51
|
Korsah MA, Karunanithi PB, Jeevanandam J, Pan S, Danquah MK. Targeted drug delivery using aptamers as molecular probes. NOVEL FORMULATIONS AND FUTURE TRENDS 2024:547-564. [DOI: 10.1016/b978-0-323-91816-9.00011-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
52
|
Boroumand S, Majidi RF, Gheibi A, Majidi RF. Selenium nanoparticles incorporated in nanofibers media eliminate H1N1 activity: a novel approach for virucidal antiviral and antibacterial respiratory mask. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2360-2376. [PMID: 38063966 DOI: 10.1007/s11356-023-31202-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/20/2023] [Indexed: 01/18/2024]
Abstract
The consecutive viral infectious outbreaks impose severe complications on public health besides the economic burden which led to great interest in antiviral personal protective equipment (PPE). Nanofiber-based respiratory mask has been introduced as a significant barrier to eliminate the airborne transmission from aerosols toward reduction the viral infection spreading. Herein, selenium nanoparticles incorporated in polyamide 6 nanofibers coated on spunbond nonwoven were synthesized via electrospinning technique (PA6@SeNPs), with an average diameter of 180 ± 2 nm. The nanofiber-coated media were tested for 0.3 μm particulate filtration efficiency based on Standard NIOSH (42 CFR 84). PA6@SeNPs had a pressure drop of 45 ± 2 Pa and particulate filtration efficiency of more than 97.33 which is comparable to the N95 respiratory mask. The bacterial killing efficiency of these nanofibers was 91.25% and 16.67% against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), respectively. Furthermore, the virucidal antiviral test for H1N1 infected Madin-Darby Canine Kidney cells (MDCK) exhibited TCID50 of 108.13, 105.88, and 105.5 for 2, 10, and 120 min of exposure times in comparison with 108.5, 107.5, and 106.5 in PA6 nanofibers as control sample. MTT assay indicated excellent biocompatibility of electrospun PA6@SeNP nanofibers on L292 cells. These results propose the PA6@SeNP nanofibers have a high potential to be used as an efficient layer in respiratory masks for protection against respiratory pathogens.
Collapse
Affiliation(s)
| | | | - Ali Gheibi
- Fanavaran Nano-Meghyas (Fnm Co. Ltd.), Tehran, Iran
| | - Reza Faridi Majidi
- Fanavaran Nano-Meghyas (Fnm Co. Ltd.), Tehran, Iran.
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
53
|
Rani S, Dey P, Pruthi K, Singh S, Mahajan S, Alajangi HK, Kapoor S, Pandey A, Gupta D, Barnwal RP, Singh G. Nanotechnology-Based Approaches for Cosmeceutical and Skin Care: A Systematic Review. Crit Rev Ther Drug Carrier Syst 2024; 41:65-110. [PMID: 38608133 DOI: 10.1615/critrevtherdrugcarriersyst.v41.i5.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Cosmeceuticals have gained great importance and are among the top-selling products used for skin care. Because of changing lifestyles, climate, and increasing pollution, cosmeceuticals are utilized by every individual, thereby making cosmeceuticals a fruitful field for research and the economy. Cosmeceuticals provide incredibly pleasing aesthetic results by fusing the qualities of both cosmetics and medicinal substances. Cosmeceuticals are primarily utilized to improve the appearance of skin by making it smoother, moisturized, and wrinkle-free, in addition to treating dermatological conditions, including photoaging, burns, dandruff, acne, eczema, and erythema. Nanocosmeceuticals are cosmetic products that combine therapeutic effects utilizing nanotechnology, allowing for more precise and effective target-specific delivery of active ingredients, and improving bioavailability.
Collapse
Affiliation(s)
- Shital Rani
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Piyush Dey
- Department of Biophysics, Panjab University, Chandigarh, India; University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, India
| | - Kritika Pruthi
- University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, India
| | - Sahajdeep Singh
- University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, India
| | - Shivansh Mahajan
- University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, India
| | - Hema K Alajangi
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India; Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Sumeet Kapoor
- Centre for Biomedical Engineering, Indian Institute of Technology, New Delhi, India
| | - Ankur Pandey
- Department of Chemistry, Panjab University, Chandigarh India
| | - Dikshi Gupta
- Centre for Biomedical Engineering, Indian Institute of Technology, New Delhi, India
| | | | | |
Collapse
|
54
|
Basharat Z, Afzaal M, Saeed F, Islam F, Hussain M, Ikram A, Pervaiz MU, Awuchi CG. Nutritional and functional profile of carob bean ( Ceratonia siliqua): a comprehensive review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2022.2164590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Zunaira Basharat
- Department of Food Science, University of the Punjab Lahore, Pakistan
| | - Muhammad Afzaal
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Farhan Saeed
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Fakhar Islam
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Ali Ikram
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | | | - Chinaza Godswill Awuchi
- School of Natural and Applied Sciences, Kampala International University, Kansanga, Kampala, Uganda
| |
Collapse
|
55
|
Pineda-Vásquez T, Rendón-Castrillón L, Ramírez-Carmona M, Ocampo-López C. From E-Waste to High-Value Materials: Sustainable Synthesis of Metal, Metal Oxide, and MOF Nanoparticles from Waste Printed Circuit Boards. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:69. [PMID: 38202524 PMCID: PMC10780742 DOI: 10.3390/nano14010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
The exponential growth of electronic waste (e-waste) has raised significant environmental concerns, with projections indicating a surge to 74.7 million metric tons of e-waste generated by 2030. Waste printed circuit boards (WPCBs), constituting approximately 10% of all e-waste, are particularly intriguing due to their high content of valuable metals and rare earth elements. However, the presence of hazardous elements necessitates sustainable recycling strategies. This review explores innovative approaches to sustainable metal nanoparticle synthesis from WPCBs. Efficient metal recovery from WPCBs begins with disassembly and the utilization of advanced equipment for optimal separation. Various pretreatment techniques, including selective leaching and magnetic separation, enhance metal recovery efficiency. Green recovery systems such as biohydrometallurgy offer eco-friendly alternatives, with high selectivity. Converting metal ions into nanoparticles involves concentration and transformation methods like chemical precipitation, electrowinning, and dialysis. These methods are vital for transforming recovered metal ions into valuable nanoparticles, promoting sustainable resource utilization and eco-friendly e-waste recycling. Sustainable green synthesis methods utilizing natural sources, including microorganisms and plants, are discussed, with a focus on their applications in producing well-defined nanoparticles. Nanoparticles derived from WPCBs find valuable applications in drug delivery, microelectronics, antimicrobial materials, environmental remediation, diagnostics, catalysis, agriculture, etc. They contribute to eco-friendly wastewater treatment, photocatalysis, protective coatings, and biomedicine. The important implications of this review lie in its identification of sustainable metal nanoparticle synthesis from WPCBs as a pivotal solution to e-waste environmental concerns, paving the way for eco-friendly recycling practices and the supply of valuable materials for diverse industrial applications.
Collapse
Affiliation(s)
- Tatiana Pineda-Vásquez
- Centro de Estudios y de Investigación en Biotecnología (CIBIOT), Universidad Pontificia Bolivariana, Circular 1ª No 70-01, Medellín 050031, Colombia;
| | - Leidy Rendón-Castrillón
- Centro de Estudios y de Investigación en Biotecnología (CIBIOT), Chemical Engineering Program, Chemical Engineering Faculty, Universidad Pontificia Bolivariana, Circular 1ª No 70-01, Medellín 050031, Colombia; (L.R.-C.); (M.R.-C.)
| | - Margarita Ramírez-Carmona
- Centro de Estudios y de Investigación en Biotecnología (CIBIOT), Chemical Engineering Program, Chemical Engineering Faculty, Universidad Pontificia Bolivariana, Circular 1ª No 70-01, Medellín 050031, Colombia; (L.R.-C.); (M.R.-C.)
| | - Carlos Ocampo-López
- Centro de Estudios y de Investigación en Biotecnología (CIBIOT), Chemical Engineering Program, Chemical Engineering Faculty, Universidad Pontificia Bolivariana, Circular 1ª No 70-01, Medellín 050031, Colombia; (L.R.-C.); (M.R.-C.)
| |
Collapse
|
56
|
Kumari A, Chokheli VA, Lysenko VS, Mandzhieva SS, Minkina TM, Mazarji M, Rajput VD, Shuvaeva VA, Sushkova SS, Barakhov A. Genotoxic and morpho-physiological responses of ZnO macro- and nano-forms in plants. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9345-9357. [PMID: 36383335 DOI: 10.1007/s10653-022-01428-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
In the current study, two plants, viz., Pisum sativum L. and Hordeum vulgare L., were exposed to nano- and macro-dispersed ZnO at 1, 10, and 30 times of maximal permissible concentration (MPC). The main objective of the study is to depict and compare the genotoxicity in terms of chromosomal anomalies, cytotoxicity (i.e., mitotic index), and phytotoxicity (viz., germination, morphometry, maximal quantum yield, and chlorophyll fluorescence imaging) of macro- and nano-forms of ZnO along with their accumulation and translocation. In the case of genotoxic and cytotoxic responses, the maximal effect was observed at 30 MPC, regardless of the macro- or nano-forms of ZnO. The phytotoxic observations revealed that the treatment with macro- and nano-forms of ZnO significantly affected the germination rate, germination energy, and length of roots and shoots of H. vulgare in a dose-dependent manner. The factor toxicity index of treated soil demonstrated that toxicity soared as concentrations increased and that at 30 MPC, toxicity was average and high in macro- and nano-dispersed ZnO, respectively. Furthermore, the photosynthetic parameters were observed to be negatively affected in both treatments, but the maximal effect was observed in the case of nano-dispersed form. It was noted that the mobility of nano-dispersed ZnO in the soil was higher than macro-dispersed. The increased mobility of nano-dispersed ZnO might have boosted their accumulation and translocation that subsequently led to the oxidative stress due to the accelerated production of reactive oxygen species, thus strengthen toxicity implications in plants.
Collapse
Affiliation(s)
- Arpna Kumari
- Southern Federal University, Rostov-On-Don, Russia, 344006.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Siddiqui MA, Wahab R, Saquib Q, Ahmad J, Farshori NN, Al-Sheddi ES, Al-Oqail MM, Al-Massarani SM, Al-Khedhairy AA. Iron oxide nanoparticles induced cytotoxicity, oxidative stress, cell cycle arrest, and DNA damage in human umbilical vein endothelial cells. J Trace Elem Med Biol 2023; 80:127302. [PMID: 37734210 DOI: 10.1016/j.jtemb.2023.127302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/21/2023] [Accepted: 09/06/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND Nanotechnology and material science have developed enormously fast in recent years. Due to their excellent magnetic properties, iron oxide nanoparticles (IONPs) have been broadly applied in the field of bioengineering and biomedical. Thus, it is important to evaluate the safety issues and health effects of these nanomaterials. The present investigation was aimed to evaluate the adverse effects of IONPs on human umbilical vein endothelial cells (HUVECs). METHODS The cytotoxic potential of IONPs was assessed by MTT and neutral red uptake (NRU) assays. The impact of IONPs on oxidative stress markers (glutathione (GSH) and lipid peroxidation (LPO)), reactive oxygen species (ROS) production, and mitochondrial membrane potential (MMP) was also examined. Furthermore, the toxic effect of IONPs was quantified by assessing DNA damage, cell cycle arrest, and apoptosis by quantitative real time PCR. RESULTS We found that IONPs induce a dose-dependent cytotoxicity on HUVECs with IC50 value of 79.13 μg/mL. The results also displayed that IONPs induce oxidative stress, ROS production, and mitochondrial membrane dysfunction. The comet assay results exhibited IONPs induces DNA damage in HUVECs. We found significant cell cycle arrest at SubG1 phase in treated cells and consequent cell death was evidenced by microscopic analysis. Moreover, IONPs display substantial up-regulation of pro-apoptotic genes and down-regulation of anti-apoptotic gene evidenced by real time qPCR. CONCLUSION Overall, our results clearly demonstrated that IONPs have the potential to induce cytotoxicity, DNA damage, cell cycle arrest, and apoptosis in HUVECs mediated through oxidative stress and ROS production. Thus, IONPs are cytotoxic and it should be handled with proper care.
Collapse
Affiliation(s)
- Maqsood A Siddiqui
- Chair for DNA Research, Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Rizwan Wahab
- Chair for DNA Research, Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Quaiser Saquib
- Chair for DNA Research, Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Javed Ahmad
- Chair for DNA Research, Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Nida N Farshori
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Ebtesam S Al-Sheddi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Mai M Al-Oqail
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Shaza M Al-Massarani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Abdulaziz A Al-Khedhairy
- Chair for DNA Research, Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
58
|
Thanyasiri S, Naruphontjirakul P, Padunglappisit C, Mirchandani B, Young AM, Panpisut P. Assessment of physical/mechanical properties and cytotoxicity of dual-cured resin cements containing Sr-bioactive glass nanoparticles and calcium phosphate. Dent Mater J 2023; 42:806-817. [PMID: 37880134 DOI: 10.4012/dmj.2023-127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
The aim was to develop dual-cured resin cements containing Sr-bioactive glass nanoparticles (Sr-BGNPs; 5 or 10 wt%) and monocalcium phosphate monohydrate (MCPM; 3 or 6 wt%). Effects of additives on degree of monomer conversion (DC), biaxial flexural strength/modulus, shear bond strength (SBS), mass/volume change, color stability, ion release, and cytotoxicity were examined. Controls included material without reactive fillers and Panavia SA Plus (PV). Experimental cements showed higher DC than PV regardless of light activation (p<0.05). Mean SBS and color stability were comparable between experimental cements and PV. Cell viability upon the exposure to sample extracts of experimental cements was 80%-92%. High additive concentrations led to lower strength and modulus than PV (p<0.05). The additives increased mass change, reduced color stability, and promoted ion release. The experimental resin cements demonstrated acceptable mechanical/chemical properties and cytotoxicity. The additives reduced the strength but provided ion release, a desirable action to prevent recurrent caries.
Collapse
Affiliation(s)
| | - Parichart Naruphontjirakul
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi
| | | | - Bharat Mirchandani
- Faculty of Dentistry, Datta Meghe Institute of Higher Education & Research
| | - Anne M Young
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, Royal Free Hospital
| | - Piyaphong Panpisut
- Faculty of Dentistry, Thammasat University
- Thammasat University Research Unit in Dental and Bone Substitute Biomaterials, Thammasat University
| |
Collapse
|
59
|
Kakkar V, Saini K, Singh KK. Challenges of current treatment and exploring the future prospects of nanoformulations for treatment of atopic dermatitis. Pharmacol Rep 2023; 75:1066-1095. [PMID: 37668937 PMCID: PMC10539427 DOI: 10.1007/s43440-023-00510-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 09/06/2023]
Abstract
Atopic dermatitis (AD) is a predominant and deteriorating chronic inflammation of the skin, categorized by a burning sensation and eczematous lesions in diverse portions of the body. The treatment of AD is exclusively focused to limit the itching, reduce inflammation, and repair the breached barrier of the skin. Several therapeutic agents for the treatment and management of AD have been reported and are in use in clinics. However, the topical treatment of AD has been an unswerving challenge for the medical fraternity owing to the impaired skin barrier function in this chronic skin condition. To surmount the problems of conventional drug delivery systems, numerous nanotechnology-based formulations are emerging as alternative new modalities for AD. Latter enhances the bioavailability and delivery to the target disease site, improves drug permeation and therapeutic efficacy with reduced systemic and off-target side effects, and thus improves patient health and promotes compliance. This review aims to describe the various pathophysiological events involved in the occurrence of AD, current challenges in treatment, evidence of molecular markers of AD and its management, combinatorial treatment options, and the intervention of nanotechnology-based formulations for AD therapeutics.
Collapse
Affiliation(s)
- Vandita Kakkar
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India.
| | - Komal Saini
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, Lancashire, UK
| | - Kamalinder K Singh
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, Lancashire, UK.
- UCLan Research Centre for Smart Materials, University of Central Lancashire, Preston, PR1 2HE, Lancashire, UK.
- UCLan Research Centre for Translational Biosciences and Behaviour, University of Central Lancashire, Preston, PR1 2HE, Lancashire, UK.
| |
Collapse
|
60
|
Shurmasti DK, Kermani PR, Sarvarian M, Awuchi CG. Egg shelf life can be extended using varied proportions of polyvinyl alcohol/chitosan composite coatings. Food Sci Nutr 2023; 11:5041-5049. [PMID: 37701199 PMCID: PMC10494576 DOI: 10.1002/fsn3.3394] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 09/14/2023] Open
Abstract
Using biopolymers in the form of edible coating as egg eco-friendly packaging is a progressive approach. The blending of biopolymers is one of the procedures for overcoming mechanical weakness and benefiting from their maximum synergistic effect. Aiming to determine the relative ratios of chitosan (CH 4 w/v%) and polyvinyl alcohol (PVA 5 w/v%) in the composition of blended coatings, an experiment was conducted with six treatments (r = 3) including different ratios of CH/PVA (0:0; control, 100:0, 75:25, 50:50, 25:75, and 0:100) wt% in a period of 4 weeks of egg storage at ambient temperature, emphasizing eggshell barrier properties. Based on the eggshell analysis result, SEM images and FTIR spectra demonstrated that the components were firmly integrated into the blended coatings as well as had more intertwined than their pure ones, which was also reflected in the evaluation results of their internal quality parameters. In addition, the results showed that by enhancing the ratio of polyvinyl alcohol from 25 to 75 wt%, the blended coating barrier efficiency was relatively improved (p < .05). Meanwhile, the lowest percentage of weight loss (0.57 ± 0.08%), pH value of albumin (8.30 ± 0.04), the highest values of Haugh unit (61.00 ± 0.07), yolk index (0.37 ± 0.02) were observed in eggs coated with CH/PVA 25:75 wt%. But there was no difference in 50 or 70 wt% PVA significantly. Therefore, the CH/PVA blended coatings containing around 50-75 wt% PVA, as egg biodegradable packaging, can be used to extend the shelf life for 2-3 weeks at ambient temperature.
Collapse
Affiliation(s)
- Dariush Khademi Shurmasti
- Department of Agriculture‐Food Science & Technology, Savadkooh BranchIslamic Azad UniversitySavadkoohIran
| | - Pezhman Riazi Kermani
- Department of Agriculture‐Food Science & Technology, Savadkooh BranchIslamic Azad UniversitySavadkoohIran
| | - Maryam Sarvarian
- Department of Agriculture‐Food Science & Technology, Savadkooh BranchIslamic Azad UniversitySavadkoohIran
| | | |
Collapse
|
61
|
Fraczek W, Kregielewski K, Wierzbicki M, Krzeminski P, Zawadzka K, Szczepaniak J, Grodzik M. A Comprehensive Assessment of the Biocompatibility and Safety of Diamond Nanoparticles on Reconstructed Human Epidermis. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5600. [PMID: 37629892 PMCID: PMC10456456 DOI: 10.3390/ma16165600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Diamond nanoparticles, also known as nanodiamonds (NDs), exhibit remarkable, awe-inspiring properties that make them suitable for various applications in the field of skin care products. However, a comprehensive assessment of their compatibility with human skin, according to the irritation criteria established by the Organization for Economic Cooperation and Development (OECD), has not yet been conducted. The purpose of this study was to evaluate if diamond nanoparticles at a concentration of 25 μg/mL, incubated with reconstituted human epidermis (EpiDermTM) for 18 h, conform to the OECD TG439 standard used to classify chemical irritants. For this purpose, a cell viability test (MTT assay), histological assessment, and analysis of pro-inflammatory cytokine expression were performed. The results indicated that NDs had no toxic effect at the tested concentration. They also did not adversely affect tissue structure and did not lead to a simultaneous increase in protein and mRNA expression of the analyzed cytokines. These results confirm the safety and biocompatibility of NDs for application in skincare products, thereby creating a wide range of possibilities to exert an impact on the advancement of contemporary cosmetology in the future.
Collapse
Affiliation(s)
- Wiktoria Fraczek
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland; (W.F.); (M.W.); (P.K.); (K.Z.)
| | - Kacper Kregielewski
- Faculty of Biology and Biotechnology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland;
| | - Mateusz Wierzbicki
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland; (W.F.); (M.W.); (P.K.); (K.Z.)
| | - Patryk Krzeminski
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland; (W.F.); (M.W.); (P.K.); (K.Z.)
| | - Katarzyna Zawadzka
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland; (W.F.); (M.W.); (P.K.); (K.Z.)
| | - Jaroslaw Szczepaniak
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland;
| | - Marta Grodzik
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland; (W.F.); (M.W.); (P.K.); (K.Z.)
| |
Collapse
|
62
|
Rahmani R, Lyubartsev AP. Biomolecular Adsorprion at ZnS Nanomaterials: A Molecular Dynamics Simulation Study of the Adsorption Preferences, Effects of the Surface Curvature and Coating. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2239. [PMID: 37570556 PMCID: PMC10421200 DOI: 10.3390/nano13152239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/25/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023]
Abstract
The understanding of interactions between nanomaterials and biological molecules is of primary importance for biomedical applications of nanomaterials, as well as for the evaluation of their possible toxic effects. Here, we carried out extensive molecular dynamics simulations of the adsorption properties of about 30 small molecules representing biomolecular fragments at ZnS surfaces in aqueous media. We computed adsorption free energies and potentials of mean force of amino acid side chain analogs, lipids, and sugar fragments to ZnS (110) crystal surface and to a spherical ZnS nanoparticle. Furthermore, we investigated the effect of poly-methylmethacrylate (PMMA) coating on the adsorption preferences of biomolecules to ZnS. We found that only a few anionic molecules: aspartic and glutamic acids side chains, as well as the anionic form of cysteine show significant binding to pristine ZnS surface, while other molecules show weak or no binding. Spherical ZnS nanoparticles show stronger binding of these molecules due to binding at the edges between different surface facets. Coating of ZnS by PMMA changes binding preferences drastically: the molecules that adsorb to a pristine ZnS surface do not adsorb on PMMA-coated surfaces, while some others, particularly hydrophobic or aromatic amino-acids, show high binding affinity due to binding to the coating. We investigate further the hydration properties of the ZnS surface and relate them to the binding preferences of biomolecules.
Collapse
Affiliation(s)
| | - Alexander P. Lyubartsev
- Department of Materials and Environmental Chemistry, Stockholm University, S-10691 Stockholm, Sweden
| |
Collapse
|
63
|
Karal MAS, Sultana S, Billah MM, Moniruzzaman M, Wadud MA, Gosh RC. Effects of polyethylene glycol-grafted phospholipid on the anionic magnetite nanoparticles-induced deformation and poration in giant lipid vesicles. PLoS One 2023; 18:e0289087. [PMID: 37523403 PMCID: PMC10389724 DOI: 10.1371/journal.pone.0289087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/11/2023] [Indexed: 08/02/2023] Open
Abstract
The hydrophilic polymer polyethylene glycol-grafted phospholipid has been used extensively in the study of artificial vesicles, nanomedicine, and antimicrobial peptides/proteins. In this research, the effects of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N- [methoxy (polyethylene glycol)-2000] (abbreviated PEG-DOPE) on the deformation and poration of giant unilamellar vesicles (GUVs)-induced by anionic magnetite nanoparticles (NPs) have been investigated. For this, the size of the NPs used was 18 nm, and their concentration in the physiological solution was 2.00 μg/mL. GUVs were prepared using the natural swelling method comprising 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and PEG-DOPE. The mole% of PEG-DOPE in the membranes were 0, 2, and 5%. The degree of deformation of the GUVs was quantified by the parameter compactness (Com), which is 1.0 for the spherical-shaped GUVs. The value of Com increases with time during the interactions of NPs with GUVs for any concentration of PEG-DOPE, but the rate of increase is significantly influenced by the PEG-DOPE concentration in the membranes. The average compactness increases with the increase of PEG-DOPE%, and after 60 min of NPs interaction, the values of average compactness for 0, 2, and 5% PEG-DOPE were 1.19 ± 0.02, 1.26 ± 0.03 and 1.35 ± 0.05, respectively. The fraction of deformation (Frd) also increased with the increase of PEG-DOPE%, and at 60 min, the values of Frd for 0 and 5% PEG-DOPE were 0.47 ± 0.02 and 0.63 ± 0.02, respectively. The fraction of poration (Frp) increased with the increase of PEG-DOPE, and at 60 min, the values of Frp for 0 and 5% PEG-DOPE were 0.25 ± 0.02 and 0.48 ± 0.02, respectively. Hence, the presence of PEG-grafted phospholipid in the membranes greatly enhances the anionic magnetite NPs-induced deformation and poration of giant vesicles.
Collapse
Affiliation(s)
| | - Sharmin Sultana
- Department of Physics, University of Dhaka, Dhaka, Bangladesh
| | - Md Masum Billah
- Department of Physics, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md Moniruzzaman
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Md Abdul Wadud
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - R C Gosh
- Department of Physics, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
64
|
Tsikopoulos A, Tsikopoulos K, Meroni G, Gravalidis C, Soukouroglou P, Chatzimoschou A, Drago L, Triaridis S, Papaioannidou P. Νanomaterial-Loaded Polymer Coating Prevents the In Vitro Growth of Candida albicans Biofilms on Silicone Biomaterials. Antibiotics (Basel) 2023; 12:1103. [PMID: 37508199 PMCID: PMC10376674 DOI: 10.3390/antibiotics12071103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Early failure of silicone voice prostheses resulting from fungal colonization and biofilm formation poses a major concern in modern ear nose throat surgery. Therefore, developing new infection prevention techniques to prolong those implants' survivorship is crucial. We designed an in vitro laboratory study to include nanomaterial-enhanced polymer coating with a plasma spraying technique against Candida albicans growth to address this issue. The anti-biofilm effects of high- and low-dose Al2O3 nanowire and TiO2 nanoparticle coatings were studied either alone or in conjunction with each other using checkerboard testing. It was demonstrated that both nanomaterials were capable of preventing fungal biofilm formation regardless of the anti-fungal agent concentration (median absorbance for high-dose Al2O3-enhanced polymer coating was 0.176 [IQR = 0.207] versus control absorbance of 0.805 [IQR = 0.381], p = 0.003 [98% biofilm reduction]; median absorbance for high-dose TiO2-enhanced polymer coating was 0.186 [IQR = 0.024] versus control absorbance of 0.766 [IQR = 0.458], p < 0.001 [93% biofilm reduction]). Furthermore, synergy was revealed when the Bliss model was applied. According to the findings of this work, it seems that simultaneous consideration of Al2O3 and TiO2 could further increase the existing antibiofilm potential of these nanomaterials and decrease the likelihood of localized toxicity.
Collapse
Affiliation(s)
- Alexios Tsikopoulos
- 1st Department of Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantinos Tsikopoulos
- 1st Department of Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Gabriele Meroni
- One Health Unit, Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milan, 20133 Milan, Italy
| | | | | | | | - Lorenzo Drago
- Laboratory of Clinical Microbiology & Microbiome, Department of Biomedical Sciences for Health, School of Medicine, University of Milan, 20133 Milan, Italy
| | - Stefanos Triaridis
- 1st Department of Otorhinolaryngology-Head and Neck Surgery, AHEPA General Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Paraskevi Papaioannidou
- 1st Department of Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
65
|
Meng CY, Ma XY, Xu MY, Pei SF, Liu Y, Hao ZL, Li QZ, Feng FM. Transcriptomics-based investigation of manganese dioxide nanoparticle toxicity in rats' choroid plexus. Sci Rep 2023; 13:8510. [PMID: 37231062 PMCID: PMC10213021 DOI: 10.1038/s41598-023-35341-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
Manganese dioxide nanoparticles (MnO2-NPs) have a wide range of applications in biomedicine. Given this widespread usage, it is worth noting that MnO2-NPs are definitely toxic, especially to the brain. However, the damage caused by MnO2-NPs to the choroid plexus (CP) and to the brain after crossing CP epithelial cells has not been elucidated. Therefore, this study aims to investigate these effects and elucidate potential underlying mechanisms through transcriptomics analysis. To achieve this objective, eighteen SD rats were randomly divided into three groups: the control group (control), low-dose exposure group (low-dose) and high-dose exposure group (high-dose). Animals in the two treated groups were administered with two concentrations of MnO2-NPs (200 mg kg-1 BW and 400 mg kg-1 BW) using a noninvasive intratracheal injection method once a week for three months. Finally, the neural behavior of all the animals was tested using a hot plate tester, open-field test and Y-type electric maze. The morphological characteristics of the CP and hippocampus were observed by H&E stain, and the transcriptome of CP tissues was analysed by transcriptome sequencing. The representative differentially expressed genes were quantified by qRT-PCR. We found that treatment with MnO2-NPs could induce learning capacity and memory faculty decline and destroy the structure of hippocampal and CP cells in rats. High doses of MnO2-NPs had a more obvious destructive capacity. For transcriptomic analysis, we found that there were significant differences in the numbers and types of differential genes in CP between the low- and high-dose groups compared to the control. Through GO terms and KEGG analysis, high-dose MnO2-NPs significantly affected the expression of transporters, ion channel proteins, and ribosomal proteins. There were 17 common differentially expressed genes. Most of them were transporter and binding genes on the cell membrane, and some of them had kinase activity. Three genes, Brinp, Synpr and Crmp1, were selected for qRT-PCR to confirm their expression differences among the three groups. In conclusion, high-dose MnO2-NPs exposure induced abnormal neurobehaviour, impaired memory function, destroyed the structure of the CP and changed its transcriptome in rats. The most significant DEGs in the CP were within the transport system.
Collapse
Affiliation(s)
- Chun-Yan Meng
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China
| | - Xin-Yi Ma
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China
| | - Ming-Yan Xu
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China
| | - Sheng-Fei Pei
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China
| | - Yang Liu
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China
| | - Zhuo-Lu Hao
- School of Public Health, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Qing-Zhao Li
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China
| | - Fu-Min Feng
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China.
- College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China.
| |
Collapse
|
66
|
Chakraborty A, Diwan A, Tatake J. Prospect of nanomaterials as antimicrobial and antiviral regimen. AIMS Microbiol 2023; 9:444-466. [PMID: 37649798 PMCID: PMC10462459 DOI: 10.3934/microbiol.2023024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/09/2023] [Accepted: 04/17/2023] [Indexed: 09/01/2023] Open
Abstract
In recent years studies of nanomaterials have been explored in the field of microbiology due to the increasing evidence of antibiotic resistance. Nanomaterials could be inorganic or organic, and they may be synthesized from natural products from plant or animal origin. The therapeutic applications of nano-materials are wide, from diagnosis of disease to targeted delivery of drugs. Broad-spectrum antiviral and antimicrobial activities of nanoparticles are also well evident. The ratio of nanoparticles surface area to their volume is high and that allows them to be an advantageous vehicle of drugs in many respects. Effective uses of various materials for the synthesis of nanoparticles impart much specificity in them to meet the requirements of specific therapeutic strategies. The potential therapeutic use of nanoparticles and their mechanisms of action against infections from bacteria, fungi and viruses were the focus of this review. Further, their potential advantages, drawbacks, limitations and side effects are also included here. Researchers are characterizing the exposure pathways of nano-medicines that may cause serious toxicity to the subjects or the environment. Indeed, societal ethical issues in using nano-medicines pose a serious question to scientists beyond anything.
Collapse
|
67
|
Fooladi S, Nematollahi MH, Rabiee N, Iravani S. Bacterial Cellulose-Based Materials: A Perspective on Cardiovascular Tissue Engineering Applications. ACS Biomater Sci Eng 2023. [PMID: 37146213 DOI: 10.1021/acsbiomaterials.3c00300] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Today, a wide variety of bio- and nanomaterials have been deployed for cardiovascular tissue engineering (TE), including polymers, metal oxides, graphene/its derivatives, organometallic complexes/composites based on inorganic-organic components, among others. Despite several advantages of these materials with unique mechanical, biological, and electrical properties, some challenges still remain pertaining to their biocompatibility, cytocompatibility, and possible risk factors (e.g., teratogenicity or carcinogenicity), restricting their future clinical applications. Natural polysaccharide- and protein-based (nano)structures with the benefits of biocompatibility, sustainability, biodegradability, and versatility have been exploited in the field of cardiovascular TE focusing on targeted drug delivery, vascular grafts, engineered cardiac muscle, etc. The usage of these natural biomaterials and their residues offers several advantages in terms of environmental aspects such as alleviating emission of greenhouse gases as well as the production of energy as a biomass consumption output. In TE, the development of biodegradable and biocompatible scaffolds with potentially three-dimensional structures, high porosity, and suitable cellular attachment/adhesion still needs to be comprehensively studied. In this context, bacterial cellulose (BC) with high purity, porosity, crystallinity, unique mechanical properties, biocompatibility, high water retention, and excellent elasticity can be considered as promising candidate for cardiovascular TE. However, several challenges/limitations regarding the absence of antimicrobial factors and degradability along with the low yield of production and extensive cultivation times (in large-scale production) still need to be resolved using suitable hybridization/modification strategies and optimization of conditions. The biocompatibility and bioactivity of BC-based materials along with their thermal, mechanical, and chemical stability are crucial aspects in designing TE scaffolds. Herein, cardiovascular TE applications of BC-based materials are deliberated, with a focus on the most recent advancements, important challenges, and future perspectives. Other biomaterials with cardiovascular TE applications and important roles of green nanotechnology in this field of science are covered to better compare and comprehensively review the subject. The application of BC-based materials and the collective roles of such biomaterials in the assembly of sustainable and natural-based scaffolds for cardiovascular TE are discussed.
Collapse
Affiliation(s)
- Saba Fooladi
- Department of Clinical Biochemistry, Afzalipour Medical School, Kerman University of Medical Sciences, 76169-13555 Kerman, Iran
| | - Mohammad Hadi Nematollahi
- Department of Clinical Biochemistry, Afzalipour Medical School, Kerman University of Medical Sciences, 76169-13555 Kerman, Iran
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, 76169-13555 Kerman, Iran
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia 6150, Australia
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461 Isfahan, Iran
| |
Collapse
|
68
|
Tkachenko A, Onishchenko A, Myasoedov V, Yefimova S, Havranek O. Assessing regulated cell death modalities as an efficient tool for in vitro nanotoxicity screening: a review. Nanotoxicology 2023; 17:218-248. [PMID: 37083543 DOI: 10.1080/17435390.2023.2203239] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Nanomedicine is a fast-growing field of nanotechnology. One of the major obstacles for a wider use of nanomaterials for medical application is the lack of standardized toxicity screening protocols for assessing the safety of newly synthesized nanomaterials. In this review, we focus on less frequently studied nanomaterials-induced regulated cell death (RCD) modalities, including eryptosis, necroptosis, pyroptosis, and ferroptosis, as a tool for in vitro nanomaterials safety evaluation. We summarize the latest insights into the mechanisms that mediate these RCDs in response to nanomaterials exposure. Comprehensive data from reviewed studies suggest that ROS (reactive oxygen species) overproduction and ROS-mediated pathways play a central role in nanomaterials-induced RCDs activation. On the other hand, studies also suggest that individual properties of nanomaterials, including size, shape, or surface charge, could determine specific toxicity pathways with consequent RCD induction as well. We anticipate that the evaluation of RCDs can become one of the mechanism-based screening methods in nanotoxicology. In addition to the toxicity assessment, evaluation of necroptosis-, pyroptosis-, and ferroptosis-promoting capacity of nanomaterials could simultaneously provide useful information for specific medical applications as could be their anti-tumor potential. Moreover, a detailed understanding of molecular mechanisms driving nanomaterials-mediated induction of immunogenic RCDs will substantially aid novel anti-tumor nanodrugs development.
Collapse
Affiliation(s)
- Anton Tkachenko
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Anatolii Onishchenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Valeriy Myasoedov
- Department of Medical Biology, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Svetlana Yefimova
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Ondrej Havranek
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Department of Hematology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| |
Collapse
|
69
|
Deriu C, Thakur S, Tammaro O, Fabris L. Challenges and opportunities for SERS in the infrared: materials and methods. NANOSCALE ADVANCES 2023; 5:2132-2166. [PMID: 37056617 PMCID: PMC10089128 DOI: 10.1039/d2na00930g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
In the wake of a global, heightened interest towards biomarker and disease detection prompted by the SARS-CoV-2 pandemic, surface enhanced Raman spectroscopy (SERS) positions itself again at the forefront of biosensing innovation. But is it ready to move from the laboratory to the clinic? This review presents the challenges associated with the application of SERS to the biomedical field, and thus, to the use of excitation sources in the near infrared, where biological windows allow for cell and through-tissue measurements. Two main tackling strategies will be discussed: (1) acting on the design of the enhancing substrate, which includes manipulation of nanoparticle shape, material, and supramolecular architecture, and (2) acting on the spectral collection set-up. A final perspective highlights the upcoming scientific and technological bets that need to be won in order for SERS to stably transition from benchtop to bedside.
Collapse
Affiliation(s)
- Chiara Deriu
- Department of Applied Science and Technology, Politecnico di Torino 10129 Turin Italy
| | - Shaila Thakur
- Department of Applied Science and Technology, Politecnico di Torino 10129 Turin Italy
| | - Olimpia Tammaro
- Department of Applied Science and Technology, Politecnico di Torino 10129 Turin Italy
| | - Laura Fabris
- Department of Applied Science and Technology, Politecnico di Torino 10129 Turin Italy
- Department of Materials Science and Engineering, Rutgers University Piscataway NJ 08854 USA
| |
Collapse
|
70
|
Bidian C, Filip GA, David L, Moldovan B, Olteanu D, Clichici S, Olănescu-Vaida-Voevod MC, Leostean C, Macavei S, Muntean DM, Cenariu M, Albu A, Baldea I. Green Synthesized Gold and Silver Nanoparticles Increased Oxidative Stress and Induced Cell Death in Colorectal Adenocarcinoma Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1251. [PMID: 37049344 PMCID: PMC10097358 DOI: 10.3390/nano13071251] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
The research investigated the effect of gold (Au-CM) and silver nanoparticles (Ag-CM) phytoreduced with Cornus mas fruit extract (CM) on a human colorectal adenocarcinoma (DLD-1) cell line. The impact of nanoparticles on the viability of DLD-1 tumor cells and normal cells was evaluated. Oxidative stress and cell death mechanisms (annexin/propidium iodide analysis, caspase-3 and caspase-8 levels, p53, BCL-2, BAX, NFkB expressions) as well as proliferation markers (Ki-67, PCNA and MAPK) were evaluated in tumor cells. The nanoparticles were characterized using UV-Vis spectroscopy and transmission electron microscopy (TEM) and by measuring zeta potential, hydrodynamic diameter and polydispersity index (PDI). Energy dispersive X-ray (EDX) and X-ray powder diffraction (XRD) analyses were also performed. The nanoparticles induced apoptosis and necrosis of DLD-1 cells and reduced cell proliferation, especially Ag-CM, while on normal cells, both nanoparticles maintained their viability up to 80%. Ag-CM and Au-CM increased the expressions of p53 and NFkB in parallel with the downregulation of BCL-2 protein and induced the activation of caspase-8, suggesting the involvement of apoptosis in cell death. Lipid peroxidation triggered by Ag-CM was correlated with tumor cell necrosis rate. Both nanoparticles obtained with phytocompounds from the CM extract protected normal cells and induced the death of DLD-1 tumor cells, especially by apoptosis.
Collapse
Affiliation(s)
- Cristina Bidian
- Department of Physiology, ‘‘Iuliu Hatieganu’’ University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006 Cluj-Napoca, Romania; (C.B.); (D.O.); (S.C.); (M.-C.O.-V.-V.); (I.B.)
| | - Gabriela Adriana Filip
- Department of Physiology, ‘‘Iuliu Hatieganu’’ University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006 Cluj-Napoca, Romania; (C.B.); (D.O.); (S.C.); (M.-C.O.-V.-V.); (I.B.)
| | - Luminița David
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, “Babes-Bolyai” University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania;
| | - Bianca Moldovan
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, “Babes-Bolyai” University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania;
| | - Diana Olteanu
- Department of Physiology, ‘‘Iuliu Hatieganu’’ University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006 Cluj-Napoca, Romania; (C.B.); (D.O.); (S.C.); (M.-C.O.-V.-V.); (I.B.)
| | - Simona Clichici
- Department of Physiology, ‘‘Iuliu Hatieganu’’ University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006 Cluj-Napoca, Romania; (C.B.); (D.O.); (S.C.); (M.-C.O.-V.-V.); (I.B.)
| | - Maria-Cristina Olănescu-Vaida-Voevod
- Department of Physiology, ‘‘Iuliu Hatieganu’’ University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006 Cluj-Napoca, Romania; (C.B.); (D.O.); (S.C.); (M.-C.O.-V.-V.); (I.B.)
| | - Cristian Leostean
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donath St., No. 67-103, 400293 Cluj-Napoca, Romania; (C.L.); (S.M.)
| | - Sergiu Macavei
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donath St., No. 67-103, 400293 Cluj-Napoca, Romania; (C.L.); (S.M.)
| | - Dana Maria Muntean
- Department of Pharmaceutical Technology and Biopharmaceutics, ‘‘Iuliu Hatieganu’’ University of Medicine and Pharmacy, 8 Victor Babeș Street, 400347 Cluj-Napoca, Romania;
| | - Mihai Cenariu
- Department of Animal Reproduction, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Manastur Street, 400372 Cluj-Napoca, Romania;
| | - Adriana Albu
- 2nd Department of Internal Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Babes Street, 400012 Cluj-Napoca, Romania;
| | - Ioana Baldea
- Department of Physiology, ‘‘Iuliu Hatieganu’’ University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006 Cluj-Napoca, Romania; (C.B.); (D.O.); (S.C.); (M.-C.O.-V.-V.); (I.B.)
| |
Collapse
|
71
|
Logesh K, Raj B, Bhaskaran M, Thirumaleshwar S, Gangadharappa H, Osmani R, Asha Spandana K. Nanoparticulate drug delivery systems for the treatment of rheumatoid arthritis: A comprehensive review. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
72
|
Ferreira LAD, Rambo C, Gomes MJK, Ribeiro KDP, Nishimoto GDA, Tisatto LGDR, Fritzen LD, da Cruz YB, Kambara AL, Rodrigues MJVB, Nogueira GA, Salvador HD, Oliveira-Toré CDF, Reason IJDM, Telles JEQ, Tomiotto-Pellissier F. Nanoparticles and phototherapy combination as therapeutic alternative in prostate cancer: A scoping review. Eur J Pharmacol 2023; 939:175421. [PMID: 36435234 DOI: 10.1016/j.ejphar.2022.175421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/02/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Prostate cancer (CaP) is one of the most common types of cancers worldwide. Despite the existing surgical techniques, prostatectomy patients may experience tumor recurrence. In addition, castration-resistant cancers pose a challenge, especially given their lack of response to standard care. Thus, the development of more efficient therapies has become a field of great interest, and photothermal therapy (PTT) and photodynamic therapy (PDT) are promising alternatives, given their high capacity to cause cell injury and consequent tumor ablation. Phototherapy, along with chemotherapy, has also been shown to be more effective than pharmacotherapy alone. Free molecules used as photosensitizers are rapidly cleared from the body, do not accumulate in the tumor, and are primarily hydrophobic and require toxic solvents. Thus, the use of nanoparticles can be an effective strategy, given their ability to carry or bind to different molecules, protecting them from degradation and allowing their association with other surface ligands, which favors permeation and retention at the tumor site. Despite this, there is still a gap in the literature regarding the use of phototherapy in association with nanotechnology for the treatment of CaP. In this scoping review, it was found that most of the particles studied could act synergistically through PDT and PTT. In addition, fluorescent quenchers can act as diagnostic and therapeutic tools. However, future clinical studies should be performed to confirm the benefits and safety of the combination of nanoparticles and phototherapy for CaP.
Collapse
Affiliation(s)
| | - Camila Rambo
- Department of Medical Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | | | | | | | - Lucas Diego Fritzen
- Department of Medical Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | - Aline Lika Kambara
- Department of Medical Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | | | | | | | | | | | - Fernanda Tomiotto-Pellissier
- Department of Medical Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil; Laboratory of Immunopathology of Neglected Diseases and Cancer (LIDNC), Department of Pathological Sciences, State University of Londrina, Londrina, Paraná, Brazil.
| |
Collapse
|
73
|
Brar B, Marwaha S, Poonia AK, Koul B, Kajla S, Rajput VD. Nanotechnology: a contemporary therapeutic approach in combating infections from multidrug-resistant bacteria. Arch Microbiol 2023; 205:62. [PMID: 36629918 DOI: 10.1007/s00203-023-03404-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/24/2022] [Accepted: 01/02/2023] [Indexed: 01/12/2023]
Abstract
In the 20th century, the discovery of antibiotics played an essential role in the fight against infectious diseases, including meningitis, typhoid fever, pneumonia and Mycobacterium tuberculosis. The development of multidrug resistance in microflora due to improper antibiotic use created significant public health issues. Antibiotic resistance has increased at an alarming rate in the past few decades. Multidrug-resistant bacteria (superbugs) such as methicillin-resistant Staphylococcus aureus (MRSA) as well as drug-resistant tuberculosis pose serious health implications. Despite the continuous increase in resistant microbes, the discovery of novel antibiotics is constrained by the cost and complexities of discovery of drugs. The nanotechnology has given new hope in combating this problem. In the present review, recent developments in therapeutics utilizing nanotechnology for novel antimicrobial drug development are discussed. The nanoparticles of silver, gold and zinc oxide have proved to be efficient antimicrobial agents against multidrug-resistant Klebsiella, Pseudomonas, Escherichia Coli and MRSA. Using nanostructures as carriers for antimicrobial agents provides better bioavailability, less chances of sub-therapeutic drug accumulation and less drug-related toxicity. Nanophotothermal therapy using fullerene and antibody functionalized nanostructures are other strategies that can prove to be helpful.
Collapse
Affiliation(s)
- Basanti Brar
- HABITAT, Genome Improvement Primary Producer Company Ltd. Centre of Biofertilizer Production and Technology, HAU, Hisar, 125004, India
| | - Sumnil Marwaha
- ICAR-National Research Centre On Camel, Bikaner, 334001, Rajasthan, India
| | - Anil Kumar Poonia
- Department of Botany, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, Punjab, India. .,Department of Molecular Biology &Biotechnology, CCSHAU, Hisar, 125004, Haryana, India.
| | - Bhupendra Koul
- Department of Botany, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
| | - Subhash Kajla
- Department of Molecular Biology &Biotechnology, CCSHAU, Hisar, 125004, Haryana, India.
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, 344090, Russia.
| |
Collapse
|
74
|
Role of Tunable Gold Nanostructures in Cancer Nanotheranostics: Implications on Synthesis, Toxicity, Clinical Applications and Their Associated Opportunities and Challenges. JOURNAL OF NANOTHERANOSTICS 2023. [DOI: 10.3390/jnt4010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The existing diagnosis and treatment modalities have major limitations related to their precision and capability to understand several stages of disease development. A superior therapeutic system consists of a multifunctional approach in early diagnosis of the disease with a simultaneous progressive cure, using a precise medical approach towards complex treatment. These challenges can be addressed via nanotheranostics and explore suitable approaches to improve health care. Nanotechnology in combination with theranostics as an unconventional platform paved the way for developing novel strategies and modalities leading to diagnosis and therapy for complex disease conditions, ranging from acute to chronic levels. Among the metal nanoparticles, gold nanoparticles are being widely used for theranostics due to their inherent non-toxic nature and plasmonic properties. The unique optical and chemical properties of plasmonic metal nanoparticles along with theranostics have led to a promising era of plausible early detection of disease conditions, and they enable real-time monitoring with enhanced non-invasive or minimally invasive imaging of several ailments. This review aims to highlight the improvement and advancement brought to nanotheranostics by gold nanoparticles in the past decade. The clinical use of the metal nanoparticles in nanotheranostics is explained, along with the future perspectives on addressing the key applications related to diagnostics and therapeutics, respectively. The scope of gold nanoparticles and their realistic potential to design a sophisticated theranostic system is discussed in detail, along with their implications in clinical advancements which are the needs of the hour. The review concluded with the challenges, opportunities, and implications on translational potential of using gold nanoparticles in nanotheranostics.
Collapse
|
75
|
Goldstein ADC, Araujo-Lima CF, Fernandes ADS, Santos-Oliveira R, Felzenszwalb I. In vitro genotoxicity assessment of graphene quantum dots nanoparticles: A metabolism-dependent response. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 885:503563. [PMID: 36669812 DOI: 10.1016/j.mrgentox.2022.503563] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
Nanomaterials are progressively being applied in different areas, including biomedical uses. Carbon nanomaterials are relevant for biomedical sciences because of their biocompatibility properties. Graphene quantum dots (GQD) have a substantial potential in drug-delivery nanostructured biosystems, but there is still a lack of toxicological information regarding their effects on human health and the environment. We thus evaluated the mutagenicity, cytotoxicity and genotoxicity of this nanomaterial using alternative methods applied in regulatory toxicology guidelines. The Ames test was carried out in the presence and absence of exogenous metabolization. Salmonella enterica serovar Typhimurium strains TA97a, TA98, TA100, TA102, TA104, and TA1535 were exposed to GQD with concentrations ranging from 1 to 1000 μg/plate. The mammal cell viability assays were carried out with HepG2 and 3T3BalbC cell lineages and the in vitro Cytokinesis-Block Micronucleus assay (CBMN) was applied for 24 h of exposure in non-cytotoxic concentrations. Mutagenicity was induced in the TA97a strain in the absence of exogenous metabolization, but not in its presence. Mutagenicity was also detected in the TA102 strain in the assay with exogenous metabolization, suggesting redox misbalance mutagenicity. The WST-1 and LDH assays demonstrated that GQD decreased cell viability, especially in 3T3BalbC cells, which showed more sensitivity to the nanomaterial. GQD also increased micronuclei formation in 3T3BalbC and caused a cytostatic effect. No significant impact on HepG2 micronuclei formation was observed. Different metabolic systems interfered with the mutagenic, cytotoxic, and genotoxic effects of GQD, indicating that liver metabolism has a central role in the detoxification of this nanomaterial.
Collapse
Affiliation(s)
- Alana da Cunha Goldstein
- Laboratory of Environmental Mutagenicity, Department of Biophysics and Biometry, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| | - Carlos Fernando Araujo-Lima
- Laboratory of Environmental Mutagenicity, Department of Biophysics and Biometry, Rio de Janeiro State University, Rio de Janeiro, Brazil; Department of Genetics and Molecular Biology, Federal University of the Rio de Janeiro State, Rio de Janeiro, Brazil.
| | - Andreia da Silva Fernandes
- Laboratory of Environmental Mutagenicity, Department of Biophysics and Biometry, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro, Brazil.
| | - Israel Felzenszwalb
- Laboratory of Environmental Mutagenicity, Department of Biophysics and Biometry, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
76
|
Elbeshehy EKF, Hassan WM, Baeshen AA. Controlling Pepper Mild Mottle Virus (PMMoV) Infection in Pepper Seedlings by Use of Chemically Synthetic Silver Nanoparticles. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010139. [PMID: 36615333 PMCID: PMC9822145 DOI: 10.3390/molecules28010139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
We investigated the roles of different concentrations of chemical synthetic spherical silver nanoparticles (AgNPs) in protecting pepper seedlings of the Mecca region, which were naturally and artificially infected by the pepper mild mottle virus (PMMoV). The virus shows many infection symptoms, including pepper leaf deformation with filiform leaves and severe mosaic symptoms. Our study focused on the antiviral activity of different concentrations of spherical nanoparticles in controlling PMMoV infecting pepper seedlings. PMMoV identification was confirmed via DAS-ELISA using the following antiserum: PMMoV, cucumber mosaic virus (CMV), tobacco mosaic virus (TMV), tomato mosaic virus (ToMV), potato virus Y (PVY), and tomato spotted wilt virus (TSWV). The presence of PMMoV was confirmed using electron microscopy and reverse transcription polymerase chain reaction (RT-PCR). We evaluated the effects of exogenously applied different concentrations of AgNPs on CMV infection rate, infection severity, virus concentration, and the concentrations of photosynthetic pigments chlorophyll a, chlorophyll b, carotenoid content, phenolic compounds, and protein components in virus-infected plant cells that were treated with three different concentration of nanoparticles (200, 300, and 400 µg/L) compared to the positive and negative control.
Collapse
Affiliation(s)
- Esam K. F. Elbeshehy
- Department of Biological Sciences, Faculty of Science, University of Jeddah, Jeddah 21959, Saudi Arabia
- Botany Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
- Correspondence:
| | - Wael M. Hassan
- Botany Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
- Department of Biology, Quwayiyah College of Science and Humanities, Shaqra University, Riyadh 19257, Saudi Arabia
| | - Areej A. Baeshen
- Department of Biological Sciences, Faculty of Science, University of Jeddah, Jeddah 21959, Saudi Arabia
| |
Collapse
|
77
|
Vincenti S, Villa A, Crescenti D, Crippa E, Brunialti E, Shojaei-Ghahrizjani F, Rizzi N, Rebecchi M, Dei Cas M, Del Sole A, Paroni R, Mazzaferro V, Ciana P. Increased Sensitivity of Computed Tomography Scan for Neoplastic Tissues Using the Extracellular Vesicle Formulation of the Contrast Agent Iohexol. Pharmaceutics 2022; 14:2766. [PMID: 36559260 PMCID: PMC9786056 DOI: 10.3390/pharmaceutics14122766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Computed tomography (CT) is a diagnostic medical imaging modality commonly used to detect disease and injury. Contrast agents containing iodine, such as iohexol, are frequently used in CT examinations to more clearly differentiate anatomic structures and to detect and characterize abnormalities, including tumors. However, these contrast agents do not have a specific tropism for cancer cells, so the ability to detect tumors is severely limited by the degree of vascularization of the tumor itself. Identifying delivery systems allowing enrichment of contrast agents at the tumor site would increase the sensitivity of detection of tumors and metastases, potentially in organs that are normally inaccessible to contrast agents, such as the CNS. Recent work from our laboratory has identified cancer patient-derived extracellular vesicles (PDEVs) as effective delivery vehicles for targeting diagnostic drugs to patients' tumors. Based on this premise, we explored the possibility of introducing iohexol into PDEVs for targeted delivery to neoplastic tissue. Here, we provide preclinical proof-of-principle for the tumor-targeting ability of iohexol-loaded PDEVs, which resulted in an impressive accumulation of the contrast agent selectively into the neoplastic tissue, significantly improving the ability of the contrast agent to delineate tumor boundaries.
Collapse
Affiliation(s)
- Simona Vincenti
- Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Alessandro Villa
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Daniela Crescenti
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Elisabetta Crippa
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Electra Brunialti
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | | | - Nicoletta Rizzi
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Monica Rebecchi
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Michele Dei Cas
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Angelo Del Sole
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Rita Paroni
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Vincenzo Mazzaferro
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
- HPB Surgery and Liver Transplantation, Istituto Nazionale Tumori IRCCS Foundation (INT), 20133 Milan, Italy
| | - Paolo Ciana
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| |
Collapse
|
78
|
Yousef DM, Hassan HA, Nafea OE, El Fattah ERA. Crocin averts functional and structural rat hepatic disturbances induced by copper oxide nanoparticles. Toxicol Res (Camb) 2022; 11:911-919. [PMID: 36569481 PMCID: PMC9773068 DOI: 10.1093/toxres/tfac064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/26/2022] [Accepted: 07/11/2022] [Indexed: 12/27/2022] Open
Abstract
Background Exposure to nanoparticles became inevitable in our daily life due to their huge industrial uses. Copper oxide nanoparticles (CuONPs) are one of the most frequently utilized metal nanoparticles in numerous applications. Crocin (CRO) is a major active constituent in saffron having anti-inflammatory and antioxidant potentials. Objectives We designed this study to explore the probable defensive role of CRO against CuONPs-induced rat hepatic damage. Materials and methods Therefore, 24 adult rats were randomly distributed into 4 equal groups as negative control, CRO, CuONPs, and co-treated CuONPs with CRO groups. All treatments were administered for 14 days. The hepatotoxic effect of CuONPs was evaluated by estimation of hepatic alanine aminotransferase and aspartate aminotransferase enzymes, hepatic oxidative malondialdehyde and antioxidant glutathione reduced, serum levels of inflammatory biomarkers (tumor necrosis factor-alpha, interleukin-1-beta, and nuclear factor kappa B), and expression of the apoptotic BAX in hepatic tissues; in addition, histopathological examination of the hepatic tissues was conducted. Results We found that concurrent CRO supplement to CuONPs-treated rats significantly averted functional and structural rat hepatic damage as documented by decreased hepatic enzymes activities, restored hepatic oxidant/antioxidant balance, decreased serum levels of inflammatory biomarkers, reversed BAX-mediated apoptotic cell death in hepatic tissues along with repair of CuONPs-induced massive hepatic structural and ultrastructural alterations. Conclusions It is concluded that combined CRO supplement to CuONPs-treated rats improved hepatic function and structure by, at least in part, antioxidant, anti-inflammatory, and antiapoptotic mechanisms.
Collapse
Affiliation(s)
- Doaa Mohammed Yousef
- Department of Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Heba Ahmed Hassan
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Ola Elsayed Nafea
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | | |
Collapse
|
79
|
Hyldbakk A, Mørch Y, Snipstad S, Åslund AKO, Klinkenberg G, Nakstad VT, Wågbø AM, Schmid R, Molesworth PP. Identification of novel cyanoacrylate monomers for use in nanoparticle drug delivery systems prepared by miniemulsion polymerisation - A multistep screening approach. Int J Pharm X 2022; 4:100124. [PMID: 35898812 PMCID: PMC9310130 DOI: 10.1016/j.ijpx.2022.100124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 12/24/2022] Open
Abstract
Poly (alkyl cyanoacrylate) (PACA) polymeric nanoparticles (NPs) are promising drug carriers in drug delivery. However, the selection of commercially available alkyl cyanoacrylate (ACA) monomers is limited, because most monomers were designed for use in medical and industrial glues and later repurposed for drug encapsulation. This study therefore aimed to seek out novel ACA materials for use in NP systems using a toxicity led screening approach. A multistep strategy, including cytotoxicity screening of alcohols as degradation products of PACA (44 alcohols), NPs (14 polymers), and a final in vivo study (2 polymers) gave poly (2-ethylhexyl cyanoacrylate) PEHCA as a promising novel PACA candidate. For the first time, this work presents cytotoxicity data on several novel ACAs, PEHCA in vivo toxicity data, and miniemulsion polymerisation-based encapsulation of the cabazitaxel and NR688 in novel PACA candidates. Furthermore, several of the ACA candidates were compatible with a wider selection of lipophilic active pharmaceutical ingredients (APIs) versus commercially available controls. Combined, this work demonstrates the potential benefits of expanding the array of available ACA materials in drug delivery. Novel ACAs have the potential to encapsulate a wider range of APIs in miniemulsion polymerisation processes and may also broaden PACA applicability in other fields. Screening of novel poly(alkylcyanoacrylate) (PACA) materials to broaden PACA nanomedicine potential. A comprehensive screening process evaluated the toxicity of novel poly(alkylcyanoacrylate) (PACA) materials. Novel poly(2-ethylhexyl cyanoacrylate) nanoparticles has a promising safety profile. Novel ACA materials show potential to enable encapsulation of a wider range of APIs.
Collapse
Affiliation(s)
- Astrid Hyldbakk
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway.,Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Yrr Mørch
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Sofie Snipstad
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway.,Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway.,Cancer Clinic, St. Olavs Hospital, Trondheim, Norway
| | - Andreas K O Åslund
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Geir Klinkenberg
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Vu To Nakstad
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Ane-Marit Wågbø
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Ruth Schmid
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Peter P Molesworth
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| |
Collapse
|
80
|
Nanoparticles for Biomedical Application and Their Synthesis. Polymers (Basel) 2022; 14:polym14224961. [PMID: 36433085 PMCID: PMC9693622 DOI: 10.3390/polym14224961] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
Tremendous developments in nanotechnology have revolutionized the impact of nanoparticles (NPs) in the scientific community and, more recently, in society. Nanomaterials are by their definition materials that have at least one dimension in range of 1 to 100 nm. Nanoparticles are found in many types of different technological and scientific applications and innovations, from delicate electronics to state-of-the-art medical treatments. Medicine has recognized the importance of polymer materials coated with NPs and utilizes them widely thanks to their excellent physical, chemical, antibacterial, antimicrobial, and protective properties. Emphasis is given to their biomedical application, as the nanoscale structures are in the range of many biological molecules. Through this, they can achieve many important features such as targeted drug delivery, imaging, photo thermal therapy, and sensors. Moreover, by manipulating in a "nano-scale" range, their characteristic can be modified in order to obtain the desired properties needed in particular biomedical fields, such as electronic, optical, surface plasmon resonance, and physic-chemical features.
Collapse
|
81
|
Ahmad V, Ansari MO. Antimicrobial Activity of Graphene-Based Nanocomposites: Synthesis, Characterization, and Their Applications for Human Welfare. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12224002. [PMID: 36432288 PMCID: PMC9694244 DOI: 10.3390/nano12224002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 05/15/2023]
Abstract
Graphene (GN)-related nanomaterials such as graphene oxide, reduced graphene oxide, quantum dots, etc., and their composites have attracted significant interest owing to their efficient antimicrobial properties and thus newer GN-based composites are being readily developed, characterized, and explored for clinical applications by scientists worldwide. The GN offers excellent surface properties, i.e., a large surface area, pH sensitivity, and significant biocompatibility with the biological system. In recent years, GN has found applications in tissue engineering owing to its impressive stiffness, mechanical strength, electrical conductivity, and the ability to innovate in two-dimensional (2D) and three-dimensional (3D) design. It also offers a photothermic effect that potentiates the targeted killing of cells via physicochemical interactions. It is generally synthesized by physical and chemical methods and is characterized by modern and sophisticated analytical techniques such as NMR, Raman spectroscopy, electron microscopy, etc. A lot of reports show the successful conjugation of GN with existing repurposed drugs, which improves their therapeutic efficacy against many microbial infections and also its potential application in drug delivery. Thus, in this review, the antimicrobial potentialities of GN-based nanomaterials, their synthesis, and their toxicities in biological systems are discussed.
Collapse
Affiliation(s)
- Varish Ahmad
- Health Information Technology Department, The Applied College, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence:
| | | |
Collapse
|
82
|
Siddiqui SA, Bahmid NA, Taha A, Abdel-Moneim AME, Shehata AM, Tan C, Kharazmi MS, Li Y, Assadpour E, Castro-Muñoz R, Jafari SM. Bioactive-loaded nanodelivery systems for the feed and drugs of livestock; purposes, techniques and applications. Adv Colloid Interface Sci 2022; 308:102772. [PMID: 36087561 DOI: 10.1016/j.cis.2022.102772] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/22/2022] [Accepted: 09/01/2022] [Indexed: 01/06/2023]
Abstract
Advances in animal husbandry and better performance of livestock results in growing demands for feed and its nutrients, bioactive compounds (bioactives), such as vitamins, minerals, proteins, and phenolics, along with drugs/vaccines. To protect the feed bioactives in unintended circumstances, they can be encapsulated to achieve desired efficacy in animal feeding and nanoencapsulation gives more potential for better protection, absorption and targeted delivery of bioactives. This study reviews structures, properties, and methods of nanoencapsulation for animal feedings and relevant drugs. Essential oil (EOs) and plant extracts are mostly encapsulated bioactives and phytochemicals for poultry diets and chitosan is found as most effective nanocarrier to load EOs and plant extracts. Nanoparticles (NPs) and nanocapsules are frequently studied nanocarriers, which are mostly processed by using the ionotropic/ionic gelation. Nanofibers, nanohydrogels and nanoemulsions are not found yet for their application in feed bioactives. These nanocarriers can have an improved protection, stability, and controlled release of feed bioactives which benefits to additional nutrition for the growth of livestock regardless of the low stability and water solubility of bioactives. For ruminants' feeds, nano-minerals, vitamins, phytochemicals, essential fatty acids, and drugs are encapsulated by NPs to facilitate the delivery to target organs through direct penetration, to improve their bioavailability, to generate more efficient absorption in cells and tissues, and protect them from rapid degradation. Furthermore, safety and regulatory issues, as well as advantages and disadvantages of nanoencapsulation application in animal feeds are also discussed. The review shows an accurate design of NPs can largely mask safety issues with straightforward approaches and awareness of safety concerns is fundamental for better designing of nanoencapsulation systems and commercialization. This review gives an insight of understanding and potential of nanoencapsulation in ruminants and poultry feedings to obtain a better bioavailability of the nutrients and bioactives with improved safety and awareness for better designing of nanoencapsulating systems.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing-Straße 7, 49610 D-Quakenbrück, Germany; Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315 Straubing, Germany
| | - Nur Alim Bahmid
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Gading, Playen, Gunungkidul, 55861 Yogyakarta, Indonesia; Agricultural Product Technology Department, Universitas Sulawesi Barat, Majene 90311, Indonesia
| | - Ahmed Taha
- State Research Institute, Center for Physical Sciences and Technology, Saulėtekio al. 3, Vilnius, Lithuania; Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | | | - Abdelrazeq M Shehata
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt; Department of Dairy Science & Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Chen Tan
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | | | - Yuan Li
- Beijing Advanced Center for Food Nutrition and Human Health, Center of Food Colloids and Delivery of Functionally, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Roberto Castro-Muñoz
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 11/12 Narutowicza St., 80-233, Gdansk, Poland; Tecnologico de Monterrey, Campus Toluca. Av. Eduardo Monroy Cárdenas 2000 San Antonio Buenavista, 50110 Toluca de Lerdo, Mexico
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
83
|
Moldovan R, Mitrea DR, Florea A, Chiş IC, Suciu Ş, David L, Moldovan BE, Mureşan LE, Lenghel M, Ungur RA, Opriş RV, Decea N, Clichici SV. Effects of Gold Nanoparticles Functionalized with Bioactive Compounds from Cornus mas Fruit on Aorta Ultrastructural and Biochemical Changes in Rats on a Hyperlipid Diet-A Preliminary Study. Antioxidants (Basel) 2022; 11:antiox11071343. [PMID: 35883833 PMCID: PMC9311980 DOI: 10.3390/antiox11071343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Cornus mas L. extract (CM) presents hypolipidemic, antioxidant and anti-inflammatory activity. Gold nanoparticles (AuNPs) are considered potent delivery systems and may be used to release pharmaceutical compounds at the level of injury. In our study, we used gold nanoparticles functionalized with bioactive compounds from Cornus mas L. (AuNPsCM) in an experimental model of a high-fat diet (HFD), and we assessed their effects on aorta wall but also in the serum, as compared to Cornus mas (CM) administration. Sprague Dawley female rats were fed for 9 months with an HFD. During the last month of the experiment, we randomly allocated the animals into three groups that received, by oral gavage: saline solution, CM solution (0.158 mg/mL polyphenols) or AuNPsCM solution (260 μg Au/kg/day), while a Control group received a standard diet and saline solution. At the end of the experiment, we performed an ultrasonography of the aorta and left ventricle and a histology and transmission electron microscopy of the aorta walls; we investigated the oxidative stress and inflammation in aorta homogenates and in serum and, in addition, the lipid profile. AuNPsCM presented better effects in comparison with the natural extract (CM) on lipid peroxidation (p < 0.01) and TNF-alpha (p < 0.001) in aorta homogenates. In serum, both CM and AuNPsCM decreased the triglycerides (p < 0.001) and C-reactive protein (CM, p < 0.01; AuNPsCM, p < 0.001) and increased the antioxidant protection (p < 0.001), in comparison with the HFD group. In intima, AuNPsCM produced ultrastructural lesions, with the disorganization of intima and subendothelial connective layer, whereas CM administration preserved the intima normal aspect, but with a thinned subendothelial connective layer. AuNPsCM oral administration presented certain antioxidant, anti-inflammatory and hypolipidemic effects in an experimental model of HFD, but with a negative impact on the ultrastructure of aorta walls, highlighted by the intima disorganization.
Collapse
Affiliation(s)
- Remus Moldovan
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006 Cluj-Napoca, Romania; (R.M.); (I.-C.C.); (Ş.S.); (N.D.); (S.V.C.)
| | - Daniela-Rodica Mitrea
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006 Cluj-Napoca, Romania; (R.M.); (I.-C.C.); (Ş.S.); (N.D.); (S.V.C.)
- Correspondence:
| | - Adrian Florea
- Department of Cell and Molecular Biology, Iuliu Hatieganu University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania; (A.F.); (R.V.O.)
| | - Irina-Camelia Chiş
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006 Cluj-Napoca, Romania; (R.M.); (I.-C.C.); (Ş.S.); (N.D.); (S.V.C.)
| | - Şoimiţa Suciu
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006 Cluj-Napoca, Romania; (R.M.); (I.-C.C.); (Ş.S.); (N.D.); (S.V.C.)
| | - Luminiţa David
- Research Center for Advanced Chemical Analysis, Instrumentation and Chemometrics, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania; (L.D.); (B.E.M.)
| | - Bianca Elena Moldovan
- Research Center for Advanced Chemical Analysis, Instrumentation and Chemometrics, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania; (L.D.); (B.E.M.)
| | - Laura Elena Mureşan
- Raluca Ripan Institute of Research in Chemistry, Babes-Bolyai University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania;
| | - Manuela Lenghel
- Radiology Department, Iuliu Hatieganu University of Medicine and Pharmacy, 1–3 Clinicilor Street, 400006 Cluj-Napoca, Romania;
| | - Rodica Ana Ungur
- Department of Rehabilitation, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania;
| | - Răzvan Vlad Opriş
- Department of Cell and Molecular Biology, Iuliu Hatieganu University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania; (A.F.); (R.V.O.)
| | - Nicoleta Decea
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006 Cluj-Napoca, Romania; (R.M.); (I.-C.C.); (Ş.S.); (N.D.); (S.V.C.)
| | - Simona Valeria Clichici
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006 Cluj-Napoca, Romania; (R.M.); (I.-C.C.); (Ş.S.); (N.D.); (S.V.C.)
| |
Collapse
|
84
|
Krewski D, Saunders-Hastings P, Larkin P, Westphal M, Tyshenko MG, Leiss W, Dusseault M, Jerrett M, Coyle D. Principles of risk decision-making. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2022; 25:250-278. [PMID: 35980104 DOI: 10.1080/10937404.2022.2107591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Risk management decisions in public health require consideration of a number of complex, often conflicting factors. The aim of this review was to propose a set of 10 fundamental principles to guide risk decision-making. Although each of these principles is sound in its own right, the guidance provided by different principles might lead the decision-maker in different directions. For example, where the precautionary principle advocates for preemptive risk management action under situations of scientific uncertainty and potentially catastrophic consequences, the principle of risk-based decision-making encourages decision-makers to focus on established and modifiable risks, where a return on the investment in risk management is all but guaranteed in the near term. To evaluate the applicability of the 10 principles in practice, one needs to consider 10 diverse risk issues of broad concern and explore which of these principles are most appropriate in different contexts. The 10 principles presented here afford substantive insight into the process of risk management decision-making, although decision-makers will ultimately need to exercise judgment in reaching appropriate risk decisions, accounting for all of the scientific and extra-scientific factors relevant to the risk decision at hand.
Collapse
Affiliation(s)
- Daniel Krewski
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, ON, Canada
| | - Patrick Saunders-Hastings
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, ON, Canada
| | - Patricia Larkin
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, ON, Canada
| | - Margit Westphal
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, ON, Canada
| | | | - William Leiss
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, ON, Canada
| | - Maurice Dusseault
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Michael Jerrett
- Department of Environmental Health Sciences, Fielding School of Public Health, UCLA, Los Angeles, CA, USA
| | - Doug Coyle
- School of Epidemiology and Public Health, University of Ottawa, ON, Canada
| |
Collapse
|
85
|
Sargazi S, ER S, Sacide Gelen S, Rahdar A, Bilal M, Arshad R, Ajalli N, Farhan Ali Khan M, Pandey S. Application of titanium dioxide nanoparticles in photothermal and photodynamic therapy of cancer: An updated and comprehensive review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
86
|
Singh R, Sharma A, Saji J, Umapathi A, Kumar S, Daima HK. Smart nanomaterials for cancer diagnosis and treatment. NANO CONVERGENCE 2022; 9:21. [PMID: 35569081 PMCID: PMC9108129 DOI: 10.1186/s40580-022-00313-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/26/2022] [Indexed: 05/14/2023]
Abstract
Innovations in nanomedicine has guided the improved outcomes for cancer diagnosis and therapy. However, frequent use of nanomaterials remains challenging due to specific limitations like non-targeted distribution causing low signal-to-noise ratio for diagnostics, complex fabrication, reduced-biocompatibility, decreased photostability, and systemic toxicity of nanomaterials within the body. Thus, better nanomaterial-systems with controlled physicochemical and biological properties, form the need of the hour. In this context, smart nanomaterials serve as promising solution, as they can be activated under specific exogenous or endogenous stimuli such as pH, temperature, enzymes, or a particular biological molecule. The properties of smart nanomaterials make them ideal candidates for various applications like biosensors, controlled drug release, and treatment of various diseases. Recently, smart nanomaterial-based cancer theranostic approaches have been developed, and they are displaying better selectivity and sensitivity with reduced side-effects in comparison to conventional methods. In cancer therapy, the smart nanomaterials-system only activates in response to tumor microenvironment (TME) and remains in deactivated state in normal cells, which further reduces the side-effects and systemic toxicities. Thus, the present review aims to describe the stimulus-based classification of smart nanomaterials, tumor microenvironment-responsive behaviour, and their up-to-date applications in cancer theranostics. Besides, present review addresses the development of various smart nanomaterials and their advantages for diagnosing and treating cancer. Here, we also discuss about the drug targeting and sustained drug release from nanocarriers, and different types of nanomaterials which have been engineered for this intent. Additionally, the present challenges and prospects of nanomaterials in effective cancer diagnosis and therapeutics have been discussed.
Collapse
Affiliation(s)
- Ragini Singh
- College of Agronomy, Liaocheng University, Liaocheng, 252059, Shandong, China.
| | - Ayush Sharma
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, Rajasthan, India
| | - Joel Saji
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, Rajasthan, India
| | - Akhela Umapathi
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, Rajasthan, India
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng, 252059, Shandong, China
| | - Hemant Kumar Daima
- Amity Center for Nanobiotechnology and Nanomedicine (ACNN), Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, Rajasthan, India.
| |
Collapse
|
87
|
Sánchez-Jaramillo EA, Gasca-Lozano LE, Vera-Cruz JM, Hernández-Ortega LD, Gurrola-Díaz CM, Bastidas-Ramírez BE, Vargas-Guerrero B, Mena-Enríquez M, Martínez-Limón FDJ, Salazar-Montes AM. Nanoparticles Formulation Improves the Antifibrogenic Effect of Quercetin on an Adenine-Induced Model of Chronic Kidney Disease. Int J Mol Sci 2022; 23:ijms23105392. [PMID: 35628203 PMCID: PMC9140764 DOI: 10.3390/ijms23105392] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/02/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
Renal fibrosis is the final stage of chronic kidney injury characterized by glomerulosclerosis and tubulointerstitial fibrosis with parenchymal destruction. Quercetin belongs to the most studied flavonoids with antioxidant, anti-inflammatory, antifibrogenic, and antitumor activity. It modifies the TGF-β/Smad signaling pathway, decreasing profibrogenic expression molecules and inducing the expression of antioxidant, anti-inflammatory, and antifibrogenic molecules. However, quercetin exhibits poor water solubility and low absorption and bioavailability. This limitation was solved by developing a nanoparticles formulation that improves the solubility and bioavailability of several bioactive compounds. Therefore, we aimed to investigate the in vivo antifibrogenic effect of a quercetin nanoparticles formulation. Male C57BL/6 mice were induced into chronic renal failure with 50 mg/kg of adenine for four weeks. The animals were randomly grouped and treated with 25, 50, or 100 mg/kg of quercetin, either macroparticles or nanoparticles formulation. We performed biochemical, histological, and molecular analyses to evaluate and compare the effect of macroparticles versus nanoparticles formulation on kidney damage. Here, we demonstrated that smaller doses of nanoparticles exhibited the same beneficial effect as larger doses of macroparticles on preventing kidney damage. This finding translates into less quercetin consumption reaching the desired therapeutic effect.
Collapse
Affiliation(s)
- Esteban Andrés Sánchez-Jaramillo
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Centro de Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Jalisco, Mexico; (E.A.S.-J.); (L.E.G.-L.); (C.M.G.-D.); (B.E.B.-R.); (B.V.-G.)
| | - Luz Elena Gasca-Lozano
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Centro de Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Jalisco, Mexico; (E.A.S.-J.); (L.E.G.-L.); (C.M.G.-D.); (B.E.B.-R.); (B.V.-G.)
| | - José María Vera-Cruz
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Jalisco, Mexico;
| | - Luis Daniel Hernández-Ortega
- Centro de Investigación Multidisciplinario en Salud, Centro Universitario de Tonalá, Universidad de Guadalajara, Av. Nuevo Periférico 555, Tonalá 45425, Jalisco, Mexico; (L.D.H.-O.); (M.M.-E.)
| | - Carmen Magdalena Gurrola-Díaz
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Centro de Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Jalisco, Mexico; (E.A.S.-J.); (L.E.G.-L.); (C.M.G.-D.); (B.E.B.-R.); (B.V.-G.)
| | - Blanca Estela Bastidas-Ramírez
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Centro de Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Jalisco, Mexico; (E.A.S.-J.); (L.E.G.-L.); (C.M.G.-D.); (B.E.B.-R.); (B.V.-G.)
| | - Belinda Vargas-Guerrero
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Centro de Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Jalisco, Mexico; (E.A.S.-J.); (L.E.G.-L.); (C.M.G.-D.); (B.E.B.-R.); (B.V.-G.)
| | - Mayra Mena-Enríquez
- Centro de Investigación Multidisciplinario en Salud, Centro Universitario de Tonalá, Universidad de Guadalajara, Av. Nuevo Periférico 555, Tonalá 45425, Jalisco, Mexico; (L.D.H.-O.); (M.M.-E.)
| | | | - Adriana María Salazar-Montes
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Centro de Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Jalisco, Mexico; (E.A.S.-J.); (L.E.G.-L.); (C.M.G.-D.); (B.E.B.-R.); (B.V.-G.)
- Correspondence:
| |
Collapse
|
88
|
Usama SM, Marker SC, Hernandez Vargas S, AghaAmiri S, Ghosh SC, Ikoma N, Tran Cao HS, Schnermann MJ, Azhdarinia A. Targeted Dual-Modal PET/SPECT-NIR Imaging: From Building Blocks and Construction Strategies to Applications. Cancers (Basel) 2022; 14:1619. [PMID: 35406390 PMCID: PMC8996983 DOI: 10.3390/cancers14071619] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Molecular imaging is an emerging non-invasive method to qualitatively and quantitively visualize and characterize biological processes. Among the imaging modalities, PET/SPECT and near-infrared (NIR) imaging provide synergistic properties that result in deep tissue penetration and up to cell-level resolution. Dual-modal PET/SPECT-NIR agents are commonly combined with a targeting ligand (e.g., antibody or small molecule) to engage biomolecules overexpressed in cancer, thereby enabling selective multimodal visualization of primary and metastatic tumors. The use of such agents for (i) preoperative patient selection and surgical planning and (ii) intraoperative FGS could improve surgical workflow and patient outcomes. However, the development of targeted dual-modal agents is a chemical challenge and a topic of ongoing research. In this review, we define key design considerations of targeted dual-modal imaging from a topological perspective, list targeted dual-modal probes disclosed in the last decade, review recent progress in the field of NIR fluorescent probe development, and highlight future directions in this rapidly developing field.
Collapse
Affiliation(s)
- Syed Muhammad Usama
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; (S.M.U.); (S.C.M.)
| | - Sierra C. Marker
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; (S.M.U.); (S.C.M.)
| | - Servando Hernandez Vargas
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (S.H.V.); (S.A.); (S.C.G.)
| | - Solmaz AghaAmiri
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (S.H.V.); (S.A.); (S.C.G.)
| | - Sukhen C. Ghosh
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (S.H.V.); (S.A.); (S.C.G.)
| | - Naruhiko Ikoma
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (N.I.); (H.S.T.C.)
| | - Hop S. Tran Cao
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (N.I.); (H.S.T.C.)
| | - Martin J. Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; (S.M.U.); (S.C.M.)
| | - Ali Azhdarinia
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (S.H.V.); (S.A.); (S.C.G.)
| |
Collapse
|
89
|
Life-Related Hazards of Materials Applied to Mg–S Batteries. ENERGIES 2022. [DOI: 10.3390/en15041543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nowadays, rechargeable batteries utilizing an S cathode together with an Mg anode are under substantial interest and development. The review is made from the point of view of materials engaged during the development of the Mg–S batteries, their sulfur cathodes, magnesium anodes, electrolyte systems, current collectors, and separators. Simultaneously, various hazards related to the use of such materials are discussed. It was found that the most numerous groups of hazards are posed by the material groups of cathodes and electrolytes. Such hazards vary widely in type and degree of danger and are related to human bodies, aquatic life, flammability of materials, or the release of flammable or toxic gases by the latter.
Collapse
|
90
|
Recent development in nanocrystal based drug delivery for neurodegenerative diseases: Scope, challenges, current and future prospects. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
91
|
Silver Nanoparticles (AgNPs) in Urea Solution in Laboratory Tests and Field Experiments with Crops and Vegetables. MATERIALS 2022; 15:ma15030870. [PMID: 35160816 PMCID: PMC8837176 DOI: 10.3390/ma15030870] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 12/12/2022]
Abstract
Nanotechnology and nanomaterials, including silver nanoparticles (AgNPs), are increasingly important in modern science, economics, and agriculture. Their biological activity involves influencing plant health, physiological processes, growth, and yields, although they can also be toxic in the environment. A new fertiliser was made based on a urea solution with a relatively low content of AgNPs obtained by the reduction of silver nitrate V. Laboratory tests were used to assess the effect of a fertiliser solution containing 10 ppm AgNPs on the germination of agricultural plant seeds (barley, peas, oilseed rape) and vegetables (radish, cucumber, lettuce) and its foliar application on chlorophyll content, stomatal conductance, and seedling biomass. Field experiments were conducted to assess the effect that a foliar application of 15 ppm AgNPs in working liquid had on physiological plant parameters and yields of rape and cucumber. The AgNPs in the tested fertiliser reduced infestation of the germinating seeds by pathogens and positively affected the physiological processes, productivity, and yields of plants. Plant response depended on plant species and habitat conditions. Reduced pathogen infestation of seeds, higher germination energy, increased chlorophyll content and stomatal conductance, and higher seedling masses all occurred under the influence of AgNPs, mainly in oilseed rape and cucumber, and especially under thermal stress. The beneficial effect of AgNPs on the yield of these plants occurred in years of unfavourable weather conditions. The positive agricultural test results, especially under stress conditions, indicate that fertiliser produced with AgNPs as an ingredient may reduce the use of pesticides and highly concentrated mineral fertilisers. Such a fertiliser is fully in line with the idea of sustainable agriculture. However, research on the effects that AgNPs and fertiliser have on the environment and humans should continue.
Collapse
|
92
|
Yin XH, Xu YM, Lau ATY. Nanoparticles: Excellent Materials Yet Dangerous When They Become Airborne. TOXICS 2022; 10:50. [PMID: 35202237 PMCID: PMC8874650 DOI: 10.3390/toxics10020050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 02/05/2023]
Abstract
Since the rise and rapid development of nanoscale science and technology in the late 1980s, nanomaterials have been widely used in many areas including medicine, electronic products, crafts, textiles, and cosmetics, which have provided a lot of convenience to people's life. However, while nanomaterials have been fully utilized, their negative effects, also known as nano pollution, have become increasingly apparent. The adverse effects of nanomaterials on the environment and organisms are mainly based on the unique size and physicochemical properties of nanoparticles (NPs). NPs, as the basic unit of nanomaterials, generally refer to the ultrafine particles whose spatial scale are defined in the range of 1-100 nm. In this review, we mainly introduce the basic status of the types and applications of NPs, airborne NP pollution, and the relationship between airborne NP pollution and human diseases. There are many sources of airborne NP pollutants, including engineered nanoparticles (ENPs) and non-engineered nanoparticles (NENPs). The NENPs can be further divided into those generated from natural activities and those produced by human activities. A growing number of studies have found that exposure to airborne NP pollutants can cause a variety of illnesses, such as respiratory diseases, cardiovascular diseases, and neurological disorders. To deal with the ever increasing numbers and types of NPs being unleashed to the air, we believe that extensive research is needed to provide a comprehensive understanding of NP pollution hazards and their impact mechanisms. Only in this way can we find the best solution and truly protect the safety and quality of life of human beings.
Collapse
Affiliation(s)
- Xiao-Hui Yin
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Andy T. Y. Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
93
|
Fateh Basharzad S, Hamidi M, Maleki A, Karami Z, Mohamadpour H, Reza Saghatchi Zanjani M. Polysorbate-coated mesoporous silica nanoparticles as an efficient carrier for improved rivastigmine brain delivery. Brain Res 2022; 1781:147786. [PMID: 35041841 DOI: 10.1016/j.brainres.2022.147786] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/11/2021] [Accepted: 01/10/2022] [Indexed: 12/16/2022]
Abstract
Targeted delivery of neurological therapeutic to the brain has been attracting more and more attention to the treatment of central nervous system (CNS) diseases. Nonetheless, the main obstacle in this road map is the existence of a blood-brain barrier (BBB) which limits the penetration efficiency of most CNS drugs into the brain parenchyma. This present investigation describes a facile synthetic strategy to prepare a highly biocompatible calcium-doped mesoporous silica nanoparticles (MSNs) functionalized by polysorbate-80 (PS) as targeting ligand to deliver rivastigmine (RV) into the brain via crossing the BBB. The developed nanosystem was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), Zeta potential, and N2-adsorption-desorption analysis. In vitro hemolysis studies were carried out to confirm the biocompatibility of the nanocarriers. Our in vivo studies in an animal model of rats showed that the RV-loaded nanosystem was able to enhance the brain-to-plasma concentration ratio, brain uptake clearance, and plasma elimination half-life of the drug compared to the free one drug following intravenous (IV) administration. The results revealed that functionalization of MSNs by PS is crucial to deliver RV into the brain, suggesting PS-functionalized MSNs could be an effective carrier to deliver RV to the brain while overcoming BBB.
Collapse
Affiliation(s)
- Samaneh Fateh Basharzad
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehrdad Hamidi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Aziz Maleki
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Zahra Karami
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hamed Mohamadpour
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | | |
Collapse
|
94
|
Apreja M, Sharma A, Balda S, Kataria K, Capalash N, Sharma P. Antibiotic residues in environment: antimicrobial resistance development, ecological risks, and bioremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:3355-3371. [PMID: 34773239 DOI: 10.1007/s11356-021-17374-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
The overuse of antibiotics and their disposal without processing are leading the environment and its inhabitants towards a serious health emergency. There is abundance of diverse antibiotic resistance genes and bacteria in environment, which demands immediate attention for the effective removal of antibiotics. There are physical and chemical methods for removal, but the generation of toxic byproducts has directed the efforts towards bioremediation for eco-friendly and sustainable elimination of antibiotics from the environment. Various effective and reliable bioremediation approaches have been used, but still antibiotic residues pose a major global threat. Recent developments in molecular and synthetic biology might offer better solution for engineering of microbe-metabolite biodevices and development of novel strains endowed with desirable properties. This review summarizes the impact of antibiotics on environment, mechanisms of resistance development, and different bioremediation approaches.
Collapse
Affiliation(s)
- Mansi Apreja
- Department of Microbiology, Panjab University, Chandigarh, 160014, India
| | - Aarjoo Sharma
- Department of Microbiology, Panjab University, Chandigarh, 160014, India
| | - Sanjeev Balda
- Department of Microbiology, Panjab University, Chandigarh, 160014, India
| | - Kirti Kataria
- Department of Microbiology, Panjab University, Chandigarh, 160014, India
| | - Neena Capalash
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Prince Sharma
- Department of Microbiology, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
95
|
Bonsignore G, Patrone M, Martinotti S, Ranzato E. "Green" Biomaterials: The Promising Role of Honey. J Funct Biomater 2021; 12:jfb12040072. [PMID: 34940551 PMCID: PMC8708775 DOI: 10.3390/jfb12040072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
The development of nanotechnology has allowed us to better exploit the potential of many natural compounds. However, the classic nanotechnology approach often uses both dangerous and environmentally harmful chemical compounds and drastic conditions for synthesis. Nevertheless, “green chemistry” techniques are revolutionizing the possibility of making technology, also for tissue engineering, environmentally friendly and cost-effective. Among the many approaches proposed and among several natural compounds proposed, honey seems to be a very promising way to realize this new “green” approach.
Collapse
|
96
|
Kavitha A, Shanmugan S, Awuchi C, Kanagaraj C, Ravichandran S. Synthesis and enhanced antibacterial using plant extracts with silver nanoparticles: Therapeutic application. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.109045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
97
|
Green Synthesis of Gold Nanoparticles Using Plant Extracts as Beneficial Prospect for Cancer Theranostics. Molecules 2021; 26:molecules26216389. [PMID: 34770796 PMCID: PMC8586976 DOI: 10.3390/molecules26216389] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Gold nanoparticles (AuNPs) have been widely explored and are well-known for their medical applications. Chemical and physical synthesis methods are a way to make AuNPs. In any case, the hunt for other more ecologically friendly and cost-effective large-scale technologies, such as environmentally friendly biological processes known as green synthesis, has been gaining interest by worldwide researchers. The international focus on green nanotechnology research has resulted in various nanomaterials being used in environmentally and physiologically acceptable applications. Several advantages over conventional physical and chemical synthesis (simple, one-step approach to synthesize, cost-effectiveness, energy efficiency, and biocompatibility) have drawn scientists’ attention to exploring the green synthesis of AuNPs by exploiting plants’ secondary metabolites. Biogenic approaches, mainly the plant-based synthesis of metal nanoparticles, have been chosen as the ideal strategy due to their environmental and in vivo safety, as well as their ease of synthesis. In this review, we reviewed the use of green synthesized AuNPs in the treatment of cancer by utilizing phytochemicals found in plant extracts. This article reviews plant-based methods for producing AuNPs, characterization methods of synthesized AuNPs, and discusses their physiochemical properties. This study also discusses recent breakthroughs and achievements in using green synthesized AuNPs in cancer treatment and different mechanisms of action, such as reactive oxygen species (ROS), mediated mitochondrial dysfunction and caspase activation, leading to apoptosis, etc., for their anticancer and cytotoxic effects. Understanding the mechanisms underlying AuNPs therapeutic efficacy will aid in developing personalized medicines and treatments for cancer as a potential cancer therapeutic strategy.
Collapse
|