51
|
Jeon KH, Park SH, Bae WJ, Kim SW, Park HJ, Kim S, Kim TH, Jeon SH, Park I, Park HJ, Kwon Y. Cannabidiol, a Regulator of Intracellular Calcium and Calpain. Cannabis Cannabinoid Res 2023; 8:119-125. [PMID: 35196129 DOI: 10.1089/can.2021.0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cannabidiol (CBD) is one of the most abundant components of Cannabis and has long been used in Cannabis-based preparations. Recently, CBD has become a promising pharmacological agent because of its beneficial properties in the pathophysiology of several diseases. Although CBD is a kind of cannabinoid and acts on cannabinoid receptors (CB1 and CB2), molecular targets involved in diverse therapeutic properties of CBD have not been identified because CBD also interacts with other molecular targets. Considering that CBD alters the intracellular calcium level by which calpain activity is controlled, and both CBD and calpain are associated with various diseases related to calcium signaling, including neurological disorders, this review provides an overview of calpain and calcium signaling as possible molecular targets of CBD. As calpain is known to play an important role in the pathophysiology of neurological disease, a deeper understanding of its relationship with CBD will be meaningful. To understand the role of CBD as a calpain regulator, in silico structural analysis on the binding mode of CBD with calpain was performed.
Collapse
Affiliation(s)
- Kyung-Hwa Jeon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
- Drug Development Research Core Center, Ewha Womans University, Seoul, Republic of Korea
| | - Sang-Hyuck Park
- Institute of Cannabis Research, Colorado State University-Pueblo, Pueblo, Colorado, USA
| | - Woong Jin Bae
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sae Woong Kim
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
- Green Medicine Co., Ltd., Busan, Republic of Korea
| | - Hyo Jung Park
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Soomin Kim
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | | | - Seung Hwan Jeon
- Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ilbum Park
- Yuhan Care Co., Ltd., Yuhan Care R&D Center, Yongin, Republic of Korea
| | - Hyun-Je Park
- Yuhan Care Co., Ltd., Yuhan Natural Product R&D Center, Andong, Republic of Korea
| | - Youngjoo Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
- Drug Development Research Core Center, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
52
|
Picard E, Kerckhove N, François A, Boudieu L, Billard E, Carvalho FA, Bogard G, Gosset P, Bourdier J, Aissouni Y, Bourinet E, Eschalier A, Daulhac L, Mallet C. Role of T CD4 + cells, macrophages, C-low threshold mechanoreceptors and spinal Ca v 3.2 channels in inflammation and related pain-like symptoms in murine inflammatory models. Br J Pharmacol 2023; 180:385-400. [PMID: 36131381 DOI: 10.1111/bph.15956] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 06/22/2022] [Accepted: 07/06/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE T-type calcium channels, mainly the Cav 3.2 subtype, are important contributors to the nociceptive signalling pathway. We investigated their involvement in inflammation and related pain-like symptoms. EXPERIMENTAL APPROACH The involvement of Cav 3.2 and T-type channels was investigated using genetic and pharmacological inhibition to assess mechanical allodynia/hyperalgesia and oedema development in two murine inflammatory pain models. The location of Cav 3.2 channels involved in pain-like symptoms was studied in mice with Cav 3.2 knocked out in C-low threshold mechanoreceptors (C-LTMR) and the use of ABT-639, a peripherally restricted T-type channel inhibitor. The anti-oedema effect of Cav 3.2 channel inhibition was investigated in chimeric mice with immune cells deleted for Cav 3.2. Lymphocytes and macrophages from either green fluorescent protein-targeted Cav 3.2 or KO mice were used to determine the expression of Cav 3.2 protein and the functional status of the cells. KEY RESULTS Cav 3.2 channels contributed to the development of pain-like symptoms and oedema in the two murine inflammatory pain models. Our results provided evidence of the involvement of Cav 3.2 channels located on C-LTMRs and spinal cord in inflammatory pain. Cav 3.2 channels located in T cells and macrophages contribute to the inflammatory process. CONCLUSION AND IMPLICATIONS Cav 3.2 channels play crucial roles in inflammation and related pain, implying that targeting of Cav 3.2 channels with pharmacological agents could be an attractive and readily evaluable strategy in clinical trials, to relieve chronic inflammatory pain in patients.
Collapse
Affiliation(s)
- Elodie Picard
- Inserm, U1107 Neuro-Dol, Pharmacologie Fondamentale et Clinique de la Douleur, Université Clermont Auvergne, Clermont-Ferrand, France.,Faculty of Medicine, ANALGESIA Institute, Clermont-Ferrand, France.,Inserm, U1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, University of Lille, Lille, France
| | - Nicolas Kerckhove
- Inserm, U1107 Neuro-Dol, Pharmacologie Fondamentale et Clinique de la Douleur, Université Clermont Auvergne, Clermont-Ferrand, France.,Faculty of Medicine, ANALGESIA Institute, Clermont-Ferrand, France.,Medical Pharmacology Department, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Amaury François
- CNRS, INSERM, IGF, Université de Montpellier, Montpellier, France
| | - Ludivine Boudieu
- Inserm, U1107 Neuro-Dol, Pharmacologie Fondamentale et Clinique de la Douleur, Université Clermont Auvergne, Clermont-Ferrand, France.,Faculty of Medicine, ANALGESIA Institute, Clermont-Ferrand, France
| | - Elisabeth Billard
- Inserm U1071, INRA USC2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Frédéric Antonio Carvalho
- Inserm, U1107 Neuro-Dol, Pharmacologie Fondamentale et Clinique de la Douleur, Université Clermont Auvergne, Clermont-Ferrand, France.,Faculty of Medicine, ANALGESIA Institute, Clermont-Ferrand, France
| | - Gemma Bogard
- Inserm, U1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, University of Lille, Lille, France
| | - Philippe Gosset
- Inserm, U1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, University of Lille, Lille, France
| | - Justine Bourdier
- Inserm, U1107 Neuro-Dol, Pharmacologie Fondamentale et Clinique de la Douleur, Université Clermont Auvergne, Clermont-Ferrand, France.,Faculty of Medicine, ANALGESIA Institute, Clermont-Ferrand, France
| | - Youssef Aissouni
- Inserm, U1107 Neuro-Dol, Pharmacologie Fondamentale et Clinique de la Douleur, Université Clermont Auvergne, Clermont-Ferrand, France.,Faculty of Medicine, ANALGESIA Institute, Clermont-Ferrand, France
| | | | - Alain Eschalier
- Inserm, U1107 Neuro-Dol, Pharmacologie Fondamentale et Clinique de la Douleur, Université Clermont Auvergne, Clermont-Ferrand, France.,Faculty of Medicine, ANALGESIA Institute, Clermont-Ferrand, France
| | - Laurence Daulhac
- Inserm, U1107 Neuro-Dol, Pharmacologie Fondamentale et Clinique de la Douleur, Université Clermont Auvergne, Clermont-Ferrand, France.,Faculty of Medicine, ANALGESIA Institute, Clermont-Ferrand, France
| | - Christophe Mallet
- Inserm, U1107 Neuro-Dol, Pharmacologie Fondamentale et Clinique de la Douleur, Université Clermont Auvergne, Clermont-Ferrand, France.,Faculty of Medicine, ANALGESIA Institute, Clermont-Ferrand, France
| |
Collapse
|
53
|
Martinez Damonte V, Pomrenze MB, Manning CE, Casper C, Wolfden AL, Malenka RC, Kauer JA. Somatodendritic Release of Cholecystokinin Potentiates GABAergic Synapses Onto Ventral Tegmental Area Dopamine Cells. Biol Psychiatry 2023; 93:197-208. [PMID: 35961792 PMCID: PMC9976994 DOI: 10.1016/j.biopsych.2022.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/01/2022] [Accepted: 06/10/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND Neuropeptides are contained in nearly every neuron in the central nervous system and can be released not only from nerve terminals but also from somatodendritic sites. Cholecystokinin (CCK), among the most abundant neuropeptides in the brain, is expressed in the majority of midbrain dopamine neurons. Despite this high expression, CCK function within the ventral tegmental area (VTA) is not well understood. METHODS We confirmed CCK expression in VTA dopamine neurons through immunohistochemistry and in situ hybridization and detected optogenetically induced CCK release using an enzyme-linked immunosorbent assay. To investigate whether CCK modulates VTA circuit activity, we used whole-cell patch clamp recordings in mouse brain slices. We infused CCK locally in vivo and tested food intake and locomotion in fasted mice. We also used in vivo fiber photometry to measure Ca2+ transients in dopamine neurons during feeding. RESULTS Here we report that VTA dopamine neurons release CCK from somatodendritic regions, where it triggers long-term potentiation of GABAergic (gamma-aminobutyric acidergic) synapses. The somatodendritic release occurs during trains of optogenetic stimuli or prolonged but modest depolarization and is dependent on synaptotagmin-7 and T-type Ca2+ channels. Depolarization-induced long-term potentiation is blocked by a CCK2 receptor antagonist and mimicked by exogenous CCK. Local infusion of CCK in vivo inhibits food consumption and decreases distance traveled in an open field test. Furthermore, intra-VTA-infused CCK reduced dopamine cell Ca2+ signals during food consumption after an overnight fast and was correlated with reduced food intake. CONCLUSIONS Our experiments introduce somatodendritic neuropeptide release as a previously unknown feedback regulator of VTA dopamine cell excitability and dopamine-related behaviors.
Collapse
|
54
|
Jeong S, Shim JS, Sin SK, Park KS, Lee JH. Phosphorylation states greatly regulate the activity and gating properties of Ca v 3.1 T-type Ca 2+ channels. J Cell Physiol 2023; 238:210-226. [PMID: 36502489 DOI: 10.1002/jcp.30920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/21/2022] [Accepted: 11/10/2022] [Indexed: 12/14/2022]
Abstract
Cav 3.1 T-type Ca2+ channels play pivotal roles in neuronal low-threshold spikes, visceral pain, and pacemaker activity. Phosphorylation has been reported to potently regulate the activity and gating properties of Cav 3.1 channels. However, systematic identification of phosphorylation sites (phosphosites) in Cav 3.1 channel has been poorly investigated. In this work, we analyzed rat Cav 3.1 protein expressed in HEK-293 cells by mass spectrometry, identified 30 phosphosites located at the cytoplasmic regions, and illustrated them as a Cav 3.1 phosphorylation map which includes the reported mouse Cav 3.1 phosphosites. Site-directed mutagenesis of the phosphosites to Ala residues and functional analysis of the phospho-silent Cav 3.1 mutants expressed in Xenopus oocytes showed that the phospho-silent mutation of the N-terminal Ser18 reduced its current amplitude with accelerated current kinetics and negatively shifted channel availability. Remarkably, the phospho-silent mutations of the C-terminal Ser residues (Ser1924, Ser2001, Ser2163, Ser2166, or Ser2189) greatly reduced their current amplitude without altering the voltage-dependent gating properties. In contrast, the phosphomimetic Asp mutations of Cav 3.1 on the N- and C-terminal Ser residues reversed the effects of the phospho-silent mutations. Collectively, these findings demonstrate that the multiple phosphosites of Cav 3.1 at the N- and C-terminal regions play crucial roles in the regulation of the channel activity and voltage-dependent gating properties.
Collapse
Affiliation(s)
- Sua Jeong
- Department of Life Science, Sogang University, Seoul, South Korea
| | - Ji Seon Shim
- Department of Physiology, Kyung-Hee University, Seoul, South Korea
| | - Seok Kyo Sin
- Department of Physiology, Kyung-Hee University, Seoul, South Korea
| | - Kang-Sik Park
- Department of Physiology, Kyung-Hee University, Seoul, South Korea
| | - Jung-Ha Lee
- Department of Life Science, Sogang University, Seoul, South Korea
| |
Collapse
|
55
|
Harman T, Udoh M, McElroy DL, Anderson LL, Kevin RC, Banister SD, Ametovski A, Markham J, Bladen C, Doohan PT, Greba Q, Laprairie RB, Snutch TP, McGregor IS, Howland JG, Arnold JC. MEPIRAPIM-derived synthetic cannabinoids inhibit T-type calcium channels with divergent effects on seizures in rodent models of epilepsy. Front Physiol 2023; 14:1086243. [PMID: 37082241 PMCID: PMC10110893 DOI: 10.3389/fphys.2023.1086243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/17/2023] [Indexed: 04/22/2023] Open
Abstract
Background: T-type Ca2+ channels (Cav3) represent emerging therapeutic targets for a range of neurological disorders, including epilepsy and pain. To aid the development and optimisation of new therapeutics, there is a need to identify novel chemical entities which act at these ion channels. A number of synthetic cannabinoid receptor agonists (SCRAs) have been found to exhibit activity at T-type channels, suggesting that cannabinoids may provide convenient chemical scaffolds on which to design novel Cav3 inhibitors. However, activity at cannabinoid type 1 (CB1) receptors can be problematic because of central and peripheral toxicities associated with potent SCRAs. The putative SCRA MEPIRAPIM and its analogues were recently identified as Cav3 inhibitors with only minimal activity at CB1 receptors, opening the possibility that this scaffold may be exploited to develop novel, selective Cav3 inhibitors. Here we present the pharmacological characterisation of SB2193 and SB2193F, two novel Cav3 inhibitors derived from MEPIRAPIM. Methods: The potency of SB2193 and SB2193F was evaluated in vitro using a fluorometric Ca2+ flux assay and confirmed using whole-cell patch-clamp electrophysiology. In silico docking to the cryo-EM structure of Cav3.1 was also performed to elucidate structural insights into T-type channel inhibition. Next, in vivo pharmacokinetic parameters in mouse brain and plasma were determined using liquid chromatography-mass spectroscopy. Finally, anticonvulsant activity was assayed in established genetic and electrically-induced rodent seizure models. Results: Both MEPIRAPIM derivatives produced potent inhibition of Cav3 channels and were brain penetrant, with SB2193 exhibiting a brain/plasma ratio of 2.7. SB2193 was further examined in mouse seizure models where it acutely protected against 6 Hz-induced seizures. However, SB2193 did not reduce spontaneous seizures in the Scn1a +/- mouse model of Dravet syndrome, nor absence seizures in the Genetic Absence Epilepsy Rat from Strasbourg (GAERS). Surprisingly, SB2193 appeared to increase the incidence and duration of spike-and-wave discharges in GAERS animals over a 4 h recording period. Conclusion: These results show that MEPIRAPIM analogues provide novel chemical scaffolds to advance Cav3 inhibitors against certain seizure types.
Collapse
Affiliation(s)
- Thomas Harman
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Michael Udoh
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Dan L. McElroy
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lyndsey L. Anderson
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Richard C. Kevin
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Samuel D. Banister
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Adam Ametovski
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Jack Markham
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Chris Bladen
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Peter T. Doohan
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Quentin Greba
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Robert B. Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Terrance P. Snutch
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Iain S. McGregor
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - John G. Howland
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jonathon C. Arnold
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- *Correspondence: Jonathon C. Arnold,
| |
Collapse
|
56
|
Zong P, Yue L. Regulation of Presynaptic Calcium Channels. ADVANCES IN NEUROBIOLOGY 2023; 33:171-202. [PMID: 37615867 DOI: 10.1007/978-3-031-34229-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Voltage-gated calcium channels (VGCCs), especially Cav2.1 and Cav2.2, are the major mediators of Ca2+ influx at the presynaptic membrane in response to neuron excitation, thereby exerting a predominant control on synaptic transmission. To guarantee the timely and precise release of neurotransmitters at synapses, the activity of presynaptic VGCCs is tightly regulated by a variety of factors, including auxiliary subunits, membrane potential, G protein-coupled receptors (GPCRs), calmodulin (CaM), Ca2+-binding proteins (CaBP), protein kinases, various interacting proteins, alternative splicing events, and genetic variations.
Collapse
Affiliation(s)
- Pengyu Zong
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Lixia Yue
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine, Farmington, CT, USA.
| |
Collapse
|
57
|
Dutta Banik D, Medler KF. Defining the role of TRPM4 in broadly responsive taste receptor cells. Front Cell Neurosci 2023; 17:1148995. [PMID: 37032837 PMCID: PMC10073513 DOI: 10.3389/fncel.2023.1148995] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Peripheral taste receptor cells use multiple signaling pathways to transduce taste stimuli into output signals that are sent to the brain. We have previously identified a subpopulation of Type III taste cells that are broadly responsive (BR) and respond to multiple taste stimuli including bitter, sweet, umami, and sour. These BR cells use a PLCβ3/IP3R1 signaling pathway to detect bitter, sweet, and umami stimuli and use a separate pathway to detect sour. Currently, the downstream targets of the PLCβ3 signaling pathway are unknown. Here we identify TRPM4, a monovalent selective TRP channel, as an important downstream component in this signaling pathway. Using live cell imaging on isolated taste receptor cells from mice, we show that inhibition of TRPM4 abolished the taste-evoked sodium responses and significantly reduced the taste-evoked calcium responses in BR cells. Since BR cells are a subpopulation of Type III taste cells, they have conventional chemical synapses that require the activation of voltage-gated calcium channels (VGCCs) to cause neurotransmitter release. We found that TRPM4-dependent membrane depolarization selectively activates L-type VGCCs in these cells. The calcium influx through L-type VGCCs also generates a calcium-induced calcium release (CICR) via ryanodine receptors that enhances TRPM4 activity. Together these signaling events amplify the initial taste response to generate an appropriate output signal.
Collapse
|
58
|
Correa BH, Moreira CR, Hildebrand ME, Vieira LB. The Role of Voltage-Gated Calcium Channels in Basal Ganglia Neurodegenerative Disorders. Curr Neuropharmacol 2023; 21:183-201. [PMID: 35339179 PMCID: PMC10190140 DOI: 10.2174/1570159x20666220327211156] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/11/2022] [Accepted: 03/14/2022] [Indexed: 11/22/2022] Open
Abstract
Calcium (Ca2+) plays a central role in regulating many cellular processes and influences cell survival. Several mechanisms can disrupt Ca2+ homeostasis to trigger cell death, including oxidative stress, mitochondrial damage, excitotoxicity, neuroinflammation, autophagy, and apoptosis. Voltage-gated Ca2+ channels (VGCCs) act as the main source of Ca2+ entry into electrically excitable cells, such as neurons, and they are also expressed in glial cells such as astrocytes and oligodendrocytes. The dysregulation of VGCC activity has been reported in both Parkinson's disease (PD) and Huntington's (HD). PD and HD are progressive neurodegenerative disorders (NDs) of the basal ganglia characterized by motor impairment as well as cognitive and psychiatric dysfunctions. This review will examine the putative role of neuronal VGCCs in the pathogenesis and treatment of central movement disorders, focusing on PD and HD. The link between basal ganglia disorders and VGCC physiology will provide a framework for understanding the neurodegenerative processes that occur in PD and HD, as well as a possible path towards identifying new therapeutic targets for the treatment of these debilitating disorders.
Collapse
Affiliation(s)
- Bernardo H.M. Correa
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carlos Roberto Moreira
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Luciene Bruno Vieira
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
59
|
El Ghaleb Y, Flucher BE. Ca V3.3 Channelopathies. Handb Exp Pharmacol 2023; 279:263-288. [PMID: 36592228 DOI: 10.1007/164_2022_631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
CaV3.3 is the third member of the low-voltage-activated calcium channel family and the last to be recognized as disease gene. Previously, CACNA1I, the gene encoding CaV3.3, had been described as schizophrenia risk gene. More recently, de novo missense mutations in CACNA1I were identified in patients with variable degrees of neurodevelopmental disease with and without epilepsy. Their functional characterization indicated gain-of-function effects resulting in increased calcium load and hyperexcitability of neurons expressing CaV3.3. The amino acids mutated in the CaV3.3 disease variants are located in the vicinity of the channel's activation gate and thus are classified as gate-modifying channelopathy mutations. A persistent calcium leak during rest and prolonged calcium spikes due to increased voltage sensitivity of activation and slowed kinetics of channel inactivation, respectively, may be causal for the neurodevelopmental defects. The prominent expression of CaV3.3 in thalamic reticular nucleus neurons and its essential role in generating the rhythmic thalamocortical network activity are consistent with a role of the mutated channels in the etiology of epileptic seizures and thus suggest T-type channel blockers as a viable treatment option.
Collapse
Affiliation(s)
- Yousra El Ghaleb
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
| | - Bernhard E Flucher
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
60
|
Abad-Rodríguez J, Brocca ME, Higuero AM. Glycans and Carbohydrate-Binding/Transforming Proteins in Axon Physiology. ADVANCES IN NEUROBIOLOGY 2023; 29:185-217. [PMID: 36255676 DOI: 10.1007/978-3-031-12390-0_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The mature nervous system relies on the polarized morphology of neurons for a directed flow of information. These highly polarized cells use their somatodendritic domain to receive and integrate input signals while the axon is responsible for the propagation and transmission of the output signal. However, the axon must perform different functions throughout development before being fully functional for the transmission of information in the form of electrical signals. During the development of the nervous system, axons perform environmental sensing functions, which allow them to navigate through other regions until a final target is reached. Some axons must also establish a regulated contact with other cells before reaching maturity, such as with myelinating glial cells in the case of myelinated axons. Mature axons must then acquire the structural and functional characteristics that allow them to perform their role as part of the information processing and transmitting unit that is the neuron. Finally, in the event of an injury to the nervous system, damaged axons must try to reacquire some of their immature characteristics in a regeneration attempt, which is mostly successful in the PNS but fails in the CNS. Throughout all these steps, glycans perform functions of the outermost importance. Glycans expressed by the axon, as well as by their surrounding environment and contacting cells, encode key information, which is fine-tuned by glycan modifying enzymes and decoded by glycan binding proteins so that the development, guidance, myelination, and electrical transmission functions can be reliably performed. In this chapter, we will provide illustrative examples of how glycans and their binding/transforming proteins code and decode instructive information necessary for fundamental processes in axon physiology.
Collapse
Affiliation(s)
- José Abad-Rodríguez
- Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain.
| | - María Elvira Brocca
- Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| | - Alonso Miguel Higuero
- Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| |
Collapse
|
61
|
Calderon-Rivera A, Gomez K, Loya-López S, Wijeratne EK, Stratton H, Tang C, Duran P, Masterson K, Alsbiei O, Gunatilaka AL, Khanna R. Betulinic acid analogs inhibit N- and T-type voltage-gated calcium channels to attenuate nerve-injury associated neuropathic and formalin models of pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 13:100116. [PMID: 36687466 PMCID: PMC9853350 DOI: 10.1016/j.ynpai.2023.100116] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Over the past three decades, there has been a significant growth in the use of natural products, with approximately 80% of individuals using them for some aspect of primary healthcare. Our laboratories have identified and studied natural compounds with analgesic effects from dry land plants or their associated fungus during the past ten years. Here, we isolated and characterized thirteen betulin analogs and fifteen betulinic acid analogs for their capacity to prevent calcium influx brought on by depolarization in sensory neurons. The in vitro inhibition of voltage-gated calcium channels by the top drugs was then assessed using whole cell patch clamp electrophysiology. In vivo experiments, conducted at two sites, evaluated the best compound in acute and tonic, neuropathic, inflammatory, post-operative and visceral models of pain. We found that the betulinic acid analog 8 inhibited calcium influx in rat dorsal root ganglion neurons by inhibiting N- (CaV2.2) and T- (CaV3) type voltage-gated calcium channels. Moreover, intrathecal delivery of analog 8 had analgesic activity in both spared nerve injury model of neuropathic pain and acute and tonic pain induced by formalin. The results presented herein highlight the potential antinociceptive properties of betulinic acid analog 8 and set the stage for the development of novel non-opioid pain therapeutics based on the triterpenoid scaffold of betulinic acid.
Collapse
Affiliation(s)
- Aida Calderon-Rivera
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York University, New York, NY, United States
| | - Kimberly Gomez
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York University, New York, NY, United States
| | - Santiago Loya-López
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York University, New York, NY, United States
| | - E.M. Kithsiri Wijeratne
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ, United States
| | - Harrison Stratton
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Cheng Tang
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York University, New York, NY, United States
| | - Paz Duran
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York University, New York, NY, United States
| | - Kyleigh Masterson
- NYU Pain Research Center, New York University, New York, NY, United States
| | - Omar Alsbiei
- NYU Pain Research Center, New York University, New York, NY, United States
| | - A.A. Leslie Gunatilaka
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ, United States
| | - Rajesh Khanna
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York University, New York, NY, United States
| |
Collapse
|
62
|
Deletion of Notch3 Impairs Contractility of Renal Resistance Vessels Due to Deficient Ca 2+ Entry. Int J Mol Sci 2022; 23:ijms232416068. [PMID: 36555708 PMCID: PMC9788231 DOI: 10.3390/ijms232416068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Notch3 plays an important role in the differentiation and development of vascular smooth muscle cells. Mice lacking Notch3 show deficient renal autoregulation. The aim of the study was to investigate the mechanisms involved in the Notch3-mediated control of renal vascular response. To this end, renal resistance vessels (afferent arterioles) were isolated from Notch3-/- and wild-type littermates (WT) and stimulated with angiotensin II (ANG II). Contractions and intracellular Ca2+ concentrations were blunted in Notch3-/- vessels. ANG II responses in precapillary muscle arterioles were similar between the WT and Notch3-/- mice, suggesting a focal action of Notch3 in renal vasculature. Abolishing stored Ca2+ with thapsigargin reduced Ca2+ responses in the renal vessels of the two strains, signifying intact intracellular Ca2+ mobilization in Notch3-/-. EGTA (Ca2+ chelating agent), nifedipine (L-type channel-blocker), or mibefradil (T-type channel-blocker) strongly reduced contraction and Ca2+ responses in WT mice but had no effect in Notch3-/- mice, indicating defective Ca2+ entry. Notch3-/- vessels responded normally to KCl-induced depolarization, which activates L-type channels directly. Differential transcriptomic analysis showed a major down-regulation of Cacna1h gene expression, coding for the α1H subunit of the T-type Ca2+ channel, in Notch3-/- vessels. In conclusion, renal resistance vessels from Notch3-/- mice display altered vascular reactivity to ANG II due to deficient Ca2+-entry. Consequently, Notch3 is essential for proper excitation-contraction coupling and vascular-tone regulation in the kidney.
Collapse
|
63
|
Todorovic SM. Opioid-induced hyperalgesia: Are thalamic T-type calcium channels treatment targets? J Clin Invest 2022; 132:e165977. [PMID: 36519545 PMCID: PMC9753988 DOI: 10.1172/jci165977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Opioid-induced hyperalgesia (OIH) is a state of paradoxically enhanced pain transmission, termed nociceptive sensitization, described to occur in both humans and animals after repeated administration of opioid drugs, including rapidly acting remifentanil. However, molecular mechanisms of OIH remain understudied. In this issue of the JCI, Yan Jin and colleagues provided strong evidence that hyperexcitable thalamocortical networks drive remifentanil-induced hyperalgesia in a rodent model of postsurgical pain. Furthermore, the authors specifically identified an important role of the CaV3.1 isoform of low-voltage-activated or T-type calcium channels (T-channels) in this process. Further experiments are needed to determine whether thalamic T channels could serve as targets for the treatment of OIH.
Collapse
Affiliation(s)
- Slobodan M. Todorovic
- Department of Anesthesiology and
- Neuroscience and Pharmacology Graduate Program; University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
64
|
Mustafá ER, McCarthy CI, Portales AE, Cordisco Gonzalez S, Rodríguez SS, Raingo J. Constitutive activity of the dopamine (D 5 ) receptor, highly expressed in CA1 hippocampal neurons, selectively reduces Ca V 3.2 and Ca V 3.3 currents. Br J Pharmacol 2022; 180:1210-1231. [PMID: 36480023 DOI: 10.1111/bph.16006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/31/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE CaV 3.1-3 currents differentially contribute to neuronal firing patterns. CaV 3 are regulated by G protein-coupled receptors (GPCRs) activity, but information about CaV 3 as targets of the constitutive activity of GPCRs is scarce. We investigate the impact of D5 recpetor constitutive activity, a GPCR with high levels of basal activity, on CaV 3 functionality. D5 recpetor and CaV 3 are expressed in the hippocampus and have been independently linked to pathophysiological states associated with epilepsy. EXPERIMENTAL APPROACH Our study models were HEK293T cells heterologously expressing D1 or D5 receptor and CaV 3.1-3, and mouse brain slices containing the hippocampus. We used chlorpromazine (D1 /D5 inverse agonist) and a D5 receptor mutant lacking constitutive activity as experimental tools. We measured CaV 3 currents and excitability parameters using the patch-clamp technique. We completed our study with computational modelling and imaging technique. KEY RESULTS We found a higher sensitivity to TTA-P2 (CaV 3 blocker) in CA1 pyramidal neurons obtained from chlorpromazine-treated animals compared with vehicle-treated animals. We found that CaV 3.2 and CaV 3.3-but not CaV 3.1-are targets of D5 receptor constitutive activity in HEK293T cells. Finally, we found an increased firing rate in CA1 pyramidal neurons from chlorpromazine-treated animals in comparison with vehicle-treated animals. Similar changes in firing rate were observed on a neuronal model with controlled CaV 3 currents levels. CONCLUSIONS AND IMPLICATIONS Native hippocampal CaV 3 and recombinant CaV 3.2-3 are sensitive to D5 receptor constitutive activity. Manipulation of D5 receptor constitutive activity could be a valuable strategy to control neuronal excitability, especially in exacerbated conditions such as epilepsy.
Collapse
Affiliation(s)
- Emilio Román Mustafá
- Electrophysiology Laboratory of the Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET), Scientific Research Commission of the Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], Buenos Aires, Argentina
| | - Clara Inés McCarthy
- Electrophysiology Laboratory of the Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET), Scientific Research Commission of the Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], Buenos Aires, Argentina
| | - Andrea Estefanía Portales
- Electrophysiology Laboratory of the Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET), Scientific Research Commission of the Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], Buenos Aires, Argentina
| | - Santiago Cordisco Gonzalez
- Electrophysiology Laboratory of the Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET), Scientific Research Commission of the Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], Buenos Aires, Argentina
| | - Silvia Susana Rodríguez
- Electrophysiology Laboratory of the Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET), Scientific Research Commission of the Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], Buenos Aires, Argentina
| | - Jesica Raingo
- Electrophysiology Laboratory of the Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET), Scientific Research Commission of the Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], Buenos Aires, Argentina
| |
Collapse
|
65
|
Barghouth M, Ye Y, Karagiannopoulos A, Ma Y, Cowan E, Wu R, Eliasson L, Renström E, Luan C, Zhang E. The T-type calcium channel Ca V3.2 regulates insulin secretion in the pancreatic β-cell. Cell Calcium 2022; 108:102669. [PMID: 36347081 DOI: 10.1016/j.ceca.2022.102669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/08/2022]
Abstract
Voltage-gated Ca2+ (CaV) channel dysfunction leads to impaired glucose-stimulated insulin secretion in pancreatic β-cells and contributes to the development of type-2 diabetes (T2D). The role of the low-voltage gated T-type CaV channels in β-cells remains obscure. Here we have measured the global expression of T-type CaV3.2 channels in human islets and found that gene expression of CACNA1H, encoding CaV3.2, is negatively correlated with HbA1c in human donors, and positively correlated with islet insulin gene expression as well as secretion capacity in isolated human islets. Silencing or pharmacological blockade of CaV3.2 attenuates glucose-stimulated cytosolic Ca2+ signaling, membrane potential, and insulin release. Moreover, the endoplasmic reticulum (ER) Ca2+ store depletion is also impaired in CaV3.2-silenced β-cells. The linkage between T-type (CaV3.2) and L-type CaV channels is further identified by the finding that the intracellular Ca2+ signaling conducted by CaV3.2 is highly dependent on the activation of L-type CaV channels. In addition, CACNA1H expression is significantly associated with the islet predominant L-type CACNA1C (CaV1.2) and CACNA1D (CaV1.3) genes in human pancreatic islets. In conclusion, our data suggest the essential functions of the T-type CaV3.2 subunit as a mediator of β-cell Ca2+ signaling and membrane potential needed for insulin secretion, and in connection with L-type CaV channels.
Collapse
Affiliation(s)
- Mohammad Barghouth
- Unit of Islet Pathophysiology, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Malmö, 20502, Sweden
| | - Yingying Ye
- Unit of Islet Pathophysiology, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Malmö, 20502, Sweden.
| | - Alexandros Karagiannopoulos
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Malmö 20502, Sweden
| | - Yunhan Ma
- Unit of Islet Pathophysiology, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Malmö, 20502, Sweden
| | - Elaine Cowan
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Malmö 20502, Sweden
| | - Rui Wu
- Unit of Islet Pathophysiology, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Malmö, 20502, Sweden; NanoLund, Lund University, P.O. Box 118, Lund 22100, Sweden
| | - Lena Eliasson
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Malmö 20502, Sweden
| | - Erik Renström
- Unit of Islet Pathophysiology, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Malmö, 20502, Sweden
| | - Cheng Luan
- Unit of Islet Pathophysiology, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Malmö, 20502, Sweden.
| | - Enming Zhang
- Unit of Islet Pathophysiology, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Malmö, 20502, Sweden; NanoLund, Lund University, P.O. Box 118, Lund 22100, Sweden.
| |
Collapse
|
66
|
Calderon-Rivera A, Loya-Lopez S, Gomez K, Khanna R. Plant and fungi derived analgesic natural products targeting voltage-gated sodium and calcium channels. Channels (Austin) 2022; 16:198-215. [PMID: 36017978 PMCID: PMC9423853 DOI: 10.1080/19336950.2022.2103234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Voltage-gated sodium and calcium channels (VGSCs and VGCCs) play an important role in the modulation of physiologically relevant processes in excitable cells that range from action potential generation to neurotransmission. Once their expression and/or function is altered in disease, specific pharmacological approaches become necessary to mitigate the negative consequences of such dysregulation. Several classes of small molecules have been developed with demonstrated effectiveness on VGSCs and VGCCs; however, off-target effects have also been described, limiting their use and spurring efforts to find more specific and safer molecules to target these channels. There are a great number of plants and herbal preparations that have been empirically used for the treatment of diseases in which VGSCs and VGCCs are involved. Some of these natural products have progressed to clinical trials, while others are under investigation for their action mechanisms on signaling pathways, including channels. In this review, we synthesize information from ~30 compounds derived from natural sources like plants and fungi and delineate their effects on VGSCs and VGCCs in human disease, particularly pain. [Figure: see text].
Collapse
Affiliation(s)
- Aida Calderon-Rivera
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA,NYU Pain Research Center, New York University, New York, NY, USA
| | - Santiago Loya-Lopez
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA,NYU Pain Research Center, New York University, New York, NY, USA
| | - Kimberly Gomez
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA,NYU Pain Research Center, New York University, New York, NY, USA
| | - Rajesh Khanna
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA,NYU Pain Research Center, New York University, New York, NY, USA,CONTACT Rajesh Khanna
| |
Collapse
|
67
|
Guidelli R. A historical biophysical dogma vs. an understanding of the structure and function of voltage-gated tetrameric ion channels. A review. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184046. [PMID: 36096197 DOI: 10.1016/j.bbamem.2022.184046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/18/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
The outstanding work of several eminent biophysicists has allowed the functional features of voltage-gated tetrameric ion channels to be disclosed using ingenious and sophisticated electrophysiological techniques. However, the kinetics and mechanism underlying these functions have been heavily conditioned by an arbitrary interpretation of the groundbreaking results obtained by Hodgkin and Huxley (HH) in their investigation of sodium and potassium currents using the voltage clamp technique. Thus, the heavy parametrization of their results was considered to indicate that any proposed sequence of closed states terminates with a single open state. This 'dogma' of HH parametrization has influenced the formulation of countless mechanistic models, mainly stochastic, requiring a high number of free parameters and of often unspecified conformational states. This note aims to point out the advantages of a deterministic kinetic model that simulates the main features of tetrameric ion channels using only two free parameters by assuming their stepwise opening accompanied by a progressively increasing cation flow. This model exploits the electrostatic attractive interactions stemming from the charge distribution shared by all tetrameric ion channels, providing a close connection between their structure and function. Quite significantly, a stepwise opening of all ligand-gated tetrameric ion channels, such as glutamate receptors (GluRs), with concomitant ion flow, is nowadays generally accepted, not having been influenced by this dogma. This provides a unified picture of both voltage-gated and ligand-gated tetrameric ion channels.
Collapse
Affiliation(s)
- Rolando Guidelli
- Department of Chemistry "Ugo Schiff", Florence University, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy.
| |
Collapse
|
68
|
Subbamanda YD, Bhargava A. Intercommunication between Voltage-Gated Calcium Channels and Estrogen Receptor/Estrogen Signaling: Insights into Physiological and Pathological Conditions. Cells 2022; 11:cells11233850. [PMID: 36497108 PMCID: PMC9739980 DOI: 10.3390/cells11233850] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Voltage-gated calcium channels (VGCCs) and estrogen receptors are important cellular proteins that have been shown to interact with each other across varied cells and tissues. Estrogen hormone, the ligand for estrogen receptors, can also exert its effects independent of estrogen receptors that collectively constitute non-genomic mechanisms. Here, we provide insights into the VGCC regulation by estrogen and the possible mechanisms involved therein across several cell types. Notably, most of the interaction is described in neuronal and cardiovascular tissues given the importance of VGCCs in these electrically excitable tissues. We describe the modulation of various VGCCs by estrogen known so far in physiological conditions and pathological conditions. We observed that in most in vitro studies higher concentrations of estrogen were used while a handful of in vivo studies used meager concentrations resulting in inhibition or upregulation of VGCCs, respectively. There is a need for more relevant physiological assays to study the regulation of VGCCs by estrogen. Additionally, other interacting receptors and partners need to be identified that may be involved in exerting estrogen receptor-independent effects of estrogen.
Collapse
|
69
|
Role of voltage-sensitive Ca 2+ channels in the in vivo dopamine release induced by the organophosphorus pesticide glufosinate ammonium in rat striatum. Toxicol Lett 2022; 373:105-113. [PMID: 36427774 DOI: 10.1016/j.toxlet.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/05/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
The possible role of voltage-sensitive calcium channels (VSCC) activation in the glufosinate ammonium (GLA)-induced dopamine release was investigated using selective VSCC blockers and the dopamine levels were measured by HPLC from samples obtained by in vivo cerebral microdialysis. While pretreatment with 10 μM flunarizine (T-type VSCC antagonist) or nicardipine (L-type VSCC antagonist) had no statistically significant effect on dopamine release induced by 10 mM GLA, pretreatment with 100 μM of both antagonists, or 20 μM ω-conotoxin MVIIC (non-selective P/Q-type VSCC antagonist) significantly decreased the GLA-induced dopamine release over 72.2%, 73%, and 70.2%, respectively. Administration of the specific antagonist of neuronal N-type VSCCs, the ω-conotoxin GVIA (20 μM), produced an almost complete blockade of in vivo dopamine release induced by GLA. These results show that GLA-induced dopamine release could be produced by the activation of a wide range of striatal VSCC located at the synaptic terminals and axons of striatal dopaminergic neurons, especially N-type VSCC.
Collapse
|
70
|
Liu J, Li X, Xu N, Han H, Li X. Role of ion channels in the mechanism of proteinuria (Review). Exp Ther Med 2022; 25:27. [PMID: 36561615 PMCID: PMC9748662 DOI: 10.3892/etm.2022.11726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/10/2022] [Indexed: 11/25/2022] Open
Abstract
Proteinuria is a common clinical manifestation of kidney diseases, such as glomerulonephritis, nephrotic syndrome, immunoglobulin A nephropathy and diabetic nephropathy. Therefore, proteinuria is considered to be a risk factor for renal dysfunction. Furthermore, proteinuria is also significantly associated with the progression of kidney diseases and increased mortality. Its occurrence is closely associated with damage to the structure of the glomerular filtration membrane. An impaired glomerular filtration membrane can affect the selective filtration function of the kidneys; therefore, several macromolecular substances, such as proteins, may pass through the filtration membrane and promote the manifestation of proteinuria. It has been reported that ion channels play a significant role in the mechanisms underlying proteinuria. Ion channel mutations or other dysfunctions have been implicated in several diseases, therefore ion channels could be used as major therapeutic targets. The mechanisms underlying the action of ion channels and ion transporters in proteinuria have been overlooked in the literature, despite their importance in identifying novel targets for treating proteinuria and delaying the progression of kidney diseases. The current review article focused on the four key ion channel groups, namely Na+, Ca2+, Cl- and K+ ion channels and the associated ion transporters.
Collapse
Affiliation(s)
- Jie Liu
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Xuewei Li
- Department of Rheumatology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Ning Xu
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Huirong Han
- Department of Anesthesiology, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Xiangling Li
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China,Correspondence to: Professor Xiangling Li, Department of Nephrology, Affiliated Hospital of Weifang Medical University, 2428 Yu He Road, Weifang, Shandong 261000, P.R. China
| |
Collapse
|
71
|
A link between agrin signalling and Ca v3.2 at the neuromuscular junction in spinal muscular atrophy. Sci Rep 2022; 12:18960. [PMID: 36347955 PMCID: PMC9643518 DOI: 10.1038/s41598-022-23703-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
SMN protein deficiency causes motoneuron disease spinal muscular atrophy (SMA). SMN-based therapies improve patient motor symptoms to variable degrees. An early hallmark of SMA is the perturbation of the neuromuscular junction (NMJ), a synapse between a motoneuron and muscle cell. NMJ formation depends on acetylcholine receptor (AChR) clustering triggered by agrin and its co-receptors lipoprotein receptor-related protein 4 (LRP4) and transmembrane muscle-specific kinase (MuSK) signalling pathway. We have previously shown that flunarizine improves NMJs in SMA model mice, but the mechanisms remain elusive. We show here that flunarizine promotes AChR clustering in cell-autonomous, dose- and agrin-dependent manners in C2C12 myotubes. This is associated with an increase in protein levels of LRP4, integrin-beta-1 and alpha-dystroglycan, three agrin co-receptors. Furthermore, flunarizine enhances MuSK interaction with integrin-beta-1 and phosphotyrosines. Moreover, the drug acts on the expression and splicing of Agrn and Cacna1h genes in a muscle-specific manner. We reveal that the Cacna1h encoded protein Cav3.2 closely associates in vitro with the agrin co-receptor LRP4. In vivo, it is enriched nearby NMJs during neonatal development and the drug increases this immunolabelling in SMA muscles. Thus, flunarizine modulates key players of the NMJ and identifies Cav3.2 as a new protein involved in the NMJ biology.
Collapse
|
72
|
Eickhoff A, Tjaden J, Stahlke S, Vorgerd M, Theis V, Matschke V, Theiss C. Effects of progesterone on T-type-Ca 2+-channel expression in Purkinje cells. Neural Regen Res 2022; 17:2465-2471. [PMID: 35535898 PMCID: PMC9120685 DOI: 10.4103/1673-5374.339008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Plasticity of cerebellar Purkinje cells (PC) is influenced by progesterone via the classical progesterone receptors PR-A and PR-B by stimulating dendritogenesis, spinogenesis, and synaptogenesis in these cells. Dissociated PC cultures were used to analyze progesterone effects at a molecular level on the voltage-gated T-type-Ca2+-channels Cav3.1, Cav3.2, and Cav3.3 as they helped determine neuronal plasticity by regulating Ca2+-influx in neuronal cells. The results showed direct effects of progesterone on the mRNA expression of T-type-Ca2+-channels, as well as on the protein kinases A and C being involved in downstream signaling pathways that play an important role in neuronal plasticity. For the mRNA expression studies of T-type-Ca2+-channels and protein kinases of the signaling cascade, laser microdissection and purified PC cultures of different maturation stages were used. Immunohistochemical staining was also performed to characterize the localization of T-type-Ca2+-channels in PC. Experimental progesterone treatment was performed on the purified PC culture for 24 and 48 hours. Our results show that progesterone increases the expression of Cav3.1 and Cav3.3 and associated protein kinases A and C in PC at the mRNA level within 48 hours after treatment at latest. These effects extend the current knowledge of the function of progesterone in the central nervous system and provide an explanatory approach for its influence on neuronal plasticity.
Collapse
Affiliation(s)
- Annika Eickhoff
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Bochum, Germany
| | - Jonas Tjaden
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Bochum, Germany
| | - Sarah Stahlke
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Bochum, Germany
| | - Matthias Vorgerd
- Department of Neurology, Neuromuscular Center Ruhrgebiet, University Hospital Bergmannsheil, Ruhr-Universität Bochum, Bochum, Germany
| | - Verena Theis
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Bochum, Germany
| | - Veronika Matschke
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Bochum, Germany
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
73
|
The T-type calcium channel Ca V 3.2 regulates bladder afferent responses to mechanical stimuli. Pain 2022; 164:1012-1026. [PMID: 36279179 PMCID: PMC10108591 DOI: 10.1097/j.pain.0000000000002795] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 09/09/2022] [Indexed: 11/06/2022]
Abstract
ABSTRACT The bladder wall is innervated by a complex network of afferent nerves that detect bladder stretch during filling. Sensory signals, generated in response to distension, are relayed to the spinal cord and brain to evoke physiological and painful sensations and regulate urine storage and voiding. Hyperexcitability of these sensory pathways is a key component in the development of chronic bladder hypersensitivity disorders including interstitial cystitis/bladder pain syndrome and overactive bladder syndrome. Despite this, the full array of ion channels that regulate bladder afferent responses to mechanical stimuli have yet to be determined. Here, we investigated the role of low-voltage-activated T-type calcium (Ca V 3) channels in regulating bladder afferent responses to distension. Using single-cell reverse-transcription polymerase chain reaction and immunofluorescence, we revealed ubiquitous expression of Ca V 3.2, but not Ca V 3.1 or Ca V 3.3, in individual bladder-innervating dorsal root ganglia neurons. Pharmacological inhibition of Ca V 3.2 with TTA-A2 and ABT-639, selective blockers of T-type calcium channels, dose-dependently attenuated ex-vivo bladder afferent responses to distension in the absence of changes to muscle compliance. Further evaluation revealed that Ca V 3.2 blockers significantly inhibited both low- and high-threshold afferents, decreasing peak responses to distension, and delayed activation thresholds, thereby attenuating bladder afferent responses to both physiological and noxious distension. Nocifensive visceromotor responses to noxious bladder distension in vivo were also significantly reduced by inhibition of Ca V 3 with TTA-A2. Together, these data provide evidence of a major role for Ca V 3.2 in regulating bladder afferent responses to bladder distension and nociceptive signalling to the spinal cord.
Collapse
|
74
|
Averin AS, Zakharova NM, Ignatiev DA. Effects of Nickel Chloride on Myocardial Contractile Properties in Active Ground Squirrels with Different Responses to Hypothermia. Biophysics (Nagoya-shi) 2022. [DOI: 10.1134/s0006350922050049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
75
|
Abstract
Voltage-gated Ca2+ (Cav) channels play pivotal roles in regulating gene transcription, neuronal excitability, and neurotransmitter release. To meet the spatial and temporal demands of visual signaling, Cav channels exhibit unusual properties in the retina compared to their counterparts in other areas of the nervous system. In this article, we review current concepts regarding the specific subtypes of Cav channels expressed in the retina, their intrinsic properties and forms of modulation, and how their dysregulation could lead to retinal disease.
Collapse
Affiliation(s)
- Brittany Williams
- Department of Cell Biology & Physiology, Carolina Institute for Developmental Disabilities, and Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - J Wesley Maddox
- Department of Neuroscience, University of Texas, Austin, Texas, USA;
| | - Amy Lee
- Department of Neuroscience, University of Texas, Austin, Texas, USA;
| |
Collapse
|
76
|
Kuznetsov SV, Kuznetsova NN. Effects of Ni2+ on Heart and Respiratory Rhythms in Newborn Rats. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022050088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
77
|
T-Type Calcium Channels: A Mixed Blessing. Int J Mol Sci 2022; 23:ijms23179894. [PMID: 36077291 PMCID: PMC9456242 DOI: 10.3390/ijms23179894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
The role of T-type calcium channels is well established in excitable cells, where they preside over action potential generation, automaticity, and firing. They also contribute to intracellular calcium signaling, cell cycle progression, and cell fate; and, in this sense, they emerge as key regulators also in non-excitable cells. In particular, their expression may be considered a prognostic factor in cancer. Almost all cancer cells express T-type calcium channels to the point that it has been considered a pharmacological target; but, as the drugs used to reduce their expression are not completely selective, several complications develop, especially within the heart. T-type calcium channels are also involved in a specific side effect of several anticancer agents, that act on microtubule transport, increase the expression of the channel, and, thus, the excitability of sensory neurons, and make the patient more sensitive to pain. This review puts into context the relevance of T-type calcium channels in cancer and in chemotherapy side effects, considering also the cardiotoxicity induced by new classes of antineoplastic molecules.
Collapse
|
78
|
Lemercier CE, Garenne A, Poulletier de Gannes F, El Khoueiry C, Arnaud-Cormos D, Levêque P, Lagroye I, Percherancier Y, Lewis N. Comparative study between radiofrequency-induced and muscimol-induced inhibition of cultured networks of cortical neuron. PLoS One 2022; 17:e0268605. [PMID: 36044461 PMCID: PMC9432733 DOI: 10.1371/journal.pone.0268605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022] Open
Abstract
Previous studies have shown that spontaneously active cultured networks of cortical neuron grown planar microelectrode arrays are sensitive to radiofrequency (RF) fields and exhibit an inhibitory response more pronounced as the exposure time and power increase. To better understand the mechanism behind the observed effects, we aimed at identifying similarities and differences between the inhibitory effect of RF fields (continuous wave, 1800 MHz) to the γ-aminobutyric acid type A (GABAA) receptor agonist muscimol (MU). Inhibition of the network bursting activity in response to RF exposure became apparent at an SAR level of 28.6 W/kg and co-occurred with an elevation of the culture medium temperature of ~1°C. Exposure to RF fields preferentially inhibits bursting over spiking activity and exerts fewer constraints on neural network bursting synchrony, differentiating it from a pharmacological inhibition with MU. Network rebound excitation, a phenomenon relying on the intrinsic properties of cortical neurons, was observed following the removal of tonic hyperpolarization after washout of MU but not in response to cessation of RF exposure. This implies that hyperpolarization is not the main driving force mediating the inhibitory effects of RF fields. At the level of single neurons, network inhibition induced by MU and RF fields occurred with reduced action potential (AP) half-width. As changes in AP waveform strongly influence efficacy of synaptic transmission, the narrowing effect on AP seen under RF exposure might contribute to reducing network bursting activity. By pointing only to a partial overlap between the inhibitory hallmarks of these two forms of inhibition, our data suggest that the inhibitory mechanisms of the action of RF fields differ from the ones mediated by the activation of GABAA receptors.
Collapse
Affiliation(s)
- Clément E. Lemercier
- Laboratoire de l’Intégration du Matériau au Système, CNRS UMR 5218, University of Bordeaux, Talence, France
- Faculty of Medicine, Institute of Physiology, Department of Systems Neuroscience, Ruhr University Bochum, Bochum, Germany
- * E-mail: (CEL); (NL)
| | - André Garenne
- Laboratoire de l’Intégration du Matériau au Système, CNRS UMR 5218, University of Bordeaux, Talence, France
| | | | - Corinne El Khoueiry
- Laboratoire de l’Intégration du Matériau au Système, CNRS UMR 5218, University of Bordeaux, Talence, France
| | - Delia Arnaud-Cormos
- Univ. Limoges, CNRS, XLIM, UMR 7252, Limoges, France
- Institut Universitaire de France (IUF), Paris, France
| | | | - Isabelle Lagroye
- Laboratoire de l’Intégration du Matériau au Système, CNRS UMR 5218, University of Bordeaux, Talence, France
- Paris “Sciences et Lettres” Research University, Paris, France
| | - Yann Percherancier
- Laboratoire de l’Intégration du Matériau au Système, CNRS UMR 5218, University of Bordeaux, Talence, France
| | - Noëlle Lewis
- Laboratoire de l’Intégration du Matériau au Système, CNRS UMR 5218, University of Bordeaux, Talence, France
- * E-mail: (CEL); (NL)
| |
Collapse
|
79
|
Alkyl esters of 7-hydroxycoumarin-3-carboxylic acid as potent tissue-specific uncouplers of oxidative phosphorylation: Involvement of ATP/ADP translocase in mitochondrial uncoupling. Arch Biochem Biophys 2022; 728:109366. [PMID: 35878680 DOI: 10.1016/j.abb.2022.109366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/22/2022]
Abstract
An impressive body of evidence has been accumulated now on sound beneficial effects of mitochondrial uncouplers in struggling with the most dangerous pathologies such as cancer, infective diseases, neurodegeneration and obesity. To increase their efficacy while gaining further insight in the mechanism of the uncoupling action has been remaining a challenge. Encouraged by our previous promising results on lipophilic derivatives of 7-hydroxycoumarin-4-acetic acid (UB-4 esters), here, we use a 7-hydroxycoumarin-3-carboxylic acid scaffold to synthesize a new series of 7-hydroxycoumarin (umbelliferone, UB)-derived uncouplers of oxidative phosphorylation - alkyl esters of umbelliferone-3-carboxylic acid (UB-3 esters) with varying carbon chain length. Compared to the UB-4 derivatives, UB-3 esters proved to be stronger uncouplers: the most effective of them caused a pronounced increase in the respiration rate of isolated rat heart mitochondria (RHM) at submicromolar concentrations. Both of these series of UB derivatives exhibited a striking difference between their uncoupling patterns in mitochondria isolated from liver and heart or kidney, namely: a pronounced but transient decrease in membrane potential, followed by its recovery, was observed after the addition of these compounds to isolated rat liver mitochondria (RLM), while the depolarization of RHM and rat kidney mitochondria (RKM) was rather stable under the same conditions. Interestingly, partial reversal of this depolarization in RHM and RKM was caused by carboxyatractyloside, an inhibitor of ATP/ADP translocase, thereby pointing to the involvement of this mitochondrial membrane protein in the uncoupling activity of both UB-3 and UB-4 esters. The fast membrane potential recovery in RLM uncoupled by the addition of the UB esters was apparently associated with hydrolysis of these compounds, catalyzed by mitochondrial aldehyde dehydrogenase (ALDH2), being in high abundance in liver compared to other tissues. Protonophoric properties of the UB derivatives in isolated mitochondria were confirmed by measurements of RHM swelling in the presence of potassium acetate. In model bilayer lipid membranes (BLM), proton-carrying activity of UB-3 esters was demonstrated by measuring fluorescence response of the pH-dependent dye pyranine in liposomes. Electrophysiological experiments on identified neurons from Lymnaea stagnalis demonstrated low neurotoxicity of UB-3 esters. Resazurin-based cell viability assay showed low toxicity of UB-3 esters to HEK293 cells and primary human fibroblasts. Thus, the present results enable us to consider UB-3 esters as effective tissue-specific protonophoric mitochondrial uncouplers.
Collapse
|
80
|
McArthur JR, Wen J, Hung A, Finol-Urdaneta RK, Adams DJ. µ-Theraphotoxin Pn3a inhibition of Ca V3.3 channels reveals a novel isoform-selective drug binding site. eLife 2022; 11:e74040. [PMID: 35858123 PMCID: PMC9342953 DOI: 10.7554/elife.74040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Low voltage-activated calcium currents are mediated by T-type calcium channels CaV3.1, CaV3.2, and CaV3.3, which modulate a variety of physiological processes including sleep, cardiac pace-making, pain, and epilepsy. CaV3 isoforms' biophysical properties, overlapping expression, and lack of subtype-selective pharmacology hinder the determination of their specific physiological roles in health and disease. We have identified μ-theraphotoxin Pn3a as the first subtype-selective spider venom peptide inhibitor of CaV3.3, with >100-fold lower potency against the other T-type isoforms. Pn3a modifies CaV3.3 gating through a depolarizing shift in the voltage dependence of activation thus decreasing CaV3.3-mediated currents in the normal range of activation potentials. Paddle chimeras of KV1.7 channels bearing voltage sensor sequences from all four CaV3.3 domains revealed preferential binding of Pn3a to the S3-S4 region of domain II (CaV3.3DII). This novel T-type channel pharmacological site was explored through computational docking simulations of Pn3a, site-directed mutagenesis, and full domain II swaps between CaV3 channels highlighting it as a subtype-specific pharmacophore. This research expands our understanding of T-type calcium channel pharmacology and supports the suitability of Pn3a as a molecular tool in the study of the physiological roles of CaV3.3 channels.
Collapse
Affiliation(s)
- Jeffrey R McArthur
- Illawarra Health and Medical Research Institute, University of WollongongWollongongAustralia
| | - Jierong Wen
- School of Science, RMIT UniversityMelbourneAustralia
| | - Andrew Hung
- School of Science, RMIT UniversityMelbourneAustralia
| | - Rocio K Finol-Urdaneta
- Illawarra Health and Medical Research Institute, University of WollongongWollongongAustralia
| | - David J Adams
- Illawarra Health and Medical Research Institute, University of WollongongWollongongAustralia
| |
Collapse
|
81
|
Plasticity of neuronal excitability and synaptic balance in the anterior nucleus of paraventricular thalamus after nerve injury. Brain Res Bull 2022; 188:1-10. [PMID: 35850188 DOI: 10.1016/j.brainresbull.2022.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/20/2022] [Accepted: 07/14/2022] [Indexed: 11/22/2022]
Abstract
The anterior nucleus of the paraventricular thalamus (aPVT) integrates various synaptic inputs and conveys information to the downstream brain regions for arousal and pain regulation. Recent studies have indicated that the PVT plays a crucial role in the regulation of chronic pain, but the plasticity mechanism of neuronal excitability and synaptic inputs for aPVT neurons in neuropathic pain remains unclear. Here, we report that spinal nerve ligation (SNL) significantly increased the neuronal excitability and reset the excitatory/inhibitory (E/I) synaptic inputs ratio of aPVT neurons in mice. SNL significantly increased the membrane input resistance, firing frequency, and the half-width of action potential. Additionally, SNL enlarged the area of afterdepolarization and prolonged the rebound low-threshold spike following a hyperpolarized current injection. Further results indicate that an inwardly rectifying current density was decreased in SNL animals. SNL also decreased the amplitude, but not the frequency of spontaneous excitatory postsynaptic currents (sEPSCs), nor the amplitude or frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) of aPVT neurons. Moreover, SNL disrupted the E/I synaptic ratio, caused a decrease in weighted tau and half-width of averaged sIPSCs, but did not change these physiological properties of averaged sEPSCs. Finally, pharmacological activation of the GABAA receptor at aPVT could effective relieve SNL-induced mechanical allodynia in mice. These results reveal the plasticity of intrinsic neuronal excitability and E/I synaptic balance in the aPVT neurons after nerve injury and it may play an important role in the development of pain sensitization.
Collapse
|
82
|
Evaluation of potential anticonvulsant fluorinated N-benzamide enaminones as T-type Ca 2+ channel blockers. Bioorg Med Chem 2022; 65:116766. [PMID: 35537326 DOI: 10.1016/j.bmc.2022.116766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/06/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022]
Abstract
Trifluoromethylated N-benzamide enaminones have been identified as potential anticonvulsants for the treatment of drug-resistant epilepsy. T-type Ca2+ channels are an important target for anti-seizure medications. Our laboratory has developed several fluorinated N-benzamide enaminone analogs that were evaluated by their ability to target T-type Ca2+ channels. Using whole cell voltage-clamp recordings, we identified two meta-trifluoromethyl N-benzamide enaminones with a significant inhibitory effect on T-type Ca2+ channels. These compounds had no effect on voltage-activated Na+ channels. We also evaluated the effect of the fluorinated N-benzamide enaminone analogs on the T-type Ca2+ channel subunits Cav3.2 and Cav3.3. The meta-trifluoromethyl N-benzamide enaminone lead analogs altered the steady-state inactivation of Cav3.2 T-type Ca2+ channels, which resulted in a significant increase in the inactivation recovery time of the channels. There was no effect of fluorinated N-benzamide enaminone analogs on the gating mechanism of T-type Ca2+ channels, as proven by the lack of effect on the activation and inactivation time constant of Ca2+ currents. On the contrary, the meta-trifluoromethyl N-benzamide enaminone lead analogs altered the gating mechanism of Cav3.3 T-type Ca2+ channels, as proven by the reduction in the activation and inactivation time constant of the channels. There was no effect on the inactivation kinetics of Cav3.3 T-type Ca2+ channels. The present results demonstrate that meta-substituted trifluoromethyl N-benzamide enaminone analogs target T-type Ca2+ channels by different mechanisms depending on the channel subunit. Meta-trifluoromethyl N-benzamide enaminone analogs can potentially lead to the design of more specific blockers of T-type Ca2+ channels for the treatment of epileptic seizures.
Collapse
|
83
|
Plasma Nickel Levels Correlate with Low Muscular Strength and Renal Function Parameters in Patients with Prostate Cancer. Diseases 2022; 10:diseases10030039. [PMID: 35892733 PMCID: PMC9326612 DOI: 10.3390/diseases10030039] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/20/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Nickel is associated with cancer in occupational exposure. However, few studies have been devoted to analyzing the effects of nickel at environmental concentrations in cancer patients. In this work, the concentration of nickel in blood samples from patients with prostate cancer (PCa) was evaluated because this metal displays androgenic and estrogenic effects that play a crucial role in prostate carcinogenesis and treatment. We, therefore, compared blood nickel concentration in patients with PCa (non-occupationally exposed) (n = 46) with those in control age-matched individuals (n = 46). We also analyzed if there was any association between sociodemographic factors, clinical variables, geriatric evaluation assessment results, blood cell counts, or biochemical, androgen and estrogen concentrations. Using inductively coupled plasma-mass spectroscopy on the plasma samples, we observed a mean nickel level of 4.97 ± 1.20 µg/L in the PCa group and 3.59 ± 0.49 µg/L in the control group, with a non-significant effect (p = 0.293) between the two groups. The nickel concentration was significantly correlated with patient age (p = 0.005) and reduced handgrip strength (p = 0.003). Regarding biochemical parameters, significant associations were found with the renal glomerular filtration rate (p = 0.024) and blood urea levels (p = 0.016). No significant correlations were observed with other blood analytical parameters or testosterone or estradiol levels. These specific renal function and muscle strength effects were observed at environmental nickel exposure levels believed to be safe or at least far from the high concentrations observed after occupational exposure. Therefore, these parameters deserve further study, given that they could help pinpoint further public health concerns regarding nickel exposure in the general population.
Collapse
|
84
|
Omatsu-Kanbe M, Fukunaga R, Mi X, Matsuura H. Atypically Shaped Cardiomyocytes (ACMs): The Identification, Characterization and New Insights into a Subpopulation of Cardiomyocytes. Biomolecules 2022; 12:biom12070896. [PMID: 35883452 PMCID: PMC9313223 DOI: 10.3390/biom12070896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023] Open
Abstract
In the adult mammalian heart, no data have yet shown the existence of cardiomyocyte-differentiable stem cells that can be used to practically repair the injured myocardium. Atypically shaped cardiomyocytes (ACMs) are found in cultures of the cardiomyocyte-removed fraction obtained from cardiac ventricles from neonatal to aged mice. ACMs are thought to be a subpopulation of cardiomyocytes or immature cardiomyocytes, most closely resembling cardiomyocytes due to their spontaneous beating, well-organized sarcomere and the expression of cardiac-specific proteins, including some fetal cardiac gene proteins. In this review, we focus on the characteristics of ACMs compared with ventricular myocytes and discuss whether these cells can be substitutes for damaged cardiomyocytes. ACMs reside in the interstitial spaces among ventricular myocytes and survive under severely hypoxic conditions fatal to ventricular myocytes. ACMs have not been observed to divide or proliferate, similar to cardiomyocytes, but they maintain their ability to fuse with each other. Thus, it is worthwhile to understand the role of ACMs and especially how these cells perform cell fusion or function independently in vivo. It may aid in the development of new approaches to cell therapy to protect the injured heart or the clarification of the pathogenesis underlying arrhythmia in the injured heart.
Collapse
|
85
|
Mao M, Fan W, Zheng Y, Qi P, Xi M, Yao Y. Upregulation of N-Type Voltage-Gated Calcium Channels Induces Neuropathic Pain in Experimental Autoimmune Neuritis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:8547095. [PMID: 35754699 PMCID: PMC9217594 DOI: 10.1155/2022/8547095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 11/20/2022]
Abstract
Objective Guillain-Barré syndrome (GBS) is a common autoimmune disease of the peripheral nervous system, and there is still no effective treatment for GBS. This investigation intends to figure out the effect and mechanism of N-type voltage-gated calcium (Cav2.2) channels on neuropathic pain in GBS. Methods An experimental autoimmune neuritis (EAN) model was established in Lewis rats induced by myelin P253-78 peptide and complete Freund's adjuvant. Luxol fast blue (LFB) staining was used for observing the degree of cell infiltration and demyelination in the sciatic nerve of rats, ELISA for detecting IL-6 and TNF-α expression in the serum, qRT-PCR, and Western blot for measuring the expression of iNOS, MCP-1, and Cav2.2 in the sciatic nerve, respectively. Results EAN led to significant decreases in the mechanical withdrawal threshold, thermal withdrawal threshold, and mechanical hyperalgesia threshold and an increase in the withdrawal threshold to cold stimulation. The serum IL-6 and TNF-α expression was significantly increased, and the mRNA and protein expression of iNOS, MCP-1, and Cav2.2 in the sciatic nerve were significantly increased in the EAN rats. However, silencing Cav2.2 expression could significantly reverse the above EAN-caused results. Conclusion Silencing Cav2.2 expression can significantly reduce the clinical score, pathological injury, and mechanical allodynia, reducing the release of inflammatory factors, thus improving neuropathic pain in EAN rats.
Collapse
Affiliation(s)
- Mei Mao
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
| | - Wen Fan
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
| | - Yan Zheng
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
| | - Pan Qi
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
| | - Min Xi
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
| | - Yuanrong Yao
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
| |
Collapse
|
86
|
Alza L, Visa A, Herreros J, Cantí C. T-type channels in cancer cells: Driving in reverse. Cell Calcium 2022; 105:102610. [PMID: 35691056 DOI: 10.1016/j.ceca.2022.102610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 11/30/2022]
Abstract
In the strongly polarized membranes of excitable cells, activation of T-type Ca2+ channels (TTCCs) by weak depolarizing stimuli allows the influx of Ca2+ which further amplifies membrane depolarization, thus "recruiting" higher threshold voltage-gated channels to promote action potential firing. Nonetheless, TTCCs perform other functions in the plasma membrane of both excitable and non-excitable cells, in which they regulate a number of biochemical pathways relevant for cell cycle and cell fate. Furthermore, data obtained in the last 20 years have shown the involvement of TTCCs in tumor biology, designating them as promising chemotherapeutic targets. However, their activity in the steadily-depolarized membranes of cancer cells, in which most voltage-gated channels are in the inactivated (nonconducting) state, is counter-intuitive. Here we discuss that in cancer cells weak hyperpolarizing stimuli increase the fraction of open TTCCs which, in association with Ca2+-dependent K+ channels, may critically boost membrane hyperpolarization and driving force for Ca2+ entry through different voltage-independent Ca2+ channels. Available evidence also shows that TTCCs participate in positive feedback circuits with signaling effectors, which may warrant a switch-like activation of pro-proliferative and pro-survival pathways in spite of their low availability. Unravelling TTCC modus operandi in the context of non-excitable membranes may facilitate the development of novel anticancer approaches.
Collapse
Affiliation(s)
- Lía Alza
- Universitat de Lleida (Dpt. Medicina Experimental), IRBLleida, Rovira Roure 80, Lleida 25198, Spain
| | - Anna Visa
- Universitat de Lleida (Dpt. Medicina Experimental), IRBLleida, Rovira Roure 80, Lleida 25198, Spain
| | - Judit Herreros
- Universitat de Lleida (Dpt. Ciències Mèdiques Bàsiques), IRBLleida
| | - Carles Cantí
- Universitat de Lleida (Dpt. Medicina Experimental), IRBLleida, Rovira Roure 80, Lleida 25198, Spain.
| |
Collapse
|
87
|
Baez-Nieto D, Allen A, Akers-Campbell S, Yang L, Budnik N, Pupo A, Shin YC, Genovese G, Liao M, Pérez-Palma E, Heyne H, Lal D, Lipscombe D, Pan JQ. Analysing an allelic series of rare missense variants of CACNA1I in a Swedish schizophrenia cohort. Brain 2022; 145:1839-1853. [PMID: 34919654 PMCID: PMC9166571 DOI: 10.1093/brain/awab443] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/23/2021] [Accepted: 11/11/2021] [Indexed: 11/14/2022] Open
Abstract
CACNA1I is implicated in the susceptibility to schizophrenia by large-scale genetic association studies of single nucleotide polymorphisms. However, the channelopathy of CACNA1I in schizophrenia is unknown. CACNA1I encodes CaV3.3, a neuronal voltage-gated calcium channel that underlies a subtype of T-type current that is important for neuronal excitability in the thalamic reticular nucleus and other regions of the brain. Here, we present an extensive functional characterization of 57 naturally occurring rare and common missense variants of CACNA1I derived from a Swedish schizophrenia cohort of more than 10 000 individuals. Our analysis of this allelic series of coding CACNA1I variants revealed that reduced CaV3.3 channel current density was the dominant phenotype associated with rare CACNA1I coding alleles derived from control subjects, whereas rare CACNA1I alleles from schizophrenia patients encoded CaV3.3 channels with altered responses to voltages. CACNA1I variants associated with altered current density primarily impact the ionic channel pore and those associated with altered responses to voltage impact the voltage-sensing domain. CaV3.3 variants associated with altered voltage dependence of the CaV3.3 channel and those associated with peak current density deficits were significantly segregated across affected and unaffected groups (Fisher's exact test, P = 0.034). Our results, together with recent data from the SCHEMA (Schizophrenia Exome Sequencing Meta-Analysis) cohort, suggest that reduced CaV3.3 function may protect against schizophrenia risk in rare cases. We subsequently modelled the effect of the biophysical properties of CaV3.3 channel variants on thalamic reticular nucleus excitability and found that compared with common variants, ultrarare CaV3.3-coding variants derived from control subjects significantly decreased thalamic reticular nucleus excitability (P = 0.011). When all rare variants were analysed, there was a non-significant trend between variants that reduced thalamic reticular nucleus excitability and variants that either had no effect or increased thalamic reticular nucleus excitability across disease status. Taken together, the results of our functional analysis of an allelic series of >50 CACNA1I variants in a schizophrenia cohort reveal that loss of function of CaV3.3 is a molecular phenotype associated with reduced disease risk burden, and our approach may serve as a template strategy for channelopathies in polygenic disorders.
Collapse
Affiliation(s)
- David Baez-Nieto
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Andrew Allen
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Seth Akers-Campbell
- Carney Institute for Brain Science & Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Lingling Yang
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Nikita Budnik
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Amaury Pupo
- Department of Biology, West Virginia University, Morgantown, West Virginia 26506, USA
| | - Young-Cheul Shin
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Giulio Genovese
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Maofu Liao
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Eduardo Pérez-Palma
- Genomic Medicine Institute, Lerner Research institute, Cleveland Clinic, OH 44195, USA
- Centro de Genética y Genómica, Universidad del Desarrollo, Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana, Chile
| | - Henrike Heyne
- Genomic Medicine, Hasso Plattner Institute, Potsdam, 14482, Germany
| | - Dennis Lal
- Genomic Medicine Institute, Lerner Research institute, Cleveland Clinic, OH 44195, USA
- Cologne Center for Genomics, University of Cologne, Cologne 50931, Germany
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Diane Lipscombe
- Carney Institute for Brain Science & Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Jen Q. Pan
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| |
Collapse
|
88
|
Oniani T, Vinnenberg L, Chaudhary R, Schreiber JA, Riske K, Williams B, Pape HC, White JA, Junker A, Seebohm G, Meuth SG, Hundehege P, Budde T, Zobeiri M. Effects of Axonal Demyelination, Inflammatory Cytokines and Divalent Cation Chelators on Thalamic HCN Channels and Oscillatory Bursting. Int J Mol Sci 2022; 23:ijms23116285. [PMID: 35682964 PMCID: PMC9181513 DOI: 10.3390/ijms23116285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis (MS) is a demyelinating disease of the central nervous system that is characterized by the progressive loss of oligodendrocytes and myelin and is associated with thalamic dysfunction. Cuprizone (CPZ)-induced general demyelination in rodents is a valuable model for studying different aspects of MS pathology. CPZ feeding is associated with the altered distribution and expression of different ion channels along neuronal somata and axons. However, it is largely unknown whether the copper chelator CPZ directly influences ion channels. Therefore, we assessed the effects of different divalent cations (copper; zinc) and trace metal chelators (EDTA; Tricine; the water-soluble derivative of CPZ, BiMPi) on hyperpolarization-activated cyclic nucleotide-gated (HCN) channels that are major mediators of thalamic function and pathology. In addition, alterations of HCN channels induced by CPZ treatment and MS-related proinflammatory cytokines (IL-1β; IL-6; INF-α; INF-β) were characterized in C57Bl/6J mice. Thus, the hyperpolarization-activated inward current (Ih) was recorded in thalamocortical (TC) neurons and heterologous expression systems (mHCN2 expressing HEK cells; hHCN4 expressing oocytes). A number of electrophysiological characteristics of Ih (potential of half-maximal activation (V0.5); current density; activation kinetics) were unchanged following the extracellular application of trace metals and divalent cation chelators to native neurons, cell cultures or oocytes. Mice were fed a diet containing 0.2% CPZ for 35 days, resulting in general demyelination in the brain. Withdrawal of CPZ from the diet resulted in rapid remyelination, the effects of which were assessed at three time points after stopping CPZ feeding (Day1, Day7, Day25). In TC neurons, Ih was decreased on Day1 and Day25 and revealed a transient increased availability on Day7. In addition, we challenged naive TC neurons with INF-α and IL-1β. It was found that Ih parameters were differentially altered by the application of the two cytokines to thalamic cells, while IL-1β increased the availability of HCN channels (depolarized V0.5; increased current density) and the excitability of TC neurons (depolarized resting membrane potential (RMP); increased the number of action potentials (APs); produced a larger voltage sag; promoted higher input resistance; increased the number of burst spikes; hyperpolarized the AP threshold), INF-α mediated contrary effects. The effect of cytokine modulation on thalamic bursting was further assessed in horizontal slices and a computational model of slow thalamic oscillations. Here, IL-1β and INF-α increased and reduced oscillatory bursting, respectively. We conclude that HCN channels are not directly modulated by trace metals and divalent cation chelators but are subject to modulation by different MS-related cytokines.
Collapse
Affiliation(s)
- Tengiz Oniani
- Institute of Physiology I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149 Münster, Germany; (T.O.); (R.C.); (H.-C.P.); (M.Z.)
| | - Laura Vinnenberg
- Department of Neurology with Institute of Translational Neurology, Albert-Schweitzer-Campus 1, D-48149 Münster, Germany; (L.V.); (P.H.)
| | - Rahul Chaudhary
- Institute of Physiology I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149 Münster, Germany; (T.O.); (R.C.); (H.-C.P.); (M.Z.)
| | - Julian A. Schreiber
- Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universität, Corren-Str. 48, D-48149 Münster, Germany;
- Cellular Electrophysiology and Molecular Biology, Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, Robert-Koch-Str. 45, D-48149 Münster, Germany;
| | - Kathrin Riske
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-Universität, Waldeyer-Str. 15, D-48149 Münster, Germany; (K.R.); (A.J.)
| | - Brandon Williams
- Center for Systems Neuroscience, Neurophotonics Center, Department of Biomedical Engineering, Boston University, 610 Commonwealth Ave., Boston, MA 02215, USA; (B.W.); (J.A.W.)
| | - Hans-Christian Pape
- Institute of Physiology I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149 Münster, Germany; (T.O.); (R.C.); (H.-C.P.); (M.Z.)
| | - John A. White
- Center for Systems Neuroscience, Neurophotonics Center, Department of Biomedical Engineering, Boston University, 610 Commonwealth Ave., Boston, MA 02215, USA; (B.W.); (J.A.W.)
| | - Anna Junker
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-Universität, Waldeyer-Str. 15, D-48149 Münster, Germany; (K.R.); (A.J.)
| | - Guiscard Seebohm
- Cellular Electrophysiology and Molecular Biology, Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, Robert-Koch-Str. 45, D-48149 Münster, Germany;
| | - Sven G. Meuth
- Neurology Clinic, University Clinic Düsseldorf, Moorenstraße 5, D-40225 Düsseldorf, Germany;
| | - Petra Hundehege
- Department of Neurology with Institute of Translational Neurology, Albert-Schweitzer-Campus 1, D-48149 Münster, Germany; (L.V.); (P.H.)
| | - Thomas Budde
- Institute of Physiology I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149 Münster, Germany; (T.O.); (R.C.); (H.-C.P.); (M.Z.)
- Correspondence:
| | - Mehrnoush Zobeiri
- Institute of Physiology I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149 Münster, Germany; (T.O.); (R.C.); (H.-C.P.); (M.Z.)
| |
Collapse
|
89
|
Ruiz-Fernández AR, Campos L, Gutierrez-Maldonado SE, Núñez G, Villanelo F, Perez-Acle T. Nanosecond Pulsed Electric Field (nsPEF): Opening the Biotechnological Pandora’s Box. Int J Mol Sci 2022; 23:ijms23116158. [PMID: 35682837 PMCID: PMC9181413 DOI: 10.3390/ijms23116158] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Nanosecond Pulsed Electric Field (nsPEF) is an electrostimulation technique first developed in 1995; nsPEF requires the delivery of a series of pulses of high electric fields in the order of nanoseconds into biological tissues or cells. They primary effects in cells is the formation of membrane nanopores and the activation of ionic channels, leading to an incremental increase in cytoplasmic Ca2+ concentration, which triggers a signaling cascade producing a variety of effects: from apoptosis up to cell differentiation and proliferation. Further, nsPEF may affect organelles, making nsPEF a unique tool to manipulate and study cells. This technique is exploited in a broad spectrum of applications, such as: sterilization in the food industry, seed germination, anti-parasitic effects, wound healing, increased immune response, activation of neurons and myocites, cell proliferation, cellular phenotype manipulation, modulation of gene expression, and as a novel cancer treatment. This review thoroughly explores both nsPEF’s history and applications, with emphasis on the cellular effects from a biophysics perspective, highlighting the role of ionic channels as a mechanistic driver of the increase in cytoplasmic Ca2+ concentration.
Collapse
Affiliation(s)
- Alvaro R. Ruiz-Fernández
- Computational Biology Lab, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago 7780272, Chile; (L.C.); (S.E.G.-M.); (G.N.); (F.V.)
- Facultad de Ingeniería y Tecnología, Universidad San Sebastian, Bellavista 7, Santiago 8420524, Chile
- Correspondence: (A.R.R.-F.); (T.P.-A.)
| | - Leonardo Campos
- Computational Biology Lab, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago 7780272, Chile; (L.C.); (S.E.G.-M.); (G.N.); (F.V.)
- Facultad de Ingeniería y Tecnología, Universidad San Sebastian, Bellavista 7, Santiago 8420524, Chile
| | - Sebastian E. Gutierrez-Maldonado
- Computational Biology Lab, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago 7780272, Chile; (L.C.); (S.E.G.-M.); (G.N.); (F.V.)
- Facultad de Ingeniería y Tecnología, Universidad San Sebastian, Bellavista 7, Santiago 8420524, Chile
| | - Gonzalo Núñez
- Computational Biology Lab, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago 7780272, Chile; (L.C.); (S.E.G.-M.); (G.N.); (F.V.)
| | - Felipe Villanelo
- Computational Biology Lab, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago 7780272, Chile; (L.C.); (S.E.G.-M.); (G.N.); (F.V.)
- Facultad de Ingeniería y Tecnología, Universidad San Sebastian, Bellavista 7, Santiago 8420524, Chile
| | - Tomas Perez-Acle
- Computational Biology Lab, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago 7780272, Chile; (L.C.); (S.E.G.-M.); (G.N.); (F.V.)
- Facultad de Ingeniería y Tecnología, Universidad San Sebastian, Bellavista 7, Santiago 8420524, Chile
- Correspondence: (A.R.R.-F.); (T.P.-A.)
| |
Collapse
|
90
|
Yamada R, Kuba H. Cellular Strategies for Frequency-Dependent Computation of Interaural Time Difference. Front Synaptic Neurosci 2022; 14:891740. [PMID: 35602551 PMCID: PMC9120351 DOI: 10.3389/fnsyn.2022.891740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Binaural coincidence detection is the initial step in encoding interaural time differences (ITDs) for sound-source localization. In birds, neurons in the nucleus laminaris (NL) play a central role in this process. These neurons receive excitatory synaptic inputs on dendrites from both sides of the cochlear nucleus and compare their coincidences at the soma. The NL is tonotopically organized, and individual neurons receive a pattern of synaptic inputs that are specific to their tuning frequency. NL neurons differ in their dendritic morphology along the tonotopic axis; their length increases with lower tuning frequency. In addition, our series of studies have revealed several frequency-dependent refinements in the morphological and biophysical characteristics of NL neurons, such as the amount and subcellular distribution of ion channels and excitatory and inhibitory synapses, which enable the neurons to process the frequency-specific pattern of inputs appropriately and encode ITDs at each frequency band. In this review, we will summarize these refinements of NL neurons and their implications for the ITD coding. We will also discuss the similarities and differences between avian and mammalian coincidence detectors.
Collapse
|
91
|
Kevin RC, Mirlohi S, Manning JJ, Boyd R, Cairns EA, Ametovski A, Lai F, Luo JL, Jorgensen W, Ellison R, Gerona RR, Hibbs DE, McGregor IS, Glass M, Connor M, Bladen C, Zamponi GW, Banister SD. Putative Synthetic Cannabinoids MEPIRAPIM, 5F-BEPIRAPIM (NNL-2), and Their Analogues Are T-Type Calcium Channel (Ca V3) Inhibitors. ACS Chem Neurosci 2022; 13:1395-1409. [PMID: 35442021 DOI: 10.1021/acschemneuro.1c00822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) are a large and growing class of new psychoactive substances (NPSs). Two recently identified compounds, MEPIRAPIM and 5F-BEPIRAPIM (NNL-2), have not been confirmed as agonists of either cannabinoid receptor subtype but share structural similarities with both SCRAs and a class of T-type calcium channel (CaV3) inhibitors under development as new treatments for epilepsy and pain. In this study, MEPIRAPIM and 5F-BEPIRAPIM and 10 systematic analogues were synthesized, analytically characterized, and pharmacologically evaluated using in vitro cannabinoid receptor and CaV3 assays. Several compounds showed micromolar affinities for CB1 and/or CB2, with several functioning as low potency agonists of CB1 and CB2 in a membrane potential assay. 5F-BEPIRAPIM and four other derivatives were identified as potential CaV3 inhibitors through a functional calcium flux assay (>70% inhibition), which was further confirmed using whole-cell patch-clamp electrophysiology. Additionally, MEPIRAPIM and 5F-BEPIRAPIM were evaluated in vivo using a cannabimimetic mouse model. Despite detections of MEPIRAPIM and 5F-BEPIRAPIM in the NPS market, only the highest MEPIRAPIM dose (30 mg/kg) elicited a mild hypothermic response in mice, with no hypothermia observed for 5F-BEPIRAPIM, suggesting minimal central CB1 receptor activity.
Collapse
Affiliation(s)
- Richard C. Kevin
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, NSW 2050, Australia
- School of Pharmacy, The University of Sydney, NSW 2006, Australia
| | - Somayeh Mirlohi
- Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW 2109, Australia
| | - Jamie J. Manning
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand
| | - Rochelle Boyd
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, NSW 2050, Australia
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | - Elizabeth A. Cairns
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, NSW 2050, Australia
- School of Psychology, The University of Sydney, NSW 2006, Australia
| | - Adam Ametovski
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, NSW 2050, Australia
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | - Felcia Lai
- School of Pharmacy, The University of Sydney, NSW 2006, Australia
| | - Jia Lin Luo
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, NSW 2050, Australia
- School of Psychology, The University of Sydney, NSW 2006, Australia
| | | | - Ross Ellison
- Clinical Toxicology and Environmental Biomonitoring Laboratory, University of California, San Francisco, California 94143, United States
| | - Roy R. Gerona
- Clinical Toxicology and Environmental Biomonitoring Laboratory, University of California, San Francisco, California 94143, United States
| | - David E. Hibbs
- School of Pharmacy, The University of Sydney, NSW 2006, Australia
| | - Iain S. McGregor
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, NSW 2050, Australia
- School of Psychology, The University of Sydney, NSW 2006, Australia
| | - Michelle Glass
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand
| | - Mark Connor
- Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW 2109, Australia
| | - Chris Bladen
- Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW 2109, Australia
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Gerald W. Zamponi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Samuel D. Banister
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, NSW 2050, Australia
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
92
|
Herzig V, Chen YC, Chin YKY, Dekan Z, Chang YW, Yu HM, Alewood PF, Chen CC, King GF. The Tarantula Toxin ω-Avsp1a Specifically Inhibits Human CaV3.1 and CaV3.3 via the Extracellular S3-S4 Loop of the Domain 1 Voltage-Sensor. Biomedicines 2022; 10:biomedicines10051066. [PMID: 35625803 PMCID: PMC9138389 DOI: 10.3390/biomedicines10051066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 12/01/2022] Open
Abstract
Inhibition of T-type calcium channels (CaV3) prevents development of diseases related to cardiovascular and nerve systems. Further, knockout animal studies have revealed that some diseases are mediated by specific subtypes of CaV3. However, subtype-specific CaV3 inhibitors for therapeutic purposes or for studying the physiological roles of CaV3 subtypes are missing. To bridge this gap, we employed our spider venom library and uncovered that Avicularia spec. (“Amazonas Purple”, Peru) tarantula venom inhibited specific T-type CaV channel subtypes. By using chromatographic and mass-spectrometric techniques, we isolated and sequenced the active toxin ω-Avsp1a, a C-terminally amidated 36 residue peptide with a molecular weight of 4224.91 Da, which comprised the major peak in the venom. Both native (4.1 μM) and synthetic ω-Avsp1a (10 μM) inhibited 90% of CaV3.1 and CaV3.3, but only 25% of CaV3.2 currents. In order to investigate the toxin binding site, we generated a range of chimeric channels from the less sensitive CaV3.2 and more sensitive CaV3.3. Our results suggest that domain-1 of CaV3.3 is important for the inhibitory effect of ω-Avsp1a on T-type calcium channels. Further studies revealed that a leucine of T-type calcium channels is crucial for the inhibitory effect of ω-Avsp1a.
Collapse
Affiliation(s)
- Volker Herzig
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; (Y.K.-Y.C.); (Z.D.); (P.F.A.)
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
- Correspondence: (V.H.); (C.-C.C.); (G.F.K.); Tel.: +61-7-5456-5382 (V.H.); +886-2-2652-3522 (C.-C.C.); +61-7-3346-2025 (G.F.K.)
| | - Yong-Cyuan Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; (Y.-C.C.); (Y.-W.C.)
| | - Yanni K.-Y. Chin
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; (Y.K.-Y.C.); (Z.D.); (P.F.A.)
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zoltan Dekan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; (Y.K.-Y.C.); (Z.D.); (P.F.A.)
| | - Yu-Wang Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; (Y.-C.C.); (Y.-W.C.)
| | - Hui-Ming Yu
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan;
| | - Paul F. Alewood
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; (Y.K.-Y.C.); (Z.D.); (P.F.A.)
| | - Chien-Chang Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; (Y.-C.C.); (Y.-W.C.)
- Correspondence: (V.H.); (C.-C.C.); (G.F.K.); Tel.: +61-7-5456-5382 (V.H.); +886-2-2652-3522 (C.-C.C.); +61-7-3346-2025 (G.F.K.)
| | - Glenn F. King
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; (Y.K.-Y.C.); (Z.D.); (P.F.A.)
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, St. Lucia, QLD 4072, Australia
- Correspondence: (V.H.); (C.-C.C.); (G.F.K.); Tel.: +61-7-5456-5382 (V.H.); +886-2-2652-3522 (C.-C.C.); +61-7-3346-2025 (G.F.K.)
| |
Collapse
|
93
|
Wagle Shukla A. Reduction of neuronal hyperexcitability with modulation of T-type calcium channel or SK channel in essential tremor. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 163:335-355. [PMID: 35750369 DOI: 10.1016/bs.irn.2022.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Essential tremor is one of the most prevalent movement disorders. Propranolol and primidone are the first-line pharmacological therapies. They provide symptomatic control in less than 50% of patients. Topiramate, alprazolam, clonazepam, gabapentin, and botulinum toxin injections are the next line of treatments. These medications lead to modest improvements and are therefore commonly used as add-on agents. Surgical therapies, including deep brain stimulation (DBS) surgery and focused ultrasound beam targeted to the thalamus, are considered for treating tremor refractory to medications and lead to greater than 75% improvements in tremor symptoms. However, DBS is a costly and an invasive procedure; some patients report tolerance to benefits. Focused ultrasound therapy leading to brain lesions is associated with a possibility for permanent clinical deficits. Therefore, research efforts to develop the next generation of oral medications with greater benefits and lesser adverse effects are warranted. There is considerable evidence that the increased functions of calcium channels (P/Q-type and T-type channels) and reduced functions of calcium-activated potassium channels (SK channels) located in the neuronal membranes lead to tremor oscillations. Consequently, many new pharmacological studies have targeted these channels to leverage better clinical outcomes. The current review will discuss the pathophysiology, the specific importance of these channels, and the early clinical experience of using compounds targeting these channels to treat essential tremor.
Collapse
Affiliation(s)
- Aparna Wagle Shukla
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
94
|
Harding EK, Zamponi GW. Central and peripheral contributions of T-type calcium channels in pain. Mol Brain 2022; 15:39. [PMID: 35501819 PMCID: PMC9063214 DOI: 10.1186/s13041-022-00923-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023] Open
Abstract
AbstractChronic pain is a severely debilitating condition that reflects a long-term sensitization of signal transduction in the afferent pain pathway. Among the key players in this pathway are T-type calcium channels, in particular the Cav3.2 isoform. Because of their biophysical characteristics, these channels are ideally suited towards regulating neuronal excitability. Recent evidence suggests that T-type channels contribute to excitability of neurons all along the ascending and descending pain pathways, within primary afferent neurons, spinal dorsal horn neurons, and within pain-processing neurons in the midbrain and cortex. Here we review the contribution of T-type channels to neuronal excitability and function in each of these neuronal populations and how they are dysregulated in chronic pain conditions. Finally, we discuss their molecular pharmacology and the potential role of these channels as therapeutic targets for chronic pain.
Collapse
|
95
|
Liang X, Holy TE, Taghert PH. Circadian pacemaker neurons display cophasic rhythms in basal calcium level and in fast calcium fluctuations. Proc Natl Acad Sci U S A 2022; 119:e2109969119. [PMID: 35446620 PMCID: PMC9173584 DOI: 10.1073/pnas.2109969119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 03/17/2022] [Indexed: 12/02/2022] Open
Abstract
Circadian pacemaker neurons in the Drosophila brain display daily rhythms in the levels of intracellular calcium. These calcium rhythms are driven by molecular clocks and are required for normal circadian behavior. To study their biological basis, we employed genetic manipulations in conjunction with improved methods of in vivo light-sheet microscopy to measure calcium dynamics in individual pacemaker neurons over complete 24-h durations at sampling frequencies as high as 5 Hz. This technological advance unexpectedly revealed cophasic daily rhythms in basal calcium levels and in high-frequency calcium fluctuations. Further, we found that the rhythms of basal calcium levels and of fast calcium fluctuations reflect the activities of two proteins that mediate distinct forms of calcium fluxes. One is the inositol trisphosphate receptor (ITPR), a channel that mediates calcium fluxes from internal endoplasmic reticulum calcium stores, and the other is a T-type voltage-gated calcium channel, which mediates extracellular calcium influx. These results suggest that Drosophila molecular clocks regulate ITPR and T-type channels to generate two distinct but coupled rhythms in basal calcium and in fast calcium fluctuations. We propose that both internal and external calcium fluxes are essential for circadian pacemaker neurons to provide rhythmic outputs and thereby, regulate the activities of downstream brain centers.
Collapse
Affiliation(s)
- Xitong Liang
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110
| | - Timothy E. Holy
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110
| | - Paul H. Taghert
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110
| |
Collapse
|
96
|
Villalobos CA, Basso MA. Optogenetic activation of the inhibitory nigro-collicular circuit evokes contralateral orienting movements in mice. Cell Rep 2022; 39:110699. [PMID: 35443172 PMCID: PMC10144672 DOI: 10.1016/j.celrep.2022.110699] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/20/2021] [Accepted: 03/29/2022] [Indexed: 11/03/2022] Open
Abstract
We report that increasing inhibition from the basal ganglia (BG) to the superior colliculus (SC) through the substantia nigra pars reticulata (nigra) using in vivo optogenetic activation of GABAergic terminals in mice produces contralateral orienting movements. These movements are unexpected because decreases, and not increases, in nigral activity are generally associated with the initiation of orienting movements. We found that, in slice recordings, the same optogenetic stimulation of nigral terminals producing movements in vivo evokes post-inhibitory rebound depolarization followed by Na+ spikes in SC output neurons. Moreover, blocking T-type Ca2+ channels in slices prevent post-inhibitory rebound and subsequent Na+ spiking in SC output neurons and also reduce the likelihood of contralateral orienting in vivo. On the basis of these results, we propose that, in addition to the permissive role, the BG may play an active role in the generation of orienting movements in mice by driving post-inhibitory rebound depolarization in SC output neurons.
Collapse
Affiliation(s)
- Claudio A Villalobos
- Fuster Laboratory of Cognitive Neuroscience, Department of Psychiatry and Biobehavioral Sciences, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.
| | - Michele A Basso
- Fuster Laboratory of Cognitive Neuroscience, Department of Psychiatry and Biobehavioral Sciences, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
97
|
He L, Yu Z, Geng Z, Huang Z, Zhang C, Dong Y, Gao Y, Wang Y, Chen Q, Sun L, Ma X, Huang B, Wang X, Zhao Y. Structure, gating, and pharmacology of human Ca V3.3 channel. Nat Commun 2022; 13:2084. [PMID: 35440630 PMCID: PMC9019099 DOI: 10.1038/s41467-022-29728-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/28/2022] [Indexed: 12/19/2022] Open
Abstract
The low-voltage activated T-type calcium channels regulate cellular excitability and oscillatory behavior of resting membrane potential which trigger many physiological events and have been implicated with many diseases. Here, we determine structures of the human T-type CaV3.3 channel, in the absence and presence of antihypertensive drug mibefradil, antispasmodic drug otilonium bromide and antipsychotic drug pimozide. CaV3.3 contains a long bended S6 helix from domain III, with a positive charged region protruding into the cytosol, which is critical for T-type CaV channel activation at low voltage. The drug-bound structures clearly illustrate how these structurally different compounds bind to the same central cavity inside the CaV3.3 channel, but are mediated by significantly distinct interactions between drugs and their surrounding residues. Phospholipid molecules penetrate into the central cavity in various extent to shape the binding pocket and play important roles in stabilizing the inhibitor. These structures elucidate mechanisms of channel gating, drug recognition, and actions, thus pointing the way to developing potent and subtype-specific drug for therapeutic treatments of related disorders. T-type calcium channels are implicated in many diseases. Here, multiple structures of CaV3.3 channel elucidate molecular mechanisms of T-type CaV channels activation at low voltage and interaction with different clinically used channel blockers.
Collapse
Affiliation(s)
- Lingli He
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuoya Yu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ze Geng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China.,IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Zhuo Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China.,IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Changjiang Zhang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanli Dong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
| | - Yiwei Gao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhang Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qihao Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Le Sun
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Xinyue Ma
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China.,IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Bo Huang
- StoneWise Ltd., 1708, Block B, No.19 Zhongguancun Street, Haidian District, Beijing, China
| | - Xiaoqun Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China. .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
98
|
Zhi YR, Cao F, Su XJ, Gao SW, Zheng HN, Jiang JY, Su L, Liu J, Wang Y, Zhang Y, Zhang Y. The T-Type Calcium Channel Cav3.2 in Somatostatin Interneurons in Spinal Dorsal Horn Participates in Mechanosensation and Mechanical Allodynia in Mice. Front Cell Neurosci 2022; 16:875726. [PMID: 35465611 PMCID: PMC9024096 DOI: 10.3389/fncel.2022.875726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Somatostatin-positive (SOM+) neurons have been proposed as one of the key populations of excitatory interneurons in the spinal dorsal horn involved in mechanical pain. However, the molecular mechanism for their role in pain modulation remains unknown. Here, we showed that the T-type calcium channel Cav3.2 was highly expressed in spinal SOM+ interneurons. Colocalization of Cacna1h (which codes for Cav3.2) and SOMtdTomato was observed in the in situ hybridization studies. Fluorescence-activated cell sorting of SOMtdTomato cells in spinal dorsal horn also proved a high expression of Cacna1h in SOM+ neurons. Behaviorally, virus-mediated knockdown of Cacna1h in spinal SOM+ neurons reduced the sensitivity to light touch and responsiveness to noxious mechanical stimuli in naïve mice. Furthermore, knockdown of Cacna1h in spinal SOM+ neurons attenuated thermal hyperalgesia and dynamic allodynia in the complete Freund’s adjuvant-induced inflammatory pain model, and reduced both dynamic and static allodynia in a neuropathic pain model of spared nerve injury. Mechanistically, a decrease in the percentage of neurons with Aβ-eEPSCs and Aβ-eAPs in superficial dorsal horn was observed after Cacna1h knockdown in spinal SOM+ neurons. Altogether, our results proved a crucial role of Cav3.2 in spinal SOM+ neurons in mechanosensation under basal conditions and in mechanical allodynia under pathological pain conditions. This work reveals a molecular basis for SOM+ neurons in transmitting mechanical pain and shows a functional role of Cav3.2 in tactile and pain processing at the level of spinal cord in addition to its well-established peripheral role.
Collapse
Affiliation(s)
- Yu-Ru Zhi
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
| | - Feng Cao
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
| | - Xiao-Jing Su
- Stroke Center and Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shu-Wen Gao
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
| | - Hao-Nan Zheng
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| | - Jin-Yan Jiang
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
| | - Li Su
- Center of Medical and Health Analysis, Peking University Health Science Center, Beijing, China
| | - Jiao Liu
- Center of Medical and Health Analysis, Peking University Health Science Center, Beijing, China
| | - Yun Wang
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Yan Zhang
- Stroke Center and Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Ying Zhang,
| | - Ying Zhang
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
- Yan Zhang,
| |
Collapse
|
99
|
Mirlohi S, Bladen C, Santiago MJ, Arnold JC, McGregor I, Connor M. Inhibition of human recombinant T-type calcium channels by phytocannabinoids in vitro. Br J Pharmacol 2022; 179:4031-4043. [PMID: 35342937 DOI: 10.1111/bph.15842] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE T-type Ca channels (ICa ) regulate neuronal excitability and contribute to neurotransmitter release. The phytocannabinoids Δ9 -tetrahydrocannabinol and cannabidiol effectively modulate T-type ICa , but effects of other biologically active phytocannabinoids on these channels are unknown. We thus investigated the modulation of T-type ICa by low abundance phytocannabinoids. EXPERIMENTAL APPROACH A fluorometric (FLIPR) assay was used to investigate modulation of human T-type ICa (CaV 3.1, 3.2 and 3.3) stably expressed in FlpIn-TREx HEK293 cells. The biophysical effects of some compounds were examined using whole-cell patch clamp recordings from the same cells. KEY RESULTS In the FLIPR assay, all eleven phytocannabinoids tested modulated T-type ICa , with most inhibiting CaV 3.1 and CaV 3.2 more effectively than CaV 3.3. Cannabigerolic acid was the most potent inhibitor of CaV 3.1 (pIC50 6.1 ± 0.6) and CaV 3.2 (pIC50 6.4 ± 0.4); in all cases phytocannabinoid acids were more potent than their corresponding neutral forms. In patch clamp recordings, cannabigerolic acid inhibited CaV 3.1 and 3.2 with similar potency to the FLIPR assay, the inhibition was associated with significant hyperpolarizing shift in activation and steady state inactivation of these channels. In contrast, cannabidiol, cannabidivarin and cannabigerol only affected channel inactivation. CONCLUSION AND IMPLICATIONS Modulation of T-type calcium channels is a common property of phytocannabinoids, which all increase steady state inactivation at physiological membrane potentials, with some also affecting channel activation. Thus, T-type ICa may be a common site of action for phytocannabinoids, and the diverse actions of phytocannabinoids on channel gating may provide insight into structural requirement for selective T-type ICa modulators.
Collapse
Affiliation(s)
- Somayeh Mirlohi
- Department of Biomedical Sciences, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney
| | - Chris Bladen
- Department of Biomedical Sciences, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney
| | - Marina J Santiago
- Department of Biomedical Sciences, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney
| | - Jonathon C Arnold
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia.,Discipline of Pharmacology, Sydney Pharmacy School, The University of Sydney, Sydney, New South Wales, Australia
| | - Ian McGregor
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia
| | - Mark Connor
- Department of Biomedical Sciences, Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney
| |
Collapse
|
100
|
Papazoglou A, Arshaad MI, Henseler C, Daubner J, Broich K, Hescheler J, Ehninger D, Haenisch B, Weiergräber M. Ca v3 T-Type Voltage-Gated Ca 2+ Channels and the Amyloidogenic Environment: Pathophysiology and Implications on Pharmacotherapy and Pharmacovigilance. Int J Mol Sci 2022; 23:3457. [PMID: 35408817 PMCID: PMC8998330 DOI: 10.3390/ijms23073457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/07/2022] Open
Abstract
Voltage-gated Ca2+ channels (VGCCs) were reported to play a crucial role in neurotransmitter release, dendritic resonance phenomena and integration, and the regulation of gene expression. In the septohippocampal system, high- and low-voltage-activated (HVA, LVA) Ca2+ channels were shown to be involved in theta genesis, learning, and memory processes. In particular, HVA Cav2.3 R-type and LVA Cav3 T-type Ca2+ channels are expressed in the medial septum-diagonal band of Broca (MS-DBB), hippocampal interneurons, and pyramidal cells, and ablation of both channels was proven to severely modulate theta activity. Importantly, Cav3 Ca2+ channels contribute to rebound burst firing in septal interneurons. Consequently, functional impairment of T-type Ca2+ channels, e.g., in null mutant mouse models, caused tonic disinhibition of the septohippocampal pathway and subsequent enhancement of hippocampal theta activity. In addition, impairment of GABA A/B receptor transcription, trafficking, and membrane translocation was observed within the septohippocampal system. Given the recent findings that amyloid precursor protein (APP) forms complexes with GABA B receptors (GBRs), it is hypothesized that T-type Ca2+ current reduction, decrease in GABA receptors, and APP destabilization generate complex functional interdependence that can constitute a sophisticated proamyloidogenic environment, which could be of potential relevance in the etiopathogenesis of Alzheimer's disease (AD). The age-related downregulation of T-type Ca2+ channels in humans goes together with increased Aβ levels that could further inhibit T-type channels and aggravate the proamyloidogenic environment. The mechanistic model presented here sheds new light on recent reports about the potential risks of T-type Ca2+ channel blockers (CCBs) in dementia, as observed upon antiepileptic drug application in the elderly.
Collapse
Affiliation(s)
- Anna Papazoglou
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (A.P.); (M.I.A.); (C.H.); (J.D.)
| | - Muhammad Imran Arshaad
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (A.P.); (M.I.A.); (C.H.); (J.D.)
| | - Christina Henseler
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (A.P.); (M.I.A.); (C.H.); (J.D.)
| | - Johanna Daubner
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (A.P.); (M.I.A.); (C.H.); (J.D.)
| | - Karl Broich
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (K.B.); (B.H.)
| | - Jürgen Hescheler
- Faculty of Medicine, Institute of Neurophysiology, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany;
- Center of Physiology and Pathophysiology, Faculty of Medicine, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany
| | - Dan Ehninger
- Translational Biogerontology, German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany;
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany
| | - Britta Haenisch
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (K.B.); (B.H.)
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany
- Center for Translational Medicine, Medical Faculty, University of Bonn, 53113 Bonn, Germany
| | - Marco Weiergräber
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (A.P.); (M.I.A.); (C.H.); (J.D.)
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (K.B.); (B.H.)
- Faculty of Medicine, Institute of Neurophysiology, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany;
- Center of Physiology and Pathophysiology, Faculty of Medicine, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany
| |
Collapse
|