyopathy, dilated cardiomyopathy, diabetic cardiomyopathy, and myocardial infarction. Increases in the activities of proteolytic enzymes such as matrix metalloproteinases, calpains, cathepsins, and caspases contribute to the process of cardiac remodeling. In addition to modifying the extracellular matrix, both matrix metalloproteinases and cathepsins have been shown to affect the activities of subcellular organelles in cardiomyocytes. The activation of calpains and caspases has been identified to induce subcellular remodeling in failing hearts. Proteolytic activities associated with different proteins including caspases, calpain, and the ubiquitin-proteasome system have been shown to be involved in cardiomyocyte apoptosis, which is an integral part of cardiac remodeling. This article discusses and compares how the activities of various proteases are involved in different cardiac abnormalities with respect to alterations in apoptotic pathways, cardiac remodeling, and cardiac dysfunction. An imbalance appears to occur between the activities of some proteases and their endogenous inhibitors in various types of hypertrophied and failing hearts, and this is likely to further accentuate subcellular remodeling and cardiac dysfunction. The importance of inhibiting the activities of both extracellular and intracellular proteases specific to distinct etiologies, in attenuating cardiac remodeling and apoptosis as well as biochemical changes of subcellular organelles, in heart failure has been emphasized. It is suggested that combination therapy to inhibit different proteases may prove useful for the treatment of heart failure.
Collapse
Affiliation(s)
- Alison L Müller
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | | |
Collapse
|
60
|
Nagarajan V, Gopalan V, Kaneko M, Angeli V, Gluckman P, Richards AM, Kuchel PW, Velan SS. Cardiac function and lipid distribution in rats fed a high-fat diet: in vivo magnetic resonance imaging and spectroscopy. Am J Physiol Heart Circ Physiol 2013; 304:H1495-504. [PMID: 23542917 DOI: 10.1152/ajpheart.00478.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Obesity is a major risk factor in the development of cardiovascular disease, type 2 diabetes, and its pathophysiological precondition insulin resistance. Very little is known about the metabolic changes that occur in the myocardium and consequent changes in cardiac function that are associated with high-fat accumulation. Therefore, cardiac function and metabolism were evaluated in control rats and those fed a high-fat diet, using magnetic resonance imaging, magnetic resonance spectroscopy, mRNA analysis, histology, and plasma biochemistry. Analysis of blood plasma from rats fed the high-fat diet showed that they were insulin resistant (P < 0.001). Our high-fat diet model had higher heart weight (P = 0.005) and also increasing trend in septal wall thickness (P = 0.07) compared with control diet rats. Our results from biochemistry, magnetic resonance imaging, and mRNA analysis confirmed that rats on the high-fat diet had moderate diabetes along with mild cardiac hypertrophy. The magnetic resonance spectroscopy results showed the extramyocellular lipid signal only in the spectra from high-fat diet rats, which was absent in the control diet rats. The intramyocellular lipids in high-fat diet rats was higher (8.7%) compared with rats on the control diet (6.1%). This was confirmed by electron microscope and light microscopy studies. Our results indicate that lipid accumulation in the myocardium might be an early indication of the cardiovascular pathophysiology associated with type 2 diabetes.
Collapse
|
61
|
Paffett ML, Channell MM, Naik JS, Lucas SN, Campen MJ. Cardiac and vascular atrogin-1 mRNA expression is not associated with dexamethasone efficacy in the monocrotaline model of pulmonary hypertension. Cardiovasc Toxicol 2013; 12:226-34. [PMID: 22311109 DOI: 10.1007/s12012-012-9158-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Atrophic signaling elements of the ubiquitin-proteasome system (UPS) are involved in skeletal muscle wasting as well as pressure overload models of heart failure. In our prior experiments, we demonstrated a transcriptional downregulation of atrophy-inducing vascular E3 ubiquitin ligases in a toxic model of pulmonary hypertension where pulmonary artery and right ventricle (RV) hypertrophy are evident. Given the numerous reports of glucocorticoid activation of the UPS and the negative regulator of muscle mass, myostatin, we investigated the efficacy of dexamethasone to reverse monocrotaline (MCT)-induced pulmonary hypertension and augment atrogin-1 expression in both pulmonary arteries and myocardium. Dexamethasone caused significant reductions in body weight in combination with MCT. As predicted, MCT-induced pulmonary hypertension was evident by increases in RV systolic pressure, right ventricle to left ventricle plus septal weight ratios (RV/LVS) and arterial remodeling. MCT treatment significantly reduced both RV and PA atrogin-1 expression. Dexamethasone treatment reversed the MCT-induced pathological indices and restored RV atrogin-1 expression, but did not impact atrogin-1 expression in pulmonary arteries. Myostatin was poorly expressed in pulmonary arteries compared to the RV, and dexamethasone treatment increase RV myostatin in controls but not MCT-treated rats. These findings suggest that mechanisms independent of myostatin/atrogin-1 are responsible for glucocorticoid efficacy in this model of pulmonary hypertension.
Collapse
Affiliation(s)
- Michael L Paffett
- Department of Pharmaceutical Sciences, MSC09 5360, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131-0001, USA.
| | | | | | | | | |
Collapse
|
62
|
Huang JV, Lu L, Ye S, Bergman BC, Sparagna GC, Sarraf M, Reusch JEB, Greyson CR, Schwartz GG. Impaired contractile recovery after low-flow myocardial ischemia in a porcine model of metabolic syndrome. Am J Physiol Heart Circ Physiol 2013; 304:H861-73. [PMID: 23335793 DOI: 10.1152/ajpheart.00535.2012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Clinical metabolic syndrome conveys a poor prognosis in patients with acute coronary syndrome, not fully accounted for by the extent of coronary atherosclerosis. To explain this observation, we determined whether postischemic myocardial contractile and metabolic function are impaired in a porcine dietary model of metabolic syndrome without atherosclerosis. Micropigs (n = 28) were assigned to a control diet (low fat, no added sugars) or an intervention diet (high saturated fat and simple sugars, no added cholesterol) for 7 mo. The intervention diet produced obesity, hypertension, dyslipidemia, and impaired glucose tolerance, but not atherosclerosis. Under open-chest, anesthetized conditions, pigs underwent 45 min of low-flow myocardial ischemia and 120 min of reperfusion. In both diet groups, contractile function was similar at baseline and declined similarly during ischemia. However, after 120 min of reperfusion, regional work recovered to 21 ± 12% of baseline in metabolic syndrome pigs compared with 61 ± 13% in control pigs (P = 0.01). Ischemia-reperfusion caused a progressive decline in mechanical/metabolic efficiency (regional work/O2 consumption) in metabolic syndrome hearts, but not in control hearts. Metabolic syndrome hearts demonstrated altered fatty acyl composition of cardiolipin and increased Akt phosphorylation in both ischemic and nonischemic regions, suggesting tonic activation. Metabolic syndrome hearts used more fatty acid than control hearts (P = 0.03). When fatty acid availability was restricted by prior insulin exposure, differences between groups in postischemic contractile recovery and mechanical/metabolic efficiency were eliminated. In conclusion, pigs with characteristics of metabolic syndrome demonstrate impaired contractile and metabolic recovery after low-flow myocardial ischemia. Contributory mechanisms may include remodeling of cardiolipin, abnormal activation of Akt, and excessive utilization of fatty acid substrates.
Collapse
Affiliation(s)
- Janice V Huang
- Cardiology Section, Veterans Affairs Medical Center, Denver, CO 80220, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Turdi S, Ge W, Hu N, Bradley KM, Wang X, Ren J. Interaction between maternal and postnatal high fat diet leads to a greater risk of myocardial dysfunction in offspring via enhanced lipotoxicity, IRS-1 serine phosphorylation and mitochondrial defects. J Mol Cell Cardiol 2012; 55:117-29. [PMID: 23266593 DOI: 10.1016/j.yjmcc.2012.12.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 12/01/2012] [Accepted: 12/04/2012] [Indexed: 12/23/2022]
Abstract
Maternal overnutrition is associated with heart diseases in adult offspring. However, combined effect of maternal and postnatal fat intake on cardiac function is unknown. This study was designed to examine the impact of maternal and postnatal fat intake on metabolic, myocardial, insulin and mitochondrial responses in adult offspring. Pregnant FVB mice were fed a low fat (LF) or high fat (HF) diet during gestation and lactation. Weaning male offspring were placed on either LF or HF (calorie-restricted HF-fed mice used as weight control) for 4 months prior to assessment of metabolic indices, myocardial histology, cardiac function, insulin signaling, mitochondrial integrity and reactive oxygen species (ROS) generation. Compared with LF- and HF-fed weight-control mice, postnatal HF intake resulted in obesity, adiposity, dyslipidemia, insulin resistance, cardiac hypertrophy, interrupted cardiac contractile, intracellular Ca(2+) and mitochondrial properties, all of which were significantly accentuated by prenatal fat exposure. Despite the preserved cardiac contractile function, LF offspring from HF-fed dams displayed higher body weights, increased adiposity and glucose intolerance. HF-fed mice with prenatal HF exposure displayed upregulated serine phosphorylation of IRS-1, PTP1B, the rate-limiting fatty acid synthesis enzyme stearoyl-CoA desaturase (SCD1) and hypertrophic markers (calcineurin A, GATA4, ANP, β-MHC and skeletal α-actin), while suppressing AMP-dependent protein kinase, glucose uptake and PGC-1α levels. Importantly, myocardial and mitochondrial ultrastructural abnormalities were more pronounced in HF-fed offspring with prenatal fat exposure, shown as loss of mitochondrial density and membrane potential, increased ROS generation and apoptosis. Our data suggest that prenatal dietary fat exposure predisposes offspring to postnatal dietary fat-induced cardiac hypertrophy and contractile defect possibly via lipotoxicity, glucose intolerance and mitochondrial dysfunction. This article is part of a Special Issue entitled "Focus on Cardiac Metabolism".
Collapse
Affiliation(s)
- Subat Turdi
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | | | | | | | | | | |
Collapse
|
64
|
Rindler PM, Plafker SM, Szweda LI, Kinter M. High dietary fat selectively increases catalase expression within cardiac mitochondria. J Biol Chem 2012. [PMID: 23204527 DOI: 10.1074/jbc.m112.412890] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Obesity is a predictor of diabetes and cardiovascular disease. One consequence of obesity is dyslipidemia characterized by high blood triglycerides. It has been proposed that oxidative stress, driven by utilization of lipids for energy, contributes to these diseases. The effects of oxidative stress are mitigated by an endogenous antioxidant enzyme network, but little is known about its response to high fat utilization. Our experiments used a multiplexed quantitative proteomics method to measure antioxidant enzyme expression in heart tissue in a mouse model of diet-induced obesity. This experiment showed a rapid and specific up-regulation of catalase protein, with subsequent assays showing increases in activity and mRNA. Catalase, traditionally considered a peroxisomal protein, was found to be present in cardiac mitochondria and significantly increased in content and activity during high fat feeding. These data, coupled with the fact that fatty acid oxidation enhances mitochondrial H(2)O(2) production, suggest that a localized catalase increase is needed to consume excessive mitochondrial H(2)O(2) produced by increased fat metabolism. To determine whether the catalase-specific response is a common feature of physiological conditions that increase blood triglycerides and fatty acid oxidation, we measured changes in antioxidant expression in fasted versus fed mice. Indeed, a similar specific catalase increase was observed in mice fasted for 24 h. Our findings suggest a fundamental metabolic process in which catalase expression is regulated to prevent damage while preserving an H(2)O(2)-mediated sensing of diet composition that appropriately adjusts insulin sensitivity in the short term as needed to prioritize lipid metabolism for complete utilization.
Collapse
Affiliation(s)
- Paul M Rindler
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | | | |
Collapse
|
65
|
Li L, Hua Y, Dong M, Li Q, Smith DT, Yuan M, Jones KR, Ren J. Short-term lenalidomide (Revlimid) administration ameliorates cardiomyocyte contractile dysfunction in ob/ob obese mice. Obesity (Silver Spring) 2012; 20:2174-85. [PMID: 22522886 DOI: 10.1038/oby.2012.106] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Lenalidomide is a potent immunomodulatory agent capable of downregulating proinflammatory cytokines such as tumor necrosis factor-α (TNF-α) and upregulating anti-inflammatory cytokines. Lenalidomide has been shown to elicit cardiovascular effects, although its impact on cardiac function remains obscure. This study was designed to examine the effect of lenalidomide on cardiac contractile function in ob/ob obese mice. C57BL lean and ob/ob obese mice were given lenalidomide (50 mg/kg/day, p.o.) for 3 days. Body fat composition was assessed by dual-energy X-ray absorptiometry. Cardiomyocyte contractile and intracellular Ca(2+) properties were evaluated. Expression of TNF-α, interleukin-6 (IL-6), Fas, Fas ligand (FasL), the short-chain fatty acid receptor GPR41, the NFκB regulator IκB, endoplasmic reticulum (ER) stress, the apoptotic protein markers Bax, Bcl-2, caspase-8, tBid, cytosolic cytochrome C, and caspase-12; and the stress signaling molecules p38 and extracellular signal-regulated kinase (ERK) were evaluated by western blot. ob/ob mice displayed elevated serum TNF-α and IL-6 levels, fat composition and glucose intolerance, the effects of which except glucose intolerance and fat composition were attenuated by lenalidomide. Cardiomyocytes from ob/ob mice exhibited depressed peak shortening (PS) and maximal velocity of shortening/relengthening, prolonged time-to-PS and time-to-90% relengthening as well as intracellular Ca(2+) mishandling, which were ablated by lenalidomide. Western blot analysis revealed elevated levels of TNF-α, IL-6, Fas, Bip, Bax, caspase-8, tBid, cleaved caspase-3 caspase-12, cytochrome C, phosphorylation of p38, and ERK in ob/ob mouse hearts, the effects of which with the exception of Bip, Bax, and caspase-12 were alleviated by lenalidomide. Taken together, these data suggest that lenalidomide is protective against obesity-induced cardiomyopathy possibly through antagonism of cytokine/Fas-induced activation of stress signaling and apoptosis.
Collapse
Affiliation(s)
- Linlin Li
- Department of Pharmacology, Xinjiang Medical University, Urumqi, Xinjiang, PR China
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Tsai JY, Villegas-Montoya C, Boland BB, Blasier Z, Egbejimi O, Gonzalez R, Kueht M, McElfresh TA, Brewer RA, Chandler MP, Bray MS, Young ME. Influence of dark phase restricted high fat feeding on myocardial adaptation in mice. J Mol Cell Cardiol 2012; 55:147-55. [PMID: 23032157 DOI: 10.1016/j.yjmcc.2012.09.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 09/18/2012] [Accepted: 09/21/2012] [Indexed: 01/01/2023]
Abstract
Prolonged high fat feeding is associated with myocardial contractile dysfunction in rodents. However, epidemiological data do not necessarily support the concept that fat-enriched diets adversely affect cardiac function in humans. When fed in an ad libitum manner, laboratory rodents consume chow throughout the day. In contrast, humans typically consume food only during the awake phase. Discrepancies between rodent and human feeding behaviors led us to hypothesize that the time of day at which dietary lipids are consumed significantly influences myocardial adaptation. In order to better mimic feeding behavior in humans, mice were fed (either a control or high fat diet) only during the 12-hour dark phase (i.e., no food was provided during the light phase). We report that compared to dark phase restricted control diet fed mice, mice fed a high fat diet during the dark phase exhibit: 1) essentially normal body weight gain and energy balance; 2) increased fatty acid oxidation at whole body, as well as skeletal and cardiac muscle (in the presence of insulin and/or at high workloads) levels; 3) induction of fatty acid responsive genes, including genes promoting triglyceride turnover in the heart; 4) no evidence of cardiac hypertrophy; and 5) persistence/improvement of myocardial contractile function, as assessed ex vivo. These data are consistent with the hypothesis that ingestion of dietary fat only during the more active/awake period allows adequate metabolic adaptation, thereby preserving myocardial contractile function. This article is part of a Special Issue entitled "Focus on cardiac metabolism".
Collapse
Affiliation(s)
- Ju-Yun Tsai
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Department of Pediatrics, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Xu X, Ren J. Unmasking the janus faces of autophagy in obesity-associated insulin resistance and cardiac dysfunction. Clin Exp Pharmacol Physiol 2012; 39:200-8. [PMID: 22053892 DOI: 10.1111/j.1440-1681.2011.05638.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Autophagy is an intracellular, lysosomal-dependent process involved in the turnover of long-lived proteins, damaged organelles and other subcellular structures. The autophagic process is known to play an essential role in the maintenance of cellular homeostasis. Results from recent studies also indicate an important role for the autophagic process in the pathogenesis of human diseases, including cancer, cardiovascular diseases, obesity, diabetes mellitus and ageing. Because of the pivotal role of autophagy in the regulation of adipogenesis, obesity and insulin sensitization, research efforts have focused on elucidating the role of autophagy in metabolic syndrome. Mammalian target of rapamycin (mTOR) is a key regulator of cell growth and is characterized by a complex signalling mechanism that affects protein synthesis and autophagy. Results from experimental and clinical studies reveal some interesting, but conflicting, findings regarding the mTOR signalling pathway and autophagy in adipocytes in metabolic syndrome. Although the pivotal role of autophagy in obesity and other metabolic diseases has been established, its involvement in obesity-induced cardiac dysfunction remains unknown, as do the upstream signalling regulators of autophagy. The present minireview discusses the molecular mechanisms of autophagy in the regulation of cardiac function in overweight and obesity. Further studies using appropriate models are needed to better unravel the complex intracellular mechanisms involved in the regulation of autophagy in obesity-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Xihui Xu
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, USA
| | | |
Collapse
|
68
|
A novel Myosin essential light chain mutation causes hypertrophic cardiomyopathy with late onset and low expressivity. Biochem Res Int 2012; 2012:685108. [PMID: 22957257 PMCID: PMC3432877 DOI: 10.1155/2012/685108] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 02/07/2012] [Indexed: 02/02/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is caused by mutations in genes encoding sarcomere proteins. Mutations in MYL3, encoding the essential light chain of myosin, are rare and have been associated with sudden death. Both recessive and dominant patterns of inheritance have been suggested. We studied a large family with a 38-year-old asymptomatic HCM-affected male referred because of a murmur. The patient had HCM with left ventricular hypertrophy (max WT 21 mm), a resting left ventricular outflow gradient of 36 mm Hg, and left atrial dilation (54 mm). Genotyping revealed heterozygosity for a novel missense mutation, p.V79I, in MYL3. The mutation was not found in 300 controls, and the patient had no mutations in 10 sarcomere genes. Cascade screening revealed a further nine heterozygote mutation carriers, three of whom had ECG and/or echocardiographic abnormalities but did not fulfil diagnostic criteria for HCM. The penetrance, if we consider this borderline HCM the phenotype of the p.V79I mutation, was 40%, but the mean age of the nonpenetrant mutation carriers is 15, while the mean age of the penetrant mutation carriers is 47. The mutation affects a conserved valine replacing it with a larger isoleucine residue in the region of contact between the light chain and the myosin lever arm. In conclusion, MYL3 mutations can present with low expressivity and late onset.
Collapse
|
69
|
Mingorance C, Duluc L, Chalopin M, Simard G, Ducluzeau PH, Herrera MD, Alvarez de Sotomayor M, Andriantsitohaina R. Propionyl-L-carnitine corrects metabolic and cardiovascular alterations in diet-induced obese mice and improves liver respiratory chain activity. PLoS One 2012; 7:e34268. [PMID: 22457831 PMCID: PMC3311627 DOI: 10.1371/journal.pone.0034268] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 02/24/2012] [Indexed: 11/18/2022] Open
Abstract
AIMS Obesity is a primary contributor to acquired insulin resistance leading to the development of type 2 diabetes and cardiovascular alterations. The carnitine derivate, propionyl-L-carnitine (PLC), plays a key role in energy control. Our aim was to evaluate metabolic and cardiovascular effects of PLC in diet-induced obese mice. METHODS C57BL/6 mice were fed a high-fat diet for 9 weeks and then divided into two groups, receiving either free- (vehicle-HF) or PLC-supplemented water (200 mg/kg/day) during 4 additional weeks. Standard diet-fed animals were used as lean controls (vehicle-ST). Body weight and food intake were monitored. Glucose and insulin tolerance tests were assessed, as well as the HOMA(IR), the serum lipid profile, the hepatic and muscular mitochondrial activity and the tissue nitric oxide (NO) liberation. Systolic blood pressure, cardiac and endothelial functions were also evaluated. RESULTS Vehicle-HF displayed a greater increase of body weight compared to vehicle-ST that was completely reversed by PLC treatment without affecting food intake. PLC improved the insulin-resistant state and reversed the increased total cholesterol but not the increase in free fatty acid, triglyceride and HDL/LDL ratio induced by high-fat diet. Vehicle-HF exhibited a reduced cardiac output/body weight ratio, endothelial dysfunction and tissue decrease of NO production, all of them being improved by PLC treatment. Finally, the decrease of hepatic mitochondrial activity by high-fat diet was reversed by PLC. CONCLUSIONS Oral administration of PLC improves the insulin-resistant state developed by obese animals and decreases the cardiovascular risk associated to this metabolic alteration probably via correction of mitochondrial function.
Collapse
Affiliation(s)
- Carmen Mingorance
- Department of Pharmacology, School of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Lucie Duluc
- LUNAM Université, Anger, France
- INSERM U1063, Angers, France
| | | | - Gilles Simard
- LUNAM Université, Anger, France
- INSERM U1063, Angers, France
- Université d'Angers, CHU Angers, Department of Biochemistry, Angers, France
| | | | - Maria Dolores Herrera
- Department of Pharmacology, School of Pharmacy, University of Sevilla, Sevilla, Spain
| | | | | |
Collapse
|
70
|
Stanley WC, Dabkowski ER, Ribeiro RF, O'Connell KA. Dietary fat and heart failure: moving from lipotoxicity to lipoprotection. Circ Res 2012; 110:764-76. [PMID: 22383711 PMCID: PMC3356700 DOI: 10.1161/circresaha.111.253104] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Accepted: 01/27/2011] [Indexed: 02/07/2023]
Abstract
There is growing evidence suggesting that dietary fat intake affects the development and progression of heart failure. Studies in rodents show that in the absence of obesity, replacing refined carbohydrate with fat can attenuate or prevent ventricular expansion and contractile dysfunction in response to hypertension, infarction, or genetic cardiomyopathy. Relatively low intake of n-3 polyunsaturated fatty acids from marine sources alters cardiac membrane phospholipid fatty acid composition, decreases the onset of new heart failure, and slows the progression of established heart failure. This effect is associated with decreased inflammation and improved resistance to mitochondrial permeability transition. High intake of saturated, monounsaturated, or n-6 polyunsaturated fatty acids has also shown beneficial effects in rodent studies. The underlying mechanisms are complex, and a more thorough understanding is needed of the effects on cardiac phospholipids, lipid metabolites, and metabolic flux in the normal and failing heart. In summary, manipulation of dietary fat intake shows promise in the prevention and treatment of heart failure. Clinical studies generally support high intake of n-3 polyunsaturated fatty acids from marine sources to prevent and treat heart failure. Additional clinical and animals studies are needed to determine the optimal diet in terms of saturated, monounsaturated, and n-6 polyunsaturated fatty acids intake for this vulnerable patient population.
Collapse
Affiliation(s)
- William C Stanley
- Division of Cardiology, Department of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | | | | | | |
Collapse
|
71
|
Zhang Y, Yuan M, Bradley KM, Dong F, Anversa P, Ren J. Insulin-like growth factor 1 alleviates high-fat diet-induced myocardial contractile dysfunction: role of insulin signaling and mitochondrial function. Hypertension 2012; 59:680-93. [PMID: 22275536 DOI: 10.1161/hypertensionaha.111.181867] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Obesity is often associated with reduced plasma insulin-like growth factor 1 (IGF-1) levels, oxidative stress, mitochondrial damage, and cardiac dysfunction. This study was designed to evaluate the impact of IGF-1 on high-fat diet-induced oxidative, myocardial, geometric, and mitochondrial responses. FVB and cardiomyocyte-specific IGF-1 overexpression transgenic mice were fed a low- (10%) or high-fat (45%) diet to induce obesity. High-fat diet feeding led to glucose intolerance, elevated plasma levels of leptin, interleukin 6, insulin, and triglyceride, as well as reduced circulating IGF-1 levels. Echocardiography revealed reduced fractional shortening, increased end-systolic and end-diastolic diameter, increased wall thickness, and cardiac hypertrophy in high-fat-fed FVB mice. High-fat diet promoted reactive oxygen species generation, apoptosis, protein and mitochondrial damage, reduced ATP content, cardiomyocyte cross-sectional area, contractile and intracellular Ca(2+) dysregulation (including depressed peak shortening and maximal velocity of shortening/relengthening), prolonged duration of relengthening, and dampened intracellular Ca(2+) rise and clearance. Western blot analysis revealed disrupted phosphorylation of insulin receptor and postreceptor signaling molecules insulin receptor substrate 1 (tyrosine/serine phosphorylation), Akt, glycogen synthase kinase 3β, forkhead transcriptional factors, and mammalian target of rapamycin, as well as downregulated expression of mitochondrial proteins peroxisome proliferator-activated receptor-γ coactivator 1α and uncoupling protein 2. Intriguingly, IGF-1 mitigated high-fat-diet feeding-induced alterations in reactive oxygen species, protein and mitochondrial damage, ATP content, apoptosis, myocardial contraction, intracellular Ca(2+) handling, and insulin signaling but not whole body glucose intolerance and cardiac hypertrophy. Exogenous IGF-1 treatment also alleviated high-fat diet-induced cardiac dysfunction. Our data revealed that IGF-1 alleviates high-fat diet-induced cardiac dysfunction despite persistent cardiac remodeling, possibly because of preserved cell survival, mitochondrial function, and insulin signaling.
Collapse
Affiliation(s)
- Yingmei Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | | | | | | | | | | |
Collapse
|
72
|
Ge W, Li Q, Turdi S, Wang XM, Ren J. Deficiency of insulin-like growth factor 1 reduces vulnerability to chronic alcohol intake-induced cardiomyocyte mechanical dysfunction: role of AMPK. J Cell Mol Med 2012; 15:1737-46. [PMID: 20731752 PMCID: PMC3017727 DOI: 10.1111/j.1582-4934.2010.01158.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Circulating insulin-like growth factor I (IGF-1) levels are closely associated with cardiac performance although the role of IGF-1 in alcoholic cardiac dysfunction is unknown. This study was designed to evaluate the impact of severe liver IGF-1 deficiency (LID) on chronic alcohol-induced cardiomyocyte contractile and intracellular Ca(2+) dysfunction. Adult male C57 and LID mice were placed on a 4% alcohol diet for 15 weeks. Cardiomyocyte contractile and intracellular Ca(2+) properties were evaluated including peak shortening (PS), maximal velocity of shortening/relengthening (±dL/dt), time-to-relengthening (TR(90) ), change in fura-fluorescence intensity (ΔFFI) and intracellular Ca(2+) decay. Levels of apoptotic regulators caspase-3, Bcl-2 and c-Jun NH2-terminal kinase (JNK), the ethanol metabolizing enzyme mitochondrial aldehyde dehydrogenase (ALDH2), as well as the cellular fuel gauge AMP-activated protein kinase (AMPK) were evaluated. Chronic alcohol intake enlarged myocyte cross-sectional area, reduced PS, ± dL/dt and ΔFFI as well as prolonged TR(90) and intracellular Ca(2+) decay, the effect of which was greatly attenuated by IGF-1 deficiency. The beneficial effect of LID against alcoholic cardiac mechanical defect was ablated by IGF-1 replenishment. Alcohol intake increased caspase-3 activity/expression although it down-regulated Bcl-2, ALDH2 and pAMPK without affecting JNK and AMPK. IGF-1 deficiency attenuated alcoholism-induced responses in all these proteins with the exception of Bcl-2. In addition, the AMPK agonist 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside abrogated short-term ethanol incubation-elicited cardiac mechanical dysfunction. Taken together, these data suggested that IGF-1 deficiency may reduce the sensitivity to ethanol-induced myocardial mechanical dysfunction. Our data further depicted a likely role of Caspase-3, ALDH2 and AMPK activation in IGF-1 deficiency induced 'desensitization' of alcoholic cardiomyopathy.
Collapse
Affiliation(s)
- Wei Ge
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | |
Collapse
|
73
|
Chung HW, Lim JH, Kim MY, Shin SJ, Chung S, Choi BS, Kim HW, Kim YS, Park CW, Chang YS. High-fat diet-induced renal cell apoptosis and oxidative stress in spontaneously hypertensive rat are ameliorated by fenofibrate through the PPARα–FoxO3a–PGC-1α pathway. Nephrol Dial Transplant 2011; 27:2213-25. [DOI: 10.1093/ndt/gfr613] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
74
|
Dirkx E, Schwenk RW, Glatz JFC, Luiken JJFP, van Eys GJJM. High fat diet induced diabetic cardiomyopathy. Prostaglandins Leukot Essent Fatty Acids 2011; 85:219-25. [PMID: 21571515 DOI: 10.1016/j.plefa.2011.04.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In response to a chronic high plasma concentration of long-chain fatty acids (FAs), the heart is forced to increase the uptake of FA at the cost of glucose. This switch in metabolic substrate uptake is accompanied by an increased presence of the FA transporter CD36 at the cardiac plasma membrane and over time results in the development of cardiac insulin resistance and ultimately diabetic cardiomyopathy. FA can interact with peroxisome proliferator-activated receptors (PPARs), which induce upregulation of the expression of enzymes necessary for their disposal through mitochondrial β-oxidation, but also stimulate FA uptake. This then leads to a further increase in FA concentration in the cytoplasm of cardiomyocytes. These metabolic changes are supposed to play an important role in the development of cardiomyopathy. Although the onset of this pathology is an increased FA utilization by the heart, the subsequent lipid overload results in an increased production of reactive oxygen species (ROS) and accumulation of lipid intermediates such as diacylglycerols (DAG) and ceramide. These compounds have a profound impact on signaling pathways, in particular insulin signaling. Over time the metabolic changes will introduce structural changes that affect cardiac contractile characteristics. The present mini-review will focus on the lipid-induced changes that link metabolic perturbation, characteristic for type 2 diabetes, with cardiac remodeling and dysfunction.
Collapse
Affiliation(s)
- Ellen Dirkx
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | | | | | | | | |
Collapse
|
75
|
Roe ND, Thomas DP, Ren J. Inhibition of NADPH oxidase alleviates experimental diabetes-induced myocardial contractile dysfunction. Diabetes Obes Metab 2011; 13:465-73. [PMID: 21272185 DOI: 10.1111/j.1463-1326.2011.01369.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AIM O(2) (-) production is implicated in cardiac dysfunction for a number of diseases including diabetes. Activation of the O(2) (-)-producing enzyme NADPH oxidase is seen in diabetes, although its role in diabetic cardiomyopathy is unclear. This study was designed to evaluate the effect of NADPH oxidase inhibition on cardiac function in diabetes. METHODS Experimental diabetes was induced in adult C57 mice using streptozotocin (STZ, 150 mg/kg, i.p.) prior to the administration of the NADPH oxidase inhibitor apocynin (4 mg/kg/day) for 2 weeks. Left ventricular (LV) and myocyte contractile functions were evaluated using echocardiography and edge-detection, respectively. RESULTS STZ elicited hyperglycaemia and reduced body weight gain, which was unaffected by apocynin. STZ significantly reduced fractional shortening, LV wall thickness, peak shortening, maximal velocity and duration of shortening or relengthening, the effects of which - with the exception of wall thickness - were significantly attenuated or ablated by apocynin. Western blot analysis revealed that the effects of comparable Akt phosphorylation, reduced AMPK phosphorylation, downregulation of sarco(endo)plasmic reticulum Ca(2+)-ATPase and lessened phosphorylation of phospholamban in diabetic myocardium were unaffected by apocynin. Both apocynin and the nitric oxide synthase (NOS) inhibitor l-arginine methyl ester (L-NAME) inhibited elevated O(2) (-) production in diabetes without any additive effect between the two, indicating the presence of endothelial nitric oxide synthase (eNOS) uncoupling. However, neither diabetes nor apocynin altered the expression of heat shock protein 90 and eNOS phosphorylation (Ser(1177)). In addition, apocynin mitigated elevated levels of nitrotyrosine and nitric oxide in diabetes. CONCLUSION Taken together, these data indicate the beneficial role of NADPH oxidase inhibition in diabetes-induced myocardial contractile dysfunction.
Collapse
Affiliation(s)
- N D Roe
- Division of Pharmaceutical Sciences & Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, USA
| | | | | |
Collapse
|
76
|
Bhandari U, Kumar V, Khanna N, Panda BP. The effect of high-fat diet-induced obesity on cardiovascular toxicity in Wistar albino rats. Hum Exp Toxicol 2010; 30:1313-21. [PMID: 21075806 DOI: 10.1177/0960327110389499] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The consumption of a high-fat diet (HFD) is considered a risk factor for obesity development. Nonetheless, a causal role of dietary fat has never been documented, because of inadequate animal models. In our study, one group of rats was fed with standard rat diet, while other group of rats fed with high-fat diet for 4 weeks. After 4 weeks of feeding, the hemodynamic parameters in the rats fed with HFD were significantly increased as compared with control rats. Rats fed with HFD had elevated levels of serum lipids, insulin, leptin, glucose and apolipoprotein B. Lipid peroxides and caspase-3 levels were increased while serum apolipoprotein A1 and antioxidant enzymes levels in heart tissues were decreased in HFD-induced obesity in rats as compared to normal healthy control rats fed on standard rat pellet diet. This model of diet-induced obesity will be a useful tool for studying the mechanisms by which dietary fat induces the obesity in humans.
Collapse
Affiliation(s)
- Uma Bhandari
- Department of Pharmacology, Faculty of Pharmacy, Hamdard University, New Delhi, India.
| | | | | | | |
Collapse
|
77
|
Birse RT, Choi J, Reardon K, Rodriguez J, Graham S, Diop S, Ocorr K, Bodmer R, Oldham S. High-fat-diet-induced obesity and heart dysfunction are regulated by the TOR pathway in Drosophila. Cell Metab 2010; 12:533-44. [PMID: 21035763 PMCID: PMC3026640 DOI: 10.1016/j.cmet.2010.09.014] [Citation(s) in RCA: 257] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 07/13/2010] [Accepted: 08/10/2010] [Indexed: 02/08/2023]
Abstract
High-fat-diet (HFD)-induced obesity is a major contributor to diabetes and cardiovascular disease, but the underlying genetic mechanisms are poorly understood. Here, we use Drosophila to test the hypothesis that HFD-induced obesity and associated cardiac complications have early evolutionary origins involving nutrient-sensing signal transduction pathways. We find that HFD-fed flies exhibit increased triglyceride (TG) fat and alterations in insulin/glucose homeostasis, similar to mammalian responses. A HFD also causes cardiac lipid accumulation, reduced cardiac contractility, conduction blocks, and severe structural pathologies, reminiscent of diabetic cardiomyopathies. Remarkably, these metabolic and cardiotoxic phenotypes elicited by HFD are blocked by inhibiting insulin-TOR signaling. Moreover, reducing insulin-TOR activity (by expressing TSC1-2, 4EBP or FOXO), or increasing lipase expression-only within the myocardium-suffices to efficiently alleviate cardiac fat accumulation and dysfunction induced by HFD. We conclude that deregulation of insulin-TOR signaling due to a HFD is responsible for mediating the detrimental effects on metabolism and heart function.
Collapse
Affiliation(s)
- Ryan T Birse
- NASCR Center, Sanford/Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Paulino EC, Ferreira JCB, Bechara LR, Tsutsui JM, Mathias W, Lima FB, Casarini DE, Cicogna AC, Brum PC, Negrão CE. Exercise Training and Caloric Restriction Prevent Reduction in Cardiac Ca
2+
-Handling Protein Profile in Obese Rats. Hypertension 2010; 56:629-35. [DOI: 10.1161/hypertensionaha.110.156141] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Previous studies show that exercise training and caloric restriction improve cardiac function in obesity. However, the molecular mechanisms underlying this effect on cardiac function remain unknown. Thus, we studied the effect of exercise training and/or caloric restriction on cardiac function and Ca
2+
handling protein expression in obese rats. To accomplish this goal, male rats fed with a high-fat and sucrose diet for 25 weeks were randomly assigned into 4 groups: high-fat and sucrose diet, high-fat and sucrose diet and exercise training, caloric restriction, and exercise training and caloric restriction. An additional lean group was studied. The study was conducted for 10 weeks. Cardiac function was evaluated by echocardiography and Ca
2+
handling protein expression by Western blotting. Our results showed that visceral fat mass, circulating leptin, epinephrine, and norepinephrine levels were higher in rats on the high-fat and sucrose diet compared with the lean rats. Cardiac nitrate levels, reduced/oxidized glutathione, left ventricular fractional shortening, and protein expression of phosphorylated Ser
2808
-ryanodine receptor and Thr
17
-phospholamban were lower in rats on the high-fat and sucrose diet compared with lean rats. Exercise training and/or caloric restriction prevented increases in visceral fat mass, circulating leptin, epinephrine, and norepinephrine levels and prevented reduction in cardiac nitrate levels and reduced:oxidized glutathione ratio. Exercise training and/or caloric restriction prevented reduction in left ventricular fractional shortening and in phosphorylation of the Ser
2808
-ryanodine receptor and Thr
17
-phospholamban. These findings show that exercise training and/or caloric restriction prevent cardiac dysfunction in high-fat and sucrose diet rats, which seems to be attributed to decreased circulating neurohormone levels. In addition, this nonpharmacological paradigm prevents a reduction in the Ser
2808
-ryanodine receptor and Thr
17
-phospholamban phosphorylation and redox status.
Collapse
Affiliation(s)
- Ellena Christina Paulino
- From the Heart Institute (InCor) (E.C.P., J.M.T., W.M., C.E.N.) and Institute of Biomedical Sciences (F.B.L.), University of São Paulo Medical School, São Paulo, Brazil; School of Physical Education and Sport (J.C.B.F., L.R.B., P.C.B., C.E.N.), University of São Paulo, São Paulo, Brazil; Department of Medicine (D.E.C.), Division of Nephrology, Federal University of São Paulo, São Paulo, Brazil; Department of Medicine and Cardiology (A.C.C.), School of Medicine, Sao Paulo State University-State
| | - Julio Cesar Batista Ferreira
- From the Heart Institute (InCor) (E.C.P., J.M.T., W.M., C.E.N.) and Institute of Biomedical Sciences (F.B.L.), University of São Paulo Medical School, São Paulo, Brazil; School of Physical Education and Sport (J.C.B.F., L.R.B., P.C.B., C.E.N.), University of São Paulo, São Paulo, Brazil; Department of Medicine (D.E.C.), Division of Nephrology, Federal University of São Paulo, São Paulo, Brazil; Department of Medicine and Cardiology (A.C.C.), School of Medicine, Sao Paulo State University-State
| | - Luiz Roberto Bechara
- From the Heart Institute (InCor) (E.C.P., J.M.T., W.M., C.E.N.) and Institute of Biomedical Sciences (F.B.L.), University of São Paulo Medical School, São Paulo, Brazil; School of Physical Education and Sport (J.C.B.F., L.R.B., P.C.B., C.E.N.), University of São Paulo, São Paulo, Brazil; Department of Medicine (D.E.C.), Division of Nephrology, Federal University of São Paulo, São Paulo, Brazil; Department of Medicine and Cardiology (A.C.C.), School of Medicine, Sao Paulo State University-State
| | - Jeane Mike Tsutsui
- From the Heart Institute (InCor) (E.C.P., J.M.T., W.M., C.E.N.) and Institute of Biomedical Sciences (F.B.L.), University of São Paulo Medical School, São Paulo, Brazil; School of Physical Education and Sport (J.C.B.F., L.R.B., P.C.B., C.E.N.), University of São Paulo, São Paulo, Brazil; Department of Medicine (D.E.C.), Division of Nephrology, Federal University of São Paulo, São Paulo, Brazil; Department of Medicine and Cardiology (A.C.C.), School of Medicine, Sao Paulo State University-State
| | - Wilson Mathias
- From the Heart Institute (InCor) (E.C.P., J.M.T., W.M., C.E.N.) and Institute of Biomedical Sciences (F.B.L.), University of São Paulo Medical School, São Paulo, Brazil; School of Physical Education and Sport (J.C.B.F., L.R.B., P.C.B., C.E.N.), University of São Paulo, São Paulo, Brazil; Department of Medicine (D.E.C.), Division of Nephrology, Federal University of São Paulo, São Paulo, Brazil; Department of Medicine and Cardiology (A.C.C.), School of Medicine, Sao Paulo State University-State
| | - Fabio Bessa Lima
- From the Heart Institute (InCor) (E.C.P., J.M.T., W.M., C.E.N.) and Institute of Biomedical Sciences (F.B.L.), University of São Paulo Medical School, São Paulo, Brazil; School of Physical Education and Sport (J.C.B.F., L.R.B., P.C.B., C.E.N.), University of São Paulo, São Paulo, Brazil; Department of Medicine (D.E.C.), Division of Nephrology, Federal University of São Paulo, São Paulo, Brazil; Department of Medicine and Cardiology (A.C.C.), School of Medicine, Sao Paulo State University-State
| | - Dulce Elena Casarini
- From the Heart Institute (InCor) (E.C.P., J.M.T., W.M., C.E.N.) and Institute of Biomedical Sciences (F.B.L.), University of São Paulo Medical School, São Paulo, Brazil; School of Physical Education and Sport (J.C.B.F., L.R.B., P.C.B., C.E.N.), University of São Paulo, São Paulo, Brazil; Department of Medicine (D.E.C.), Division of Nephrology, Federal University of São Paulo, São Paulo, Brazil; Department of Medicine and Cardiology (A.C.C.), School of Medicine, Sao Paulo State University-State
| | - Antonio Carlos Cicogna
- From the Heart Institute (InCor) (E.C.P., J.M.T., W.M., C.E.N.) and Institute of Biomedical Sciences (F.B.L.), University of São Paulo Medical School, São Paulo, Brazil; School of Physical Education and Sport (J.C.B.F., L.R.B., P.C.B., C.E.N.), University of São Paulo, São Paulo, Brazil; Department of Medicine (D.E.C.), Division of Nephrology, Federal University of São Paulo, São Paulo, Brazil; Department of Medicine and Cardiology (A.C.C.), School of Medicine, Sao Paulo State University-State
| | - Patricia Chakur Brum
- From the Heart Institute (InCor) (E.C.P., J.M.T., W.M., C.E.N.) and Institute of Biomedical Sciences (F.B.L.), University of São Paulo Medical School, São Paulo, Brazil; School of Physical Education and Sport (J.C.B.F., L.R.B., P.C.B., C.E.N.), University of São Paulo, São Paulo, Brazil; Department of Medicine (D.E.C.), Division of Nephrology, Federal University of São Paulo, São Paulo, Brazil; Department of Medicine and Cardiology (A.C.C.), School of Medicine, Sao Paulo State University-State
| | - Carlos Eduardo Negrão
- From the Heart Institute (InCor) (E.C.P., J.M.T., W.M., C.E.N.) and Institute of Biomedical Sciences (F.B.L.), University of São Paulo Medical School, São Paulo, Brazil; School of Physical Education and Sport (J.C.B.F., L.R.B., P.C.B., C.E.N.), University of São Paulo, São Paulo, Brazil; Department of Medicine (D.E.C.), Division of Nephrology, Federal University of São Paulo, São Paulo, Brazil; Department of Medicine and Cardiology (A.C.C.), School of Medicine, Sao Paulo State University-State
| |
Collapse
|
79
|
Christopher BA, Huang HM, Berthiaume JM, McElfresh TA, Chen X, Croniger CM, Muzic RF, Chandler MP. Myocardial insulin resistance induced by high fat feeding in heart failure is associated with preserved contractile function. Am J Physiol Heart Circ Physiol 2010; 299:H1917-27. [PMID: 20852054 DOI: 10.1152/ajpheart.00687.2010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Previous studies have reported that high fat feeding in mild to moderate heart failure (HF) results in the preservation of contractile function. Recent evidence has suggested that preventing the switch from fatty acid to glucose metabolism in HF may ameliorate dysfunction, and insulin resistance is one potential mechanism for regulating substrate utilization. This study was designed to determine whether peripheral and myocardial insulin resistance exists with HF and/or a high-fat diet and whether myocardial insulin signaling was altered accordingly. Rats underwent coronary artery ligation (HF) or sham surgery and were randomized to normal chow (NC; 14% kcal from fat) or a high-fat diet (SAT; 60% kcal from fat) for 8 wk. HF + SAT animals showed preserved systolic (+dP/dt and stroke work) and diastolic (-dP/dt and time constant of relaxation) function compared with HF + NC animals. Glucose tolerance tests revealed peripheral insulin resistance in sham + SAT, HF + NC, and HF + SAT animals compared with sham + NC animals. PET imaging confirmed myocardial insulin resistance only in HF + SAT animals, with an uptake ratio of 2.3 ± 0.3 versus 4.6 ± 0.7, 4.3 ± 0.4, and 4.2 ± 0.6 in sham + NC, sham + SAT, and HF + NC animals, respectively; the myocardial glucose utilization rate was similarly decreased in HF + SAT animals only. Western blot analysis of insulin signaling protein expression was indicative of cardiac insulin resistance in HF + SAT animals. Specifically, alterations in Akt and glycogen synthase kinase-3β protein expression in HF + SAT animals compared with HF + NC animals may be involved in mediating myocardial insulin resistance. In conclusion, HF animals fed a high-saturated fat exhibited preserved myocardial contractile function, peripheral and myocardial insulin resistance, decreased myocardial glucose utilization rates, and alterations in cardiac insulin signaling. These results suggest that myocardial insulin resistance may serve a cardioprotective function with high fat feeding in mild to moderate HF.
Collapse
Affiliation(s)
- Bridgette A Christopher
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106-4970, USA
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Berthiaume JM, Bray MS, McElfresh TA, Chen X, Azam S, Young ME, Hoit BD, Chandler MP. The myocardial contractile response to physiological stress improves with high saturated fat feeding in heart failure. Am J Physiol Heart Circ Physiol 2010; 299:H410-21. [PMID: 20511406 DOI: 10.1152/ajpheart.00270.2010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Impaired myocardial contractile function is a hallmark of heart failure (HF), which may present under resting conditions and/or during physiological stress. Previous studies have reported that high fat feeding in mild to moderate HF/left ventricular (LV) dysfunction is associated with improved contractile function at baseline. The goal of this study was to determine whether myocardial function is compromised in response to physiological stress and to evaluate the global gene expression profile of rats fed high dietary fat after infarction. Male Wistar rats underwent ligation or sham surgery and were fed normal chow (NC; 10% kcal fat; Sham + NC and HF + NC groups) or high-fat chow (SAT; 60% kcal saturated fat; Sham + SAT and HF + SAT groups) for 8 wk. Myocardial contractile function was assessed using a Millar pressure-volume conductance catheter at baseline and during inferior vena caval occlusions and dobutamine stress. Steady-state indexes of systolic function, LV +dP/dt(max), stroke work, and maximal power were increased in the HF + SAT group versus the HF + NC group and reduced in the HF + NC group versus the Sham + NC group. Preload recruitable measures of contractility were decreased in HF + NC group but not in the HF + SAT group. beta-Adrenergic responsiveness [change in LV +dP/dt(max) and change in cardiac output with dobutamine (0-10 microg x kg(-1) x min(-1))] was reduced in HF, but high fat feeding did not further impact the contractile reserve in HF. The contractile reserve was reduced by the high-fat diet in the Sham + SAT group. Microarray gene expression analysis revealed that the majority of significantly altered pathways identified contained multiple gene targets correspond to cell signaling pathways and energy metabolism. These findings suggest that high saturated fat improves myocardial function at rest and during physiological stress in infarcted hearts but may negatively impact the contractile reserve under nonpathological conditions. Furthermore, high fat feeding-induced alterations in gene expression related to energy metabolism and specific signaling pathways revealed promising targets through which high saturated fat potentially mediates cardioprotection in mild to moderate HF/LV dysfunction.
Collapse
Affiliation(s)
- Jessica M Berthiaume
- Dept. of Physiology and Biophysics, School of Medicine E521, Case Western Reserve Univ., 10900 Euclid Ave., Cleveland, OH 44106-4970, USA
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Conraads VM, Vrints CJ, Rodrigus IE, Hoymans VY, Van Craenenbroeck EM, Bosmans J, Claeys MJ, Van Herck P, Linke A, Schuler G, Adams V. Depressed expression of MuRF1 and MAFbx in areas remote of recent myocardial infarction: a mechanism contributing to myocardial remodeling? Basic Res Cardiol 2009; 105:219-26. [PMID: 19859778 DOI: 10.1007/s00395-009-0068-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 09/10/2009] [Accepted: 09/16/2009] [Indexed: 11/26/2022]
Abstract
Ventricular remodeling following myocardial infarction (MI) includes myocardial hypertrophy, a process requiring increased protein synthesis and sarcomere assembly. The anti-hypertrophic effect of MuRF1/MafBx, both muscle-specific E3-ubiquitin ligases, has been demonstrated in animal experiments and in cultured cardiomyocytes. We assessed MuRF1/MAFbx expression in myocardium remote of recently (<2 weeks) infarcted regions (MI), compared with patients undergoing coronary artery bypass surgery, with normal systolic function and without previous infarction (control or Con). Left ventricular myocardial biopsies were obtained from the contralateral normal zone in MI (n = 14) patients and from the Con (n = 12) group. MuRF-1/MAFbx expression was assessed using RT-PCR and Western blot (WB). In addition, the myocardial expression of TNF-alpha was measured (RT-PCR) and troponin I, beta-myosin and phosphorylated Akt/Akt (pAkt/Akt) were quantified (WB). MuRF1 and MAFbx expression (mRNA and protein level) were significantly reduced in biopsies from MI patients. TNF-alpha was significantly higher in MI and exhibited a negative correlation with MuRF1 and MAFbx. The expression of troponin I and cardiomyocyte size were increased in MI in comparison to Con, whereas beta-myosin expression was not altered. When compared with Con, pAkt/Akt was elevated. The results of the present study suggest that the atrogenes MuRF1/MAFbx are involved in regulating the hypertrophic response, characteristic of the early post-infarction remodeling phase. Reduced expression of MuRF1 and MAFbx in the myocardium might permit hypertrophy, which is supported by the elevation of troponin I. A regulatory role of TNF-alpha needs to be confirmed in further experiments.
Collapse
Affiliation(s)
- Viviane M Conraads
- Department of Cardiology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Majane OHI, Vengethasamy L, du Toit EF, Makaula S, Woodiwiss AJ, Norton GR. Dietary-induced obesity hastens the progression from concentric cardiac hypertrophy to pump dysfunction in spontaneously hypertensive rats. Hypertension 2009; 54:1376-83. [PMID: 19841294 DOI: 10.1161/hypertensionaha.108.127514] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We explored whether dietary-induced obesity hastens the transition from concentric left ventricular (LV) hypertrophy to pump dysfunction in spontaneously hypertensive rats (SHRs) and the mechanisms thereof. After feeding rats a diet for 4 to 5 months, obesity was induced in SHRs and Wistar-Kyoto (WKY) control rats. Obesity was not associated with abnormal blood glucose control (glycosylated hemoglobin) or with increases in systolic blood pressure. However, in SHRs, but not in WKY rats, obesity was associated with a reduced LV chamber systolic function, as determined by echocardiography, and in isolated perfused heart studies. A marked increase in LV end diastolic diameter and a right shift in the LV diastolic pressure-volume relation were noted in obese SHRs but not in obese WKY rats. Moreover, LV intrinsic myocardial systolic function, as determined from the slope of the linearized LV systolic stress-strain relationship (LV myocardial end systolic elastance), was markedly reduced in obese as compared with lean SHRs, whereas LV myocardial end systolic elastance was maintained in obese WKY rats. Obesity increased LV weight, cardiomyocyte width, cardiomyocyte apoptosis (TUNEL), the activity of myocardial matrix metalloproteinases (zymography), and serum leptin concentrations in SHRs but not in WKY rats. In conclusion, SHRs are susceptible to the adverse effects of dietary-induced obesity on the heart, an effect that hastens the progression from concentric LV hypertrophy to pump dysfunction independent of blood pressure changes or alterations in glycosylated hemoglobin. This effect may be mediated through a proclivity of SHRs to developing both obesity-induced effects on cardiomyocyte apoptosis and activation of myocardial collagenases through leptin resistance and obesity-induced hypertrophy.
Collapse
Affiliation(s)
- Olebogeng H I Majane
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, University of the Witwatersrand Medical School, 7 York Rd, Parktown, 2193 Johannesburg, South Africa
| | | | | | | | | | | |
Collapse
|
83
|
Chess DJ, Khairallah RJ, O'Shea KM, Xu W, Stanley WC. A high-fat diet increases adiposity but maintains mitochondrial oxidative enzymes without affecting development of heart failure with pressure overload. Am J Physiol Heart Circ Physiol 2009; 297:H1585-93. [PMID: 19767529 DOI: 10.1152/ajpheart.00599.2009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A high-fat diet can increase adiposity, leptin secretion, and plasma fatty acid concentration. In hypertension, this scenario may accelerate cardiac hypertrophy and development of heart failure but could be protective by activating peroxisome proliferator-activated receptors and expression of mitochondrial oxidative enzymes. We assessed the effects of a high-fat diet on the development of left ventricular hypertrophy, remodeling, contractile dysfunction, and the activity of mitochondrial oxidative enzymes. Mice (n = 10-12/group) underwent transverse aortic constriction (TAC) or sham surgery and were fed either a low-fat diet (10% of energy intake as fat) or a high-fat diet (45% fat) for 6 wk. The high-fat diet increased adipose tissue mass and plasma leptin and insulin. Left ventricular mass and chamber size were unaffected by diet in sham animals. TAC increased left ventricular mass (approximately 70%) and end-systolic and end-diastolic areas (approximately 100% and approximately 45%, respectively) to the same extent in both dietary groups. The high-fat diet increased plasma free fatty acid concentration and prevented the decline in the activity of the mitochondrial enzymes medium chain acyl-coenzyme A dehydrogenase (MCAD) and citrate synthase that was observed with TAC animals on a low-fat diet. In conclusion, a high-fat diet did not worsen cardiac hypertrophy or left ventricular chamber enlargement despite increases in fat mass and insulin and leptin concentrations. Furthermore, a high-fat diet preserved MCAD and citrate synthase activities during pressure overload, suggesting that it may help maintain mitochondrial oxidative capacity in failing myocardium.
Collapse
Affiliation(s)
- David J Chess
- Division of Cardiology, Department of Medicine, University of Maryland, Baltimore, Maryland, USA
| | | | | | | | | |
Collapse
|
84
|
Su H, Wang X. The ubiquitin-proteasome system in cardiac proteinopathy: a quality control perspective. Cardiovasc Res 2009; 85:253-62. [PMID: 19696071 DOI: 10.1093/cvr/cvp287] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Protein quality control (PQC) depends on elegant collaboration between molecular chaperones and targeted proteolysis in the cell. The latter is primarily carried out by the ubiquitin-proteasome system, but recent advances in this area of research suggest a supplementary role for the autophagy-lysosomal pathway in PQC-related proteolysis. The (patho)physiological significance of PQC in the heart is best illustrated in cardiac proteinopathy, which belongs to a family of cardiac diseases caused by expression of aggregation-prone proteins in cardiomyocytes. Cardiac proteasome functional insufficiency (PFI) is best studied in desmin-related cardiomyopathy, a bona fide cardiac proteinopathy. Emerging evidence suggests that many common forms of cardiomyopathy may belong to proteinopathy. This review focuses on examining current evidence, as it relates to the hypothesis that PFI impairs PQC in cardiomyocytes and contributes to the progression of cardiac proteinopathies to heart failure.
Collapse
Affiliation(s)
- Huabo Su
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Lee Medical Building, 414 E Clark Street, Vermillion, SD 57069, USA
| | | |
Collapse
|
85
|
Abstract
Activation of the ubiquitin-proteasome system has been described in different models of cardiac hypertrophy. Cardiac cell growth in response to pressure or volume overload, as well as physiological adaptive hypertrophy, is accompanied by an increase in protein ubiquitination, proteasome subunit expression, and proteasome activity. Importantly, an inhibition of proteasome activity prevents and reverses cardiac hypertrophy and remodelling in vivo. The focus of this review is to provide an update about the mechanisms by which proteasome inhibitors affect cardiac cell growth in adaptive and maladaptive models of cardiac hypertrophy. In the first part, we summarize how the proteasome affects both proteolysis and protein synthesis in a context of cardiac cell growth. In the second part, we show how proteasome inhibition can prevent and reverse cardiac hypertrophy and remodelling in response to different conditions of overload.
Collapse
Affiliation(s)
- Nadia Hedhli
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, 185 South Orange Avenue, MSB G-609, Newark, NJ 07103, USA
| | | |
Collapse
|
86
|
Aldehyde dehydrogenase-2 (ALDH2) ameliorates chronic alcohol ingestion-induced myocardial insulin resistance and endoplasmic reticulum stress. J Mol Cell Cardiol 2009; 47:247-55. [PMID: 19344727 DOI: 10.1016/j.yjmcc.2009.03.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 03/23/2009] [Accepted: 03/24/2009] [Indexed: 12/23/2022]
Abstract
Chronic alcohol intake leads to insulin resistance and alcoholic cardiomyopathy, which appears to be a result of the complex interaction between genes and environment. This study was designed to examine the impact of aldehyde dehydrogenase-2 (ALDH2) transgenic overexpression on alcohol-induced insulin resistance and myocardial injury. ALDH2 transgenic mice were produced using chicken beta-actin promoter. Wild-type FVB and ALDH2 mice were fed a 4% alcohol or control diet for 12 weeks. Cell shortening was evaluated using an edge-detection system. Western blot analysis was used to assess insulin signaling at the levels of receptor, IRS, Akt, GSK-3beta, the transcription factors Foxo3a, c-Jun amino-terminal kinase (JNK) and c-Jun. Chronic alcohol intake led to glucose intolerance, reduced glucose uptake, cardiac hypertrophy and reduced cell shortening, the effects of which were alleviated by ALDH2. ALDH2 significantly attenuated alcohol-induced decrease in the insulin-stimulated tyrosine phosphorylation and increase in serine phosphorylation of IRS. Phosphorylation of Akt, GSK-3beta and Foxo3a was reduced following alcohol intake, the effect of which was abrogated by ALDH2. Levels of JNK, c-Jun and their phosphorylation were elevated following chronic alcohol intake, which were obliterated by ALDH2. Transfection of H9C2 myoblast cells with Foxo3a adenovirus mimicked acetaldehyde-induced JNK activation and glucose uptake defect whereas the dominant negative Foxo3a ablated acetaldehyde-elicited insulin insensitivity. In addition, ALDH2 reversed alcohol-induced myocardial ER stress. These data revealed that ALDH2 overexpression antagonizes chronic alcohol intake-induced cardiac insulin insensitivity and contractile defect, possibly via improvement of insulin signaling at the levels of insulin receptor, IRS, Akt, Foxo3a and JNK.
Collapse
|