51
|
Teijeira A, Garasa S, Luri-Rey C, de Andrea C, Gato M, Molina C, Kaisho T, Cirella A, Azpilikueta A, Wculek SK, Egea J, Olivera I, Rodriguez I, Rouzaut A, Verkhusha V, Valencia K, Sancho D, Berraondo P, Melero I. Depletion of Conventional Type-1 Dendritic Cells in Established Tumors Suppresses Immunotherapy Efficacy. Cancer Res 2022; 82:4373-4385. [PMID: 36130020 DOI: 10.1158/0008-5472.can-22-1046] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/29/2022] [Accepted: 09/19/2022] [Indexed: 01/24/2023]
Abstract
The ability of conventional type-1 dendritic cells (cDC1) to cross-present tumor antigens to CD8+ T cells is critical for the induction of antitumor CTLs. Mice that are constitutively deficient in cDC1 cells have been reported to fail to respond to immunotherapy strategies based on checkpoint inhibitors. However, further work is needed to clarify the precise time during immunotherapy treatment that cDC1 cells are required for the beneficial effect of treatment. Here, we used a refined XCR1-DTR-Venus transgenic mouse model to acutely deplete cDC1 cells and trace their behavior using intravital microscopy. Diphtheria toxin-mediated cDC1 depletion prior to immunotherapy treatment with anti-PD-1 and/or anti-CD137 immunostimulatory mAbs completely ablated antitumor efficacy. The efficacy of adoptive T-cell therapy was also hampered by prior cDC1 depletion. After the onset of immunotherapy treatment, depletion of cDC1s only moderately reduced the therapeutic efficacy of anti-PD-1 and anti-CD137 mAbs. Intravital microscopy of liver-engrafted tumors revealed changes in the intratumoral behavior of cDC1 cells in mice receiving immunotherapy, and treatment with diphtheria toxin to deplete cDC1s impaired tumor T-cell infiltration and function. These results reveal that the functional integrity of the cDC1 compartment is required at the onset of various immunotherapies to successfully treat established tumors. SIGNIFICANCE These findings reveal the intratumoral behavior of cDC1 dendritic cells in transgenic mouse models and demonstrate that the efficacy of immunotherapy regimens is precluded by elimination of these cells.
Collapse
Affiliation(s)
- Alvaro Teijeira
- Immunology and Immunotherapy Department, Center for Applied Medical Research (CIMA), Universidad de Navarra, Pamplona, Spain.,Navarra Institute of Health Research (IDISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Madrid, Spain
| | - Saray Garasa
- Immunology and Immunotherapy Department, Center for Applied Medical Research (CIMA), Universidad de Navarra, Pamplona, Spain.,Navarra Institute of Health Research (IDISNA), Pamplona, Spain
| | - Carlos Luri-Rey
- Immunology and Immunotherapy Department, Center for Applied Medical Research (CIMA), Universidad de Navarra, Pamplona, Spain
| | - Carlos de Andrea
- Navarra Institute of Health Research (IDISNA), Pamplona, Spain.,Pathology Department, Clinica Universidad de Navarra, Pamplona, Spain
| | - Maria Gato
- Immunology and Immunotherapy Department, Center for Applied Medical Research (CIMA), Universidad de Navarra, Pamplona, Spain
| | - Carmen Molina
- Immunology and Immunotherapy Department, Center for Applied Medical Research (CIMA), Universidad de Navarra, Pamplona, Spain
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Assunta Cirella
- Immunology and Immunotherapy Department, Center for Applied Medical Research (CIMA), Universidad de Navarra, Pamplona, Spain
| | - Arantza Azpilikueta
- Immunology and Immunotherapy Department, Center for Applied Medical Research (CIMA), Universidad de Navarra, Pamplona, Spain.,Navarra Institute of Health Research (IDISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Madrid, Spain
| | - Steffanie K Wculek
- Immunobiology Lab, Centro Nacional de Investigación Cardiovasculares (CNIC), Madrid, Spain
| | - Josune Egea
- Immunology and Immunotherapy Department, Center for Applied Medical Research (CIMA), Universidad de Navarra, Pamplona, Spain
| | - Irene Olivera
- Immunology and Immunotherapy Department, Center for Applied Medical Research (CIMA), Universidad de Navarra, Pamplona, Spain
| | - Inmaculada Rodriguez
- Immunology and Immunotherapy Department, Center for Applied Medical Research (CIMA), Universidad de Navarra, Pamplona, Spain.,Navarra Institute of Health Research (IDISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Madrid, Spain
| | - Ana Rouzaut
- Immunology and Immunotherapy Department, Center for Applied Medical Research (CIMA), Universidad de Navarra, Pamplona, Spain.,Navarra Institute of Health Research (IDISNA), Pamplona, Spain
| | - Vladislav Verkhusha
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Karmele Valencia
- Navarra Institute of Health Research (IDISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Madrid, Spain.,Oncology Department, CIMA, Universidad de Navarra, Pamplona, Spain
| | - David Sancho
- Immunobiology Lab, Centro Nacional de Investigación Cardiovasculares (CNIC), Madrid, Spain
| | - Pedro Berraondo
- Immunology and Immunotherapy Department, Center for Applied Medical Research (CIMA), Universidad de Navarra, Pamplona, Spain.,Navarra Institute of Health Research (IDISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Madrid, Spain
| | - Ignacio Melero
- Immunology and Immunotherapy Department, Center for Applied Medical Research (CIMA), Universidad de Navarra, Pamplona, Spain.,Navarra Institute of Health Research (IDISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Madrid, Spain.,Deparments of Immunology and Oncology, Clinica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
52
|
Bao Z, Tang Q, Chen H, Zhang B, Shi W, Gu D. An abscopal effect in a gastric cancer patient treated with combined chemoimmunotherapy and palliative radiotherapy. Immunotherapy 2022; 14:1429-1435. [PMID: 36537254 DOI: 10.2217/imt-2022-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The prognosis of advanced gastric cancer remains poor. Palliative radiotherapy has been utilized to palliate bleeding in unresectable gastric cancer. Recent studies have described that a systemic immune response may be induced by local radiotherapy to the primary tumor lesion. Here we report a rare case of an abscopal effect in a patient with inoperable gastric cancer combined with tumor hemorrhage. A short course of radiotherapy was performed to palliate bleeding; additionally, the patient was treated with chemotherapy and immunotherapy. Complete response was achieved in the lung metastasis lesion. The observed abscopal effect suggests that there may be a synergistic effect between immunotherapy and radiotherapy. This case report supports the combination of immunotherapy and radiotherapy in patients with advanced gastric cancer.
Collapse
Affiliation(s)
- Zengtao Bao
- Department of Gastrointestinal Surgery, The First People's Hospital of Lianyungang, Lianyungang, 222016, PR China.,The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, 222016, PR China.,Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, 222016, PR China
| | - Qiang Tang
- Department of Gastrointestinal Surgery, The First People's Hospital of Lianyungang, Lianyungang, 222016, PR China.,The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, 222016, PR China.,Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, 222016, PR China
| | - Huiyu Chen
- Department of Gastrointestinal Surgery, The First People's Hospital of Lianyungang, Lianyungang, 222016, PR China.,The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, 222016, PR China.,Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, 222016, PR China
| | - Baoming Zhang
- Department of Gastrointestinal Surgery, The First People's Hospital of Lianyungang, Lianyungang, 222016, PR China.,The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, 222016, PR China.,Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, 222016, PR China
| | - Wenchao Shi
- Department of Gastrointestinal Surgery, The First People's Hospital of Lianyungang, Lianyungang, 222016, PR China.,The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, 222016, PR China.,Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, 222016, PR China
| | - Dezhi Gu
- Department of Gastrointestinal Surgery, The First People's Hospital of Lianyungang, Lianyungang, 222016, PR China.,The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, 222016, PR China.,Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, 222016, PR China
| |
Collapse
|
53
|
Barker CA, Riaz N. A macrophage-activated abscopal effect. NATURE CANCER 2022; 3:1282-1283. [PMID: 36411321 DOI: 10.1038/s43018-022-00464-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Affiliation(s)
- Christopher A Barker
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
54
|
Togitani K, Asagiri T, Iguchi M, Igawa T, Yoshino T, Kojima K. Systemic Abscopal Effect of Low-dose Radiotherapy (2 Gy ×2) against Palatine Tonsil Follicular Lymphoma. Intern Med 2022; 61:3107-3110. [PMID: 35314548 PMCID: PMC9646336 DOI: 10.2169/internalmedicine.8968-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A 52-year-old man presented with palatine tonsillar swelling caused by follicular lymphoma. His tumor burden was low, but exacerbation of snoring and dysphagia was observed. Considering the first wave of coronavirus disease 2019 (COVID-19) pandemic, he received palliative 4-Gy irradiation to the tonsils in 2 fractions, which induced partial regression of tonsillar swellings and eradication of the circulating lymphoma cells. We suggest that low-dose radiotherapy triggered an abscopal effect of lymphoma, which allowed the patient time to receive COVID-19 vaccination before starting immunosuppressive chemo-immunotherapy.
Collapse
Affiliation(s)
- Kazuto Togitani
- Department of Hematology, Kochi Medical School, Kochi University, Japan
| | - Tadashi Asagiri
- Department of Laboratory Medicine, Kochi Medical School Hospital, Kochi University, Japan
| | - Mitsuko Iguchi
- Department of Pathology, Kochi Medical School, Kochi University, Japan
| | - Takuro Igawa
- Department of Pathology, Okayama University Graduate School, Japan
| | - Tadashi Yoshino
- Department of Pathology, Okayama University Graduate School, Japan
| | - Kensuke Kojima
- Department of Hematology, Kochi Medical School, Kochi University, Japan
| |
Collapse
|
55
|
Wall I, Boulat V, Shah A, Blenman KRM, Wu Y, Alberts E, Calado DP, Salgado R, Grigoriadis A. Leveraging the Dynamic Immune Environment Triad in Patients with Breast Cancer: Tumour, Lymph Node, and Peripheral Blood. Cancers (Basel) 2022; 14:4505. [PMID: 36139665 PMCID: PMC9496983 DOI: 10.3390/cancers14184505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022] Open
Abstract
During the anti-tumour response to breast cancer, the primary tumour, the peripheral blood, and the lymph nodes each play unique roles. Immunological features at each site reveal evidence of continuous immune cross-talk between them before, during and after treatment. As such, immune responses to breast cancer are found to be highly dynamic and truly systemic, integrating three distinct immune sites, complex cell-migration highways, as well as the temporal dimension of disease progression and treatment. In this review, we provide a connective summary of the dynamic immune environment triad of breast cancer. It is critical that future studies seek to establish dynamic immune profiles, constituting multiple sites, that capture the systemic immune response to breast cancer and define patient-selection parameters resulting in more significant overall responses and survival rates for breast cancer patients.
Collapse
Affiliation(s)
- Isobelle Wall
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK
| | - Victoire Boulat
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK
- Immunity and Cancer Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Aekta Shah
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK
- Department of Pathology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai 400012, India
| | - Kim R. M. Blenman
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
- Department of Computer Science, School of Engineering and Applied Science, Yale University, New Haven, CT 06511, USA
| | - Yin Wu
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King’s College London, London SE1 9RT, UK
- Centre for Inflammation Biology and Cancer Immunology, School of Immunology & Microbial Sciences, King’s College London, London SE1 9RT, UK
| | - Elena Alberts
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK
- Immunity and Cancer Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Dinis Pedro Calado
- Immunity and Cancer Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Roberto Salgado
- Department of Pathology, GZA-ZNA Hospitals, 2610 Antwerp, Belgium
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Anita Grigoriadis
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK
| |
Collapse
|
56
|
Chan Wah Hak CML, Rullan A, Patin EC, Pedersen M, Melcher AA, Harrington KJ. Enhancing anti-tumour innate immunity by targeting the DNA damage response and pattern recognition receptors in combination with radiotherapy. Front Oncol 2022; 12:971959. [PMID: 36106115 PMCID: PMC9465159 DOI: 10.3389/fonc.2022.971959] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Radiotherapy is one of the most effective and frequently used treatments for a wide range of cancers. In addition to its direct anti-cancer cytotoxic effects, ionising radiation can augment the anti-tumour immune response by triggering pro-inflammatory signals, DNA damage-induced immunogenic cell death and innate immune activation. Anti-tumour innate immunity can result from recruitment and stimulation of dendritic cells (DCs) which leads to tumour-specific adaptive T-cell priming and immunostimulatory cell infiltration. Conversely, radiotherapy can also induce immunosuppressive and anti-inflammatory mediators that can confer radioresistance. Targeting the DNA damage response (DDR) concomitantly with radiotherapy is an attractive strategy for overcoming radioresistance, both by enhancing the radiosensitivity of tumour relative to normal tissues, and tipping the scales in favour of an immunostimulatory tumour microenvironment. This two-pronged approach exploits genomic instability to circumvent immune evasion, targeting both hallmarks of cancer. In this review, we describe targetable DDR proteins (PARP (poly[ADP-ribose] polymerase); ATM/ATR (ataxia-telangiectasia mutated and Rad3-related), DNA-PKcs (DNA-dependent protein kinase, catalytic subunit) and Wee1 (Wee1-like protein kinase) and their potential intersections with druggable immunomodulatory signalling pathways, including nucleic acid-sensing mechanisms (Toll-like receptors (TLR); cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) and retinoic acid-inducible gene-I (RIG-I)-like receptors), and how these might be exploited to enhance radiation therapy. We summarise current preclinical advances, recent and ongoing clinical trials and the challenges of therapeutic combinations with existing treatments such as immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | - Antonio Rullan
- Targeted Therapy Team, The Institute of Cancer Research, London, United Kingdom
| | - Emmanuel C. Patin
- Targeted Therapy Team, The Institute of Cancer Research, London, United Kingdom
| | - Malin Pedersen
- Targeted Therapy Team, The Institute of Cancer Research, London, United Kingdom
| | - Alan A. Melcher
- Translational Immunotherapy Team, The Institute of Cancer Research, London, United Kingdom
| | - Kevin J. Harrington
- Targeted Therapy Team, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
57
|
Rostami E, Bakhshandeh M, Ghaffari-Nazari H, Alinezhad M, Alimohammadi M, Alimohammadi R, Mahmoodi Chalbatani G, Hejazi E, Webster TJ, Tavakkol-Afshari J, Jalali SA. Combining ablative radiotherapy and anti CD47 monoclonal antibody improves infiltration of immune cells in tumor microenvironments. PLoS One 2022; 17:e0273547. [PMID: 36018888 PMCID: PMC9417014 DOI: 10.1371/journal.pone.0273547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/10/2022] [Indexed: 11/19/2022] Open
Abstract
Radiotherapy as an anti-tumor treatment can stimulate the immune system. However, irradiated tumor cells express CD47 to escape the anti-tumor immune response. Anti- CD47 Immunotherapy is a possible way to tackle this problem. This study evaluated the effect of single high dose radiotherapy combined with an anti-CD47 monoclonal antibody (αCD47 mAb) in CT26 tumor‐bearing BALB/c mice. We assessed the tumors volume and survival in mice 60 days after tumor implantation. Also, immune cell changes were analyzed by flow cytometry in tumors, lymph nodes, and spleen. Combination therapy enhanced the anti-tumor response in treated mice by increasing CD8+ T cells and M1 macrophages and decreasing M2 macrophages and myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment (TME). Also, our results showed that combination therapy increased survival time in mice compared to other groups. Furthermore, tumor volumes remarkably decreased in mice that received a single high dose RT plus αCD47 mAb. In conclusion, we showed that combining RT and αCD47 mAb improved the immune cell population in TME, regressed tumor growth, and increased survival in tumor-bearing mice.
Collapse
Affiliation(s)
- Elham Rostami
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Bakhshandeh
- Department of Radiology Technology, Allied Medical Faculty, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Haniyeh Ghaffari-Nazari
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maedeh Alinezhad
- Department of Immunology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Alimohammadi
- Department of Oncology, Tumor Immunotherapy and Microenvironment Group, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Reza Alimohammadi
- Department of Immunology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghanbar Mahmoodi Chalbatani
- Department of Oncology, Tumor Immunotherapy and Microenvironment Group, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Ehsan Hejazi
- Department of Clinical Nutrition and Dietetics, School of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Thomas J. Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States of America
| | - Jalil Tavakkol-Afshari
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- * E-mail: , (SAJ); (JTA)
| | - Seyed Amir Jalali
- Department of Immunology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- * E-mail: , (SAJ); (JTA)
| |
Collapse
|
58
|
Synergistic effects of radiotherapy and targeted immunotherapy in improving tumor treatment efficacy: a review. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 24:2255-2271. [PMID: 35913663 DOI: 10.1007/s12094-022-02888-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/05/2022] [Indexed: 10/16/2022]
Abstract
Radiotherapy (RT), unlike chemotherapy, is one of the most routinely used and effective genotoxic and immune response inducing cancer therapies with an advantage of reduced side effects. However, cancer can relapse after RT owing to multiple factors, including acquired tumor resistance, immune suppressive microenvironment buildup, increased DNA repair, thus favoring tumor metastasis. Efforts to mitigate these undesirable effects have drawn interest in combining RT with immunotherapy, particularly the use of immune checkpoint inhibitors, to tilt the pre-existing tumor stromal microenvironment into long-lasting therapy-induced antitumor immunity at multiple metastatic sites (abscopal effects). This multimodal therapeutic strategy can alleviate the increased T cell priming and decrease tumor growth and metastasis, thus emerging as a significant approach to sustain as long-term antitumor immunity. To understand more about this synergism, a detailed cellular mechanism underlying the dynamic interaction between tumor and immune cells within the irradiated tumor microenvironment needs to be explored. Hence, in the present review, we have attempted to evaluate various RT-inducible immune factors, which can be targeted by immunotherapy and provide detailed explanation to optimally maximize their synergy with immunotherapy for long-lasting antitumor immunity. Moreover, we have critically assessed various combinatorial approaches along with their challenges and described strategies to modify them in addition to providing approaches for optimal synergistic effects of the combination.
Collapse
|
59
|
Targeting Tumor Acidosis and Regulatory T Cells Unmasks Anti-Metastatic Potential of Local Tumor Ablation in Triple-Negative Breast Cancer. Int J Mol Sci 2022; 23:ijms23158479. [PMID: 35955613 PMCID: PMC9368760 DOI: 10.3390/ijms23158479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 01/27/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an immunologically heterogenous disease that lacks clinically actionable targets and is more likely to progress to metastatic disease than other types of breast cancer. Tumor ablation has been used to increase response rates to checkpoint inhibitors, which remain low for TNBC patients. We hypothesized that tumor ablation could produce an anti-tumor response without using checkpoint inhibitors if immunosuppression (i.e., Tregs, tumor acidosis) was subdued. Tumors were primed with sodium bicarbonate (200 mM p.o.) to reduce tumor acidosis and low-dose cyclophosphamide (100–200 mg/kg i.p.) to deplete regulatory T cells, as has been shown independently in previous studies. A novel injectable ablative was then used to necrose the tumor, release tumor antigens, and initiate an immune event that could create an abscopal effect. This combination of bicarbonate, cyclophosphamide, and ablation, called “BiCyclA”, was tested in three syngeneic models of TNBC: E0771 (C57BL/6), 67NR (BALB/c), and 4T1-Luc (BALB/c). In E0771 and 67NR, BiCyclA therapy significantly reduced tumor growth and cured 5/7 and 6/10 mice 50 days after treatment respectively. In the metastatic 4T1-Luc tumors, for which surgery and checkpoint inhibitors fail, BiCyclA cured 5/10 mice of primary tumors and lung metastases. Notably, CD4+ and CD8+ T cells were found to be crucial for the anti-metastatic response, and cured mice were able to resist tumor rechallenge, suggesting production of immune memory. Reduction of tumor acidity and regulatory T cells with ablation is a simple yet effective therapy for local and systemic tumor control with broad applicability as it is not limited by expensive supplies.
Collapse
|
60
|
Zhang Z, Liu X, Chen D, Yu J. Radiotherapy combined with immunotherapy: the dawn of cancer treatment. Signal Transduct Target Ther 2022; 7:258. [PMID: 35906199 PMCID: PMC9338328 DOI: 10.1038/s41392-022-01102-y] [Citation(s) in RCA: 219] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/19/2022] [Accepted: 06/30/2022] [Indexed: 11/09/2022] Open
Abstract
Radiotherapy (RT) is delivered for purposes of local control, but can also exert systemic effect on remote and non-irradiated tumor deposits, which is called abscopal effect. The view of RT as a simple local treatment has dramatically changed in recent years, and it is now widely accepted that RT can provoke a systemic immune response which gives a strong rationale for the combination of RT and immunotherapy (iRT). Nevertheless, several points remain to be addressed such as the interaction of RT and immune system, the identification of the best schedules for combination with immunotherapy (IO), the expansion of abscopal effect and the mechanism to amplify iRT. To answer these crucial questions, we roundly summarize underlying rationale showing the whole immune landscape in RT and clinical trials to attempt to identify the best schedules of iRT. In consideration of the rarity of abscopal effect, we propose that the occurrence of abscopal effect induced by radiation can be promoted to 100% in view of molecular and genetic level. Furthermore, the “radscopal effect” which refers to using low-dose radiation to reprogram the tumor microenvironment may amplify the occurrence of abscopal effect and overcome the resistance of iRT. Taken together, RT could be regarded as a trigger of systemic antitumor immune response, and with the help of IO can be used as a radical and systemic treatment and be added into current standard regimen of patients with metastatic cancer.
Collapse
Affiliation(s)
- Zengfu Zhang
- Department of Radiation Oncology, Shandong University Cancer Center, Yantai Road, No. 2999, Jinan, Shandong, China
| | - Xu Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road, No. 440, Jinan, Shandong, China
| | - Dawei Chen
- Department of Radiation Oncology, Shandong University Cancer Center, Yantai Road, No. 2999, Jinan, Shandong, China.
| | - Jinming Yu
- Department of Radiation Oncology, Shandong University Cancer Center, Yantai Road, No. 2999, Jinan, Shandong, China.
| |
Collapse
|
61
|
Interaction of Radiotherapy and Hyperthermia with the Immune System: a Brief Current Overview. CURRENT STEM CELL REPORTS 2022. [DOI: 10.1007/s40778-022-00215-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Abstract
Purpose of Review
This review focuses on the opposing effects on the immune system of radiotherapy (RT) and the consequences for combined cancer treatment strategies of RT with immunotherapies, including hyperthermia (HT). How RT and HT might affect cancer stem cell populations is also briefly outlined in this context.
Recent Findings
RT is one of the crucial standard cancer therapies. Most patients with solid tumors receive RT for curative and palliative purposes in the course of their disease. RT achieves a local tumor control by inducing DNA damage which can lead to tumor cell death. In recent years, it has become evident that RT does not only have local effects, but also systemic effects which involves induction of anti-tumor immunity and possible alteration of the immunosuppressive properties of the tumor microenvironment. Though, often RT alone is not able to induce potent anti-tumor immune responses since the effects of RT on the immune system can be both immunostimulatory and immunosuppressive.
Summary
RT with additional therapies such as HT and immune checkpoint inhibitors (ICI) are promising approaches to induce anti-tumor immunity effectively. HT is not only a potent sensitizer for RT, but it might also improve the efficacy of RT and certain chemotherapeutic agents (CT) by additionally sensitizing resistant cancer stem cells (CSCs).
Graphical abstract
Collapse
|
62
|
Kuang X, Li J. Chromosome instability and aneuploidy as context-dependent activators or inhibitors of antitumor immunity. Front Immunol 2022; 13:895961. [PMID: 36003402 PMCID: PMC9393846 DOI: 10.3389/fimmu.2022.895961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/28/2022] [Indexed: 12/11/2022] Open
Abstract
Chromosome instability (CIN) and its major consequence, aneuploidy, are hallmarks of human cancers. In addition to imposing fitness costs on tumor cells through several cell-intrinsic mechanisms, CIN/aneuploidy also provokes an antitumor immune response. However, as the major contributor to genomic instability, intratumor heterogeneity generated by CIN/aneuploidy helps tumor cells to evolve methods to overcome the antitumor role of the immune system or even convert the immune system to be tumor-promoting. Although the interplay between CIN/aneuploidy and the immune system is complex and context-dependent, understanding this interplay is essential for the success of immunotherapy in tumors exhibiting CIN/aneuploidy, regardless of whether the efficacy of immunotherapy is increased by combination with strategies to promote CIN/aneuploidy or by designing immunotherapies to target CIN/aneuploidy directly.
Collapse
Affiliation(s)
- Xiaohong Kuang
- Department of Hematology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Jian Li
- Department of General Surgery, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
- *Correspondence: Jian Li,
| |
Collapse
|
63
|
Cereceda K, Bravo N, Jorquera R, González-Stegmaier R, Villarroel-Espíndola F. Simultaneous and Spatially-Resolved Analysis of T-Lymphocytes, Macrophages and PD-L1 Immune Checkpoint in Rare Cancers. Cancers (Basel) 2022; 14:2815. [PMID: 35681797 PMCID: PMC9179863 DOI: 10.3390/cancers14112815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Penile, vulvar and anal neoplasms show an incidence lower than 0.5% of the population per year and therefore can be considered as rare cancers but with a dramatic impact on quality of life and survival. This work describes the experience of a Chilean cancer center using multiplexed immunofluorescence to study a case series of four penile cancers, two anal cancers and one vulvar cancer and simultaneous detection of CD8, CD68, PD-L1, Cytokeratin and Ki-67 in FFPE samples. Fluorescent image analyses were performed using open sources for automated tissue segmentation and cell phenotyping. Our results showed an objective and reliable counting of objects with a single or combined labeling or within a specific tissue compartment. The variability was below 10%, and the correlation between analytical events was 0.92-0.97. Critical cell phenotypes, such as TILs, PD-L1+ or proliferative tumor cells were detected in a supervised and unsupervised manner with a limit of detection of less than 1% of relative abundance. Finally, the observed diversity and abundance of the different cell phenotypes within the tumor microenvironment for the three studied tumor types confirmed that our methodology is useful and robust to be applicable for many other solid tumors.
Collapse
Affiliation(s)
- Karina Cereceda
- Translational Medicine Laboratory, Department of Cancer Research, Instituto Oncologico Fundacion Arturo Lopez Perez, Santiago 8320000, Chile; (K.C.); (R.J.); (R.G.-S.)
| | - Nicolas Bravo
- Medical Informatics Unit, Department of Cancer Research, Instituto Oncologico Fundacion Arturo Lopez Perez, Santiago 8320000, Chile;
| | - Roddy Jorquera
- Translational Medicine Laboratory, Department of Cancer Research, Instituto Oncologico Fundacion Arturo Lopez Perez, Santiago 8320000, Chile; (K.C.); (R.J.); (R.G.-S.)
| | - Roxana González-Stegmaier
- Translational Medicine Laboratory, Department of Cancer Research, Instituto Oncologico Fundacion Arturo Lopez Perez, Santiago 8320000, Chile; (K.C.); (R.J.); (R.G.-S.)
| | - Franz Villarroel-Espíndola
- Translational Medicine Laboratory, Department of Cancer Research, Instituto Oncologico Fundacion Arturo Lopez Perez, Santiago 8320000, Chile; (K.C.); (R.J.); (R.G.-S.)
| |
Collapse
|
64
|
Lerner EC, Edwards RM, Wilkinson DS, Fecci PE. Laser ablation: Heating up the anti-tumor response in the intracranial compartment. Adv Drug Deliv Rev 2022; 185:114311. [PMID: 35489652 PMCID: PMC10589123 DOI: 10.1016/j.addr.2022.114311] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/29/2022] [Accepted: 04/21/2022] [Indexed: 02/07/2023]
Abstract
Immunotherapies, such as immune checkpoint inhibition (ICI), have had limited success in treating intracranial malignancies. These failures are due partly to the restrictive blood-brain-barrier (BBB), the profound tumor-dependent induction of local and systemic immunosuppression, and immune evasion exhibited by these tumors. Therefore, novel approaches must be explored that aim to overcome these stringent barriers. LITT is an emerging treatment for brain tumors that utilizes thermal ablation to kill tumor cells. LITT provides an additional therapeutic benefit by synergizing with ICI and systemic chemotherapies to strengthen the anti-tumor immune response. This synergistic relationship involves transient disruption of the BBB and local augmentation of immune function, culminating in increased CNS drug penetrance and improved anti-tumor immunity. In this review, we will provide an overview of the challenges facing immunotherapy for brain tumors, and discuss how LITT may synergize with the endogenous anti-tumor response to improve the efficacy of ICI.
Collapse
Affiliation(s)
- Emily C Lerner
- Duke Medical School, Duke University Medical Center, Durham, NC, United States
| | - Ryan M Edwards
- Duke Medical School, Duke University Medical Center, Durham, NC, United States
| | - Daniel S Wilkinson
- Preston Robert Tisch Brain Tumor Center at Duke, Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| | - Peter E Fecci
- Preston Robert Tisch Brain Tumor Center at Duke, Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States.
| |
Collapse
|
65
|
Simon Davis DA, Atmosukarto II, Garrett J, Gosling K, Syed FM, Quah BJ. Irradiation immunity interactions. J Med Imaging Radiat Oncol 2022; 66:519-535. [PMID: 35261190 PMCID: PMC9314628 DOI: 10.1111/1754-9485.13399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/18/2022] [Accepted: 02/21/2022] [Indexed: 12/17/2022]
Abstract
The immune system can influence cancer development by both impeding and/or facilitating tumour growth and spread. A better understanding of this complex relationship is fundamental to optimise current and future cancer therapeutic strategies. Although typically regarded as a localised and immunosuppressive anti‐cancer treatment modality, radiation therapy has been associated with generating profound systemic effects beyond the intended target volume. These systemic effects are immune‐driven suggesting radiation therapy can enhance anti‐tumour immunosurveillance in some instances. In this review, we summarise how radiation therapy can positively and negatively affect local and systemic anti‐tumour immune responses, how co‐administration of immunotherapy with radiation therapy may help promote anti‐tumour immunity, and how the use of immune biomarkers may help steer radiation therapy‐immunotherapy personalisation to optimise clinical outcomes.
Collapse
Affiliation(s)
- David A Simon Davis
- Irradiation Immunity Interaction Laboratory, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia.,Division of Genome Sciences & Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Ines I Atmosukarto
- Irradiation Immunity Interaction Laboratory, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia.,Division of Genome Sciences & Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jessica Garrett
- Division of Genome Sciences & Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Katharine Gosling
- Division of Genome Sciences & Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Farhan M Syed
- Irradiation Immunity Interaction Laboratory, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia.,Division of Genome Sciences & Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia.,Radiation Oncology Department, Canberra Hospital, Canberra Health Services, Canberra, Australian Capital Territory, Australia
| | - Ben Jc Quah
- Irradiation Immunity Interaction Laboratory, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia.,Division of Genome Sciences & Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia.,Radiation Oncology Department, Canberra Hospital, Canberra Health Services, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
66
|
Glez-Vaz J, Azpilikueta A, Olivera I, Cirella A, Teijeira A, Ochoa MC, Alvarez M, Eguren-Santamaria I, Luri-Rey C, Rodriguez-Ruiz ME, Nie X, Chen L, Guedan S, Sanamed MF, Luis Perez Gracia J, Melero I. Soluble CD137 as a dynamic biomarker to monitor agonist CD137 immunotherapies. J Immunother Cancer 2022; 10:jitc-2021-003532. [PMID: 35236742 PMCID: PMC8896037 DOI: 10.1136/jitc-2021-003532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2022] [Indexed: 11/30/2022] Open
Abstract
Background On the basis of efficacy in mouse tumor models, multiple CD137 (4-1BB) agonist agents are being preclinically and clinically developed. The costimulatory molecule CD137 is inducibly expressed as a transmembrane or as a soluble protein (sCD137). Moreover, the CD137 cytoplasmic signaling domain is a key part in approved chimeric antigen receptors (CARs). Reliable pharmacodynamic biomarkers for CD137 ligation and costimulation of T cells will facilitate clinical development of CD137 agonists in the clinic. Methods We used human and mouse CD8 T cells undergoing activation to measure CD137 transcription and protein expression levels determining both the membrane-bound and soluble forms. In tumor-bearing mice plasma sCD137 concentrations were monitored on treatment with agonist anti-CD137 monoclonal antibodies (mAbs). Human CD137 knock-in mice were treated with clinical-grade agonist anti-human CD137 mAb (Urelumab). Sequential plasma samples were collected from the first patients intratumorally treated with Urelumab in the INTRUST clinical trial. Anti-mesothelin CD137-encompassing CAR-transduced T cells were stimulated with mesothelin coated microbeads. sCD137 was measured by sandwich ELISA and Luminex. Flow cytometry was used to monitor CD137 surface expression. Results CD137 costimulation upregulates transcription and protein expression of CD137 itself including sCD137 in human and mouse CD8 T cells. Immunotherapy with anti-CD137 agonist mAb resulted in increased plasma sCD137 in mice bearing syngeneic tumors. sCD137 induction is also observed in human CD137 knock-in mice treated with Urelumab and in mice transiently humanized with T cells undergoing CD137 costimulation inside subcutaneously implanted Matrigel plugs. The CD137 signaling domain-containing CAR T cells readily released sCD137 and acquired CD137 surface expression on antigen recognition. Patients treated intratumorally with low dose Urelumab showed increased plasma concentrations of sCD137. Conclusion sCD137 in plasma and CD137 surface expression can be used as quantitative parameters dynamically reflecting therapeutic costimulatory activity elicited by agonist CD137-targeted agents.
Collapse
Affiliation(s)
- Javier Glez-Vaz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Arantza Azpilikueta
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Irene Olivera
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Assunta Cirella
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Alvaro Teijeira
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Maria C Ochoa
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Maite Alvarez
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Iñaki Eguren-Santamaria
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Carlos Luri-Rey
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Maria E Rodriguez-Ruiz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Xinxin Nie
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lieping Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Medicine (Medical Oncology), Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sonia Guedan
- Department of Hematology and Oncology, Hospital Clinic. Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Miguel F Sanamed
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Jose Luis Perez Gracia
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain .,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
67
|
Assessment of hypoxia by pimonidazole staining following radiotherapy. Methods Cell Biol 2022; 172:179-189. [DOI: 10.1016/bs.mcb.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
68
|
Wang C, Dong Z, Hao Y, Zhu Y, Ni J, Li Q, Liu B, Han Y, Yang Z, Wan J, Yang K, Liu Z, Feng L. Coordination Polymer-Coated CaCO 3 Reinforces Radiotherapy by Reprogramming the Immunosuppressive Metabolic Microenvironment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106520. [PMID: 34773309 DOI: 10.1002/adma.202106520] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/26/2021] [Indexed: 05/23/2023]
Abstract
Radiotherapy is widely exploited for the treatment of a large range of cancers in clinic, but its therapeutic effectiveness is seriously crippled by the tumor immunosuppression, mainly driven by the altered metabolism of cancer cells. Here, a pH-responsive nanomedicine is prepared by coating calcium carbonate (CaCO3 ) nanoparticles with 4-phenylimidazole (4PI), an inhibitor against indoleamine 2,3-dioxygenase 1 (IDO-1), together with zinc ions via the coordination reaction, aiming at reinforcing the treatment outcome of radiotherapy. The obtained pH-responsive nanomedicine, coined as acidity-IDO1-modulation nanoparticles (AIM NPs), is able to instantly neutralize protons, and release 4PI to suppress the IDO1-mediated production of kynurenine (Kyn) upon tumor accumulation. As a result, treatment with AIM NPs can remarkably enhance the therapeutic efficacy of radiotherapy against both murine CT26 and 4T1 tumors by eliciting potent antitumor immunity. Furthermore, it is shown that such combination treatment can effectively suppress the growth of untreated distant tumors via the abscopal effect, and result in immune memory responses to reject rechallenged tumors. This work highlights a novel strategy of simultaneous tumor acidity neutralization and IDO1 inhibition to potentiate radiotherapy, with great promises to suppress tumor metastasis and recurrence by eliciting robust antitumor immunity.
Collapse
Affiliation(s)
- Chunjie Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Ziliang Dong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Yu Hao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Yujie Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Jing Ni
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RADX), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Quguang Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Bo Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Yikai Han
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Zhijuan Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Jianmei Wan
- Medical College of Soochow University, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RADX), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Liangzhu Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
69
|
Vitiello GAF, Ferreira WAS, Cordeiro de Lima VC, Medina TDS. Antiviral Responses in Cancer: Boosting Antitumor Immunity Through Activation of Interferon Pathway in the Tumor Microenvironment. Front Immunol 2021; 12:782852. [PMID: 34925363 PMCID: PMC8674309 DOI: 10.3389/fimmu.2021.782852] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/15/2021] [Indexed: 12/22/2022] Open
Abstract
In recent years, it became apparent that cancers either associated with viral infections or aberrantly expressing endogenous retroviral elements (EREs) are more immunogenic, exhibiting an intense intra-tumor immune cell infiltration characterized by a robust cytolytic apparatus. On the other hand, epigenetic regulation of EREs is crucial to maintain steady-state conditions and cell homeostasis. In line with this, epigenetic disruptions within steady-state cells can lead to cancer development and trigger the release of EREs into the cytoplasmic compartment. As such, detection of viral molecules by intracellular innate immune sensors leads to the production of type I and type III interferons that act to induce an antiviral state, thus restraining viral replication. This knowledge has recently gained momentum due to the possibility of triggering intratumoral activation of interferon responses, which could be used as an adjuvant to elicit strong anti-tumor immune responses that ultimately lead to a cascade of cytokine production. Accordingly, several therapeutic approaches are currently being tested using this rationale to improve responses to cancer immunotherapies. In this review, we discuss the immune mechanisms operating in viral infections, show evidence that exogenous viruses and endogenous retroviruses in cancer may enhance tumor immunogenicity, dissect the epigenetic control of EREs, and point to interferon pathway activation in the tumor milieu as a promising molecular predictive marker and immunotherapy target. Finally, we briefly discuss current strategies to modulate these responses within tumor tissues, including the clinical use of innate immune receptor agonists and DNA demethylating agents.
Collapse
Affiliation(s)
| | - Wallax Augusto Silva Ferreira
- Translational Immuno-Oncology Group, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
- Laboratory of Cytogenomics and Environmental Mutagenesis, Environment Section (SAMAM), Evandro Chagas Institute, Ananindeua, Brazil
| | | | - Tiago da Silva Medina
- Translational Immuno-Oncology Group, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo, Brazil
| |
Collapse
|
70
|
Parsels LA, Zhang Q, Karnak D, Parsels JD, Lam K, Willers H, Green MD, Rehemtulla A, Lawrence TS, Morgan MA. Translation of DNA Damage Response Inhibitors as Chemoradiation Sensitizers From the Laboratory to the Clinic. Int J Radiat Oncol Biol Phys 2021; 111:e38-e53. [PMID: 34348175 PMCID: PMC8602768 DOI: 10.1016/j.ijrobp.2021.07.1708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/23/2021] [Indexed: 12/25/2022]
Abstract
Combination therapies with agents targeting the DNA damage response (DDR) offer an opportunity to selectively enhance the therapeutic index of chemoradiation or eliminate use of chemotherapy altogether. The successful translation of DDR inhibitors to clinical use requires investigating both their direct actions as (chemo)radiosensitizers and their potential to stimulate tumor immunogenicity. Beginning with high-throughput screening using both viability and DNA damage-reporter assays, followed by validation in gold-standard radiation colony-forming assays and in vitro assessment of mechanistic effects on the DDR, we describe proven strategies and methods leading to the clinical development of DDR inhibitors both with radiation alone and in combination with chemoradiation. Beyond these in vitro studies, we discuss the impact of key features of human xenograft and syngeneic mouse models on the relevance of in vivo tumor efficacy studies, particularly with regard to the immunogenic effects of combined therapy with radiation and DDR inhibitors. Finally, we describe recent technological advances in radiation delivery (using the small animal radiation research platform) that allow for conformal, clinically relevant radiation therapy in mouse models. This overall approach is critical to the successful clinical development and ultimate Food and Drug Administration approval of DDR inhibitors as (chemo)radiation sensitizers.
Collapse
Affiliation(s)
- Leslie A Parsels
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, Michigan
| | - Qiang Zhang
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, Michigan
| | - David Karnak
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, Michigan
| | - Joshua D Parsels
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, Michigan
| | - Kwok Lam
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, Michigan
| | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michael D Green
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, Michigan
| | - Alnawaz Rehemtulla
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, Michigan
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, Michigan
| | - Meredith A Morgan
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, Michigan.
| |
Collapse
|
71
|
Shi LZ, Bonner JA. Bridging Radiotherapy to Immunotherapy: The IFN-JAK-STAT Axis. Int J Mol Sci 2021; 22:12295. [PMID: 34830176 PMCID: PMC8619591 DOI: 10.3390/ijms222212295] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022] Open
Abstract
The unprecedented successes of immunotherapies (IOs) including immune checkpoint blockers (ICBs) and adoptive T-cell therapy (ACT) in patients with late-stage cancer provide proof-of-principle evidence that harnessing the immune system, in particular T cells, can be an effective approach to eradicate cancer. This instills strong interests in understanding the immunomodulatory effects of radiotherapy (RT), an area that was actually investigated more than a century ago but had been largely ignored for many decades. With the "newly" discovered immunogenic responses from RT, numerous endeavors have been undertaken to combine RT with IOs, in order to bolster anti-tumor immunity. However, the underlying mechanisms are not well defined, which is a subject of much investigation. We therefore conducted a systematic literature search on the molecular underpinnings of RT-induced immunomodulation and IOs, which identified the IFN-JAK-STAT pathway as a major regulator. Our further analysis of relevant studies revealed that the signaling strength and duration of this pathway in response to RT and IOs may determine eventual immunological outcomes. We propose that strategic targeting of this axis can boost the immunostimulatory effects of RT and radiosensitizing effects of IOs, thereby promoting the efficacy of combination therapy of RT and IOs.
Collapse
Affiliation(s)
- Lewis Zhichang Shi
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Programs in Immunology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - James A. Bonner
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
72
|
Zhang S, Chopin M, Nutt SL. Type 1 conventional dendritic cells: ontogeny, function, and emerging roles in cancer immunotherapy. Trends Immunol 2021; 42:1113-1127. [PMID: 34728143 DOI: 10.1016/j.it.2021.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022]
Abstract
Dendritic cells (DCs) are key immune sentinels that orchestrate protective immune responses against pathogens or cancers. DCs have evolved into multiple phenotypically, anatomically, and functionally distinct cell types. One of these DC types, Type 1 conventional DCs (cDC1s), are uniquely equipped to promote cytotoxic CD8+ T cell differentiation and, therefore, represent a promising target for harnessing antitumor immunity. Indeed, recent studies have highlighted the importance of cDC1s in tumor immunotherapy using immune checkpoint inhibitors. Here, we review the progress in defining the key developmental and functional attributes of cDC1s and the approaches to optimizing the potency of cDC1s for anticancer immunity.
Collapse
Affiliation(s)
- Shengbo Zhang
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michaël Chopin
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia.
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
73
|
Link B, Torres Crigna A, Hölzel M, Giordano FA, Golubnitschaja O. Abscopal Effects in Metastatic Cancer: Is a Predictive Approach Possible to Improve Individual Outcomes? J Clin Med 2021; 10:5124. [PMID: 34768644 PMCID: PMC8584726 DOI: 10.3390/jcm10215124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023] Open
Abstract
Patients with metastatic cancers often require radiotherapy (RT) as a palliative therapy for cancer pain. RT can, however, also induce systemic antitumor effects outside of the irradiated field (abscopal effects) in various cancer entities. The occurrence of the abscopal effect is associated with a specific immunological activation in response to RT-induced cell death, which is mainly seen under concomitant immune checkpoint blockade. Even if the number of reported apscopal effects has increased since the introduction of immune checkpoint inhibition, its occurrence is still considered rare and unpredictable. The cases reported so far may nevertheless allow for identifying first biomarkers and clinical patterns. We here review biomarkers that may be helpful to predict the occurrence of abscopal effects and hence to optimize therapy for patients with metastatic cancers.
Collapse
Affiliation(s)
- Barbara Link
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany; (B.L.); (A.T.C.); (F.A.G.)
| | - Adriana Torres Crigna
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany; (B.L.); (A.T.C.); (F.A.G.)
| | - Michael Hölzel
- Institute of Experimental Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany;
| | - Frank A. Giordano
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany; (B.L.); (A.T.C.); (F.A.G.)
| | - Olga Golubnitschaja
- Predictive, Preventive, Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| |
Collapse
|
74
|
Sun Z, Deng G, Peng X, Xu X, Liu L, Peng J, Ma Y, Zhang P, Wen A, Wang Y, Yang Z, Gong P, Jiang W, Cai L. Intelligent photothermal dendritic cells restart the cancer immunity cycle through enhanced immunogenic cell death. Biomaterials 2021; 279:121228. [PMID: 34717198 DOI: 10.1016/j.biomaterials.2021.121228] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/17/2021] [Accepted: 10/22/2021] [Indexed: 02/07/2023]
Abstract
Dendritic cells (DCs) play a pivotal role in initiating antigen-specific tumor immunity. However, the abnormal function of DCs owing to the immunosuppressive tumor microenvironment (TME) and the insufficient number of tumor infiltrating DCs could promote immune tolerance and tumor immune escape. Thus, there is great potential to employ DCs to induce efficient antitumor immunity. In this paper, we developed intelligent DCs (iDCs), which consist of nanoparticles loaded with photothermal agents (IR-797) and coated with a mature DC membrane. The DC cell membrane on the surface of iDCs preserves the ability to present antigens and prime T cells. The iDCs can also enter the lymph node and stimulate T cells. The activated T cells reduced the expression of heat shock proteins (HSPs) in tumor cells, rendering them more sensitive to heat stress. Subsequently, we used mild photothermal therapy (42-45 °C) to induce immunogenic cell death and contribute to a synergistic antitumor effect. iDCs as a refined and precise system in combination with DC-based immunotherapy and thermal therapy can be stored long-term and on a large scale, so they can be applied in many patients.
Collapse
Affiliation(s)
- Zhihong Sun
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Laboratory of Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Qindao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, 264000, PR China
| | - Guanjun Deng
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Laboratory of Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xinghua Peng
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Laboratory of Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiuli Xu
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Laboratory of Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lanlan Liu
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Laboratory of Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jiaofeng Peng
- Instrumental Analysis Center of Shenzhen University, Shenzhen University, Shenzhen, 518055, China
| | - Yifan Ma
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Laboratory of Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; HRYZ Biotech Co., Shenzhen, 518057, PR China
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Laboratory of Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Austin Wen
- Pomona College, 333 N College Way, Claremont, CA, 91711, USA
| | - Yifan Wang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhaogang Yang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ping Gong
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Laboratory of Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Laboratory of Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
75
|
Oba T, Kajihara R, Yokoi T, Repasky EA, Ito F. Neoadjuvant in situ immunomodulation enhances systemic antitumor immunity against highly metastatic tumors. Cancer Res 2021; 81:6183-6195. [PMID: 34666993 DOI: 10.1158/0008-5472.can-21-0939] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/21/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022]
Abstract
Neoadjuvant immunotherapy, given before surgical resection, is a promising approach to develop systemic antitumor immunity for the treatment of high-risk resectable disease. Here, using syngeneic and orthotopic mouse models of triple-negative breast cancer, we have tested the hypothesis that generation of tumor-specific T-cell responses by induction and activation of tumor-residing Batf3-dependent conventional type 1 dendritic cells (cDC1) before resection improves control of distant metastatic disease and survival. Mice bearing highly metastatic orthotopic tumors were treated with a combinatorial in situ immunomodulation (ISIM) regimen comprised of intratumoral administration of Flt3L, local radiotherapy, and in situ TLR3/CD40 stimulations, followed by surgical resection. Neoadjuvant ISIM generated tumor-specific CD8+ T cells that infiltrated into distant non-irradiated metastatic sites, which delayed the progression of lung metastases and improved survival after the resection of primary tumors. The efficacy of neoadjuvant ISIM was dependent on de novo adaptive T-cell immunity elicited by Batf3-dependent DCs and was enhanced by increasing dose and fractionation of radiotherapy, and early surgical resection after the completion of neoadjuvant ISIM. Importantly, neoadjuvant ISIM synergized with PD-L1 blockade to improve control of distant metastases and prolong survival, while removal of tumor-draining lymph nodes abrogated the antimetastatic efficacy of neoadjuvant ISIM. Our findings illustrate the therapeutic potential of neoadjuvant multimodal intralesional therapy for the treatment of resectable tumors with high risk of relapse.
Collapse
Affiliation(s)
- Takaaki Oba
- Division of Breast and Endocrine Surgery, Department of Surgery (II), Shinshu University School of Medicine
| | - Ryutaro Kajihara
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center
| | - Toshihiro Yokoi
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center
| | | | - Fumito Ito
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center
| |
Collapse
|
76
|
Appleton E, Hassan J, Chan Wah Hak C, Sivamanoharan N, Wilkins A, Samson A, Ono M, Harrington KJ, Melcher A, Wennerberg E. Kickstarting Immunity in Cold Tumours: Localised Tumour Therapy Combinations With Immune Checkpoint Blockade. Front Immunol 2021; 12:754436. [PMID: 34733287 PMCID: PMC8558396 DOI: 10.3389/fimmu.2021.754436] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/29/2021] [Indexed: 12/28/2022] Open
Abstract
Cancer patients with low or absent pre-existing anti-tumour immunity ("cold" tumours) respond poorly to treatment with immune checkpoint inhibitors (ICPI). In order to render these patients susceptible to ICPI, initiation of de novo tumour-targeted immune responses is required. This involves triggering of inflammatory signalling, innate immune activation including recruitment and stimulation of dendritic cells (DCs), and ultimately priming of tumour-specific T cells. The ability of tumour localised therapies to trigger these pathways and act as in situ tumour vaccines is being increasingly explored, with the aspiration of developing combination strategies with ICPI that could generate long-lasting responses. In this effort, it is crucial to consider how therapy-induced changes in the tumour microenvironment (TME) act both as immune stimulants but also, in some cases, exacerbate immune resistance mechanisms. Increasingly refined immune monitoring in pre-clinical studies and analysis of on-treatment biopsies from clinical trials have provided insight into therapy-induced biomarkers of response, as well as actionable targets for optimal synergy between localised therapies and ICB. Here, we review studies on the immunomodulatory effects of novel and experimental localised therapies, as well as the re-evaluation of established therapies, such as radiotherapy, as immune adjuvants with a focus on ICPI combinations.
Collapse
Affiliation(s)
- Elizabeth Appleton
- Department of Radiotherapy and Imaging, Institute of Cancer Research (ICR), London, United Kingdom
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Jehanne Hassan
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Charleen Chan Wah Hak
- Department of Radiotherapy and Imaging, Institute of Cancer Research (ICR), London, United Kingdom
| | - Nanna Sivamanoharan
- Department of Radiotherapy and Imaging, Institute of Cancer Research (ICR), London, United Kingdom
| | - Anna Wilkins
- Department of Radiotherapy and Imaging, Institute of Cancer Research (ICR), London, United Kingdom
| | - Adel Samson
- Leeds Institute of Medical Research at St. James, University of Leeds, Leeds, United Kingdom
| | - Masahiro Ono
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Kevin J. Harrington
- Department of Radiotherapy and Imaging, Institute of Cancer Research (ICR), London, United Kingdom
| | - Alan Melcher
- Department of Radiotherapy and Imaging, Institute of Cancer Research (ICR), London, United Kingdom
| | - Erik Wennerberg
- Department of Radiotherapy and Imaging, Institute of Cancer Research (ICR), London, United Kingdom
| |
Collapse
|
77
|
Foster CC, Fleming GF, Karrison TG, Liao CY, Desai AV, Moroney JW, Ratain MJ, Nanda R, Polite BN, Hahn OM, O'Donnell PH, Vokes EE, Kindler HL, Hseu R, Janisch LA, Dai J, Hoffman MD, Weichselbaum RR, Pitroda SP, Chmura SJ, Luke JJ. Phase I Study of Stereotactic Body Radiotherapy plus Nivolumab and Urelumab or Cabiralizumab in Advanced Solid Tumors. Clin Cancer Res 2021; 27:5510-5518. [PMID: 34168049 DOI: 10.1158/1078-0432.ccr-21-0810] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/18/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE CD137 agonism and CSF1R blockade augment stereotactic body radiotherapy (SBRT) and anti-programmed death-1 in preclinical models. We evaluated the safety and efficacy of SBRT with nivolumab+urelumab (CD137 agonist) or nivolumab+cabiralizumab (CSF1R inhibitor). PATIENTS AND METHODS This phase I clinical trial enrolled patients with advanced solid tumors that had progressed on standard therapies. SBRT was delivered to 1-4 metastases with nivolumab+urelumab or nivolumab+cabiralizumab given concurrently and following SBRT. Dose-limiting toxicity (DLT) was the primary endpoint with anatomic location-specific SBRT doses deemed safe if ≤33% DLT frequency was observed. Secondary endpoints included RECISTv1.1 response, progression-free survival (PFS), overall survival (OS), and molecular correlative studies. RESULTS Sixty patients were enrolled, and median follow-up for living patients is 13.8 months. Of these, 23 (38%) received SBRT+nivolumab+urelumab and 37 (62%) received SBRT+nivolumab+cabiralizumab. Seven patients (12%) experienced a DLT (n = 3 grade 3, n = 4 grade 4) in the following anatomic cohorts: abdominal/pelvic (3/17, 18%), liver (1/13, 8%), central lung (2/14, 14%), and peripheral lung (1/12, 8%). Of 41 patients radiographically evaluable for best overall response including 55 radiated and 23 unirradiated RECIST target lesions, 2 had complete responses (5%), 7 had partial responses (17%), 12 had stable disease (29%), and 20 had progression (49%). Median estimated PFS and OS are 3.0 months [95% confidence interval (CI), 2.9-4.8] and 17.0 months (95% CI, 6.8-undetermined), respectively. No patients with elevated pre-SBRT serum IL8 experienced a response. CONCLUSIONS SBRT to ≤4 sites with nivolumab+urelumab or nivolumab+cabiralizumab for treating advanced solid tumors is feasible with acceptable toxicity and modest antitumor activity.See related commentary by Rodriguez-Ruiz et al., p. 5443.
Collapse
Affiliation(s)
- Corey C Foster
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, Tennessee.
| | - Gini F Fleming
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois
| | - Theodore G Karrison
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois
| | - Chih-Yi Liao
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois
| | - Ami V Desai
- Department of Pediatrics, Section of Hematology, Oncology, and Stem Cell Transplantation, The University of Chicago, Chicago, Illinois
| | - John W Moroney
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, The University of Chicago, Chicago, Illinois
| | - Mark J Ratain
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois
| | - Rita Nanda
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois
| | - Blase N Polite
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois
| | - Olwen M Hahn
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois
| | - Peter H O'Donnell
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois
| | - Everett E Vokes
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois
| | - Hedy L Kindler
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois
| | - Robyn Hseu
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois
| | - Linda A Janisch
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois
| | - Julia Dai
- Department of Medicine, Section of Dermatology, The University of Chicago, Chicago, Illinois
| | - Mark D Hoffman
- Department of Medicine, Section of Dermatology, The University of Chicago, Chicago, Illinois
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois
- Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois
| | - Sean P Pitroda
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois
| | - Steven J Chmura
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois.
| | - Jason J Luke
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
78
|
Janopaul-Naylor JR, Shen Y, Qian DC, Buchwald ZS. The Abscopal Effect: A Review of Pre-Clinical and Clinical Advances. Int J Mol Sci 2021; 22:11061. [PMID: 34681719 PMCID: PMC8537037 DOI: 10.3390/ijms222011061] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/21/2022] Open
Abstract
Radiotherapy has been used for more than a hundred years to cure or locally control tumors. Regression of tumors outside of the irradiated field was occasionally observed and is known as the abscopal effect. However, the occurrence of systemic anti-tumor effects was deemed too rare and unpredictable to be a therapeutic goal. Recent studies suggest that immunotherapy and radiation in combination may enhance the abscopal response. Increasing numbers of cases are being reported since the routine implementation of immune checkpoint inhibitors, showing that combined radiotherapy with immunotherapy has a synergistic effect on both local and distant (i.e., unirradiated) tumors. In this review, we summarize pre-clinical and clinical reports, with a specific focus on the mechanisms behind the immunostimulatory effects of radiation and how this is enhanced by immunotherapy.
Collapse
Affiliation(s)
- James R. Janopaul-Naylor
- Department of Radiation Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA 30322, USA; (Y.S.); (D.C.Q.); (Z.S.B.)
| | | | | | | |
Collapse
|
79
|
Shen C, He Y, Chen Q, Feng H, Williams TM, Lu Y, He Z. Narrative review of emerging roles for AKT-mTOR signaling in cancer radioimmunotherapy. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1596. [PMID: 34790802 PMCID: PMC8576660 DOI: 10.21037/atm-21-4544] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To summarize the roles of AKT-mTOR signaling in the regulation of the DNA damage response and PD-L1 expression in cancer cells, and propose a novel strategy of targeting AKT-mTOR signaling in combination with radioimmunotherapy in the era of cancer immunotherapy. BACKGROUND Immunotherapy has greatly improved the clinical outcomes of many cancer patients and has changed the landscape of cancer patient management. However, only a small subgroup of cancer patients (~20-30%) benefit from immune checkpoint blockade-based immunotherapy. The current challenge is to find biomarkers to predict the response of patients to immunotherapy and strategies to sensitize patients to immunotherapy. METHODS Search and review the literature which were published in PUBMED from 2000-2021 with the key words mTOR, AKT, drug resistance, DNA damage response, immunotherapy, PD-L1, DNA repair, radioimmunotherapy. CONCLUSIONS More than 50% of cancer patients receive radiotherapy during their course of treatment. Radiotherapy has been shown to reduce the growth of locally irradiated tumors as well as metastatic non-irradiated tumors (abscopal effects) by affecting systemic immunity. Consistently, immunotherapy has been demonstrated to enhance radiotherapy with more than one hundred clinical trials of radiation in combination with immunotherapy (radioimmunotherapy) across cancer types. Nevertheless, current available data have shown limited efficacy of trials testing radioimmunotherapy. AKT-mTOR signaling is a major tumor growth-promoting pathway and is upregulated in most cancers. AKT-mTOR signaling is activated by growth factors as well as genotoxic stresses including radiotherapy. Importantly, recent advances have shown that AKT-mTOR is one of the main signaling pathways that regulate DNA damage repair as well as PD-L1 levels in cancers. These recent advances clearly suggest a novel cancer therapy strategy by targeting AKT-mTOR signaling in combination with radioimmunotherapy.
Collapse
Affiliation(s)
- Changxian Shen
- Department of Radiation Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Yuqi He
- Monash School of Medicine, Monash University, Clayton, VIC, Australia
| | - Qiang Chen
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Haihua Feng
- Department of Radiation Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Terence M. Williams
- Department of Radiation Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Yuanzhi Lu
- Department of Clinical Pathology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhengfu He
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, China
| |
Collapse
|
80
|
Boustani J, Lecoester B, Baude J, Latour C, Adotevi O, Mirjolet C, Truc G. Anti-PD-1/Anti-PD-L1 Drugs and Radiation Therapy: Combinations and Optimization Strategies. Cancers (Basel) 2021; 13:cancers13194893. [PMID: 34638376 PMCID: PMC8508444 DOI: 10.3390/cancers13194893] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Although immune checkpoint blockade has yielded unprecedented and durable responses in cancer patients, the efficacy of this treatment remains limited. Radiation therapy can induce immunogenic cell death that contributes to the local efficacy of irradiation. However, radiation-induced systemic responses are scarce. Studies combining radiation with checkpoint inhibitors suggest a synergistic potential of this strategy. In this review, we focused on parameters that can be optimized to enhance the anti-tumor immune response that results from this association, in order to achieve data on dose, fractionation, target volume, lymph nodes sparing, radiation particles, and other immunomodulatory agents. These factors should be considered in future trials for better clinical outcomes. To this end, we discussed the main preclinical and clinical data available to optimize the efficacy of the treatment combination. Abstract Immune checkpoint inhibitors have been associated with long-term complete responses leading to improved overall survival in several cancer types. However, these novel immunotherapies are only effective in a small proportion of patients, and therapeutic resistance represents a major limitation in clinical practice. As with chemotherapy, there is substantial evidence that radiation therapy promotes anti-tumor immune responses that can enhance systemic responses to immune checkpoint inhibitors. In this review, we discuss the main preclinical and clinical evidence on strategies that can lead to an enhanced response to PD-1/PD-L1 blockade in combination with radiation therapy. We focused on central issues in optimizing radiation therapy, such as the optimal dose and fractionation for improving the therapeutic ratio, as well as the impact on immune and clinical responses of dose rate, target volume, lymph nodes irradiation, and type of radiation particle. We explored the addition of a third immunomodulatory agent to the combination such as other checkpoint inhibitors, chemotherapy, and treatment targeting the tumor microenvironment components. The strategies described in this review provide a lead for future clinical trials.
Collapse
Affiliation(s)
- Jihane Boustani
- Department of Radiation Oncology, Centre Georges François Leclerc, UNICANCER, 21079 Dijon, France; (J.B.); (J.B.); (C.L.); (G.T.)
- Department of Radiation Oncology, University Hospital of Besançon, 25000 Besançon, France
- INSERM, EFS BFC, UMR1098, RIGHT, Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, University of Bourgogne Franche-Comté, 25000 Besançon, France; (B.L.); (O.A.)
| | - Benoît Lecoester
- INSERM, EFS BFC, UMR1098, RIGHT, Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, University of Bourgogne Franche-Comté, 25000 Besançon, France; (B.L.); (O.A.)
| | - Jérémy Baude
- Department of Radiation Oncology, Centre Georges François Leclerc, UNICANCER, 21079 Dijon, France; (J.B.); (J.B.); (C.L.); (G.T.)
| | - Charlène Latour
- Department of Radiation Oncology, Centre Georges François Leclerc, UNICANCER, 21079 Dijon, France; (J.B.); (J.B.); (C.L.); (G.T.)
- INSERM UMR 1231, Cadir Team, 21000 Dijon, France
| | - Olivier Adotevi
- INSERM, EFS BFC, UMR1098, RIGHT, Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, University of Bourgogne Franche-Comté, 25000 Besançon, France; (B.L.); (O.A.)
- Department of Medical Oncology, University Hospital of Besançon, 25000 Besançon, France
| | - Céline Mirjolet
- Department of Radiation Oncology, Centre Georges François Leclerc, UNICANCER, 21079 Dijon, France; (J.B.); (J.B.); (C.L.); (G.T.)
- INSERM UMR 1231, Cadir Team, 21000 Dijon, France
- Correspondence:
| | - Gilles Truc
- Department of Radiation Oncology, Centre Georges François Leclerc, UNICANCER, 21079 Dijon, France; (J.B.); (J.B.); (C.L.); (G.T.)
| |
Collapse
|
81
|
Zou Q, Wang X, Ren D, Hu B, Tang G, Zhang Y, Huang M, Pai RK, Buchanan DD, Win AK, Newcomb PA, Grady WM, Yu H, Luo Y. DNA methylation-based signature of CD8+ tumor-infiltrating lymphocytes enables evaluation of immune response and prognosis in colorectal cancer. J Immunother Cancer 2021; 9:jitc-2021-002671. [PMID: 34548385 PMCID: PMC8458312 DOI: 10.1136/jitc-2021-002671] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2021] [Indexed: 01/12/2023] Open
Abstract
Background Tumor-infiltrating lymphocytes (TILs), especially CD8+ TILs, can be used for predicting immunotherapy responsiveness and survival outcome. However, the evaluation of CD8+ TILs currently relies on histopathological methodology with high variability. We therefore aimed to develop a DNA methylation signature for CD8+ TILs (CD8+ MeTIL) that could evaluate immune response and prognosis in colorectal cancer (CRC). Methods A CD8+ MeTIL signature score was constructed by using CD8+ T cell-specific differentially methylated positions (DMPs) that were identified from Illumina EPIC methylation arrays. Immune cells, colon epithelial cells, and two CRC cohorts (n=282 and 335) were used to develop a PCR-based assay for quantitative analysis of DNA methylation at single-base resolution (QASM) to determine CD8 + MeTIL signature score. Results Three CD8+ T cell-specific DMPs were identified to construct the CD8+ MeTIL signature score, which showed a dramatic discriminability between CD8+ T cells and other cells. The QASM assay we developed for CD8+ MeTIL markers could measure CD8+ TILs distributions in a fully quantitative, accurate, and simple manner. The CD8+ MeTIL score determined by QASM assay showed a strong association with histopathology-based CD8+ TIL counts and a gene expression-based immune marker. Furthermore, the low CD8+ MeTIL score (enriched CD8+ TILs) was associated with MSI-H tumors and predicted better survival in CRC cohorts. Conclusions This study developed a quantitative DNA methylation-based signature that was reliable to evaluate CD8+ TILs and prognosis in CRC. This approach has the potential to be a tool for investigations on CD8+ TILs and a biomarker for therapeutic approaches, including immunotherapy.
Collapse
Affiliation(s)
- Qi Zou
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Colorectal and Anal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaolin Wang
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Donglin Ren
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Colorectal and Anal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bang Hu
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Colorectal and Anal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guannan Tang
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Zhang
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Meijin Huang
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rish K Pai
- Department of laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia.,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia.,Genomic Medicine and Familial Cancer Centre, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Aung Ko Win
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Polly A Newcomb
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington, USA.,Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - William M Grady
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Huichuan Yu
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanxin Luo
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China .,Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
82
|
Radioimmunotherapy: future prospects from the perspective of brachytherapy. J Contemp Brachytherapy 2021; 13:458-467. [PMID: 34484362 PMCID: PMC8407252 DOI: 10.5114/jcb.2021.108601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
In combination with radiotherapy, immunotherapy is becoming an increasingly used strategy in treating advanced, recurrent, or metastatic cancer. The evident impact of radiotherapy on local and systemic immune response is an indication of the synergistic effect of these two modalities. There is a strong rationale to combine radiotherapy and immunotherapy to enhance response rates and overcome resistances. Therefore, the combination of radio- and immunotherapy holds a variety of opportunities as well as challenges in treating primary cancer and is progressively tested in curative settings. Brachytherapy is also known as internal radiation therapy and only offers a local therapy option at first glance: due to tumor-specific antigens, released by a high local radiation dose, a systemic immune response could be plausible and eminent. Accordingly, brachytherapy could be an underestimated partner with immuno-therapeutic approaches in both curative and palliative settings, to generate local and systemic response. In this review, we summarized the potential benefit of a potential combination of brachytherapy and immuno-therapeutic approaches vs. the background of limited data.
Collapse
|
83
|
Wang K, Xiao X, Jiang M, Li J, Zhou J, Yuan Y. An NIR-Fluorophore-Based Theranostic for Selective Initiation of Tumor Pyroptosis-Induced Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102610. [PMID: 34323375 DOI: 10.1002/smll.202102610] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/28/2021] [Indexed: 06/13/2023]
Abstract
Pyroptosis is an inflammatory form of programmed cell death that can effectively eliminate malignant cells and boost anticancer immunity. However, most of the current pyroptosis inducers lack cell selectivity, which may cause severe side effects for cancer therapy. In this work, for the first time, the authors discovered that the commonly used near-infrared (NIR) fluorogenic hemicyanine (CyNH2 ) induces pyrolysis to kill cancer cells and boost antitumor immunity. Cancer cells overexpressing the NAD(P)H: quinone oxidoreductase isozyme 1 (NQO1)-responsive theranostic (NCyNH2 ) are designed for selective cell pyroptosis and are nonfluorescent with low toxicity before activation. In the presence of NQO1, the fluorescence of CyNH2 is restored and can selectively initiate pyroptosis of cancer cells and further lead to systemic antitumor immunity activation for solid tumor therapy. Thus, this fluorogenic NIR dye may represent a novel theranostic agent for the selective initiation of tumor pyroptosis.
Collapse
Affiliation(s)
- Kewei Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Xuan Xiao
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Maolin Jiang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Jisi Li
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Jielian Zhou
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Youyong Yuan
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
84
|
Thangam R, Patel KD, Kang H, Paulmurugan R. Advances in Engineered Polymer Nanoparticle Tracking Platforms towards Cancer Immunotherapy-Current Status and Future Perspectives. Vaccines (Basel) 2021; 9:vaccines9080935. [PMID: 34452059 PMCID: PMC8402739 DOI: 10.3390/vaccines9080935] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 12/17/2022] Open
Abstract
Engineering polymeric nanoparticles for their shape, size, surface chemistry, and functionalization using various targeting molecules has shown improved biomedical applications for nanoparticles. Polymeric nanoparticles have created tremendous therapeutic platforms, particularly applications related to chemo- and immunotherapies in cancer. Recently advancements in immunotherapies have broadened this field in immunology and biomedical engineering, where "immunoengineering" creates solutions to target translational science. In this regard, the nanoengineering field has offered the various techniques necessary to manufacture and assemble multifunctional polymeric nanomaterial systems. These include nanoparticles functionalized using antibodies, small molecule ligands, targeted peptides, proteins, and other novel agents that trigger and encourage biological systems to accept the engineered materials as immune enhancers or as vaccines to elevate therapeutic functions. Strategies to engineer polymeric nanoparticles with therapeutic and targeting molecules can provide solutions for developing immune vaccines via maintaining the receptor storage in T- and B cells. Furthermore, cancer immunotherapy using polymeric nanomaterials can serve as a gold standard approach for treating primary and metastasized tumors. The current status of the limited availability of immuno-therapeutic drugs highlights the importance of polymeric nanomaterial platforms to improve the outcomes via delivering anticancer agents at localized sites, thereby enhancing the host immune response in cancer therapy. This review mainly focuses on the potential scientific enhancements and recent developments in cancer immunotherapies by explicitly discussing the role of polymeric nanocarriers as nano-vaccines. We also briefly discuss the role of multifunctional nanomaterials for their therapeutic impacts on translational clinical applications.
Collapse
Affiliation(s)
- Ramar Thangam
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea; (K.D.P.); (H.K.)
- Institute for High Technology Materials and Devices, Korea University, Seoul 02841, Korea
- Correspondence: (R.T.); (R.P.)
| | - Kapil D. Patel
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea; (K.D.P.); (H.K.)
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea; (K.D.P.); (H.K.)
- Institute for High Technology Materials and Devices, Korea University, Seoul 02841, Korea
- Department of Biomicrosystem Technology, Korea University, Seoul 02841, Korea
| | - Ramasamy Paulmurugan
- Department of Radiology, Molecular Imaging Program at Stanford, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
- Correspondence: (R.T.); (R.P.)
| |
Collapse
|
85
|
Rodriguez-Ruiz ME, Sanmamed MF, Serrano I, Melero I. Consolidating radiotherapy with immunotherapy. Clin Cancer Res 2021; 27:5443-5445. [PMID: 34344796 DOI: 10.1158/1078-0432.ccr-21-2335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022]
Abstract
Radiotherapy and immunotherapy can be concomitantly or sequentially combined seeking synergistic effects in terms of control of irradiated tumors and abscopal effects on non-irradiated lesions. Clinical-trial testing of such combinations faces several obstacles to demonstrate efficacy and needs improvements in trial design, patient selection, evaluation of results and biomarker discovery.
Collapse
Affiliation(s)
- Maria E Rodriguez-Ruiz
- Department of Oncology, University Clinic, University of Navarra and Instituto de Investigacion Sanitaria de Navarra (IdISNA)
| | | | - Irantzu Serrano
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra and Instituto de Investigacion Sanitaria de Navarra (IdISNA)
| | - Ignacio Melero
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra and Instituto de Investigacion Sanitaria de Navarra (IdISNA)
| |
Collapse
|
86
|
McGee HM, Marciscano AE, Campbell AM, Monjazeb AM, Kaech SM, Teijaro JR. Parallels Between the Antiviral State and the Irradiated State. J Natl Cancer Inst 2021; 113:969-979. [PMID: 33252657 PMCID: PMC8502484 DOI: 10.1093/jnci/djaa190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/07/2020] [Accepted: 11/16/2020] [Indexed: 01/12/2023] Open
Abstract
Improved understanding of host antiviral defense and antitumor immunity have elucidated molecular pathways important to both processes. During viral infection, RNA or DNA in the host cell serves as a danger signal that initiates the antiviral response. Recent studies have elucidated similarities in the signaling pathways activated by viruses and the signaling pathways induced by tumor DNA that is released into the cytoplasm of irradiated tumor cells. Both the host defense to viral infection and the sterile inflammation provoked by radiotherapy induce a type I interferon response that is necessary for pathogen control and immune-mediated tumor control, respectively. These findings have led to the hypothesis that radiotherapy employs a form of viral mimicry.
Collapse
Affiliation(s)
- Heather M McGee
- NOMIS Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ariel E Marciscano
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Allison M Campbell
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA
| | - Arta M Monjazeb
- Department of Radiation Oncology, UC Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - John R Teijaro
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
87
|
Etxeberria I, Glez-Vaz J, Teijeira Á, Melero I. New emerging targets in cancer immunotherapy: CD137/4-1BB costimulatory axis. ESMO Open 2021; 4:e000733. [PMID: 32611557 PMCID: PMC7333812 DOI: 10.1136/esmoopen-2020-000733] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 12/23/2022] Open
Abstract
CD137 (4-1BB) is a surface glycoprotein that belongs to the tumour necrosis factor receptor family (TNFRSF9). Its expression is induced on activation on a number of leucocyte types. Interestingly, for cancer immunotherapy, CD137 becomes expressed on primed T and natural killer (NK) cells, which on ligation provides powerful costimulatory signals. Perturbation of CD137 by CD137L or agonist monoclonal antibodies on activated CD8 T cells protects such antigen-specific cytotoxic T lymphocytes from apoptosis, enhances effector functionalities and favours persistence and memory differentiation. As a consequence, agonist antibodies exert potent antitumour effects in mouse models and the CD137 signalling domain is critical in chimeric antigen receptors (CAR) of CAR T cells approved to be used in the clinic. New formats of CD137 agonist moieties are being clinically developed, seeking potent costimulation targeted to the tumour microenvironment to avoid liver inflammation side effects, that have thus far limited and delayed clinical development.
Collapse
Affiliation(s)
- Iñaki Etxeberria
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Navarra, Spain.
| | - Javier Glez-Vaz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Navarra, Spain
| | - Álvaro Teijeira
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Navarra, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Navarra, Spain; Department of Immunology, Clinica Universidad de Navarra, Pamplona, Navarra, Spain
| |
Collapse
|
88
|
Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Ther 2021; 6:263. [PMID: 34248142 PMCID: PMC8273155 DOI: 10.1038/s41392-021-00658-5] [Citation(s) in RCA: 980] [Impact Index Per Article: 245.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/11/2021] [Accepted: 05/23/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer development and its response to therapy are regulated by inflammation, which either promotes or suppresses tumor progression, potentially displaying opposing effects on therapeutic outcomes. Chronic inflammation facilitates tumor progression and treatment resistance, whereas induction of acute inflammatory reactions often stimulates the maturation of dendritic cells (DCs) and antigen presentation, leading to anti-tumor immune responses. In addition, multiple signaling pathways, such as nuclear factor kappa B (NF-kB), Janus kinase/signal transducers and activators of transcription (JAK-STAT), toll-like receptor (TLR) pathways, cGAS/STING, and mitogen-activated protein kinase (MAPK); inflammatory factors, including cytokines (e.g., interleukin (IL), interferon (IFN), and tumor necrosis factor (TNF)-α), chemokines (e.g., C-C motif chemokine ligands (CCLs) and C-X-C motif chemokine ligands (CXCLs)), growth factors (e.g., vascular endothelial growth factor (VEGF), transforming growth factor (TGF)-β), and inflammasome; as well as inflammatory metabolites including prostaglandins, leukotrienes, thromboxane, and specialized proresolving mediators (SPM), have been identified as pivotal regulators of the initiation and resolution of inflammation. Nowadays, local irradiation, recombinant cytokines, neutralizing antibodies, small-molecule inhibitors, DC vaccines, oncolytic viruses, TLR agonists, and SPM have been developed to specifically modulate inflammation in cancer therapy, with some of these factors already undergoing clinical trials. Herein, we discuss the initiation and resolution of inflammation, the crosstalk between tumor development and inflammatory processes. We also highlight potential targets for harnessing inflammation in the treatment of cancer.
Collapse
|
89
|
Hou Y, Liang HL, Yu X, Liu Z, Cao X, Rao E, Huang X, Wang L, Li L, Bugno J, Fu Y, Chmura SJ, Wu W, Luo SZ, Zheng W, Arina A, Jutzy J, McCall AR, Vokes EE, Pitroda SP, Fu YX, Weichselbaum RR. Radiotherapy and immunotherapy converge on elimination of tumor-promoting erythroid progenitor cells through adaptive immunity. Sci Transl Med 2021; 13:13/582/eabb0130. [PMID: 33627484 DOI: 10.1126/scitranslmed.abb0130] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/20/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022]
Abstract
Tumor-induced CD45-Ter119+CD71+ erythroid progenitor cells, termed "Ter cells," promote tumor progression by secreting artemin (ARTN), a neurotrophic peptide that activates REarranged during Transfection (RET) signaling. We demonstrate that both local tumor ionizing radiation (IR) and anti-programmed death ligand 1 (PD-L1) treatment decreased tumor-induced Ter cell abundance in the mouse spleen and ARTN secretion outside the irradiation field in an interferon- and CD8+ T cell-dependent manner. Recombinant erythropoietin promoted resistance to radiotherapy or anti-PD-L1 therapies by restoring Ter cell numbers and serum ARTN concentration. Blockade of ARTN or potential ARTN signaling partners, or depletion of Ter cells augmented the antitumor effects of both IR and anti-PD-L1 therapies in mice. Analysis of samples from patients who received radioimmunotherapy demonstrated that IR-mediated reduction of Ter cells, ARTN, and GFRα3, an ARTN signaling partner, were each associated with tumor regression. Patients with melanoma who received immunotherapy exhibited favorable outcomes associated with decreased expression of GFRα3. These findings demonstrate an out-of-field, or "abscopal," effect mediated by adaptive immunity, which is induced during local tumor irradiation. This effect, in turn, governs the therapeutic effects of radiation and immunotherapy. Therefore, our results identify multiple targets to potentially improve outcomes after radiotherapy and immunotherapy.
Collapse
Affiliation(s)
- Yuzhu Hou
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, ShaanXi 710061, China. .,Ludwig Center for Metastasis Research, Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637 USA
| | - Hua L Liang
- Ludwig Center for Metastasis Research, Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637 USA
| | - Xinshuang Yu
- Department of Oncology, First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China
| | - Zhida Liu
- Department of Pathology, University of Texas Southwest Medical Center, Dallas, TX 75235, USA
| | - Xuezhi Cao
- Department of Pathology, University of Texas Southwest Medical Center, Dallas, TX 75235, USA
| | - Enyu Rao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiaona Huang
- Ludwig Center for Metastasis Research, Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637 USA
| | - Liangliang Wang
- Ludwig Center for Metastasis Research, Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637 USA
| | - Lei Li
- Ludwig Center for Metastasis Research, Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637 USA
| | - Jason Bugno
- Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, IL 60637, USA
| | - Yanbin Fu
- Ludwig Center for Metastasis Research, Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637 USA
| | - Steven J Chmura
- Ludwig Center for Metastasis Research, Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637 USA
| | - Wenjun Wu
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Sean Z Luo
- Whitney Young High School, Chicago, IL 60607, USA
| | - Wenxin Zheng
- Ludwig Center for Metastasis Research, Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637 USA
| | - Ainhoa Arina
- Ludwig Center for Metastasis Research, Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637 USA
| | - Jessica Jutzy
- Ludwig Center for Metastasis Research, Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637 USA
| | - Anne R McCall
- Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Everett E Vokes
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Sean P Pitroda
- Ludwig Center for Metastasis Research, Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637 USA
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwest Medical Center, Dallas, TX 75235, USA.
| | - Ralph R Weichselbaum
- Ludwig Center for Metastasis Research, Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637 USA.
| |
Collapse
|
90
|
Tranberg KG. Local Destruction of Tumors and Systemic Immune Effects. Front Oncol 2021; 11:708810. [PMID: 34307177 PMCID: PMC8298109 DOI: 10.3389/fonc.2021.708810] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/23/2021] [Indexed: 12/22/2022] Open
Abstract
Current immune-based therapies signify a major advancement in cancer therapy; yet, they are not effective in the majority of patients. Physically based local destruction techniques have been shown to induce immunologic effects and are increasingly used in order to improve the outcome of immunotherapies. The various local destruction methods have different modes of action and there is considerable variation between the different techniques with respect to the ability and frequency to create a systemic anti-tumor immunologic effect. Since the abscopal effect is considered to be the best indicator of a relevant immunologic effect, the present review focused on the tissue changes associated with this effect in order to find determinants for a strong immunologic response, both when local destruction is used alone and combined with immunotherapy. In addition to the T cell-inflammation that was induced by all methods, the analysis indicated that it was important for an optimal outcome that the released antigens were not destroyed, tumor cell death was necrotic and tumor tissue perfusion was at least partially preserved allowing for antigen presentation, immune cell trafficking and reduction of hypoxia. Local treatment with controlled low level hyperthermia met these requisites and was especially prone to result in abscopal immune activity on its own.
Collapse
|
91
|
Pinato DJ, Fessas P, Sapisochin G, Marron TU. Perspectives on the Neoadjuvant Use of Immunotherapy in Hepatocellular Carcinoma. Hepatology 2021; 74:483-490. [PMID: 33369758 DOI: 10.1002/hep.31697] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/27/2020] [Accepted: 12/19/2020] [Indexed: 12/13/2022]
Affiliation(s)
- David J Pinato
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Petros Fessas
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Gonzalo Sapisochin
- Multi-Organ Transplant and HPB Surgical Oncology, Division of General Surgery, Toronto General Hospital, Department of Surgery, University of Toronto, Toronto, Canada
| | - Thomas U Marron
- Department of Medicine, Division of Hematology/Oncology, Tisch Cancer Institute, Mount Sinai Hospital, New York, NY
| |
Collapse
|
92
|
Pourakbari R, Hajizadeh F, Parhizkar F, Aghebati-Maleki A, Mansouri S, Aghebati-Maleki L. Co-stimulatory agonists: An insight into the immunotherapy of cancer. EXCLI JOURNAL 2021; 20:1055-1085. [PMID: 34267616 PMCID: PMC8278219 DOI: 10.17179/excli2021-3522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022]
Abstract
Immune checkpoint pathways consist of stimulatory pathways, which can function like a strong impulse to promote T helper cells or killer CD8+ cells activation and proliferation. On the other hand, inhibitory pathways keep self-tolerance of the immune response. Increasing immunological activity by stimulating and blocking these signaling pathways are recognized as immune checkpoint therapies. Providing the best responses of CD8+ T cell needs the activation of T cell receptor along with the co-stimulation that is generated via stimulatory checkpoint pathways ligation including Inducible Co-Stimulator (ICOS), CD40, 4-1BB, GITR, and OX40. In cancer, programmed cell death receptor-1 (PD-1), Programmed cell death ligand-1(PD-L1) and Cytotoxic T Lymphocyte-Associated molecule-4 (CTLA-4) are the most known inhibitory checkpoint pathways, which can hinder the immune responses which have specifically anti-tumor characteristics and attenuate T cell activation and also cytokine production. The use of antagonistic monoclonal antibodies (mAbs) that block CTLA-4 or PD-1 activation is used in a variety of malignancies. It has been reported that they can lead to an increase in T cells and thereby strengthen anti-tumor immunity. Agonists of stimulatory checkpoint pathways can induce strong immunologic responses in metastatic patients; however, for achieving long-lasting benefits for the wide range of patients, efficient combinatorial therapies are required. In the present review, we focus on the preclinical and basic research on the molecular and cellular mechanisms by which immune checkpoint inhibitor blockade or other approaches with co-stimulatory agonists work together to improve T-cell antitumor immunity.
Collapse
Affiliation(s)
- Ramin Pourakbari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farnaz Hajizadeh
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Forough Parhizkar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanaz Mansouri
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
93
|
Liu J, Liu Q, Li Y, Li Q, Su F, Yao H, Su S, Wang Q, Jin L, Wang Y, Lau WY, Jiang Z, Song E. Efficacy and safety of camrelizumab combined with apatinib in advanced triple-negative breast cancer: an open-label phase II trial. J Immunother Cancer 2021; 8:jitc-2020-000696. [PMID: 32448804 PMCID: PMC7252975 DOI: 10.1136/jitc-2020-000696] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2020] [Indexed: 12/29/2022] Open
Abstract
Background Previous trials showed that antiangiogenesis or anti-programmed death protein 1/programmed death ligand 1 (PD-1/PD-L1) monotherapy only showed marginal effect in triple-negative breast cancer (TNBC). Preclinical studies demonstrated that antiangiogenic therapy could sensitize breast cancer to PD-1/PD-L1 blockade via reprogramming tumor microenvironment. Combinational treatment of checkpoint blockade and antiangiogenesis for TNBC has not been reported. Methods Patients with advanced TNBC with less than three lines of systemic therapy were enrolled in an open-label, non-comparative, two-arm, phase II trial at Sun Yat-sen Memorial Hospital. Camrelizumab (intravenously every 2 weeks) with apatinib orally at either continuous dosing (d1–d14) or intermittent dosing (d1–d7) was given until disease progression or unacceptable toxicities. Primary endpoint was objective response rate (ORR). Results From January 2018 to April 2019, 40 patients were enrolled, including 10 in the apatinib intermittent dosing cohort and 30 in the apatinib continuous dosing cohort. The ORR was 43.3% (13 of 30) in the continuous dosing cohort, while no objective response was observed in the intermittent dosing cohort. The disease control rate was 63.3% (19 of 30) in the apatinib continuous dosing cohort, and 40.0% (4 of 10) in the apatinib intermittent dosing cohort, respectively. The median progression-free survival (PFS) was 3.7 (95% CI 2.0 to 6.4) months and 1.9 (95% CI 1.8 to 3.7) months in the continuous dosing and intermittent dosing cohort, respectively. In the continuous dosing cohort, the median PFS of patients with partial response (8.3 months, 95% CI 5.9 to not reached) was significantly longer than that of patients with stable disease/progressive disease/not evaluable (2.0 months, 95% CI 1.7 to 3.0). The most common adverse events (AEs) included elevated aspartate aminotransferase/alanine aminotransferase and hand-foot syndrome. Overall, 26.7% and 20.0% of patients experienced grade ≥3 AEs in the continuous dosing and intermittent dosing cohort, respectively. In the continuous dosing cohort, a high percentage of baseline tumor-infiltrating lymphocytes (>10%) was associated with higher ORR and favorable PFS (p=0.029, 0.054, respectively). Conclusions The ORR by this chemo-free regimen was dramatically higher than previously reported ORR by anti-PD-1/PD-L1 antibody or apatinib monotherapy. Camrelizumab combined with apatinib demonstrated favorable therapeutic effects and a manageable safety profile in patients with advanced TNBC. Trial registration number NCT03394287.
Collapse
Affiliation(s)
- Jieqiong Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiang Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qian Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fengxi Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Herui Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shicheng Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Quanren Wang
- Jiangsu Hengrui Medicine Co., Ltd, Jiangsu, China
| | - Liang Jin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wan Yee Lau
- Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hongkong, China
| | - Zefei Jiang
- Department of Oncology, The Fifth Medical Centre of Chinese PLA General Hospital, Beijing, China
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China .,Fountain-Valley Institue for Life Sciences, 4th Floor, Building D, Guangzhou Institue of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
94
|
Cattin S, Fellay B, Calderoni A, Christinat A, Negretti L, Biggiogero M, Badellino A, Schneider AL, Tsoutsou P, Pellanda AF, Rüegg C. Circulating immune cell populations related to primary breast cancer, surgical removal, and radiotherapy revealed by flow cytometry analysis. Breast Cancer Res 2021; 23:64. [PMID: 34090509 PMCID: PMC8180078 DOI: 10.1186/s13058-021-01441-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Advanced breast cancer (BC) impact immune cells in the blood but whether such effects may reflect the presence of early BC and its therapeutic management remains elusive. METHODS To address this question, we used multiparametric flow cytometry to analyze circulating leukocytes in patients with early BC (n = 13) at the time of diagnosis, after surgery, and after adjuvant radiotherapy, compared to healthy individuals. Data were analyzed using a minimally supervised approach based on FlowSOM algorithm and validated manually. RESULTS At the time of diagnosis, BC patients have an increased frequency of CD117+CD11b+ granulocytes, which was significantly reduced after tumor removal. Adjuvant radiotherapy increased the frequency of CD45RO+ memory CD4+ T cells and CD4+ regulatory T cells. FlowSOM algorithm analysis revealed several unanticipated populations, including cells negative for all markers tested, CD11b+CD15low, CD3+CD4-CD8-, CD3+CD4+CD8+, and CD3+CD8+CD127+CD45RO+ cells, associated with BC or radiotherapy. CONCLUSIONS This study revealed changes in blood leukocytes associated with primary BC, surgical removal, and adjuvant radiotherapy. Specifically, it identified increased levels of CD117+ granulocytes, memory, and regulatory CD4+ T cells as potential biomarkers of BC and radiotherapy, respectively. Importantly, the study demonstrates the value of unsupervised analysis of complex flow cytometry data to unravel new cell populations of potential clinical relevance.
Collapse
Affiliation(s)
- Sarah Cattin
- Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, CH-1700, Fribourg, Switzerland
| | - Benoît Fellay
- Central Laboratory, Hôpital Fribourgeois, CH-1700, Fribourg, Switzerland
| | | | | | - Laura Negretti
- Radiation Oncology Department, Clinica Luganese Moncucco, CH-6900, Lugano, Switzerland
| | - Maira Biggiogero
- Radiation Oncology Department, Clinica Luganese Moncucco, CH-6900, Lugano, Switzerland.,Clinical Research unit, Clinica Luganese Moncucco, CH-6900, Lugano, Switzerland
| | - Alberto Badellino
- Radiation Oncology Department, Clinica Luganese Moncucco, CH-6900, Lugano, Switzerland.,Clinical Research unit, Clinica Luganese Moncucco, CH-6900, Lugano, Switzerland
| | - Anne-Lise Schneider
- Breast and Oncology Center, Hôpital Neuchatelois, CH-2300, La Chaux-de-Fonds, Switzerland
| | - Pelagia Tsoutsou
- Breast and Oncology Center, Hôpital Neuchatelois, CH-2300, La Chaux-de-Fonds, Switzerland.,Present Address: Service de Radio-Oncologie, Hôpitaux Universitaires de Genève, CH-1205, Geneva, Switzerland
| | - Alessandra Franzetti Pellanda
- Radiation Oncology Department, Clinica Luganese Moncucco, CH-6900, Lugano, Switzerland.,Clinical Research unit, Clinica Luganese Moncucco, CH-6900, Lugano, Switzerland
| | - Curzio Rüegg
- Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, CH-1700, Fribourg, Switzerland.
| |
Collapse
|
95
|
Song L, Wang S, Fang T, Qiu X, Wang X, Zhou X, Morse MA, Hobeika A, Wu W, Yang H, Ren J, Lyerly HK. Changes in Peripheral Blood Regulatory T Cells and IL-6 and IL-10 Levels Predict Response of Pediatric Medulloblastoma and Germ Cell Tumors With Residual or Disseminated Disease to Craniospinal Irradiation. Int J Radiat Oncol Biol Phys 2021; 111:479-490. [PMID: 33974888 DOI: 10.1016/j.ijrobp.2021.04.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 03/26/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Radiation therapy (RT) modulates immune cells and cytokines, resulting in both clinically beneficial and detrimental effects. The changes in peripheral blood T lymphocyte subsets and cytokines during RT for pediatric brain tumors and the association of these changes with therapeutic outcomes have not been well described. METHODS AND MATERIALS The study population consisted of children (n = 83, aged 3~18) with primary brain tumors (medulloblastoma, glioma, germ cell tumors (GCT), and central nervous system embryonal tumor-not otherwise specified), with or without residual or disseminated (R/D) diseases who were starting standard postoperative focal or craniospinal irradiation (CSI). Peripheral blood T lymphocyte subsets collected before and 4 weeks after RT were enumerated by flow cytometry. Plasma levels of interleukin (IL)-2, IL-4, IL-6, IL-10, tumor necrosis factor-α, interferon-γ, and IL-17A were measured by cytometric bead array. RESULTS Patients with R/D lesions receiving CSI (n = 32) had a post-RT increase in the frequency of CD3+T and CD8+T cells, a decrease in CD4+T cells, and an increase in regulatory T cells (Tregs) and CD8+CD28- suppressor cells, which was more predominantly seen in these patients than in other groups. In the CSI group with such R/D lesions, consisting of patients with medulloblastoma and germ cell tumors, 19 experienced a complete response (CR) and 13 experienced a partial response (PR) on imaging at 4 weeks after RT. The post/pre-RT ratio of Tregs (P = .0493), IL-6 (P = .0111), and IL-10 (P = .0070) was lower in the CR group than in the PR group. Multivariate analysis revealed that the post/pre-RT ratios of Treg, IL-6, and IL-10 were independent predictors of CR (P < .0001, P = .018, P < .0001, respectively). The areas under the receiver operating curves and confidence intervals were 0.7652 (0.5831-0.8964), 0.7794 (0.5980-0.9067), and 0.7085 (0.5223-0.8552) for IL-6, IL-10, and Treg, respectively. The sensitivities of IL-6, IL-10, and Treg to predict radiotherapeutic responses were 100%, 92.3%, and 61.5%, and specificity was 52.6%, 57.9%, and 84.2%, respectively. CONCLUSIONS CSI treatment to those with R/D lesions predominantly exerted an effect on antitumor immune response compared with both R/D lesion-free but exposed to focal or CSI RT and with R/D lesions and exposed to focal RT. Such CSI with R/D lesions group experiencing CR is more likely to have a decrease in immunoinhibitory molecules and cells than patients who only achieve PR. Measuring peripheral blood Treg, IL-6, and IL-10 levels could be valuable for predicting radiotherapeutic responses of pediatric brain tumors with R/D lesions to CSI for medulloblastoma and intracranial germ cell tumors.
Collapse
Affiliation(s)
- Linan Song
- Departments of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China; Departments of Radio-Oncology, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Shuo Wang
- Departments of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Tong Fang
- Departments of Radio-Oncology, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Xiaoguang Qiu
- Department of Radiotherapy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Xiaoli Wang
- Departments of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Xinna Zhou
- Departments of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Michael A Morse
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Amy Hobeika
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Wanshui Wu
- Department of Pediatrics, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Huabing Yang
- Departments of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Jun Ren
- Departments of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China; Department of Surgery, Duke University Medical Center, Durham, North Carolina.
| | - Herbert Kim Lyerly
- Department of Surgery, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
96
|
Ailioaie LM, Litscher G. Probiotics, Photobiomodulation, and Disease Management: Controversies and Challenges. Int J Mol Sci 2021; 22:ijms22094942. [PMID: 34066560 PMCID: PMC8124384 DOI: 10.3390/ijms22094942] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023] Open
Abstract
In recent decades, researchers around the world have been studying intensively how micro-organisms that are present inside living organisms could affect the main processes of life, namely health and pathological conditions of mind or body. They discovered a relationship between the whole microbial colonization and the initiation and development of different medical disorders. Besides already known probiotics, novel products such as postbiotics and paraprobiotics have been developed in recent years to create new non-viable micro-organisms or bacterial-free extracts, which can provide benefits to the host with additional bioactivity to probiotics, but without the risk of side effects. The best alternatives in the use of probiotics and postbiotics to maintain the health of the intestinal microbiota and to prevent the attachment of pathogens to children and adults are highlighted and discussed as controversies and challenges. Updated knowledge of the molecular and cellular mechanisms involved in the balance between microbiota and immune system for the introspection on the gut-lung-brain axis could reveal the latest benefits and perspectives of applied photobiomics for health. Multiple interconditioning between photobiomodulation (PBM), probiotics, and the human microbiota, their effects on the human body, and their implications for the management of viral infectious diseases is essential. Coupled complex PBM and probiotic interventions can control the microbiome, improve the activity of the immune system, and save the lives of people with immune imbalances. There is an urgent need to seek and develop innovative treatments to successfully interact with the microbiota and the human immune system in the coronavirus crisis. In the near future, photobiomics and metabolomics should be applied innovatively in the SARS-CoV-2 crisis (to study and design new therapies for COVID-19 immediately), to discover how bacteria can help us through adequate energy biostimulation to combat this pandemic, so that we can find the key to the hidden code of communication between RNA viruses, bacteria, and our body.
Collapse
Affiliation(s)
- Laura Marinela Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania;
- Ultramedical & Laser Clinic, 83 Arcu Street, 700135 Iasi, Romania
| | - Gerhard Litscher
- Research Unit of Biomedical Engineering in Anesthesia and Intensive Care Medicine, Research Unit for Complementary and Integrative Laser Medicine, and Traditional Chinese Medicine (TCM) Research Center Graz, Medical University of Graz, Auenbruggerplatz 39, 8036 Graz, Austria
- Correspondence: ; Tel.: +43-316-385-83907
| |
Collapse
|
97
|
Abstract
Tumor metastasis is a singularly important determinant of survival in most cancers. Historically, radiation therapy (RT) directed at a primary tumor mass was associated infrequently with remission of metastasis outside the field of irradiation. This away-from-target or "abscopal effect" received fringe attention because of its rarity. With the advent of immunotherapy, there are now increasing reports of abscopal effects upon RT in combination with immune checkpoint inhibition. This sparked investigation into underlying mechanisms and clinical trials aimed at enhancement of this effect. While these studies clearly attribute the abscopal effect to an antitumor immune response, the initial molecular triggers for its onset and specificity remain enigmatic. Here, we propose that DNA damage-induced inflammation coupled with neoantigen generation is essential during this intriguing phenomenon of systemic tumor regression and discuss the implications of this model for treatment aimed at triggering the abscopal effect in metastatic cancer.
Collapse
|
98
|
Oba T, Makino K, Kajihara R, Yokoi T, Araki R, Abe M, Minderman H, Chang AE, Odunsi K, Ito F. In situ delivery of iPSC-derived dendritic cells with local radiotherapy generates systemic antitumor immunity and potentiates PD-L1 blockade in preclinical poorly immunogenic tumor models. J Immunother Cancer 2021; 9:e002432. [PMID: 34049930 PMCID: PMC8166607 DOI: 10.1136/jitc-2021-002432] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Dendritic cells (DCs) are a promising therapeutic target in cancer immunotherapy given their ability to prime antigen-specific T cells, and initiate antitumor immune response. A major obstacle for DC-based immunotherapy is the difficulty to obtain a sufficient number of functional DCs. Theoretically, this limitation can be overcome by using induced pluripotent stem cells (iPSCs); however, therapeutic strategies to engage iPSC-derived DCs (iPSC-DCs) into cancer immunotherapy remain to be elucidated. Accumulating evidence showing that induction of tumor-residing DCs enhances immunomodulatory effect of radiotherapy (RT) prompted us to investigate antitumor efficacy of combining intratumoral administration of iPSC-DCs with local RT. METHODS Mouse iPSCs were differentiated to iPSC-DCs on OP9 stromal cells expressing the notch ligand delta-like 1 in the presence of granulocyte macrophage colony-stimulating factor. Phenotype and the capacities of iPSC-DCs to traffic tumor-draining lymph nodes (TdLNs) and prime antigen-specific T cells were evaluated by flow cytometry and imaging flow cytometry. Antitumor efficacy of intratumoral injection of iPSC-DCs and RT was tested in syngeneic orthotopic mouse tumor models resistant to anti-PD-1 ligand 1 (PD-L1) therapy. RESULTS Mouse iPSC-DCs phenotypically resembled conventional type 2 DCs, and had a capacity to promote activation, proliferation and effector differentiation of antigen-specific CD8+ T cells in the presence of the cognate antigen in vitro. Combination of in situ administration of iPSC-DCs and RT facilitated the priming of tumor-specific CD8+ T cells, and synergistically delayed the growth of not only the treated tumor but also the distant non-irradiated tumors. Mechanistically, RT enhanced trafficking of intratumorally injected iPSC-DCs to the TdLN, upregulated CD40 expression, and increased the frequency of DC/CD8+ T cell aggregates. Phenotypic analysis of tumor-infiltrating CD8+ T cells and myeloid cells revealed an increase of stem-like Slamf6+ TIM3- CD8+ T cells and PD-L1 expression in tumor-associated macrophages and DCs. Consequently, combined therapy rendered poorly immunogenic tumors responsive to anti-PD-L1 therapy along with the development of tumor-specific immunological memory. CONCLUSIONS Our findings illustrate the translational potential of iPSC-DCs, and identify the therapeutic efficacy of a combinatorial platform to engage them for overcoming resistance to anti-PD-L1 therapy in poorly immunogenic tumors.
Collapse
MESH Headings
- Animals
- B7-H1 Antigen/antagonists & inhibitors
- B7-H1 Antigen/metabolism
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Line, Tumor
- Coculture Techniques
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Dendritic Cells/transplantation
- Immune Checkpoint Inhibitors/pharmacology
- Immunotherapy, Adoptive
- Induced Pluripotent Stem Cells/immunology
- Induced Pluripotent Stem Cells/metabolism
- Induced Pluripotent Stem Cells/transplantation
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Melanoma, Experimental/immunology
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/pathology
- Melanoma, Experimental/therapy
- Mice, Inbred C57BL
- Mice, Transgenic
- Phenotype
- Radiotherapy, Adjuvant
- Signal Transduction
- Skin Neoplasms/immunology
- Skin Neoplasms/metabolism
- Skin Neoplasms/pathology
- Skin Neoplasms/therapy
- Tumor Burden/drug effects
- Tumor Microenvironment
- Mice
Collapse
Affiliation(s)
- Takaaki Oba
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Division of Breast and Endocrine Surgery, Department of Surgery, Shinshu University, Matsumoto, Nagano, Japan
| | - Kenichi Makino
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan
| | - Ryutaro Kajihara
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Toshihiro Yokoi
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Ryoko Araki
- Department of Basic Medical Sciences for Radiation Damages, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Masumi Abe
- Department of Basic Medical Sciences for Radiation Damages, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hans Minderman
- Flow & Image Cytometry Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Alfred E Chang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Kunle Odunsi
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- University of Chicago Medicine Comprehensive Cancer Center, Chicago, Illinois, USA
| | - Fumito Ito
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, Nuew York, USA
| |
Collapse
|
99
|
Shan Z, Wang H, Zhang Y, Min W. The Role of Tumor-Derived Exosomes in the Abscopal Effect and Immunotherapy. Life (Basel) 2021; 11:life11050381. [PMID: 33922480 PMCID: PMC8145657 DOI: 10.3390/life11050381] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 01/08/2023] Open
Abstract
Exosomes are microvesicles that can be secreted by various cells and carry a variety of contents; thus, they play multiple biological functions. For instance, the tumor-derived exosomes (TEXs) have been proven to have the effect of immunostimulatory in addition to immunosuppression, making TEXs attractive in clinical immunotherapy and targeted therapy for cancer patients. In addition, TEXs as biomarkers have important clinical diagnostic and prognostic value. Recently, TEXs have been recognized to play important roles in the abscopal effect (AbE), a newly discovered mechanism by which the distant tumors are effectively targeted and repressed during immunotherapy and radiotherapy. Therefore, TEXs has demonstrated great clinical potential in the diagnosis, prognosis and treatment of cancer patients in the future. This review summarizes and discusses the role of TEXs in clinical therapy and their role in AbE in recent studies.
Collapse
Affiliation(s)
- Zechen Shan
- Academy of Queen Mary, Nanchang University, Nanchang 330000, China; (Z.S.); (Y.Z.)
| | - Hongmei Wang
- School of Basic Medical Sciences, Nanchang University, Nanchang 330000, China
- Correspondence: (H.W.); (W.M.)
| | - Yujuan Zhang
- Academy of Queen Mary, Nanchang University, Nanchang 330000, China; (Z.S.); (Y.Z.)
- School of Basic Medical Sciences, Nanchang University, Nanchang 330000, China
| | - Weiping Min
- Academy of Queen Mary, Nanchang University, Nanchang 330000, China; (Z.S.); (Y.Z.)
- School of Basic Medical Sciences, Nanchang University, Nanchang 330000, China
- Department of Surgery, Pathology and Oncology, University of Western Ontario, London, ON N6A 5A5, Canada
- Correspondence: (H.W.); (W.M.)
| |
Collapse
|
100
|
van den Bijgaart RJE, Schuurmans F, Fütterer JJ, Verheij M, Cornelissen LAM, Adema GJ. Immune Modulation Plus Tumor Ablation: Adjuvants and Antibodies to Prime and Boost Anti-Tumor Immunity In Situ. Front Immunol 2021; 12:617365. [PMID: 33936033 PMCID: PMC8079760 DOI: 10.3389/fimmu.2021.617365] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
In situ tumor ablation techniques, like radiotherapy, cryo- and heat-based thermal ablation are successfully applied in oncology for local destruction of tumor masses. Although diverse in technology and mechanism of inducing cell death, ablative techniques share one key feature: they generate tumor debris which remains in situ. This tumor debris functions as an unbiased source of tumor antigens available to the immune system and has led to the concept of in situ cancer vaccination. Most studies, however, report generally modest tumor-directed immune responses following local tumor ablation as stand-alone treatment. Tumors have evolved mechanisms to create an immunosuppressive tumor microenvironment (TME), parts of which may admix with the antigen depot. Provision of immune stimuli, as well as approaches that counteract the immunosuppressive TME, have shown to be key to boost ablation-induced anti-tumor immunity. Recent advances in protein engineering have yielded novel multifunctional antibody formats. These multifunctional antibodies can provide a combination of distinct effector functions or allow for delivery of immunomodulators specifically to the relevant locations, thereby mitigating potential toxic side effects. This review provides an update on immune activation strategies that have been tested to act in concert with tumor debris to achieve in situ cancer vaccination. We further provide a rationale for multifunctional antibody formats to be applied together with in situ ablation to boost anti-tumor immunity for local and systemic tumor control.
Collapse
Affiliation(s)
- Renske J E van den Bijgaart
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Fabian Schuurmans
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jurgen J Fütterer
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Robotics and Mechatronics, University of Twente, Enschede, Netherlands
| | - Marcel Verheij
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Lenneke A M Cornelissen
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gosse J Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|