51
|
Elimination of the four extracellular matrix molecules tenascin-C, tenascin-R, brevican and neurocan alters the ratio of excitatory and inhibitory synapses. Sci Rep 2019; 9:13939. [PMID: 31558805 PMCID: PMC6763627 DOI: 10.1038/s41598-019-50404-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/11/2019] [Indexed: 01/12/2023] Open
Abstract
The synaptic transmission in the mammalian brain is not limited to the interplay between the pre- and the postsynapse of neurons, but involves also astrocytes as well as extracellular matrix (ECM) molecules. Glycoproteins, proteoglycans and hyaluronic acid of the ECM pervade the pericellular environment and condense to special superstructures termed perineuronal nets (PNN) that surround a subpopulation of CNS neurons. The present study focuses on the analysis of PNNs in a quadruple knockout mouse deficient for the ECM molecules tenascin-C (TnC), tenascin-R (TnR), neurocan and brevican. Here, we analysed the proportion of excitatory and inhibitory synapses and performed electrophysiological recordings of the spontaneous neuronal network activity of hippocampal neurons in vitro. While we found an increase in the number of excitatory synaptic molecules in the quadruple knockout cultures, the number of inhibitory synaptic molecules was significantly reduced. This observation was complemented with an enhancement of the neuronal network activity level. The in vivo analysis of PNNs in the hippocampus of the quadruple knockout mouse revealed a reduction of PNN size and complexity in the CA2 region. In addition, a microarray analysis of the postnatal day (P) 21 hippocampus was performed unravelling an altered gene expression in the quadruple knockout hippocampus.
Collapse
|
52
|
Yang P, Tian YM, Deng WX, Cai X, Liu WH, Li L, Huang HY. Sijunzi decoction may decrease apoptosis via stabilization of the extracellular matrix following cerebral ischaemia-reperfusion in rats. Exp Ther Med 2019; 18:2805-2812. [PMID: 31572528 PMCID: PMC6755478 DOI: 10.3892/etm.2019.7878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 06/13/2019] [Indexed: 12/19/2022] Open
Abstract
Neurons undergo degeneration, apoptosis and death due to ischaemic stroke. The present study investigated the effect of Sijunzi decoction (SJZD), a type of traditional Chinese medicine known as invigorating spleen therapy, on anoikis (a type of apoptosis) in rat brains following cerebral ischaemia-reperfusion. Rats were randomly divided into sham, model, nimodipine and SJZD low/medium/high dose groups. A middle cerebral artery occlusion model was established. Neurobehavioural scores were evaluated after administration for 14 days using a five-grade scale. Blood-brain barrier permeability and apoptotic rate were detected using Evans blue (EB) extravasation and TUNEL staining, respectively. Tissue inhibitor of metalloproteinase 1 (TIMP-1), matrix metalloproteinase 9 (MMP-9) and collagen IV (COL IV) were determined using immunohistochemistry. Neurobehavioural scores decreased remarkably in all SJZD and nimodipine groups compared to the model group (P<0.05). Compared with the sham group, EB extravasation was higher in the model group (P<0.01). The amount of EB extravasation decreased in the SJZD high dose and nimodipine groups compared to the model group (P<0.01), and extravasation in the SJZD high dose group was lower than the SJZD low and medium dose groups (P<0.01). TIMP-1 and MMP-9 expression and apoptotic rate increased, but COL IV decreased significantly in the hippocampus of the model group compared to the sham group (P<0.01). TIMP-1 and COL IV expression increased significantly and MMP-9 and apoptotic rate decreased remarkably in all SJZD and nimodipine groups compared to the model group (P<0.01). TIMP-1 and COL IV expression decreased, but MMP-9 expression and apoptotic rate increased in the SJZD low and medium dose groups compared to the SJZD high dose group (P<0.01). SJZD rescued neurons and improved neurobehavioural function in rats following cerebral ischaemia-reperfusion, especially when used at a high dose. The mechanism may be related to protection of the extracellular matrix followed by anti-apoptotic effects.
Collapse
Affiliation(s)
- Ping Yang
- Department of Psychiatry, Brains Hospital of Hunan Province, Clinical Medical School, Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
| | - Ye-Mei Tian
- Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Wen-Xiang Deng
- Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Xiong Cai
- Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Wang-Hua Liu
- Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Liang Li
- Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China.,Key Discipline of Anatomy and Histoembryology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Hui-Yong Huang
- Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| |
Collapse
|
53
|
Coordinated transcriptional regulation by thyroid hormone and glucocorticoid interaction in adult mouse hippocampus-derived neuronal cells. PLoS One 2019; 14:e0220378. [PMID: 31348800 PMCID: PMC6660079 DOI: 10.1371/journal.pone.0220378] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/15/2019] [Indexed: 12/04/2022] Open
Abstract
The hippocampus is a well-known target of thyroid hormone (TH; e.g., 3,5,3’-triiodothyronine—T3) and glucocorticoid (GC; e.g., corticosterone—CORT) action. Despite evidence that TH and GC play critical roles in neural development and function, few studies have identified genes and patterns of gene regulation influenced by the interaction of these hormones at a genome-wide scale. In this study we investigated gene regulation by T3, CORT, and T3 + CORT in the mouse hippocampus-derived cell line HT-22. We treated cells with T3, CORT, or T3 + CORT for 4 hr before cell harvest and RNA isolation for microarray analysis. We identified 9 genes regulated by T3, 432 genes by CORT, and 412 genes by T3 + CORT. Among the 432 CORT-regulated genes, there were 203 genes that exhibited an altered CORT response in the presence of T3, suggesting that T3 plays a significant role in modulating CORT-regulated genes. We also found 80 genes synergistically induced, and 73 genes synergistically repressed by T3 + CORT treatment. We performed in silico analysis using publicly available mouse neuronal chromatin immunoprecipitation-sequencing datasets and identified a considerable number of synergistically regulated genes with TH receptor and GC receptor peaks mapping within 1 kb of chromatin marks indicative of hormone-responsive enhancer regions. Functional annotation clustering of synergistically regulated genes reveal the relevance of proteasomal-dependent degradation, neuroprotective effect of growth hormones, and neuroinflammatory responses as key pathways to how TH and GC may coordinately influence learning and memory. Taken together, our transcriptome data represents a promising exploratory dataset for further study of common molecular mechanisms behind synergistic TH and GC gene regulation, and identify specific genes and their role in processes mediated by cross-talk between the thyroid and stress axes in a mammalian hippocampal model system.
Collapse
|
54
|
Rauti R, Renous N, Maoz BM. Mimicking the Brain Extracellular Matrix
in Vitro
: A Review of Current Methodologies and Challenges. Isr J Chem 2019. [DOI: 10.1002/ijch.201900052] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rossana Rauti
- Department of Biomedical Engineering Tel Aviv University Israel
| | - Noa Renous
- Department of Biomedical Engineering Tel Aviv University Israel
| | - Ben M. Maoz
- Department of Biomedical Engineering Tel Aviv University Israel
- Sagol School of Neuroscience Tel Aviv University Tel Aviv Israel
- The Center for Nanoscience and Nanotechnology Tel Aviv University Tel Aviv 69978 Israel
| |
Collapse
|
55
|
Reichelt AC, Hare DJ, Bussey TJ, Saksida LM. Perineuronal Nets: Plasticity, Protection, and Therapeutic Potential. Trends Neurosci 2019; 42:458-470. [DOI: 10.1016/j.tins.2019.04.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/16/2019] [Accepted: 04/22/2019] [Indexed: 12/18/2022]
|
56
|
Charlton‐Perkins M, Almeida AD, MacDonald RB, Harris WA. Genetic control of cellular morphogenesis in Müller glia. Glia 2019; 67:1401-1411. [PMID: 30924555 PMCID: PMC6563441 DOI: 10.1002/glia.23615] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/25/2019] [Accepted: 03/11/2019] [Indexed: 02/06/2023]
Abstract
Cell shape is critical for the proper function of every cell in every tissue in the body. This is especially true for the highly morphologically diverse neural and glia cells of the central nervous system. The molecular processes by which these, or indeed any, cells gain their particular cell-specific morphology remain largely unexplored. To identify the genes involved in the morphogenesis of the principal glial cell type in the vertebrate retina, the Müller glia (MG), we used genomic and CRISPR based strategies in zebrafish (Danio rerio). We identified 41 genes involved in various aspects of MG cell morphogenesis and revealed a striking concordance between the sequential steps of anatomical feature addition and the expression of cohorts of functionally related genes that regulate these steps. We noted that the many of the genes preferentially expressed in zebrafish MG showed conservation in glia across species suggesting evolutionarily conserved glial developmental pathways.
Collapse
Affiliation(s)
- Mark Charlton‐Perkins
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Alexandra D. Almeida
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Ryan B. MacDonald
- Department of Infection, Immunity and Cardiovascular Disease, Medical School and the Bateson CentreUniversity of SheffieldSheffieldUK
| | - William A. Harris
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| |
Collapse
|
57
|
Chowen JA, Frago LM, Fernández-Alfonso MS. Physiological and pathophysiological roles of hypothalamic astrocytes in metabolism. J Neuroendocrinol 2019; 31:e12671. [PMID: 30561077 DOI: 10.1111/jne.12671] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/27/2018] [Accepted: 12/11/2018] [Indexed: 12/26/2022]
Abstract
The role of glial cells, including astrocytes, in metabolic control has received increasing attention in recent years. Although the original interest in these macroglial cells was a result of astrogliosis being observed in the hypothalamus of diet-induced obese subjects, studies have also focused on how they participate in the physiological control of appetite and energy expenditure. Astrocytes express receptors for numerous hormones, growth factors and neuropeptides. Some functions of astrocytes include transport of nutrients and hormones from the circulation to the brain, storage of glycogen, participation in glucose sensing, synaptic plasticity, uptake and metabolism of neurotransmitters, release of substances to modify neurotransmission, and cytokine production, amongst others. In the hypothalamus, these physiological glial functions impact on neuronal circuits that control systemic metabolism to modify their outputs. The initial response of astrocytes to poor dietary habits and obesity involves activation of neuroprotective mechanisms but, with chronic exposure to these situations, hypothalamic astrocytes participate in the development of some of the damaging secondary effects. The present review discusses not only some of the physiological functions of hypothalamic astrocytes in metabolism, but also their role in the secondary complications of obesity, such as insulin resistance and cardiovascular affectations.
Collapse
Affiliation(s)
- Julie A Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- CIBEROBN (Centro de Investigación Biomédica en Red sobre Fisiopatología de la Obesidad y Nutrición), Instituto de Salud Carlos III, Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Laura M Frago
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- CIBEROBN (Centro de Investigación Biomédica en Red sobre Fisiopatología de la Obesidad y Nutrición), Instituto de Salud Carlos III, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Soledad Fernández-Alfonso
- Instituto Pluridisciplinar UCM y Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| |
Collapse
|
58
|
Roll L, Faissner A. Tenascins in CNS lesions. Semin Cell Dev Biol 2019; 89:118-124. [DOI: 10.1016/j.semcdb.2018.09.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/03/2018] [Accepted: 09/27/2018] [Indexed: 02/06/2023]
|
59
|
Tucker RP, Degen M. The Expression and Possible Functions of Tenascin-W During Development and Disease. Front Cell Dev Biol 2019; 7:53. [PMID: 31032255 PMCID: PMC6473177 DOI: 10.3389/fcell.2019.00053] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/20/2019] [Indexed: 01/18/2023] Open
Abstract
Tenascins are a family of multifunctional glycoproteins found in the extracellular matrix of chordates. Two of the tenascins, tenascin-C and tenascin-W, form hexabrachions. In this review, we describe the discovery and domain architecture of tenascin-W, its evolution and patterns of expression during embryogenesis and in tumors, and its effects on cells in culture. In avian and mammalian embryos tenascin-W is primarily expressed at sites of osteogenesis, and in the adult tenascin-W is abundant in certain stem cell niches. In primary cultures of osteoblasts tenascin-W promotes cell migration, the formation of mineralized foci and increases alkaline phosphatase activity. Tenascin-W is also prominent in many solid tumors, yet it is missing from the extracellular matrix of most adult tissues. This makes it a potential candidate for use as a marker of tumor stroma and a target for anti-cancer therapies.
Collapse
Affiliation(s)
- Richard P Tucker
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| | - Martin Degen
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| |
Collapse
|
60
|
Bramini M, Chiacchiaretta M, Armirotti A, Rocchi A, Kale DD, Martin C, Vázquez E, Bandiera T, Ferroni S, Cesca F, Benfenati F. An Increase in Membrane Cholesterol by Graphene Oxide Disrupts Calcium Homeostasis in Primary Astrocytes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900147. [PMID: 30891923 DOI: 10.1002/smll.201900147] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/18/2019] [Indexed: 05/24/2023]
Abstract
The use of graphene nanomaterials (GNMs) for biomedical applications targeted to the central nervous system is exponentially increasing, although precise information on their effects on brain cells is lacking. In this work, the molecular changes induced in cortical astrocytes by few-layer graphene (FLG) and graphene oxide (GO) flakes are addressed. The results show that exposure to FLG/GO does not affect cell viability or proliferation. However, proteomic and lipidomic analyses unveil alterations in several cellular processes, including intracellular Ca2+ ([Ca2+ ]i ) homeostasis and cholesterol metabolism, which are particularly intense in cells exposed to GO. Indeed, GO exposure impairs spontaneous and evoked astrocyte [Ca2+ ]i signals and induces a marked increase in membrane cholesterol levels. Importantly, cholesterol depletion fully rescues [Ca2+ ]i dynamics in GO-treated cells, indicating a causal relationship between these GO-mediated effects. The results indicate that exposure to GNMs alters intracellular signaling in astrocytes and may impact astrocyte-neuron interactions.
Collapse
Affiliation(s)
- Mattia Bramini
- Center for Synaptic Neuroscience and Technology and Graphene Labs, Istituto Italiano di Tecnologia, 16132, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, 16132, Genova, Italy
| | - Martina Chiacchiaretta
- Center for Synaptic Neuroscience and Technology and Graphene Labs, Istituto Italiano di Tecnologia, 16132, Genova, Italy
| | - Andrea Armirotti
- Analytical Chemistry Lab and Graphene Labs, Istituto Italiano di Tecnologia, 16163, Genova, Italy
| | - Anna Rocchi
- Center for Synaptic Neuroscience and Technology and Graphene Labs, Istituto Italiano di Tecnologia, 16132, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, 16132, Genova, Italy
| | - Deepali D Kale
- PharmaChemistry Line and Graphene Labs, Istituto Italiano di Tecnologia, 16163, Genova, Italy
| | - Cristina Martin
- Departamento de Química Orgánica, Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla La-Mancha, 13071, Ciudad Real, Spain
| | - Ester Vázquez
- Departamento de Química Orgánica, Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla La-Mancha, 13071, Ciudad Real, Spain
| | - Tiziano Bandiera
- PharmaChemistry Line and Graphene Labs, Istituto Italiano di Tecnologia, 16163, Genova, Italy
| | - Stefano Ferroni
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Fabrizia Cesca
- Center for Synaptic Neuroscience and Technology and Graphene Labs, Istituto Italiano di Tecnologia, 16132, Genova, Italy
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology and Graphene Labs, Istituto Italiano di Tecnologia, 16132, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, 16132, Genova, Italy
| |
Collapse
|
61
|
Bres EE, Faissner A. Low Density Receptor-Related Protein 1 Interactions With the Extracellular Matrix: More Than Meets the Eye. Front Cell Dev Biol 2019; 7:31. [PMID: 30931303 PMCID: PMC6428713 DOI: 10.3389/fcell.2019.00031] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/25/2019] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) is a biological substrate composed of collagens, proteoglycans and glycoproteins that ensures proper cell migration and adhesion and keeps the cell architecture intact. The regulation of the ECM composition is a vital process strictly controlled by, among others, proteases, growth factors and adhesion receptors. As it appears, ECM remodeling is also essential for proper neuronal and glial development and the establishment of adequate synaptic signaling. Hence, disturbances in ECM functioning are often present in neurodegenerative diseases like Alzheimer’s disease. Moreover, mutations in ECM molecules are found in some forms of epilepsy and malfunctioning of ECM-related genes and pathways can be seen in, for example, cancer or ischemic injury. Low density lipoprotein receptor-related protein 1 (Lrp1) is a member of the low density lipoprotein receptor family. Lrp1 is involved not only in ligand uptake, receptor mediated endocytosis and lipoprotein transport—functions shared by low density lipoprotein receptor family members—but also regulates cell surface protease activity, controls cellular entry and binding of toxins and viruses, protects against atherosclerosis and acts on many cell signaling pathways. Given the plethora of functions, it is not surprising that Lrp1 also impacts the ECM and is involved in its remodeling. This review focuses on the role of Lrp1 and some of its major ligands on ECM function. Specifically, interactions with two Lrp1 ligands, integrins and tissue plasminogen activator are described in more detail.
Collapse
Affiliation(s)
- Ewa E Bres
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, Bochum, Germany
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
62
|
Bonilla-Del Rίo I, Puente N, Peñasco S, Rico I, Gutiérrez-Rodrίguez A, Elezgarai I, Ramos A, Reguero L, Gerrikagoitia I, Christie BR, Nahirney P, Grandes P. Adolescent ethanol intake alters cannabinoid type-1 receptor localization in astrocytes of the adult mouse hippocampus. Addict Biol 2019; 24:182-192. [PMID: 29168269 DOI: 10.1111/adb.12585] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/26/2017] [Accepted: 11/06/2017] [Indexed: 01/02/2023]
Abstract
Cannabinoid type-1 (CB1 ) receptors are widely distributed in the brain and play important roles in astrocyte function and the modulation of neuronal synaptic transmission and plasticity. However, it is currently unknown how CB1 receptor expression in astrocytes is affected by long-term exposure to stressors. Here we examined CB1 receptors in astrocytes of ethanol (EtOH)-exposed adolescent mice to determine its effect on CB1 receptor localization and density in adult brain. 4-8-week-old male mice were exposed to 20 percent EtOH over a period of 4 weeks, and receptor localization was examined after 4 weeks in the hippocampal CA1 stratum radiatum by pre-embedding immunoelectron microscopy. Our results revealed a significant reduction in CB1 receptor immunoparticles in astrocytic processes of EtOH-exposed mice when compared with controls (positive astrocyte elements: 21.50 ± 2.80 percent versus 37.22 ± 3.12 percent, respectively), as well as a reduction in particle density (0.24 ± 0.02 versus 0.35 ± 0.02 particles/μm). The majority of CB1 receptor metal particles were in the range of 400-1200 nm from synaptic terminals in both control and EtOH. Altogether, the decrease in the CB1 receptor expression in hippocampal astrocytes of adult mice exposed to EtOH during adolescence reveals a long lasting effect of EtOH on astrocytic CB1 receptors. This deficiency may also have negative consequences for synaptic function.
Collapse
Affiliation(s)
- Itziar Bonilla-Del Rίo
- Department of Neurosciences, Faculty of Medicine and Nursing; University of the Basque Country UPV/EHU; Spain
- Achucarro Basque Center for Neuroscience; Science Park of the UPV/EHU; Spain
| | - Nagore Puente
- Department of Neurosciences, Faculty of Medicine and Nursing; University of the Basque Country UPV/EHU; Spain
- Achucarro Basque Center for Neuroscience; Science Park of the UPV/EHU; Spain
| | - Sara Peñasco
- Department of Neurosciences, Faculty of Medicine and Nursing; University of the Basque Country UPV/EHU; Spain
- Achucarro Basque Center for Neuroscience; Science Park of the UPV/EHU; Spain
| | - Irantzu Rico
- Department of Neurosciences, Faculty of Medicine and Nursing; University of the Basque Country UPV/EHU; Spain
- Achucarro Basque Center for Neuroscience; Science Park of the UPV/EHU; Spain
| | - Ana Gutiérrez-Rodrίguez
- Department of Neurosciences, Faculty of Medicine and Nursing; University of the Basque Country UPV/EHU; Spain
- Achucarro Basque Center for Neuroscience; Science Park of the UPV/EHU; Spain
| | - Izaskun Elezgarai
- Department of Neurosciences, Faculty of Medicine and Nursing; University of the Basque Country UPV/EHU; Spain
- Achucarro Basque Center for Neuroscience; Science Park of the UPV/EHU; Spain
| | - Almudena Ramos
- Department of Neurosciences, Faculty of Medicine and Nursing; University of the Basque Country UPV/EHU; Spain
- Achucarro Basque Center for Neuroscience; Science Park of the UPV/EHU; Spain
| | - Leire Reguero
- Department of Neurosciences, Faculty of Medicine and Nursing; University of the Basque Country UPV/EHU; Spain
- Achucarro Basque Center for Neuroscience; Science Park of the UPV/EHU; Spain
| | - Inmaculada Gerrikagoitia
- Department of Neurosciences, Faculty of Medicine and Nursing; University of the Basque Country UPV/EHU; Spain
- Achucarro Basque Center for Neuroscience; Science Park of the UPV/EHU; Spain
| | | | | | - Pedro Grandes
- Department of Neurosciences, Faculty of Medicine and Nursing; University of the Basque Country UPV/EHU; Spain
- Achucarro Basque Center for Neuroscience; Science Park of the UPV/EHU; Spain
- Division of Medical Sciences; University of Victoria; Canada
| |
Collapse
|
63
|
The Astrocyte-Neuron Interface: An Overview on Molecular and Cellular Dynamics Controlling Formation and Maintenance of the Tripartite Synapse. Methods Mol Biol 2019; 1938:3-18. [PMID: 30617969 DOI: 10.1007/978-1-4939-9068-9_1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Astrocytes are known to provide trophic support to neurons and were originally thought to be passive space-filling cells in the brain. However, recent advances in astrocyte development and functions have highlighted their active roles in controlling brain functions by modulating synaptic transmission. A bidirectional cross talk between astrocytic processes and neuronal synapses define the concept of tripartite synapse. Any change in astrocytic structure/function influences neuronal activity which could lead to neurodevelopmental and neurodegenerative disorders. In this chapter, we briefly overview the methodologies used in deciphering the mechanisms of dynamic interplay between astrocytes and neurons.
Collapse
|
64
|
Dzyubenko E, Manrique-Castano D, Kleinschnitz C, Faissner A, Hermann DM. Role of immune responses for extracellular matrix remodeling in the ischemic brain. Ther Adv Neurol Disord 2018; 11:1756286418818092. [PMID: 30619510 PMCID: PMC6299337 DOI: 10.1177/1756286418818092] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 11/05/2018] [Indexed: 12/21/2022] Open
Abstract
Neuroinflammation is one of the key components contributing to the devastating outcome of ischemic stroke. Starting with stroke onset, inflammatory processes contribute both to cell damage and tissue remodeling. The early release of alarmins triggers the upregulation of multiple proinflammatory cytokines, resulting in the compromised integrity of the blood–brain barrier. From this moment on, the infiltration of peripheral immune cells, reactive gliosis and extracellular matrix (ECM) alterations become intricately intertwined and act as one unit during the tissue remodeling. While the mechanisms of leukocyte and glia activation are amply reviewed, the field of ECM modification remains as yet under explored. In this review, we focus on the interplay between neuroinflammatory cascades and ECM in the ischemic brain. By summarizing the currently available evidence obtained by in vitro research, animal experimentation and human studies, we aim to propose a new direction for the future investigation of stroke recovery.
Collapse
Affiliation(s)
- Egor Dzyubenko
- Department of Neurology, University Hospital Essen, Essen, Germany
| | | | | | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, Hufelandstraße 55, D-45122 Essen, Germany
| |
Collapse
|
65
|
Sancandi M, Schul EV, Economides G, Constanti A, Mercer A. Structural Changes Observed in the Piriform Cortex in a Rat Model of Pre-motor Parkinson's Disease. Front Cell Neurosci 2018; 12:479. [PMID: 30618629 PMCID: PMC6296349 DOI: 10.3389/fncel.2018.00479] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/22/2018] [Indexed: 12/11/2022] Open
Abstract
Early diagnosis of Parkinson’s disease (PD) offers perhaps, the most promising route to a successful clinical intervention, and the use of an animal model exhibiting symptoms comparable to those observed in PD patients in the early stage of the disease, may facilitate screening of novel therapies for delaying the onset of more debilitating motor and behavioral abnormalities. In this study, a rat model of pre-motor PD was used to study the etiology of hyposmia, a non-motor symptom linked to the early stage of the disease when the motor symptoms have yet to be experienced. The study focussed on determining the effect of a partial reduction of both dopamine and noradrenaline levels on the olfactory cortex. Neuroinflammation and striking structural changes were observed in the model. These changes were prevented by treatment with a neuroprotective drug, a glucagon-like peptide-1 (GLP1) receptor agonist, exendin-4 (EX-4).
Collapse
|
66
|
Rowland HA, Hooper NM, Kellett KAB. Modelling Sporadic Alzheimer's Disease Using Induced Pluripotent Stem Cells. Neurochem Res 2018; 43:2179-2198. [PMID: 30387070 PMCID: PMC6267251 DOI: 10.1007/s11064-018-2663-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/11/2018] [Accepted: 10/15/2018] [Indexed: 12/24/2022]
Abstract
Developing cellular models of sporadic Alzheimer's disease (sAD) is challenging due to the unknown initiator of disease onset and the slow disease progression that takes many years to develop in vivo. The use of human induced pluripotent stem cells (iPSCs) has revolutionised the opportunities to model AD pathology, investigate disease mechanisms and screen potential drugs. The majority of this work has, however, used cells derived from patients with familial AD (fAD) where specific genetic mutations drive disease onset. While these provide excellent models to investigate the downstream pathways involved in neuronal toxicity and ultimately neuronal death that leads to AD, they provide little insight into the causes and mechanisms driving the development of sAD. In this review we compare the data obtained from fAD and sAD iPSC-derived cell lines, identify the inconsistencies that exist in sAD models and highlight the potential role of Aβ clearance mechanisms, a relatively under-investigated area in iPSC-derived models, in the study of AD. We discuss the development of more physiologically relevant models using co-culture and three-dimensional culture of iPSC-derived neurons with glial cells. Finally, we evaluate whether we can develop better, more consistent models for sAD research using genetic stratification of iPSCs and identification of genetic and environmental risk factors that could be used to initiate disease onset for modelling sAD. These considerations provide exciting opportunities to develop more relevant iPSC models of sAD which can help drive our understanding of disease mechanisms and identify new therapeutic targets.
Collapse
Affiliation(s)
- Helen A Rowland
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Nigel M Hooper
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Katherine A B Kellett
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
67
|
Fossati G, Pozzi D, Canzi A, Mirabella F, Valentino S, Morini R, Ghirardini E, Filipello F, Moretti M, Gotti C, Annis DS, Mosher DF, Garlanda C, Bottazzi B, Taraboletti G, Mantovani A, Matteoli M, Menna E. Pentraxin 3 regulates synaptic function by inducing AMPA receptor clustering via ECM remodeling and β1-integrin. EMBO J 2018; 38:embj.201899529. [PMID: 30396995 PMCID: PMC6315291 DOI: 10.15252/embj.201899529] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 09/12/2018] [Accepted: 10/01/2018] [Indexed: 12/20/2022] Open
Abstract
Control of synapse number and function in the developing central nervous system is critical to the formation of neural circuits. Astrocytes play a key role in this process by releasing factors that promote the formation of excitatory synapses. Astrocyte‐secreted thrombospondins (TSPs) induce the formation of structural synapses, which however remain post‐synaptically silent, suggesting that completion of early synaptogenesis may require a two‐step mechanism. Here, we show that the humoral innate immune molecule Pentraxin 3 (PTX3) is expressed in the developing rodent brain. PTX3 plays a key role in promoting functionally‐active CNS synapses, by increasing the surface levels and synaptic clustering of AMPA glutamate receptors. This process involves tumor necrosis factor‐induced protein 6 (TSG6), remodeling of the perineuronal network, and a β1‐integrin/ERK pathway. Furthermore, PTX3 activity is regulated by TSP1, which directly interacts with the N‐terminal region of PTX3. These data unveil a fundamental role of PTX3 in promoting the first wave of synaptogenesis, and show that interplay of TSP1 and PTX3 sets the proper balance between synaptic growth and synapse function in the developing brain.
Collapse
Affiliation(s)
- Giuliana Fossati
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Milano, Italy
| | - Davide Pozzi
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Milano, Italy.,Department of Biomedical Sciences Humanitas University, Milan, Italy
| | - Alice Canzi
- Department of Biomedical Sciences Humanitas University, Milan, Italy
| | - Filippo Mirabella
- Department of Biomedical Sciences Humanitas University, Milan, Italy
| | - Sonia Valentino
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Milano, Italy
| | - Raffaella Morini
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Milano, Italy
| | - Elsa Ghirardini
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Milano, Italy.,Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, University of Milano, Milano, Italy
| | - Fabia Filipello
- Department of Biomedical Sciences Humanitas University, Milan, Italy
| | - Milena Moretti
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, University of Milano, Milano, Italy
| | | | - Douglas S Annis
- Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, WI, USA
| | - Deane F Mosher
- Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, WI, USA
| | - Cecilia Garlanda
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Milano, Italy.,Department of Biomedical Sciences Humanitas University, Milan, Italy
| | - Barbara Bottazzi
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Milano, Italy.,Department of Biomedical Sciences Humanitas University, Milan, Italy
| | - Giulia Taraboletti
- Tumor Angiogenesis Unit, Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Alberto Mantovani
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Milano, Italy.,Department of Biomedical Sciences Humanitas University, Milan, Italy
| | - Michela Matteoli
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Milano, Italy .,Institute of Neuroscience - CNR, Milano, Italy
| | - Elisabetta Menna
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Milano, Italy .,Institute of Neuroscience - CNR, Milano, Italy
| |
Collapse
|
68
|
Kaddour H, Hamdi Y, Amri F, Bahdoudi S, Bouannee I, Leprince J, Zekri S, Vaudry H, Tonon MC, Vaudry D, Amri M, Mezghani S, Masmoudi-Kouki O. Antioxidant and Anti-Apoptotic Activity of Octadecaneuropeptide Against 6-OHDA Toxicity in Cultured Rat Astrocytes. J Mol Neurosci 2018; 69:1-16. [PMID: 30343367 DOI: 10.1007/s12031-018-1181-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/21/2018] [Indexed: 12/12/2022]
Abstract
Oxidative stress, associated with various neurodegenerative diseases, promotes ROS generation, impairs cellular antioxidant defenses, and finally, triggers both neurons and astroglial cell death by apoptosis. Astrocytes specifically synthesize and release endozepines, a family of regulatory peptides, including the octadecaneuropeptide (ODN). We have previously reported that ODN acts as a potent neuroprotective agent that prevents 6-OHDA-induced apoptotic neuronal death. The purpose of the present study was to investigate the potential glioprotective effect of ODN on 6-OHDA-induced oxidative stress and cell death in cultured rat astrocytes. Incubation of astrocytes with graded concentrations of ODN (10-14 to 10-8 M) inhibited 6-OHDA-evoked cell death in a concentration- and time-dependent manner. In addition, ODN prevented the decrease of mitochondrial activity and caspase-3 activation induced by 6-OHDA. 6-OHDA-treated cells also exhibited enhanced levels of ROS associated with a generation of H2O2 and O2°-, and a reduction of both superoxide dismutase (SOD) and catalase (CAT) activities. Co-treatment of astrocytes with low concentrations of ODN dose-dependently blocked 6-OHDA-evoked production of ROS and inhibition of antioxidant enzyme activities. Concomitantly, ODN stimulated Mn-SOD, CAT, glutathione peroxidase-1, and sulfiredoxin-1 gene transcription and rescued 6-OHDA-associated reduced expression of endogenous antioxidant enzymes. Taken together, these data indicate that, in rat astrocytes, ODN exerts anti-apoptotic and anti-oxidative activities, and hence prevents 6-OHDA-induced oxidative assault and cell death. ODN is thus a potential candidate to delay neuronal damages in various pathological conditions involving oxidative neurodegeneration.
Collapse
Affiliation(s)
- Hadhemi Kaddour
- University Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomelcules Valorisation, 2092, Tunis, Tunisia.,CIRB, CNRS UMR 7241/INSERM U1050, PSL University, Labex MemoLife, Collège de France, 11 place Marcelin Berthelot, 75231, Paris, France.,Imagine Institute and Center of Psychiatry and Neuroscience, Université Paris Descartes, 102-108 rue de la Santé, 75014, Paris, France
| | - Yosra Hamdi
- University Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomelcules Valorisation, 2092, Tunis, Tunisia
| | - Fatma Amri
- University Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomelcules Valorisation, 2092, Tunis, Tunisia
| | - Seyma Bahdoudi
- University Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomelcules Valorisation, 2092, Tunis, Tunisia.,UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Normandie Univ, 76000, Rouen, France
| | - Ibtissem Bouannee
- University Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomelcules Valorisation, 2092, Tunis, Tunisia
| | - Jérôme Leprince
- UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Normandie Univ, 76000, Rouen, France.,UNIROUEN, Regional Cell Imaging Platform of Normandy (PRIMACEN), Normandie Univ, 76000, Rouen, France
| | - Sami Zekri
- USCR Transmission Electron Microscopy, Faculty of Medicine, University Tunis El Manar, Tunis, Tunisia
| | - Hubert Vaudry
- UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Normandie Univ, 76000, Rouen, France.,UNIROUEN, Regional Cell Imaging Platform of Normandy (PRIMACEN), Normandie Univ, 76000, Rouen, France
| | - Marie-Christine Tonon
- UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Normandie Univ, 76000, Rouen, France
| | - David Vaudry
- UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Normandie Univ, 76000, Rouen, France.,UNIROUEN, Regional Cell Imaging Platform of Normandy (PRIMACEN), Normandie Univ, 76000, Rouen, France
| | - Mohamed Amri
- University Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomelcules Valorisation, 2092, Tunis, Tunisia
| | - Sana Mezghani
- University Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomelcules Valorisation, 2092, Tunis, Tunisia
| | - Olfa Masmoudi-Kouki
- University Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomelcules Valorisation, 2092, Tunis, Tunisia.
| |
Collapse
|
69
|
Dayangac-Erden D, Gur-Dedeoglu B, Eskici FN, Oztemur-Islakoglu Y, Erdem-Ozdamar S. Do Perineuronal Net Elements Contribute to Pathophysiology of Spinal Muscular Atrophy? In Vitro and Transcriptomics Insights. ACTA ACUST UNITED AC 2018; 22:598-606. [DOI: 10.1089/omi.2018.0106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Didem Dayangac-Erden
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | | | - Fatma Nazli Eskici
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | | | - Sevim Erdem-Ozdamar
- Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
70
|
Topological remodeling of cortical perineuronal nets in focal cerebral ischemia and mild hypoperfusion. Matrix Biol 2018; 74:121-132. [PMID: 30092283 DOI: 10.1016/j.matbio.2018.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/02/2018] [Accepted: 08/02/2018] [Indexed: 12/16/2022]
Abstract
Despite the crucial role of perineuronal nets (PNNs) in neural plasticity and neurological disorders, their ultrastructural organization remains largely unresolved. We have developed a novel approach combining superresolution structured illumination microscopy (SR-SIM) and mathematical reconstruction that allows for quantitative analysis of PNN topology. Since perineuronal matrix is capable to restrict neural plasticity but at the same time is necessary to maintain synapses, we hypothesized that a beneficial post stroke recovery requires a reversible loosening of PNNs. Our results indicated that focal cerebral ischemia induces partial depletion of PNNs and that mild hypoperfusion not associated with ischemic injury can induce ultra-structural rearrangements in visually intact meshworks. In line with the activation of neural plasticity under mild stress stimuli, we provide evidence that topological conversion of PNNs can support post stroke neural rewiring.
Collapse
|
71
|
Simard S, Coppola G, Rudyk CA, Hayley S, McQuaid RJ, Salmaso N. Profiling changes in cortical astroglial cells following chronic stress. Neuropsychopharmacology 2018; 43:1961-1971. [PMID: 29907879 PMCID: PMC6046043 DOI: 10.1038/s41386-018-0105-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 04/12/2018] [Accepted: 05/08/2018] [Indexed: 12/21/2022]
Abstract
Recent studies have suggested that cortical astroglia play an important role in depressive-like behaviors. Potential astroglial contributions have been proposed based on their known neuroplastic functions, such as glutamate recycling and synaptic plasticity. However, the specific mechanisms by which astroglial cells may contribute or protect against a depressive phenotype remain unknown. To delineate astroglial changes that accompany depressive-like behavior, we used astroglial-specific bacTRAP mice exposed to chronic variable stress (CVS) and profiled the astroglial translatome using translating ribosome affinity purification (TRAP) in conjunction with RNAseq. As expected, CVS significantly increased anxiety- and depressive-like behaviors and corticosterone levels and decreased GFAP expression in astroglia, although this did not reflect a change in the total number of astroglial cells. TRAPseq results showed that CVS decreased genes associated with astroglial plasticity: RhoGTPases, growth factor signaling, and transcription regulation, and increased genes associated with the formation of extracellular matrices such as perineuronal nets (PNNs). PNNs inhibit neuroplasticity and astroglia contribute to the formation, organization, and maintenance of PNNs. To validate our TRAPseq findings, we showed an increase in PNNs following CVS. Degradation of PNNs in the prefrontal cortex of mice exposed to CVS reversed the CVS-induced behavioral phenotype in the forced swim test. These data lend further support to the neuroplasticity hypothesis of depressive behaviors and, in particular, extend this hypothesis beyond neuronal plasticity to include an overall decrease in genes associated with cortical astroglial plasticity following CVS. Further studies will be needed to assess the antidepressant potential of directly targeting astroglial cell function in models of depression.
Collapse
Affiliation(s)
- Stephanie Simard
- 0000 0004 1936 893Xgrid.34428.39Department of Neuroscience, Carleton University, Ottawa, ON Canada
| | - Gianfilippo Coppola
- 0000000419368710grid.47100.32Child Study Center, Yale University, New Haven, CT USA
| | - Christopher A. Rudyk
- 0000 0004 1936 893Xgrid.34428.39Department of Neuroscience, Carleton University, Ottawa, ON Canada
| | - Shawn Hayley
- 0000 0004 1936 893Xgrid.34428.39Department of Neuroscience, Carleton University, Ottawa, ON Canada
| | - Robyn J. McQuaid
- 0000 0001 1503 7525grid.414622.7The Royal Ottawa Hospital, Ottawa, ON Canada
| | - Natalina Salmaso
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada. .,Child Study Center, Yale University, New Haven, CT, USA.
| |
Collapse
|
72
|
Reed MJ, Damodarasamy M, Pathan JL, Erickson MA, Banks WA, Vernon RB. The Effects of Normal Aging on Regional Accumulation of Hyaluronan and Chondroitin Sulfate Proteoglycans in the Mouse Brain. J Histochem Cytochem 2018; 66:697-707. [PMID: 29782809 DOI: 10.1369/0022155418774779] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The brain changes in volume and composition with normal aging. Cellular components of the brain are supported by an extracellular matrix (ECM) comprised largely of hyaluronan (HA) and HA-associated members of the lectican family of chondroitin sulfate proteoglycans (CSPGs). We examined regional differences in microvascular density, neuronal and glial markers, and accumulation of HA and CSPGs in mouse brains during normal aging. The cortex, hippocampus, dentate gyrus, and cerebellum of young (4 months), middle-aged (14 months), and aged (24-26 months) brains were analyzed. Microvascular density decreased in cerebral cortex and cerebellum with age. There were no detectable differences in neuronal density. There was an increase in astrocytes in the hippocampus with aging. HA accumulation was higher in aged brain relative to young brain in the cerebral cortex and cerebellum, but not in other regions examined. In contrast, CSPGs did not change with aging in any of the brain regions examined. HA and CSPGs colocalized with a subset of neuronal cell bodies and astrocytes, and at the microvasculature. Differences in accumulation of ECM in the aging brain, in the setting of decreased microvascular density and/or increased glial activation, might contribute to age-related regional differences in vulnerability to injury and ischemia.
Collapse
Affiliation(s)
- May J Reed
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Mamatha Damodarasamy
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Jasmine L Pathan
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Michelle A Erickson
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington.,VA Puget Sound Health Care System, Geriatric Research Education and Clinical Center, Seattle, Washington
| | - William A Banks
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington.,VA Puget Sound Health Care System, Geriatric Research Education and Clinical Center, Seattle, Washington
| | - Robert B Vernon
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| |
Collapse
|
73
|
Wieduwild R, Wetzel R, Husman D, Bauer S, El-Sayed I, Duin S, Murawala P, Thomas AK, Wobus M, Bornhäuser M, Zhang Y. Coacervation-Mediated Combinatorial Synthesis of Biomatrices for Stem Cell Culture and Directed Differentiation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706100. [PMID: 29659062 DOI: 10.1002/adma.201706100] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/30/2018] [Indexed: 06/08/2023]
Abstract
Combinatorial screening represents a promising strategy to discover biomaterials for tailored cell culture applications. Although libraries incorporating different biochemical cues have been investigated, few simultaneously recapitulate relevant biochemical, physical, and dynamic features of the extracellular matrix (ECM). Here, a noncovalent system based on liquid-liquid phase separation (coacervation) and gelation mediated by glycosaminoglycan (GAG)-peptide interactions is reported. Multiple biomaterial libraries are generated using combinations of sulfated glycosaminoglycans and poly(ethylene glycol)-conjugated peptides. Screening these biomaterials reveals preferred biomatrices for the attachment of six cell types, including primary mesenchymal stromal cells (MSCs) and primary neural precursor cells (NPCs). Incorporation of GAGs sustains the expansion of all tested cell types comparable to standard cell culture surfaces, while osteogenic differentiation of MSC and neuronal differentiation of NPC are promoted on chondroitin and heparan biomatrices, respectively. The presented noncovalent system provides a powerful tool for developing tissue-specific ECM mimics.
Collapse
Affiliation(s)
- Robert Wieduwild
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstraße 18, 01307, Dresden, Germany
| | - Richard Wetzel
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstraße 18, 01307, Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - Dejan Husman
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstraße 18, 01307, Dresden, Germany
| | - Sophie Bauer
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstraße 18, 01307, Dresden, Germany
| | - Iman El-Sayed
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstraße 18, 01307, Dresden, Germany
| | - Sarah Duin
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstraße 18, 01307, Dresden, Germany
| | - Priyanka Murawala
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstraße 18, 01307, Dresden, Germany
| | - Alvin Kuriakose Thomas
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstraße 18, 01307, Dresden, Germany
| | - Manja Wobus
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - Martin Bornhäuser
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany
- University Hospital Carl Gustav Carus der Technischen Universität Dresden, Medizinische Klinik und Poliklinik I, Fetscherstraße 74, 01307, Dresden, Germany
| | - Yixin Zhang
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstraße 18, 01307, Dresden, Germany
| |
Collapse
|
74
|
Fernström E, Minta K, Andreasson U, Sandelius Å, Wasling P, Brinkmalm A, Höglund K, Blennow K, Nyman J, Zetterberg H, Kalm M. Cerebrospinal fluid markers of extracellular matrix remodelling, synaptic plasticity and neuroinflammation before and after cranial radiotherapy. J Intern Med 2018; 284:211-225. [PMID: 29664192 DOI: 10.1111/joim.12763] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Advances in the treatment of brain tumours have increased the number of long-term survivors, but at the cost of side effects following cranial radiotherapy ranging from neurocognitive deficits to outright tissue necrosis. At present, there are no tools reflecting the molecular mechanisms underlying such side effects, and thus no means to evaluate interventional effects after cranial radiotherapy. Therefore, fluid biomarkers are of great clinical interest. OBJECTIVE Cerebrospinal fluid (CSF) levels of proteins involved in inflammatory signalling, synaptic plasticity and extracellular matrix (ECM) integrity were investigated following radiotherapy to the brain. METHODS Patients with small-cell lung cancer (SCLC) eligible for prophylactic cranial irradiation (PCI) were asked to participate in the study. PCI was prescribed either as 2 Gy/fraction to a total dose of 30 Gy (limited disease) or 4 Gy/fraction to 20 Gy (extensive disease). CSF was collected by lumbar puncture at baseline, 3 months and 1 year following PCI. Protein concentrations were measured using immunobased assays or mass spectrometry. RESULTS The inflammatory markers IL-15, IL-16 and MCP-1/CCL2 were elevated in CSF 3 months following PCI compared to baseline. The plasticity marker GAP-43 was elevated 3 months following PCI, and the same trend was seen for SNAP-25, but not for SYT1. The investigated ECM proteins, brevican and neurocan, showed a decline following PCI. There was a strong correlation between the progressive decline of soluble APPα and brevican levels. CONCLUSION To our knowledge, this is the first time ECM-related proteins have been shown to be affected by cranial radiotherapy in patients with cancer. These findings may help us to get a better understanding of the mechanisms behind side effects following radiotherapy.
Collapse
Affiliation(s)
- E Fernström
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - K Minta
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology at the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - U Andreasson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology at the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Å Sandelius
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology at the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - P Wasling
- Department of Physiology, Institute of Neuroscience and Physiology at the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - A Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology at the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - K Höglund
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology at the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - K Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology at the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - J Nyman
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - H Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology at the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - M Kalm
- Department of Pharmacology, Institute of Neuroscience and Physiology at the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
75
|
Takeda A, Shuto M, Funakoshi K. Chondroitin Sulfate Expression in Perineuronal Nets After Goldfish Spinal Cord Lesion. Front Cell Neurosci 2018; 12:63. [PMID: 29662439 PMCID: PMC5890146 DOI: 10.3389/fncel.2018.00063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 02/22/2018] [Indexed: 12/03/2022] Open
Abstract
Perineuronal nets (PNNs) surrounding neuronal cell bodies regulate neuronal plasticity during development, but their roles in regeneration are unclear. In the PNNs, chondroitin sulfate (CS) is assumed to be involved in inhibiting contact formation. Here, we examined CS expression in PNNs in the ventral horn of a goldfish hemisected spinal cord in which descending axons regenerate beyond the lesion to connect with distal spinal neurons. In intact fish, chondroitin sulfate A (CS-A)–positive PNNs accounted for 5.0% of HuC/D-immunoreactive neurons, and 48% of choline acetyltransferase (ChAT)-immunoreactive neurons. At 2, 4 and 8 weeks after spinal hemisection, CS-A–positive PNNs accounted for 8.4%–9.9% of HuC/D-immunoreactive neurons, and 50%–60% of ChAT-immunoreactive neurons, which was not significantly different from intact fish. Chondroitin sulfate C (CS-C)–positive PNNs accounted for 6.4% of HuC/D-immunoreactive neuron, and 67% of ChAT-immunoreactive neurons in intact fish. At 2, 4 and 8 weeks after spinal hemisection, CS-C–positive PNNs accounted for 7.9%, 5.5% and 4.3%, respectively, of HuC/D-immunoreactive neurons, and 65%, 52% and 42%, respectively, of ChAT-immunoreactive neurons, demonstrating a significant decrease at 4 and 8 weeks after spinal hemisection. Among ventral horn neurons that received descending axons labeled with tetramethylrhodamine dextran amine (RDA) applied at the level of the first spinal nerve, CS-A–positive PNNs accounted for 53% of HuC/D-immunoreactive neurons. At 2 and 4 weeks after spinal hemisection, CS-A–positive PNNs accounted for 57% and 56% of HuC/D-immunoreactive neurons, which was not significantly different from intact fish. CS-C–positive PNNs, accounted for 48% of HuC/D-immunoreactive neurons that received RDA-labeled axons. At 2 and 4 weeks after spinal hemisection, CS-C–positive PNNs significantly decreased to 22% of the HuC/D-immunoreactive neurons, and by 4 weeks after spinal hemisection they had returned to 47%. These findings suggest that CS expression is maintained in the PNNs after spinal cord lesion, and that the descending axons regenerate to preferentially terminate on neurons not covered with CS-C–positive PNNs. Therefore, CS-C in the PNNs possibly inhibits new contact with descending axons, and plasticity in the spinal neurons might be endowed by downregulation of CS-C in the PNNs in the regeneration process after spinal hemisection in goldfish.
Collapse
Affiliation(s)
- Akihito Takeda
- Department of Neuroanatomy, Yokohama City University School of Medicine, Yokohama, Japan
| | - Masashige Shuto
- Yokohama City University School of Medicine, Yokohama, Japan
| | - Kengo Funakoshi
- Department of Neuroanatomy, Yokohama City University School of Medicine, Yokohama, Japan
| |
Collapse
|
76
|
Sakamoto K, Crowley JJ. A comprehensive review of the genetic and biological evidence supports a role for MicroRNA-137 in the etiology of schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2018; 177:242-256. [PMID: 29442441 PMCID: PMC5815396 DOI: 10.1002/ajmg.b.32554] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/05/2017] [Indexed: 01/06/2023]
Abstract
Since it was first associated with schizophrenia (SCZ) in a 2011 genome-wide association study (GWAS), there have been over 100 publications focused on MIR137, the gene encoding microRNA-137. These studies have examined everything from its fundamental role in the development of mice, flies, and fish to the intriguing enrichment of its target gene network in SCZ. Indeed, much of the excitement surrounding MIR137 is due to the distinct possibility that it could regulate a gene network involved in SCZ etiology, a disease which we now recognize is highly polygenic. Here we comprehensively review, to the best of our ability, all published genetic and biological evidence that could support or refute a role for MIR137 in the etiology of SCZ. Through a careful consideration of the literature, we conclude that the data gathered to date continues to strongly support the involvement of MIR137 and its target gene network in neuropsychiatric traits, including SCZ risk. There remain, however, more unanswered than answered questions regarding the mechanisms linking MIR137 genetic variation with behavior. These questions need answers before we can determine whether there are opportunities for diagnostic or therapeutic interventions based on MIR137. We conclude with a number of suggestions for future research on MIR137 that could help to provide answers and hope for a greater understanding of this devastating disorder.
Collapse
Affiliation(s)
- Kensuke Sakamoto
- Department of Genetics, University of North Carolina at Chapel Hill, NC, USA
| | - James J. Crowley
- Department of Genetics, University of North Carolina at Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, NC, USA
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
77
|
Akram MA, Nanda S, Maraver P, Armañanzas R, Ascoli GA. An open repository for single-cell reconstructions of the brain forest. Sci Data 2018; 5:180006. [PMID: 29485626 PMCID: PMC5827689 DOI: 10.1038/sdata.2018.6] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/08/2018] [Indexed: 02/06/2023] Open
Abstract
NeuroMorpho.Org was launched in 2006 to provide unhindered access to any and all digital tracings of neuronal morphology that researchers were willing to share freely upon request. Today this database is the largest public inventory of cellular reconstructions in neuroscience with a content of over 80,000 neurons and glia from a representative diversity of animal species, anatomical regions, and experimental methods. Datasets continuously contributed by hundreds of laboratories worldwide are centrally curated, converted into a common non-proprietary format, morphometrically quantified, and annotated with comprehensive metadata. Users download digital reconstructions for a variety of scientific applications including visualization, classification, analysis, and simulations. With more than 1,000 peer-reviewed publications describing data stored in or utilizing data retrieved from NeuroMorpho.Org, this ever-growing repository can already be considered a mature resource for neuroscience.
Collapse
Affiliation(s)
- Masood A. Akram
- Center for Neural Informatics, Structures & Plasticity, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA
| | - Sumit Nanda
- Center for Neural Informatics, Structures & Plasticity, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA
| | - Patricia Maraver
- Center for Neural Informatics, Structures & Plasticity, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA
| | - Rubén Armañanzas
- Center for Neural Informatics, Structures & Plasticity, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA
| | - Giorgio A. Ascoli
- Center for Neural Informatics, Structures & Plasticity, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
78
|
Eskici NF, Erdem-Ozdamar S, Dayangac-Erden D. The altered expression of perineuronal net elements during neural differentiation. Cell Mol Biol Lett 2018; 23:5. [PMID: 29456557 PMCID: PMC5812217 DOI: 10.1186/s11658-018-0073-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 02/08/2018] [Indexed: 12/02/2022] Open
Abstract
Background Perineuronal nets (PNNs), which are localized around neurons during development, are specialized forms of neural extracellular matrix with neuroprotective and plasticity-regulating roles. Hyaluronan and proteoglycan link protein 1 (HAPLN1), tenascin-R (TNR) and aggrecan (ACAN) are key elements of PNNs. In diseases characterized by neuritogenesis defects, the expression of these proteins is known to be downregulated, suggesting that PNNs may have a role in neural differentiation. Methods In this study, the mRNA and protein levels of HAPLN1, TNR and ACAN were determined and compared at specific time points of neural differentiation. We used PC12 cells as the in vitro model because they reflect this developmental process. Results On day 7, the HAPLN1 mRNA level showed a 2.9-fold increase compared to the non-differentiated state. However, the cellular HAPLN1 protein level showed a decrease, indicating that the protein may have roles in neural differentiation, and may be secreted during the early period of differentiation. By contrast, TNR mRNA and protein levels remained unchanged, and the amount of cellular ACAN protein showed a 3.7-fold increase at day 7. These results suggest that ACAN may be secreted after day 7, possibly due to its large amount of post-translational modifications. Conclusions Our results provide preliminary data on the expression of PNN elements during neural differentiation. Further investigations will be performed on the role of these elements in neurological disease models.
Collapse
Affiliation(s)
- Nazli F Eskici
- 1Faculty of Medicine Department of Medical Biology, Hacettepe University, Ankara, Turkey
| | - Sevim Erdem-Ozdamar
- 2Faculty of Medicine Department of Neurology, Hacettepe University, Ankara, Turkey
| | - Didem Dayangac-Erden
- 1Faculty of Medicine Department of Medical Biology, Hacettepe University, Ankara, Turkey
| |
Collapse
|
79
|
Agnati LF, Marcoli M, Maura G, Woods A, Guidolin D. The brain as a "hyper-network": the key role of neural networks as main producers of the integrated brain actions especially via the "broadcasted" neuroconnectomics. J Neural Transm (Vienna) 2018; 125:883-897. [PMID: 29427068 DOI: 10.1007/s00702-018-1855-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/04/2018] [Indexed: 02/07/2023]
Abstract
Investigations of brain complex integrative actions should consider beside neural networks, glial, extracellular molecular, and fluid channels networks. The present paper proposes that all these networks are assembled into the brain hyper-network that has as fundamental components, the tetra-partite synapses, formed by neural, glial, and extracellular molecular networks. Furthermore, peri-synaptic astrocytic processes by modulating the perviousness of extracellular fluid channels control the signals impinging on the tetra-partite synapses. It has also been surmised that global signalling via astrocytes networks and highly pervasive signals, such as electromagnetic fields (EMFs), allow the appropriate integration of the various networks especially at crucial nodes level, the tetra-partite synapses. As a matter of fact, it has been shown that astrocytes can form gap-junction-coupled syncytia allowing intercellular communication characterised by a rapid and possibly long-distance transfer of signals. As far as the EMFs are concerned, the concept of broadcasted neuroconnectomics (BNC) has been introduced to describe highly pervasive signals involved in resetting the information handling of brain networks at various miniaturisation levels. In other words, BNC creates, thanks to the EMFs, generated especially by neurons, different assemblages among the various networks forming the brain hyper-network. Thus, it is surmised that neuronal networks are the "core components" of the brain hyper-network that has as special "nodes" the multi-facet tetra-partite synapses. Furthermore, it is suggested that investigations on the functional plasticity of multi-partite synapses in response to BNC can be the background for a new understanding and perhaps a new modelling of brain morpho-functional organisation and integrative actions.
Collapse
Affiliation(s)
- Luigi F Agnati
- Department of Diagnostic, Clinical Medicine and Public Health, University of Modena and Reggio Emilia, Modena, Italy. .,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Manuela Marcoli
- Section of Pharmacology and Toxicology, Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148, Genoa, Italy. .,Centre of Excellence for Biomedical Research CEBR, University of Genova, Genoa, Italy.
| | - Guido Maura
- Section of Pharmacology and Toxicology, Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148, Genoa, Italy
| | - Amina Woods
- Structural Biology Unit, National Institutes of Health, National Institute of Drug Abuse-Intramural Research Program, Baltimore, MD, 21224, USA
| | - Diego Guidolin
- Department of Molecular Medicine, University of Padova, Padua, Italy
| |
Collapse
|
80
|
Reinhard J, Roll L, Faissner A. Tenascins in Retinal and Optic Nerve Neurodegeneration. Front Integr Neurosci 2017; 11:30. [PMID: 29109681 PMCID: PMC5660115 DOI: 10.3389/fnint.2017.00030] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/03/2017] [Indexed: 02/04/2023] Open
Abstract
Tenascins represent key constituents of the extracellular matrix (ECM) with major impact on central nervous system (CNS) development. In this regard, several studies indicate that they play a crucial role in axonal growth and guidance, synaptogenesis and boundary formation. These functions are not only important during development, but also for regeneration under several pathological conditions. Additionally, tenascin-C (Tnc) represents a key modulator of the immune system and inflammatory processes. In the present review article, we focus on the function of Tnc and tenascin-R (Tnr) in the diseased CNS, specifically after retinal and optic nerve damage and degeneration. We summarize the current view on both tenascins in diseases such as glaucoma, retinal ischemia, age-related macular degeneration (AMD) or diabetic retinopathy. In this context, we discuss their expression profile, possible functional relevance, remodeling of the interacting matrisome and tenascin receptors, especially under pathological conditions.
Collapse
Affiliation(s)
- Jacqueline Reinhard
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Lars Roll
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
81
|
The antipsychotic drugs olanzapine and haloperidol modify network connectivity and spontaneous activity of neural networks in vitro. Sci Rep 2017; 7:11609. [PMID: 28912551 PMCID: PMC5599625 DOI: 10.1038/s41598-017-11944-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/29/2017] [Indexed: 01/23/2023] Open
Abstract
Impaired neural synchronization is a hallmark of psychotic conditions such as schizophrenia. It has been proposed that schizophrenia-related cognitive deficits are caused by an unbalance of reciprocal inhibitory and stimulatory signaling. This supposedly leads to decreased power of induced gamma oscillations during the performance of cognitive tasks. In light of this hypothesis an efficient antipsychotic treatment should modify the connectivity and synchronization of local neural circuits. To address this issue, we investigated a model of hippocampal neuronal networks in vitro. Inhibitory and excitatory innervation of GABAergic and glutamatergic neurons was quantified using immunocytochemical markers and an automated routine to estimate network connectivity. The first generation (FGA) and second generation (SGA) antipsychotic drugs haloperidol and olanzapine, respectively, differentially modified the density of synaptic inputs. Based on the observed synapse density modifications, we developed a computational model that reliably predicted distinct changes in network activity patterns. The results of computational modeling were confirmed by spontaneous network activity measurements using the multiple electrode array (MEA) technique. When the cultures were treated with olanzapine, overall activity and synchronization were increased, whereas haloperidol had the opposite effect. We conclude that FGAs and SGAs differentially affect the balance between inhibition and excitation in hippocampal networks.
Collapse
|
82
|
Wu YT, Adnan A. Effect of Shock-Induced Cavitation Bubble Collapse on the damage in the Simulated Perineuronal Net of the Brain. Sci Rep 2017; 7:5323. [PMID: 28706307 PMCID: PMC5509702 DOI: 10.1038/s41598-017-05790-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/23/2017] [Indexed: 01/13/2023] Open
Abstract
The purpose of this study is to conduct modeling and simulation to understand the effect of shock-induced mechanical loading, in the form of cavitation bubble collapse, on damage to the brain's perineuronal nets (PNNs). It is known that high-energy implosion due to cavitation collapse is responsible for corrosion or surface damage in many mechanical devices. In this case, cavitation refers to the bubble created by pressure drop. The presence of a similar damage mechanism in biophysical systems has long being suspected but not well-explored. In this paper, we use reactive molecular dynamics (MD) to simulate the scenario of a shock wave induced cavitation collapse within the perineuronal net (PNN), which is the near-neuron domain of a brain's extracellular matrix (ECM). Our model is focused on the damage in hyaluronan (HA), which is the main structural component of PNN. We have investigated the roles of cavitation bubble location, shockwave intensity and the size of a cavitation bubble on the structural evolution of PNN. Simulation results show that the localized supersonic water hammer created by an asymmetrical bubble collapse may break the hyaluronan. As such, the current study advances current knowledge and understanding of the connection between PNN damage and neurodegenerative disorders.
Collapse
Affiliation(s)
- Yuan-Ting Wu
- Mechanical and Aerospace Engineering, the University of Texas at Arlington, Arlington, 76010, USA
| | - Ashfaq Adnan
- Mechanical and Aerospace Engineering, the University of Texas at Arlington, Arlington, 76010, USA.
| |
Collapse
|
83
|
Faissner A, Roll L, Theocharidis U. Tenascin-C in the matrisome of neural stem and progenitor cells. Mol Cell Neurosci 2017; 81:22-31. [DOI: 10.1016/j.mcn.2016.11.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/03/2016] [Accepted: 11/07/2016] [Indexed: 01/16/2023] Open
|
84
|
Jansen S, Gottschling C, Faissner A, Manahan-Vaughan D. Intrinsic cellular and molecular properties of in vivo hippocampal synaptic plasticity are altered in the absence of key synaptic matrix molecules. Hippocampus 2017; 27:920-933. [DOI: 10.1002/hipo.22742] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 04/19/2017] [Accepted: 05/12/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Stephan Jansen
- Department of Neurophysiology, Medical Faculty; Ruhr University Bochum; Bochum Germany
| | - Christine Gottschling
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology; Ruhr University Bochum; Bochum Germany
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology; Ruhr University Bochum; Bochum Germany
| | | |
Collapse
|
85
|
Zhao D, Mokhtari R, Pedrosa E, Birnbaum R, Zheng D, Lachman HM. Transcriptome analysis of microglia in a mouse model of Rett syndrome: differential expression of genes associated with microglia/macrophage activation and cellular stress. Mol Autism 2017; 8:17. [PMID: 28367307 PMCID: PMC5372344 DOI: 10.1186/s13229-017-0134-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/17/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Rett syndrome (RTT) is a severe, neurodevelopmental disorder primarily affecting girls, characterized by progressive loss of cognitive, social, and motor skills after a relatively brief period of typical development. It is usually due to de novo loss of function mutations in the X-linked gene, MeCP2, which codes for the gene expression and chromatin regulator, methyl-CpG binding protein 2. Although the behavioral phenotype appears to be primarily due to neuronal Mecp2 deficiency in mice, other cell types, including astrocytes and oligodendrocytes, also appear to contribute to some aspects of the RTT phenotype. In addition, microglia may also play a role. However, the effect of Mecp2 deficiency in microglia on RTT pathogenesis is controversial. METHODS In the current study, we applied whole transcriptome analysis using RNA-seq to gain insight into molecular pathways in microglia that might be dysregulated during the transition, in female mice heterozygous for an Mecp2-null allele (Mecp2+/-; Het), from the pre-phenotypic (5 weeks) to the phenotypic phases (24 weeks). RESULTS We found a significant overlap in differentially expressed genes (DEGs) with genes involved in regulating the extracellular matrix, and those that are activated or inhibited when macrophages and microglia are stimulated towards the M1 and M2 activation states. However, the M1- and M2-associated genes were different in the 5- and 24-week samples. In addition, a substantial decrease in the expression of nine members of the heat shock protein (HSP) family was found in the 5-week samples, but not at 24 weeks. CONCLUSIONS These findings suggest that microglia from pre-phenotypic and phenotypic female mice are activated in a manner different from controls and that pre-phenotypic female mice may have alterations in their capacity to response to heat stress and other stressors that function through the HSP pathway.
Collapse
Affiliation(s)
- Dejian Zhao
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY USA
| | - Ryan Mokhtari
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY USA
| | - Erika Pedrosa
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY USA
| | - Rayna Birnbaum
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY USA.,Department of Neurology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY USA.,Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY USA
| | - Herbert M Lachman
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY USA.,Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY USA.,Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY USA.,Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY USA
| |
Collapse
|
86
|
Zheng JY, Sun J, Ji CM, Shen L, Chen ZJ, Xie P, Sun YZ, Yu RT. Selective deletion of apolipoprotein E in astrocytes ameliorates the spatial learning and memory deficits in Alzheimer's disease (APP/PS1) mice by inhibiting TGF-β/Smad2/STAT3 signaling. Neurobiol Aging 2017; 54:112-132. [PMID: 28366226 DOI: 10.1016/j.neurobiolaging.2017.03.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 01/28/2017] [Accepted: 03/02/2017] [Indexed: 01/05/2023]
Abstract
Astrocytes and apolipoprotein E (apoE) play critical roles in cognitive function, not only under physiological conditions but also in some pathological situations, particularly in the pathological progression of Alzheimer's disease (AD). The regulatory mechanisms underlying the effect of apoE, derived from astrocytes, on cognitive deficits during AD pathology development are unclear. In this study, we generated amyloid precursor protein/apoE knockout (APP/apoEKO) and APP/glial fibrillary acidic protein (GFAP)-apoEKO mice (the AD mice model used in this study was based on the APP-familial Alzheimer disease overexpression) to investigate the role of apoE, derived from astrocytes, in AD pathology and cognitive function. To explore the mechanism, we investigated the amyloidogenic process related transforming growth factor β/mothers against decapentaplegic homolog 2/signal transducer and activator of transcription 3 (TGF-β/Smad2/STAT3) signaling pathway and further confirmed by administering TGF-β-overexpression adeno-associated virus (specific to astrocytes) to APP/GFAP-apoEKO mice and TGF-β-inhibition adeno-associated virus (specific to astrocytes) to APP/WT mice. Whole body deletion of apoE significantly ameliorated the spatial learning and memory impairment, reduced amyloid β-protein production and inhibited astrogliosis in APP/apoEKO mice, as well as specific deletion apoE in astrocytes in APP/GFAP-apoEKO mice. Moreover, amyloid β-protein accumulation was increased due to promotion of amyloidogenesis of APP, and astrogliosis was upregulated by activation of TGF-β/Smad2/STAT3 signaling. Furthermore, the overexpression of TGF-β in astrocytes in APP/GFAP-apoEKO mice abrogated the effects of apoE knockout. In contrast, repression of TGF-β in astrocytes of APP/WT mice exerted a therapeutic effect similar to apoE knockout. These data suggested that apoE derived from astrocytes contributes to the risk of AD through TGF-β/Smad2/STAT3 signaling activation. These findings enhance our understanding of the role of apoE, derived from astrocytes, in AD and suggest it to be a potential biomarker and therapeutic target for AD.
Collapse
Affiliation(s)
- Jin-Yu Zheng
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, P. R. China; Department of Neurosurgery, Xuzhou Medical University, Xuzhou, Jiangsu, P. R. China
| | - Jian Sun
- Department of Anesthesiology, Huai'an Maternal and Child Health Hospital, Huai'an, Jiangsu, P. R. China
| | - Chun-Mei Ji
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, P. R. China
| | - Lin Shen
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, P. R. China
| | - Zhong-Jun Chen
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, P. R. China
| | - Peng Xie
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, P. R. China
| | - Yuan-Zhao Sun
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, P. R. China
| | - Ru-Tong Yu
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, P. R. China; Laboratory of Neurosurgery, Xuzhou Medical University, Xuzhou, Jiangsu, P. R. China.
| |
Collapse
|
87
|
Ischemic injury leads to extracellular matrix alterations in retina and optic nerve. Sci Rep 2017; 7:43470. [PMID: 28262779 PMCID: PMC5338032 DOI: 10.1038/srep43470] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/25/2017] [Indexed: 01/10/2023] Open
Abstract
Retinal ischemia occurs in a variety of eye diseases. Restrained blood flow induces retinal damage, which leads to progressive optic nerve degeneration and vision loss. Previous studies indicate that extracellular matrix (ECM) constituents play an important role in complex tissues, such as retina and optic nerve. They have great impact on de- and regeneration processes and represent major candidates of central nervous system glial scar formation. Nevertheless, the importance of the ECM during ischemic retina and optic nerve neurodegeneration is not fully understood yet. In this study, we analyzed remodeling of the extracellular glycoproteins fibronectin, laminin, tenascin-C and tenascin-R and the chondroitin sulfate proteoglycans (CSPGs) aggrecan, brevican and phosphacan/RPTPβ/ζ in retinae and optic nerves of an ischemia/reperfusion rat model via quantitative real-time PCR, immunohistochemistry and Western blot. A variety of ECM constituents were dysregulated in the retina and optic nerve after ischemia. Regarding fibronectin, significantly elevated mRNA and protein levels were observed in the retina following ischemia, while laminin and tenascin-C showed enhanced immunoreactivity in the optic nerve after ischemia. Interestingly, CSPGs displayed significantly increased expression levels in the optic nerve. Our study demonstrates a dynamic expression of ECM molecules following retinal ischemia, which strengthens their regulatory role during neurodegeneration.
Collapse
|
88
|
Mechanisms of NMDA Receptor- and Voltage-Gated L-Type Calcium Channel-Dependent Hippocampal LTP Critically Rely on Proteolysis That Is Mediated by Distinct Metalloproteinases. J Neurosci 2017; 37:1240-1256. [PMID: 28069922 DOI: 10.1523/jneurosci.2170-16.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/21/2016] [Accepted: 11/12/2016] [Indexed: 11/21/2022] Open
Abstract
Long-term potentiation (LTP) is widely perceived as a memory substrate and in the hippocampal CA3-CA1 pathway, distinct forms of LTP depend on NMDA receptors (nmdaLTP) or L-type voltage-gated calcium channels (vdccLTP). LTP is also known to be effectively regulated by extracellular proteolysis that is mediated by various enzymes. Herein, we investigated whether in mice hippocampal slices these distinct forms of LTP are specifically regulated by different metalloproteinases (MMPs). We found that MMP-3 inhibition or knock-out impaired late-phase LTP in the CA3-CA1 pathway. Interestingly, late-phase LTP was also decreased by MMP-9 blockade. When both MMP-3 and MMP-9 were inhibited, both early- and late-phase LTP was impaired. Using immunoblotting, in situ zymography, and immunofluorescence, we found that LTP induction was associated with an increase in MMP-3 expression and activity in CA1 stratum radiatum. MMP-3 inhibition and knock-out prevented the induction of vdccLTP, with no effect on nmdaLTP. L-type channel-dependent LTP is known to be impaired by hyaluronic acid digestion. We found that slice treatment with hyaluronidase occluded the effect of MMP-3 blockade on LTP, further confirming a critical role for MMP-3 in this form of LTP. In contrast to the CA3-CA1 pathway, LTP in the mossy fiber-CA3 projection did not depend on MMP-3, indicating the pathway specificity of the actions of MMPs. Overall, our study indicates that the activation of perisynaptic MMP-3 supports L-type channel-dependent LTP in the CA1 region, whereas nmdaLTP depends solely on MMP-9. SIGNIFICANCE STATEMENT Various types of long-term potentiation (LTP) are correlated with distinct phases of memory formation and retrieval, but the underlying molecular signaling pathways remain poorly understood. Extracellular proteases have emerged as key players in neuroplasticity phenomena. The present study found that L-type calcium channel-dependent LTP in the CA3-CA1 hippocampal projection is critically regulated by the activity of matrix metalloprotease 3 (MMP-3), in contrast to NMDAR-dependent LTP regulated by MMP-9. Moreover, the induction of LTP was associated with an increase in MMP-3 expression and activity. Finally, we found that the digestion of hyaluronan, a principal extracellular matrix component, disrupted the MMP-3-dependent component of LTP. These results indicate that distinct MMPs might act as molecular switches for specific types of LTP.
Collapse
|
89
|
Donakonda S, Sinha S, Dighe SN, Rao MRS. System analysis identifies distinct and common functional networks governed by transcription factor ASCL1, in glioma and small cell lung cancer. MOLECULAR BIOSYSTEMS 2017; 13:1481-1494. [DOI: 10.1039/c6mb00851h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Systematic functional network analysis of ASCL1 revealed that it regulates mitosis and cell proliferation pathways and has distinct functions in glioma and SCLC.
Collapse
Affiliation(s)
- Sainitin Donakonda
- Chromatin Biology Laboratory
- Molecular Biology and Genetics Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bangalore-560064
- India
| | - Swati Sinha
- Chromatin Biology Laboratory
- Molecular Biology and Genetics Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bangalore-560064
- India
| | - Shrinivas Nivrutti Dighe
- Chromatin Biology Laboratory
- Molecular Biology and Genetics Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bangalore-560064
- India
| | - Manchanahalli R Satyanarayana Rao
- Chromatin Biology Laboratory
- Molecular Biology and Genetics Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bangalore-560064
- India
| |
Collapse
|
90
|
Gottschling C, Dzyubenko E, Geissler M, Faissner A. The Indirect Neuron-astrocyte Coculture Assay: An In Vitro Set-up for the Detailed Investigation of Neuron-glia Interactions. J Vis Exp 2016. [PMID: 27911416 DOI: 10.3791/54757] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Proper neuronal development and function is the prerequisite of the developing and the adult brain. However, the mechanisms underlying the highly controlled formation and maintenance of complex neuronal networks are not completely understood thus far. The open questions concerning neurons in health and disease are diverse and reaching from understanding the basic development to investigating human related pathologies, e.g., Alzheimer's disease and Schizophrenia. The most detailed analysis of neurons can be performed in vitro. However, neurons are demanding cells and need the additional support of astrocytes for their long-term survival. This cellular heterogeneity is in conflict with the aim to dissect the analysis of neurons and astrocytes. We present here a cell-culture assay that allows for the long-term cocultivation of pure primary neurons and astrocytes, which share the same chemically defined medium, while being physically separated. In this setup, the cultures survive for up to four weeks and the assay is suitable for a diversity of investigations concerning neuron-glia interaction.
Collapse
Affiliation(s)
- Christine Gottschling
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University
| | - Egor Dzyubenko
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University
| | - Maren Geissler
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University;
| |
Collapse
|
91
|
Gottschling C, Geissler M, Springer G, Wolf R, Juckel G, Faissner A. First and second generation antipsychotics differentially affect structural and functional properties of rat hippocampal neuron synapses. Neuroscience 2016; 337:117-130. [DOI: 10.1016/j.neuroscience.2016.08.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/25/2016] [Accepted: 08/31/2016] [Indexed: 01/23/2023]
|
92
|
Adermark L, Bowers MS. Disentangling the Role of Astrocytes in Alcohol Use Disorder. Alcohol Clin Exp Res 2016; 40:1802-16. [PMID: 27476876 PMCID: PMC5407469 DOI: 10.1111/acer.13168] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 07/02/2016] [Indexed: 01/29/2023]
Abstract
Several laboratories recently identified that astrocytes are critical regulators of addiction machinery. It is now known that astrocyte pathology is a common feature of ethanol (EtOH) exposure in both humans and animal models, as even brief EtOH exposure is sufficient to elicit long-lasting perturbations in astrocyte gene expression, activity, and proliferation. Astrocytes were also recently shown to modulate the motivational properties of EtOH and other strongly reinforcing stimuli. Given the role of astrocytes in regulating glutamate homeostasis, a crucial component of alcohol use disorder (AUD), astrocytes might be an important target for the development of next-generation alcoholism treatments. This review will outline some of the more prominent features displayed by astrocytes, how these properties are influenced by acute and long-term EtOH exposure, and future directions that may help to disentangle astrocytic from neuronal functions in the etiology of AUD.
Collapse
Affiliation(s)
- Louise Adermark
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Box 410, SE-405 30 Gothenburg, Sweden
| | - M. Scott Bowers
- Department of Psychiatry, Virginia Commonwealth University, PO Box 980126, Richmond, VA 23298, USA
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, PO Box 980126, Richmond, VA 23298, USA
- Faulk Center for Molecular Therapeutics, Northwestern University; Aptinyx,, Evanston, Il 60201, USA
| |
Collapse
|
93
|
Krencik R, van Asperen JV, Ullian EM. Human astrocytes are distinct contributors to the complexity of synaptic function. Brain Res Bull 2016; 129:66-73. [PMID: 27570101 DOI: 10.1016/j.brainresbull.2016.08.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/07/2016] [Accepted: 08/22/2016] [Indexed: 01/03/2023]
Abstract
Cellular components of synaptic circuits have been adjusted for increased human brain size, neural cell density, energy consumption and developmental duration. How does the human brain make these accommodations? There is evidence that astrocytes are one of the most divergent neural cell types in primate brain evolution and it is now becoming clear that they have critical roles in controlling synaptic development, function and plasticity. Yet, we still do not know how the precise developmental appearance of these cells and subsequent astrocyte-derived signals modulate diverse neuronal circuit subtypes. Here, we discuss what is currently known about the influence of glial factors on synaptic maturation and focus on unique features of human astrocytes including their potential roles in regenerative and translational medicine. Human astrocyte distinctiveness may be a major contributor to high level neuronal processing of the human brain and act in novel ways during various neuropathies ranging from autism spectrum disorders, viral infection, injury and neurodegenerative conditions.
Collapse
Affiliation(s)
- Robert Krencik
- Departments of Ophthalmology and Physiology, Neuroscience Program, University of California San Francisco, United States.
| | - Jessy V van Asperen
- Departments of Ophthalmology and Physiology, Neuroscience Program, University of California San Francisco, United States
| | - Erik M Ullian
- Departments of Ophthalmology and Physiology, Neuroscience Program, University of California San Francisco, United States
| |
Collapse
|