51
|
Common Drug Pipelines for the Treatment of Diabetic Nephropathy and Hepatopathy: Can We Kill Two Birds with One Stone? Int J Mol Sci 2020; 21:ijms21144939. [PMID: 32668632 PMCID: PMC7404115 DOI: 10.3390/ijms21144939] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
Type 2 diabetes (T2D) is associated with diabetic nephropathy as well as nonalcoholic steatohepatitis (NASH), which can be called "diabetic hepatopathy or diabetic liver disease". NASH, a severe form of nonalcoholic fatty disease (NAFLD), can sometimes progress to cirrhosis, hepatocellular carcinoma and hepatic failure. T2D patients are at higher risk for liver-related mortality compared with the nondiabetic population. NAFLD is closely associated with chronic kidney disease (CKD) or diabetic nephropathy according to cross-sectional and longitudinal studies. Simultaneous kidney liver transplantation (SKLT) is dramatically increasing in the United States, because NASH-related cirrhosis often complicates end-stage renal disease. Growing evidence suggests that NAFLD and CKD share common pathogenetic mechanisms and potential therapeutic targets. Glucagon-like peptide 1 (GLP-1) receptor agonists and sodium-glucose cotransporter 2 (SGLT2) inhibitors are expected to ameliorate NASH and diabetic nephropathy/CKD. There are no approved therapies for NASH, but a variety of drug pipelines are now under development. Several agents of them can also ameliorate diabetic nephropathy/CKD, including peroxisome proliferator-activated receptors agonists, apoptosis signaling kinase 1 inhibitor, nuclear factor-erythroid-2-related factor 2 activator, C-C chemokine receptor types 2/5 antagonist and nonsteroidal mineral corticoid receptor antagonist. This review focuses on common drug pipelines in the treatment of diabetic nephropathy and hepatopathy.
Collapse
|
52
|
Moose JE, Leets KA, Mate NA, Chisholm JD, Hougland JL. An overview of ghrelin O-acyltransferase inhibitors: a literature and patent review for 2010-2019. Expert Opin Ther Pat 2020; 30:581-593. [PMID: 32564644 DOI: 10.1080/13543776.2020.1776263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The peptide hormone ghrelin regulates physiological processes associated with energy homeostasis such as appetite, insulin signaling, glucose metabolism, and adiposity. Ghrelin has also been implicated in a growing number of neurological pathways involved in stress response and addiction behavior. For ghrelin to bind the growth hormone secretagogue receptor 1a (GHS-R1a) and activate signaling, the hormone must first be octanoylated on a specific serine side chain. This key transformation is performed by the enzyme ghrelin O-acyltransferase (GOAT), and therefore GOAT inhibitors may be useful in treating disorders related to ghrelin signaling such as diabetes, obesity, and related metabolic syndromes. AREAS COVERED This report covers ghrelin and GOAT as potential therapeutic targets and summarizes work on GOAT inhibitors through the end of 2019, highlighting recent successes with both peptidomimetics and small molecule GOAT inhibitors as potent modulators of GOAT-catalyzed ghrelin octanoylation. EXPERT OPINION A growing body of biochemical and structural knowledge regarding the ghrelin/GOAT system now enables multiple avenues for identifying and optimizing GOAT inhibitors. We are at the beginning of a new era with increased opportunities for leveraging ghrelin and GOAT in the understanding and treatment of multiple health conditions including diabetes, obesity, and addiction.
Collapse
Affiliation(s)
- Jacob E Moose
- Department of Chemistry and BioInspired Syracuse, Syracuse University , Syracuse, NY, USA
| | - Katelyn A Leets
- Department of Chemistry and BioInspired Syracuse, Syracuse University , Syracuse, NY, USA
| | - Nilamber A Mate
- Department of Chemistry and BioInspired Syracuse, Syracuse University , Syracuse, NY, USA
| | - John D Chisholm
- Department of Chemistry and BioInspired Syracuse, Syracuse University , Syracuse, NY, USA
| | - James L Hougland
- Department of Chemistry and BioInspired Syracuse, Syracuse University , Syracuse, NY, USA
| |
Collapse
|
53
|
Yang JL, Sun MY, Yuan Q, Tang S, Dong MJ, Zhang RD, Liu YY, Mao L. Keap1-Nrf2 signaling activation by Bardoxolone-methyl ameliorates high glucose-induced oxidative injury in human umbilical vein endothelial cells. Aging (Albany NY) 2020; 12:10370-10380. [PMID: 32484788 PMCID: PMC7346051 DOI: 10.18632/aging.103263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/20/2020] [Indexed: 12/22/2022]
Abstract
In cultured human umbilical vein endothelial cells (HUVECs) high glucose (HG) stimulation will lead to significant cell death. Bardoxolone-methyl (BARD) is a NF-E2 p45-related factor 2 (Nrf2) agonist. In this study we show that BARD, at only nM concentrations, activated Nrf2 signaling in HUVECs. BARD induced Keap1-Nrf2 disassociation, Nrf2 protein stabilization and nuclear translocation, increasing expression of antioxidant response element (ARE) genes. BARD pretreatment in HUVECs inhibited HG-induced reactive oxygen species production, oxidative injury and cell apoptosis. Nrf2 shRNA or knockout (using a CRISPR/Cas9 construct) reversed BARD-induced cytoprotection in HG-stimulated HUVECs. Conversely, forced activation of Nrf2 cascade by Keap1 shRNA mimicked BARD’s activity and protected HUVECs from HG. Importantly, BARD failed to offer further cytoprotection against HG in the Keap1-silened HUVECs. Taken together, Keap1-Nrf2 cascade activation by BARD protects HUVECs from HG-induced oxidative injury.
Collapse
Affiliation(s)
- Jing-Lei Yang
- Department of Endocrinology, The Affiliated Huai'an People's Hospital of Nanjing Medical University, Huai'an, China
| | - Meng-Yue Sun
- Department of Endocrinology, The Affiliated Huai'an People's Hospital of Nanjing Medical University, Huai'an, China
| | - Qi Yuan
- Department of Endocrinology, The Affiliated Huai'an People's Hospital of Nanjing Medical University, Huai'an, China
| | - Shan Tang
- Department of Endocrinology, The Affiliated Huai'an People's Hospital of Nanjing Medical University, Huai'an, China
| | - Mei-Juan Dong
- Department of Endocrinology, The Affiliated Huai'an People's Hospital of Nanjing Medical University, Huai'an, China
| | - Ri-Dong Zhang
- Department of Endocrinology, The Affiliated Huai'an People's Hospital of Nanjing Medical University, Huai'an, China
| | - Yuan-Yuan Liu
- Department of Endocrinology, The Affiliated Huai'an People's Hospital of Nanjing Medical University, Huai'an, China
| | - Li Mao
- Department of Endocrinology, The Affiliated Huai'an People's Hospital of Nanjing Medical University, Huai'an, China
| |
Collapse
|
54
|
Dayalan Naidu S, Dinkova-Kostova AT. KEAP1, a cysteine-based sensor and a drug target for the prevention and treatment of chronic disease. Open Biol 2020; 10:200105. [PMID: 32574549 PMCID: PMC7333886 DOI: 10.1098/rsob.200105] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/22/2020] [Indexed: 12/29/2022] Open
Abstract
Redox imbalance and persistent inflammation are the underlying causes of most chronic diseases. Mammalian cells have evolved elaborate mechanisms for restoring redox homeostasis and resolving acute inflammatory responses. One prominent mechanism is that of inducing the expression of antioxidant, anti-inflammatory and other cytoprotective proteins, while also suppressing the production of pro-inflammatory mediators, through the activation of transcription factor nuclear factor-erythroid 2 p45-related factor 2 (NRF2). At homeostatic conditions, NRF2 is a short-lived protein, which avidly binds to Kelch-like ECH-associated protein 1 (KEAP1). KEAP1 functions as (i) a substrate adaptor for a Cullin 3 (CUL3)-based E3 ubiquitin ligase that targets NRF2 for ubiquitination and proteasomal degradation, and (ii) a cysteine-based sensor for a myriad of physiological and pharmacological NRF2 activators. Here, we review the intricate molecular mechanisms by which KEAP1 senses electrophiles and oxidants. Chemical modification of specific cysteine sensors of KEAP1 results in loss of NRF2-repressor function and alterations in the expression of NRF2-target genes that encode large networks of diverse proteins, which collectively restore redox balance and resolve inflammation, thus ensuring a comprehensive cytoprotection. We focus on the cyclic cyanoenones, the most potent NRF2 activators, some of which are currently in clinical trials for various pathologies characterized by redox imbalance and inflammation.
Collapse
Affiliation(s)
- Sharadha Dayalan Naidu
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Albena T. Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, UK
- Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
55
|
Abstract
Covering: up to 2020The transcription factor NRF2 is one of the body's major defense mechanisms, driving transcription of >300 antioxidant response element (ARE)-regulated genes that are involved in many critical cellular processes including redox regulation, proteostasis, xenobiotic detoxification, and primary metabolism. The transcription factor NRF2 and natural products have an intimately entwined history, as the discovery of NRF2 and much of its rich biology were revealed using natural products both intentionally and unintentionally. In addition, in the last decade a more sinister aspect of NRF2 biology has been revealed. NRF2 is normally present at very low cellular levels and only activated when needed, however, it has been recently revealed that chronic, high levels of NRF2 can lead to diseases such as diabetes and cancer, and may play a role in other diseases. Again, this "dark side" of NRF2 was revealed and studied largely using a natural product, the quassinoid, brusatol. In the present review, we provide an overview of NRF2 structure and function to orient the general reader, we will discuss the history of NRF2 and NRF2-activating compounds and the biology these have revealed, and we will delve into the dark side of NRF2 and contemporary issues related to the dark side biology and the role of natural products in dissecting this biology.
Collapse
Affiliation(s)
- Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA.
| | | |
Collapse
|
56
|
Randomized Clinical Trial on the Effect of Bardoxolone Methyl on GFR in Diabetic Kidney Disease Patients (TSUBAKI Study). Kidney Int Rep 2020; 5:879-890. [PMID: 32518870 PMCID: PMC7271944 DOI: 10.1016/j.ekir.2020.03.030] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/13/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022] Open
Abstract
Introduction Bardoxolone methyl significantly increases estimated glomerular filtration rate (eGFR) in patients with chronic kidney disease (CKD). However, the phase 3 study, Bardoxolone Methyl Evaluation in Patients with Chronic Kidney Disease and Type 2 Diabetes Mellitus: the Occurrence of Renal Events (BEACON), was terminated prematurely because bardoxolone methyl increased the risk for early-onset fluid overload in patients with identifiable risk factors for heart failure (elevated baseline B-type natriuretic peptide levels >200 pg/ml and prior history of hospitalization for heart failure). The Phase 2 Study of Bardoxolone Methyl in Patients with Chronic Kidney Disease and Type 2 Diabetes (TSUBAKI) study aimed to determine if patients without risk factors can mitigate the risk for fluid overload and whether changes in eGFR with bardoxolone methyl reflect true increases in GFR. Methods This phase 2, randomized, multicenter, double-blind, placebo-controlled study enrolled patients with type 2 diabetes and stage 3-4 CKD. Patients were randomized 1:1 to bardoxolone methyl (n = 41) or placebo (n = 41) (cohort G3), or 2:1 to bardoxolone methyl (n = 24) or placebo (n = 14) (cohort G4), administered orally once daily for 16 weeks using a dose-titration scheme. The primary efficacy endpoint was change from baseline in GFR measured by inulin clearance at week 16 in the cohort G3. Results A total of 40 patients were evaluated for the prespecified primary efficacy analysis. Mean change (95% confidence interval [CI]) from baseline in GFR was 5.95 (2.29 to 9.60) and -0.69 (-3.83 to 2.45) ml/min per 1.73 m2 for patients randomized to bardoxolone methyl and placebo, respectively, with a significant intergroup difference of 6.64 ml/min per 1.73 m2 (P = 0.008). Increases in the albumin/creatinine ratio were observed in the bardoxolone methyl group vs the placebo group. The most common adverse events (≥15% in either group) were viral upper respiratory tract infection, increased alanine aminotransferase, increased aspartate aminotransferase, increased γ-glutamyltransferase, and constipation. Peripheral edema was reported by 4 patients receiving bardoxolone methyl and by 1 patient receiving placebo; all events were mild and self-limiting. No patient died or experienced heart failure. The study discontinuation rate was higher in the bardoxolone methyl group (cohort G3, n = 8; cohort G4, n = 7) than the placebo group (cohort G3, n = 1; cohort G4, n = 0). Conclusion Bardoxolone methyl significantly increased measured GFR, and further investigation is ongoing to evaluate whether it provides clinical benefit without major safety concerns in selected patients with CKD.
Collapse
|
57
|
Darband SG, Sadighparvar S, Yousefi B, Kaviani M, Ghaderi-Pakdel F, Mihanfar A, Rahimi Y, Mobaraki K, Majidinia M. Quercetin attenuated oxidative DNA damage through NRF2 signaling pathway in rats with DMH induced colon carcinogenesis. Life Sci 2020; 253:117584. [PMID: 32220623 DOI: 10.1016/j.lfs.2020.117584] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/15/2020] [Accepted: 03/21/2020] [Indexed: 01/01/2023]
Abstract
Accumulating recent studies have demonstrated the preventive and therapeutic effects of polyphonic compounds such as quercetin in colorectal cancer. Therefore, we aimed to evaluate the underlying mechanisms for positive effects of quercetin in rats with 1,2-dimethylhydrazine (DMH)- induced colorectal cancer. For this purpose, male Wistar rats were classified as 6 groups, including group 1 without any intervention, group 2 as quercetin received rats (50 mg/kg), groups 3 as DMH received rats (20 mg/kg) group 4-6 DMH and quercetin received rats. DNA damage, DNA repair, the expression levels and activities of enzymic antioxidants, non-enzymic antioxidants, and NRF2/Keap1 signaling were evaluated in colon tissues of all groups. Our results showed significant suppression of DNA damage and induction of DNA repair in DMH + Quercetin groups, particularly in entire-period in comparison to other groups (p < .05). The expression levels and activities of enzymic and non-enzymic antioxidants were increased in DMH + Quercetin groups (p < .05). Lipid and protein peroxidation were significantly suppressed in DMH + Quercetin groups (p < .05). In addition, quercetin also modulated NRF2/Keap1 signaling and its targets, detoxifying enzymes in DMH + Quercetin groups. Our finding demonstrated that quercetin supplementation effectively reversed DMH-mediated oxidative stress and DNA damage through targeting NRF2/Keap1 signaling pathway.
Collapse
Affiliation(s)
- Saber Ghazizadeh Darband
- Student Research Community, Urmia University of Medical Sciences, Urmia, Iran; Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Shirin Sadighparvar
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Bahman Yousefi
- Immunology research center, Tabriz University of Medical Science, Tabriz, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | | | - Ainaz Mihanfar
- Department of Biochemistry, Urmia University of Medical Sciences, Urmia, Iran
| | - Yaghoub Rahimi
- Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Kazhal Mobaraki
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
58
|
Potential Applications of NRF2 Modulators in Cancer Therapy. Antioxidants (Basel) 2020; 9:antiox9030193. [PMID: 32106613 PMCID: PMC7139512 DOI: 10.3390/antiox9030193] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 01/17/2023] Open
Abstract
The nuclear factor erythroid 2-related factor 2 (NRF2)-Kelch-like ECH-associated protein 1 (KEAP1) regulatory pathway plays an essential role in protecting cells and tissues from oxidative, electrophilic, and xenobiotic stress. By controlling the transactivation of over 500 cytoprotective genes, the NRF2 transcription factor has been implicated in the physiopathology of several human diseases, including cancer. In this respect, accumulating evidence indicates that NRF2 can act as a double-edged sword, being able to mediate tumor suppressive or pro-oncogenic functions, depending on the specific biological context of its activation. Thus, a better understanding of the mechanisms that control NRF2 functions and the most appropriate context of its activation is a prerequisite for the development of effective therapeutic strategies based on NRF2 modulation. In line of principle, the controlled activation of NRF2 might reduce the risk of cancer initiation and development in normal cells by scavenging reactive-oxygen species (ROS) and by preventing genomic instability through decreased DNA damage. In contrast however, already transformed cells with constitutive or prolonged activation of NRF2 signaling might represent a major clinical hurdle and exhibit an aggressive phenotype characterized by therapy resistance and unfavorable prognosis, requiring the use of NRF2 inhibitors. In this review, we will focus on the dual roles of the NRF2-KEAP1 pathway in cancer promotion and inhibition, describing the mechanisms of its activation and potential therapeutic strategies based on the use of context-specific modulation of NRF2.
Collapse
|
59
|
Khurana N, Chandra PK, Kim H, Abdel-Mageed AB, Mondal D, Sikka SC. Bardoxolone-Methyl (CDDO-Me) Suppresses Androgen Receptor and Its Splice-Variant AR-V7 and Enhances Efficacy of Enzalutamide in Prostate Cancer Cells. Antioxidants (Basel) 2020; 9:antiox9010068. [PMID: 31940946 PMCID: PMC7022272 DOI: 10.3390/antiox9010068] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 01/01/2023] Open
Abstract
Androgen receptor (AR) signaling is fundamental to prostate cancer (PC) progression, and hence, androgen deprivation therapy (ADT) remains a mainstay of treatment. However, augmented AR signaling via both full length AR (AR-FL) and constitutively active AR splice variants, especially AR-V7, is associated with the recurrence of castration resistant prostate cancer (CRPC). Oxidative stress also plays a crucial role in anti-androgen resistance and CRPC outgrowth. We examined whether a triterpenoid antioxidant drug, Bardoxolone-methyl, known as CDDO-Me or RTA 402, can decrease AR-FL and AR-V7 expression in PC cells. Nanomolar (nM) concentrations of CDDO-Me rapidly downregulated AR-FL in LNCaP and C4-2B cells, and both AR-FL and AR-V7 in CWR22Rv1 (22Rv1) cells. The AR-suppressive effect of CDDO-Me was evident at both the mRNA and protein levels. Mechanistically, acute exposure (2 h) to CDDO-Me increased and long-term exposure (24 h) decreased reactive oxygen species (ROS) levels in cells. This was concomitant with an increase in the anti-oxidant transcription factor, Nrf2. The anti-oxidant N-acetyl cysteine (NAC) could overcome this AR-suppressive effect of CDDO-Me. Co-exposure of PC cells to CDDO-Me enhanced the efficacy of a clinically approved anti-androgen, enzalutamide (ENZ), as evident by decreased cell-viability along with migration and colony forming ability of PC cells. Thus, CDDO-Me which is in several late-stage clinical trials, may be used as an adjunct to ADT in PC patients.
Collapse
Affiliation(s)
- Namrata Khurana
- Department of Urology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA; (N.K.); (H.K.); (A.B.A.-M.)
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA;
- Department of Internal Medicine-Medical Oncology, Washington University in St. Louis Medical Campus, 660 S Euclid Ave, St. Louis, MO 63110-1010, USA
| | - Partha K. Chandra
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA;
| | - Hogyoung Kim
- Department of Urology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA; (N.K.); (H.K.); (A.B.A.-M.)
| | - Asim B. Abdel-Mageed
- Department of Urology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA; (N.K.); (H.K.); (A.B.A.-M.)
| | - Debasis Mondal
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA;
- Department of Microbiology, Lincoln Memorial University—Debusk College of Osteopathic Medicine, 9737 Coghill Drive, Knoxville, TN 37932, USA
- Correspondence: (D.M.); (S.C.S.); Tel.: +865-338-5715 (D.M.); +504-988-5179 (S.C.S.)
| | - Suresh C. Sikka
- Department of Urology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA; (N.K.); (H.K.); (A.B.A.-M.)
- Correspondence: (D.M.); (S.C.S.); Tel.: +865-338-5715 (D.M.); +504-988-5179 (S.C.S.)
| |
Collapse
|
60
|
Murray JR, de la Vega L, Hayes JD, Duan L, Penning TM. Induction of the Antioxidant Response by the Transcription Factor NRF2 Increases Bioactivation of the Mutagenic Air Pollutant 3-Nitrobenzanthrone in Human Lung Cells. Chem Res Toxicol 2019; 32:2538-2551. [PMID: 31746589 PMCID: PMC6934363 DOI: 10.1021/acs.chemrestox.9b00399] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
3-Nitrobenzanthrone (3-NBA) is a suspected human carcinogen present in diesel exhaust. It requires metabolic activation via nitroreduction in order to form DNA adducts and promote mutagenesis. We have determined that human aldo-keto reductases (AKR1C1-1C3) and NAD(P)H:quinone oxidoreductase 1 (NQO1) contribute equally to the nitroreduction of 3-NBA in lung epithelial cell lines and collectively represent 50% of the nitroreductase activity. The genes encoding these enzymes are induced by the transcription factor NF-E2 p45-related factor 2 (NRF2), which raises the possibility that NRF2 activation exacerbates 3-NBA toxification. Since A549 cells possess constitutively active NRF2, we examined the effect of heterozygous (NRF2-Het) and homozygous NRF2 knockout (NRF2-KO) by CRISPR-Cas9 gene editing on the activation of 3-NBA. To evaluate whether NRF2-mediated gene induction increases 3-NBA activation, we examined the effects of NRF2 activators in immortalized human bronchial epithelial cells (HBEC3-KT). Changes in AKR1C1-1C3 and NQO1 expression by NRF2 knockout or use of NRF2 activators were confirmed by qPCR, immunoblots, and enzyme activity assays. We observed decreases in 3-NBA activation in the A549 NRF2 KO cell lines (53% reduction in A549 NRF2-Het cells and 82% reduction in A549 NRF2-KO cells) and 40-60% increases in 3-NBA bioactivation due to NRF2 activators in HBEC3-KT cells. Together, our data suggest that activation of the transcription factor NRF2 exacerbates carcinogen metabolism following exposure to diesel exhaust which may lead to an increase in 3-NBA-derived DNA adducts.
Collapse
Affiliation(s)
- Jessica R. Murray
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Laureano de la Vega
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland U.K
| | - John D. Hayes
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland U.K
| | - Ling Duan
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Trevor M. Penning
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
61
|
Popov SA, Semenova MD, Baev DS, Sorokina IV, Zhukova NA, Frolova TS, Tolstikova TG, Shults EE, Turks M. Lupane-type conjugates with aminoacids, 1,3,4- oxadiazole and 1,2,5-oxadiazole-2-oxide derivatives: Synthesis, anti-inflammatory activity and in silico evaluation of target affinity. Steroids 2019; 150:108443. [PMID: 31295462 DOI: 10.1016/j.steroids.2019.108443] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/24/2019] [Accepted: 04/30/2019] [Indexed: 12/30/2022]
Abstract
With the purpose to improve anti-inflammatory activity, the impact of introduction of 1,2,5- and 1,3,4-oxadiazole fragments to betulonic acid core as well as hybrids tethered with short ω-amino acids has been studied. The anti-inflammatory activity of synthesized compounds was tested in vivo using models of inflammation induced by concanavalin A and histamine. The majority of new compounds demonstrated higher anti-inflammatory activity compared with starting betulonic acid. To confirm the molecular targets of new derivatives in NRf2 and NFκB pathways the docking at Kelch and BTB active sites of Keap1 as well as IKK was done. The novelty of the present work is the development of new class of low toxic anti-inflammatory substances consisting of amino acid-linked betulonic acid - oxadiazole conjugates. These compounds can be considered as prospective chemopreventive agents.
Collapse
Affiliation(s)
- Sergey A Popov
- Novosibirsk Institute of Organic Chemistry, Acad. Lavrentyev ave. 9, Novosibirsk 630090, Russia.
| | - Marya D Semenova
- Novosibirsk Institute of Organic Chemistry, Acad. Lavrentyev ave. 9, Novosibirsk 630090, Russia
| | - Dmitry S Baev
- Novosibirsk Institute of Organic Chemistry, Acad. Lavrentyev ave. 9, Novosibirsk 630090, Russia
| | - Irina V Sorokina
- Novosibirsk Institute of Organic Chemistry, Acad. Lavrentyev ave. 9, Novosibirsk 630090, Russia
| | - Natalya A Zhukova
- Novosibirsk Institute of Organic Chemistry, Acad. Lavrentyev ave. 9, Novosibirsk 630090, Russia
| | - Tatyana S Frolova
- The Federal Research Center Institute of Cytology and Genetics, Acad. Lavrentyev Ave., 10, 630090 Novosibirsk, Russia; Novosibirsk State University, Pirogov Street 2, 630090 Novosibirsk, Russia
| | - Tatyana G Tolstikova
- Novosibirsk Institute of Organic Chemistry, Acad. Lavrentyev ave. 9, Novosibirsk 630090, Russia
| | - Elvira E Shults
- Novosibirsk Institute of Organic Chemistry, Acad. Lavrentyev ave. 9, Novosibirsk 630090, Russia
| | - Māris Turks
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, Riga LV-1048, Latvia
| |
Collapse
|
62
|
Kadıoğlu E, Tekşen Y, Koçak C, Koçak FE. Beneficial effects of bardoxolone methyl, an Nrf2 activator, on crush-related acute kidney injury in rats. Eur J Trauma Emerg Surg 2019; 47:241-250. [PMID: 31471671 DOI: 10.1007/s00068-019-01216-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/21/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE The purpose of this study was to investigate the effects of bardoxolone methyl (BM), a nuclear factor erythroid 2-related factor 2 (Nrf2) activator, on acute kidney injury in a rat model of crush syndrome model. METHODS Sixty-four rats were separated equally into eight groups, sham (sterile saline ip), crush, crush + vehicle (DMSO ip), and crush + BM (10 mg/kg ip) (n = 8). All groups were also divided as 3 and 24 h after decompression. Crush injury was induced by 6 h of direct compression to both hind limbs of the rats with blocks weighing 3.6 kg on each side, followed by 3 and 24 h of decompression. Kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), tumor necrotizing factor-α (TNF-α), transforming growth factor-β1 (TGF-β1) concentrations, tissue total oxidant status (TOS) and total antioxidant status (TAS) were measured in the kidneys. Serum creatine kinase (CK), blood urea nitrogen (BUN) and creatinine concentrations were also measured. Glomerular and tubular structures were examined histopathologically. Bcl-2 was measured using immunohistochemistry. Apoptosis was assessed using the TUNEL method. RESULTS BM treatment reduced KIM-1, NGAL, TNF-α, TGF-β1, TOS concentrations, and increased TAS concentrations in the kidneys 3 and 24 h after decompression. Serum CK, BUN and creatinine concentrations were also reduced with BM. BM treatment decreased apoptosis in crush-related AKI. The Nrf2 activator BM reversed the crush-induced changes in the experimental rats. CONCLUSION BM treatment prevented the progression of crush-related AKI in rats possibly through its cytoprotective effects of being an antioxidant, anti-inflammatory and anti-apoptotic agent.
Collapse
Affiliation(s)
- Emine Kadıoğlu
- Department of Emergency Medicine, Faculty of Medicine, Kütahya Health Sciences University, Evliya Çelebi Yerleşkesi, 43000, Kutahya, Turkey
| | - Yasemin Tekşen
- Department of Pharmacology, Faculty of Medicine, Kütahya Health Sciences University, Evliya Çelebi Yerleşkesi, 43000, Kutahya, Turkey.
| | - Cengiz Koçak
- Department of Pathology, Faculty of Medicine, Uşak University, Bir Eylül Kampüsü, 64000, Uşak, Turkey
| | - Fatma Emel Koçak
- Department of Biochemistry, Faculty of Medicine, Kütahya Health Sciences University, Evliya Çelebi Yerleşkesi, 43000, Kutahya, Turkey
| |
Collapse
|
63
|
Ramos-Tovar E, Muriel P. Free radicals, antioxidants, nuclear factor-E2-related factor-2 and liver damage. J Appl Toxicol 2019; 40:151-168. [PMID: 31389060 DOI: 10.1002/jat.3880] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022]
Abstract
Oxidative/nitrosative stress is proposed to be a critical factor in various diseases, including liver pathologies. Antioxidants derived from medicinal plants have been studied extensively and are relevant to many illnesses, including liver diseases. Several hepatic disorders, such as viral hepatitis and alcoholic or nonalcoholic steatohepatitis, involve free radicals/oxidative stress as agents that cause or at least exacerbate liver injury, which can result in chronic liver diseases, such as liver fibrosis, cirrhosis and end-stage hepatocellular carcinoma. In this scenario, nuclear factor-E2-related factor-2 (Nrf2) appears to be an essential factor to counteract or attenuate oxidative or nitrosative stress in hepatic cells. In fact, a growing body of evidence indicates that Nrf2 plays complex and multicellular roles in hepatic inflammation, fibrosis, hepatocarcinogenesis and regeneration via the induction of its target genes. Inflammation is the most common feature of chronic liver diseases, triggering fibrosis, cirrhosis and hepatocellular carcinoma. Increasing evidence indicates that Nrf2 counteracts the proinflammatory process by modulating the recruitment of inflammatory cells and inducing the endogenous antioxidant response of the cell. In this review, the interactions between antioxidant and inflammatory molecular pathways are analyzed.
Collapse
Affiliation(s)
- Erika Ramos-Tovar
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City, Mexico
| | - Pablo Muriel
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City, Mexico
| |
Collapse
|
64
|
Livingstone MC, Johnson NM, Roebuck BD, Kensler TW, Groopman JD. Serum miR-182 is a predictive biomarker for dichotomization of risk of hepatocellular carcinoma in rats. Mol Carcinog 2019; 58:2017-2025. [PMID: 31373075 DOI: 10.1002/mc.23093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/13/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022]
Abstract
Exploration of animal models leads to discoveries that can reveal candidate biomarkers for translation to human populations. Herein, a model of hepatocarcinogenesis and protection was used in which rats treated with aflatoxin (AFB1 ) daily for 28 days (200 µg/kg BW) developed tumors compared with rats completely protected from tumors by concurrent administration of the chemoprotective agent, 1-[2-cyano-3-,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Im). Differential expression of miRNAs in tumors (AFB1 ) and nontumor (AFB1 + CDDO-Im) bearing livers and their levels in sera over the life-course of the animals was determined. miRNA transcriptome analysis identified 17 miRNAs significantly upregulated at greater than five-fold in the tumors. The ten most dysregulated miRNAs judged by fold-change and biological significance were selected for further study, including liver-specific miR-122-5p. Validation of sequencing results by real-time PCR confirmed the upregulation of the majority of these miRNAs in tumors, including miR-182, as well as miR-224-5p as the most dysregulated of these miRNAs (over 400-fold). The longitudinal analysis of levels of miR-182 in sera demonstrated significant and persistent increases (5.13-fold; 95% CI: 4.59-5.70). The increase in miR-182 was detected months before any clinical symptoms were present in the animals. By the terminal time point of the study, in addition to elevated levels of serum miR-182, serum miR-122-5p was also found to be increased (>1.5-fold) in animals that developed hepatocarcinomas. Thus, using the data from an unbiased discovery approach of the tissue findings, serum miR-182 was found to track across the complex, multistage process of hepatocarcinogenesis opening an opportunity for translation to human populations.
Collapse
Affiliation(s)
- Merricka C Livingstone
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Natalie M Johnson
- Department of Environmental and Occupational Health, Texas A&M School of Public Health, College Station, Texas
| | - Bill D Roebuck
- Department of Pharmacology and Toxicology, Giesel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Thomas W Kensler
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - John D Groopman
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
65
|
Rizk DV, Silva AL, Pergola PE, Toto R, Warnock DG, Chin MP, Goldsberry A, O'Grady M, Meyer CJ, McCullough PA. Effects of Bardoxolone Methyl on Magnesium in Patients with Type 2 Diabetes Mellitus and Chronic Kidney Disease. Cardiorenal Med 2019; 9:316-325. [PMID: 31170712 DOI: 10.1159/000500612] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/18/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Treatment with bardoxolone methyl (Bard) in a multinational phase 3 trial, Bardoxolone Methyl Evaluation in Patients with Chronic Kidney Disease and Type 2 Diabetes (BEACON), resulted in increases in estimated glomerular filtration rate with concurrent reductions in serum magnesium. We analyzed data from several trials to characterize reductions in magnesium with Bard. METHODS BEACON randomized patients (n = 2,185) with type 2 diabetes (T2DM) and stage 4 chronic kidney disease (CKD) 1:1 to receive Bard (20 mg) or placebo once daily. In a separate open-label study, magnesium levels from 24-hour urine and sublingual epithelial cell samples were analyzed in patients with stage 3b-4 CKD and T2DM administered 20 mg Bard for 56 consecutive days. RESULTS BEACON patients randomized to Bard experienced significant reductions in serum magnesium from baseline relative to patients randomized to placebo (-0.17 mEq/L, 95% CI -0.18 to -0.60 mEq/L; p < 0.001). A separate study showed intracellular and urinary magnesium levels were unchanged with Bard treatment. CONCLUSIONS Bard treatment results in significant decreases in serum magnesium that are not associated with changes in intracellular and urinary magnesium levels, indicating that magnesium decreases are not due to renal magnesium wasting or total body magnesium depletion. Importantly, the decreases in serum magnesium with Bard are not associated with adverse effects on QT interval.
Collapse
Affiliation(s)
- Dana V Rizk
- Department of Medicine, Nephrology Division, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Arnold L Silva
- Boise Kidney and Hypertension Institute, Meridian, Idaho, USA
| | | | - Robert Toto
- Internal Medicine and Clinical Science, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - David G Warnock
- Department of Medicine, Nephrology Division, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Melanie P Chin
- Product Development, Reata Pharmaceuticals, Irving, Texas, USA
| | | | - Megan O'Grady
- Product Development, Reata Pharmaceuticals, Irving, Texas, USA
| | - Colin J Meyer
- Product Development, Reata Pharmaceuticals, Irving, Texas, USA
| | - Peter A McCullough
- Baylor Heart and Vascular Institute, Baylor Jack and Jane Hamilton Heart and Vascular Hospital, The Heart Hospital, Baylor University Medical Center, Dallas, Texas, USA,
| |
Collapse
|
66
|
Chin MP, Rich S, Goldsberry A, O Apos Grady M, Meyer CJ. Effects of Bardoxolone Methyl on QT Interval in Healthy Volunteers. Cardiorenal Med 2019; 9:326-333. [PMID: 31158840 DOI: 10.1159/000500736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/18/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Bardoxolone methyl has been shown to increase eGFR in several clinical trials, including a phase 3 trial in patients with type 2 diabetes and stage 4 CKD (BEACON), which was terminated early due to an increase in heart failure events in bardoxolone methyl-treated patients. A separate, "thorough QT" study was conducted in parallel with BEACON to evaluate the cardiovascular safety of bardoxolone methyl in healthy subjects. METHODS Subjects in the "thorough QT" study were randomized to receive bardoxolone methyl 20 mg (therapeutic dose) or 80 mg (supratherapeutic dose), placebo, or moxifloxacin (400 mg; an active comparator). ECG results and supine blood pressure measurements were analyzed. The effects of bardoxolone methyl on QT interval changes from baseline were quantified compared to the effect of placebo by calculating mean, time-matched, placebo-corrected, baseline-adjusted QTcF values (ΔΔQTcF) after 6 days of daily administration of bardoxolone methyl. RESULTS The study was halted early due to emerging safety information from the BEACON trial; however, 142/179 patients received all doses of the study drug and completed the study. For both bardoxolone methyl-treated groups (20 and 80 mg), the upper limits of the 2-sided 90% confidence interval for ΔΔQTcF were less than the significance limit (10 ms) at all time points. Changes in blood pressure were similar in all treatment groups, and no serious adverse events were reported. CONCLUSIONS In healthy subjects, treatment with 20 or 80 mg bardoxolone methyl did not affect the QTcF interval.
Collapse
Affiliation(s)
- Melanie P Chin
- Product Development, Reata Pharmaceuticals, Irving, Texas, USA
| | - Shannon Rich
- Product Development, Reata Pharmaceuticals, Irving, Texas, USA
| | | | | | - Colin J Meyer
- Product Development, Reata Pharmaceuticals, Irving, Texas, USA,
| |
Collapse
|
67
|
Zheng Y, Zhu G, He J, Wang G, Li D, Zhang F. Icariin targets Nrf2 signaling to inhibit microglia-mediated neuroinflammation. Int Immunopharmacol 2019; 73:304-311. [PMID: 31128530 DOI: 10.1016/j.intimp.2019.05.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 12/24/2022]
Abstract
Microglia-mediated neuroinflammation is an important contributor to the pathogenesis of neurodegenerative diseases. Inhibition of neuroinflammation has been proved to be effective in neurodegenerative diseases treatment. Nuclear factor erythroid 2 related factor 2 (Nrf2) is a key mediator of endogenous inducible defense systems in the body. In response to oxidative stress, Nrf2 translocates to the nucleus and binds to specific DNA sites termed as anti-oxidant response elements to initiate transcription of cytoprotective genes, such as hemeoxygenase-1 (HO-1) and nicotinamide adenine dinucleotide phosphate: quinine oxidoreductase-1 (NQO1). However, insufficient Nrf2 activation has been closely associated with the progress of neurodegenerative diseases. New findings have linked activation of Nrf2 signaling to anti-inflammatory effects. Icariin (ICA), a natural compound derived from Herba Epimedii, possesses amounts of pharmacological activities, such as anti-aging, anti-oxidation and anti-inflammatory effects. Recent studies have confirmed that ICA exerted neuroprotection against neurodegenerative diseases. However, the mechanisms underlying ICA-mediated neuroprotection were not fully understood. In the present study, microglia BV-2 cell lines were performed to investigate the anti-neuroinflammatory effects of ICA and the mechanisms of actions. Results showed that ICA suppressed lipopolysaccharide (LPS)-induced microglial pro-inflammatory factors production. In addition, activation of Nrf2 signaling pathway participated in ICA-mediated anti-neuroinflammation, as evidenced by the following observations. First, Nrf2 siRNA reversed ICA-reduced microglial activation and pro-inflammatory factors release. Second, a selective inhibitor of HO-1 abolished ICA-mediated anti-neuroinflammatory actions. This study will give us an insight into the potential of Nrf2 and neuroinflammation in terms of opening up an alternative therapeutic strategy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Yaxin Zheng
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Guofu Zhu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jingyi He
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Guoqing Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Daidi Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Feng Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
68
|
Synthetic Triterpenoid CDDO-Me Inhibits Proliferation, Migration, and Invasion in GBM8401 and GBM8901. Int Surg 2019. [DOI: 10.9738/intsurg-d-20-00005.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Objectives:
We determined the anticancer potency of CDDO-Me in glioblastoma cell lines and the underlying mechanisms in vitro.
Summary:
CDDO-Me is a synthetic triterpenoid with more potent anticancer and cancer preventive actions compared with the original triterpenoid CDDO.
Methods:
Two glioblastoma cell lines, GBM8401 and GBM8901, were utilized to test the effect of CDDO-Me on cell viability, cell migration, and cell invasion using the MTT, wound healing, and transwell migration assays, respectively. Additionally, Western blotting was used to determine the protein expression levels of N-cadherin, cyclin D1, and vascular endothelial growth factor.
Results:
At nanomolar concentrations, CDDO-Me inhibited proliferation, migration, and invasion in both cell lines. In addition, CDDO-Me exhibited a dose-dependent downregulation in the protein levels of N-cadherin, cyclin D1, and vascular endothelial growth factor in GBM8401 and GBM8901 cells.
Conclusions:
CDDO-Me exhibited anticancer effects at low nanomolar concentrations and should be considered as a potential chemotherapeutic agent for glioblastoma.
Collapse
|
69
|
Essa MM, Moghadas M, Ba-Omar T, Walid Qoronfleh M, Guillemin GJ, Manivasagam T, Justin-Thenmozhi A, Ray B, Bhat A, Chidambaram SB, Fernandes AJ, Song BJ, Akbar M. Protective Effects of Antioxidants in Huntington’s Disease: an Extensive Review. Neurotox Res 2019; 35:739-774. [DOI: 10.1007/s12640-018-9989-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 12/09/2018] [Accepted: 12/11/2018] [Indexed: 01/18/2023]
|
70
|
Keri KC, Samji NS, Blumenthal S. Diabetic nephropathy: newer therapeutic perspectives. J Community Hosp Intern Med Perspect 2018; 8:200-207. [PMID: 30181826 PMCID: PMC6116149 DOI: 10.1080/20009666.2018.1500423] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/29/2018] [Indexed: 12/24/2022] Open
Abstract
Diabetic nephropathy (DN is a dreaded consequence of diabetes mellitus, accounting for about 40% of end-stage renal disease (ESRD). It is responsible for significant morbidity and mortality, both directly by causing ESRD and indirectly by increasing cardiovascular risk. Extensive research in this field has thrown light on multiple pathways that can be pharmacologically targeted, to control or reverse the process of DN. Glomerulocentric approach of DN still continues to produce favourable results as evidenced by the recent data on SGLT-2 (sodium glucose co-transporter type 2) inhibitors. Beyond the glomerular mechanisms, numerous novel pathways have been discovered in the last decade. Some of these pathways target inflammatory and oxidative damage, while the others target more specific mechanisms such as AGE-RAGE (advanced glycation end products-receptors for advanced glycation end products), ASK (apoptotic signal-regulating kinase), and endothelin-associated pathways. As a result of the research, a handful of clinically relevant drugs have made it to the human trials which have been elucidated in the following review, bearing in the mind that there are many more to come over the next few years. Ongoing research is expected to inform the clinicians regarding the use of the newer drugs in DN. Abbreviations: USFDA: Unites States Food and Drug Administration; SGLT-2: Sodium glucose transporter type 2; GLP-1: Glucagon-like peptide-1; DDP-4: Dipeptidyl peptidase-4; UACR: urinary albumin creatinine ratio; eGFR: Estimated glomerular filtration rate; CKD: Chronic kidney disease; DN: Diabetic nephropathy; TGF: Tubuloglomerular feedback; RAAS: Renin angiotensin aldosterone system; T1DM: Type 1 diabetes mellitus; T2DM: Type 2 diabetes mellitus; RCT: Randomized controlled trial; AGE-RAGE: Advanced glycation end products-receptors for advanced glycation end products; ASK-1: Apoptotic signal-regulating kinase-1; Nrf-2: Nuclear 1 factor [erythroid derived-2]-related factor 2; ml/min/1.73m2: Millilitre/minute/1.73 square meters of body surface area; ~: Approximately.
Collapse
Affiliation(s)
- Krishna C Keri
- Department of Medicine, Division of Nephrology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Naga S Samji
- Internal Medicine Department, Primary Care, Bellin Health, Marinette, WI, USA
| | - Samuel Blumenthal
- Department of Medicine, Division of Nephrology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
71
|
Chartoumpekis DV, Palliyaguru DL, Wakabayashi N, Fazzari M, Khoo NKH, Schopfer FJ, Sipula I, Yagishita Y, Michalopoulos GK, O'Doherty RM, Kensler TW. Nrf2 deletion from adipocytes, but not hepatocytes, potentiates systemic metabolic dysfunction after long-term high-fat diet-induced obesity in mice. Am J Physiol Endocrinol Metab 2018; 315:E180-E195. [PMID: 29486138 PMCID: PMC6139497 DOI: 10.1152/ajpendo.00311.2017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a canonical regulator of cytoprotective gene expression, but evidence of its cross talk with other pathways, including metabolic ones, is ever increasing. Pharmacologic or systemic genetic activation of the Nrf2 pathway partially protects from obesity in mice and ameliorates fasting hyperglycemia in mice and humans. However, systemic Nrf2 deletion also protects from diet-induced obesity and insulin resistance in mice. To further investigate the effect of the disruption of Nrf2 on obesity in a tissue-specific manner, we focused on adipocytes and hepatocytes with targeted deletion of Nrf2. To this end, mice with cell-specific deletion of Nrf2 in adipocytes (ANKO) or hepatocytes (HeNKO) were fed a high-fat diet (HFD) for 6 mo and showed similar increases in body weight and body fat content. ANKO mice showed a partially deteriorated glucose tolerance, higher fasting glucose levels, and higher levels of cholesterol and nonesterified fatty acids compared with their Control counterparts. The HeNKO mice, though, had lower insulin levels and trended toward improved insulin sensitivity without having any difference in liver triglyceride accumulation. This study compared for the first time two conditional Nrf2 knockout models in adipocytes and in hepatocytes during HFD-induced obesity. None of these models could completely recapitulate the unexpected protection against obesity observed in the whole body Nrf2 knockout mice, but this study points out the differential roles that Nrf2 may play, beyond cytoprotection, in different target tissues and rather suggests systemic activation of the Nrf2 pathway as an effective means of prevention and treatment of obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Dionysios V Chartoumpekis
- Department of Pharmacology & Chemical Biology, School of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Dushani L Palliyaguru
- Department of Pharmacology & Chemical Biology, School of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Nobunao Wakabayashi
- Department of Pharmacology & Chemical Biology, School of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Marco Fazzari
- Department of Pharmacology & Chemical Biology, School of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
- Fondazione Ri.MED, Palermo , Italy
| | - Nicholas K H Khoo
- Department of Pharmacology & Chemical Biology, School of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Francisco J Schopfer
- Department of Pharmacology & Chemical Biology, School of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Ian Sipula
- Division of Endocrinology, Department of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Yoko Yagishita
- Department of Pharmacology & Chemical Biology, School of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - George K Michalopoulos
- Department of Pathology, School of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Robert M O'Doherty
- Division of Endocrinology, Department of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Thomas W Kensler
- Department of Pharmacology & Chemical Biology, School of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
72
|
Ke Z, Zhao Z, Zhao Y, Xu X, Li Y, Tan S, Huang C, Zhou Z. PMFs-rich Citrus extract prevents the development of non-alcoholic fatty liver disease in C57BL/6J mice induced by a high-fat diet. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.05.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
73
|
Yamamoto M, Kensler TW, Motohashi H. The KEAP1-NRF2 System: a Thiol-Based Sensor-Effector Apparatus for Maintaining Redox Homeostasis. Physiol Rev 2018; 98:1169-1203. [PMID: 29717933 PMCID: PMC9762786 DOI: 10.1152/physrev.00023.2017] [Citation(s) in RCA: 1109] [Impact Index Per Article: 184.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Kelch-like ECH-associated protein 1-NF-E2-related factor 2 (KEAP1-NRF2) system forms the major node of cellular and organismal defense against oxidative and electrophilic stresses of both exogenous and endogenous origins. KEAP1 acts as a cysteine thiol-rich sensor of redox insults, whereas NRF2 is a transcription factor that robustly transduces chemical signals to regulate a battery of cytoprotective genes. KEAP1 represses NRF2 activity under quiescent conditions, whereas NRF2 is liberated from KEAP1-mediated repression on exposure to stresses. The rapid inducibility of a response based on a derepression mechanism is an important feature of the KEAP1-NRF2 system. Recent studies have unveiled the complexities of the functional contributions of the KEAP1-NRF2 system and defined its broader involvement in biological processes, including cell proliferation and differentiation, as well as cytoprotection. In this review, we describe historical milestones in the initial characterization of the KEAP1-NRF2 system and provide a comprehensive overview of the molecular mechanisms governing the functions of KEAP1 and NRF2, as well as their roles in physiology and pathology. We also refer to the clinical significance of the KEAP1-NRF2 system as an important prophylactic and therapeutic target for various diseases, particularly aging-related disorders. We believe that controlled harnessing of the KEAP1-NRF2 system is a key to healthy aging and well-being in humans.
Collapse
|
74
|
Bai M, Yang L, Liao H, Liang X, Xie B, Xiong J, Tao X, Chen X, Cheng Y, Chen X, Feng Y, Zhang Z, Zheng W. Metformin sensitizes endometrial cancer cells to chemotherapy through IDH1-induced Nrf2 expression via an epigenetic mechanism. Oncogene 2018; 37:5666-5681. [PMID: 29921847 DOI: 10.1038/s41388-018-0360-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 05/19/2018] [Accepted: 05/25/2018] [Indexed: 02/07/2023]
Abstract
Chemoresistance is the major obstacle to cure endometrial cancer, whereas metformin has demonstrated sensitization to chemotherapy in endometrial cancer. A novel finding states that isocitrate dehydrogenase 1 (IDH1) involves in cancer chemoresistance. Recent studies have revealed that epigenetic modifications facilitate chemoresistance. However, whether IDH1 play a role in metformin-induced endometrial cancer chemosensitivity through epigenetic modification is incompletely understood. Immunohistochemistry and Elisa assays were used to evaluate the expression pattern of IDH1 in endometrial tissue and serum, respectively. Western blot was performed to determine changes in expression of key molecules in the IDH1-ɑ-KG-TET1-Nrf2 signaling pathway after various treatments. Dot blot assays were used to assess global hydroxymethylation levels after metformin administration or plasmid transfection. Antioxidant response element (ARE) activity in the IDH1 promoter region was monitored by luciferase assay. Cancer cell sensitivity to chemotherapy was detected by SRB assay. We found that activation of the IDH1 signaling pathway in endometrial cancer tissue resulting from aberrant expression of IDH1 and its downstream mediators conferred chemoresistance. We found that this effect was abated by metformin treatment. Dot blot and HMeDIP assays revealed that metformin blocked IDH1-ɑ-KG-TET1-mediated enhancement of Nrf2 hydroxymethylation levels, eliminating chemoresistance. Moreover, we observed that chemoresistance was enhanced via a regulatory loop in which Nrf2 activated IDH1-ɑ-KG-TET1-Nrf2 signaling via binding to the ARE sites in the IDH1 promoter region. Our findings highlight a critical role of IDH1-ɑ-KG-TET1-Nrf2 signaling in chemoresistance and suggest that rational combination therapy with metformin and chemotherapeutics has the potential to suppress chemoresistance.
Collapse
Affiliation(s)
- Mingzhu Bai
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Linlin Yang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China.,Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Baoshan Branch, Shanghai, 201900, China
| | - Hong Liao
- Department of Cervical Diseases, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China
| | - Xiaoyan Liang
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Baoshan Branch, Shanghai, 201900, China
| | - Bingying Xie
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Ji Xiong
- Department of Pathology, Huashan Hospital of Fudan University, Shanghai, 200040, China
| | - Xiang Tao
- Department of Pathology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Xiong Chen
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Baoshan Branch, Shanghai, 201900, China
| | - Yali Cheng
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Xiaojun Chen
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Youji Feng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Zhenbo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China. .,Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Baoshan Branch, Shanghai, 201900, China.
| | - Wenxin Zheng
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA. .,Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
75
|
Khambu B, Huda N, Chen X, Antoine DJ, Li Y, Dai G, Köhler UA, Zong WX, Waguri S, Werner S, Oury TD, Dong Z, Yin XM. HMGB1 promotes ductular reaction and tumorigenesis in autophagy-deficient livers. J Clin Invest 2018; 128:2419-2435. [PMID: 29558368 DOI: 10.1172/jci91814] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/13/2018] [Indexed: 12/13/2022] Open
Abstract
Autophagy is important for liver homeostasis, and the deficiency leads to injury, inflammation, ductular reaction (DR), fibrosis, and tumorigenesis. It is not clear how these events are mechanistically linked to autophagy deficiency. Here, we reveal the role of high-mobility group box 1 (HMGB1) in two of these processes. First, HMGB1 was required for DR, which represents the expansion of hepatic progenitor cells (HPCs) implicated in liver repair and regeneration. DR caused by hepatotoxic diets (3,5-diethoxycarbonyl-1,4-dihydrocollidine [DDC] or choline-deficient, ethionine-supplemented [CDE]) also depended on HMGB1, indicating that HMGB1 may be generally required for DR in various injury scenarios. Second, HMGB1 promoted tumor progression in autophagy-deficient livers. Receptor for advanced glycation end product (RAGE), a receptor for HMGB1, was required in the same two processes and could mediate the proliferative effects of HMBG1 in isolated HPCs. HMGB1 was released from autophagy-deficient hepatocytes independently of cellular injury but depended on NRF2 and the inflammasome, which was activated by NRF2. Pharmacological or genetic activation of NRF2 alone, without disabling autophagy or causing injury, was sufficient to cause inflammasome-dependent HMGB1 release. In conclusion, HMGB1 release is a critical mechanism in hepatic pathogenesis under autophagy-deficient conditions and leads to HPC expansion as well as tumor progression.
Collapse
Affiliation(s)
- Bilon Khambu
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nazmul Huda
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Xiaoyun Chen
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Daniel J Antoine
- MRC Center for Inflammation Research, The Queen's Medical Research Institute, The University of Edinburgh, United Kingdom
| | - Yong Li
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Guoli Dai
- Department of Biology, Purdue University School of Science, Indianapolis, Indiana, USA
| | - Ulrike A Köhler
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Wei-Xing Zong
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, New Brunswick, New Jersey, USA
| | - Satoshi Waguri
- Department of Anatomy and Histology, Fukushima Medical University, School of Medicine, Fukushima, Japan
| | - Sabine Werner
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Tim D Oury
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Zheng Dong
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, Georgia, USA
| | - Xiao-Ming Yin
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
76
|
Rabbani PS, Ellison T, Waqas B, Sultan D, Abdou S, David JA, Cohen JM, Gomez-Viso A, Lam G, Kim C, Thomson J, Ceradini DJ. Targeted Nrf2 activation therapy with RTA 408 enhances regenerative capacity of diabetic wounds. Diabetes Res Clin Pract 2018; 139:11-23. [PMID: 29476889 DOI: 10.1016/j.diabres.2018.02.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/02/2018] [Accepted: 02/13/2018] [Indexed: 12/21/2022]
Abstract
AIMS Though unmitigated oxidative stress in diabetic chronic non-healing wounds poses a major therapeutic challenge, currently, there are no effective pharmacological agents. We targeted the cytoprotective Nrf2/Keap1 pathway, which is dysfunctional in diabetic skin and the regenerative environment in the diabetic wound. We assessed the efficacy of a potent Nrf2-activator, RTA 408, a semi-synthetic oleanane triterpenoid, on accelerating diabetic wound healing. METHODS Using Leprdb/dbmice, we made 10 mm-diameter excisional humanized wounds in dorsal skin. We administered RTA 408 formulations daily, and used ANOVA for comparison of time to closure, in vivo real-time ROS, histology, molecular changes. RESULTS We found that RTA 408, specifically a 0.1% formulation, significantly reduced wound healing time and increased wound closure rate. While either systemic or topical administration of RTA 408 is effective, wound closure time with the latter was far superior. RTA 408-treated diabetic wounds upregulated Nrf2 and downstream antioxidant genes, and exhibited well-vascularized granulation tissue that aided in re-epithelialization. Reintroduction of redox mechanisms via RTA 408-induced Nrf2 resulted in reduction of the oxidative status of wounds, to coordinate successful wound closure. CONCLUSIONS This preclinical study shows that promoting Nrf2-mediated antioxidant activity in the localized regenerative milieu of a diabetic wound markedly improves the molecular and cellular composition of diabetic wound beds. RTA 408 treats and corrects the irregularity in redox balance mechanisms involving Nrf2, in an avenue not explored previously for treatment of diabetic wounds and tissue regeneration. Our study supports development of RTA 408 as a therapeutic modality for chronic diabetic wounds.
Collapse
Affiliation(s)
- Piul S Rabbani
- Wyss Department of Plastic Surgery, New York University School of Medicine, New York, NY 10016, United States
| | - Trevor Ellison
- Wyss Department of Plastic Surgery, New York University School of Medicine, New York, NY 10016, United States
| | - Bukhtawar Waqas
- Wyss Department of Plastic Surgery, New York University School of Medicine, New York, NY 10016, United States
| | - Darren Sultan
- Wyss Department of Plastic Surgery, New York University School of Medicine, New York, NY 10016, United States
| | - Salma Abdou
- Wyss Department of Plastic Surgery, New York University School of Medicine, New York, NY 10016, United States
| | - Joshua A David
- Wyss Department of Plastic Surgery, New York University School of Medicine, New York, NY 10016, United States
| | - Joshua M Cohen
- Wyss Department of Plastic Surgery, New York University School of Medicine, New York, NY 10016, United States
| | - Alejandro Gomez-Viso
- Wyss Department of Plastic Surgery, New York University School of Medicine, New York, NY 10016, United States
| | - Gretl Lam
- Wyss Department of Plastic Surgery, New York University School of Medicine, New York, NY 10016, United States
| | - Camille Kim
- Wyss Department of Plastic Surgery, New York University School of Medicine, New York, NY 10016, United States
| | - Jennifer Thomson
- Wyss Department of Plastic Surgery, New York University School of Medicine, New York, NY 10016, United States
| | - Daniel J Ceradini
- Wyss Department of Plastic Surgery, New York University School of Medicine, New York, NY 10016, United States; NYU, Wyss Department of Plastic Surgery, 430 E 29th Street, Suite 640, New York, NY 10016, United States.
| |
Collapse
|
77
|
Wible RS, Tran QT, Fathima S, Sutter CH, Kensler TW, Sutter TR. Pharmacogenomics of Chemically Distinct Classes of Keap1-Nrf2 Activators Identify Common and Unique Gene, Protein, and Pathway Responses In Vivo. Mol Pharmacol 2018; 93:297-308. [PMID: 29367259 PMCID: PMC5832324 DOI: 10.1124/mol.117.110262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/19/2018] [Indexed: 12/11/2022] Open
Abstract
The Kelch-like erythroid-associated protein 1 (Keap1)-NF-E2-related factor 2 (Nrf2) signaling pathway is the subject of several clinical trials evaluating the effects of Nrf2 activation on the prevention of cancer and diabetes and the treatment of chronic kidney disease and multiple sclerosis. 3H-1,2-dithiole-3-thione (D3T) and 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Im) are representative members of two distinct series of Nrf2 chemical activators. Previous reports have described activator-specific effects on Nrf2-dependent gene regulation and physiologic outcomes. Here we used a robust chemical genomics approach to characterize expression profiles between D3T and CDDO-Im in livers from wild-type and Nrf2-null mice. At equally efficacious doses in wild-type mice, 406 genes show common RNA responses to both treatments. These genes enriched the Nrf2-regulated pathways of antioxidant defense and xenobiotic metabolism. In addition, 197 and 745 genes were regulated uniquely in response to either D3T or CDDO-Im, respectively. Functional analysis of the D3T-regulated set showed a significant enrichment of Nrf2-regulated enzymes involved in cholesterol biosynthesis. This result was supported by Nrf2-dependent increases in lanosterol synthase and CYP51 protein expression. CDDO-Im had no effect on cholesterol biosynthesis regardless of the dose tested. However, unlike D3T, CDDO-Im resulted in Nrf2-dependent elevation of peroxisome proliferator α and Kruppel-like factor 13, as well as the coactivator peroxisome proliferator γ coactivator 1β, together indicating regulation of β-oxidation and lipid metabolic pathways. These findings provide novel insights into the pharmacodynamic action of these two activators of Keap1-Nrf2 signaling. Although both compounds modify Keap1 to affect canonical cytoprotective gene expression, additional unique sets of Nrf2-dependent genes were regulated by each agent with enrichment of selective metabolic pathways.
Collapse
Affiliation(s)
- Ryan S Wible
- Departments of Chemistry (R.S.W., T.R.S.) and Biological Sciences (C.H.S., T.R.S.,) and the W. Harry Feinstone Center for Genomic Research (R.S.W., S.F., T.R.S.), University of Memphis, Memphis, Tennessee; Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, Tennessee (Q.T.T.); Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (T.W.K.); and Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania (T.W.K.)
| | - Quynh T Tran
- Departments of Chemistry (R.S.W., T.R.S.) and Biological Sciences (C.H.S., T.R.S.,) and the W. Harry Feinstone Center for Genomic Research (R.S.W., S.F., T.R.S.), University of Memphis, Memphis, Tennessee; Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, Tennessee (Q.T.T.); Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (T.W.K.); and Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania (T.W.K.)
| | - Samreen Fathima
- Departments of Chemistry (R.S.W., T.R.S.) and Biological Sciences (C.H.S., T.R.S.,) and the W. Harry Feinstone Center for Genomic Research (R.S.W., S.F., T.R.S.), University of Memphis, Memphis, Tennessee; Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, Tennessee (Q.T.T.); Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (T.W.K.); and Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania (T.W.K.)
| | - Carrie H Sutter
- Departments of Chemistry (R.S.W., T.R.S.) and Biological Sciences (C.H.S., T.R.S.,) and the W. Harry Feinstone Center for Genomic Research (R.S.W., S.F., T.R.S.), University of Memphis, Memphis, Tennessee; Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, Tennessee (Q.T.T.); Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (T.W.K.); and Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania (T.W.K.)
| | - Thomas W Kensler
- Departments of Chemistry (R.S.W., T.R.S.) and Biological Sciences (C.H.S., T.R.S.,) and the W. Harry Feinstone Center for Genomic Research (R.S.W., S.F., T.R.S.), University of Memphis, Memphis, Tennessee; Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, Tennessee (Q.T.T.); Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (T.W.K.); and Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania (T.W.K.)
| | - Thomas R Sutter
- Departments of Chemistry (R.S.W., T.R.S.) and Biological Sciences (C.H.S., T.R.S.,) and the W. Harry Feinstone Center for Genomic Research (R.S.W., S.F., T.R.S.), University of Memphis, Memphis, Tennessee; Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, Tennessee (Q.T.T.); Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (T.W.K.); and Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania (T.W.K.)
| |
Collapse
|
78
|
Hou Z, Chen L, Fang P, Cai H, Tang H, Peng Y, Deng Y, Cao L, Li H, Zhang B, Yan M. Mechanisms of Triptolide-Induced Hepatotoxicity and Protective Effect of Combined Use of Isoliquiritigenin: Possible Roles of Nrf2 and Hepatic Transporters. Front Pharmacol 2018; 9:226. [PMID: 29615906 PMCID: PMC5865274 DOI: 10.3389/fphar.2018.00226] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/28/2018] [Indexed: 12/13/2022] Open
Abstract
Triptolide (TP), the main bioactive component of Tripterygium wilfordii Hook F, can cause severe hepatotoxicity. Isoliquiritigenin (ISL) has been reported to be able to protect against TP-induced liver injury, but the mechanisms are not fully elucidated. This study aims to explore the role of nuclear transcription factor E2-related factor 2 (Nrf2) and hepatic transporters in TP-induced hepatotoxicity and the reversal protective effect of ISL. TP treatment caused both cytotoxicity in L02 hepatocytes and acute liver injury in mice. Particularly, TP led to the disorder of bile acid (BA) profiles in mice livers. Combined treatment of TP with ISL effectively alleviated TP-induced hepatotoxicity. Furthermore, ISL pretreatment enhanced Nrf2 expressions and nuclear accumulations and its downstream NAD(P)H: quinine oxidoreductase 1 (NQO1) expression. Expressions of hepatic P-gp, MRP2, MRP4, bile salt export pump, and OATP2 were also induced. In addition, in vitro transport assays identified that neither was TP exported by MRP2, OATP1B1, or OATP1B3, nor did TP influence the transport activities of P-gp or MRP2. All these results indicate that ISL may reduce the hepatic oxidative stress and hepatic accumulations of both endogenous BAs and exogenous TP as well as its metabolites by enhancing the expressions of Nrf2, NQO1, and hepatic influx and efflux transporters. Effects of TP on hepatic transporters are mainly at the transcriptional levels, and changes of hepatic BA profiles are very important in the mechanisms of TP-induced hepatotoxicity.
Collapse
Affiliation(s)
- Zhenyan Hou
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Lei Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Pingfei Fang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Huaibo Tang
- Department of Pharmacy, Chemistry College, Xiangtan University, Xiangtan, China
| | - Yongbo Peng
- Molecular Science and Biomedicine Laboratory, College of Life Sciences, State Key Laboratory of Chemo, Bio-Sensing and Chemometrics, Hunan University, Changsha, China
| | - Yang Deng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Lingjuan Cao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Huande Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Miao Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
79
|
Moore MM, Schoeny RS, Becker RA, White K, Pottenger LH. Development of an adverse outcome pathway for chemically induced hepatocellular carcinoma: case study of AFB1, a human carcinogen with a mutagenic mode of action. Crit Rev Toxicol 2018; 48:312-337. [PMID: 29431554 DOI: 10.1080/10408444.2017.1423462] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adverse outcome pathways (AOPs) are frameworks starting with a molecular initiating event (MIE), followed by key events (KEs) linked by KE relationships (KERs), ultimately resulting in a specific adverse outcome. Relevant data for the pathway and each KE/KER are evaluated to assess biological plausibility, weight-of-evidence, and confidence. We aimed to describe an AOP relevant to chemicals directly inducing mutation in cancer critical gene(s), via the formation of chemical-specific pro-mutagenic DNA adduct(s), as an early critical step in tumor etiology. Such chemicals have mutagenic modes-of-action (MOA) for tumor induction. To assist with developing this AOP, Aflatoxin B1 (AFB1) was selected as a case study because it has a rich database and is considered to have a mutagenic MOA. AFB1 information was used to define specific KEs, KERs, and to inform development of a generic AOP for mutagen-induced hepatocellular carcinoma (HCC). In assessing the AFB1 information, it became clear that existing data are, in fact, not optimal and for some KEs/KERs, the definitive data are not available. In particular, while there is substantial information that AFB1 can induce mutations (based on a number of mutation assays), the definitive evidence - the ability to induce mutation in the cancer critical gene(s) in the tumor target tissue - is not available. Thus, it is necessary to consider the patterns of results in the weight-of-evidence for KEs and KERs. It was important to determine whether there was sufficient evidence that AFB1 can induce the necessary critical mutations early in the carcinogenic process, which was the case.
Collapse
Affiliation(s)
- Martha M Moore
- a Ramboll Environ US Corporation , Little Rock , AR , USA
| | | | | | | | | |
Collapse
|
80
|
Fuse Y, Endo Y, Araoi S, Daitoku H, Suzuki H, Kato M, Kobayashi M. The possible repositioning of an oral anti-arthritic drug, auranofin, for Nrf2-activating therapy: The demonstration of Nrf2-dependent anti-oxidative action using a zebrafish model. Free Radic Biol Med 2018; 115:405-411. [PMID: 29277393 DOI: 10.1016/j.freeradbiomed.2017.12.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/07/2017] [Accepted: 12/17/2017] [Indexed: 11/25/2022]
Abstract
The Nrf2 pathway is a biological defense system against oxidative stress. The pharmacological activation of the Nrf2 pathway is a promising therapy for oxidative stress-related diseases, but it has been challenging to find an Nrf2 activator with acceptable toxicity. To circumvent this problem, we focused on an already approved oral anti-arthritic drug, auranofin that has been reported to have the potential to activate Nrf2. We used a zebrafish model to investigate whether auranofin has protective action against oxidative stress in vivo. Auranofin pre-treatment considerably improved the survival of zebrafish larvae that were challenged with a lethal dose of hydrogen peroxide. This protective effect was not observed in an Nrf2 mutant zebrafish strain, suggesting that the activation of the biological defense against oxidative stress was Nrf2-dependent. Auranofin-induced protection was further tested by challenges with redox-active heavy metals. A clear protective effect was observed against arsenite, a highly redox-reactive toxicant. In addition, this effect was also demonstrated to be Nrf2-dependent based on the analysis of an Nrf2 mutant strain. These results clearly demonstrate the anti-oxidative action of auranofin and encourage the repositioning of auranofin as a drug that improves oxidative stress-related pathology.
Collapse
Affiliation(s)
- Yuji Fuse
- Department of Molecular and Developmental Biology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8575, Japan; Japan Society for the Promotion of Science, Japan
| | - Yuka Endo
- Department of Molecular and Developmental Biology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; College of Biological Sciences, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Sho Araoi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8577, Japan; Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Hiroaki Daitoku
- Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Hiroyuki Suzuki
- Department of Experimental Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Mitsuyasu Kato
- Department of Experimental Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Makoto Kobayashi
- Department of Molecular and Developmental Biology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan.
| |
Collapse
|
81
|
Abstract
The NFE2L2 gene encodes the transcription factor Nrf2 best known for regulating the expression of antioxidant and detoxification genes. Gene knockout approaches have demonstrated its universal cytoprotective features. While Nrf2 has been the topic of intensive research in cancer biology since its discovery in 1994, understanding the role of Nrf2 in cardiovascular disease has just begun. The literature concerning Nrf2 in experimental models of atherosclerosis, ischemia, reperfusion, cardiac hypertrophy, heart failure, and diabetes supports its cardiac protective character. In addition to antioxidant and detoxification genes, Nrf2 has been found to regulate genes participating in cell signaling, transcription, anabolic metabolism, autophagy, cell proliferation, extracellular matrix remodeling, and organ development, suggesting that Nrf2 governs damage resistance as well as wound repair and tissue remodeling. A long list of small molecules, most derived from natural products, have been characterized as Nrf2 inducers. These compounds disrupt Keap1-mediated Nrf2 ubquitination, thereby prohibiting proteasomal degradation and allowing Nrf2 protein to accumulate and translocate to the nucleus, where Nrf2 interacts with sMaf to bind to ARE in the promoter of genes. Recently alternative mechanisms driving Nrf2 protein increase have been revealed, including removal of Keap1 by autophagy due to p62/SQSTM1 binding, inhibition of βTrCP or Synoviolin/Hrd1-mediated ubiquitination of Nrf2, and de novo Nrf2 protein translation. We review here a large volume of literature reporting historical and recent discoveries about the function and regulation of Nrf2 gene. Multiple lines of evidence presented here support the potential of dialing up the Nrf2 pathway for cardiac protection in the clinic.
Collapse
Affiliation(s)
- Qin M Chen
- Department of Pharmacology, College of Medicine, University of Arizona , Tucson, Arizona
| | - Anthony J Maltagliati
- Department of Pharmacology, College of Medicine, University of Arizona , Tucson, Arizona
| |
Collapse
|
82
|
Vomund S, Schäfer A, Parnham MJ, Brüne B, von Knethen A. Nrf2, the Master Regulator of Anti-Oxidative Responses. Int J Mol Sci 2017; 18:ijms18122772. [PMID: 29261130 PMCID: PMC5751370 DOI: 10.3390/ijms18122772] [Citation(s) in RCA: 461] [Impact Index Per Article: 65.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/11/2017] [Accepted: 12/16/2017] [Indexed: 12/15/2022] Open
Abstract
Tight regulation of inflammation is very important to guarantee a balanced immune response without developing chronic inflammation. One of the major mediators of the resolution of inflammation is the transcription factor: the nuclear factor erythroid 2-like 2 (Nrf2). Stabilized following oxidative stress, Nrf2 induces the expression of antioxidants as well as cytoprotective genes, which provoke an anti-inflammatory expression profile, and is crucial for the initiation of healing. In view of this fundamental modulatory role, it is clear that both hyper- or hypoactivation of Nrf2 contribute to the onset of chronic diseases. Understanding the tight regulation of Nrf2 expression/activation and its interaction with signaling pathways, known to affect inflammatory processes, will facilitate development of therapeutic approaches to prevent Nrf2 dysregulation and ameliorate chronic inflammatory diseases. We discuss in this review the principle mechanisms of Nrf2 regulation with a focus on inflammation and autophagy, extending the role of dysregulated Nrf2 to chronic diseases and tumor development.
Collapse
Affiliation(s)
- Sandra Vomund
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine & Pharmacology TMP, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| | - Anne Schäfer
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| | - Michael J Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine & Pharmacology TMP, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| | - Bernhard Brüne
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine & Pharmacology TMP, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| | - Andreas von Knethen
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine & Pharmacology TMP, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| |
Collapse
|
83
|
Real-time in vivo imaging reveals localised Nrf2 stress responses associated with direct and metabolism-dependent drug toxicity. Sci Rep 2017; 7:16084. [PMID: 29167567 PMCID: PMC5700176 DOI: 10.1038/s41598-017-16491-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/14/2017] [Indexed: 01/07/2023] Open
Abstract
The transcription factor Nrf2 coordinates an adaptive response to chemical and oxidative stress characterised by the upregulated expression of cytoprotective target genes. In order to understand the mechanistic relevance of Nrf2 as a marker of drug-induced stress it is important to know if this adaptive response is truly localised in the context of organ-specific drug toxicity. Here, we address this knowledge gap through real-time bioluminescence imaging of transgenic Nrf2-luciferase (Nrf2-luc) reporter mice following administration of the metabolism-dependent hepatotoxin acetaminophen (APAP) or the direct nephrotoxin cisplatin. We detected localised bioluminescence in the liver (APAP) and kidneys (cisplatin) in vivo and ex vivo, whilst qPCR, Taqman low-density array and immunoblot analysis of these tissues further revealed increases in the expression level of several endogenous Nrf2-regulated genes/proteins, including heme oxygenase 1 (Hmox1). Consistent with the toxic effects of APAP in the liver and cisplatin in the kidney, immunohistochemical analysis revealed the elevated expression of luciferase and Hmox1 in centrilobular hepatocytes and in tubular epithelial cells, respectively. In keeping with the role of reactive metabolite formation in APAP-induced chemical stress, both the hepatotoxicity and localised Nrf2-luc response were ameliorated by the cytochrome P450 inhibitor aminobenzotriazole. Together, these findings show that Nrf2 can reflect highly-localised cellular perturbations associated with relevant toxicological mechanisms.
Collapse
|
84
|
Crowley VM, Ayi K, Lu Z, Liby KT, Sporn M, Kain KC. Synthetic oleanane triterpenoids enhance blood brain barrier integrity and improve survival in experimental cerebral malaria. Malar J 2017; 16:463. [PMID: 29137631 PMCID: PMC5686938 DOI: 10.1186/s12936-017-2109-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 11/04/2017] [Indexed: 12/31/2022] Open
Abstract
Background Cerebral malaria (CM) is a severe complication of Plasmodium falciparum infection associated with high mortality and neurocognitive impairment in survivors. New anti-malarials and host-based adjunctive therapy may improve clinical outcome in CM. Synthetic oleanane triterpenoid (SO) compounds have shown efficacy in the treatment of diseases where inflammation and oxidative stress contribute to pathogenesis. Methods A derivative of the SO 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO), CDDO-ethyl amide (CDDO-EA) was investigated for the treatment of severe malaria in a pre-clinical model. CDDO-EA was evaluated in vivo as a monotherapy as well as adjunctive therapy with parenteral artesunate in the Plasmodium berghei strain ANKA experimental cerebral malaria (ECM) model. Results CDDO-EA alone improved outcome in ECM and, given as adjunctive therapy in combination with artesunate, it significantly improved outcome over artesunate alone (p = 0.009). Improved survival was associated with reduced inflammation, enhanced endothelial stability and blood–brain barrier integrity. Survival was improved even when administered late in the disease course after the onset of neurological symptoms. Conclusions These results indicate that SO are a new class of immunomodulatory drugs and support further studies investigating this class of agents as potential adjunctive therapy for severe malaria.
Collapse
Affiliation(s)
- Valerie M Crowley
- S. A. Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Canada
| | - Kodjo Ayi
- S. A. Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Canada
| | - Ziyue Lu
- S. A. Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Canada
| | - Karen T Liby
- Department of Pharmacology, Dartmouth Medical School, Hanover, NH, USA
| | - Michael Sporn
- Department of Pharmacology, Dartmouth Medical School, Hanover, NH, USA
| | - Kevin C Kain
- S. A. Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Canada. .,Department of Medicine, University of Toronto, Toronto, ON, Canada. .,Tropical Diseases Unit, Division of Infectious Diseases, Department of Medicine, UHN-Toronto General Hospital, Toronto, ON, Canada.
| |
Collapse
|
85
|
Hisamichi M, Kamijo-Ikemori A, Sugaya T, Hoshino S, Kimura K, Shibagaki Y. Role of bardoxolone methyl, a nuclear factor erythroid 2-related factor 2 activator, in aldosterone- and salt-induced renal injury. Hypertens Res 2017; 41:8-17. [PMID: 28978980 DOI: 10.1038/hr.2017.83] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/06/2017] [Accepted: 07/31/2017] [Indexed: 01/09/2023]
Abstract
The aim of this study was to investigate the renoprotective effect of bardoxolone methyl (BM), a nuclear factor erythroid 2-related factor 2 (Nrf2) activator with an antioxidant effect, in a salt-sensitive hypertension model induced by aldosterone (Ald) and salt. Tubulointerstitial damage with urinary liver-type fatty acid-binding protein (L-FABP) was evaluated using human L-FABP chromosomal transgenic (L-FABP+/-) male mice. The mice in the Ald group (n=7) received systemic Ald infusions via an osmotic minipump and were given 1% NaCl water for 35 days. Those in the Ald-BM group (n=8) were administered BM intraperitoneally in addition to an injection of Ald and salt. The dose of BM was gradually increased every 7 days up to 10 mg kg-1 per day, which was maintained for 14 days. The administration of BM significantly increased renal expression of the Nrf2 target antioxidant gene. Tubulointerstitial damage was significantly ameliorated in the Ald-BM group compared to the Ald group. The increase in reactive oxygen species (ROS) and upregulation of angiotensinogen expression in the kidneys of the Ald group was significantly prevented in the Ald-BM group. The upregulation of human L-FABP expression induced in the kidneys and increase in urinary L-FABP in the Ald group were significantly suppressed by BM administration. In conclusion, BM ameliorated tubulointerstitial damage in the Ald- and salt-induced hypertension model through suppression of both ROS production and intrarenal renin-angiotensin system activation. Urinary L-FABP may be a useful marker reflecting the therapeutic efficacy of BM.
Collapse
Affiliation(s)
| | - Atsuko Kamijo-Ikemori
- Department of Anatomy, Kanagawa, Japan.,Department of Anatomy, St. Marianna University School of Medicine, Kanagawa, Japan
| | | | - Seiko Hoshino
- Department of Anatomy, St. Marianna University School of Medicine, Kanagawa, Japan
| | | | | |
Collapse
|
86
|
Porokhovnik LN, Pisarev VM. Association of polymorphisms in NFE2L2 gene encoding transcription factor Nrf2 with multifactorial diseases. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417080051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
87
|
Stern AL, Lee RN, Panvelker N, Li J, Harowitz J, Jordan-Sciutto KL, Akay-Espinoza C. Differential Effects of Antiretroviral Drugs on Neurons In Vitro: Roles for Oxidative Stress and Integrated Stress Response. J Neuroimmune Pharmacol 2017; 13:64-76. [PMID: 28861811 DOI: 10.1007/s11481-017-9761-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 08/18/2017] [Indexed: 12/15/2022]
Abstract
Mounting evidence suggests that antiretroviral drugs may contribute to the persistence of HIV-associated neurocognitive disorders (HAND), which impact 30%-50% of HIV-infected patients in the post-antiretroviral era. We previously reported that two first generation HIV protease inhibitors, ritonavir and saquinavir, induced oxidative stress, with subsequent neuronal death in vitro, which was reversed by augmentation of the endogenous antioxidant response by monomethyl fumarate. We herein determined whether two newer-generation PIs, darunavir and lopinavir, were deleterious to neurons in vitro. Further, we expanded our assessment to include three integrase strand transfer inhibitors, raltegravir, dolutegravir, and elvitegravir. We found that only lopinavir and elvitegravir were neurotoxic to primary rat neuroglial cultures as determined by the loss of microtubule-associated protein 2 (MAP2). Intriguingly, lopinavir but not elvitegravir led to oxidative stress and induced the endogenous antioxidant response (EAR). Furthermore, neurotoxicity of lopinavir was blocked by pharmacological augmentation of the endogenous antioxidant heme oxygenase-1 (HO-1), expanding our previous finding that protease inhibitor-induced neurotoxicity was mediated by oxidative stress. Conversely, elvitegravir but not lopinavir led to increased eIF2α phosphorylation, indicating the activation of a common adaptive pathway termed the integrated stress response (ISR), and elvitegravir-mediated neurotoxicity was partially alleviated by the ISR inhibitor trans-ISRIB, suggesting ISR as a promoter of elvitegravir-associated neurotoxicity. Overall, we found that neurotoxicity was induced only by a subset of protease inhibitors and integrase strand transfer inhibitors, providing evidence for class- and drug-specific neurotoxic effects of antiretroviral drugs. Future in vivo studies will be critical to confirm the neurotoxicity profiles of these drugs for incorporation of these findings into patient management. The EAR and ISR pathways are potential access points for the development of adjunctive therapies to complement antiretroviral therapies and limit their contribution to HAND persistence.
Collapse
Affiliation(s)
- Anna L Stern
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St. Rm. 312 Levy Building, Philadelphia, PA, 19104-6030, USA
| | - Rebecca N Lee
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St. Rm. 312 Levy Building, Philadelphia, PA, 19104-6030, USA
| | - Nina Panvelker
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St. Rm. 312 Levy Building, Philadelphia, PA, 19104-6030, USA
| | - Jiean Li
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St. Rm. 312 Levy Building, Philadelphia, PA, 19104-6030, USA
| | - Jenna Harowitz
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St. Rm. 312 Levy Building, Philadelphia, PA, 19104-6030, USA
| | - Kelly L Jordan-Sciutto
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St. Rm. 312 Levy Building, Philadelphia, PA, 19104-6030, USA
| | - Cagla Akay-Espinoza
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St. Rm. 312 Levy Building, Philadelphia, PA, 19104-6030, USA.
| |
Collapse
|
88
|
A unique tolerizing dendritic cell phenotype induced by the synthetic triterpenoid CDDO-DFPA (RTA-408) is protective against EAE. Sci Rep 2017; 7:9886. [PMID: 28851867 PMCID: PMC5575165 DOI: 10.1038/s41598-017-06907-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/20/2017] [Indexed: 12/15/2022] Open
Abstract
Tolerogenic dendritic cells (DCs) have emerged as relevant clinical targets for the treatment of multiple sclerosis and other autoimmune disorders. However, the pathways essential for conferring the tolerizing DC phenotype and optimal methods for their induction remain an intense area of research. Triterpenoids are a class of small molecules with potent immunomodulatory activity linked to activation of Nrf2 target genes, and can also suppress the manifestations of experimental autoimmune encephalomyelitis (EAE). Here we demonstrate that DCs are a principal target of the immune modulating activity of triterpenoids in the context of EAE. Exposure of DCs to the new class of triterpenoid CDDO-DFPA (RTA-408) results in the induction of HO-1, TGF-β, and IL-10, as well as the repression of NF-κB, EDN-1 and pro-inflammatory cytokines IL-6, IL-12, and TNFα. CDDO-DFPA exposed DCs retained expression of surface ligands and capacity for antigen uptake but were impaired to induce Th1 and Th17 cells. TGF-β was identified as the factor mediating suppression of T cell proliferation by CDDO-DFPA pretreated DCs, which failed to passively induce EAE. These findings demonstrate the potential therapeutic utility of CDDO-DFPA in the treatment and prevention of autoimmune disorders, and its capacity to induce tolerance via modulation of the DC phenotype.
Collapse
|
89
|
Yang D, Xiao CX, Su ZH, Huang MW, Qin M, Wu WJ, Jia WW, Zhu YZ, Hu JF, Liu XH. (-)-7(S)-hydroxymatairesinol protects against tumor necrosis factor-α-mediated inflammation response in endothelial cells by blocking the MAPK/NF-κB and activating Nrf2/HO-1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 32:15-23. [PMID: 28732803 DOI: 10.1016/j.phymed.2017.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 03/08/2017] [Accepted: 04/08/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Endothelial inflammation is an increasingly prevalent condition in the pathogenesis of many cardiovascular diseases. (-)-7(S)-hydroxymatairesinol (7-HMR), a naturally occurring plant lignan, possesses both antioxidant and anti-cancer properties and therefore would be a good strategy to suppress tumor necrosis factor-α (TNF-α)-mediated inflammation in vascular endothelial cells (VECs). PURPOSE The objective of this study is to evaluate for its anti-inflammatory effect on TNF-α-stimulated VECs and underling mechanisms. STUDY DESIGN/METHODS The effect of the 7-HMR on suppression of TNF-α-induced inflammation mediators in VECs were determined by qRT-PCR and Western blot. MAPKs and phosphorylation of Akt, HO-1 and NF-κB p65 were examined using Western blot. Nuclear localisation of NF-κB was also examined using Western blot and immunofluorescence. RESULTS Here we found that 7-HMR could suppress TNF-α-induced inflammatory mediators, such as vascularcelladhesion molecule-1, interleukin-6 and inducible nitric oxide synthase expression both in mRNA and protein levels, and concentration-dependently attenuated reactive oxidase species generation. We further identified that 7-HMR remarkably induced superoxide dismutase and heme oxygenase-1 expression associated with degradation of Kelch-like ECH-associated protein 1 (keap1) and up-regulated nuclear factor erythroid 2-related factor 2 (Nrf2). In addition, 7-HMR time- and concentration-dependently attenuated TNF-α-induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERK) and Akt, but not p38, or c-Jun N-terminal kinase 1/2. Moreover, 7-HMR significantly suppressed TNF-α-mediated nuclear factor-κB (NF-κB) activation by inhibiting phosphorylation and nuclear translocation of NF-κB p65. CONCLUSION Our results demonstrated that 7-HMR inhibited TNF-α-stimulated endothelial inflammation, at least in part, through inhibition of NF-κB activation and upregulation of Nrf2-antioxidant response element signaling pathway, suggesting 7-HMR might be used as a promising vascular protective drug.
Collapse
Affiliation(s)
- Di Yang
- Shanghai Key Laboratory of Bioactive Small Molecules and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Chen-Xi Xiao
- Shanghai Key Laboratory of Bioactive Small Molecules and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zheng-Hua Su
- Department of Pharmaceutical Chemistry, School of Pharmacy, Jilin University, Changchun 130021, China
| | - Meng-Wei Huang
- Shanghai Key Laboratory of Bioactive Small Molecules and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Ming Qin
- Shanghai Key Laboratory of Bioactive Small Molecules and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wei-Jun Wu
- Shanghai Key Laboratory of Bioactive Small Molecules and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wan-Wan Jia
- Shanghai Key Laboratory of Bioactive Small Molecules and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yi-Zhun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jin-Feng Hu
- Department of Natural Products Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Xin-Hua Liu
- Shanghai Key Laboratory of Bioactive Small Molecules and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
90
|
McGovern-Gooch KR, Mahajani NS, Garagozzo A, Schramm AJ, Hannah LG, Sieburg MA, Chisholm JD, Hougland JL. Synthetic Triterpenoid Inhibition of Human Ghrelin O-Acyltransferase: The Involvement of a Functionally Required Cysteine Provides Mechanistic Insight into Ghrelin Acylation. Biochemistry 2017; 56:919-931. [PMID: 28134508 DOI: 10.1021/acs.biochem.6b01008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The peptide hormone ghrelin plays a key role in regulating hunger and energy balance within the body. Ghrelin signaling presents a promising and unexploited target for development of small molecule therapeutics for treatment of obesity, diabetes, and other health conditions. Inhibition of ghrelin O-acyltransferase (GOAT), which catalyzes an essential octanoylation step in ghrelin maturation, offers a potential avenue for controlling ghrelin signaling. Through screening a small molecule library, we have identified a class of synthetic triterpenoids that efficiently inhibit ghrelin acylation by the human isoform of GOAT (hGOAT). These compounds function as covalent reversible inhibitors of hGOAT, providing the first evidence of the involvement of a nucleophilic cysteine residue in substrate acylation by a MBOAT family acyltransferase. Surprisingly, the mouse form of GOAT does not exhibit susceptibility to cysteine-modifying electrophiles, revealing an important distinction in the activity and behavior between these closely related GOAT isoforms. This study establishes these compounds as potent small molecule inhibitors of ghrelin acylation and provides a foundation for the development of novel hGOAT inhibitors as therapeutics targeting diabetes and obesity.
Collapse
Affiliation(s)
| | - Nivedita S Mahajani
- Department of Chemistry, Syracuse University , Syracuse, New York 13244, United States
| | - Ariana Garagozzo
- Department of Chemistry, Syracuse University , Syracuse, New York 13244, United States
| | - Anthony J Schramm
- Department of Chemistry, Syracuse University , Syracuse, New York 13244, United States
| | - Lauren G Hannah
- Department of Chemistry, Syracuse University , Syracuse, New York 13244, United States
| | - Michelle A Sieburg
- Department of Chemistry, Syracuse University , Syracuse, New York 13244, United States
| | - John D Chisholm
- Department of Chemistry, Syracuse University , Syracuse, New York 13244, United States
| | - James L Hougland
- Department of Chemistry, Syracuse University , Syracuse, New York 13244, United States
| |
Collapse
|
91
|
Paciaroni NG, Ratnayake R, Matthews JH, Norwood VM, Arnold AC, Dang LH, Luesch H, Huigens RW. A Tryptoline Ring-Distortion Strategy Leads to Complex and Diverse Biologically Active Molecules from the Indole Alkaloid Yohimbine. Chemistry 2017; 23:4327-4335. [PMID: 27900785 DOI: 10.1002/chem.201604795] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Indexed: 02/06/2023]
Abstract
High-throughput screening (HTS) is the primary driver to current drug-discovery efforts. New therapeutic agents that enter the market are a direct reflection of the structurally simple compounds that make up screening libraries. Unlike medically relevant natural products (e.g., morphine), small molecules currently being screened have a low fraction of sp3 character and few, if any, stereogenic centers. Although simple compounds have been useful in drugging certain biological targets (e.g., protein kinases), more sophisticated targets (e.g., transcription factors) have largely evaded the discovery of new clinical agents from screening collections. Herein, a tryptoline ring-distortion strategy is described that enables the rapid synthesis of 70 complex and diverse compounds from yohimbine (1); an indole alkaloid. The compounds that were synthesized had architecturally complex and unique scaffolds, unlike 1 and other scaffolds. These compounds were subjected to phenotypic screens and reporter gene assays, leading to the identification of new compounds that possessed various biological activities, including antiproliferative activities against cancer cells with functional hypoxia-inducible factors, nitric oxide inhibition, and inhibition and activation of the antioxidant response element. This tryptoline ring-distortion strategy can begin to address diversity problems in screening libraries, while occupying biologically relevant chemical space in areas critical to human health.
Collapse
Affiliation(s)
- Nicholas G Paciaroni
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, 32610, USA.,Center for Natural Product Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, 32610, USA
| | - Ranjala Ratnayake
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, 32610, USA.,Center for Natural Product Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, 32610, USA
| | - James H Matthews
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, 32610, USA.,Center for Natural Product Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, 32610, USA
| | - Verrill M Norwood
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, 32610, USA.,Center for Natural Product Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, 32610, USA
| | - Austin C Arnold
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, 32610, USA
| | - Long H Dang
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, 32610, USA.,Center for Natural Product Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, 32610, USA.,Department of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Hendrik Luesch
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, 32610, USA.,Center for Natural Product Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, 32610, USA
| | - Robert W Huigens
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, 32610, USA.,Center for Natural Product Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
92
|
Tsuchida K, Tsujita T, Hayashi M, Ojima A, Keleku-Lukwete N, Katsuoka F, Otsuki A, Kikuchi H, Oshima Y, Suzuki M, Yamamoto M. Halofuginone enhances the chemo-sensitivity of cancer cells by suppressing NRF2 accumulation. Free Radic Biol Med 2017; 103:236-247. [PMID: 28039084 DOI: 10.1016/j.freeradbiomed.2016.12.041] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/23/2016] [Accepted: 12/27/2016] [Indexed: 12/30/2022]
Abstract
The KEAP1-NRF2 system regulates the cellular defence against oxidative and xenobiotic stresses. NRF2 is a transcription factor that activates the expression of cytoprotective genes encoding antioxidative, detoxifying and metabolic enzymes as well as transporters. Under normal conditions, KEAP1 represses NRF2 activity by degrading the NRF2 protein. When cells are exposed to stresses, KEAP1 stops promoting NRF2 degradation, and NRF2 rapidly accumulates and activates the transcription of target genes. Constitutive accumulation of NRF2 via a variety of mechanisms that disrupt KEAP1-mediated NRF2 degradation has been observed in various cancer types. Constitutive NRF2 accumulation confers cancer cells with a proliferative advantage as well as resistance to anti-cancer drugs and radiotherapies. To suppress the chemo- and radio-resistance of cancer cells caused by NRF2 accumulation, we conducted high-throughput chemical library screening for NRF2 inhibitors and identified febrifugine derivatives. We found that application of the less-toxic derivative halofuginone in a low dose range rapidly reduced NRF2 protein levels. Halofuginone induced a cellular amino acid starvation response that repressed global protein synthesis and rapidly depleted NRF2. Halofuginone treatment ameliorated the resistance of NRF2-addicted cancer cells to anti-cancer drugs both in vitro and in vivo. These results provide preclinical proof-of-concept evidence for halofuginone as an NRF2 inhibitor applicable to treatment of chemo- and radio-resistant forms of cancer.
Collapse
Affiliation(s)
- Kouhei Tsuchida
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Tadayuki Tsujita
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; Department of Applied Biochemistry and Food Science, Saga University, Saga 840-8502, Japan
| | - Makiko Hayashi
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Asaka Ojima
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Nadine Keleku-Lukwete
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Fumiki Katsuoka
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan
| | - Akihito Otsuki
- Division of Medical Biochemistry, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Haruhisa Kikuchi
- Laboratory of Natural Product Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Yoshiteru Oshima
- Laboratory of Natural Product Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Mikiko Suzuki
- Center for Radioisotope Sciences, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan.
| |
Collapse
|
93
|
Hirakawa Y, Inagi R. Glycative Stress and Its Defense Machinery Glyoxalase 1 in Renal Pathogenesis. Int J Mol Sci 2017; 18:ijms18010174. [PMID: 28106734 PMCID: PMC5297806 DOI: 10.3390/ijms18010174] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/05/2017] [Accepted: 01/10/2017] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease is a major public health problem around the world. Because the kidney plays a role in reducing glycative stress, renal dysfunction results in increased glycative stress. In turn, glycative stress, especially that due to advanced glycated end products (AGEs) and their precursors such as reactive carbonyl compounds, exacerbates chronic kidney disease and is related to premature aging in chronic kidney disease, whether caused by diabetes mellitus or otherwise. Factors which hinder a sufficient reduction in glycative stress include the inhibition of anti-glycation enzymes (e.g., GLO-1), as well as pathogenically activated endoplasmic reticulum (ER) stress and hypoxia in the kidney. Promising strategies aimed at halting the vicious cycle between chronic kidney disease and increases in glycative stress include the suppression of AGE accumulation in the body and the enhancement of GLO-1 to strengthen the host defense machinery against glycative stress.
Collapse
Affiliation(s)
- Yosuke Hirakawa
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Reiko Inagi
- Division of Chronic Kidney Disease (CKD) Pathophysiology, The University of Tokyo Graduate School of Medicine, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| |
Collapse
|
94
|
Activation of Nrf2-ARE signaling mitigates cyclophosphamide-induced myelosuppression. Toxicol Lett 2016; 262:17-26. [PMID: 27633142 DOI: 10.1016/j.toxlet.2016.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/06/2016] [Accepted: 09/11/2016] [Indexed: 11/21/2022]
Abstract
Myelosuppression is the most common dose-limiting adverse effect of chemotherapies. In the present study, we investigated the involvement of nuclear erythroid 2-related factor 2 (Nrf2) in cyclophosphamide-induced myelosuppression in mice, and evaluated the potential of activating Nrf2 signaling as a preventive strategy. The whole blood from Nrf2-/- mice exhibited decreased antioxidant capacities, while the bone marrow cells, peripheral blood mononuclear cells and granulocytes from Nrf2-/- mice were more susceptible to acrolein-induced cytotoxicity than those from wild type mice. Single dosage of cyclophosphamide induced significantly severer acute myelosuppression in Nrf2-/- mice than in wild type mice. Furthermore, Nrf2-/- mice exhibited greater loss of peripheral blood nucleated cells and recovered slower from myelosuppression nadir upon multiple consecutive dosages of cyclophosphamide than wild type mice did. This was accompanied with decreased antioxidant and detoxifying gene expressions and impaired colony formation ability of Nrf2-/- bone marrow cells. More importantly, activation of Nrf2 signaling by CDDO-Me significantly alleviated cyclophosphamide-induced myelosuppression, while this alleviation was diminished in Nrf2-/- mice. In conclusion, the present study shows that Nrf2 plays a protective role in cyclophosphamide-induced myelosuppression and activation of Nrf2 is a promising strategy to prevent or treat chemotherapy-induced myelosuppression.
Collapse
|
95
|
Atilano-Roque A, Aleksunes LM, Joy MS. Bardoxolone methyl modulates efflux transporter and detoxifying enzyme expression in cisplatin-induced kidney cell injury. Toxicol Lett 2016; 259:52-59. [PMID: 27480280 DOI: 10.1016/j.toxlet.2016.07.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/05/2016] [Accepted: 07/18/2016] [Indexed: 12/12/2022]
Abstract
Cisplatin is prescribed for the treatment of solid tumors and elicits toxicity to kidney tubules, which limits its clinical use. Nuclear factor erythroid 2-related factor 2 (Nrf2, NFE2L2) is a critical transcription factor that has been shown to protect against kidney injury through activation of antioxidant mechanisms. We aimed to evaluate the ability of short-term treatment with the Nrf2 activator bardoxolone methyl (CDDO-Me) to protect against cisplatin-induced kidney cell toxicity. Cell viability was assessed in human kidney proximal tubule epithelial cells (hPTCs) exposed to low, intermediate, and high cisplatin concentrations in the presence and absence of CDDO-Me, administered either prior to or after cisplatin. Treatment with cisplatin alone resulted in reductions in hPTC viability, while CDDO-Me administered prior to or after cisplatin exposure yielded significantly higher cell viability (17%-71%). Gene regulation (mRNA expression) studies revealed the ability of CDDO-Me to modify protective pathways including Nrf2 induced detoxifying genes [GCLC (increased 1.9-fold), NQO1 (increased 9.3-fold)], and an efflux transporter [SLC47A1 (increased 4.5-fold)] at 12h. Protein assessments were in agreement with gene expression. Immunofluorescence revealed localization of GCLC and NQO1 to the nucleus and cytosol, respectively, with CDDO-Me administered prior to or after cisplatin exposure. The findings of enhanced cell viability and increased expression of detoxifying enzymes (GCLC and NQO1) and the multidrug and toxin extrusion protein 1 (MATE1) efflux transporter (SLC47A1) in hPTCs exposed to CDDO-Me, suggest that intermittent treatment with CDDO-Me prior to or after cisplatin exposure may be a promising approach to mitigate acute kidney injury.
Collapse
Affiliation(s)
- Amandla Atilano-Roque
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States
| | - Melanie S Joy
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States; Division of Renal Diseases and Hypertension, University of Colorado School of Medicine, Aurora, CO, United States.
| |
Collapse
|
96
|
Done AJ, Gage MJ, Nieto NC, Traustadóttir T. Exercise-induced Nrf2-signaling is impaired in aging. Free Radic Biol Med 2016; 96:130-8. [PMID: 27109910 DOI: 10.1016/j.freeradbiomed.2016.04.024] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 01/03/2023]
Abstract
PURPOSE The transcription factor nuclear erythroid-2 like factor-2 (Nrf2) is the master regulator of antioxidant defense. Data from animal studies suggest exercise elicits significant increases in Nrf2 signaling, and that signaling is impaired with aging resulting in decreased induction of phase II detoxifying enzymes and greater susceptibility to oxidative damage. We have previously shown that older adults have lower resistance to an oxidative challenge as compared to young, and that this response is modified with physical fitness and phytonutrient intervention. We hypothesized that a single bout of submaximal exercise would elicit increased nuclear accumulation of Nrf2, and that this response to exercise would be attenuated with aging. METHODS Nrf2 signaling in response to 30-min cycling at 70% VO2max was compared in young (23±1y, n=10) and older (63±1, n=10) men. Blood was collected at six time points; pre-exercise, and 10min, 30min, 1h, 4h, and 24h post-exercise. Nrf2 signaling was determined in peripheral blood mononuclear cells by measuring protein expression by western blot of Nrf2 in whole cell and nuclear fractions, and whole cell SOD1, and HMOX, as well as gene expression (RT-PCR) of downstream Nrf2-ARE antioxidants SOD1, HMOX, and NQO1. RESULTS Baseline differences in protein expression did not differ between groups. The exercise trial elicited significant increase in whole cell Nrf2 (P=0.003) for both young and older groups. Nuclear Nrf2 levels were increased significantly in the young but not older group (P=0.031). Exercise elicited significant increases in gene expression of HMOX1 and NQO1 in the young (P=0.006, and P=0.055, respectively) whereas gene expression in the older adults was repressed. There were no significant differences in SOD1 or HMOX1 protein expression. CONCLUSION These findings indicate a single session of submaximal aerobic exercise is sufficient to activate Nrf2 at the whole cell level in both young and older adults, but that nuclear import is impaired with aging. Additionally we have shown repressed gene expression of downstream antioxidant targets of Nrf2 in older adults. Together these translational data demonstrate for the first time the attenuation of Nrf2 activity in response to exercise in older adults.
Collapse
Affiliation(s)
- Aaron J Done
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, United States
| | - Matthew J Gage
- Department of Chemistry, University of Massachusetts, Lowell, United States
| | - Nathan C Nieto
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, United States
| | - Tinna Traustadóttir
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, United States.
| |
Collapse
|
97
|
Sargsyan E, Artemenko K, Manukyan L, Bergquist J, Bergsten P. Oleate protects beta-cells from the toxic effect of palmitate by activating pro-survival pathways of the ER stress response. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1151-1160. [PMID: 27344025 DOI: 10.1016/j.bbalip.2016.06.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 06/11/2016] [Accepted: 06/20/2016] [Indexed: 12/20/2022]
Abstract
Long-term exposure of beta cells to saturated fatty acids impairs insulin secretion and increases apoptosis. In contrast, unsaturated fatty acids protect beta-cells from the long-term negative effects of saturated fatty acids. We aimed to identify the mechanisms underlying this protective action of unsaturated fatty acids. To address the aim, insulin-secreting MIN6 cells were exposed to palmitate in the absence or presence of oleate and analyzed by using nano-LC MS/MS based proteomic approach. Important findings were validated by using alternative approaches. Proteomic analysis identified 34 proteins differentially expressed in the presence of palmitate compared to control samples. These proteins play a role in insulin processing, mitochondrial function, metabolism of biomolecules, calcium homeostasis, exocytosis, receptor signaling, ER protein folding, antioxidant activity and anti-apoptotic function. When oleate was also present during culture, expression of 15 proteins was different from the expression in the presence of palmitate alone. Most of the proteins affected by oleate are targets of the ER stress response and play a pro-survival role in beta cells such as protein folding and antioxidative defence. We conclude that restoration of pro-survival pathways of the ER stress response is a major mechanism underlying the protective effect of unsaturated fatty acids in beta-cells treated with saturated fatty acids.
Collapse
Affiliation(s)
- Ernest Sargsyan
- Department of Medical Cell Biology, Uppsala University, Box 571, 75123 Uppsala, Sweden.
| | | | - Levon Manukyan
- Department of Medical Cell Biology, Uppsala University, Box 571, 75123 Uppsala, Sweden
| | - Jonas Bergquist
- Department of Chemistry, Uppsala University, Uppsala, Sweden; SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Peter Bergsten
- Department of Medical Cell Biology, Uppsala University, Box 571, 75123 Uppsala, Sweden
| |
Collapse
|
98
|
NRF2, a Key Regulator of Antioxidants with Two Faces towards Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2746457. [PMID: 27340506 PMCID: PMC4909917 DOI: 10.1155/2016/2746457] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/10/2016] [Indexed: 12/30/2022]
Abstract
While reactive oxygen species (ROS) is generally considered harmful, a relevant amount of ROS is necessary for a number of cellular functions, including the intracellular signal transduction. In order to deal with an excessive amount of ROS, organisms are equipped with a sufficient amount of antioxidants together with NF-E2-related factor-2 (NRF2), a transcription factor that plays a key role in the protection of organisms against environmental or intracellular stresses. While the NRF2 activity has been generally viewed as beneficial to preserve the integrity of organisms, recent studies have demonstrated that cancer cells hijack the NRF2 activity to survive under the oxidative stress and, therefore, a close check must be kept on the NRF2 activity in cancer. In the present review, we briefly highlight important progresses in understanding the molecular mechanism, structure, and function of KEAP1 and NRF2 interaction. In addition, we provide general perspectives that justify conflicting views on the NRF2 activity in cancer.
Collapse
|
99
|
Dong D, Reece EA, Yang P. The Nrf2 Activator Vinylsulfone Reduces High Glucose-Induced Neural Tube Defects by Suppressing Cellular Stress and Apoptosis. Reprod Sci 2016; 23:993-1000. [PMID: 26802109 DOI: 10.1177/1933719115625846] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway is one of the primary pathways responsible for the cellular defense system against oxidative stress. Oxidative stress-induced apoptosis is a causal event in diabetic embryopathy. Thus, the Nrf2 pathway may play an important role in the induction of diabetic embryopathy. In the present study, we investigated the potentially protective effect of the Nrf2 activator, vinylsulfone, on high glucose-induced cellular stress, apoptosis, and neural tube defects (NTDs). Embryonic day 8.5 (E8.5) whole mouse embryos were cultured in normal (5 mmol/L) or high (16.7 mmol/L) glucose conditions, with or without vinylsulfone. At a concentration of 10 μmol/L, vinylsulfone had an inhibitory effect on high glucose-induced NTD formation, but it was not significant. At a concentration of 20 μmol/L, vinylsulfone significantly reduced high glucose-induced NTDs. In addition, 20 μmol/L vinylsulfone abrogated the high glucose-induced oxidative stress markers lipid hydroperoxide (LPO), 4-hydroxynonenal (4-HNE), and nitrotyrosine-modified proteins. The high glucose-induced endoplasmic reticulum (ER) stress biomarkers were also suppressed by 20 μmol/L vinylsulfone through the inhibition of phosphorylated protein kinase RNA-like ER kinase (PERK), inositol requiring protein 1α (IRE1a), eukaryotic initiation factor 2α (eIF2a), upregulated C/EBP-homologous protein (CHOP), binding immunoglobulin protein (BiP), and x-box binding protein 1 (XBP1) messenger RNA splicing. Furthermore, 20 μmol/L vinylsulfone abolished caspase 3 and caspase 8 cleavage, markers of apoptosis, in embryos cultured under high glucose conditions. The Nrf2 activator, vinylsulfone, is protective against high glucose-induced cellular stress, caspase activation, and subsequent NTD formation. Our data suggest that vinylsulfone supplementation is a potential therapy for diabetes-associated neurodevelopmental defects.
Collapse
Affiliation(s)
- Daoyin Dong
- Department of Obstetrics, Gynecology & Reproductive Sciences, Nashville, TN, USA
| | - E Albert Reece
- Department of Obstetrics, Gynecology & Reproductive Sciences, Nashville, TN, USA Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Peixin Yang
- Department of Obstetrics, Gynecology & Reproductive Sciences, Nashville, TN, USA Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
100
|
Nrf2 activators as potential modulators of injury in human kidney cells. Toxicol Rep 2016; 3:153-159. [PMID: 28959534 PMCID: PMC5615789 DOI: 10.1016/j.toxrep.2016.01.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/07/2016] [Accepted: 01/07/2016] [Indexed: 12/14/2022] Open
Abstract
Cisplatin is a chemotherapeutic agent used in the treatment of solid tumors, with clinical use often complicated by kidney toxicity. Nuclear factor (erythroid-derived-2)-like 2 (Nrf2) is a transcription factor involved in kidney protectant effects. The purpose of this study was to determine whether the Nrf2 activators oltipraz, sulforaphane, and oleanolic acid could protect human kidney cells against cisplatin-induced injury and to compare the protective effects between three Nrf2 activators. Human proximal tubule cells (hPTC) and human embryonic kidney 293 cells (HEK293) were exposed to cisplatin doses in the absence and presence of Nrf2 activators. Pre- and delayed-cisplatin and Nrf2 activator exposures were also assessed. Cell viability was enhanced with Nrf2 activator exposures, with differences detected between pre- and delayed-treatments. Both sulforaphane and oltipraz increased the expression of anti-oxidant genes GCLC and NQO1. These findings suggest potential human kidney protective benefits of Nrf2 activators with planned exposures to cisplatin.
Collapse
|