51
|
Yang BY, Qian ZM, Vaughn MG, Nelson EJ, Dharmage SC, Heinrich J, Lin S, Lawrence WR, Ma H, Chen DH, Hu LW, Zeng XW, Xu SL, Zhang C, Dong GH. Is prehypertension more strongly associated with long-term ambient air pollution exposure than hypertension? Findings from the 33 Communities Chinese Health Study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 229:696-704. [PMID: 28711568 DOI: 10.1016/j.envpol.2017.07.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/05/2017] [Indexed: 06/07/2023]
Abstract
Numerous studies have evaluated the effects of long-term exposure to ambient air pollution on hypertension. However, little information exists regarding its effects on prehypertension, a very common, but understudied cardiovascular indicator. We evaluated data from 24,845 adults (ages 18-74 years) living in three Northeastern Chinese cities in 2009. Blood pressure (BP) was measured by trained observers using a standardized mercuric-column sphygmomanometer. Three-year (from 2006 to 2008) average concentrations of particles with an aerodynamic diameter ≤10 μm (PM10), sulfur dioxide (SO2), nitrogen dioxides (NO2), and ozone (O3) were calculated using data from monitoring stations. Effects were analyzed using generalized additive models and two-level regression analyses, controlling for covariates. We found positive associations of all pollutants with prehypertension (e.g. odds ratio (OR) was 1.17 (95% confidence interval (CI), 1.09-1.25) per interquartile range (IQR) of PM10) in a fully adjusted model, as compared to normotensive participants. These associations were stronger than associations with hypertension (e.g. OR was 1.03 (95% CI, 1.00, 1.07) per IQR of PM10). We have also found positive associations of all studied pollutants with systolic and diastolic BP: e.g., associations with PM10 per IQR were 1.24 mmHg (95% CI, 1.03-1.45) for systolic BP and 0.47 mmHg (95% CI, 0.33-0.61) for diastolic BP. Further, we observed that associations with BP were stronger in women and in older participants (systolic BP only). In conclusion, long-term exposure to ambient air pollution was more strongly associated with prehypertension than with hypertension, especially among females and the elderly. Thus, interventions to reduce air pollution are of great significance for preventing future cardiovascular events, particularly among individuals with prehypertension.
Collapse
Affiliation(s)
- Bo-Yi Yang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhengmin Min Qian
- Department of Epidemiology, College for Public Health and Social Justice, Saint Louis University, Saint Louis 63104, USA
| | - Michael G Vaughn
- School of Social Work, College for Public Health and Social Justice, Saint Louis University, Saint Louis 63104, USA
| | - Erik J Nelson
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - Shyamali C Dharmage
- Allergy and Lung Health Unit, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Vic 3052, Australia
| | - Joachim Heinrich
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Clinical Center, Ludwig Maximilian University, Comprehensive Pneumology Centre Munich, German Centre for Lung Research, Muenchen 80336, Germany
| | - Shao Lin
- Department of Epidemiology and Biostatistics, School of Public Health, State University of New York, New York 12144-3445, USA
| | - Wayne R Lawrence
- Department of Epidemiology and Biostatistics, School of Public Health, State University of New York, New York 12144-3445, USA
| | - Huimin Ma
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Duo-Hong Chen
- Department of Air Quality Forecasting and Early Warning, Guangdong Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangdong Environmental Protection Key Laboratory of Atmospheric Secondary Pollution, Guangzhou 510308, China
| | - Li-Wen Hu
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shu-Li Xu
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Chuan Zhang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Guang-Hui Dong
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
52
|
Dugernier J, Hesse M, Jumetz T, Bialais E, Roeseler J, Depoortere V, Michotte JB, Wittebole X, Ehrmann S, Laterre PF, Jamar F, Reychler G. Aerosol Delivery with Two Nebulizers Through High-Flow Nasal Cannula: A Randomized Cross-Over Single-Photon Emission Computed Tomography-Computed Tomography Study. J Aerosol Med Pulm Drug Deliv 2017; 30:349-358. [PMID: 28463044 DOI: 10.1089/jamp.2017.1366] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND High-flow nasal cannula use is developing in ICUs. The aim of this study was to compare aerosol efficiency by using two nebulizers through a high-flow nasal cannula: the most commonly used jet nebulizer (JN) and a more efficient vibrating-mesh nebulizer (VN). METHODS Aerosol delivery of diethylenetriaminepentaacetic acid labeled with technetium-99m (4 mCi/4 mL) to the lungs by using a VN (Aerogen Solo®; Aerogen Ltd., Galway, Ireland) and a constant-output JN (Opti-Mist Plus Nebulizer®; ConvaTec, Bridgewater, NJ) through a high-flow nasal cannula (Optiflow®; Fisher & Paykel, New Zealand) was compared in six healthy subjects. Flow rate was set at 30 L/min through the heated humidified circuit. Pulmonary and extrapulmonary deposition was measured by single-photon emission computed tomography combined with a low-dose computed tomographic scan and by planar scintigraphy. RESULTS Lung deposition was only 3.6 (2.1-4.4) and 1 (0.7-2)% of the nominal dose with the VN and the JN, respectively (p < 0.05). The JN showed higher retained doses than the VN. However, both nebulizers were associated with substantial deposition in the single limb circuit, the humidification chamber, and the nasal cannula [58.2 (51.6-61.6)% of the nominal dose with the VN versus 19.2 (15.8-22.9)% of the nominal dose with the JN, p < 0.05] and in the upper respiratory tract [17.6 (13.4-27.9)% of the nominal dose with the VN and 8.6 (6.0-11.0)% of the nominal dose with the JN, p < 0.05], especially in the nasal cavity. CONCLUSIONS In the specific conditions of the study, pulmonary drug delivery through the high-flow nasal cannula is about 1%-4% of the initial amount of drugs placed in the nebulizer, despite the higher efficiency of the VN as compared with the JN.
Collapse
Affiliation(s)
- Jonathan Dugernier
- 1 Institut de Recherche Expérimentale et Clinique (IREC), Pneumologie, ORL and Dermatologie, Cliniques Universitaires Saint-Luc , Brussels, Belgium .,2 Soins Intensifs, Cliniques Universitaires Saint-Luc , Brussels, Belgium .,3 Médecine Physique, Cliniques Universitaires Saint-Luc , Brussels, Belgium
| | - Michel Hesse
- 4 Médecine Nucléaire, Cliniques Universitaires Saint-Luc , Brussels, Belgium
| | | | - Emilie Bialais
- 1 Institut de Recherche Expérimentale et Clinique (IREC), Pneumologie, ORL and Dermatologie, Cliniques Universitaires Saint-Luc , Brussels, Belgium .,2 Soins Intensifs, Cliniques Universitaires Saint-Luc , Brussels, Belgium .,3 Médecine Physique, Cliniques Universitaires Saint-Luc , Brussels, Belgium
| | - Jean Roeseler
- 2 Soins Intensifs, Cliniques Universitaires Saint-Luc , Brussels, Belgium
| | - Virginie Depoortere
- 4 Médecine Nucléaire, Cliniques Universitaires Saint-Luc , Brussels, Belgium
| | - Jean-Bernard Michotte
- 5 Haute Ecole de Santé Vaud, Filière Physiothérapie, University of Applied Sciences and Arts Western Switzerland , Lausanne, Switzerland
| | - Xavier Wittebole
- 2 Soins Intensifs, Cliniques Universitaires Saint-Luc , Brussels, Belgium
| | - Stephan Ehrmann
- 6 Université François Rabelais , Tours, France .,7 INSERM, Centre d'étude des Pathologies Respiratoires , Tours, France .,8 CHRU de Tours, Réanimation Polyvalente , Tours, France
| | | | - François Jamar
- 4 Médecine Nucléaire, Cliniques Universitaires Saint-Luc , Brussels, Belgium
| | - Gregory Reychler
- 1 Institut de Recherche Expérimentale et Clinique (IREC), Pneumologie, ORL and Dermatologie, Cliniques Universitaires Saint-Luc , Brussels, Belgium .,3 Médecine Physique, Cliniques Universitaires Saint-Luc , Brussels, Belgium .,9 Pneumologie, Cliniques Universitaires Saint-Luc , Brussels, Belgium
| |
Collapse
|
53
|
A Systematic Review of Global Desert Dust and Associated Human Health Effects. ATMOSPHERE 2016. [DOI: 10.3390/atmos7120158] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
54
|
Liu R, Young MT, Chen JC, Kaufman JD, Chen H. Ambient Air Pollution Exposures and Risk of Parkinson Disease. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:1759-1765. [PMID: 27285422 PMCID: PMC5089873 DOI: 10.1289/ehp135] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 02/29/2016] [Accepted: 05/20/2016] [Indexed: 05/06/2023]
Abstract
BACKGROUND Few epidemiologic studies have evaluated the effects of air pollution on the risk of Parkinson disease (PD). OBJECTIVE We investigated the associations of long-term residential concentrations of ambient particulate matter (PM) < 10 μm in diameter (PM10) and < 2.5 μm in diameter (PM2.5) and nitrogen dioxide (NO2) in relation to PD risk. METHODS Our nested case-control analysis included 1,556 self-reported physician-diagnosed PD cases identified between 1995 and 2006 and 3,313 controls frequency-matched on age, sex, and race. We geocoded home addresses reported in 1995-1996 and estimated the average ambient concentrations of PM10, PM2.5, and NO2 using a national fine-scale geostatistical model incorporating roadway information and other geographic covariates. Air pollutant exposures were analyzed as both quintiles and continuous variables, adjusting for matching variables and potential confounders. RESULTS We observed no statistically significant overall association between PM or NO2 exposures and PD risk. However, in preplanned subgroup analyses, a higher risk of PD was associated with higher exposure to PM10 (ORQ5 vs. Q1 = 1.65; 95% CI: 1.11, 2.45; p-trend = 0.02) among women, and with higher exposure to PM2.5 (ORQ5 vs. Q1 = 1.29; 95% CI: 0.94, 1.76; p-trend = 0.04) among never smokers. In post hoc analyses among female never smokers, both PM2.5 (ORQ5 vs. Q1 = 1.79; 95% CI: 1.01, 3.17; p-trend = 0.05) and PM10 (ORQ5 vs. Q1 = 2.34; 95% CI: 1.29, 4.26; p-trend = 0.01) showed positive associations with PD risk. Analyses based on continuous exposure variables generally showed similar but nonsignificant associations. CONCLUSIONS Overall, we found limited evidence for an association between exposures to ambient PM10, PM2.5, or NO2 and PD risk. The suggestive evidence that exposures to PM2.5 and PM10 may increase PD risk among female never smokers warrants further investigation. Citation: Liu R, Young MT, Chen JC, Kaufman JD, Chen H. 2016. Ambient air pollution exposures and risk of Parkinson disease. Environ Health Perspect 124:1759-1765; http://dx.doi.org/10.1289/EHP135.
Collapse
Affiliation(s)
- Rui Liu
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Michael T. Young
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Jiu-Chiuan Chen
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Address correspondence to H. Chen, Epidemiology Branch, National Institute of Environmental Health Sciences, 111 T.W. Alexander Dr., P.O. Box 12233, Mail drop A3–05, Research Triangle Park, NC 27709 USA. Telephone: (919) 541-3782. E-mail:
| | - Joel D. Kaufman
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA
- Department of Environmental and Occupational Health Sciences, and
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Honglei Chen
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
- Address correspondence to H. Chen, Epidemiology Branch, National Institute of Environmental Health Sciences, 111 T.W. Alexander Dr., P.O. Box 12233, Mail drop A3–05, Research Triangle Park, NC 27709 USA. Telephone: (919) 541-3782. E-mail:
| |
Collapse
|
55
|
Borghardt JM, Weber B, Staab A, Kunz C, Kloft C. Model-based evaluation of pulmonary pharmacokinetics in asthmatic and COPD patients after oral olodaterol inhalation. Br J Clin Pharmacol 2016; 82:739-53. [PMID: 27145733 PMCID: PMC5338120 DOI: 10.1111/bcp.12999] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 04/08/2016] [Accepted: 04/28/2016] [Indexed: 12/11/2022] Open
Abstract
AIMS Olodaterol is an orally inhaled β2 -agonist for treatment of chronic obstructive pulmonary disease (COPD). The aims of this population pharmacokinetic (PK) analysis were: (1) to investigate systemic PK and thereby make inferences about pulmonary PK in asthmatic patients, COPD patients and healthy volunteers, and (2) to assess whether differences in pulmonary efficacy might be expected based on pulmonary PK characteristics. METHODS Plasma and urine data after olodaterol inhalation were available from six clinical trials comprising 710 patients and healthy volunteers (single and multiple dosing). To investigate the relevance of covariates, full fixed-effect modelling was applied based on a previously developed healthy volunteer systemic disposition model. RESULTS A pulmonary model with three parallel absorption processes best described PK after inhalation in patients. The pulmonary bioavailable fraction (PBIO) was 48.7% (46.1-51.3%, 95% confidence interval) in asthma, and 53.6% (51.1-56.2%) in COPD. In asthma 87.2% (85.4-88.8%) of PBIO was slowly absorbed with an absorption half-life of 18.5 h (16.3-21.4 h), whereas in COPD 80.1% (78.0-82.2%) was absorbed with a half-life of 37.8 h (31.1-47.8 h). In healthy volunteers absorption was faster, with a half-life of 18.5 h (16.3-21.4 h) of the slowest absorbed process, which characterized 74.6% (69.1-80.2%) of PBIO. CONCLUSIONS The modelling approach successfully described data after olodaterol inhalation in patients and healthy volunteers. Slow pulmonary absorption was demonstrated both in asthma and COPD. Absorption characteristics after olodaterol inhalation indicated even more beneficial lung targeting in patients compared to healthy volunteers.
Collapse
Affiliation(s)
- Jens Markus Borghardt
- Institute of Pharmacy, Department of Clinical Pharmacy and BiochemistryFreie Universität Berlin12169BerlinGermany
- Translational Medicine and Clinical PharmacologyBoehringer Ingelheim Pharma GmbH & Co. KGBiberachGermany
| | - Benjamin Weber
- Translational Medicine and Clinical PharmacologyBoehringer Ingelheim Pharma GmbH & Co. KGBiberachGermany
| | - Alexander Staab
- Translational Medicine and Clinical PharmacologyBoehringer Ingelheim Pharma GmbH & Co. KGBiberachGermany
| | - Christina Kunz
- Translational Medicine and Clinical PharmacologyBoehringer Ingelheim Pharma GmbH & Co. KGBiberachGermany
| | - Charlotte Kloft
- Institute of Pharmacy, Department of Clinical Pharmacy and BiochemistryFreie Universität Berlin12169BerlinGermany
| |
Collapse
|
56
|
Kabilan S, Suffield S, Recknagle K, Jacob R, Einstein D, Kuprat A, Carson J, Colby S, Saunders J, Hines S, Teeguarden J, Straub T, Moe M, Taft S, Corley R. Computational fluid dynamics modeling of Bacillus anthracis spore deposition in rabbit and human respiratory airways. JOURNAL OF AEROSOL SCIENCE 2016; 99:64-77. [PMID: 33311732 PMCID: PMC7731948 DOI: 10.1016/j.jaerosci.2016.01.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived respectively from computed tomography (CT) and μCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation-exhalation breathing conditions using average species-specific minute volumes. Two different exposure scenarios were modeled in the rabbit based upon experimental inhalation studies. For comparison, human simulations were conducted at the highest exposure concentration used during the rabbit experimental exposures. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Due to the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the nasal sinus compared to the human at the same air concentration of anthrax spores. In contrast, higher spore deposition was predicted in the lower conducting airways of the human compared to the rabbit lung due to differences in airway branching pattern. This information can be used to refine published and ongoing biokinetic models of inhalation anthrax spore exposures, which currently estimate deposited spore concentrations based solely upon exposure concentrations and inhaled doses that do not factor in species-specific anatomy and physiology for deposition.
Collapse
Affiliation(s)
- S. Kabilan
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MSIN J4-16, Richland, WA 99352, United States
| | - S.R. Suffield
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MSIN J4-16, Richland, WA 99352, United States
| | - K.P. Recknagle
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MSIN J4-16, Richland, WA 99352, United States
| | - R.E. Jacob
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MSIN J4-16, Richland, WA 99352, United States
| | - D.R. Einstein
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MSIN J4-16, Richland, WA 99352, United States
| | - A.P. Kuprat
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MSIN J4-16, Richland, WA 99352, United States
| | - J.P. Carson
- Texas Advanced Computing Center, Austin, TX 78758, United States
| | - S.M Colby
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MSIN J4-16, Richland, WA 99352, United States
| | - J.H. Saunders
- Battelle, 505 King Avenue, Columbus, OH 43201, United States
| | - S.A. Hines
- Battelle, 505 King Avenue, Columbus, OH 43201, United States
| | - J.G. Teeguarden
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MSIN J4-16, Richland, WA 99352, United States
| | - T.M. Straub
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MSIN J4-16, Richland, WA 99352, United States
| | - M. Moe
- Department of Homeland Security, Science and Technology Directorate, Washington, DC 20528, United States
| | - S.C. Taft
- U.S. Environmental Protection Agency, National Homeland Security Research Center, Threat and Consequence Assessment Division, Cincinnati, OH 45268, United States
| | - R.A. Corley
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MSIN J4-16, Richland, WA 99352, United States
| |
Collapse
|
57
|
Borghardt JM, Weber B, Staab A, Kunz C, Formella S, Kloft C. Investigating pulmonary and systemic pharmacokinetics of inhaled olodaterol in healthy volunteers using a population pharmacokinetic approach. Br J Clin Pharmacol 2016; 81:538-52. [PMID: 26348533 PMCID: PMC4767206 DOI: 10.1111/bcp.12780] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/25/2015] [Accepted: 09/04/2015] [Indexed: 12/28/2022] Open
Abstract
AIMS Olodaterol, a novel β2-adrenergic receptor agonist, is a long-acting, once-daily inhaled bronchodilator approved for the treatment of chronic obstructive pulmonary disease. The aim of the present study was to describe the plasma and urine pharmacokinetics of olodaterol after intravenous administration and oral inhalation in healthy volunteers by population pharmacokinetic modelling and thereby to infer its pulmonary fate. METHODS Plasma and urine data after intravenous administration (0.5-25 μg) and oral inhalation (2.5-70 μg via the Respimat® inhaler) were available from a total of 148 healthy volunteers (single and multiple dosing). A stepwise model building approach was applied, using population pharmacokinetic modelling. Systemic disposition parameters were fixed to estimates obtained from intravenous data when modelling data after inhalation. RESULTS A pharmacokinetic model, including three depot compartments with associated parallel first-order absorption processes (pulmonary model) on top of a four-compartment body model (systemic disposition model), was found to describe the data the best. The dose reaching the lung (pulmonary bioavailable fraction) was estimated to be 49.4% [95% confidence interval (CI) 46.1, 52.7%] of the dose released from the device. A large proportion of the pulmonary bioavailable fraction [70.1% (95% CI 66.8, 73.3%)] was absorbed with a half-life of 21.8 h (95% CI 19.7, 24.4 h). CONCLUSIONS The plasma and urine pharmacokinetics of olodaterol after intravenous administration and oral inhalation in healthy volunteers were adequately described. The key finding was that a high proportion of the pulmonary bioavailable fraction had an extended pulmonary residence time. This finding was not expected based on the physicochemical properties of olodaterol.
Collapse
Affiliation(s)
- Jens Markus Borghardt
- Department of Clinical Pharmacy and BiochemistryInstitute of Pharmacy, Freie Universitaet Berlin12169BerlinGermany
- Translational Medicine and Clinical PharmacologyBoehringer Ingelheim Pharma GmbH & Co. KGBiberachGermany
| | - Benjamin Weber
- Translational Medicine and Clinical PharmacologyBoehringer Ingelheim Pharma GmbH & Co. KGBiberachGermany
| | - Alexander Staab
- Translational Medicine and Clinical PharmacologyBoehringer Ingelheim Pharma GmbH & Co. KGBiberachGermany
| | - Christina Kunz
- Translational Medicine and Clinical PharmacologyBoehringer Ingelheim Pharma GmbH & Co. KGBiberachGermany
| | - Stephan Formella
- Medicine CoordinationBoehringer Ingelheim Pharma GmbH & Co. KGIngelheimGermany
| | - Charlotte Kloft
- Department of Clinical Pharmacy and BiochemistryInstitute of Pharmacy, Freie Universitaet Berlin12169BerlinGermany
| |
Collapse
|
58
|
Demoulin-Alexikova S, Plevkova J, Mazurova L, Zatko T, Alexik M, Hanacek J, Tatar M. Impact of Air Pollution on Age and Gender Related Increase in Cough Reflex Sensitivity of Healthy Children in Slovakia. Front Physiol 2016; 7:54. [PMID: 26941651 PMCID: PMC4763033 DOI: 10.3389/fphys.2016.00054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/04/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Numerous studies show higher cough reflex sensitivity (CRS) and cough outcomes in children compared to adults and in females compared to males. Despite close link that exists between cough and environment the potential influence of environmental air pollution on age- and gender -related differences in cough has not been studied yet. PURPOSE The purpose of our study was to analyse whether the effects of exposure to environmental tobacco smoke (ETS) from parental smoking and PM10 from living in urban area are implied in age- and gender-related differences in cough outcomes of healthy, non-asthmatic children. Assessment of CRS using capsaicin and incidence of dry and wet cough was performed in 290 children (mean age 13.3 ± 2.6 years (138 females/152 males). RESULTS CRS was significantly higher in girls exposed to ETS [22.3 μmol/l (9.8-50.2 μmol/l)] compared to not exposed girls [79.9 μmol/l (56.4-112.2 μmol/l), p = 0.02] as well as compared to exposed boys [121.4 μmol/l (58.2-253.1 μmol/l), p = 0.01]. Incidence of dry cough lasting more than 3 weeks was significantly higher in exposed compared to not exposed girls. CRS was significantly higher in school-aged girls living in urban area [22.0 μmol/l (10.6-45.6 μmol/l)] compared to school-aged girls living in rural area [215.9 μmol/l (87.3-533.4 μmol/l); p = 0.003], as well as compared to teenage girls living in urban area [108.8 μmol/l (68.7-172.9 μmol/l); p = 0.007]. No CRS differences were found between urban and rural boys when controlled for age group. No CRS differences were found between school-aged and teenage boys when controlled for living area. CONCLUSIONS Our results have shown that the effect of ETS on CRS was gender specific, linked to female gender and the effect of PM10 on CRS was both gender and age specific, related to female gender and school-age. We suggest that age and gender related differences in incidence of cough and CRS might be, at least partially, ascribed to the effect of environmental pollutants. The role of age and gender in the effect of air pollution on cough strongly suggest some interplay of development with biological and behavioral factors.
Collapse
Affiliation(s)
- Silvia Demoulin-Alexikova
- Department of Pathophysiology, Jessenius Faculty of Medicine in Martin, Comenius University in BratislavaBratislava, Slovakia; Service d'Explorations Fonctionnelles Pédiatriques, Hôpital d'Enfants, Centre Hospitalier Universitaire de NancyVandœuvre-lès-Nancy, France; EA 3450 DevAH - Laboratoire de Physiologie, Faculté de Médecine, Université de LorraineVandœuvre-lès-Nancy, France
| | - Jana Plevkova
- Department of Pathophysiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava Bratislava, Slovakia
| | - Lenka Mazurova
- Department of Pathophysiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava Bratislava, Slovakia
| | - Tomas Zatko
- Department of Pathophysiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava Bratislava, Slovakia
| | - Mikulas Alexik
- Department of Ophthalmology, Faculty Hospital of Žilina Žilina, Slovakia
| | - Jan Hanacek
- Department of Pathophysiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava Bratislava, Slovakia
| | - Milos Tatar
- Department of Pathophysiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava Bratislava, Slovakia
| |
Collapse
|
59
|
Li L, Lin GZ, Liu HZ, Guo Y, Ou CQ, Chen PY. Can the Air Pollution Index be used to communicate the health risks of air pollution? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 205:153-60. [PMID: 26057478 DOI: 10.1016/j.envpol.2015.05.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/10/2015] [Accepted: 05/11/2015] [Indexed: 05/22/2023]
Abstract
The validity of using the Air Pollution Index (API) to assess health impacts of air pollution and potential modification by individual characteristics on air pollution effects remain uncertain. We applied distributed lag non-linear models (DLNMs) to assess associations of daily API, specific pollution indices for PM10, SO2, NO2 and the weighted combined API (APIw) with mortality during 2003-2011 in Guangzhou, China. An increase of 10 in API was associated with a 0.88% (95% confidence interval (CI): 0.50, 1.27%) increase of non-accidental mortality at lag 0-2 days. Harvesting effects appeared after 2 days' exposure. The effect estimate of API over lag 0-15 days was statistically significant and similar with those of pollutant-specific indices and APIw. Stronger associations between API and mortality were observed in the elderly, females and residents with low educational attainment. In conclusion, the API can be used to communicate health risks of air pollution.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory of Organ Failure Research, Department of Biostatistics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Guo-Zhen Lin
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Hua-Zhang Liu
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Yuming Guo
- Division of Epidemiology and Biostatistics, School of Population Health, The University of Queensland, Brisbane, Queensland 4006, Australia
| | - Chun-Quan Ou
- State Key Laboratory of Organ Failure Research, Department of Biostatistics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou 510515, China.
| | - Ping-Yan Chen
- State Key Laboratory of Organ Failure Research, Department of Biostatistics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
60
|
Qin XD, Qian Z, Vaughn MG, Trevathan E, Emo B, Paul G, Ren WH, Hao YT, Dong GH. Gender-specific differences of interaction between obesity and air pollution on stroke and cardiovascular diseases in Chinese adults from a high pollution range area: A large population based cross sectional study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 529:243-8. [PMID: 26022408 DOI: 10.1016/j.scitotenv.2015.05.041] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 05/04/2015] [Accepted: 05/12/2015] [Indexed: 05/16/2023]
Abstract
BACKGROUND Little information exists regarding the interaction effects of obesity with long-term air pollution exposure on cardiovascular diseases (CVDs) and stroke in areas of high pollution. The aim of the present study is to examine whether obesity modifies CVD-related associations among people living in an industrial province of northeast China. METHODS We studied 24,845 Chinese adults, aged 18 to 74 years old, from three Northeastern Chinese cities in 2009 utilizing a cross-sectional study design. Body weight and height were measured by trained observers. Overweight and obesity were defined as a body mass index (BMI) between 25-29.9 and ≥30 kg/m(2), respectively. Prevalence rate and related risk factors of cardiovascular and cerebrovascular diseases were investigated by a questionnaire. Three-year (2006-2008) average concentrations of particulate matter (PM10), sulfur dioxide (SO2), nitrogen dioxides (NO2), and ozone (O3) were measured by fixed monitoring stations. All the participants lived within 1 km of air monitoring sites. Two-level logistic regression (personal level and district-specific pollutant level) was used to examine these effects, controlling for covariates. RESULTS We observed significant interactions between exposure and obesity on CVDs and stroke. The associations between annual pollutant concentrations and CVDs and stroke were strongest in obese subjects (OR 1.15-1.47 for stroke, 1.33-1.59 for CVDs), less strong in overweight subjects (OR 1.22-1.35 for stroke, 1.07-1.13 for CVDs), and weakest in normal weight subjects (OR ranged from 0.98-1.01 for stroke, 0.93-1.15 for CVDs). When stratified by gender, these interactions were significant only in women. CONCLUSIONS Study findings indicate that being overweight and obese may enhance the effects of air pollution on the prevalence of CVDs and stroke in Northeastern metropolitan China. Further studies will be needed to investigate the temporality of BMI relative to exposure and onset of disease.
Collapse
Affiliation(s)
- Xiao-Di Qin
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Environmental and Occupational Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Zhengmin Qian
- Department of Epidemiology, College for Public Health and Social Justice, Saint Louis University, Saint Louis, MO 63104, USA
| | - Michael G Vaughn
- School of Social Work, College for Public Health and Social Justice, Saint Louis University, Saint Louis, MO 63104, USA
| | - Edwin Trevathan
- Department of Epidemiology, College for Public Health and Social Justice, Saint Louis University, Saint Louis, MO 63104, USA
| | - Brett Emo
- Department of Environmental and Occupational Health, College for Public Health and Social Justice, Saint Louis University, Saint Louis, MO 63104, USA
| | - Gunther Paul
- Facuty of Health, School of Public Health and Social Work, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
| | - Wan-Hui Ren
- Department of Ambient Air Pollution Monitor, Shenyang Environmental Monitoring Center, Shenyang 110004, China
| | - Yuan-Tao Hao
- Department of Epidemiology and Biostatistics, School of Public Health, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Guang-Hui Dong
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Environmental and Occupational Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, PR China.
| |
Collapse
|
61
|
Vaish M, Kleinstreuer C. A Lagrangian Approach for Calculating Microsphere Deposition in a One-Dimensional Lung-Airway Model. J Biomech Eng 2015; 137:2389887. [DOI: 10.1115/1.4030977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Indexed: 01/13/2023]
Abstract
Using the open-source software openfoam as the solver, a novel approach to calculate microsphere transport and deposition in a 1D human lung-equivalent trumpet model (TM) is presented. Specifically, for particle deposition in a nonlinear trumpetlike configuration a new radial force has been developed which, along with the regular drag force, generates particle trajectories toward the wall. The new semi-empirical force is a function of any given inlet volumetric flow rate, micron-particle diameter, and lung volume. Particle-deposition fractions (DFs) in the size range from 2 μm to 10 μm are in agreement with experimental datasets for different laminar and turbulent inhalation flow rates as well as total volumes. Typical run times on a single processor workstation to obtain actual total deposition results at comparable accuracy are 200 times less than that for an idealized whole-lung geometry (i.e., a 3D–1D model with airways up to 23rd generation in single-path only).
Collapse
Affiliation(s)
- Mayank Vaish
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695
| | - Clement Kleinstreuer
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Campus Box 7910, EB-III 4164, Raleigh, NC 27695
- Joint UNC-NCSU Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695 e-mail:
| |
Collapse
|
62
|
Robledo CA, Mendola P, Yeung E, Männistö T, Sundaram R, Liu D, Ying Q, Sherman S, Grantz KL. Preconception and early pregnancy air pollution exposures and risk of gestational diabetes mellitus. ENVIRONMENTAL RESEARCH 2015; 137:316-22. [PMID: 25601734 PMCID: PMC6204222 DOI: 10.1016/j.envres.2014.12.020] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/23/2014] [Accepted: 12/24/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND Air pollution has been linked to gestational diabetes mellitus (GDM) but no studies have evaluated impact of preconception and early pregnancy air pollution exposures on GDM risk. METHODS Electronic medical records provided data on 219,952 singleton deliveries to mothers with (n=11,334) and without GDM (n=208,618). Average maternal exposures to particulate matter (PM) ≤ 2.5μm (PM2.5) and PM2.5 constituents, PM ≤ 10μm (PM10), nitrogen oxides (NOx), carbon monoxide, sulfur dioxide (SO2) and ozone (O3) were estimated for the 3-month preconception window, first trimester, and gestational weeks 1-24 based on modified Community Multiscale Air Quality models for delivery hospital referral regions. Binary regression models with robust standard errors estimated relative risks (RR) for GDM per interquartile range (IQR) increase in pollutant concentrations adjusted for study site, maternal age and race/ethnicity. RESULTS Preconception maternal exposure to NOX (RR=1.09, 95% CI: 1.04, 1.13) and SO2 (RR=1.05, 1.01, 1.09) were associated with increased risk of subsequent GDM and risk estimates remained elevated for first trimester exposure. Preconception O3 was associated with lower risk of subsequent GDM (RR=0.93, 0.90, 0.96) but risks increased later in pregnancy. CONCLUSION Maternal exposures to NOx and SO2 preconception and during the first few weeks of pregnancy were associated with increased GDM risk. O3 appeared to increase GDM risk in association with mid-pregnancy exposure but not in earlier time windows. These common exposures merit further investigation.
Collapse
Affiliation(s)
- Candace A Robledo
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Division of Intramural Population Health Research, Epidemiology Branch, Rockville, MD 20892, USA
| | - Pauline Mendola
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Division of Intramural Population Health Research, Epidemiology Branch, Rockville, MD 20892, USA.
| | - Edwina Yeung
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Division of Intramural Population Health Research, Epidemiology Branch, Rockville, MD 20892, USA
| | - Tuija Männistö
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Division of Intramural Population Health Research, Epidemiology Branch, Rockville, MD 20892, USA
| | - Rajeshwari Sundaram
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Division of Intramural Population Health Research, Biostatistics and Bioinformatics Branch, Rockville, MD 20892, USA
| | - Danping Liu
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Division of Intramural Population Health Research, Biostatistics and Bioinformatics Branch, Rockville, MD 20892, USA
| | - Qi Ying
- Texas A&M University, Zachary Department of Civil Engineering, College Station, TX 77845, USA
| | | | - Katherine L Grantz
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Division of Intramural Population Health Research, Epidemiology Branch, Rockville, MD 20892, USA
| |
Collapse
|
63
|
Alexis NE, Huang YCT, Rappold AG, Kehrl H, Devlin R, Peden DB. Patients with asthma demonstrate airway inflammation after exposure to concentrated ambient particulate matter. Am J Respir Crit Care Med 2014; 190:235-7. [PMID: 25025358 DOI: 10.1164/rccm.201401-0126le] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Neil E Alexis
- 1 University of North Carolina School of Medicine Chapel Hill, North Carolina
| | | | | | | | | | | |
Collapse
|
64
|
Gordon SB, Bruce NG, Grigg J, Hibberd PL, Kurmi OP, Lam KBH, Mortimer K, Asante KP, Balakrishnan K, Balmes J, Bar-Zeev N, Bates MN, Breysse PN, Buist S, Chen Z, Havens D, Jack D, Jindal S, Kan H, Mehta S, Moschovis P, Naeher L, Patel A, Perez-Padilla R, Pope D, Rylance J, Semple S, Martin WJ. Respiratory risks from household air pollution in low and middle income countries. THE LANCET RESPIRATORY MEDICINE 2014; 2:823-60. [PMID: 25193349 DOI: 10.1016/s2213-2600(14)70168-7] [Citation(s) in RCA: 525] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A third of the world's population uses solid fuel derived from plant material (biomass) or coal for cooking, heating, or lighting. These fuels are smoky, often used in an open fire or simple stove with incomplete combustion, and result in a large amount of household air pollution when smoke is poorly vented. Air pollution is the biggest environmental cause of death worldwide, with household air pollution accounting for about 3·5-4 million deaths every year. Women and children living in severe poverty have the greatest exposures to household air pollution. In this Commission, we review evidence for the association between household air pollution and respiratory infections, respiratory tract cancers, and chronic lung diseases. Respiratory infections (comprising both upper and lower respiratory tract infections with viruses, bacteria, and mycobacteria) have all been associated with exposure to household air pollution. Respiratory tract cancers, including both nasopharyngeal cancer and lung cancer, are strongly associated with pollution from coal burning and further data are needed about other solid fuels. Chronic lung diseases, including chronic obstructive pulmonary disease and bronchiectasis in women, are associated with solid fuel use for cooking, and the damaging effects of exposure to household air pollution in early life on lung development are yet to be fully described. We also review appropriate ways to measure exposure to household air pollution, as well as study design issues and potential effective interventions to prevent these disease burdens. Measurement of household air pollution needs individual, rather than fixed in place, monitoring because exposure varies by age, gender, location, and household role. Women and children are particularly susceptible to the toxic effects of pollution and are exposed to the highest concentrations. Interventions should target these high-risk groups and be of sufficient quality to make the air clean. To make clean energy available to all people is the long-term goal, with an intermediate solution being to make available energy that is clean enough to have a health impact.
Collapse
Affiliation(s)
- Stephen B Gordon
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Nigel G Bruce
- Department of Public Health and Policy, University of Liverpool, Liverpool, UK
| | - Jonathan Grigg
- Centre for Paediatrics, Blizard Institute, Queen Mary, University of London, London, UK
| | - Patricia L Hibberd
- Division of Global Health, Department of Pediatrics, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - Om P Kurmi
- Clinical Trials Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Kin-bong Hubert Lam
- Institute of Occupational and Environmental Medicine, School of Health and Population Sciences, University of Birmingham, Birmingham, UK
| | - Kevin Mortimer
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Kwaku Poku Asante
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Kalpana Balakrishnan
- Department of Environmental Health Engineering, Sri Ramachandra University, Chennai, India
| | - John Balmes
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA; Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Naor Bar-Zeev
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi; Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Michael N Bates
- Divisions of Epidemiology and Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Patrick N Breysse
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sonia Buist
- Oregon Health and Science University, Portland, OR, USA
| | - Zhengming Chen
- Clinical Trials Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Deborah Havens
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Darby Jack
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | | | - Haidong Kan
- School of Public Health, Fudan University, Shanghai, China
| | - Sumi Mehta
- Health Effects Institute, Boston, MA, USA
| | - Peter Moschovis
- Division of Global Health, Department of Pediatrics, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - Luke Naeher
- The University of Georgia, College of Public Health, Department of Environmental Health Science, Athens, GA, USA
| | | | | | - Daniel Pope
- Department of Public Health and Policy, University of Liverpool, Liverpool, UK
| | - Jamie Rylance
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Sean Semple
- University of Aberdeen, Scottish Centre for Indoor Air, Division of Applied Health Sciences, Royal Aberdeen Children's Hospital, Aberdeen, UK
| | - William J Martin
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
65
|
Hwang SS, Kang S, Lee JY, Lee JS, Kim HJ, Han SK, Yim JJ. Impact of outdoor air pollution on the incidence of tuberculosis in the Seoul metropolitan area, South Korea. Korean J Intern Med 2014; 29:183-90. [PMID: 24648801 PMCID: PMC3956988 DOI: 10.3904/kjim.2014.29.2.183] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 07/22/2013] [Accepted: 08/27/2013] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND/AIMS Although indoor air pollution is a well-known risk factor for tuberculosis (TB), the possible link between outdoor air pollution and TB development has not been examined fully. We assessed the impact of outdoor air pollution on TB development in the Seoul metropolitan area, South Korea. METHODS The mean concentrations of ambient particulate matter (PM) with an aerodynamic diameter ≤ 10 µm (PM10), O3, CO, NO2, and SO2 levels in Seoul, between January 1, 1997 and December 31, 2006, were determined. Furthermore, their association with the risk of developing TB after adjusting for socioeconomic status, between January 1, 2002 and December 31, 2006, was investigated. RESULTS Between January 1, 2002 and December 31, 2006, a total of 41,185 TB cases were reported in Seoul. Concentrations of PM10, O3, CO, and NO2 were not associated with TB incidence in males or females. However, the interquartile increase in SO2 concentration was associated with a 7% increment in TB incidence (relative risk [RR], 1.07; 95% credible interval [CrI], 1.03 to 1.12) in males but not in females (RR, 1.02; 95% CrI, 0.98 to 1.07). CONCLUSIONS Long-term exposure to ambient SO2 increased the risk of TB in males.
Collapse
Affiliation(s)
- Seung-sik Hwang
- Department of Social and Preventive Medicine, Inha University School of Medicine, Incheon, Korea
| | - Sungchan Kang
- Department of Social and Preventive Medicine, Inha University School of Medicine, Incheon, Korea
| | - Ji-Young Lee
- Department of Social and Preventive Medicine, Inha University School of Medicine, Incheon, Korea
| | - Ji Sun Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Hee Jin Kim
- Korean Institute of Tuberculosis, Osong, Korea
| | - Sung Koo Han
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jae-Joon Yim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
66
|
Morawska L, Afshari A, Bae GN, Buonanno G, Chao CYH, Hänninen O, Hofmann W, Isaxon C, Jayaratne ER, Pasanen P, Salthammer T, Waring M, Wierzbicka A. Indoor aerosols: from personal exposure to risk assessment. INDOOR AIR 2013; 23:462-87. [PMID: 23574389 DOI: 10.1111/ina.12044] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 03/26/2013] [Indexed: 05/06/2023]
Abstract
Motivated by growing considerations of the scale, severity, and risks associated with human exposure to indoor particulate matter, this work reviewed existing literature to: (i) identify state-of-the-art experimental techniques used for personal exposure assessment; (ii) compare exposure levels reported for domestic/school settings in different countries (excluding exposure to environmental tobacco smoke and particulate matter from biomass cooking in developing countries); (iii) assess the contribution of outdoor background vs indoor sources to personal exposure; and (iv) examine scientific understanding of the risks posed by personal exposure to indoor aerosols. Limited studies assessing integrated daily residential exposure to just one particle size fraction, ultrafine particles, show that the contribution of indoor sources ranged from 19% to 76%. This indicates a strong dependence on resident activities, source events and site specificity, and highlights the importance of indoor sources for total personal exposure. Further, it was assessed that 10-30% of the total burden of disease from particulate matter exposure was due to indoor-generated particles, signifying that indoor environments are likely to be a dominant environmental factor affecting human health. However, due to challenges associated with conducting epidemiological assessments, the role of indoor-generated particles has not been fully acknowledged, and improved exposure/risk assessment methods are still needed, together with a serious focus on exposure control.
Collapse
Affiliation(s)
- L Morawska
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Qld, Australia; Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Qld, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Abstract
The human body interacts with the environment in many different ways. The lungs interact with the external environment through breathing. The enormously large surface area of the lung with its extremely thin air-blood barrier is exposed to particles suspended in the inhaled air. The particle-lung interaction may cause deleterious effects on health if the inhaled pollutant aerosols are toxic. Conversely, this interaction can be beneficial for disease treatment if the inhaled particles are therapeutic aerosolized drugs. In either case, an accurate estimation of dose and sites of deposition in the respiratory tract is fundamental to understanding subsequent biological response, and the basic physics of particle motion and engineering knowledge needed to understand these subjects is the topic of this article. A large portion of this article deals with three fundamental areas necessary to the understanding of particle transport and deposition in the respiratory tract. These are: (i) the physical characteristics of particles, (ii) particle behavior in gas flow, and (iii) gas-flow patterns in the respiratory tract. Other areas, such as particle transport in the developing lung and in the diseased lung are also considered. The article concludes with a summary and a brief discussion of areas of future research.
Collapse
Affiliation(s)
- Akira Tsuda
- Harvard School of Public Health, Boston, Massachusetts
| | | | | |
Collapse
|
68
|
Extricating sex and gender in air pollution research: a community-based study on cardinal symptoms of exposure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:3801-17. [PMID: 23975108 PMCID: PMC3799513 DOI: 10.3390/ijerph10093801] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 07/25/2013] [Accepted: 08/09/2013] [Indexed: 11/17/2022]
Abstract
This study investigated sex and gender differences in cardinal symptoms of exposure to a mixture of ambient pollutants. A cross sectional population-based study design was utilized in Sarnia, ON, Canada. Stratified random sampling in census tracts of residents aged 18 and over recruited 804 respondents. Respondents completed a community health survey of chronic disease, general health, and socioeconomic indicators. Residential concentrations of NO2, SO2, benzene, toluene, ethylbenzene and o/m/p-xylene were estimated by land use regression on data collected through environmental monitoring. Classification and Regression Tree (CART) analysis was used to identify variables that interacted with sex and cardinal symptoms of exposure, and a series of logistic regression models were built to predict the reporting of five or more cardinal symptoms (5+ CS). Without controlling for confounders, higher pollution ranks increased the odds ratio (OR) of reporting 5+ CS by 28% (p < 0.01; Confidence Interval (CI): 1.07–1.54). Females were 1.52 (p < 0.05; CI: 1.03–2.26) times more likely more likely to report 5+ CS after controlling for income, age and chronic diseases. The CART analysis showed that allergies and occupational exposure classified the sample into the most homogenous groups of males and females. The likelihood of reporting 5+ CS among females was higher after stratifying the sample based on occupational exposure. However, stratifying by allergic disease resulted in no significant sex difference in symptom reporting. The results confirmed previous research that found pre-existing health conditions to increase susceptibility to ambient air pollution, but additionally indicated that stronger effects on females is partly due to autoimmune disorders. Furthermore, gender differences in occupational exposure confound the effect size of exposure in studies based on residential levels of air pollution.
Collapse
|
69
|
Hussain M, Renate WH, Werner H. Effect of intersubject variability of extrathoracic morphometry, lung airways dimensions and respiratory parameters on particle deposition. J Thorac Dis 2012; 3:156-70. [PMID: 22263083 DOI: 10.3978/j.issn.2072-1439.2011.04.03] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Accepted: 03/25/2011] [Indexed: 11/14/2022]
Abstract
OBJECTIVE The structure of extrathoracic passages, variability of tracheobronchial (TB) airways and alveolar dimensions and individual variations of breathing pattern exhibit significant intersubject variations, which affect extrathoracic deposition and, in further consequence, the fraction of inhaled particles actually reaching the thoracic region. The present study was conducted to quantify the intersubject variability of lung deposition fractions caused by the fluctuations in these three major sources of intersubject variability. METHODS To quantify intersubject variability of extrathoracic, thoracic and total deposition fractions (TDF), different combinations of the three sources of variability were simulated to identify the most important factors. Deposition fractions of inhaled particles were computed by the stochastic airway generation model IDEAL. The dimensions of the respiratory airways were scaled in proportion to age and height of the subject to calculate TDFs. RESULTS The variability of deposition fractions increased with the stepwise addition of influencing factors and the resulting standard deviations ranged up to 30%. While some combinations enhanced the effects of individual factors on deposition by up to 40%, others seemed to compensate each other with only a minor effect on deposition. CONCLUSION The present study attempts to quantify experimentally observed intersubject variability of regional deposition fractions caused by individual variations of nasal and oral geometry, lung airway dimensions and breathing patterns in healthy lungs, serving as a baseline for subsequent calculations for diseased lungs, e.g. asthma, COPD, and emphysema, which may further increase intersubject variabilities of medically relevant depositions.
Collapse
Affiliation(s)
- Majid Hussain
- Division of Physics and Biophysics, Department of Materials Research and Physics, University of Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria
| | | | | |
Collapse
|
70
|
Patel B, Gauvin R, Absar S, Gupta V, Gupta N, Nahar K, Khademhosseini A, Ahsan F. Computational and bioengineered lungs as alternatives to whole animal, isolated organ, and cell-based lung models. Am J Physiol Lung Cell Mol Physiol 2012; 303:L733-47. [PMID: 22886505 DOI: 10.1152/ajplung.00076.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Development of lung models for testing a drug substance or delivery system has been an intensive area of research. However, a model that mimics physiological and anatomical features of human lungs is yet to be established. Although in vitro lung models, developed and fine-tuned over the past few decades, were instrumental for the development of many commercially available drugs, they are suboptimal in reproducing the physiological microenvironment and complex anatomy of human lungs. Similarly, intersubject variability and high costs have been major limitations of using animals in the development and discovery of drugs used in the treatment of respiratory disorders. To address the complexity and limitations associated with in vivo and in vitro models, attempts have been made to develop in silico and tissue-engineered lung models that allow incorporation of various mechanical and biological factors that are otherwise difficult to reproduce in conventional cell or organ-based systems. The in silico models utilize the information obtained from in vitro and in vivo models and apply computational algorithms to incorporate multiple physiological parameters that can affect drug deposition, distribution, and disposition upon administration via the lungs. Bioengineered lungs, on the other hand, exhibit significant promise due to recent advances in stem or progenitor cell technologies. However, bioengineered approaches have met with limited success in terms of development of various components of the human respiratory system. In this review, we summarize the approaches used and advancements made toward the development of in silico and tissue-engineered lung models and discuss potential challenges associated with the development and efficacy of these models.
Collapse
Affiliation(s)
- Brijeshkumar Patel
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, 79106, USA
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Man YB, Lopez BN, Wang HS, Leung AOW, Chow KL, Wong MH. Cancer risk assessment of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in former agricultural soils of Hong Kong. JOURNAL OF HAZARDOUS MATERIALS 2011; 195:92-99. [PMID: 21871716 DOI: 10.1016/j.jhazmat.2011.08.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 08/02/2011] [Accepted: 08/04/2011] [Indexed: 05/31/2023]
Abstract
The major objective of this study was to evaluate the carcinogenic risk posed to humans through PBDEs and PCBs of changing agricultural land use for recycling of e-waste and open burning of municipal waste. Nine locations were selected to represent 6 different types of land use such as e-waste dismantling workshop (EW (DW)) and e-waste open burning site (EW (OBS)). The total concentrations for PBDEs and PCBs, and the bioaccessibility of PCBs were determined using Soxhlet extraction and in vitro simulated gastric solution, respectively. Both total and bioaccessible concentrations were subsequently used to establish the cancer risk probabilities in humans via ingestion, dermal contact and inhalation of soil particles. It was found that very low cancer risk in all 6 types of different land use was caused by BDE-209. Nevertheless, at the 95th centile, the concentration of PCBs in EW (DW) and EW (OBS) indicate a low cancer risk to humans of 40 and 2.1 in a million, respectively, while the same was also observed for the bioaccessible PCBs in EW (DW) of 1.71 ± 2.96 in a million.
Collapse
Affiliation(s)
- Yu Bon Man
- School of Environmental and Resource Sciences, Zhejiang Agriculture and Forestry University, Lin'an, Zhejiang 311300, PR China
| | | | | | | | | | | |
Collapse
|
72
|
Oravisjärvi K, Pietikäinen M, Ruuskanen J, Rautio A, Voutilainen A, Keiski RL. Effects of physical activity on the deposition of traffic-related particles into the human lungs in silico. THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 409:4511-8. [PMID: 21871649 DOI: 10.1016/j.scitotenv.2011.07.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 07/01/2011] [Accepted: 07/05/2011] [Indexed: 05/05/2023]
Abstract
Traffic-related particle emissions have been a great concern over a number of years due to their adverse health effects. In this research project, traffic-related particle deposition in the human lungs is studied using lung deposition estimates based on the ICRP 66 model. This study covers four human groups, i.e. adult males, adult females and two groups of children aged 5 and 10 years. The study examines particle deposition in the human lungs in relation to four different physical exercise levels, i.e. sleeping, sitting, light exercise and heavy exercise. To conduct the study, the particle size distributions of diesel and compressed natural gas (CNG) busses were monitored in field laboratory conditions. The study indicates that the total number of diesel particles measured is greater than the total number of CNG particles. The results further display that most of the diesel particles measured are smaller than 0.2 μm, whereas the CNG particles are smaller than 0.05 μm in aerodynamic diameter. The level of physical exercise, as well as the age and gender of a person affects the deposition of particles in the lungs. An increase in the physical activity results in larger amounts of small-size particles penetrating deeper into the respiratory system. The lung deposition of particles in males was substantially different compared to that of females and children. The deposited dose of particles was generally lower for females than for males and further lower for children than for females. This article argues that these groups should be discussed separately when conducting exposure assessments and that the level of physical activity should be taken into account when assessing potential health consequences.
Collapse
Affiliation(s)
- Kati Oravisjärvi
- Department of Process and Environmental Engineering, P.O. Box 4300, FI-90014 University of Oulu, Finland.
| | | | | | | | | | | |
Collapse
|
73
|
Oliveira MSD, Leon APD, Mattos IE, Koifman S. Differential susceptibility according to gender in the association between air pollution and mortality from respiratory diseases. CAD SAUDE PUBLICA 2011; 27:1827-36. [DOI: 10.1590/s0102-311x2011000900016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Accepted: 03/29/2011] [Indexed: 11/22/2022] Open
Abstract
This study analyzed the association between air pollution and deaths from respiratory diseases, considering differential susceptibility according to gender. The authors used daily deaths from respiratory diseases (ICD-10, J00-J99), PM10, SO2, and O3 levels, and meteorological indicators in Volta Redonda, Rio de Janeiro State, Brazil, from January 2002 to December 2006. The association was estimated by Poisson regression using generalized additive models, where the increase in risk of deaths from PM10 to lag 1 was 10.01% (95%CI: 1.81-18.88%) in the total female population and 10.04% (95%CI: 0.90-20.02%) in elderly women. The increase in risk of deaths from PM10 to lag 9 was 8.25% in the total male population (95%CI: 0.86-16.18%) and 10.80% (95%CI: 2.18-20.15%) in elderly men. For exposure to SO2 and O3, the risk was significant in the total male population and the elderly, respectively. The results emphasize the need for further studies, focusing on modification of the effects of air pollution on health.
Collapse
|
74
|
Cena LG, Anthony TR, Peters TM. A personal nanoparticle respiratory deposition (NRD) sampler. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:6483-90. [PMID: 21718022 PMCID: PMC4751023 DOI: 10.1021/es201379a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A lightweight (60 g), personal nanoparticle respiratory deposition (NRD) sampler was developed to selectively collect particles smaller than 300 nm similar to their typical deposition in the respiratory tract. The sampler operates at 2.5 Lpm and consists of a respirable cyclone fitted with an impactor and a diffusion stage containing mesh screens. The cut-point diameter of the impactor was determined to be 300 nm with a sharpness σ = 1.53. The diffusion stage screens collect particles with an efficiency that matches the deposition efficiency of particles smaller than 300 nm in the respiratory tract. Impactor separation performance was unaffected by loading at typical workplace levels (p-value = 0.26). With chemical analysis of the diffusion media, the NRD sampler can be used to directly assess exposures to nanoparticles of a specific composition apart from other airborne particles. The pressure drop of the NRD sampler is sufficiently low to permit its operation with conventional, belt-mounted sampling pumps.
Collapse
Affiliation(s)
- Lorenzo G Cena
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA
| | | | | |
Collapse
|
75
|
Puett RC, Hart JE, Suh H, Mittleman M, Laden F. Particulate matter exposures, mortality, and cardiovascular disease in the health professionals follow-up study. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:1130-5. [PMID: 21454146 PMCID: PMC3237347 DOI: 10.1289/ehp.1002921] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 03/31/2011] [Indexed: 04/14/2023]
Abstract
BACKGROUND The association of all-cause mortality and cardiovascular outcomes with air pollution exposures has been well established in the literature. The number of studies examining chronic exposures in cohorts is growing, with more recent studies conducted among women finding risk estimates of greater magnitude. Questions remain regarding sex differences in the relationship of chronic particulate matter (PM) exposures with mortality and cardiovascular outcomes. OBJECTIVES In this study we explored these associations in the all-male Health Professionals Follow-Up Study prospective cohort. METHODS The same spatiotemporal exposure estimation models, similar outcomes, and biennially updated covariates were used as those previously applied in the female Nurses' Health Study cohort. RESULTS Among 17,545 men residing in the northeastern and midwestern United States, there were 2,813 deaths, including 746 cases of fatal coronary heart disease (CHD). An interquartile range change (4 µg/m3) in average exposure to PM ≤ 2.5 µm in diameter in the 12 previous months was not associated with all-cause mortality [hazard ratio (HR) = 0.94; 95% confidence interval (CI), 0.87-1.00] or fatal CHD (HR = 0.99; 95% CI, 0.87-1.13) in fully adjusted models. Findings were similar for separate models of exposure to PM ≤ 10 µm in diameter and PM between 2.5 and 10 µm in diameter and for copollutant models. CONCLUSIONS Among this cohort of men with high socioeconomic status living in the midwestern and northeastern United States, the results did not support an association of chronic PM exposures with all-cause mortality and cardiovascular outcomes in models with time-varying covariates. Whether these findings suggest sex differences in susceptibility or the protective impact of healthier lifestyles and higher socioeconomic status requires additional investigation.
Collapse
Affiliation(s)
- Robin C Puett
- South Carolina Cancer Prevention and Control Program and Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA.
| | | | | | | | | |
Collapse
|
76
|
Zhang P, Dong G, Sun B, Zhang L, Chen X, Ma N, Yu F, Guo H, Huang H, Lee YL, Tang N, Chen J. Long-term exposure to ambient air pollution and mortality due to cardiovascular disease and cerebrovascular disease in Shenyang, China. PLoS One 2011; 6:e20827. [PMID: 21695220 PMCID: PMC3112212 DOI: 10.1371/journal.pone.0020827] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 05/09/2011] [Indexed: 11/18/2022] Open
Abstract
Background The relationship between ambient air pollution exposure and mortality of cardiovascular and cerebrovascular diseases in human is controversial, and there is little information about how exposures to ambient air pollution contribution to the mortality of cardiovascular and cerebrovascular diseases among Chinese. The aim of the present study was to examine whether exposure to ambient-air pollution increases the risk for cardiovascular and cerebrovascular disease. Methodology/Principal Findings We conducted a retrospective cohort study among humans to examine the association between compound-air pollutants [particulate matter <10 µm in aerodynamic diameter (PM10), sulfur dioxide (SO2) and nitrogen dioxide (NO2)] and mortality in Shenyang, China, using 12 years of data (1998–2009). Also, stratified analysis by sex, age, education, and income was conducted for cardiovascular and cerebrovascular mortality. The results showed that an increase of 10 µg/m3 in a year average concentration of PM10 corresponds to 55% increase in the risk of a death cardiovascular disease (hazard ratio [HR], 1.55; 95% confidence interval [CI], 1.51 to 1.60) and 49% increase in cerebrovascular disease (HR, 1.49; 95% CI, 1.45 to 1.53), respectively. The corresponding figures of adjusted HR (95%CI) for a 10 µg/m3 increase in NO2 was 2.46 (2.31 to 2.63) for cardiovascular mortality and 2.44 (2.27 to 2.62) for cerebrovascular mortality, respectively. The effects of air pollution were more evident in female that in male, and nonsmokers and residents with BMI<18.5 were more vulnerable to outdoor air pollution. Conclusion/Significance Long-term exposure to ambient air pollution is associated with the death of cardiovascular and cerebrovascular diseases among Chinese populations.
Collapse
Affiliation(s)
- Pengfei Zhang
- Department of Biostatistics, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Guanghui Dong
- Department of Biostatistics, School of Public Health, China Medical University, Shenyang, People's Republic of China
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Baijun Sun
- Shenyang Center for Diseases Control and Prevention, Shenyang, People's Republic of China
| | - Liwen Zhang
- Department of Occupational Health, College of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
| | - Xi Chen
- Department of Occupational Health, College of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
| | - Nannan Ma
- Department of Biostatistics, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Fei Yu
- Department of Biostatistics, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Huimin Guo
- Department of Biostatistics, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Hui Huang
- Department of Biostatistics, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Yungling Leo Lee
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Naijun Tang
- Department of Occupational Health, College of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
| | - Jie Chen
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, People's Republic of China
- * E-mail:
| |
Collapse
|
77
|
Huang CW, Pei C, Huang CH. Respiratory deposition model of an inhaled aerosol bolus. Comput Methods Biomech Biomed Engin 2011; 14:915-25. [PMID: 21409658 DOI: 10.1080/10255842.2010.500287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The bolus delivery method is designed to deliver a dose to the desired location in the lung, and it has the advantage of fewer side effects and a more efficient way of delivery. Based upon the lung deposition model developed for continuously inhaling aerosols of constant concentration, a mathematical model of aerosol bolus deposition is proposed. The calculated results show that the recovery depends on the bolus penetration depth, flow rate, particle size, breath holding time and bolus volume. Three sets of published experimental data with different controlling factors (particle size, flow rate and breath holding time) are adopted to make the quantitative comparisons with the calculated results. The predictions and data for the low intrinsic motion particles (∼1 μm) have good agreement, as do the coarse particles in the shallow airways region. For females, the recovery was found to be consistently lower than that for males.
Collapse
Affiliation(s)
- Chien-Wen Huang
- Pulmonary Disease Section, Fong-Yuan Hospital, Fong-Yuan City, Taiwan, ROC
| | | | | |
Collapse
|
78
|
Oh SM, Kim HR, Park YJ, Lee SY, Chung KH. Organic extracts of urban air pollution particulate matter (PM2.5)-induced genotoxicity and oxidative stress in human lung bronchial epithelial cells (BEAS-2B cells). Mutat Res 2011; 723:142-51. [PMID: 21524716 DOI: 10.1016/j.mrgentox.2011.04.003] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 02/28/2011] [Accepted: 04/10/2011] [Indexed: 10/18/2022]
Abstract
Traffic is a major source of particulate matter (PM), and ultrafine particulates and traffic intensity probably contribute significantly to PM-related health effects. As a strong relationship between air pollution and motor vehicle-originated pollutants has been shown to exist, air pollution genotoxicity studies of urban cities are steadily increasing. In Korea, the death rate caused by lung cancer is the most rapidly increased cancer death rate in the past 10 years. In this study, genotoxicity of PM2.5 (<2.5μm in aerodynamic diameter particles) collected from the traffic area in Suwon City, Korea, was studied using cultured human lung bronchial epithelial cells (BEAS-2B) as a model system for the potential inhalation health effects. Organic extract of PM2.5 (CE) generated significant DNA breakage and micronucleus formation in a dose-dependent manner (1μg/cm(3)-50μg/cm(3)). In the acid-base-neutral fractionation of PM2.5, neutral samples including the aliphatic (F3), aromatic (F4) and slightly polar (F5) fractions generated significant DNA breakage and micronucleus formation. These genotoxic effects were significantly blocked by scavenging agents [superoxide dismutase (SOD), sodium selenite (SS), mannitol (M), catalase (CAT)]. In addition, in the modified Comet assay using endonucleases (FPG and ENDOIII), CE and its fractions (F3, F4, and F5) increased DNA breakage compared with control groups, indicating that CE and fractions of PM2.5 induced oxidative DNA damage. These results clearly suggest that PM2.5 collected in the Suwon traffic area has genotoxic effects and that reactive oxygen species may play a distinct role in these effects. In addition, aliphatic/chlorinated hydrocarbons, PAH/alkylderivatives, and nitro-PAH/ketones/quinones may be important causative agents of the genotoxic effects.
Collapse
Affiliation(s)
- Seung Min Oh
- Hoseo Toxicological Research Center, Hoseo University, 165, Sechul-ri, Baebang-myun, Asan, Chungnam, 336-795, Republic of Korea
| | | | | | | | | |
Collapse
|
79
|
Clougherty JE. A growing role for gender analysis in air pollution epidemiology. CIENCIA & SAUDE COLETIVA 2011; 16:2221-38. [DOI: 10.1590/s1413-81232011000400021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2009] [Accepted: 10/16/2009] [Indexed: 01/22/2023] Open
Abstract
Epidemiologic studies of air pollution effects on respiratory health report significant modification by sex, although results are not uniform. Importantly, it remains unclear whether modifications are attributable to socially derived gendered exposures, to sex-linked physiological differences, or to some interplay thereof. Gender analysis, which aims to disaggregate social from biological differences between males and females, may help to elucidate these possible sources of effect modification. Studies of children suggest stronger effects among boys in early life and among girls in later childhood. The qualitative review describes possible sources of difference in air pollution response between women and men, which may vary by life stage, coexposures, hormonal status, or other factors. The sources of observed effect modifications remain unclear, although gender analytic approaches may help to disentangle gender and sex differences in pollution response. A framework for incorporating gender analysis into environmental epidemiology is offered, along with several potentially useful methods from gender analysis.
Collapse
|
80
|
Warawa JM. Evaluation of surrogate animal models of melioidosis. Front Microbiol 2010; 1:141. [PMID: 21772830 PMCID: PMC3109346 DOI: 10.3389/fmicb.2010.00141] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 12/13/2010] [Indexed: 11/13/2022] Open
Abstract
Burkholderia pseudomallei is the Gram-negative bacterial pathogen responsible for the disease melioidosis. B. pseudomallei establishes disease in susceptible individuals through multiple routes of infection, all of which may proceed to a septicemic disease associated with a high mortality rate. B. pseudomallei opportunistically infects humans and a wide range of animals directly from the environment, and modeling of experimental melioidosis has been conducted in numerous biologically relevant models including mammalian and invertebrate hosts. This review seeks to summarize published findings related to established animal models of melioidosis, with an aim to compare and contrast the virulence of B. pseudomallei in these models. The effect of the route of delivery on disease is also discussed for intravenous, intraperitoneal, subcutaneous, intranasal, aerosol, oral, and intratracheal infection methodologies, with a particular focus on how they relate to modeling clinical melioidosis. The importance of the translational validity of the animal models used in B. pseudomallei research is highlighted as these studies have become increasingly therapeutic in nature.
Collapse
Affiliation(s)
- Jonathan Mark Warawa
- Center for Predictive Medicine, Department of Microbiology and Immunology, University of Louisville Louisville, KY, USA
| |
Collapse
|
81
|
Clougherty JE, Kubzansky LD. A framework for examining social stress and susceptibility to air pollution in respiratory health. CIENCIA & SAUDE COLETIVA 2010; 15:2059-74. [PMID: 20694328 DOI: 10.1590/s1413-81232010000400020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 05/12/2009] [Indexed: 12/30/2022] Open
Abstract
There is growing interest in disentangling the health effects of spatially clustered social and physical environmental exposures and in exploring potential synergies among them, with particular attention directed to the combined effects of psychosocial stress and air pollution. Both exposures may be elevated in lower-income urban communities, and it has been hypothesized that stress, which can influence immune function and susceptibility, may potentiate the effects of air pollution in respiratory disease onset and exacerbation. In this paper, we review the existing epidemiologic and toxicologic evidence on synergistic effects of stress and pollution, and describe the physiologic effects of stress and key issues related to measuring and evaluating stress as it relates to physical environmental exposures and susceptibility. Finally, we identify some of the major methodologic challenges ahead as we work toward disentangling the health effects of clustered social and physical exposures and accurately describing the interplay among these exposures. As this research proceeds, we recommend careful attention to the relative temporalities of stress and pollution exposures, to nonlinearities in their independent and combined effects, to physiologic pathways not elucidated by epidemiologic methods, and to the relative spatial distributions of social and physical exposures at multiple geographic scales.
Collapse
Affiliation(s)
- Jane Ellen Clougherty
- Department of Environmental Health, Harvard School of Public Health, Boston, MA 02215, USA.
| | | |
Collapse
|
82
|
Avila RS, Zulueta JJ, Shara NM, Jansen K, Veronesi G, Wang H, Mulshine JL. A quantitative method for estimating individual lung cancer risk. Acad Radiol 2010; 17:830-40. [PMID: 20540908 DOI: 10.1016/j.acra.2010.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 03/17/2010] [Accepted: 03/17/2010] [Indexed: 11/30/2022]
Abstract
RATIONALE AND OBJECTIVES Lung cancer is caused primarily by repeated exposure to carcinogenic particulate matter and noxious gasses with high particulate deposition localized to airway bifurcations and the lung periphery. The quantitative measurement and analysis of these sites has the potential to stratify lung cancer risk. The aim of this preliminary study was to assess the performance of a new method for estimating individual lung cancer risk based on the analysis of airway bifurcations on high-resolution (HR) computed tomographic (CT) scanning and spirometry. MATERIALS AND METHODS One hundred eight subjects with spirometry and thin-slice CT data were selected from a CT screening study including 15 patients with early lung cancer and 93 age-matched and pack-year-matched controls. A subset of seven patients with cancer and 72 controls were scanned with 1-mm CT slice thickness, representing an HR case subset. A quantitative lung cancer risk index method was developed on the basis of airway bifurcation x-ray attenuation combined with the ratio of forced expiratory volume in 1 second to forced vital capacity. Cochran-Mantel-Haenszel and conditional logistic regression tests were used to analyze performance. RESULTS Cochran-Mantel-Haenszel crude analysis revealed a cancer detection sensitivity and specificity of 67% and 72% for all cases and 100% and 73% for the HR case subset, respectively. Conditional logistic regression showed that a 0.0328 increase in lung cancer risk index was associated with odds ratios of 1.84 (95% confidence interval, 1.18-2.85) for the full data set (P = .0067) and 2.89 (95% confidence interval, 1.02-8.19) for the HR subset (P = .0467). CONCLUSIONS A preliminary evaluation of a new lung cancer risk estimation method based on thin slice CT and spirometry showed a statistically significant association with lung cancer.
Collapse
|
83
|
MARR LINSEYC, ELY MATTHEWR. Effect of Air Pollution on Marathon Running Performance. Med Sci Sports Exerc 2010; 42:585-91. [DOI: 10.1249/mss.0b013e3181b84a85] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
84
|
Clougherty JE. A growing role for gender analysis in air pollution epidemiology. ENVIRONMENTAL HEALTH PERSPECTIVES 2010; 118:167-76. [PMID: 20123621 PMCID: PMC2831913 DOI: 10.1289/ehp.0900994] [Citation(s) in RCA: 377] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2009] [Accepted: 10/16/2009] [Indexed: 05/17/2023]
Abstract
OBJECTIVE Epidemiologic studies of air pollution effects on respiratory health report significant modification by sex, although results are not uniform. Importantly, it remains unclear whether modifications are attributable to socially derived gendered exposures, to sex-linked physiological differences, or to some interplay thereof. Gender analysis, which aims to disaggregate social from biological differences between males and females, may help to elucidate these possible sources of effect modification. DATA SOURCES AND DATA EXTRACTION A PubMed literature search was performed in July 2009, using the terms "respiratory" and any of "sex" or "gender" or "men and women" or "boys and girls" and either "PM2.5" (particulate matter <or= 2.5 microm in aerodynamic diameter) or "NO2" (nitrogen dioxide). I reviewed the identified studies, and others cited therein, to summarize current evidence of effect modification, with attention to authors' interpretation of observed differences. Owing to broad differences in exposure mixes, outcomes, and analytic techniques, with few studies examining any given combination thereof, meta-analysis was not deemed appropriate at this time. DATA SYNTHESIS More studies of adults report stronger effects among women, particularly for older persons or where using residential exposure assessment. Studies of children suggest stronger effects among boys in early life and among girls in later childhood. CONCLUSIONS The qualitative review describes possible sources of difference in air pollution response between women and men, which may vary by life stage, coexposures, hormonal status, or other factors. The sources of observed effect modifications remain unclear, although gender analytic approaches may help to disentangle gender and sex differences in pollution response. A framework for incorporating gender analysis into environmental epidemiology is offered, along with several potentially useful methods from gender analysis.
Collapse
Affiliation(s)
- Jane E Clougherty
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts 02115, USA.
| |
Collapse
|
85
|
Clougherty JE, Kubzansky LD. A framework for examining social stress and susceptibility to air pollution in respiratory health. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:1351-8. [PMID: 19750097 PMCID: PMC2737009 DOI: 10.1289/ehp.0900612] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 05/12/2009] [Indexed: 05/18/2023]
Abstract
OBJECTIVE There is growing interest in disentangling the health effects of spatially clustered social and physical environmental exposures and in exploring potential synergies among them, with particular attention directed to the combined effects of psychosocial stress and air pollution. Both exposures may be elevated in lower-income urban communities, and it has been hypothesized that stress, which can influence immune function and susceptibility, may potentiate the effects of air pollution in respiratory disease onset and exacerbation. In this paper, we attempt to synthesize the relevant research from social and environmental epidemiology, toxicology, immunology, and exposure assessment to provide a useful framework for environmental health researchers aiming to investigate the health effects of environmental pollution in combination with social or psychological factors. DATA SYNTHESIS We review the existing epidemiologic and toxicologic evidence on synergistic effects of stress and pollution, and then describe the physiologic effects of stress and key issues related to measuring and evaluating stress as it relates to physical environmental exposures and susceptibility. Finally, we identify some of the major methodologic challenges ahead as we work toward disentangling the health effects of clustered social and physical exposures and accurately describing the interplay among these exposures. CONCLUSIONS There is still tremendous work to be done toward understanding the combined and potentially synergistic health effects of stress and pollution. As this research proceeds, we recommend careful attention to the relative temporalities of stress and pollution exposures, to nonlinearities in their independent and combined effects, to physiologic pathways not elucidated by epidemiologic methods, and to the relative spatial distributions of social and physical exposures at multiple geographic scales.
Collapse
Affiliation(s)
- Jane E Clougherty
- Department of Environmental Health, Harvard School of Public Health, Boston, MA 02215, USA.
| | | |
Collapse
|
86
|
Ma B, Lutchen KR. CFD Simulation of Aerosol Deposition in an Anatomically Based Human Large–Medium Airway Model. Ann Biomed Eng 2008; 37:271-85. [DOI: 10.1007/s10439-008-9620-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Accepted: 12/05/2008] [Indexed: 10/21/2022]
|
87
|
Moderate increases in ambient PM2.5 and ozone are associated with lung function decreases in beach lifeguards. J Occup Environ Med 2008; 50:202-11. [PMID: 18301177 DOI: 10.1097/jom.0b013e31816386b4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Exposure to pollutants would adversely affect lung function of healthy athletes. METHODS Pulmonary function was recorded on beach lifeguards at three different times during the day. Daily and average peak pollutant levels were calculated. Linear regression analyses were made comparing lung function changes in response to pollutant levels. A multivariate model was constructed to explain the combined effects of pollutants. RESULTS Afternoon forced vital capacity (FVC) and forced expired volume in 1 second (FEV1) decreased significantly compared with morning values and decreased with increasing fine particulates (PM2.5). FEV1/FVC decreased with increasing ozone (O3) levels. CONCLUSION The deleterious effect of PM2.5 and O3 were transient and occurred at pollutant levels far below national standards. At low levels of exposure, PM2.5 was associated with reduced lung volumes, while increasing O3 levels were associated with airway obstruction.
Collapse
|
88
|
Kan H, London SJ, Chen G, Zhang Y, Song G, Zhao N, Jiang L, Chen B. Season, sex, age, and education as modifiers of the effects of outdoor air pollution on daily mortality in Shanghai, China: The Public Health and Air Pollution in Asia (PAPA) Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2008; 116:1183-8. [PMID: 18795161 PMCID: PMC2535620 DOI: 10.1289/ehp.10851] [Citation(s) in RCA: 374] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Accepted: 06/26/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND Various factors can modify the health effects of outdoor air pollution. Prior findings about modifiers are inconsistent, and most of these studies were conducted in developed countries. OBJECTIVES We conducted a time-series analysis to examine the modifying effect of season, sex, age, and education on the association between outdoor air pollutants [particulate matter < 10 microm in aerodynamic diameter (PM(10)), sulfur dioxide, nitrogen dioxide, and ozone] and daily mortality in Shanghai, China, using 4 years of daily data (2001-2004). METHODS Using a natural spline model to analyze the data, we examined effects of air pollution for the warm season (April-September) and cool season (October-March) separately. For total mortality, we examined the association stratified by sex and age. Stratified analysis by educational attainment was conducted for total, cardiovascular, and respiratory mortality. RESULTS Outdoor air pollution was associated with mortality from all causes and from cardiorespiratory diseases in Shanghai. An increase of 10 mug/m(3) in a 2-day average concentration of PM(10), SO(2), NO(2), and O(3) corresponds to increases in all-cause mortality of 0.25% [95% confidence interval (CI), 0.14-0.37), 0.95% (95% CI, 0.62-1.28), 0.97% (95% CI, 0.66-1.27), and 0.31% (95% CI, 0.04-0.58), respectively. The effects of air pollutants were more evident in the cool season than in the warm season, and females and the elderly were more vulnerable to outdoor air pollution. Effects of air pollution were generally greater in residents with low educational attainment (illiterate or primary school) compared with those with high educational attainment (middle school or above). CONCLUSIONS Season, sex, age, and education may modify the health effects of outdoor air pollution in Shanghai. These findings provide new information about the effects of modifiers on the relationship between daily mortality and air pollution in developing countries and may have implications for local environmental and social policies.
Collapse
Affiliation(s)
- Haidong Kan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China.
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Air pollution and emergency department visits for depression in Edmonton, Canada. Int J Occup Med Environ Health 2008; 20:241-5. [PMID: 17932013 DOI: 10.2478/v10001-007-0024-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE Depression is a common cause of morbidity. Sufferers are very sensitive to many external factors. Emergency department (ED) visits for this condition can be associated with the concentration of ambient air pollutants. The study objective was to examine and assess the associations between ED visits for depression and ambient air pollution. DESIGN AND METHODS The present study analyzed 15,556 ED visits for depression (ICD-9: 311) at Edmonton hospitals between 1992 and 2002. The data were clustered based on the triplet {year, month, day of the week}. The generalized linear mixed models (GLMM) technique was used to regress the logarithm of the clustered counts for ED visits for depression on the levels of air pollutants (CO, NO2, SO2, O3, PM10 and PM2.5) and the meteorological variables. The number of ED visits for depression was analyzed separately for all patients, and males and females. An analysis by season was also conducted: for the whole year (I-XII), warm season (IV-IX), and cold season (X-III). RESULTS After adjusting for temperature and relative humidity, the following increments in daily depression-related ED visits could be noted: 6.9% (95% CI: 1.3, 12.9) for carbon monoxide (CO) for all patients in warm season; 7.4% (95% CI: 0.5, 14.8) for nitrogen dioxide (NO2) for female patients in warm season; 4.5% (95% CI: 0.1, 9.1) for sulphur dioxide (SO2) for female patients in warm season; 6.9% (95% CI: 0.6, 13.6) for ground level ozone (O3, 1-day lagged) for female patients in warm season; 7.2% (95% CI: 2.7, 12.0) for particulate matter (PM10) for females in cold season; and 7.2% (95% CI: 2.0, 12.8) for particulate matter (PM2.5) for females in cold season. CONCLUSIONS The findings provide support for the hypothesis that ED visits for depression are associated with exposure to ambient air pollution.
Collapse
|
90
|
Szyszkowicz M. Ambient air pollution and daily emergency department visits for headache in Ottawa, Canada. Headache 2008; 48:1076-81. [PMID: 18218009 DOI: 10.1111/j.1526-4610.2007.01039.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND No extensive studies exist on the relation between ambient air pollution and health outcomes such as migraine or headache. From other side, existing publications indicated that air pollutants can trigger migraine or headache. OBJECTIVE To examine associations between emergency department (ED) visits for headache and environmental conditions: ambient air pollution concentrations adjusted for weather factors (atmospheric pressure, temperature, and relative humidity). DESIGN AND METHODS This is a time-series study of 8012 ED visits for headache (International Classification for Diseases ninth revision: 784) recorded at an Ottawa hospital between 1992 and 2000. The generalized linear mixed models technique is used to model relation between daily counts of ED visits for headache and ambient air pollutants (gases: sulphur dioxide [SO(2)], nitrogen dioxide [NO(2)], carbon monoxide [CO]). The counts of visits for all patients, male and female patients, are analyzed separately. RESULTS The percentage increase in daily ED visits for headache was 4.2% (95% CI: 0.2, 6.4) and 4.9% (95% CI: 1.2, 8.8) for 1-day and 2-day lagged exposure to SO(2) for an increase in the interquartile range (IQR, IQR = 3.9 ppb). The positive statistically significant associations were also observed for exposure to NO(2) and CO for all and male ED visits for headache. CONCLUSIONS Presented findings provide support for the hypothesis that ED visits for headache are related to ambient air pollution.
Collapse
|
91
|
Skarek M, Janosek J, Cupr P, Kohoutek J, Novotná-Rychetská A, Holoubek I. Evaluation of genotoxic and non-genotoxic effects of organic air pollution using in vitro bioassays. ENVIRONMENT INTERNATIONAL 2007; 33:859-66. [PMID: 17512055 DOI: 10.1016/j.envint.2007.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 03/11/2007] [Accepted: 04/03/2007] [Indexed: 05/15/2023]
Abstract
In this study, organic extracts of total suspended particles (TSP) and the particulate matter (PM) with the size below 2.5 microm (PM(2.5)) combined with organic extracts of the gas phase (GP) collected at two urban and two background localities were analyzed with a bacterial genotoxicity test, SOS chromotest, and an in vitro test for the dioxin toxicity determination, using a modified cell-line of rat hepatoma H4IIE.luc. In addition, the samples of TSP and GP were analyzed for PAHs contents. The PAHs concentrations and both of the toxic activities at the urban localities were much higher than ones at the background localities. Predominantly, traffic was a source of the urban air pollution there which was also confirmed by the evaluation of portions of certain PAHs (BaP/BPE, PYR/BaP) at the localities. On the other hand, the background localities were apparently affected by a long-distance transport of the pollutants from urban and industrial centers. The results of the bioassays indicated potential health risks for the population exposed to the organic air pollutants, especially at the urban localities. Based on the collected samples, distribution of the organic pollutants with the toxic effects in the air was evaluated. The significant portion of the direct genotoxins was bound to the particles larger than 2.5 microm. On the contrary, the indirect genotoxins were bound predominantly to the particles with the size below 2.5 microm. However, in the urban air they may be also bound to the larger particles, as well. While the direct genotoxicity may be related with the presence of PAH-derivatives as well as some polar organic pollutants, the indirect genotoxicity is related with the detected carcinogenic PAHs. But besides the above specified pollutants it is also necessary to consider the presence of other toxic components of the complex organic air pollution mixture that may also show potential health risks. This study demonstrates application of the combination of the screening bioassays for the evaluation of organic air pollution and identification of its health risks.
Collapse
Affiliation(s)
- M Skarek
- Research Center for Environmental Chemistry and Ecotoxicology (RECETOX), Faculty of Science, Masaryk University, Kamenice 126/3, 625 00 Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
92
|
Meng YY, Wilhelm M, Rull RP, English P, Ritz B. Traffic and outdoor air pollution levels near residences and poorly controlled asthma in adults. Ann Allergy Asthma Immunol 2007; 98:455-63. [PMID: 17521030 DOI: 10.1016/s1081-1206(10)60760-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Air pollution may exacerbate asthma. OBJECTIVE To investigate associations between traffic and outdoor air pollution levels near residences and poorly controlled asthma among adults diagnosed as having asthma in Los Angeles and San Diego counties, California. METHODS We estimated traffic density within 500 ft of 2001 California Health Interview Survey respondents' reported residential cross-street intersections. Additionally, we assigned annual average concentrations of ozone, nitrogen dioxide, particulate matter 2.5 and 10 micrometers or less in diameter, and carbon monoxide measured at government monitoring stations within a 5-mile radius of the reported residential cross-street intersections. RESULTS We observed a 2-fold increase in poorly controlled asthma (odds ratio [OR], 2.11; 95% confidence interval [CI], 1.38-3.23) among asthmatic adults in the highest quintile of traffic density after adjusting for age, sex, race, and poverty. Similar increases were seen for nonelderly adults, men, and women, although associations seemed strongest in elderly adults (OR, 3.00; 95% CI, 1.13-7.91). Ozone exposures were associated with poorly controlled asthma among elderly adults (OR, 1.70; 95% CI, 0.91-3.18 per 1 pphm) and men (OR, 1.76; 95% CI, 1.05-2.94 per 1 pphm), whereas particulate matter 10 micrometers or less seemed to affect primarily women (OR, 2.06; 95% CI, 1.17-3.61), even at levels below the national air quality standard. CONCLUSIONS Heavy traffic and high air pollution levels near residences are associated with poorly controlled asthma.
Collapse
Affiliation(s)
- Ying-Ying Meng
- UCLA Center for Health Policy Research, Los Angeles, California 90024, USA.
| | | | | | | | | |
Collapse
|
93
|
Franklin M, Zeka A, Schwartz J. Association between PM2.5 and all-cause and specific-cause mortality in 27 US communities. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2007; 17:279-87. [PMID: 17006435 DOI: 10.1038/sj.jes.7500530] [Citation(s) in RCA: 257] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
While fine mode particulate matter (PM(2.5)) forms the basis for regulating particles in the US and other countries, there is a serious paucity of large population-based studies of its acute effect on mortality. To address this issue, we examined the association between PM(2.5) and both all-cause and specific-cause mortality using over 1.3 million deaths in 27 US communities between 1997 and 2002. A two-stage approach was used. First, the association between PM(2.5) and mortality in each community was quantified using a case-crossover design. Second, meta-analysis was used to estimate a summary effect over all 27 communities. Effect modification of age and gender was examined using interaction terms in the case-crossover model, while effect modification of community-specific characteristics including geographic location, annual PM(2.5) concentration above 15 microg/m(3) and central air conditioning prevalence was examined using meta-regression. We observed a 1.21% (95% CI 0.29, 2.14%) increase in all-cause mortality, a 1.78% (95% CI 0.20, 3.36%) increase in respiratory related mortality and a 1.03% (95% CI 0.02, 2.04%) increase in stroke related mortality with a 10 microg/m(3) increase in previous day's PM(2.5). The magnitude of these associations is more than triple that recently reported for PM(10), suggesting that combustion and traffic related particles are more toxic than larger sized particles. Effect modification occurred in all-cause and specific-cause deaths with greater effects in subjects >or=75 years of age. There was suggestive evidence that women may be more susceptible to PM(2.5) effects than men, and that effects were larger in the East than in the West. Increased prevalence of central air conditioning was associated with a decreased effect of PM(2.5). Our findings describe the magnitude of the effect on all-cause and specific-cause mortality, the modifiers of this association, and suggest that PM(2.5) may pose a public health risk even at or below current ambient levels.
Collapse
Affiliation(s)
- Meredith Franklin
- Exposure, Epidemiology and Risk Program, Department of Environmental Health, Harvard School of Public Health, Boston, MA 02215, USA.
| | | | | |
Collapse
|
94
|
Zeka A, Mannetje A, Zaridze D, Szeszenia-Dabrowska N, Rudnai P, Lissowska J, Fabiánová E, Mates D, Bencko V, Navratilova M, Cassidy A, Janout V, Travier N, Fevotte J, Fletcher T, Brennan P, Boffetta P. Lung cancer and occupation in nonsmokers: a multicenter case-control study in Europe. Epidemiology 2007; 17:615-23. [PMID: 17068414 DOI: 10.1097/01.ede.0000239582.92495.b5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Tobacco smoking is the main cause for lung cancer worldwide, making it difficult to examine the carcinogenic role of other risk factors because of possible confounding by smoking. Therefore, the present study aimed to investigate the association between lung cancer and occupation independent of smoking. METHODS A case-control study of lung cancer was carried out between March 1998 and January 2002 in 16 centers from 7 European countries, including 223 never-smoking cases and 1039 controls. Information on lifestyle and occupation was obtained through detailed questionnaires. Job and industries were classified as entailing exposure to known or suspected carcinogens; in addition, expert assessment provided exposure estimates to specific agents. RESULTS The odds ratio of lung cancer among women employed for more than 12 years in suspected high-risk occupations was 1.75 (95% confidence interval = 0.63-4.85). A comparable increase in risk was not detected for employment in established high-risk occupations or among men. Increased risk of lung cancer was suggested among individuals exposed to nonferrous metal dust and fumes, crystalline silica, and organic solvents. CONCLUSION Occupations were found to play a limited role in lung cancer risk among never-smokers. Jobs entailing exposure to suspected lung carcinogens should receive priority in future studies among women. Nonferrous metal dust and fumes and silica may exert a carcinogenic effect independently from smoking.
Collapse
Affiliation(s)
- Ariana Zeka
- International Agency for Research on Cancer, Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Villeneuve PJ, Chen L, Stieb D, Rowe BH. Associations between outdoor air pollution and emergency department visits for stroke in Edmonton, Canada. Eur J Epidemiol 2006; 21:689-700. [PMID: 17048082 DOI: 10.1007/s10654-006-9050-9] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Accepted: 08/08/2006] [Indexed: 11/25/2022]
Abstract
Inconsistent results have been obtained from studies that have examined the relationship between air pollution and hospital visits for stroke. We undertook a time-stratified case-crossover study to evaluate associations between outdoor air pollution and emergency department visits for stroke among the elderly according to stroke type, season, and sex. Analyses are based on a total of 12,422 stroke visits among those 65 years of age and older in Edmonton, Canada between April 1, 1992 and March 31, 2002. Daily air pollution levels for SO(2), NO(2), PM(2.5), PM(10), CO and O(3) were estimated using data from fixed-site monitoring stations. Particulate matter data were only available from 1998 onwards. Conditional logistic regression was used to estimate the odds ratios (ORs) and their 95% confidence intervals in relation to an increase in the interquartile range (IQR) of each pollutant. ORs were adjusted for the effects of temperature and relative humidity. We found no association between outdoor measures of air pollution and all stroke visits. In contrast, elevated risks were observed between levels of air pollution and acute ischemic stroke between April and September. During this season, the ORs associated with an increase in the IQR of the 3-day average for CO and NO(2) were 1.32 (95% CI = 1.09-1.60) and 1.26 (95% CI = 1.09-1.46), respectively. CO exposures in the same season, lagged 1 day, were associated with an increased risk of hemorrhagic stroke with ORs was 1.20 (95% CI = 1.00-1.43). Our results suggest it is possible that vehicular traffic, which produces increased levels of NO(2) and CO, contributes to an increased incidence of emergency department visits for stroke.
Collapse
Affiliation(s)
- Paul J Villeneuve
- Air Health Effects Division, Environmental Contaminants Bureau, Health Canada, 269 Laurier Ave. W. 3rd Floor, 3-022 PL4903C, Ottawa, Ontario, Canada, K1A 0K9.
| | | | | | | |
Collapse
|
96
|
Kim CS, Hu SC. Total respiratory tract deposition of fine micrometer-sized particles in healthy adults: empirical equations for sex and breathing pattern. J Appl Physiol (1985) 2006; 101:401-12. [PMID: 16849812 DOI: 10.1152/japplphysiol.00026.2006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Accurate dose estimation under various inhalation conditions is important for assessing both the potential health effects of pollutant particles and the therapeutic efficacy of medicinal aerosols. We measured total deposition fraction (TDF) of monodisperse micrometer-sized particles [particle diameter (Dp) = 1, 3, and 5 μm in diameter] in healthy adults (8 men and 7 women) in a wide range of breathing patterns; tidal volumes (Vt) of 350–1500 ml and respiratory flow rates (Q̇) of 175–1,000 ml/s. The subject inhaled test aerosols for 10–20 breaths with each of the prescribed breathing patterns, and TDF was obtained by monitoring inhaled and exhaled aerosols breath by breath by a laser aerosol photometer. Results show that TDF varied from 0.12–0.25, 0.26–0.68, and 0.45–0.83 for Dp = 1, 3, and 5 μm, respectively, depending on the breathing pattern used. TDF was comparable between men and women for Dp = 1 μm but was greater in women than men for Dp = 3 and 5 μm for all breathing patterns used ( P < 0.05). TDF increased with an increase in Vt regardless of Dp and Q̇ used. At a fixed Vt TDF decreased with an increase in Q̇ for Dp = 1 and 3 μm but did not show any significant changes for Dp = 5 μm. The varying TDF values, however, could be consolidated by a single composite parameter (ω) consisting of Dp, Vt, and Q̇. The results indicate that unifying empirical formulas provide a convenient means of assessing deposition dose of particles under varying inhalation conditions.
Collapse
Affiliation(s)
- Chong S Kim
- Human Studies Division (MD-58B National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | | |
Collapse
|
97
|
Zeka A, Zanobetti A, Schwartz J. Individual-level modifiers of the effects of particulate matter on daily mortality. Am J Epidemiol 2006; 163:849-59. [PMID: 16554348 DOI: 10.1093/aje/kwj116] [Citation(s) in RCA: 289] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Consistent evidence has shown a positive association between particulate matter with an aerodiameter of less than or equal to 10 mum (PM(10)) and daily mortality. Less is known about the modification of this association by factors measured at the individual level. The authors examined this question in a case-crossover study of 20 US cities. Mortality events (1.9 million) were obtained for nonaccidental, respiratory, heart disease, and stroke mortality between 1989 and 2000. PM(10) concentrations were obtained from the US Environmental Protection Agency. The authors examined the modification of the PM(10)-mortality association by sociodemographics, location of death, season, and secondary diagnoses. They found different patterns of PM(10)-mortality associations by gender and age but no differences by race. The level of education was inversely related to the risk of mortality associated with PM(10). PM(10)-related, out-of-hospital deaths were more likely than were in-hospital deaths, as were those occurring during spring/fall versus summer/winter. A secondary diagnosis of diabetes modified the effect of PM(10) for respiratory and stroke mortality. Pneumonia was a positive effect modifier for deaths from all causes and stroke, while secondary stroke modified the effects for all-cause and respiratory deaths. The findings suggest that more attention must be paid to population characteristics to identify greater likelihood of exposures and susceptibility and, as a result, to improve policy making for air pollution standards.
Collapse
Affiliation(s)
- Ariana Zeka
- Environmental Health Department, Harvard School of Public Health, 401 Park Drive, Suite 415 West, Boston, MA 02215, USA.
| | | | | |
Collapse
|
98
|
Chen LH, Knutsen SF, Shavlik D, Beeson WL, Petersen F, Ghamsary M, Abbey D. The association between fatal coronary heart disease and ambient particulate air pollution: Are females at greater risk? ENVIRONMENTAL HEALTH PERSPECTIVES 2005; 113:1723-9. [PMID: 16330354 PMCID: PMC1314912 DOI: 10.1289/ehp.8190] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The purpose of this study was to assess the effect of long-term ambient particulate matter (PM) on risk of fatal coronary heart disease (CHD). A cohort of 3,239 nonsmoking, non-Hispanic white adults was followed for 22 years. Monthly concentrations of ambient air pollutants were obtained from monitoring stations [PM < 10 microm in aerodynamic diameter (PM10), ozone, sulfur dioxide, nitrogen dioxide] or airport visibility data [PM < 2.5 microm in aerodynamic diameter (PM2.5)] and interpolated to ZIP code centroids of work and residence locations. All participants had completed a detailed lifestyle questionnaire at baseline (1976), and follow-up information on environmental tobacco smoke and other personal sources of air pollution were available from four subsequent questionnaires from 1977 through 2000. Persons with prevalent CHD, stroke, or diabetes at baseline (1976) were excluded, and analyses were controlled for a number of potential confounders, including lifestyle. In females, the relative risk (RR) for fatal CHD with each 10-microg/m3 increase in PM2.5 was 1.42 [95% confidence interval (CI), 1.06-1.90] in the single-pollutant model and 2.00 (95% CI, 1.51-2.64) in the two-pollutant model with O3. Corresponding RRs for a 10-microg/m3 increase in PM(10-2.5) and PM10 were 1.62 and 1.45, respectively, in all females and 1.85 and 1.52 in postmenopausal females. No associations were found in males. A positive association with fatal CHD was found with all three PM fractions in females but not in males. The risk estimates were strengthened when adjusting for gaseous pollutants, especially O3, and were highest for PM2.5. These findings could have great implications for policy regulations.
Collapse
Affiliation(s)
- Lie Hong Chen
- Department of Epidemiology and Biostatistics, Loma Linda University, Loma Linda, California, USA
| | | | | | | | | | | | | |
Collapse
|
99
|
Downs SH, Brändli O, Zellweger JP, Schindler C, Künzli N, Gerbase MW, Burdet L, Bettschart R, Zemp E, Frey M, Keller R, Tschopp JM, Leuenberger P, Ackermann-Liebrich U. Accelerated decline in lung function in smoking women with airway obstruction: SAPALDIA 2 cohort study. Respir Res 2005; 6:45. [PMID: 15918902 PMCID: PMC1177989 DOI: 10.1186/1465-9921-6-45] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Accepted: 05/26/2005] [Indexed: 11/10/2022] Open
Abstract
Background The aim was to determine if effects from smoking on lung function measured over 11 years differ between men and women. Methods In a prospective population based cohort study (Swiss Study on Air Pollution and Lung Diseases in Adults) current smokers in 1991 (18 – 60 yrs) were reassessed in 2002 (n = 1792). Multiple linear regression was used to estimate effects from pack-years of cigarettes smoked to 1991 and mean packs of cigarettes smoked per day between 1991 and 2002 on change in lung volume and flows over the 11 years. Results In both sexes, packs smoked between assessments were related to lung function decline but pack-years smoked before 1991 were not. Mean annual decline in FEV1 was -10.4 mL(95%CI -15.3, -5.5) per pack per day between assessments in men and -13.8 mL(95%CI-19.5,-8.1) in women. Decline per pack per day between 1991 and 2002 was lower in women who smoked in 1991 but quit before 2002 compared to persistent smokers (-6.4 vs -11.6 mL, p = 0.05) but this was not seen in men (-14.3 vs -8.8 mL p = 0.49). Smoking related decline was accelerated in men and women with airway obstruction, particularly in women where decline in FEV1 was three fold higher in participants with FEV1/FVC<0.70 compared to other women (-39.4 vs -12.2 mL/yr per pack per day, p < 0.002). Conclusion There are differences in effects from smoking on lung function between men and women. Lung function recovers faster in women quitters than in men. Women current smokers with airway obstruction experience a greater smoking related decline in lung function than men.
Collapse
Affiliation(s)
- Sara H Downs
- Institute of Social and Preventive Medicine, University of Basle, Basle, Switzerland
| | | | | | - Christian Schindler
- Institute of Social and Preventive Medicine, University of Basle, Basle, Switzerland
| | - Nino Künzli
- Division of Occupational and Environmental Health, University of Southern California, USA
| | - Margaret W Gerbase
- Division of Pulmonary Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | - Luc Burdet
- Hôpital intercantonal de la Broye, Payerne, Switzerland
| | | | - Elisabeth Zemp
- Institute of Social and Preventive Medicine, University of Basle, Basle, Switzerland
| | | | | | | | | | | | | |
Collapse
|
100
|
Fortoul TI, Moncada-Hernández S, Saldivar-Osorio L, Espejel-Maya G, Mussali-Galante P, del Carmen Avila-Casado M, Colín-Barenque L, Hernández-Serrato MI, Avila-Costa MR. Sex differences in bronchiolar epithelium response after the inhalation of lead acetate (Pb). Toxicology 2005; 207:323-30. [PMID: 15596262 DOI: 10.1016/j.tox.2004.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Revised: 10/08/2004] [Accepted: 10/16/2004] [Indexed: 11/24/2022]
Abstract
In order to identify if there were sex differences in lead (Pb) lung concentrations and in bronchiolar response after its inhalation, a mice inhalation model was conducted. Sixty CD-1 adult mice from each sex inhaled separately, lead acetate 0.1 M for 1 h, thrice weekly during 15 days. Animals were evaluated for Pb-lung concentrations by atomic absorption spectrometry and for morphological evaluation by scanning electron microscopy (SEM). Higher Pb-lung concentrations were determined in females, however, more cell damage was found in males, finding that correlated with an increased loss of the nonciliated bronchiolar cells (NCBC) more sloughing and necrosis. Differences in particle clearance, oxidative stress handling, cytokines pathway activation and cytochrome P450 enzymes activity, all influenced by sex hormones, might be a possible explanation for our findings. The relevance of further studies in this field is stressed, as well as its relation to the different development expected for each sex in disease evolution, possible complications and treatment response.
Collapse
Affiliation(s)
- Teresa Imelda Fortoul
- Departamento de Biología Celular y Tisular, Edificio A 3er piso, Facultad de Medicina, UNAM, C.P. 04510 México City, Mexico.
| | | | | | | | | | | | | | | | | |
Collapse
|