51
|
Examining Bone, Muscle and Fat in Middle-Aged Long-Term Endurance Runners: A Cross-Sectional Study. J Clin Med 2020; 9:jcm9020522. [PMID: 32075157 PMCID: PMC7073848 DOI: 10.3390/jcm9020522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 11/18/2022] Open
Abstract
Aerobic exercise training has many known cardiovascular benefits that may promote healthy aging. It is not known if long-term aerobic exercise training is also associated with structural benefits (e.g., lower fat mass, higher areal bone mineral density (BMD) and greater muscle mass). We evaluated these parameters in middle-aged long-term endurance runners compared to sex-, age-, height-, and weight-matched non-running controls. Total and regional lean and fat mass and areal BMD were assessed by dual-energy X-ray absorptiometry. Sagittal magnetic resonance images captured the cross-sectional area and thickness of the lumbar multifidus. Runners (n = 10; all male) had a mean (standard deviation; SD) age of 49 (4) years, height of 178.9 (4.9) cm, weight of 67.8 (5.8) kg, body mass index (BMI) of 21.4 (1.4) kg/m2 and had been running 82.6 (27.9) km/week for 23 (13) years. Controls (n = 9) had a mean (SD) age of 51 (5) years, height of 176.0 (5.1) cm, weight of 72.8 (7.1) kg, and BMI of 23.7 (2.1) kg/m2. BMI was greater in controls (p = 0.010). When compared to controls on average, runners had a 10 percentage-point greater total body lean mass than controls (p = 0.001) and 14% greater trunk lean mass (p = 0.010), as well as less total body (8.6 kg; p < 0.001), arm (58%; p = 0.002), leg (52%; p < 0.001), trunk (73%; p < 0.001), android (91%; p < 0.001), and gynoid fat mass (64%; p < 0.001). No differences were observed between groups for BMD outcomes or multifidus size. These results underscore the benefits of endurance running to body composition that carry over to middle-age.
Collapse
|
52
|
Wang ZM, Leng X, Messi ML, Choi SJ, Marsh AP, Nicklas B, Delbono O. Relationship of Physical Function to Single Muscle Fiber Contractility in Older Adults: Effects of Resistance Training With and Without Caloric Restriction. J Gerontol A Biol Sci Med Sci 2019; 74:412-419. [PMID: 29546320 DOI: 10.1093/gerona/gly047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Previous studies support beneficial effects of both resistance exercise training (RT) and caloric restriction (CR) on skeletal muscle strength and physical performance. The goal of this study was to determine the effects of adding CR to RT on single-muscle fiber contractility responses to RT in older overweight and obese adults. METHODS We analyzed contractile properties in 1,253 single myofiber from muscle biopsies of the vastus lateralis, as well as physical performance and thigh muscle volume, in 31 older (65-80 years), overweight or obese (body mass index = 27-35 kg/m2) men (n = 19) and women (n = 12) who were randomly assigned to a standardized, progressive RT intervention with CR (RT+CR; n = 15) or without CR (RT; n = 16) for 5 months. RESULTS Both interventions evoked an increase in force normalized to cross-sectional area (CSA), in type-I and type-II fibers and knee extensor quality. However, these improvements were not different between intervention groups. In the RT group, changes in total thigh fat volume inversely correlated with changes in type-II fiber force (r = -.691; p = .019). Within the RT+CR group, changes in gait speed correlated positively with changes in type-I fiber CSA (r = .561; p = .030). In addition, increases in type-I normalized fiber force were related to decreases in thigh intermuscular fat volume (r = -0.539; p = .038). CONCLUSION Single muscle fiber force and knee extensor quality improve with RT and RT+CR; however, CR does not enhance improvements in single muscle fiber contractility or whole muscle in response to RT in older overweight and obese men and women.
Collapse
Affiliation(s)
- Zhong-Min Wang
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, North Carolina
- J Paul Sticht Center for Healthy Aging and Alzheimer's Prevention, North Carolina
| | - Xiaoyan Leng
- Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - María Laura Messi
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, North Carolina
- J Paul Sticht Center for Healthy Aging and Alzheimer's Prevention, North Carolina
| | - Seung J Choi
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, North Carolina
| | - Anthony P Marsh
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, North Carolina
| | - Barbara Nicklas
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, North Carolina
- J Paul Sticht Center for Healthy Aging and Alzheimer's Prevention, North Carolina
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, North Carolina
| | - Osvaldo Delbono
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, North Carolina
- J Paul Sticht Center for Healthy Aging and Alzheimer's Prevention, North Carolina
- The Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
53
|
Chambers TL, Burnett TR, Raue U, Lee GA, Finch WH, Graham BM, Trappe TA, Trappe S. Skeletal muscle size, function, and adiposity with lifelong aerobic exercise. J Appl Physiol (1985) 2019; 128:368-378. [PMID: 31829806 DOI: 10.1152/japplphysiol.00426.2019] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We examined the influence of lifelong aerobic exercise on skeletal muscle size, function, and adiposity. Young exercisers [YE; n = 20, 10 women (W), 25 ± 1 yr], lifelong exercisers (LLE; n = 28, 7 W, 74 ± 2 yr), and old healthy nonexercisers (OH; n = 20, 10 W, 75 ± 1 yr) were studied. On average, LLE exercised 5 days/wk for 7 h/wk over the past 52 ± 1 yr. The LLE men were subdivided by exercise intensity [Performance (LLE-P), n = 14; Fitness (LLE-F), n = 7]. Upper and lower leg muscle size and adiposity [intermuscular adipose tissue (IMAT)] were determined via MRI, and quadriceps isotonic and isometric function was assessed. For the quadriceps, aging decreased muscle size, isotonic and isometric strength, contraction velocity (men only), and power (P < 0.05). In women, LLE did not influence muscle size or function. In men, LLE attenuated the decline in muscle size and isometric strength by ~50% (P < 0.05). LLE did not influence other aspects of muscle function, nor did training intensity influence muscle size or function. For the triceps surae, aging decreased muscle size only in the women, whereas LLE (both sexes) and training intensity (LLE men) did not influence muscle size. In both sexes, aging increased thigh and calf IMAT by ~130% (P < 0.05), whereas LLE attenuated the thigh increase by ~50% (P < 0.05). In the LLE men, higher training intensity decreased thigh and calf IMAT by ~30% (P < 0.05). In summary, aging and lifelong aerobic exercise influenced muscle size, function, and adipose tissue infiltration in a sex- and muscle-specific fashion. Higher training intensity throughout the life span provided greater protection against adipose tissue infiltration into muscle.NEW & NOTEWORTHY This is the first study to examine skeletal muscle size, function, and adiposity in women and men in their eighth decade of life that have engaged in lifelong aerobic exercise. The findings reveal sex and upper and lower leg muscle group-specific benefits related to skeletal muscle size, function, and adiposity and that exercise intensity influences intermuscular adiposity. This emerging cohort will further our understanding of the health implications of maintaining exercise throughout the life span.
Collapse
Affiliation(s)
- Toby L Chambers
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Timothy R Burnett
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Ulrika Raue
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Gary A Lee
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - W Holmes Finch
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Bruce M Graham
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Todd A Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Scott Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| |
Collapse
|
54
|
Gries KJ, Minchev K, Raue U, Grosicki GJ, Begue G, Finch WH, Graham B, Trappe TA, Trappe S. Single-muscle fiber contractile properties in lifelong aerobic exercising women. J Appl Physiol (1985) 2019; 127:1710-1719. [PMID: 31670601 PMCID: PMC6962607 DOI: 10.1152/japplphysiol.00459.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 01/05/2023] Open
Abstract
The purpose of this study was to examine the effects of lifelong aerobic exercise on single-muscle fiber performance in trained women (LLE; n = 7, 72 ± 2 yr) by comparing them to old healthy nonexercisers (OH; n = 10, 75 ± 1 yr) and young exercisers (YE; n = 10, 25 ± 1 yr). On average, LLE had exercised ~5 days/wk for ~7 h/wk over the past 48 ± 2 yr. Each subject had a vastus lateralis muscle biopsy to examine myosin heavy chain (MHC) I and IIa single-muscle fiber size and function (strength, speed, power). MHC I fiber size was similar across all three cohorts (YE = 5,178 ± 157, LLE = 4,983 ± 184, OH = 4,902 ± 159 µm2). MHC IIa fiber size decreased (P < 0.05) 36% with aging (YE = 4,719 ± 164 vs. OH = 3,031 ± 153 µm2), with LLE showing a similar 31% reduction (3,253 ± 189 µm2). LLE had 17% more powerful (P < 0.05) MHC I fibers and offset the 18% decline in MHC IIa fiber power observed with aging (P < 0.05). The LLE contractile power was driven by greater strength (+11%, P = 0.056) in MHC I fibers and elevated contractile speed (+12%, P < 0.05) in MHC IIa fibers. These data indicate that lifelong exercise did not benefit MHC I or IIa muscle fiber size. However, LLE had contractile function adaptations that enhanced MHC I fiber power and preserved MHC IIa fiber power through different contractile mechanisms (strength vs. speed). The single-muscle fiber contractile properties observed with lifelong aerobic exercise are unique and provide new insights into aging skeletal muscle plasticity in women at the myocellular level.NEW & NOTEWORTHY This is the first investigation to examine the effects of lifelong exercise on single-muscle fiber physiology in women. Nearly 50 yr of moderate to vigorous aerobic exercise training resulted in enhanced slow-twitch fiber power primarily by increasing force production, whereas fast-twitch fiber power was preserved primarily by increasing contractile speed. These unique muscle fiber power profiles helped offset the effects of fast-twitch fiber atrophy and highlight the benefits of lifelong aerobic exercise for myocellular health.
Collapse
Affiliation(s)
- Kevin J Gries
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Kiril Minchev
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Ulrika Raue
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | | | - Gwénaëlle Begue
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - W Holmes Finch
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Bruce Graham
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Todd A Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Scott Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| |
Collapse
|
55
|
Cui X, Zhang Y, Wang Z, Yu J, Kong Z, Ružić L. High-intensity interval training changes the expression of muscle RING-finger protein-1 and muscle atrophy F-box proteins and proteins involved in the mechanistic target of rapamycin pathway and autophagy in rat skeletal muscle. Exp Physiol 2019; 104:1505-1517. [PMID: 31357248 DOI: 10.1113/ep087601] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/17/2019] [Indexed: 12/18/2022]
Abstract
NEW FINDINGS What is the central question of this study? What are the adaptations of protein synthesis and degradation that occur in skeletal muscle in response to high-intensity interval training (HIIT), and what are the magnitudes of the changes in response to HIIT, compared to moderate-intensity continuous training (MICT), and the mechanisms underlying these changes? What is the main finding and its importance? HIIT is more effective than MICT in altering the expression of muscle RING-finger protein-1 and muscle atrophy F-box, and enhancing the autophagic flux in rat soleus muscle. In addition, HIIT could activate the mechanistic target of rapamycin pathway. These findings suggest that HIIT might be an effective exercise strategy for health promotion in skeletal muscle. ABSTRACT This study aimed to investigate the impact of high-intensity interval training (HIIT) on the proteins involved in protein synthesis, the ubiquitin-proteasome system (UPS) and autophagy in skeletal muscle of middle-aged rats. Nine-month-old male Wistar rats (n = 56) were randomly divided into three groups: a control (C) group, a moderate-intensity continuous training (MICT) group and a HIIT group. Rats in the training groups ran on treadmills 5 days per week for 8 weeks. The MICT group ran for 50 min at 60% V ̇ O 2 max , while the HIIT group ran for 3 min at 80% of V ̇ O 2 max six times separated by 3-min periods at 40% V ̇ O 2 max . Aerobic endurance, number of autophagosomes and expression of proteins involved in protein synthesis and degradation in the soleus muscle were measured at three time points: before training, after 4 weeks and after 8 weeks of training. Compared to the C group, HIIT and MICT increased the expression of phosphorylated mechanistic target of rapamycin (mTOR) after 8 weeks (P < 0.05 and P < 0.01, respectively). HIIT increased the expression of muscle RING-finger protein-1 (MuRF-1) after 4 weeks (P < 0.01), and decreased its expression after 8 weeks (P < 0.01). Both HIIT and MICT decreased the expression of muscle atrophy F-box (MAFbx) after 4 weeks (P < 0.05). HIIT improved the expression of microtubule-associated protein 1A/1B-light chain 3 (LC3)-II (P < 0.05), and decreased the P62 content (P < 0.01) after 4 weeks. The LC3II/LC3I ratio was increased after 8 weeks (P < 0.01). This study demonstrated that HIIT could activate the mTOR pathway, alter the expression of MuRF-1 and MAFbx proteins, and enhance autophagic flux in soleus muscle of middle-aged rats.
Collapse
Affiliation(s)
- Xinwen Cui
- China Institute of Sport Science, Dongcheng District, Beijing, China.,Beijing Sport University, Haidian District, Beijing, China
| | - Yimin Zhang
- Beijing Sport University, Haidian District, Beijing, China
| | - Zan Wang
- Beijing Sport University, Haidian District, Beijing, China
| | - Jingjing Yu
- Beijing Sport University, Haidian District, Beijing, China
| | - Zhenxing Kong
- Beijing Sport University, Haidian District, Beijing, China
| | - Lana Ružić
- Faculty of Kinesiology, University of Zagreb, Department of Sport and Exercise Medicine, Zagreb, Croatia
| |
Collapse
|
56
|
Jeon Y, Choi J, Kim HJ, Lee H, Lim JY, Choi SJ. Sex- and fiber-type-related contractile properties in human single muscle fiber. J Exerc Rehabil 2019; 15:537-545. [PMID: 31523674 PMCID: PMC6732543 DOI: 10.12965/jer.1938336.168] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 07/09/2019] [Indexed: 11/22/2022] Open
Abstract
This study aimed to examine the distribution and contractile properties of single muscle fiber sex/myosin heavy chain (MHC) type-related differences and to evaluate the correlation of cross-sectional area (CSA) and specific force (SF) in a single muscle fiber. Six young men and six young women were participated in this study. Muscle sample was obtained from vastus lateralis muscle. To examine potential gender differences within each fiber contractile properties (CSA, maximal isometric force, SF, maximal shortening velocity) and relationship between CSA and SF of single fiber using Pearson correlation. After mechanical measurements, single muscle fiber determined MHC isoforms using silver stain. MHC isoform composition did not differ by sex (chi-square=6.978, P=0.073). There were sex-related differences in CSA and maximal isometric force (P<0.05), but no fiber type-related differences (P>0.05). Related to SF and maximal shortening velocity, there were no sex-related differences only fiber type-related differences (P<0.05). However, there were differences in SF between single fiber types in men but not in women. A negative correlation was found between CSA and SF in both men and women (P<0.05). It is suggested that there might be different mechanical properties of cross-bridges according to sex.
Collapse
Affiliation(s)
- Yunah Jeon
- Division of Sports and Health Science, Kyungsung University, Busan, Korea.,Mechanical & Molecular Myology Lab, Department of Rehabilitation Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Junghwa Choi
- Division of Sports and Health Science, Kyungsung University, Busan, Korea
| | - Hee Jaeng Kim
- Division of Sports and Health Science, Kyungsung University, Busan, Korea
| | - Hojun Lee
- Division of Sports and Health Science, Kyungsung University, Busan, Korea.,Mechanical & Molecular Myology Lab, Department of Rehabilitation Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Jae-Young Lim
- Mechanical & Molecular Myology Lab, Department of Rehabilitation Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Seung-Jun Choi
- Division of Sports and Health Science, Kyungsung University, Busan, Korea
| |
Collapse
|
57
|
Knuiman P, van Loon LJC, Wouters J, Hopman M, Mensink M. Protein supplementation elicits greater gains in maximal oxygen uptake capacity and stimulates lean mass accretion during prolonged endurance training: a double-blind randomized controlled trial. Am J Clin Nutr 2019; 110:508-518. [PMID: 31240303 DOI: 10.1093/ajcn/nqz093] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/19/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Endurance training induces numerous cardiovascular and skeletal muscle adaptations, thereby increasing maximal oxygen uptake capacity (VO2max). Whether protein supplementation enhances these adaptations remains unclear. OBJECTIVE The present study was designed to determine the impact of protein supplementation on changes in VO2max during prolonged endurance training. METHODS We used a double-blind randomized controlled trial with repeated measures among 44 recreationally active, young males. Subjects performed 3 endurance training sessions per week for 10 wk. Supplements were provided immediately after each exercise session and daily before sleep, providing either protein (PRO group; n = 19; 21.5 ± 0.4 y) or an isocaloric amount of carbohydrate as control (CON group; n = 21; 22.5 ± 0.5 y). The VO2max, simulated 10-km time trial performance, and body composition (dual-energy X-ray absorptiometry) were measured before and after 5 and 10 wk of endurance training. Fasting skeletal muscle tissue samples were taken before and after 5 and 10 wk to measure skeletal muscle oxidative capacity, and fasting blood samples were taken every 2 wk to measure hematological factors. RESULTS VO2max increased to a greater extent in the PRO group than in the CON group after 5 wk (from 49.9 ± 0.8 to 54.9 ± 1.1 vs 50.8 ± 0.9 to 53.0 ± 1.1 mL · kg-1 · min-1; P < 0.05) and 10 wk (from 49.9 ± 0.8 to 55.4 ± 0.9 vs 50.8 ± 0.9 to 53.9 ± 1.2 mL · kg-1 · min-1; P < 0.05). Lean body mass increased in the PRO group whereas lean body mass in the CON group remained stable during the first 5 wk (1.5 ± 0.2 vs 0.1 ± 0.3 kg; P < 0.05) and after 10 wk (1.5 ± 0.3 vs 0.4 ± 0.3 kg; P < 0.05). Throughout the intervention, fat mass reduced significantly in the PRO group and there were no changes in the CON group after 5 wk (-0.6 ± 0.2 vs -0.1 ± 0.2 kg; P > 0.05) and 10 wk (-1.2 ± 0.4 vs -0.2 ± 0.2 kg; P < 0.05). CONCLUSIONS Protein supplementation elicited greater gains in VO2max and stimulated lean mass accretion but did not improve skeletal muscle oxidative capacity and endurance performance during 10 wk of endurance training in healthy, young males. This trial was registered at clinicaltrials.gov as NCT03462381.
Collapse
Affiliation(s)
- Pim Knuiman
- Division of Human Nutrition, Wageningen University and Research, Wageningen, Netherlands
| | - Luc J C van Loon
- Department of Human Biology, Faculty of Health, Medicine, and Life Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Jeroen Wouters
- Sportcentre Papendal, Centre for Sporting Excellence and Education, Arnhem, Netherlands
| | - Maria Hopman
- Division of Human Nutrition, Wageningen University and Research, Wageningen, Netherlands.,Department of Physiology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Marco Mensink
- Division of Human Nutrition, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
58
|
Musci RV, Hamilton KL, Linden MA. Exercise-Induced Mitohormesis for the Maintenance of Skeletal Muscle and Healthspan Extension. Sports (Basel) 2019; 7:E170. [PMID: 31336753 PMCID: PMC6681340 DOI: 10.3390/sports7070170] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/07/2019] [Accepted: 07/09/2019] [Indexed: 12/25/2022] Open
Abstract
Oxidative damage is one mechanism linking aging with chronic diseases including the progressive loss of skeletal muscle mass and function called sarcopenia. Thus, mitigating oxidative damage is a potential avenue to prevent or delay the onset of chronic disease and/or extend healthspan. Mitochondrial hormesis (mitohormesis) occurs when acute exposure to stress stimulates adaptive mitochondrial responses that improve mitochondrial function and resistance to stress. For example, an acute oxidative stress via mitochondrial superoxide production stimulates the activation of endogenous antioxidant gene transcription regulated by the redox sensitive transcription factor Nrf2, resulting in an adaptive hormetic response. In addition, acute stresses such as aerobic exercise stimulate the expansion of skeletal muscle mitochondria (i.e., mitochondrial biogenesis), constituting a mitohormetic response that protects from sarcopenia through a variety of mechanisms. This review summarized the effects of age-related declines in mitochondrial and redox homeostasis on skeletal muscle protein homeostasis and highlights the mitohormetic mechanisms by which aerobic exercise mitigates these age-related declines and maintains function. We discussed the potential efficacy of targeting the Nrf2 signaling pathway, which partially mediates adaptation to aerobic exercise, to restore mitochondrial and skeletal muscle function. Finally, we highlight knowledge gaps related to improving redox signaling and make recommendations for future research.
Collapse
Affiliation(s)
- Robert V Musci
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80523, USA.
| | - Karyn L Hamilton
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80523, USA
| | - Melissa A Linden
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
59
|
Yang LJ, Wu GH, Yang YL, Wu YH, Zhang L, Wang MH, Mo LY, Xue G, Wang CZ, Weng XF. Nutrition, Physical Exercise, and the Prevalence of Sarcopenia in Elderly Residents in Nursing Homes in China. Med Sci Monit 2019; 25:4390-4399. [PMID: 31189870 PMCID: PMC6587647 DOI: 10.12659/msm.914031] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background This study aimed to investigate the factors associated with sarcopenia in elderly residents in three nursing homes in Suzhou City, East China including the association with nutrition and physical exercise. Material/Methods Elderly residents (n=316) from three nursing homes included 112 men and 204 women. The appendicular skeletal muscle index (ASMI), grip strength, and movements were measured to diagnose sarcopenia. The correlation between sarcopenia with age, sex, body mass index (BMI), ASMI, upper arm circumference, calf circumference, muscle content, grip strength, dietary intake, degree and duration of movement were also assessed. Results The prevalence of sarcopenia was 28.8% (30.4% for men and 27.9% for women). Patients with sarcopenia were older compared with controls. Height, BMI, upper arm circumference, calf circumference and arm muscle mass, lower limb muscle mass, limb skeletal muscle index and ASMI, grip strength, and pace of movement were lower than controls. The prevalence of sarcopenia correlated with the intake of meat, fish, eggs, and milk, and duration of weekly aerobic and resistance exercise. Logistic regression analysis showed a positive correlation between the prevalence of sarcopenia and age, and a negative correlation between BMI and consumption of meat, eggs, and milk. Conclusions The prevalence of sarcopenia in elderly residents in three nursing homes in Suzhou City was 28.8%. Increasing age was a risk factor for sarcopenia. Increased BMI and a diet containing meat, eggs, and milk were protective factors. The findings from this study provide support that adequate dietary protein can prevent sarcopenia in the elderly.
Collapse
Affiliation(s)
- Li-Jun Yang
- Department of Geriatric Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China (mainland)
| | - Guan-Hui Wu
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China (mainland)
| | - Yun-Long Yang
- Department of Geriatric Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China (mainland)
| | - Yong-Hua Wu
- Department of Geriatric Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China (mainland)
| | - Li Zhang
- Department of Geriatric Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China (mainland)
| | - Min-Hong Wang
- Department of Geriatric Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China (mainland)
| | - Li-Ya Mo
- Department of Geriatric Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China (mainland)
| | - Gang Xue
- Department of Geriatric Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China (mainland)
| | - Chuan-Zhi Wang
- Department of Geriatric Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China (mainland)
| | - Xiao-Fen Weng
- Department of Geriatric Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China (mainland)
| |
Collapse
|
60
|
Wolff CA, Konopka AR, Suer MK, Trappe TA, Kaminsky LA, Harber MP. Increased cardiorespiratory fitness and skeletal muscle size following single-leg knee extension exercise training. J Sports Med Phys Fitness 2019; 59:934-940. [DOI: 10.23736/s0022-4707.18.08590-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
61
|
Brightwell CR, Markofski MM, Moro T, Fry CS, Porter C, Volpi E, Rasmussen BB. Moderate-intensity aerobic exercise improves skeletal muscle quality in older adults. TRANSLATIONAL SPORTS MEDICINE 2019; 2:109-119. [PMID: 31123725 PMCID: PMC6518946 DOI: 10.1002/tsm2.70] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/16/2019] [Accepted: 01/22/2019] [Indexed: 12/12/2022]
Abstract
Sarcopenia, age-associated involuntary loss of muscle and strength, can progress to clinically relevant functional decline. Resistance exercise attenuates muscle and strength loss but may not be feasible for some older adults. Aerobic exercise training (AET) improves cardiopulmonary health; however, effects on protein turnover, muscle mass, and strength are less clear. We aimed to determine whether AET improves basal myofibrillar protein synthesis (MPS) and capillarization, promoting hypertrophy and strength. We hypothesized that AET improves strength with increased MPS and capillarization. Older adults were randomized to non-exercise (NON; n = 11, 71.4 ± 4.18 years) or exercise (EX; n = 12, 73.7 ± 4.05 years). EX completed 24 weeks of AET (walking 3×/week, 45 minutes, 70% heart rate reserve); NON remained sedentary. A stable isotope tracer was infused. MPS and capillarization were analyzed from vastus lateralis muscle biopsies. Strength was measured via isokinetic dynamometry. Lean mass was determined with dual-energy X-ray absorptiometry. Basal MPS increased in EX (+50.7%, P = 0.01) along with capillary density (+66.4%, P = 0.03), peak oxygen consumption (+15.8%, P = 0.01), quadriceps strength (+15.1%, P = 0.01), and muscle quality (peak torque divided by leg lean mass, +15.5%, P = 0.01). Lean mass did not change (P > 0.05). AET increases muscle protein turnover and capillarization in older adults, improving muscle quality.
Collapse
Affiliation(s)
- Camille R. Brightwell
- Department of Nutrition and MetabolismUniversity of Texas Medical BranchGalvestonTexas
- Division of Neuroscience, Cell Biology and AnatomyUniversity of Texas Medical BranchGalvestonTexas
| | | | - Tatiana Moro
- Department of Nutrition and MetabolismUniversity of Texas Medical BranchGalvestonTexas
- Sealy Center on AgingUniversity of Texas Medical BranchGalvestonTexas
- Center for RecoveryPhysical Activity, and NutritionUniversity of Texas Medical BranchGalvestonTexas
| | - Christopher S. Fry
- Department of Nutrition and MetabolismUniversity of Texas Medical BranchGalvestonTexas
- Center for RecoveryPhysical Activity, and NutritionUniversity of Texas Medical BranchGalvestonTexas
| | - Craig Porter
- Center for RecoveryPhysical Activity, and NutritionUniversity of Texas Medical BranchGalvestonTexas
- Metabolism UnitShriners Hospitals for ChildrenGalvestonTexas
| | - Elena Volpi
- Sealy Center on AgingUniversity of Texas Medical BranchGalvestonTexas
- Center for RecoveryPhysical Activity, and NutritionUniversity of Texas Medical BranchGalvestonTexas
| | - Blake B. Rasmussen
- Department of Nutrition and MetabolismUniversity of Texas Medical BranchGalvestonTexas
- Sealy Center on AgingUniversity of Texas Medical BranchGalvestonTexas
- Center for RecoveryPhysical Activity, and NutritionUniversity of Texas Medical BranchGalvestonTexas
| |
Collapse
|
62
|
Fairbairn P, Tsofliou F, Johnson A, Dyall SC. Combining a high DHA multi-nutrient supplement with aerobic exercise: Protocol for a randomised controlled study assessing mobility and cognitive function in older women. Prostaglandins Leukot Essent Fatty Acids 2019; 143:21-30. [PMID: 30975379 DOI: 10.1016/j.plefa.2019.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 03/20/2019] [Accepted: 04/01/2019] [Indexed: 01/14/2023]
Abstract
There is a complex interplay between cognition and gait in older people, with declines in gait speed coexisting with, or preceding cognitive decline. Omega-3 fatty acids, B vitamins, vitamin E, phosphatidylserine, and Ginkgo Biloba show promise in preserving mobility and cognitive function in older adults. Exercise benefits mobility and there is evidence suggesting positive interactions between exercise and omega-3 fatty acids on physical and cognitive function in older adults. Non-frail or pre-frail females aged ≥60 years are included in a randomized placebo controlled study. Intervention groups are: high DHA multi-nutrient supplement and exercise, placebo supplement and exercise, high DHA multi-nutrient supplement, and placebo supplement. Dietary supplementation is 24 weeks. The exercise intervention, two cycle ergometer classes per week, is for the final 12 weeks. The primary outcome is habitual walking speed, secondary outcomes include gait variables under single and dual task, five times sit to stand, verbal and spatial memory, executive function, interference control and health related quality of life. Blood fatty acids, serum homocysteine, dietary intake, physical activity, and verbal intelligence are measured to assess compliance and control for confounding factors. The study is registered at www.clinicaltrials.gov (NCT03228550).
Collapse
Affiliation(s)
- Paul Fairbairn
- Faculty of Health and Social Sciences, Bournemouth University, Dorset, U.K
| | - Fotini Tsofliou
- Faculty of Health and Social Sciences, Bournemouth University, Dorset, U.K
| | - Andrew Johnson
- Department of Psychology, Faculty of Science and Technology, Cognition and Cognitive Neuroscience Research Centre, Bournemouth University, Dorset, U.K
| | - Simon C Dyall
- Department of Life Sciences, University of Roehampton, London, U.K.
| |
Collapse
|
63
|
Tanaka M, Sugimoto K, Fujimoto T, Xie K, Takahashi T, Akasaka H, Kurinami H, Yasunobe Y, Matsumoto T, Fujino H, Rakugi H. Preventive effects of low-intensity exercise on cancer cachexia-induced muscle atrophy. FASEB J 2019; 33:7852-7862. [PMID: 30916585 DOI: 10.1096/fj.201802430r] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We hypothesized that low-intensity endurance exercise might be more effective in preventing cancer cachexia-induced muscle atrophy through both an increase in protein synthesis and a decrease in protein degradation. The purpose of present study was to evaluate the effects and to clarify the mechanism of low-intensity endurance exercise on cancer cachexia-induced muscle atrophy. Twenty-four male Wistar rats were randomly divided into 4 groups: control (Cont), Cont plus exercise (Ex), AH130-induced cancer cachexia (AH130), and AH130 plus Ex. Cancer cachexia was induced by intraperitoneal injections with AH130 Yoshida ascites hepatoma cells; we analyzed the changes in muscle mass and the gene and protein expression levels of major regulators or indicators of skeletal muscle protein degradation and synthesis pathway in the soleus muscles. Low-intensity exercise inhibited the muscle mass loss through a suppression of the ubiquitin-proteasome pathway, increased hypoxia-inducible factor- 1α and phosphorylated AMPK, and inhibited the deactivation of mammalian target of rapamycin pathway in the soleus muscle, which contributed to the prevention of cancer cachexia-induced muscle atrophy. These results suggest that low-intensity exercise has the potential to become an effective therapeutic intervention for the prevention of cancer cachexia-induced muscle atrophy.-Tanaka, M., Sugimoto, K., Fujimoto, T., Xie, K., Takahashi, T., Akasaka, H., Kurinami, H., Yasunobe, Y., Matsumoto, T., Fujino, H., Rakugi, H. Preventive effects of low-intensity exercise on cancer cachexia-induced muscle atrophy.
Collapse
Affiliation(s)
- Minoru Tanaka
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan.,Department of Rehabilitation Science, Osaka Health Science University, Osaka, Japan
| | - Ken Sugimoto
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Rehabilitation Science, Osaka Health Science University, Osaka, Japan
| | - Taku Fujimoto
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Keyu Xie
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Toshimasa Takahashi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiroshi Akasaka
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hitomi Kurinami
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yukiko Yasunobe
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tomohiro Matsumoto
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Hiromi Rakugi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
64
|
Haun CT, Vann CG, Roberts BM, Vigotsky AD, Schoenfeld BJ, Roberts MD. A Critical Evaluation of the Biological Construct Skeletal Muscle Hypertrophy: Size Matters but So Does the Measurement. Front Physiol 2019; 10:247. [PMID: 30930796 PMCID: PMC6423469 DOI: 10.3389/fphys.2019.00247] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/25/2019] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle is highly adaptable and has consistently been shown to morphologically respond to exercise training. Skeletal muscle growth during periods of resistance training has traditionally been referred to as skeletal muscle hypertrophy, and this manifests as increases in muscle mass, muscle thickness, muscle area, muscle volume, and muscle fiber cross-sectional area (fCSA). Delicate electron microscopy and biochemical techniques have also been used to demonstrate that resistance exercise promotes ultrastructural adaptations within muscle fibers. Decades of research in this area of exercise physiology have promulgated a widespread hypothetical model of training-induced skeletal muscle hypertrophy; specifically, fCSA increases are accompanied by proportional increases in myofibrillar protein, leading to an expansion in the number of sarcomeres in parallel and/or an increase in myofibril number. However, there is ample evidence to suggest that myofibrillar protein concentration may be diluted through sarcoplasmic expansion as fCSA increases occur. Furthermore, and perhaps more problematic, are numerous investigations reporting that pre-to-post training change scores in macroscopic, microscopic, and molecular variables supporting this model are often poorly associated with one another. The current review first provides a brief description of skeletal muscle composition and structure. We then provide a historical overview of muscle hypertrophy assessment. Next, current-day methods commonly used to assess skeletal muscle hypertrophy at the biochemical, ultramicroscopic, microscopic, macroscopic, and whole-body levels in response to training are examined. Data from our laboratory, and others, demonstrating correlations (or the lack thereof) between these variables are also presented, and reasons for comparative discrepancies are discussed with particular attention directed to studies reporting ultrastructural and muscle protein concentration alterations. Finally, we critically evaluate the biological construct of skeletal muscle hypertrophy, propose potential operational definitions, and provide suggestions for consideration in hopes of guiding future research in this area.
Collapse
Affiliation(s)
- Cody T Haun
- Department of Exercise Science, LaGrange College, LaGrange, GA, United States
| | | | - Brandon M Roberts
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andrew D Vigotsky
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
| | - Brad J Schoenfeld
- Department of Health Sciences, CUNY Lehman College, Bronx, NY, United States
| | | |
Collapse
|
65
|
Cobley JN, Sakellariou GK, Husi H, McDonagh B. Proteomic strategies to unravel age-related redox signalling defects in skeletal muscle. Free Radic Biol Med 2019; 132:24-32. [PMID: 30219702 DOI: 10.1016/j.freeradbiomed.2018.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/22/2018] [Accepted: 09/12/2018] [Indexed: 01/06/2023]
Abstract
Increased oxidative damage and disrupted redox signalling are consistently associated with age-related loss of skeletal muscle mass and function. Redox signalling can directly regulate biogenesis and degradation pathways and indirectly via activation of key transcription factors. Contracting skeletal muscle fibres endogenously generate free radicals (e.g. superoxide) and non-radical derivatives (e.g. hydrogen peroxide). Exercise induced redox signalling can promote beneficial adaptive responses that are disrupted by age-related redox changes. Identifying and quantifying the redox signalling pathways responsible for successful adaptation to exercise makes skeletal muscle an attractive physiological model for redox proteomic approaches. Site specific identification of the redox modification and quantification of site occupancy in the context of protein abundance remains a crucial concept for redox proteomics approaches. Notwithstanding, the technical limitations associated with skeletal muscle for proteomic analysis, we discuss current approaches for the identification and quantification of transient and stable redox modifications that have been employed to date in ageing research. We also discuss recent developments in proteomic approaches in skeletal muscle and potential implications and opportunities for investigating disrupted redox signalling in skeletal muscle ageing.
Collapse
Affiliation(s)
- James N Cobley
- Free Radical Laboratory, Departments of Diabetes and Cardiovascular Sciences, Centre for Health Sciences, University of the Highlands and Islands, Inverness IV2 3JH, UK
| | | | - Holger Husi
- Free Radical Laboratory, Departments of Diabetes and Cardiovascular Sciences, Centre for Health Sciences, University of the Highlands and Islands, Inverness IV2 3JH, UK
| | - Brian McDonagh
- Discipline of Physiology, School of Medicine, NUI Galway, Ireland.
| |
Collapse
|
66
|
Interpreting Adaptation to Concurrent Compared with Single-Mode Exercise Training: Some Methodological Considerations. Sports Med 2018; 48:289-297. [PMID: 29127601 DOI: 10.1007/s40279-017-0812-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Incorporating both endurance and resistance training into an exercise regime is termed concurrent training. While there is evidence that concurrent training can attenuate resistance training-induced improvements in maximal strength and muscle hypertrophy, research findings are often equivocal, with some suggesting short-term concurrent training may instead further enhance muscle hypertrophy versus resistance training alone. These observations have questioned the validity of the purported 'interference effect' on muscle hypertrophy with concurrent versus single-mode resistance training. This article aims to highlight some methodological considerations when interpreting the concurrent training literature, and, in particular, the degree of changes in strength and muscle hypertrophy observed with concurrent versus single-mode resistance training. Individual training status clearly influences the relative magnitude and specificity of both training adaptation and post-exercise molecular responses in skeletal muscle. The training status of participants is therefore likely a key modulator of the degree of adaptation and interference seen with concurrent training interventions. The divergent magnitudes of strength gain versus muscle hypertrophy induced by resistance training also suggests most concurrent training studies are likely to observe more substantial changes in (and in turn, any potential interference to) strength compared with muscle hypertrophy. Both the specificity and sensitivity of measures used to assess training-induced changes in strength and muscle hypertrophy also likely influence the interpretation of concurrent training outcomes. Finally, the relative importance of any modulation of hypertrophic versus strength adaptation with concurrent training should be considered in context with the relevance of training-induced changes in these variables for enhancing athletic performance and/or functional capacity. Taken together, these observations suggest that aside from various training-related factors, additional non-training-related variables, including participant training status and the measures used to assess changes in strength and muscle hypertrophy, are important considerations when interpreting the outcomes of concurrent training interventions.
Collapse
|
67
|
SIRIGULENG, KOIKE T, NATSUME Y, IWAMA S, OSHIDA Y. Effect of Prior Chronic Aerobic Exercise on Overload-Induced Skeletal Muscle Hypertrophy in Mice. Physiol Res 2018; 67:765-775. [DOI: 10.33549/physiolres.933786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This study aimed to examine how regular aerobic training can affect the muscle hypertrophy induced by overloading. Male C57BL/6J mice were randomly divided into three groups: rest group, low-intensity aerobic exercise group, and high-intensity aerobic exercise group. Mice in the exercise groups were assigned to run at a speed of 10 m/min (low-intensity) or 25 m/min (high-intensity) for 30 min/day, five days/week, for four weeks. Then, the right hind leg gastrocnemius muscles were surgically removed to overload the plantaris and soleus muscles, while the left hind leg was subjected to a sham-operation. Both the plantaris and soleus muscles grew larger in the overloaded legs than those in the sham-operated legs. Muscle growth increased in the plantaris muscles in the low-intensity exercise group compared to that in the rest or high-intensity exercise groups at one and two weeks after overloading. This enhancement was not observed in the soleus muscles. Consistently, we observed changes in the expression of proteins involved in anabolic intracellular signaling, including Akt, mechanistic target of rapamycin (mTOR), and p70S6K, in the plantaris muscles. Our data showed for the first time that chronic low-intensity aerobic exercise precipitates overload-induced muscle growth.
Collapse
Affiliation(s)
| | - T. KOIKE
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
| | | | | | | |
Collapse
|
68
|
Does Aerobic Training Promote the Same Skeletal Muscle Hypertrophy as Resistance Training? A Systematic Review and Meta-Analysis. Sports Med 2018; 49:233-254. [DOI: 10.1007/s40279-018-1008-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
69
|
Whole-Body Vibration Increases Cardiopulmonary Performance in the Elderly. TOPICS IN GERIATRIC REHABILITATION 2018. [DOI: 10.1097/tgr.0000000000000201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
70
|
Wallis LJ, Szabó D, Erdélyi-Belle B, Kubinyi E. Demographic Change Across the Lifespan of Pet Dogs and Their Impact on Health Status. Front Vet Sci 2018; 5:200. [PMID: 30191153 PMCID: PMC6115627 DOI: 10.3389/fvets.2018.00200] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/30/2018] [Indexed: 01/06/2023] Open
Abstract
Although dogs' life expectancies are six to twelve times shorter than that of humans, the demographics (e. g., living conditions) of dogs can still change considerably with aging, similarly to humans. Despite the fact that the dog is a particularly good model for human healthspan, and the number of aged dogs in the population is growing in parallel with aged humans, there has been few previous attempts to describe demographic changes statistically. We utilized an on-line questionnaire to examine the link between the age and health of the dog, and owner and dog demographics in a cross-sectional Hungarian sample. Results from univariate analyses revealed that 20 of the 27 demographic variables measured differed significantly between six dog age groups. Our results revealed that pure breed dogs suffered from health problems at a younger age, and may die at an earlier age than mixed breeds. The oldest dog group (>12 years) consisted of fewer pure breeds than mixed breeds and the mixed breeds sample was on average older than the pure breed sample. Old dogs were classified more frequently as unhealthy, less often had a “normal” body condition score, and more often received medication and supplements. They were also more often male, neutered, suffered health problems (such as sensory, joint, and/or tooth problems), received less activity/interaction/training with the owner, and were more likely to have experienced one or more traumatic events. Surprisingly, the youngest age group contained more pure breeds, were more often fed raw meat, and had owners aged under 29 years, reflecting new trends among younger owners. The high prevalence of dogs that had experienced one or more traumatic events in their lifetime (over 40% of the sample), indicates that welfare and health could be improved by informing owners of the greatest risk factors of trauma, and providing interventions to reduce their impact. Experiencing multiple life events such as spending time in a shelter, changing owners, traumatic injury/prolonged disease/surgery, getting lost, and changes in family structure increased the likelihood that owners reported that their dogs currently show behavioral signs that they attribute to the previous trauma.
Collapse
Affiliation(s)
- Lisa J Wallis
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| | - Dóra Szabó
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| | | | - Enikö Kubinyi
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
71
|
Rodrigues EV, Guimarães ATB, Gallo LH, Melo Filho J, Pintarelli VL, Gomes ARS. Supervised dance intervention based on video game choreography increases quadriceps cross sectional area and peak of torque in community dwelling older women. MOTRIZ: REVISTA DE EDUCACAO FISICA 2018. [DOI: 10.1590/s1980-6574201800020010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
72
|
Hughes DC, Ellefsen S, Baar K. Adaptations to Endurance and Strength Training. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a029769. [PMID: 28490537 DOI: 10.1101/cshperspect.a029769] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The capacity for human exercise performance can be enhanced with prolonged exercise training, whether it is endurance- or strength-based. The ability to adapt through exercise training allows individuals to perform at the height of their sporting event and/or maintain peak physical condition throughout the life span. Our continued drive to understand how to prescribe exercise to maximize health and/or performance outcomes means that our knowledge of the adaptations that occur as a result of exercise continues to evolve. This review will focus on current and new insights into endurance and strength-training adaptations and will highlight important questions that remain as far as how we adapt to training.
Collapse
Affiliation(s)
- David C Hughes
- Department of Neurobiology, Physiology and Behavior, Functional Molecular Biology Laboratory, University of California Davis, Davis, California 95616
| | - Stian Ellefsen
- Section of Sports Sciences, Lillehammer University College, 2604 Lillehammer, Norway.,Innlandet Hospital Trust, 2380 Brumunddal, Norway
| | - Keith Baar
- Department of Neurobiology, Physiology and Behavior, Functional Molecular Biology Laboratory, University of California Davis, Davis, California 95616
| |
Collapse
|
73
|
Konopka AR, Wolff CA, Suer MK, Harber MP. Relationship between intermuscular adipose tissue infiltration and myostatin before and after aerobic exercise training. Am J Physiol Regul Integr Comp Physiol 2018; 315:R461-R468. [PMID: 29718700 DOI: 10.1152/ajpregu.00030.2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Intermuscular adipose tissue (IMAT) is associated with impaired skeletal muscle contractile and metabolic function. Myostatin and downstream signaling proteins such as cyclin-dependent kinase 2 (CDK2) contribute to the regulation of adipose and skeletal muscle mass in cell culture and animals models, but this relationship remains incompletely understood in humans. The purpose of this study was to determine if the infiltration of IMAT was associated with skeletal muscle myostatin and downstream proteins before and after 12 wk of aerobic exercise training (AET) in healthy older women (OW; 69 ± 2 yr), older men (OM; 74 ± 3 yr), and young men (YM; 20 ± 1 yr). We found that the infiltration of IMAT was correlated with myostatin and phosphorylated CDK2 at tyrosine 15 [P-CDK2(Tyr15)]. IMAT infiltration was greater in the older subjects and was associated with lower skeletal muscle function and exercise capacity. After 12 wk of AET, there was no change in body weight. Myostatin and P-CDK2(Tyr15) were both decreased after AET, and the reduction in myostatin was associated with decreased IMAT infiltration. The decrease in myostatin and IMAT occurred concomitantly with increased exercise capacity, skeletal muscle size, and function after AET. These findings demonstrate that the reduction in IMAT infiltration after AET in weight stable individuals was accompanied by improvements in skeletal muscle function and exercise capacity. Moreover, the association between myostatin and IMAT was present in the untrained state and in response to exercise training, strengthening the potential regulatory role of myostatin on IMAT.
Collapse
Affiliation(s)
- Adam R Konopka
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign , Urbana, Illinois
| | | | - Miranda K Suer
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Matthew P Harber
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| |
Collapse
|
74
|
Does an Aerobic Exercise Improve Outcomes in Older Sedentary Nonspecific Low Back Pain Subjects? A Randomized Controlled Study. TOPICS IN GERIATRIC REHABILITATION 2018. [DOI: 10.1097/tgr.0000000000000177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
75
|
Abstract
A substantial loss of muscle mass and strength (sarcopenia), a decreased regenerative capacity, and a compromised physical performance are hallmarks of aging skeletal muscle. These changes are typically accompanied by impaired muscle metabolism, including mitochondrial dysfunction and insulin resistance. A challenge in the field of muscle aging is to dissociate the effects of chronological aging per se on muscle characteristics from the secondary influence of lifestyle and disease processes. Remarkably, physical activity and exercise are well-established countermeasures against muscle aging, and have been shown to attenuate age-related decreases in muscle mass, strength, and regenerative capacity, and slow or prevent impairments in muscle metabolism. We posit that exercise and physical activity can influence many of the changes in muscle during aging, and thus should be emphasized as part of a lifestyle essential to healthy aging.
Collapse
Affiliation(s)
- Giovanna Distefano
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, Florida 32804
| | - Bret H Goodpaster
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, Florida 32804
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida 32827
| |
Collapse
|
76
|
Grgic J, Homolak J, Mikulic P, Botella J, Schoenfeld BJ. Inducing hypertrophic effects of type I skeletal muscle fibers: A hypothetical role of time under load in resistance training aimed at muscular hypertrophy. Med Hypotheses 2018; 112:40-42. [DOI: 10.1016/j.mehy.2018.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/10/2018] [Accepted: 01/18/2018] [Indexed: 01/17/2023]
|
77
|
Musci RV, Hamilton KL, Miller BF. Targeting mitochondrial function and proteostasis to mitigate dynapenia. Eur J Appl Physiol 2018; 118:1-9. [PMID: 28986697 PMCID: PMC5756099 DOI: 10.1007/s00421-017-3730-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/30/2017] [Indexed: 12/25/2022]
Abstract
Traditionally, interventions to treat skeletal muscle aging have largely targeted sarcopenia-the age-related loss of skeletal muscle mass. Dynapenia refers to the age-related loss in skeletal muscle function due to factors outside of muscle mass, which helps to inform treatment strategies for aging skeletal muscle. There is evidence that mechanisms to maintain protein homeostasis and proteostasis, deteriorate with age. One key mechanism to maintain proteostasis is protein turnover, which is an energetically costly process. When there is a mismatch between cellular energy demands and energy provision, inelastic processes related to metabolism are maintained, but there is competition for the remaining energy between the elastic processes of somatic maintenance and growth. With aging, mitochondrial dysfunction reduces ATP generation capacity, constraining the instantaneous supply of energy, thus compromising growth and somatic maintenance processes. Further, with age the need for somatic maintenance increases because of the accumulation of protein damage. In this review, we highlight the significant role mitochondria have in maintaining skeletal muscle proteostasis through increased energy provision, protein turnover, and substrate flux. In addition, we provide evidence that improving mitochondrial function could promote a cellular environment that is conducive to somatic maintenance, and consequently for mitigating dynapenia. Finally, we highlight interventions, such as aerobic exercise, that could be used to improve mitochondrial function and improve outcomes related to dynapenia.
Collapse
Affiliation(s)
- Robert V Musci
- Translational Research on Aging and Chronic Disease Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, 80523-1582, USA
| | - Karyn L Hamilton
- Translational Research on Aging and Chronic Disease Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, 80523-1582, USA
| | - Benjamin F Miller
- Translational Research on Aging and Chronic Disease Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, 80523-1582, USA.
| |
Collapse
|
78
|
Roh YH, Koh YD, Noh JH, Gong HS, Baek GH. Evaluation of sarcopenia in patients with distal radius fractures. Arch Osteoporos 2017; 12:5. [PMID: 28004299 DOI: 10.1007/s11657-016-0303-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/12/2016] [Indexed: 02/03/2023]
Abstract
UNLABELLED Sarcopenia is more prevalent in patients with distal radius fracture (DRF) than in age- and sex-matched controls. Lower appendicular mass index in men and weaker grip strength in both men and women increase the likelihood of DRF. INTRODUCTION Sarcopenia is a core component of physical frailty that predisposes older people to falls and negatively impacts the activities of daily living. The objectives of this study were to compare the prevalence of sarcopenia in patients with DRF with that in age- and sex-matched controls without DRF; and evaluate the association between sarcopenia and the occurrence of DRF. METHODS We prospectively recruited 132 patients over 50 years of age who sustained DRF due to fall and 132 age- and sex-matched controls without DRF. A definition of sarcopenia was based on the consensus of the Asian Working Group for Sarcopenia. Sarcopenic components including appendicular lean body mass, grip strength, and gait speed were compared between the two groups. Other factors assessed for the occurrence of DRF were age, gender, body mass index (BMI), lumbar, and hip bone mineral density (BMD) values. A conditional logistic regression analysis was conducted to evaluate the associations between sarcopenia and the occurrence of DRF. RESULTS A total of 39 (30%) of 132 DRF patients were sarcopenic, whereas 23 (17%) of the 132 controls were within the sarcopenic criteria (p = 0.048). The patient group had significantly lower lean body mass and weaker grip strength than those of the control group. However, there was no significant difference in gait speed between the two groups. According to regression analysis, lower appendicular mass index in men was associated with an increased incidence of DRF (odds ratio [OR] = 0.84, 95% confidence interval [CI] = 0.72, 0.95) while weaker grip strength and lower total hip BMD values were associated with the occurrence of DRF in both men (OR = 0.77, 95% CI = 0.63, 0.92; and OR = 0.79, 95% CI = 0.64, 0.94, respectively) and women (OR = 0.78, 95% CI = 0.64, 0.93, and OR = 0.73, 95% CI = 0.52, 0.92, respectively). CONCLUSIONS Sarcopenia is more prevalent in patients with DRF than in age- and sex-matched controls. Lower appendicular mass in men, weaker grip strength, and lower hip BMD in both men and women increase the likelihood of DRF.
Collapse
Affiliation(s)
- Young Hak Roh
- Department of Orthopaedic Surgery, Ewha Womans University School of Medicine, Seoul, South Korea
| | - Young Do Koh
- Department of Orthopaedic Surgery, Ewha Womans University School of Medicine, Seoul, South Korea
| | - Jung Ho Noh
- Department of Orthopaedic Surgery, Kangwon National University Hospital, 156 Baengnyeong-ro, Chuncheon-si, Gangwon-do, 200-722, South Korea.
| | - Hyun Sik Gong
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Goo Hyun Baek
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
79
|
Booth FW, Roberts CK, Thyfault JP, Ruegsegger GN, Toedebusch RG. Role of Inactivity in Chronic Diseases: Evolutionary Insight and Pathophysiological Mechanisms. Physiol Rev 2017; 97:1351-1402. [PMID: 28814614 PMCID: PMC6347102 DOI: 10.1152/physrev.00019.2016] [Citation(s) in RCA: 364] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 03/06/2017] [Accepted: 03/09/2017] [Indexed: 12/13/2022] Open
Abstract
This review proposes that physical inactivity could be considered a behavior selected by evolution for resting, and also selected to be reinforcing in life-threatening situations in which exercise would be dangerous. Underlying the notion are human twin studies and animal selective breeding studies, both of which provide indirect evidence for the existence of genes for physical inactivity. Approximately 86% of the 325 million in the United States (U.S.) population achieve less than the U.S. Government and World Health Organization guidelines for daily physical activity for health. Although underappreciated, physical inactivity is an actual contributing cause to at least 35 unhealthy conditions, including the majority of the 10 leading causes of death in the U.S. First, we introduce nine physical inactivity-related themes. Next, characteristics and models of physical inactivity are presented. Following next are individual examples of phenotypes, organ systems, and diseases that are impacted by physical inactivity, including behavior, central nervous system, cardiorespiratory fitness, metabolism, adipose tissue, skeletal muscle, bone, immunity, digestion, and cancer. Importantly, physical inactivity, itself, often plays an independent role as a direct cause of speeding the losses of cardiovascular and strength fitness, shortening of healthspan, and lowering of the age for the onset of the first chronic disease, which in turn decreases quality of life, increases health care costs, and accelerates mortality risk.
Collapse
Affiliation(s)
- Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Geriatrics, Research, Education and Clinical Center (GRECC), VA Greater Los Angeles Healthcare System, Los Angeles, California; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and Cardiovascular Division, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Christian K Roberts
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Geriatrics, Research, Education and Clinical Center (GRECC), VA Greater Los Angeles Healthcare System, Los Angeles, California; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and Cardiovascular Division, Department of Medicine, University of Missouri, Columbia, Missouri
| | - John P Thyfault
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Geriatrics, Research, Education and Clinical Center (GRECC), VA Greater Los Angeles Healthcare System, Los Angeles, California; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and Cardiovascular Division, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Gregory N Ruegsegger
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Geriatrics, Research, Education and Clinical Center (GRECC), VA Greater Los Angeles Healthcare System, Los Angeles, California; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and Cardiovascular Division, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Ryan G Toedebusch
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Geriatrics, Research, Education and Clinical Center (GRECC), VA Greater Los Angeles Healthcare System, Los Angeles, California; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and Cardiovascular Division, Department of Medicine, University of Missouri, Columbia, Missouri
| |
Collapse
|
80
|
Kim HJ, Lee WJ. Low-intensity aerobic exercise training: inhibition of skeletal muscle atrophy in high-fat-diet-induced ovariectomized rats. J Exerc Nutrition Biochem 2017; 21:19-25. [PMID: 29036762 PMCID: PMC5643201 DOI: 10.20463/jenb.2017.0022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/18/2017] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Postmenopausal women are highly susceptible to diseases, such as obesity, type 2 diabetes, osteoporosis, or skeletal muscle atrophy and many people recognize the need for regular physical activity. Aerobic exercise training is known to improve the oxidative capacity and insulin sensitivity of skeletal muscles. This study aimed to investigate the role of low-intensity aerobic exercise training on skeletal muscle protein degradation or synthesis in the plantaris muscles of high-fat-fed ovariectomized rats. METHODS Ovariectomized female rats were divided into two groups: a high-fat diet-sedentary group (HFD), and a high-fat diet-aerobic exercise group (HFD+EX). The exercise group exercised aerobically on a treadmill 5 days/week for 8 weeks. The rats progressively ran 30 min/day at 15 m/min, up to 40 min/day at 18 m/min, 0% slope, in the last 4 weeks. RESULTS Although aerobic exercise led to significantly increased AMP-activated protein kinase (AMPK) phosphorylation at Thr172, phosphorylation of the mammalian target of rapamycin (mTOR) substrate Thr389 S6K1 level did not decrease. Additionally, even though Akt activity did not increase at Ser473, the atrogin-1 level significantly decreased in the exercise group compared to the non-exercise group. Immunohistochemical staining revealed that high-fat-induced TSC2 protein expression was eliminated in response to aerobic exercise. CONCLUSION These results suggest that aerobic exercise can inhibit skeletal muscle protein degradation, but it cannot increase protein synthesis in the plantaris muscle of high-fat-fed ovariectomized rats. Our findings have implications in understanding skeletal muscle mass maintenance with low intensity aerobic exercise in post-menopausal women.
Collapse
Affiliation(s)
- Hye Jin Kim
- Department of Kinesiology and Sports Studies, College of Science and Industry Convergence, Ewha Womans University, Seoul, Republic of Korea
| | - Won Jun Lee
- Department of Kinesiology and Sports Studies, College of Science and Industry Convergence, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
81
|
Van Roie E, Martien S, Hurkmans E, Pelssers J, Seghers J, Boen F, Delecluse C. Ergometer-cycling with strict versus minimal contact supervision among the oldest adults: A cluster-randomised controlled trial. Arch Gerontol Geriatr 2017; 70:112-122. [DOI: 10.1016/j.archger.2017.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/12/2017] [Accepted: 01/14/2017] [Indexed: 10/20/2022]
|
82
|
Araki M, Hatamoto Y, Higaki Y, Tanaka H. "Slow walking with turns" increases quadriceps and erector spinae muscle activity. J Phys Ther Sci 2017; 29:419-424. [PMID: 28356623 PMCID: PMC5361002 DOI: 10.1589/jpts.29.419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/24/2016] [Indexed: 11/29/2022] Open
Abstract
[Purpose] To maintain an independent lifestyle, older adults should improve muscle
strength and mass, or aerobic capacity. A new exercise pattern, called slow walking with
turns, which incorporates turning as an extra load additional to walking. The purpose of
this study was to measure oxygen consumption during exercise and muscle activity while
turning. [Subjects and Methods] Recreationally active volunteers participated. The
participants performed 20 turns per minute while walking back and forth over distances of
1.5 to 3.5 m. We measured oxygen consumption, heart rate, and rating of perceived exertion
and performed electromyography during the exercise. [Results] The metabolic equivalents of
the exercise were 4.0 ± 0.4 to 6.3 ± 4.0 Mets. Activity was significantly greater in the
vastus medialis, vastus lateralis, and erector spinae during the turn phase of slow
walking with turns than during the stance phase of treadmill walking. [Conclusion] These
findings suggest that slow walking with turns may help to preserve the muscle strength and
mass of the trunk and lower limbs that are needed to maintain an independent lifestyle.
Slow walking can be performed easily by older people, and in slow walking with turns, the
exercise intensity can be adjusted as required for each individual.
Collapse
Affiliation(s)
- Mayumi Araki
- Graduate School of Sports and Health Science, Fukuoka University, Japan
| | - Yoichi Hatamoto
- Faculty of Sports and Health Science, Fukuoka University, Japan; Fukuoka University Institute for Physical Activity: 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Yasuki Higaki
- Faculty of Sports and Health Science, Fukuoka University, Japan; Fukuoka University Institute for Physical Activity: 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Hiroaki Tanaka
- Faculty of Sports and Health Science, Fukuoka University, Japan; Fukuoka University Institute for Physical Activity: 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
83
|
Lo YTC, Wahlqvist ML, Huang YC, Chuang SY, Wang CF, Lee MS. Medical costs of a low skeletal muscle mass are modulated by dietary diversity and physical activity in community-dwelling older Taiwanese: a longitudinal study. Int J Behav Nutr Phys Act 2017; 14:31. [PMID: 28288651 PMCID: PMC5348879 DOI: 10.1186/s12966-017-0487-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 03/05/2017] [Indexed: 12/15/2022] Open
Abstract
Background Age-related loss of skeletal muscle mass (SMM) and function (sarcopenia) are associated with poor health outcomes and an economic burden on health care services. An appropriate diet and physical activity have been proposed for prevention and treatment of sarcopenia. Nevertheless, the effects on medical service utilization and costs remain unclear. This study determined the effects of SMM in conjunction with diet quality and physical activity on medical service utilization and expenditure in community-dwelling older Taiwanese. Methods In total, 1337 participants from the Elderly Nutrition and Health Survey in Taiwan (1999–2000) were enrolled. An SMM index [SMMI, calculated by dividing SMM (kg) by height (m2)] was used as the marker of sarcopenia. Participants with the lowest SMMI quartiles (<11.4 kg/m2 for men and 8.50 kg/m2 for women) comprised the high-risk group, and the remainder comprised the low-risk group. Dietary information (dietary diversity: low and high) and physical activity (low and moderate) were obtained at baseline. Annual medical service utilization and expenditure were calculated from National Health Insurance claims until December 31, 2006. Generalized linear models were used to determine the association between the SMMI and annual medical service utilization and costs in conjunction with dietary diversity or physical activity. Results After 8 follow-up years, regardless of gender, participants in the high-risk group reported significantly more hospitalization (days and expenditure) and total medical expenditure. Participants in the high-risk group who had low dietary diversity made fewer annual outpatient (14%), preventive care (19%), and dental (40%) visits, but exhibited longer hospitalization (102%) than did those who had a low SMMI and high dietary diversity. Similar patterns were observed in the corresponding medical expenditures. The findings were similar when considering physical activity. Being in the low-risk group in conjunction with having high dietary diversity or more physical activity was associated with the lowest annual adjusted mean hospitalization days with expenditure, and also total expenditure. Conclusions A lower SMMI was associated with more hospitalization days and costs. However, high dietary diversity and more physical activity can attenuate the effects of lower SMMI on medical service utilization and expenditure.
Collapse
Affiliation(s)
- Yuan-Ting C Lo
- School of Public Health, National Defense Medical Center, 161 Minchuan East Road, Sec. 6, Taipei, 11490, Taiwan, Republic of China
| | - Mark L Wahlqvist
- School of Public Health, National Defense Medical Center, 161 Minchuan East Road, Sec. 6, Taipei, 11490, Taiwan, Republic of China.,Institute of Population Health Sciences, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan, Republic of China.,Monash Asia Institute, Monash University, Caulfield East, PO Box 197, Melbourne, VIC, 3145, Australia
| | - Yi-Chen Huang
- Graduate Institute of Life Sciences, National Defense Medical Center, 161 Minchuan Road, Sec. 6, Taipei, 11490, Taiwan, Republic of China
| | - Shao-Yuan Chuang
- Institute of Population Health Sciences, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan, Republic of China
| | - Chi-Fen Wang
- School of Public Health, National Defense Medical Center, 161 Minchuan East Road, Sec. 6, Taipei, 11490, Taiwan, Republic of China
| | - Meei-Shyuan Lee
- School of Public Health, National Defense Medical Center, 161 Minchuan East Road, Sec. 6, Taipei, 11490, Taiwan, Republic of China. .,Monash Asia Institute, Monash University, Caulfield East, PO Box 197, Melbourne, VIC, 3145, Australia. .,Graduate Institute of Life Sciences, National Defense Medical Center, 161 Minchuan Road, Sec. 6, Taipei, 11490, Taiwan, Republic of China.
| |
Collapse
|
84
|
Schneider SM, Lee SMC, Feiveson AH, Watenpaugh DE, Macias BR, Hargens AR. Treadmill exercise within lower body negative pressure protects leg lean tissue mass and extensor strength and endurance during bed rest. Physiol Rep 2017; 4:4/15/e12892. [PMID: 27495299 PMCID: PMC4985554 DOI: 10.14814/phy2.12892] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 07/19/2016] [Indexed: 01/26/2023] Open
Abstract
Leg muscle mass and strength are decreased during reduced activity and non‐weight‐bearing conditions such as bed rest (BR) and spaceflight. Supine treadmill exercise within lower body negative pressure (LBNPEX) provides full‐body weight loading during BR and may prevent muscle deconditioning. We hypothesized that a 40‐min interval exercise protocol performed against LBNPEX 6 days week−1 would attenuate losses in leg lean mass (LLM), strength, and endurance during 6° head‐down tilt BR, with similar benefits for men and women. Fifteen pairs of healthy monozygous twins (8 male and 7 female pairs) completed 30 days of BR with one sibling of each twin pair assigned randomly as the non‐exercise control (CON) and the other twin as the exercise subject (EX). Before and after BR, LLM and isokinetic leg strength and endurance were measured. Mean knee and ankle extensor and flexor strength and endurance and LLM decreased from pre‐ to post‐BR in the male CON subjects (P < 0.01), but knee extensor strength and endurance, ankle extensor strength, and LLM were maintained in the male EX subjects. In contrast, no pre‐ to post‐BR changes were significant in the female subjects, either CON or EX, likely due to their lower pre‐BR values. Importantly, the LBNPEX countermeasure prevents or attenuates declines in LLM as well as extensor leg strength and endurance. Individuals who are stronger, have higher levels of muscular endurance, and/or have greater LLM are likely to experience greater losses during BR than those who are less fit.
Collapse
Affiliation(s)
| | - Stuart M C Lee
- Wyle Science, Technology, and Engineering Group, Houston, Texas
| | | | | | | | | |
Collapse
|
85
|
Estes RR, Malinowski A, Piacentini M, Thrush D, Salley E, Losey C, Hayes E. The Effect of High Intensity Interval Run Training on Cross-sectional Area of the Vastus Lateralis in Untrained College Students. INTERNATIONAL JOURNAL OF EXERCISE SCIENCE 2017; 10:137-145. [PMID: 28479954 PMCID: PMC5214170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Aerobic cycling has been repeatedly shown to induce hypertrophy in skeletal muscle across a variety of populations, while there has been a lack of investigation into the impact of running upon hypertrophy. An increasingly popular model of aerobic exercise is high-intensity interval training (HIIT); in addition to its positive impact upon cardiovascular health, HIIT may be sufficient for inducing significant muscular hypertrophy. Therefore, the purpose of this investigation was to examine the influence of a high-intensity interval running protocol upon hypertrophy of the vastus lateralis in an untrained, young population. Twelve recreationally active university students (Male: 2; Female: 10; 19.9±0.5 yr.; 169.8±1.9 cm; 63.8±2.3 kg; VO2max: 42.1±1.6 ml•kg-1min-1) completed 24.5±0.6 sessions of high-intensity interval run training over 10 weeks. The protocol consisted of four sets of 4 minutes running at 90-95% HRmax followed by 3 minutes active rest at 70% HRmax. Relative and absolute aerobic capacity increased 5.2±2.2% and 6.0±2.3% respectively as a result of the intervention (p< 0.05). Cross-sectional area (CSA) of the vastus lateralis was measured via panoramic ultrasound imaging pre- and post-intervention. Following the protocol, CSA of the intervention group was 10.6±2.7% greater (p< 0.05), while that of the control group did not change. This is the first data to demonstrate hypertrophy of the vastus lateralis in a young population following a running protocol. These data support the existing body of evidence suggesting aerobic exercise to be an effective mode of improving cardiorespiratory fitness as well as increasing whole muscle size of the quadriceps.
Collapse
Affiliation(s)
- Rebekah R Estes
- Department of Kinesiology, Taylor University, Upland, IN, USA
| | - Amy Malinowski
- Department of Kinesiology, Taylor University, Upland, IN, USA
| | | | - David Thrush
- Department of Kinesiology, Taylor University, Upland, IN, USA
| | - Eric Salley
- Department of Kinesiology, Taylor University, Upland, IN, USA
| | - Cassidy Losey
- Department of Kinesiology, Taylor University, Upland, IN, USA
| | - Erik Hayes
- Department of Kinesiology, Taylor University, Upland, IN, USA
| |
Collapse
|
86
|
Wang H, Hai S, Cao L, Zhou J, Liu P, Dong BR. Estimation of prevalence of sarcopenia by using a new bioelectrical impedance analysis in Chinese community-dwelling elderly people. BMC Geriatr 2016; 16:216. [PMID: 28031025 PMCID: PMC5198494 DOI: 10.1186/s12877-016-0386-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 12/01/2016] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The aim of the present study was to validate the usefulness of the new octapolar multifrequency bioelectrical impedance analysis (BIA) for assessment of appendicular skeletal muscle mass (ASM) by comparing it with that of dual-energy X-ray absorptiometry (DXA) and to investigate the prevalence of sarcopenia in Chinese community-dwelling elderly according to Asian Working Group for Sarcopenia (AWGS) definition. METHODS A cross-sectional study was conducted in communities of Chengdu, China. A total of 944 community-dwelling elderly adults aged ≥60 years were included. ASM was measured by using DXA as a criterion method to validate a standing eight-electrode multifrequency BIA (InBody 720), followed by a further estimation of the prevalence of sarcopenia according the AWGS definition. RESULTS In the Bland-Altman analysis, no significant difference was found between DXA and BIA based on the ASM measurements. The prevalence of AWGS-defined sarcopenia was 12.5% in the elderly women and 8.2% in the elderly men. CONCLUSIONS BIA is suitable for body composition monitoring (ASM) in elderly Chinese as a fast, noninvasive, and convenient method; therefore, it may be a better choice in large epidemiological studies in the Chinese population. The prevalence of AWGS-defined sarcopenia was approximately 10.4% and increased with age in the Chinese community-dwelling elderly in this study.
Collapse
Affiliation(s)
- Hui Wang
- Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, China
| | - Shan Hai
- Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, China
| | - Li Cao
- Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, China
| | - Jianghua Zhou
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Ping Liu
- Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, China
| | - Bi-Rong Dong
- Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, China. .,Collaborative Innovation Center of Sichuan for Elderly Care and Health, Chengdu, China.
| |
Collapse
|
87
|
Discrepancies between Skinned Single Muscle Fibres and Whole Thigh Muscle Function Characteristics in Young and Elderly Human Subjects. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6206959. [PMID: 28070513 PMCID: PMC5192307 DOI: 10.1155/2016/6206959] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 09/19/2016] [Accepted: 11/02/2016] [Indexed: 12/25/2022]
Abstract
We aimed to analyse the mechanical properties of skinned single muscle fibres derived from the vastus lateralis (VL) muscle in relation to those of the whole intact thigh muscle and to compare any difference between young and older adults. Sixteen young men (29.25 ± 4.65 years), 11 older men (71.45 ± 2.94 years), 11 young women (29.64 ± 4.88 years), and 7 older women (67.29 ± 1.70 years) were recruited. In vivo analyses were performed for mechanical properties such as isokinetic performance, isometric torque, and power. Specific force and maximum shortening velocity (Vo) were measured with single muscle fibres. Sex difference showed greater impact on the functional properties of both the whole muscle (p < 0.01) and single muscle fibres than aging (p < 0.05). Sex difference, rather than aging, yielded more remarkable differences in gross mechanical properties in the single muscle fibre study in which significant differences between young men and young women were found only in the cross-sectional area and Vo (p < 0.05). Age and sex differences reflect the mechanical properties of both single muscle fibres and whole thigh muscle, with the whole muscle yielding more prominent functional properties.
Collapse
|
88
|
Effects of a 12-week, short-interval, intermittent, low-intensity, slow-jogging program on skeletal muscle, fat infiltration, and fitness in older adults: randomized controlled trial. Eur J Appl Physiol 2016; 117:7-15. [DOI: 10.1007/s00421-016-3493-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/20/2016] [Indexed: 12/20/2022]
|
89
|
Bouaziz W, Vogel T, Schmitt E, Kaltenbach G, Geny B, Lang PO. Health benefits of aerobic training programs in adults aged 70 and over: a systematic review. Arch Gerontol Geriatr 2016; 69:110-127. [PMID: 27912156 DOI: 10.1016/j.archger.2016.10.012] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/09/2016] [Accepted: 10/29/2016] [Indexed: 01/03/2023]
Abstract
Aging is intrinsically associated with a progressive decline in muscle strength and mass, and aerobic capacity. This contributes to reduced mobility and impaired quality of life (QoL) among seniors. Regular physical activity, and more particularly aerobic training (AT), has demonstrated benefits on adults' health. The aim of this review was to assess the current level of evidence regarding the health benefits of AT in the population aged 70 years and over. A comprehensive, systematic database search for manuscripts was performed. Two reviewers independently assessed interventional studies for potential inclusion. Cardiovascular, metabolic, functional, cognitive, and QoL outcomes were targeted. Fifty-three studies were included totalling 2051 seniors aged 70 years and over. Studies selected were divided into 5 categories according to their main outcomes: cardiovascular function (34 studies), metabolic outcomes (26 studies), functional fitness (19 studies), cognitive functions (8 studies), and QoL (3 studies). With a good level of evidence but a wide heterogeneity between study designs, a significant and beneficial effect of AT was measured on the 5 outcomes. For QoL results showed a significant but slighter improvement. This systematic review highlights the benefits of AT on seniors' health outcome such as cardiovascular, functional, metabolic, cognitive, and QoL outcomes although the optimal program remains unclear. When more studies regarding this specific population are needed to determine the most favourable exercise program, clinicians should nevertheless encourage older adults over 70 to participate in AT programs to favour active and healthy ageing.
Collapse
Affiliation(s)
- Walid Bouaziz
- Geriatric Department, Medical school and University Hospitals of Strasbourg, Strasbourg, France; Department of Physiology and EA-3072, Medical school, Strasbourg University, Strasbourg, France.
| | - Thomas Vogel
- Geriatric Department, Medical school and University Hospitals of Strasbourg, Strasbourg, France; Department of Physiology and EA-3072, Medical school, Strasbourg University, Strasbourg, France
| | - Elise Schmitt
- Geriatric Department, Medical school and University Hospitals of Strasbourg, Strasbourg, France; Department of Physiology and EA-3072, Medical school, Strasbourg University, Strasbourg, France
| | - Georges Kaltenbach
- Geriatric Department, Medical school and University Hospitals of Strasbourg, Strasbourg, France
| | - Bernard Geny
- Department of Physiology and EA-3072, Medical school, Strasbourg University, Strasbourg, France; Functional Explorations Department, Medical school and University Hospitals of Strasbourg, Strasbourg, France
| | - Pierre Olivier Lang
- Health and Wellbeing Academy, Anglia Ruskin University, Cambridge, United Kingdom; Geriatric and Rehabilitation Geriatric Division, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| |
Collapse
|
90
|
Marques EA, Figueiredo P, Harris TB, Wanderley FA, Carvalho J. Are resistance and aerobic exercise training equally effective at improving knee muscle strength and balance in older women? Arch Gerontol Geriatr 2016; 68:106-112. [PMID: 27764726 DOI: 10.1016/j.archger.2016.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/28/2016] [Accepted: 10/04/2016] [Indexed: 12/25/2022]
Abstract
This study aimed to compare the magnitude of knee muscle strength and static and dynamic balance change in response to 8 months of progressive RE and AE training in healthy community-dwelling older women. A secondary aim was to assess the relationship between muscle strength and balance changes (up and go test (UGT), one-leg stance test, and center of pressure measures). This study was a secondary analysis of longitudinal data from a randomized controlled trial, a three-arm intervention study in older women (n=71, mean age 69.0y). The results suggest that both interventions elicited likely to almost certain improvements (using magnitude-based inference) in balance performance. Leg strength was improved after RE whereas it was unclear following AE. Improvements in strength were almost certainly moderate after RE and possibly trivial after AE, with very likely greater improvements following RE compared to AE. A large and significant negative correlation (r=-0.5; CI 90%: -0.7 to -0.2) was found between ΔUGT and change in both knee extension and knee flexion strength after 8-month RE. In conclusion, our results showed that both types of training improve balance, but RE was also effective at improving leg strength. In addition, improvements in both knee extension and flexion strength after RE appear to make an important contribution to meaningful improvements in static and dynamic balance.
Collapse
Affiliation(s)
- Elisa A Marques
- National Institute on Aging, Intramural Research Program, Laboratory of Epidemiology and Population Sciences, Bethesda, MD, USA; Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, University Institute of Maia, ISMAI, Portugal.
| | - Pedro Figueiredo
- Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, University Institute of Maia, ISMAI, Portugal; Department of Kinesiology, University of Maryland, College Park, USA
| | - Tamara B Harris
- National Institute on Aging, Intramural Research Program, Laboratory of Epidemiology and Population Sciences, Bethesda, MD, USA
| | | | - Joana Carvalho
- Research Centre in Physical Activity, Health and Leisure, CIAFEL, Faculty of Sport, University of Porto, Portugal
| |
Collapse
|
91
|
Tromm CB, Pozzi BG, Paganini CS, Marques SO, Pedroso GS, Souza PS, Silveira PCL, Silva LA, De Souza CT, Pinho RA. The role of continuous versus fractionated physical training on muscle oxidative stress parameters and calcium-handling proteins in aged rats. Aging Clin Exp Res 2016; 28:833-41. [PMID: 26620674 DOI: 10.1007/s40520-015-0501-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/13/2015] [Indexed: 12/13/2022]
Abstract
Age-associated decline in skeletal muscle mass and strength is associated with oxidative stress and Ca(2+) homeostasis disturbance. Exercise should be considered a viable modality to combat aging of skeletal muscle. This study aimed to investigate whether continuous and fractionated training could be useful tools to attenuate oxidative damage and retain calcium-handling proteins. We conducted the study using 24-month-old male Wistar rats, divided into control, continuous, and fractionated groups. Animals ran at 13 m min(-1) for five consecutive days (except weekends) for 6 weeks, for a total period of 42 days. Each session comprised 45 min of exercise, either continuous or divided into three daily sessions of 15 min each. Metabolic and oxidative stress markers, protein levels of mitochondrial transcription factors, and calcium-handling proteins were analyzed. Continuous exercise resulted in reduced ROS production as well as showed a decrease in TBARS levels and carbonyl content. On the other hand, fractionated training increased the antioxidant enzyme activities. The ryanodine receptor and phospholamban protein were regulated by continuous training while sodium calcium exchange protein was increased by the fractionated training. These data suggest that intracellular Ca(2+) can be modulated by various training stimuli. In addition, the modulation of oxidative stress by continuous and fractionated training may play an important regulatory role in the muscular contraction mechanism of aged rats, due to changes in calcium metabolism.
Collapse
Affiliation(s)
- Camila B Tromm
- Laboratory of Exercise Biochemistry and Physiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105 Bairro Universitário, Criciúma, SC, 88806-000, Brazil
| | - Bruna G Pozzi
- Laboratory of Exercise Biochemistry and Physiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105 Bairro Universitário, Criciúma, SC, 88806-000, Brazil
| | - Carla S Paganini
- Laboratory of Exercise Biochemistry and Physiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105 Bairro Universitário, Criciúma, SC, 88806-000, Brazil
| | - Scherolin O Marques
- Laboratory of Exercise Biochemistry and Physiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105 Bairro Universitário, Criciúma, SC, 88806-000, Brazil
| | - Giulia S Pedroso
- Laboratory of Exercise Biochemistry and Physiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105 Bairro Universitário, Criciúma, SC, 88806-000, Brazil
| | - Priscila S Souza
- Laboratory of Exercise Biochemistry and Physiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105 Bairro Universitário, Criciúma, SC, 88806-000, Brazil
| | - Paulo C L Silveira
- Laboratory of Exercise Biochemistry and Physiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105 Bairro Universitário, Criciúma, SC, 88806-000, Brazil
| | - Luciano A Silva
- Laboratory of Exercise Biochemistry and Physiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105 Bairro Universitário, Criciúma, SC, 88806-000, Brazil
| | - Claudio T De Souza
- Laboratory of Exercise Biochemistry and Physiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105 Bairro Universitário, Criciúma, SC, 88806-000, Brazil
| | - Ricardo A Pinho
- Laboratory of Exercise Biochemistry and Physiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105 Bairro Universitário, Criciúma, SC, 88806-000, Brazil.
| |
Collapse
|
92
|
Angulo J, El Assar M, Rodríguez-Mañas L. Frailty and sarcopenia as the basis for the phenotypic manifestation of chronic diseases in older adults. Mol Aspects Med 2016; 50:1-32. [PMID: 27370407 DOI: 10.1016/j.mam.2016.06.001] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/18/2016] [Indexed: 12/13/2022]
Abstract
Frailty is a functional status that precedes disability and is characterized by decreased functional reserve and increased vulnerability. In addition to disability, the frailty phenotype predicts falls, institutionalization, hospitalization and mortality. Frailty is the consequence of the interaction between the aging process and some chronic diseases and conditions that compromise functional systems and finally produce sarcopenia. Many of the clinical manifestations of frailty are explained by sarcopenia which is closely related to poor physical performance. Reduced regenerative capacity, malperfusion, oxidative stress, mitochondrial dysfunction and inflammation compose the sarcopenic skeletal muscle alterations associated to the frailty phenotype. Inflammation appears as a common determinant for chronic diseases, sarcopenia and frailty. The strategies to prevent the frailty phenotype include an adequate amount of physical activity and exercise as well as pharmacological interventions such as myostatin inhibitors and specific androgen receptor modulators. Cell response to stress pathways such as Nrf2, sirtuins and klotho could be considered as future therapeutic interventions for the management of frailty phenotype and aging-related chronic diseases.
Collapse
Affiliation(s)
- Javier Angulo
- Unidad de Investigación Cardiovascular (IRYCIS/UFV), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Mariam El Assar
- Instituto de Investigación Sanitaria de Getafe, Getafe, Madrid, Spain
| | | |
Collapse
|
93
|
Kenny GP, Groeller H, McGinn R, Flouris AD. Age, human performance, and physical employment standards. Appl Physiol Nutr Metab 2016; 41:S92-S107. [DOI: 10.1139/apnm-2015-0483] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The proportion of older workers has increased substantially in recent years, with over 25% of the Canadian labour force aged ≥55 years. Along with chronological age comes age-related declines in functional capacity associated with impairments to the cardiorespiratory and muscular systems. As a result, older workers are reported to exhibit reductions in work output and in the ability to perform and/or sustain the required effort when performing work tasks. However, research has presented some conflicting views on the consequences of aging in the workforce, as physically demanding occupations can be associated with improved or maintained physical function. Furthermore, the current methods for evaluating physical function in older workers often lack specificity and relevance to the actual work tasks, leading to an underestimation of physical capacity in the older worker. Nevertheless, industry often lacks the appropriate information and/or tools to accommodate the aging workforce, particularly in the context of physical employment standards. Ultimately, if appropriate workplace strategies and work performance standards are adopted to optimize the strengths and protect against the vulnerability of the aging workers, they can perform as effectively as their younger counterparts. Our aim in this review is to evaluate the impact of different individual (including physiological decline, chronic disease, lifestyle, and physical activity) and occupational (including shift work, sleep deprivation, and cold/heat exposure) factors on the physical decline of older workers, and therefore the risk of work-related injuries or illness.
Collapse
Affiliation(s)
- Glen P. Kenny
- Human Environmental Physiological Research Unit, Faculty of Health Sciences, University of Ottawa, ON K1N 6N5, Canada
| | - Herbert Groeller
- Centre for Human and Applied Physiology, School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Ryan McGinn
- Human Environmental Physiological Research Unit, Faculty of Health Sciences, University of Ottawa, ON K1N 6N5, Canada
| | - Andreas D. Flouris
- Human Environmental Physiological Research Unit, Faculty of Health Sciences, University of Ottawa, ON K1N 6N5, Canada
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece
| |
Collapse
|
94
|
Growing older with health and vitality: a nexus of physical activity, exercise and nutrition. Biogerontology 2016; 17:529-46. [PMID: 26878863 PMCID: PMC4889705 DOI: 10.1007/s10522-016-9637-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 02/02/2016] [Indexed: 02/07/2023]
Abstract
The preservation of skeletal muscle mass and strength with advancing age are, we propose, critical aspects of ageing with health and vitality. Physical inactivity and poor nutrition are known to accelerate the gradual age-related decline in muscle mass and strength—sarcopenia—however, both are subject to modification. The main purpose of this review is to present the latest, evidence-based recommendations for physical activity and exercise, as well as diet for older adults that would help in preserving muscle mass and strength. We take the position that future physical activity/exercise guidelines need to make specific reference to resistance exercise and highlight the benefits of higher-intensity aerobic exercise training, alongside advocating older adults perform aerobic-based physical activity and household tasks (e.g., carrying groceries). In terms of dietary recommendations, greater emphasis should be placed on optimal rather than minimum protein intakes for older adults. Indeed, guidelines that endorse a daily protein intake of 1.2–1.5 g/kg BM/day, which are levels 50–90 % greater than the current protein Recommendation Dietary Allowance (0.8 g/kg BM/day), are likely to help preserve muscle mass and strength and are safe for healthy older adults. Being cognisant of factors (e.g., reduced appetite) that may preclude older adults from increasing their total daily protein intake, we echo the viewpoint of other active researchers in advocating that protein recommendations for older adults be based on a per meal approach in order to maximize muscle protein synthesis (MPS). On this basis, assuming three meals are consumed daily, a protein dose of 0.4–0.5 g/kg BM should be contained in each meal. We are beginning to understand ways in which to increase the utilization of ingested protein for the stimulation of MPS, namely by increasing the proportion of leucine contained in a given dose of protein, co-ingesting other nutrients (e.g., carbohydrate and fat or supplementation with n-3 polyunsaturated fatty acids) or being physically active prior to protein intake. Clearly, developing simple lifestyle interventions targeted at preserving muscle mass and strength with advancing age is crucial for facilitating longer, healthier lives into older age.
Collapse
|
95
|
Zeng P, Han Y, Pang J, Wu S, Gong H, Zhu J, Li J, Zhang T. Sarcopenia-related features and factors associated with lower muscle strength and physical performance in older Chinese: a cross sectional study. BMC Geriatr 2016; 16:45. [PMID: 26879964 PMCID: PMC4754915 DOI: 10.1186/s12877-016-0220-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 02/04/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The associations of sarcopenia with adverse health status have highlighted the importance of sarcopenia research and intervention. This study was designed to analyze the characteristics of aging-related differences in appendicular skeletal muscle mass (ASM), handgrip strength (HS), gait speed (GS) and their associated factors in older Chinese, in order to generate guidance for sarcopenia intervention in this population. METHODS Population-based cross-sectional study. The criteria proposed by Asian Working Group for Sarcopenia were used to define low ASM, HS, and GS. The time required for five repeated chair stands (RCS) was also measured to evaluate physical performance. The differences of continuous variables were compared using one-way ANOVA tests and the Pearson correlation was used to analyze the relationship of each measurement adjusted by gender and age. Stepwise logistic regression was used to determine associated factors of low HS and low physical performance. RESULTS The data were analyzed in a total of 218 younger adults (aged 20-59, 76 males, 142 females) and 461 older adults (≥60 year, 207 males and 254 females). There were significant differences among age groups for HS, GS, and RCS while females were found to have significantly lower HS and GS values. ASM was significantly correlated with HS but not with other measures. Correlations among HS and GS, RCS were influenced by age differences. In the older group, unstructured daily routine (OR = 2.77) was associated with the risk of low GS, while physical exercise (OR = 0.27), and engaging in hobbies (OR = 0.11) were associated with faster GS. Co-morbidity (OR = 1.99) was associated with the risk of reduced performance of RCS, while engaging in hobbies was associated with faster RCS performance (OR = 0.35). CONCLUSIONS Muscle strength and physical performance varied with aging in older Chinese. Measures of GS, HS, and RCS provide a readily available and effective method for assessing the risk of functional mobility decline. Maintaining a healthy life style and physical activity throughout life is beneficial for older people to improve their physical performance, especially in the early stages of aging.
Collapse
Affiliation(s)
- Ping Zeng
- The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing, 100730, China.
| | - Yiwen Han
- The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing, 100730, China.
| | - Jing Pang
- The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing, 100730, China.
| | - Sinan Wu
- The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing, 100730, China.
| | - Huan Gong
- The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing, 100730, China.
| | - Jianguo Zhu
- The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing, 100730, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing, 100730, China.
| | - Tiemei Zhang
- The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing, 100730, China.
| |
Collapse
|
96
|
McLeod M, Breen L, Hamilton DL, Philp A. Live strong and prosper: the importance of skeletal muscle strength for healthy ageing. Biogerontology 2016; 17:497-510. [PMID: 26791164 PMCID: PMC4889643 DOI: 10.1007/s10522-015-9631-7] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/22/2015] [Indexed: 12/19/2022]
Abstract
Due to improved health care, diet and infrastructure in developed countries, since 1840 life expectancy has increased by approximately 2 years per decade. Accordingly, by 2050, a quarter of Europe’s population will be over 65 years, representing a 10 % rise in half a century. With this rapid rise comes an increased prevalence of diseases of ageing and associated healthcare expenditure. To address the health consequences of global ageing, research in model systems (worms, flies and mice) has indicated that reducing the rate of organ growth, via reductions in protein synthetic rates, has multi-organ health benefits that collectively lead to improvements in lifespan. In contrast, human pre-clinical, clinical and large cohort prospective studies demonstrate that ageing leads to anabolic (i.e. growth) impairments in skeletal muscle, which in turn leads to reductions in muscle mass and strength, factors directly associated with mortality rates in the elderly. As such, increasing muscle protein synthesis via exercise or protein-based nutrition maintains a strong, healthy muscle mass, which in turn leads to improved health, independence and functionality. The aim of this review is to critique current literature relating to the maintenance of muscle mass across lifespan and discuss whether maintaining or reducing protein synthesis is the most logical approach to support musculoskeletal function and by extension healthy human ageing.
Collapse
Affiliation(s)
- Michael McLeod
- MRC-ARUK Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, B15 2TT, UK.,School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Leigh Breen
- MRC-ARUK Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, B15 2TT, UK.,School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | | | - Andrew Philp
- MRC-ARUK Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, B15 2TT, UK. .,School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
97
|
Brook MS, Wilkinson DJ, Phillips BE, Perez-Schindler J, Philp A, Smith K, Atherton PJ. Skeletal muscle homeostasis and plasticity in youth and ageing: impact of nutrition and exercise. Acta Physiol (Oxf) 2016; 216:15-41. [PMID: 26010896 PMCID: PMC4843955 DOI: 10.1111/apha.12532] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/10/2014] [Accepted: 05/18/2015] [Indexed: 12/18/2022]
Abstract
Skeletal muscles comprise a substantial portion of whole body mass and are integral for locomotion and metabolic health. Increasing age is associated with declines in both muscle mass and function (e.g. strength‐related performance, power) with declines in muscle function quantitatively outweighing those in muscle volume. The mechanisms behind these declines are multi‐faceted involving both intrinsic age‐related metabolic dysregulation and environmental influences such as nutritional and physical activity. Ageing is associated with a degree of ‘anabolic resistance’ to these key environmental inputs, which likely accelerates the intrinsic processes driving ageing. On this basis, strategies to sensitize and/or promote anabolic responses to nutrition and physical activity are likely to be imperative in alleviating the progression and trajectory of sarcopenia. Both resistance‐ and aerobic‐type exercises are likely to confer functional and health benefits in older age, and a clutch of research suggests that enhancement of anabolic responsiveness to exercise and/or nutrition may be achieved by optimizing modifications of muscle‐loading paradigms (workload, volume, blood flow restriction) or nutritional support (e.g. essential amino acid/leucine) patterns. Nonetheless, more work is needed in which a more holistic view in ageing studies is taken into account. This should include improved characterization of older study recruits, that is physical activity/nutritional behaviours, to limit confounding variables influencing whether findings are attributable to age, or other environmental influences. Nonetheless, on balance, ageing is associated with declines in muscle mass and function and a partially related decline in aerobic capacity. There is also good evidence that metabolic flexibility is impaired in older age.
Collapse
Affiliation(s)
- M. S. Brook
- MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, Clinical Metabolic and Molecular Physiology; University of Nottingham; Royal Derby Hospital Centre; Derby UK
| | - D. J. Wilkinson
- MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, Clinical Metabolic and Molecular Physiology; University of Nottingham; Royal Derby Hospital Centre; Derby UK
| | - B. E. Phillips
- MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, Clinical Metabolic and Molecular Physiology; University of Nottingham; Royal Derby Hospital Centre; Derby UK
| | - J. Perez-Schindler
- MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, School of Sport, Exercise and Rehabilitation Sciences; University of Birmingham; Birmingham UK
| | - A. Philp
- MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, School of Sport, Exercise and Rehabilitation Sciences; University of Birmingham; Birmingham UK
| | - K. Smith
- MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, Clinical Metabolic and Molecular Physiology; University of Nottingham; Royal Derby Hospital Centre; Derby UK
| | - P. J. Atherton
- MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, Clinical Metabolic and Molecular Physiology; University of Nottingham; Royal Derby Hospital Centre; Derby UK
| |
Collapse
|
98
|
Bouaziz W, Schmitt E, Kaltenbach G, Geny B, Vogel T. Health benefits of cycle ergometer training for older adults over 70: a review. Eur Rev Aging Phys Act 2015; 12:8. [PMID: 26865872 PMCID: PMC4748329 DOI: 10.1186/s11556-015-0152-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 10/22/2015] [Indexed: 11/18/2022] Open
Abstract
As the number of older adults continues to increase worldwide, more attention is being paid to geriatric health care needs, and successful ageing is becoming an important topic in the medical literature. A preventive approach to the care of older adults is thus a priority in our aging societies. The purpose of this study was to update evidence for the health benefits of cycle ergometer training for older adults over 70. We searched online electronic databases up to September 2014 for original observational and intervention studies on the relationship between cycle ergometer training and health among older patients over 70. Twenty-five studies examined interventions aimed specifically at promoting cycling for older adults over 70. These studies reported a positive effect on the prevention of cardiovascular disease, and a significant improvement in metabolic responses. Improving functional status, muscle strength and cognitive performance are also well established. Overall, this review demonstrates a positive effect of cycle ergometer training with functional benefits and positive health outcomes for older adults over 70. Based on this evidence, clinicians can now encourage older adults to profit from the health benefits of cycle ergometer training to be able to pursue their daily activities independently.
Collapse
Affiliation(s)
- Walid Bouaziz
- Geriatric Department, University Hospital, Strasbourg, France ; Department of Physiology and EA-3072, Faculty of Medicine, Strasbourg University, Strasbourg, France
| | - Elise Schmitt
- Geriatric Department, University Hospital, Strasbourg, France ; Department of Physiology and EA-3072, Faculty of Medicine, Strasbourg University, Strasbourg, France
| | | | - Bernard Geny
- Department of Physiology and EA-3072, Faculty of Medicine, Strasbourg University, Strasbourg, France ; Functional Explorations Department, University Hospital, Strasbourg, France
| | - Thomas Vogel
- Geriatric Department, University Hospital, Strasbourg, France ; Department of Physiology and EA-3072, Faculty of Medicine, Strasbourg University, Strasbourg, France
| |
Collapse
|
99
|
Olsson K, Cheng AJ, Alam S, Al-Ameri M, Rullman E, Westerblad H, Lanner JT, Bruton JD, Gustafsson T. Intracellular Ca(2+)-handling differs markedly between intact human muscle fibers and myotubes. Skelet Muscle 2015; 5:26. [PMID: 26301072 PMCID: PMC4545874 DOI: 10.1186/s13395-015-0050-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/21/2015] [Indexed: 12/14/2022] Open
Abstract
Background In skeletal muscle, intracellular Ca2+ is an important regulator of contraction as well as gene expression and metabolic processes. Because of the difficulties to obtain intact human muscle fibers, human myotubes have been extensively employed for studies of Ca2+-dependent processes in human adult muscle. Despite this, it is unknown whether the Ca2+-handling properties of myotubes adequately represent those of adult muscle fibers. Methods To enable a comparison of the Ca2+-handling properties of human muscle fibers and myotubes, we developed a model of dissected intact single muscle fibers obtained from human intercostal muscle biopsies. The intracellular Ca2+-handling of human muscle fibers was compared with that of myotubes generated by the differentiation of primary human myoblasts obtained from vastus lateralis muscle biopsies. Results The intact single muscle fibers all demonstrated strictly regulated cytosolic free [Ca2+] ([Ca2+]i) transients and force production upon electrical stimulation. In contrast, despite a more mature Ca2+-handling in myotubes than in myoblasts, myotubes lacked fundamental aspects of adult Ca2+-handling and did not contract. These functional differences were explained by discrepancies in the quantity and localization of Ca2+-handling proteins, as well as ultrastructural differences between muscle fibers and myotubes. Conclusions Intact single muscle fibers that display strictly regulated [Ca2+]i transients and force production upon electrical stimulation can be obtained from human intercostal muscle biopsies. In contrast, human myotubes lack important aspects of adult Ca2+-handling and are thus an inappropriate model for human adult muscle when studying Ca2+-dependent processes, such as gene expression and metabolic processes. Electronic supplementary material The online version of this article (doi:10.1186/s13395-015-0050-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karl Olsson
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, 141 86 Sweden ; Department of Physiology and Pharmacology, Karolinska Institutet, von Eulers väg 8, Stockholm, 171 77 Sweden
| | - Arthur J Cheng
- Department of Physiology and Pharmacology, Karolinska Institutet, von Eulers väg 8, Stockholm, 171 77 Sweden
| | - Seher Alam
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, 141 86 Sweden
| | - Mamdoh Al-Ameri
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, 171 76 Sweden
| | - Eric Rullman
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, 141 86 Sweden
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, von Eulers väg 8, Stockholm, 171 77 Sweden
| | - Johanna T Lanner
- Department of Physiology and Pharmacology, Karolinska Institutet, von Eulers väg 8, Stockholm, 171 77 Sweden
| | - Joseph D Bruton
- Department of Physiology and Pharmacology, Karolinska Institutet, von Eulers väg 8, Stockholm, 171 77 Sweden
| | - Thomas Gustafsson
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, 141 86 Sweden
| |
Collapse
|
100
|
Zuliani G, Soavi C, Maggio M, De Vita F, Cherubini A, Volpato S. Counteracting inflammation and insulin resistance with diet and exercise: A strategy for frailty prevention? Eur Geriatr Med 2015. [DOI: 10.1016/j.eurger.2014.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|