51
|
Khaleghi S, Bayani MA, Ziaei N, Salehiomran M, Khafri S. The glycosylated hemoglobin level and the severity of cardiovascular involvement in patients with the first episode of acute coronary syndrome. CASPIAN JOURNAL OF INTERNAL MEDICINE 2024; 15:46-52. [PMID: 38463911 PMCID: PMC10921112 DOI: 10.22088/cjim.15.1.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 04/09/2023] [Accepted: 05/31/2023] [Indexed: 03/12/2024]
Abstract
Background The current study was carried out aiming at investigating the relationship between glycosylated hemoglobin level and coronary atherosclerosis in patients with the first episode of acute coronary syndrome. Methods This case-control study evaluated 450 patients with the first episode of acute coronary syndrome in Ayatollah Rouhani Hospital in Babol (Iran) from 2011 to 2018. Based on glycosylated hemoglobin, patients were divided into three groups of non-diabetic, pre-diabetic, and diabetic (n=150 in each group). Since SYNTAX score and Gensini score are employed to evaluate the extent of cardiovascular disease and predict CVD in patients with CAD over long-term follow-up, we calculated SYNTAX score and Gensini score based on angiographic results. Results Concerning the factors related to the severity of cardiovascular involvement, the results revealed no significant difference between the diabetic and pre-diabetic groups in terms of the frequency of patients in terms of SYNTAX score, Gensini score, and the number of vessels involved (0.142 and 87, respectively, and P=0.102). However, this difference between the diabetic and non-diabetic groups, as well as between the pre-diabetic and non-diabetic groups was statistically significant (respectively for SYNTAX score, p< 0.001 and P=0.001; for Gensini score, P=0.013 and P=0.019; and for the number of vessels involved P=0.001and p<0.001). Conclusion According to the findings of the current study, since there was no significant difference between diabetic and pre-diabetic patients in terms of the components indicating the severity of cardiovascular involvement, pre-diabetes itself may be associated with the severity of cardiovascular involvement as a predisposing factor.
Collapse
Affiliation(s)
- Saman Khaleghi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Ali Bayani
- Clinical Research Development Unite of Rouhani Hospital, Babol University of Medical Sciences, Babol, Iran
| | - Naghmeh Ziaei
- Clinical Research Development Unite of Rouhani Hospital, Babol University of Medical Sciences, Babol, Iran
| | - Mohammadtaghi Salehiomran
- Clinical Research Development Unite of Rouhani Hospital, Babol University of Medical Sciences, Babol, Iran
| | - Soraya Khafri
- Clinical Research Development Unite of Rouhani Hospital, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
52
|
Meir J, Huang L, Mahmood S, Whiteson H, Cohen S, Aronow WS. The vascular complications of diabetes: a review of their management, pathogenesis, and prevention. Expert Rev Endocrinol Metab 2024; 19:11-20. [PMID: 37947481 DOI: 10.1080/17446651.2023.2279533] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
INTRODUCTION This review highlights the pathogenesis of both microvascular and macrovascular complications of diabetes and how these mechanisms influence both the management and preventative strategies of these complications. The cumulative data shown in this review suggest hyperglycemic and blood pressure control remain central to this intricate process. AREAS COVERED We reviewed the literature including retrospective, prospective trials as well as meta-analysis, and post hoc analysis of randomized trials on microvascular andmacrovascular complications. EXPERT OPINION Further research is needed to explore the ideal intervention targets and preventative strategies needed to prevent macrovascular complications. Furthermore, as the data for trials looking at microvascular complications lengthen more long-term data will further elucidate the role that the duration of diabetes has on these complications. Additionally, trials looking to maximize hyperglycemic control with multiple agents in diabetes, such as metformin, SGL2isand GLP-1 receptor agonists are currently in process, which will have implications for rates of microvascular as well as macrovascular complications.
Collapse
Affiliation(s)
- Juliet Meir
- Departments of Cardiology and Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY, USA
| | - Lillian Huang
- Departments of Cardiology and Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY, USA
| | - Sumaita Mahmood
- Departments of Cardiology and Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY, USA
| | - Harris Whiteson
- Departments of Cardiology and Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY, USA
| | - Scott Cohen
- Departments of Cardiology and Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY, USA
| | - Wilbert S Aronow
- Departments of Cardiology and Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY, USA
| |
Collapse
|
53
|
Kawai K, Finn AV, Virmani R. Subclinical Atherosclerosis: Part 1: What Is it? Can it Be Defined at the Histological Level? Arterioscler Thromb Vasc Biol 2024; 44:12-23. [PMID: 38150517 DOI: 10.1161/atvbaha.123.319932] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
While coronary artery disease remains a major cause of death, it is preventable. Therefore, the focus needs to shift to the early detection and prevention of atherosclerosis. Asymptomatic atherosclerosis is widely termed subclinical atherosclerosis, which is an early indicator of atherosclerotic burden, and understanding this disease is important because timely intervention could prevent future cardiovascular morbidity and mortality. We histologically recognize the earliest lesion of atherosclerosis as pathological intimal thickening, which is characterized by the presence of lipid pools. The difference between clinical atherosclerosis and subclinical atherosclerosis is whether the presence of atherosclerosis results in the clinical symptoms of ischemia, such as stroke, myocardial infarction, or chronic limb-threatening ischemia. In the absence of thrombosis, there are various types of histological plaque that encompass subclinical atherosclerosis: pathological intimal thickening, fibroatheroma, thin-cap fibroatheroma, plaque rupture, healed plaque ruptures, and fibrocalcific plaque. Plaque morphology that is most frequently responsible for acute coronary thrombosis is plaque rupture. Calcification of coronary arteries is the hallmark of atherosclerosis and is a predictor of future coronary events. Atherosclerosis occurs in other vascular beds and is most frequent in arteries of the lower extremity, followed by carotid, aorta, and coronary arteries, and the mechanisms leading to clinical symptoms are unique for each location.
Collapse
Affiliation(s)
- Kenji Kawai
- CVPath Institute, Gaithersburg, MD (K.K., A.V.F., R.V.)
| | - Aloke V Finn
- CVPath Institute, Gaithersburg, MD (K.K., A.V.F., R.V.)
- University of Maryland, School of Medicine, Baltimore (A.V.F.)
| | - Renu Virmani
- CVPath Institute, Gaithersburg, MD (K.K., A.V.F., R.V.)
| |
Collapse
|
54
|
Seo YB, Kang SG, Song SW. Relationship between metabolically healthy obesity and coronary artery calcification. Obes Res Clin Pract 2024; 18:28-34. [PMID: 38320917 DOI: 10.1016/j.orcp.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/08/2024]
Abstract
There is a lack of consensus regarding universally accepted criteria for metabolic health (MH). A simple definition of MH was systematically derived in a recent prospective cohort study. The present cross-sectional study aimed to explore the applicability of these criteria in Korean population, using coronary calcification as an indicator of cardiovascular risk. In total, 1049 healthy participants, who underwent coronary artery calcification testing at university hospital health promotion centers between January and December 2022, were included. Applying the main components of the newly derived definition, MH was defined as follows: (1) systolic blood pressure < 130 mmHg and no use of blood pressure-lowering medication; (2) waist circumference < 90 cm for males and < 85 cm for females; and (3) absence of diabetes. Multivariate logistic regression was conducted to examine the odds ratio (OR) and 95 % confidence interval (CI) for coronary artery calcium score across different phenotypes. The prevalence of coronary artery calcification in this study was 41.1 %. Compared with metabolically healthy, normal weight subjects, those with the metabolically healthy obesity phenotype did not exhibit increased odds for coronary atherosclerosis. (OR 0.93 [95 % CI 0.48-1.79]) Conversely, metabolically unhealthy subjects had increased risk, regardless of their body mass index category (OR 3.10 [95 % CI 1.84-5.24] in metabolically unhealthy normal weight; OR 3.21 [95 % CI 1.92-5.37] in metabolically unhealthy overweight; OR 2.73 [95 % CI 1.72-4.33] in metabolically unhealthy obese phenotype). These findings suggest that the new definition for MH has the potential to effectively distinguish individuals at risk for cardiovascular disease from those who are not.
Collapse
Affiliation(s)
- Yoo-Bin Seo
- Department of Family Medicine, College of Medicine, The Catholic University of Korea, 06591 Seoul, the Republic of Korea; Department of Family Medicine, Wonkwang University Sanbon Hospital, 15865 Gunpo, the Republic of Korea
| | - Sung-Goo Kang
- Department of Family Medicine, College of Medicine, The Catholic University of Korea, 06591 Seoul, the Republic of Korea.
| | - Sang-Wook Song
- Department of Family Medicine, College of Medicine, The Catholic University of Korea, 06591 Seoul, the Republic of Korea.
| |
Collapse
|
55
|
Aimaitijiang M, Wu TT, Zheng YY, Hou XG, Yang H, Yang Y, Xie X. Serum 5'-Nucleotidase as a Novel Predictor of Adverse Clinical Outcomes after Percutaneous Coronary Intervention in Patients with Coronary Artery Disease. Rev Cardiovasc Med 2024; 25:17. [PMID: 39077643 PMCID: PMC11262354 DOI: 10.31083/j.rcm2501017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 07/31/2024] Open
Abstract
Background The correlation between 5 ' -Nucleotidase ( 5 ' -NT) and the clinical outcomes in coronary artery disease (CAD) patients following percutaneous coronary intervention (PCI) is not clear. This study aims to clarify this relationship. Methods The PRACTICE study enrolled 15,250 patients between December 2016 and October 2021. After filtering out those without 5 ' -NT data, a total of 6555 patients were analyzed with a median follow-up of 24 months. Based on the receiver operating characteristic (ROC) curve analysis, a 5 ' -NT level of 5.57 U/L was selected as the optimal cutoff value. All research samples were divided into high-value ( ≥ 5.57 U/L, n = 2346) and low-value groups ( < 5.57 U/L, n = 4209). Key clinical outcomes included all-cause death (ACD), cardiovascular death (CD), major adverse cardiovascular events (MACE), and major adverse cardiovascular and cerebrovascular events (MACCE). After separating patients into high and low value groups, multivariate Cox regression analysis was used to correct for potential confounding variables. Finally, risk ratios and their 95% confidence intervals (CIs) were calculated. Results During the follow-up period, 129 instances of ACD were recorded-49 cases (1.2%) in the low-value group and 80 cases (3.4%) in the high-value group. Similarly, 102 CDs occurred, including 42 low-value group cases (1.0%) and 60 high-value group cases (2.6%). A total of 363 MACE occurred, including 198 low-value group cases (4.7%) and 165 high-value group cases (7%). A total of 397 cases of MACCE occurred, including 227 low-value group cases (5.4%) and 170 high-value group cases (7.2%). As serum 5 ' -NT increased, the incidence of ACD, CD, MACE and MACCE increased. After multivariate Cox regression, high 5 ' -NT levels were linked with a 1.63-fold increase in ACD risk (hazard ratio [HR] = 2.630, 95% CI: [1.770-3.908], p < 0.001) when compared to low 5 ' -NT patients. Similarly, the risk of CD, MACE, and MACCE increased by 1.298-fold (HR = 2.298, 95% CI: [1.477-3.573], p < 0.001), 41% (HR = 1.410, 95% CI: [1.124-1.768], p = 0.003) and 30.5% (HR = 1.305, 95% CI: [1.049-1.623], p = 0.017), respectively. Conclusions high serum 5 ' -NT levels were independently correlated with adverse clinical outcomes in CAD patients following PCI, affirming its potential as a prognostic indicator.
Collapse
Affiliation(s)
- Mikereyi Aimaitijiang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical
University, 830054 Urumqi, Xinjiang, China
| | - Ting-Ting Wu
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical
University, 830054 Urumqi, Xinjiang, China
| | - Ying-Ying Zheng
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical
University, 830054 Urumqi, Xinjiang, China
| | - Xian-Geng Hou
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical
University, 830054 Urumqi, Xinjiang, China
| | - Haitao Yang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical
University, 830054 Urumqi, Xinjiang, China
| | - Yi Yang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical
University, 830054 Urumqi, Xinjiang, China
| | - Xiang Xie
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical
University, 830054 Urumqi, Xinjiang, China
| |
Collapse
|
56
|
Feng W, Teng Y, Zhong Q, Zhang Y, Zhang J, Zhao P, Chen G, Wang C, Liang XJ, Ou C. Biomimetic Grapefruit-Derived Extracellular Vesicles for Safe and Targeted Delivery of Sodium Thiosulfate against Vascular Calcification. ACS NANO 2023; 17:24773-24789. [PMID: 38055864 PMCID: PMC10753875 DOI: 10.1021/acsnano.3c05261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
As the prevalence of vascular calcification (VC), a strong contributor to cardiovascular morbidity and mortality, continues to increase, the need for pharmacologic therapies becomes urgent. Sodium thiosulfate (STS) is a clinically approved drug for therapy against VC; however, its efficacy is hampered by poor bioavailability and severe adverse effects. Plant-derived extracellular vesicles have provided options for VC treatment since they can be used as biomimetic drug carriers with higher biosafety and targeting abilities than artificial carriers. Inspired by natural grapefruit-derived extracellular vesicles (EVs), we fabricated a biomimetic nanocarrier comprising EVs loaded with STS and further modified with hydroxyapatite crystal binding peptide (ESTP) for VC-targeted delivery of STS. In vitro, the ESTP nanodrug exhibited excellent cellular uptake capacity by calcified vascular smooth muscle cells (VSMCs) and subsequently inhibited VSMCs calcification. In the VC mice model, the ESTP nanodrug showed preferentially the highest accumulation in the calcified arteries compared to other treatment groups. Mechanistically, the ESTP nanodrug significantly prevented VC via driving M2 macrophage polarization, reducing inflammation, and suppressing bone-vascular axis as demonstrated by inhibiting osteogenic phenotype trans-differentiation of VSMCs while enhancing bone quality. In addition, the ESTP nanodrug did not induce hemolysis or cause any damage to other organs. These results suggest that the ESTP nanodrug can prove to be a promising agent against VC without the concern of systemic toxicity.
Collapse
Affiliation(s)
- Weijing Feng
- The
Tenth Affiliated Hospital of Southern Medical University (Dongguan
People’s Hospital), Southern Medical University or The First
School of Clinical Medicine, Southern Medical
University, Dongguan 523018, China
- Department
of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong
Provincial Key Laboratory of Cardiac Function and Microcirculation,
Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yintong Teng
- The
Tenth Affiliated Hospital of Southern Medical University (Dongguan
People’s Hospital), Southern Medical University or The First
School of Clinical Medicine, Southern Medical
University, Dongguan 523018, China
| | - Qingping Zhong
- The
Tenth Affiliated Hospital of Southern Medical University (Dongguan
People’s Hospital), Southern Medical University or The First
School of Clinical Medicine, Southern Medical
University, Dongguan 523018, China
| | - Yangmei Zhang
- The
Tenth Affiliated Hospital of Southern Medical University (Dongguan
People’s Hospital), Southern Medical University or The First
School of Clinical Medicine, Southern Medical
University, Dongguan 523018, China
| | - Jianwu Zhang
- Department
of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong
Provincial Key Laboratory of Cardiac Function and Microcirculation,
Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Peng Zhao
- NMPA
Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong
Provincial Key Laboratory of New Drug Screening, Guangdong Provincial
Key Laboratory of Cardiac Function and Microcirculation, School of
Pharmaceutical Sciences, Southern Medical
University, Guangzhou 510515, China
| | - Guoqing Chen
- Cardiology
Department of Panyu Central Hospital and Cardiovascular Disease Institute
of Panyu District, Guangzhou 511400, China
| | - Chunming Wang
- Institute
of Chinese Medical Sciences & State Key Laboratory of Quality
Research in Chinese Medicine, University
of Macau, Macau 00000, SAR, China
| | - Xing-Jie Liang
- Chinese Academy
of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Caiwen Ou
- The
Tenth Affiliated Hospital of Southern Medical University (Dongguan
People’s Hospital), Southern Medical University or The First
School of Clinical Medicine, Southern Medical
University, Dongguan 523018, China
| |
Collapse
|
57
|
Zhang YY, Gui J, Chen BX, Wan Q. Correlation of renal function indicators and vascular damage in T2DM patients with normal renal function. Front Endocrinol (Lausanne) 2023; 14:1292397. [PMID: 38164493 PMCID: PMC10758123 DOI: 10.3389/fendo.2023.1292397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Background This study aimed to assess the correlation between renal function-related indices and vascular damages among patients with type 2 diabetes mellitus (T2DM) and normal renal function. Methods We screened a cohort of eligible patients with T2DM, ultimately including 826 individuals. Utilizing multifactorial logistic regression, we conducted an in-depth analysis to explore the potential associations between renal function-related indices-specifically BUN, Cr, ALB, ACR, and eGFR-and the incidence of diabetic vascular damage. Additionally, to comprehensively understand the relationships, we employed Spearman correlation analysis to assess the connections between these indicators and the occurrence of vascular damage. Results In this cross-sectional study of 532 patients with carotid atherosclerosis (CA), the prevalence of CA was positively correlated with Cr (53.1%, 72.3%, 68.0%, P<0.05) and negatively correlated with eGFR (71.6%, 68.5%, 53.1%, P<0.05). the higher the Cr, the higher the predominance ratio of CA (T1: reference; T2:OR. 2.166,95%CI:1.454,3.225; T3:OR:1.677, 95%CI:1.075, 2.616; P<0.05), along with an eGFR of 66.9% and 52.0% in terms of sensitivity and specificity, with a 95% CI of 0.562-0.644. Conclusion Within our experimental sample, a noteworthy observation emerged: Creatinine (Cr) exhibited a positive correlation with the prevalence of individuals affected by carotid atherosclerosis (CA), underscoring a potential connection between Cr levels and CA incidence. Conversely, the estimated Glomerular Filtration Rate (eGFR) demonstrated a negative correlation with the occurrence of CA, implying that lower eGFR values might be associated with an increased likelihood of CA development.
Collapse
Affiliation(s)
- Yue-Yang Zhang
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Diabetes and Metabolism, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Jing Gui
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Diabetes and Metabolism, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Bing-Xue Chen
- Department of Medical Imaging, Southwest Medical University, Luzhou, China
| | - Qin Wan
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Diabetes and Metabolism, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| |
Collapse
|
58
|
Yang C, Xie Z, Liu H, Wang X, Zhang Z, Du L, Xie C. Efficacy and mechanism of Shenqi Compound in inhibiting diabetic vascular calcification. Mol Med 2023; 29:168. [PMID: 38093172 PMCID: PMC10720156 DOI: 10.1186/s10020-023-00767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Shenqi Compound (SQC) has been used in clinic for several decades in the prevention and treatment of diabetes and its complications. But this is merely a heritage of experience. The primary aim of this study is to scientifically validate the therapeutic effects of SQC on diabetic vascular calcification (DVC) in an animal model and, simultaneously, uncover its potential underlying mechanisms. METHOD Spontaneous diabetic rat- Goto Kakizaki (GK) rats were selected for rat modeling. We meticulously designed three distinct groups: a control group, a model group, and an SQC treatment group to rigorously evaluate the influence of SQC. Utilizing a comprehensive approach that encompassed methods such as pathological staining, western blot analysis, qRT-PCR, and RNA sequencing, we thoroughly investigated the therapeutic advantages and the underlying mechanistic pathways associated with SQC in the treatment of DVC. RESULT The findings from this investigation have unveiled the extraordinary efficacy of SQC treatment in significantly mitigating DVC. The underlying mechanisms driving this effect encompass multifaceted facets, including the restoration of aberrant glucose and lipid metabolism, the prevention of phenotypic transformation of vascular smooth muscle cells (VSMCs) into osteogenic-like states, the subsequent inhibition of cell apoptosis, the modulation of inflammation responses, the remodeling of the extracellular matrix (ECM), and the activation of the Hippo-YAP signaling pathway. Collectively, these mechanisms lead to the dissolution of deposited calcium salts, ultimately achieving the desired inhibition of DVC. CONCLUSION Our study has provided compelling and robust evidence of the remarkable efficacy of SQC treatment in significantly reducing DVC. This reduction is attributed to a multifaceted interplay of mechanisms, each playing a crucial role in the observed therapeutic effects. Notably, our findings illuminate prospective directions for further research and potential clinical applications in the field of cardiovascular health.
Collapse
Affiliation(s)
- Chan Yang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, Sichuan, China.
| | - Ziyan Xie
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Hanyu Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Xueru Wang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Zehua Zhang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Lian Du
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunguang Xie
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China.
| |
Collapse
|
59
|
Samidurai A, Olex AL, Ockaili R, Kraskauskas D, Roh SK, Kukreja RC, Das A. Integrated Analysis of lncRNA-miRNA-mRNA Regulatory Network in Rapamycin-Induced Cardioprotection against Ischemia/Reperfusion Injury in Diabetic Rabbits. Cells 2023; 12:2820. [PMID: 38132140 PMCID: PMC10742118 DOI: 10.3390/cells12242820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
The inhibition of mammalian target of rapamycin (mTOR) with rapamycin (RAPA) provides protection against myocardial ischemia/reperfusion (I/R) injury in diabetes. Since interactions between transcripts, including long non-coding RNA (lncRNA), microRNA(miRNA) and mRNA, regulate the pathophysiology of disease, we performed unbiased miRarray profiling in the heart of diabetic rabbits following I/R injury with/without RAPA treatment to identify differentially expressed (DE) miRNAs and their predicted targets of lncRNAs/mRNAs. Results showed that among the total of 806 unique miRNAs targets, 194 miRNAs were DE after I/R in diabetic rabbits. Specifically, eight miRNAs, including miR-199a-5p, miR-154-5p, miR-543-3p, miR-379-3p, miR-379-5p, miR-299-5p, miR-140-3p, and miR-497-5p, were upregulated and 10 miRNAs, including miR-1-3p, miR-1b, miR-29b-3p, miR-29c-3p, miR-30e-3p, miR-133c, miR-196c-3p, miR-322-5p, miR-499-5p, and miR-672-5p, were significantly downregulated after I/R injury. Interestingly, RAPA treatment significantly reversed these changes in miRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated the participation of miRNAs in the regulation of several signaling pathways related to I/R injury, including MAPK signaling and apoptosis. Furthermore, in diabetic hearts, the expression of lncRNAs, HOTAIR, and GAS5 were induced after I/R injury, but RAPA suppressed these lncRNAs. In contrast, MALAT1 was significantly reduced following I/R injury, with the increased expression of miR-199a-5p and suppression of its target, the anti-apoptotic protein Bcl-2. RAPA recovered MALAT1 expression with its sponging effect on miR-199-5p and restoration of Bcl-2 expression. The identification of novel targets from the transcriptome analysis in RAPA-treated diabetic hearts could potentially lead to the development of new therapeutic strategies for diabetic patients with myocardial infarction.
Collapse
Affiliation(s)
- Arun Samidurai
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.); (R.O.); (D.K.); (S.K.R.)
| | - Amy L. Olex
- Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Ramzi Ockaili
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.); (R.O.); (D.K.); (S.K.R.)
| | - Donatas Kraskauskas
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.); (R.O.); (D.K.); (S.K.R.)
| | - Sean K. Roh
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.); (R.O.); (D.K.); (S.K.R.)
| | - Rakesh C. Kukreja
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.); (R.O.); (D.K.); (S.K.R.)
| | - Anindita Das
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.); (R.O.); (D.K.); (S.K.R.)
| |
Collapse
|
60
|
Hashmi S, Shah PW, Aherrahrou Z, Aikawa E, Aherrahrou R. Beyond the Basics: Unraveling the Complexity of Coronary Artery Calcification. Cells 2023; 12:2822. [PMID: 38132141 PMCID: PMC10742130 DOI: 10.3390/cells12242822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Coronary artery calcification (CAC) is mainly associated with coronary atherosclerosis, which is an indicator of coronary artery disease (CAD). CAC refers to the accumulation of calcium phosphate deposits, classified as micro- or macrocalcifications, that lead to the hardening and narrowing of the coronary arteries. CAC is a strong predictor of future cardiovascular events, such as myocardial infarction and sudden death. Our narrative review focuses on the pathophysiology of CAC, exploring its link to plaque vulnerability, genetic factors, and how race and sex can affect the condition. We also examined the connection between the gut microbiome and CAC, and the impact of genetic variants on the cellular processes involved in vascular calcification and atherogenesis. We aimed to thoroughly analyze the existing literature to improve our understanding of CAC and its potential clinical and therapeutic implications.
Collapse
Affiliation(s)
- Satwat Hashmi
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan;
| | - Pashmina Wiqar Shah
- Institute for Cardiogenetics, Universität zu Lübeck, 23562 Lübeck, Germany; (P.W.S.); (Z.A.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Heart Centre Lübeck, 23562 Lübeck, Germany
| | - Zouhair Aherrahrou
- Institute for Cardiogenetics, Universität zu Lübeck, 23562 Lübeck, Germany; (P.W.S.); (Z.A.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Heart Centre Lübeck, 23562 Lübeck, Germany
| | - Elena Aikawa
- Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Rédouane Aherrahrou
- Institute for Cardiogenetics, Universität zu Lübeck, 23562 Lübeck, Germany; (P.W.S.); (Z.A.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Heart Centre Lübeck, 23562 Lübeck, Germany
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| |
Collapse
|
61
|
Suzuki K, Niida T, Yuki H, Kinoshita D, Fujimoto D, Lee H, McNulty I, Takano M, Nakamura S, Kakuta T, Mizuno K, Jang I. Coronary Plaque Characteristics and Underlying Mechanism of Acute Coronary Syndromes in Different Age Groups of Patients With Diabetes. J Am Heart Assoc 2023; 12:e031474. [PMID: 38014673 PMCID: PMC10727321 DOI: 10.1161/jaha.123.031474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/17/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND High cardiovascular mortality has been reported in young patients with diabetes. However, the underlying pathology in different age groups of patients with diabetes has not been studied. METHODS AND RESULTS The aim of this study was to investigate the plaque characteristics and underlying pathology of acute coronary syndrome in different age groups of patients with or without diabetes in a large cohort. Patients who presented with acute coronary syndrome and underwent preintervention optical coherence tomography imaging were included. Culprit plaque was classified as plaque rupture, plaque erosion, or calcified plaque and stratified into 5 age groups. Plaque characteristics including features of vulnerability were examined by optical coherence tomography. Among 1394 patients, 482 (34.6%) had diabetes. Patients with diabetes, compared with patients without diabetes, had a higher prevalence of lipid-rich plaque (71.2% versus 64.8%, P=0.016), macrophage (72.0% versus 62.6%, P<0.001), and cholesterol crystal (27.6% versus 19.7%, P<0.001). Both diabetes and nondiabetes groups showed a decreasing trend in plaque erosion with age (patients with diabetes, P=0.020; patients without diabetes, P<0.001). Patients without diabetes showed an increasing trend with age in plaque rupture (P=0.004) and lipid-rich plaque (P=0.018), whereas patients with diabetes had a high prevalence of these vulnerable features at an early age that remained high across age groups. CONCLUSIONS Patients without diabetes showed an increasing trend with age in plaque rupture and lipid-rich plaque, whereas patients with diabetes had a high prevalence of these vulnerable features at an early age. These results suggest that atherosclerotic vascular changes with increased vulnerability start at a younger age in patients with diabetes. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifiers: NCT04523194, NCT03479723. URL: https://www.umin.ac.jp/ctr/. Unique identifier: UMIN000041692.
Collapse
Affiliation(s)
- Keishi Suzuki
- Cardiology DivisionMassachusetts General HospitalHarvard Medical SchoolBostonMA
| | - Takayuki Niida
- Cardiology DivisionMassachusetts General HospitalHarvard Medical SchoolBostonMA
| | - Haruhito Yuki
- Cardiology DivisionMassachusetts General HospitalHarvard Medical SchoolBostonMA
| | - Daisuke Kinoshita
- Cardiology DivisionMassachusetts General HospitalHarvard Medical SchoolBostonMA
| | - Daichi Fujimoto
- Cardiology DivisionMassachusetts General HospitalHarvard Medical SchoolBostonMA
| | - Hang Lee
- Biostatistics CenterMassachusetts General HospitalHarvard Medical SchoolBostonMA
| | - Iris McNulty
- Cardiology DivisionMassachusetts General HospitalHarvard Medical SchoolBostonMA
| | - Masamichi Takano
- Cardiovascular CenterNippon Medical School Chiba Hokusoh HospitalInzai, ChibaJapan
| | - Sunao Nakamura
- Interventional Cardiology UnitNew Tokyo HospitalChibaJapan
| | - Tsunekazu Kakuta
- Department of CardiologyTsuchiura Kyodo General Hospital, TsuchiuraIbarakiJapan
| | | | - Ik‐Kyung Jang
- Cardiology DivisionMassachusetts General HospitalHarvard Medical SchoolBostonMA
| |
Collapse
|
62
|
Niu YN, Guo C, Guo XZ, Wei Q, Zhou X, Li M, Xia JN, Chen LP. High-resolution magnetic resonance imaging investigation of the connection between the triglyceride-glucose index and intracranial arterial remodeling: a retrospective cross-sectional study. Quant Imaging Med Surg 2023; 13:8504-8516. [PMID: 38106280 PMCID: PMC10722004 DOI: 10.21037/qims-23-752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/25/2023] [Indexed: 12/19/2023]
Abstract
Background Insulin resistance (IR) is associated with atherosclerotic plaque progression and the occurrence of stroke, with the triglyceride-glucose (TyG) index serving as a surrogate indicator. The present study aimed to investigate the association between TyG index levels and intracranial arterial remodeling in patients with acute ischemic stroke (AIS). Methods Patients with AIS who visited the Neurology Department of the Second Hospital of Hebei Medical University and underwent high-resolution magnetic resonance imaging (HR-MRI) between September 2018 and October 2021 were enrolled. A total of 123 patients were finally included in the study, with 81 excluded. The TyG index levels were measured, and the characteristics of intracranial atherosclerotic stenosis (ICAS) plaques were evaluated using HR-MRI. A logistic regression model was employed to analyze the relationship between TyG index levels and remodeling mode. Patients were divided into two groups, positive remodeling (PR) and non-positive remodeling (non-PR), based on the remodeling index (RI). Results Patients in the PR group had a higher TyG index than those in the non-PR group {median [interquartile range (IQR)]: 9.11 (8.82-9.51) vs. 8.72 (8.30-9.23), P<0.001}. After adjusting factors such as age and gender, the TyG index was found to be significantly correlated with intracranial arterial PR [odds ratio (OR): 3.169, 95% confidence interval (CI): 1.327-7.569, P=0.009]. In non-diabetes mellitus (DM) patients, the TyG index level in the PR group was significantly higher than that in the non-PR group (8.95±0.42 vs. 8.50±0.45, P<0.001), whereas there was no such difference in patients with DM. Conclusions TyG index was correlated with intracranial vessel PR, indicating that the TyG index level may be a useful marker for predicting intracranial vessel PR.
Collapse
Affiliation(s)
- Ya-Nan Niu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Hebei Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Cong Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Hebei Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xuan-Zhu Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Hebei Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qiao Wei
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Hebei Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xuan Zhou
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Hebei Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Meng Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Hebei Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jia-Ning Xia
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Hebei Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Li-Ping Chen
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Hebei Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
63
|
Chang W, Li P. Copper and Diabetes: Current Research and Prospect. Mol Nutr Food Res 2023; 67:e2300468. [PMID: 37863813 DOI: 10.1002/mnfr.202300468] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/29/2023] [Indexed: 10/22/2023]
Abstract
Copper is an essential trace metal for normal cellular functions; a lack of copper is reported to impair the function of important copper-binding enzymes, while excess copper could lead to cell death. Numerous studies have shown an association between dietary copper consumption or plasma copper levels and the incidence of diabetes/diabetes complications. And experimental studies have revealed multiple signaling pathways that are triggered by copper shortages or copper overload in diabetic conditions. Moreover, studies show that treated with copper chelators improve vascular function, maintain copper homeostasis, inhibit cuproptosis, and reduce cell toxicity, thereby alleviating diabetic neuropathy, retinopathy, nephropathy, and cardiomyopathy. However, the mechanisms reported in these studies are inconsistent or even contradictory. This review summarizes the precise and tight regulation of copper homeostasis processes, and discusses the latest progress in the association of diabetes and dietary copper/plasma copper. Further, the study pays close attention to the therapeutic potential of copper chelators and copper in diabetes and its complications, and hopes to provide new insight for the treatment of diabetes.
Collapse
Affiliation(s)
- Wenguang Chang
- Institute for Translational Medicine, The Affiliated Hospital, College of medicine, Qingdao University, Qingdao, 266021, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital, College of medicine, Qingdao University, Qingdao, 266021, China
| |
Collapse
|
64
|
Madonna R. Endothelial heterogeneity and their relevance in cardiac development and coronary artery disease. Vascul Pharmacol 2023; 153:107242. [PMID: 37940065 DOI: 10.1016/j.vph.2023.107242] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/30/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
Micro- and macrovascular endothelial cells (ECs) are characterized by structural and functional heterogeneity, which is also reflected in their secretory activity. The root of this heterogeneity and related regulatory mechanisms are still poorly understood. During embryogenesis, microvascular ECs participate in organogenesis prior to the development of the fetal circulation, suggesting that ECs are capable of releasing paracrine trophogens, termed angiocrine factors (AFs). These are angiocrine growth factors, adhesion molecules, and chemokines, which are intended to promote morphogenesis and repair of the adjacent parenchyma/stroma where the vessels are located. There is a tissue and organ-specificity of AFs that traces the heterogeneity of ECs. This AF heterogeneity also traces how ECs respond to pathological conditions or exposure to cardiovascular risk factors. The study of the mechanisms that regulate endothelial and paracrine heterogeneity and that contribute to endotheliopathy represents a broad and as yet understudied area of research. A better understanding of the cellular and molecular mechanisms that regulate this heterogeneity, leading to endotheliopathy is an exciting challenge. In this brief review we will discuss experimental advances in the heterogeneity of ECs and their AF, with a focus on their involvement in the pathogenesis of coronary artery disease.
Collapse
Affiliation(s)
- Rosalinda Madonna
- Cardiology Division, Department of Pathology, University of Pisa, Via Paradisa, 56124 Pisa, Italy.
| |
Collapse
|
65
|
Li L, Zhong H, Shao Y, Hua Y, Zhou X, Luo D. Association between the homeostasis model assessment of insulin resistance and coronary artery calcification: a meta-analysis of observational studies. Front Endocrinol (Lausanne) 2023; 14:1271857. [PMID: 38089605 PMCID: PMC10711676 DOI: 10.3389/fendo.2023.1271857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Background Insulin resistance (IR), a risk factor for cardiovascular diseases, has garnered significant attention in scientific research. Several studies have investigated the correlation between IR and coronary artery calcification (CAC), yielding varying results. In light of this, we conducted a systematic review to investigate the association between IR as evaluated by the homeostasis model assessment (HOMA-IR) and CAC. Methods A comprehensive search was conducted to identify relevant studies in PubMed, Embase, Scopus, and Web of Science databases. In addition, preprint servers such as Research Square, BioRxiv, and MedRxiv were manually searched. The collected data were analyzed using either fixed or random effects models, depending on the heterogeneity observed among the studies. The assessment of the body of evidence was performed using the GRADE approach to determine its quality. Results The current research incorporated 15 studies with 60,649 subjects. The analysis revealed that a higher category of HOMA-IR was associated with a greater prevalence of CAC in comparison to the lowest HOMA-IR category, with an OR of 1.13 (95% CI: 1.06-1.20, I2 = 29%, P < 0.001). A similar result was reached when HOMA-IR was analyzed as a continuous variable (OR: 1.27, 95% CI: 1.14-1.41, I2 = 54%, P < 0.001). In terms of CAC progression, a pooled analysis of two cohort studies disclosed a significant association between increased HOMA-IR levels and CAC progression, with an OR of 1.44 (95% CI: 1.04-2.01, I2 = 21%, P < 0.05). It is important to note that the strength of the evidence was rated as low for the prevalence of CAC and very low for the progression of CAC. Conclusion There is evidence to suggest that a relatively high HOMA-IR may be linked with an increased prevalence and progression of CAC.
Collapse
Affiliation(s)
- Longti Li
- Department of Nursing, TaiHe Hospital, Hubei University of Medicine, Shiyan, China
| | - Huiqin Zhong
- Innovation Centre of Nursing Research, TaiHe Hospital, Hubei University of Medicine, Shiyan, China
| | - Ya Shao
- Health Management Center, TaiHe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yu Hua
- Health Management Center, TaiHe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xu Zhou
- Health Management Center, TaiHe Hospital, Hubei University of Medicine, Shiyan, China
| | - Desheng Luo
- Department of Nursing, TaiHe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
66
|
Hussein AA, Ahmed NA, Sakr HI, Atia T, Ahmed OM. Omentin roles in physiology and pathophysiology: an up-to-date comprehensive review. Arch Physiol Biochem 2023:1-14. [PMID: 37994431 DOI: 10.1080/13813455.2023.2283685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023]
Abstract
Omentin (intelectin) was first detected in the visceral omental adipose tissue. It has mainly two isoforms, omentin-1 and -2, with isoform-1 being the main form in human blood. It possesses insulin-sensitizing, anti-inflammatory, anti-atherogenic, cardio-protective, and oxidative stress-decreasing effects. Omentin's cardiovascular protective actions are caused by the improved endothelial cell survival and function, increased endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) bioavailability, enhanced vascular smooth muscle cells (VSMCs) relaxation with reduced proliferation, decreased inflammation, and suppressed oxidative stress. Omentin may also have a potential role in different cancer types and rheumatic diseases. Thus, omentin is an excellent therapeutic target in many diseases, including diabetes mellitus (DM), metabolic syndrome (MetS), cardiovascular diseases (CVDs), inflammatory diseases, and cancer. This review demonstrates the physiological functions of omentin in ameliorating insulin resistance (IR), vascular function, and inflammation and its possible share in managing obesity-linked diseases, such as metabolic disorders, DM, and cardiovascular conditions.
Collapse
Affiliation(s)
- Aida A Hussein
- Zoology Department, Physiology Division, Faculty of Science, Suez University, Suez, Egypt
| | - Noha A Ahmed
- Department of Zoology, Physiology Division, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Hader I Sakr
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Medical Physiology, General Medicine Practice Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Tarek Atia
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Histology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Osama M Ahmed
- Department of Zoology, Physiology Division, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| |
Collapse
|
67
|
Huang Q, Tian H, Tian L, Zhao X, Li L, Zhang Y, Qiu Z, Lei S, Xia Z. Inhibiting Rev-erbα-mediated ferroptosis alleviates susceptibility to myocardial ischemia-reperfusion injury in type 2 diabetes. Free Radic Biol Med 2023; 209:135-150. [PMID: 37805047 DOI: 10.1016/j.freeradbiomed.2023.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/09/2023]
Abstract
The complex progression of type-2 diabetes (T2DM) may result in increased susceptibility to myocardial ischemia-reperfusion (IR) injury. IR injuries in multiple organs involves ferroptosis. Recently, the clock gene Rev-erbα has aroused considerable interest as a novel therapeutic target for metabolic and ischemic heart diseases. Herein, we investigated the roles of Rev-erbα and ferroptosis in myocardial IR injury during T2DM and its potential mechanisms. A T2DM model, myocardial IR and a tissue-specific Rev-erbα-/- mouse in vivo were established, and a high-fat high glucose environment with hypoxia-reoxygenation (HFHG/HR) in H9c2 were also performed. After myocardial IR, glycolipid profiles, creatine kinase-MB, AI, and the expression of Rev-erbα and ferroptosis-related proteins were increased in diabetic rats with impaired cardiac function compared to non-diabetic rats, regardless of the time at which IR was induced. The ferroptosis inhibitor ferrostatin-1 decreased AI in diabetic rats given IR and LPO levels in cells treated with HFHG/HR, as well as the expression of Rev-erbα and ACSL4. The ferroptosis inducer erastin increased AI and LPO levels and ACSL4 expression. Treatment with the circadian regulator nobiletin and genetically targeting Rev-erbα via siRNA or CRISPR/Cas9 technology both protected against severe myocardial injury and decreased Rev-erbα and ACSL4 expression, compared to the respective controls. Taken together, these data suggest that ferroptosis is involved in the susceptibility to myocardial IR injury during T2DM, and that targeting Rev-erbα could alleviate myocardial IR injury by inhibiting ferroptosis.
Collapse
Affiliation(s)
- Qin Huang
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China
| | - Hao Tian
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China
| | - Liqun Tian
- Department of Anaesthesiology, The First Affiliated Hospital of Chongqing Medical University, PR China
| | - Xiaoshuai Zhao
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China
| | - Lu Li
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China
| | - Yuxi Zhang
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China
| | - Zhen Qiu
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China
| | - Shaoqing Lei
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China
| | - Zhongyuan Xia
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China.
| |
Collapse
|
68
|
Stampouloglou PK, Anastasiou A, Bletsa E, Lygkoni S, Chouzouri F, Xenou M, Katsarou O, Theofilis P, Zisimos K, Tousoulis D, Vavuranakis M, Siasos G, Oikonomou E. Diabetes Mellitus in Acute Coronary Syndrome. Life (Basel) 2023; 13:2226. [PMID: 38004366 PMCID: PMC10671950 DOI: 10.3390/life13112226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
The global prevalence of diabetes mellitus (DM) has led to a pandemic, with significant microvascular and macrovascular complications including coronary artery disease (CAD), which worsen clinical outcomes and cardiovascular prognosis. Patients with both acute coronary syndrome (ACS) and DM have worse prognosis and several pathophysiologic mechanisms have been implicated including, insulin resistance, hyperglycemia, endothelial dysfunction, platelet activation and aggregations as well as plaque characteristics and extent of coronary lesions. Therefore, regarding reperfusion strategies in the more complex anatomies coronary artery bypass surgery may be the preferred therapeutic strategy over percutaneous coronary intervention while both hyperglycemia and hypoglycemia should be avoided with closed monitoring of glycemic status during the acute phase of myocardial infraction. However, the best treatment strategy remains undefined. Non-insulin therapies, due to the low risk of hypoglycemia concurrently with the multifactorial CV protective effects, may be proved to be the best treatment option in the future. Nevertheless, evidence for the beneficial effects of glucagon like peptide-1 receptor agonists, dipeptidyl-peptidase 4 inhibitors and sodium glycose cotransporter 2 inhibitors, despite accumulating, is not robust and future randomized control trials may provide more definitive data.
Collapse
Affiliation(s)
- Panagiota K. Stampouloglou
- 3rd Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.K.S.); (A.A.); (E.B.); (S.L.); (F.C.); (M.X.); (K.Z.); (M.V.); (G.S.)
| | - Artemis Anastasiou
- 3rd Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.K.S.); (A.A.); (E.B.); (S.L.); (F.C.); (M.X.); (K.Z.); (M.V.); (G.S.)
| | - Evanthia Bletsa
- 3rd Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.K.S.); (A.A.); (E.B.); (S.L.); (F.C.); (M.X.); (K.Z.); (M.V.); (G.S.)
| | - Stavroula Lygkoni
- 3rd Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.K.S.); (A.A.); (E.B.); (S.L.); (F.C.); (M.X.); (K.Z.); (M.V.); (G.S.)
| | - Flora Chouzouri
- 3rd Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.K.S.); (A.A.); (E.B.); (S.L.); (F.C.); (M.X.); (K.Z.); (M.V.); (G.S.)
| | - Maria Xenou
- 3rd Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.K.S.); (A.A.); (E.B.); (S.L.); (F.C.); (M.X.); (K.Z.); (M.V.); (G.S.)
| | - Ourania Katsarou
- 3rd Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.K.S.); (A.A.); (E.B.); (S.L.); (F.C.); (M.X.); (K.Z.); (M.V.); (G.S.)
| | - Panagiotis Theofilis
- 1st Department of Cardiology, “Hippokration” General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.T.); (D.T.)
| | - Konstantinos Zisimos
- 3rd Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.K.S.); (A.A.); (E.B.); (S.L.); (F.C.); (M.X.); (K.Z.); (M.V.); (G.S.)
| | - Dimitris Tousoulis
- 1st Department of Cardiology, “Hippokration” General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.T.); (D.T.)
| | - Manolis Vavuranakis
- 3rd Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.K.S.); (A.A.); (E.B.); (S.L.); (F.C.); (M.X.); (K.Z.); (M.V.); (G.S.)
| | - Gerasimos Siasos
- 3rd Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.K.S.); (A.A.); (E.B.); (S.L.); (F.C.); (M.X.); (K.Z.); (M.V.); (G.S.)
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.K.S.); (A.A.); (E.B.); (S.L.); (F.C.); (M.X.); (K.Z.); (M.V.); (G.S.)
| |
Collapse
|
69
|
Weng S, Chen J, Ding C, Hu D, Liu W, Yang Y, Peng D. Utilizing machine learning algorithms for the prediction of carotid artery plaques in a Chinese population. Front Physiol 2023; 14:1295371. [PMID: 38028761 PMCID: PMC10657816 DOI: 10.3389/fphys.2023.1295371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Background: Ischemic stroke is a significant global health issue, imposing substantial social and economic burdens. Carotid artery plaques (CAP) serve as an important risk factor for stroke, and early screening can effectively reduce stroke incidence. However, China lacks nationwide data on carotid artery plaques. Machine learning (ML) can offer an economically efficient screening method. This study aimed to develop ML models using routine health examinations and blood markers to predict the occurrence of carotid artery plaques. Methods: This study included data from 5,211 participants aged 18-70, encompassing health check-ups and biochemical indicators. Among them, 1,164 participants were diagnosed with carotid artery plaques through carotid ultrasound. We constructed six ML models by employing feature selection with elastic net regression, selecting 13 indicators. Model performance was evaluated using accuracy, sensitivity, specificity, Positive Predictive Value (PPV), Negative Predictive Value (NPV), F1 score, kappa value, and Area Under the Curve (AUC) value. Feature importance was assessed by calculating the root mean square error (RMSE) loss after permutations for each variable in every model. Results: Among all six ML models, LightGBM achieved the highest accuracy at 91.8%. Feature importance analysis revealed that age, Low-Density Lipoprotein Cholesterol (LDL-c), and systolic blood pressure were important predictive factors in the models. Conclusion: LightGBM can effectively predict the occurrence of carotid artery plaques using demographic information, physical examination data and biochemistry data.
Collapse
Affiliation(s)
- Shuwei Weng
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Institute of Blood Lipid and Atherosclerosis, Changsha, Hunan, China
| | - Jin Chen
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Institute of Blood Lipid and Atherosclerosis, Changsha, Hunan, China
| | - Chen Ding
- Department of Cardiology, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou, Jiangsu, China
| | - Die Hu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Institute of Blood Lipid and Atherosclerosis, Changsha, Hunan, China
| | - Wenwu Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Institute of Blood Lipid and Atherosclerosis, Changsha, Hunan, China
| | - Yanyi Yang
- Health Management Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Daoquan Peng
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Institute of Blood Lipid and Atherosclerosis, Changsha, Hunan, China
| |
Collapse
|
70
|
Zhang YR, Liu SM, Chen Y, Zhang LS, Ji DR, Zhao J, Yu YR, Jia MZ, Tang CS, Huang W, Zhou YB, Chai SB, Qi YF. Intermedin alleviates diabetic vascular calcification by inhibiting GLUT1 through activation of the cAMP/PKA signaling pathway. Atherosclerosis 2023; 385:117342. [PMID: 37879153 DOI: 10.1016/j.atherosclerosis.2023.117342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/21/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND AND AIMS Vascular calcification (VC) is regarded as an independent risk factor for cardiovascular events in type 2 diabetic patients. Glucose transporter 1 (GLUT1) involves VC. Intermedin/Adrenomedullin-2 (IMD/ADM2) is a cardiovascular protective peptide that can inhibit multiple disease-associated VC. However, the role and mechanism of IMD in diabetic VC remain unclear. Here, we investigated whether IMD inhibits diabetic VC by inhibiting GLUT1. METHODS AND RESULTS It was found that plasma IMD concentration was significantly decreased in type 2 diabetic patients and in fructose-induced diabetic rats compared with that in controls. Plasma IMD content was inversely correlated with fasting blood glucose level and VC severity. IMD alleviated VC in fructose-induced diabetic rats. Deficiency of Adm2 aggravated and Adm2 overexpression attenuated VC in high-fat diet-induced diabetic mice. In vitro, IMD mitigated high glucose-induced calcification of vascular smooth muscle cells (VSMCs). Mechanistically, IMD reduced advanced glycation end products (AGEs) content and the level of receptor for AGEs (RAGE). IMD decreased glucose transporter 1 (GLUT1) levels. The inhibitory effect of IMD on RAGE protein level was blocked by GLUT1 knockdown. GLUT1 knockdown abolished the effect of IMD on alleviating VSMC calcification. IMD receptor antagonist IMD17-47 and cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) inhibitor H89 abolished the inhibitory effects of IMD on GLUT1 and VSMC calcification. CONCLUSIONS These findings revealed that IMD exerted its anti-calcification effect by inhibiting GLUT1, providing a novel therapeutic target for diabetic VC.
Collapse
Affiliation(s)
- Ya-Rong Zhang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, 100083, China; StateKey Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100083, China; Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing, 100083, China
| | - Shi-Meng Liu
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, 100083, China; StateKey Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100083, China; Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing, 100083, China
| | - Yao Chen
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, 100083, China; StateKey Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100083, China; Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing, 100083, China
| | - Lin-Shuang Zhang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, 100083, China; StateKey Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100083, China; Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing, 100083, China
| | - Deng-Ren Ji
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, 100083, China; StateKey Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100083, China; Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing, 100083, China
| | - Jie Zhao
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, 100083, China; StateKey Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100083, China; Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing, 100083, China
| | - Yan-Rong Yu
- Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing, 100083, China
| | - Mo-Zhi Jia
- Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing, 100083, China
| | - Chao-Shu Tang
- StateKey Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100083, China
| | - Wei Huang
- StateKey Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100083, China
| | - Ye-Bo Zhou
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China.
| | - San-Bao Chai
- Department of Endocrinology and Metabolism, Peking University International Hospital, Beijing, 102206, China.
| | - Yong-Fen Qi
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, 100083, China; StateKey Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100083, China; Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing, 100083, China.
| |
Collapse
|
71
|
Roshan MP, Cury RC, Lampen-Sachar K. Assessing cardiovascular risk with mammography and non-contrast chest CT: A review of the literature and clinical implications. Clin Imaging 2023; 103:109983. [PMID: 37716018 DOI: 10.1016/j.clinimag.2023.109983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023]
Abstract
Coronary artery disease (CAD) is the leading cause of mortality and disability globally. In the United States, about 7.2% of adults aged 20 and older are affected by CAD. However, due to its progression over decades, CAD is often undetected and unnoticed until plaque ruptures. This leads to partial or complete artery blockage, resulting in myocardial infarction. Thus, new screening methods for early detection of CAD are needed to prevent and minimize the morbidity and mortality from CAD. Vascular calcifications seen on mammography and non-contrast chest CT (NCCT) can be used for the early detection of CAD and are an accurate predictor of cardiovascular risk. This paper aims to review the basic epidemiology, pathophysiology, imaging findings, and correlation of long-term cardiovascular outcomes with vascular calcifications on mammography and NCCT.
Collapse
Affiliation(s)
- Mona P Roshan
- Herbert Wertheim College of Medicine, Florida International University Miami, FL 33199, USA
| | - Ricardo C Cury
- Herbert Wertheim College of Medicine, Florida International University Miami, FL 33199, USA; Baptist Health of South Florida and Radiology Associates of South Florida, Miami, FL 33176, USA
| | - Katharine Lampen-Sachar
- Herbert Wertheim College of Medicine, Florida International University Miami, FL 33199, USA; Baptist Health of South Florida and Radiology Associates of South Florida, Miami, FL 33176, USA.
| |
Collapse
|
72
|
Ishikawa M, Kanzaki H, Kodera R, Sekimizu T, Wada S, Tohyama S, Ida T, Shimoyama M, Manase S, Tomonari H, Kuroda N. Early diagnosis of aortic calcification through dental X-ray examination for dental pulp stones. Sci Rep 2023; 13:18576. [PMID: 37903847 PMCID: PMC10616172 DOI: 10.1038/s41598-023-45902-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/25/2023] [Indexed: 11/01/2023] Open
Abstract
Vascular calcification, an ectopic calcification exacerbated by aging and renal dysfunction, is closely associated with cardiovascular disease. However, early detection indicators are limited. This study focused on dental pulp stones, ectopic calcifications found in oral tissues that are easily identifiable on dental radiographs. Our investigation explored the frequency and timing of these calcifications in different locations and their relationship to aortic calcification. In cadavers, we examined the association between the frequency of dental pulp stones and aortic calcification, revealing a significant association. Notably, dental pulp stones appeared prior to aortic calcification. Using a rat model of hyperphosphatemia, we confirmed that dental pulp stones formed earlier than calcification in the aortic arch. Interestingly, there were very few instances of aortic calcification without dental pulp stones. Additionally, we conducted cell culture experiments with vascular smooth muscle cells (SMCs) and dental pulp cells (DPCs) to explore the regulatory mechanism underlying high phosphate-mediated calcification. We found that DPCs produced calcification deposits more rapidly and exhibited a stronger augmentation of osteoblast differentiation markers compared with SMCs. In conclusion, the observation of dental pulp stones through X-ray examination during dental checkups could be a valuable method for early diagnosis of aortic calcification risk.
Collapse
Affiliation(s)
- Misao Ishikawa
- Department of Anatomy, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa Pref., 230-8501, Japan.
| | - Hiroyuki Kanzaki
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Ryo Kodera
- Department of Anatomy, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa Pref., 230-8501, Japan
| | - Takehiro Sekimizu
- Department of Anatomy, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa Pref., 230-8501, Japan
| | - Satoshi Wada
- Department of Oral and Maxillofacial Surgery, Kanazawa Medical University, Kanazawa, Japan
| | - Syunnosuke Tohyama
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Tomomi Ida
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Miho Shimoyama
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Shugo Manase
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Hiroshi Tomonari
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Noriyuki Kuroda
- Department of Anatomy, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa Pref., 230-8501, Japan
| |
Collapse
|
73
|
Kimura S, Isshiki A, Shimizu M, Fujii H, Suzuki M. Clinical Significance of Coronary Healed Plaques in Stable Angina Pectoris Patients Undergoing Percutaneous Coronary Intervention. Circ J 2023; 87:1643-1653. [PMID: 37183026 DOI: 10.1253/circj.cj-23-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Coronary healed plaques (HPs) reportedly have high vulnerability or show advanced atherosclerosis and a risk of rapid plaque progression. However, the prognosis of stable angina pectoris (SAP) patients with HPs undergoing percutaneous coronary intervention (PCI) remains under-investigated. METHODS AND RESULTS We analyzed 417 consecutive lesions from SAP patients undergoing pre- and post-intervention optical coherence tomography (OCT) for which HPs were defined as having a layered appearance. We investigated the differences in clinical and lesion characteristics, and post-PCI outcomes between HPs and non-HPs. To account for differences in clinical characteristics, propensity score matching was performed between the groups. HPs were observed in 216 lesions (51.8%) in the total cohort. In the propensity-matched cohort (n=294), HPs had higher rates of angiographic-B2/C lesions (77.6% vs. 59.2%, P<0.001), OCT-lipid-rich plaques (40.8% vs. 25.9%, P=0.007), macrophages (78.2% vs. 44.2%, P<0.001), greater luminal area stenosis (73.5±11.0% vs. 71.5±10.3%, P=0.002), and a higher prevalence of post-stenting irregular tissue protrusion (45.1% vs. 14.7%, P<0.001) than non-HPs. In the total cohort, target lesion revascularization (TLR)-free survival was poorer for HPs (log-rank test 7.66; P=0.006), and Cox proportional hazards analysis showed HP as an independent predictor of TLR (hazard ratio, 5.98; 95% confidence interval, 1.72-20.82; P=0.005). CONCLUSIONS In SAP patients, HPs had greater complexity of lesions and higher vulnerability, which may have contributed to the poorer post-PCI outcomes.
Collapse
Affiliation(s)
- Shigeki Kimura
- Department of Cardiology, Yokohama Minami Kyosai Hospital
| | - Ami Isshiki
- Department of Cardiology, Yokohama Minami Kyosai Hospital
| | - Masato Shimizu
- Department of Cardiology, Yokohama Minami Kyosai Hospital
| | - Hiroyuki Fujii
- Department of Cardiology, Yokohama Minami Kyosai Hospital
| | - Makoto Suzuki
- Department of Cardiology, Yokohama Minami Kyosai Hospital
| |
Collapse
|
74
|
Wang C, Ma Q, Yu X. Bile Acid Network and Vascular Calcification-Associated Diseases: Unraveling the Intricate Connections and Therapeutic Potential. Clin Interv Aging 2023; 18:1749-1767. [PMID: 37885621 PMCID: PMC10599251 DOI: 10.2147/cia.s431220] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Bile acids play a crucial role in promoting intestinal nutrient absorption and biliary cholesterol excretion, thereby protecting the liver from cholesterol accumulation and bile acid toxicity. Additionally, bile acids can bind to specific nuclear and membrane receptors to regulate energy expenditure and specific functions of particular tissues. Vascular calcification refers to the pathological process of calcium-phosphate deposition in blood vessel walls, which serves as an independent predictor for cardiovascular adverse events. In addition to aging, this pathological change is associated with aging-related diseases such as atherosclerosis, hypertension, chronic kidney disease, diabetes mellitus, and osteoporosis. Emerging evidence suggests a close association between the bile acid network and these aforementioned vascular calcification-associated conditions. Several bile acids have been proven to participate in calcium-phosphate metabolism, affecting the transdifferentiation of vascular smooth muscle cells and thus influencing vascular calcification. Targeting the bile acid network shows potential for ameliorating these diseases and their concomitant vascular calcification by regulating pathways such as energy metabolism, inflammatory response, oxidative stress, and cell differentiation. Here, we present a summary of the metabolism and functions of the bile acid network and aim to provide insights into the current research on the profound connections between the bile acid network and these vascular calcification-associated diseases, as well as the therapeutic potential.
Collapse
Affiliation(s)
- Cui Wang
- Laboratory of Endocrinology & Metabolism/Department of Endocrinology & Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, People’s Republic of China
| | - Qing Ma
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan Province, 610041, People’s Republic of China
| | - Xijie Yu
- Laboratory of Endocrinology & Metabolism/Department of Endocrinology & Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, People’s Republic of China
| |
Collapse
|
75
|
Liu QJ, Yuan W, Yang P, Shao C. Role of glycolysis in diabetic atherosclerosis. World J Diabetes 2023; 14:1478-1492. [PMID: 37970130 PMCID: PMC10642412 DOI: 10.4239/wjd.v14.i10.1478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/16/2023] [Accepted: 09/14/2023] [Indexed: 10/09/2023] Open
Abstract
Diabetes mellitus is a kind of typical metabolic disorder characterized by elevated blood sugar levels. Atherosclerosis (AS) is one of the most common complications of diabetes. Modern lifestyles and trends that promote overconsumption and unhealthy practices have contributed to an increase in the annual incidence of diabetic AS worldwide, which has created a heavy burden on society. Several studies have shown the significant effects of glycolysis-related changes on the occurrence and development of diabetic AS, which may serve as novel thera-peutic targets for diabetic AS in the future. Glycolysis is an important metabolic pathway that generates energy in various cells of the blood vessel wall. In particular, it plays a vital role in the physiological and pathological activities of the three important cells, Endothelial cells, macrophages and vascular smooth muscle cells. There are lots of similar mechanisms underlying diabetic and common AS, the former is more complex. In this article, we describe the role and mechanism underlying glycolysis in diabetic AS, as well as the therapeutic targets, such as trained immunity, microRNAs, gut microbiota, and associated drugs, with the aim to provide some new perspectives and potentially feasible programs for the treatment of diabetic AS in the foreseeable future.
Collapse
Affiliation(s)
- Qian-Jia Liu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu Province, China
| | - Wei Yuan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu Province, China
| | - Ping Yang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu Province, China
| | - Chen Shao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu Province, China
| |
Collapse
|
76
|
Marx N, Federici M, Schütt K, Müller-Wieland D, Ajjan RA, Antunes MJ, Christodorescu RM, Crawford C, Di Angelantonio E, Eliasson B, Espinola-Klein C, Fauchier L, Halle M, Herrington WG, Kautzky-Willer A, Lambrinou E, Lesiak M, Lettino M, McGuire DK, Mullens W, Rocca B, Sattar N. 2023 ESC Guidelines for the management of cardiovascular disease in patients with diabetes. Eur Heart J 2023; 44:4043-4140. [PMID: 37622663 DOI: 10.1093/eurheartj/ehad192] [Citation(s) in RCA: 298] [Impact Index Per Article: 298.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/26/2023] Open
|
77
|
Chen J, Chang J, Shi Q, Li X, Wang L, Zhao H. Cardiovascular protective effect of sodium-glucose cotransporter 2 inhibitors on patients with acute coronary syndrome and type 2 diabetes mellitus: a retrospective study. BMC Cardiovasc Disord 2023; 23:495. [PMID: 37805494 PMCID: PMC10559512 DOI: 10.1186/s12872-023-03542-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND Acute coronary syndrome (ACS) remains the leading cause of death and disability worldwide, especially when combined with type 2 diabetes mellitus (T2DM). Many multicenter randomized controlled trials have established the cardiovascular benefits of Sodium-Glucose cotransporter 2 inhibitors (SGLT-2i) in patients with T2DM at high cardiovascular risk. However, these studies did not include patients in the early stages of acute coronary events. This study investigated the cardiovascular protective effects of SGLT-2i in patients with ACS and T2DM. METHODS A total of 232 hospitalized patients with ACS and T2DM were enrolled and divided into two groups based on their hypoglycemic drug treatment: the SGLT-2i and the non-SGLT-2i groups. Kaplan-Meier analysis and Cox regression were used to compare adverse cardiovascular outcomes in both groups. RESULTS There were no significant differences in the hospital clinical outcomes between the SGLT-2i and non-SGLT-2i groups. The adverse cardiovascular outcomes did not significantly differ between both groups (hazard ratio (HR) 0.66, 95% confidence interval (CI) 0.35-1.25, P = 0.195). Moreover, the rehospitalization rates for ACS or heart failure (HF) were not significantly different between both groups (adjusted HR 0.56, 95%CI 0.28-1.10, P = 0.093). When analyzed separately, there was no significant difference in rehospitalizations for ACS (HR 0.87, 95% CI 0.40-1.87, P = 0.713). However, the SGLT-2i group showed lower rates of rehospitalizations for HF (adjusted HR 0.20, 95% CI 0.04-0.96, P = 0.045). Additionally, there was no significant difference in cardiovascular mortality between both groups (HR 1.75, 95% CI 0.28-10.97, P = 0.543). Notably, the SGLT-2i group exhibited a higher angina symptom control rate than the non-SGLT-2i group (adjusted odd ration (OR) 0.45, 95%CI 0.21-0.93, P = 0.031). CONCLUSION In recently diagnosed patients with ACS, who have T2DM, early initiation of SGLT-2i was associated with a lower risk of rehospitalization for HF and a higher rate of angina symptom control.
Collapse
Affiliation(s)
- Jie Chen
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Jing Chang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| | - Qiuyue Shi
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Xin Li
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Ling Wang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Hong Zhao
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| |
Collapse
|
78
|
Kataoka Y, Kitahara S, Funabashi S, Makino H, Matsubara M, Matsuo M, Omura-Ohata Y, Koezuka R, Tochiya M, Tamanaha T, Tomita T, Honda-Kohmo K, Noguchi M, Maruki M, Kanai E, Murai K, Iwai T, Sawada K, Matama H, Honda S, Fujino M, Yoneda S, Takagi K, Otsuka F, Asaumi Y, Hosoda K, Nicholls SJ, Yasuda S, Noguchi T. The effect of continuous glucose monitoring-guided glycemic control on progression of coronary atherosclerosis in type 2 diabetic patients with coronary artery disease: The OPTIMAL randomized clinical trial. J Diabetes Complications 2023; 37:108592. [PMID: 37741088 DOI: 10.1016/j.jdiacomp.2023.108592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/20/2023] [Accepted: 08/19/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND Continuous glucose monitoring (CGM) improves glycemic fluctuation and reduces hypoglycemic risk. Whether CGM-guided glycemic control favorably modulates coronary atherosclerosis in patients with type 2 diabetes (T2DM) remains unknown. METHODS The OPTIMAL trial was a prospective, randomized, single-center trial in which 94 T2DM patients with CAD were randomized to CGM- or HbA1c-guided glycemic control for 48 weeks (jRCT1052180152). The primary endpoint was the nominal change in total atheroma volume (TAV) measured by serial IVUS. The secondary efficacy measure was the nominal change in maxLCBI4mm on near-infrared spectroscopy imaging. RESULTS Among the 94 randomized patients, 82 had evaluable images at 48 weeks. Compared to HbA1c-guided glycemic control, CGM-guided control achieved a greater reduction in %coefficient of variation [-0.1 % (-1.8 to 1.6) vs. -3.3 % (-5.1 to -1.5), p = 0.01] and a greater increase in the duration with glucose between 70 and 180 mg/dL [-1.5 % (-6.0 to 2.9) vs. 6.7 % (1.9 to 11.5), p = 0.02]. TAV increased by 0.11 ± 1.9 mm3 in the HbA1c-guided group and decreased by -3.29 ± 2.00 mm3 in the CGM-guided group [difference = -3.4 mm3 (95%CI: -8.9 to 2.0 mm3), p = 0.22]. MaxLCBI4mm, increased by 90.1 ± 25.6 in the HbA1c-guided group and by 50.6 ± 25.6 in the CGM-guided group (difference = -45.6 (95%CI: -118.1 to 26.7) p = 0.21]. A post-hoc exploratory analysis showed a greater regression of maxLCBI4mm in the CGM-guided group [difference = 20.4 % (95%CI:1.3 to 39.5 %), p = 0.03]. CONCLUSIONS CGM-guided control for 48 weeks did not slow disease progression in T2DM patients with CAD. A greater regression of lipidic plaque under CGM-guided glycemic control in the post-hoc analysis requires further investigation.
Collapse
Affiliation(s)
- Yu Kataoka
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Centre, Suita, Osaka, Japan.
| | - Satoshi Kitahara
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Centre, Suita, Osaka, Japan; Department of Cardiovascular Medicine, Kashiwa Kousei General Hospital, Kashiwa, Japan
| | - Sayaka Funabashi
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Centre, Suita, Osaka, Japan; Department of Cardiovascular Medicine, Kyorin University, Mitaka, Tokyo, Japan
| | - Hisashi Makino
- Division of Diabetes and Lipid Metabolism, National Cerebral & Cardiovascular Center, Suita, Osaka, Japan
| | - Masaki Matsubara
- Division of Diabetes and Lipid Metabolism, National Cerebral & Cardiovascular Center, Suita, Osaka, Japan
| | - Miki Matsuo
- Division of Diabetes and Lipid Metabolism, National Cerebral & Cardiovascular Center, Suita, Osaka, Japan
| | - Yoko Omura-Ohata
- Division of Diabetes and Lipid Metabolism, National Cerebral & Cardiovascular Center, Suita, Osaka, Japan
| | - Ryo Koezuka
- Division of Diabetes and Lipid Metabolism, National Cerebral & Cardiovascular Center, Suita, Osaka, Japan
| | - Mayu Tochiya
- Division of Diabetes and Lipid Metabolism, National Cerebral & Cardiovascular Center, Suita, Osaka, Japan
| | - Tamiko Tamanaha
- Division of Diabetes and Lipid Metabolism, National Cerebral & Cardiovascular Center, Suita, Osaka, Japan
| | - Tsutomu Tomita
- Division of Diabetes and Lipid Metabolism, National Cerebral & Cardiovascular Center, Suita, Osaka, Japan
| | - Kyoko Honda-Kohmo
- Division of Diabetes and Lipid Metabolism, National Cerebral & Cardiovascular Center, Suita, Osaka, Japan
| | - Michio Noguchi
- Division of Diabetes and Lipid Metabolism, National Cerebral & Cardiovascular Center, Suita, Osaka, Japan
| | - Maki Maruki
- Division of Diabetes and Lipid Metabolism, National Cerebral & Cardiovascular Center, Suita, Osaka, Japan
| | - Emi Kanai
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Centre, Suita, Osaka, Japan
| | - Kota Murai
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Centre, Suita, Osaka, Japan
| | - Takamasa Iwai
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Centre, Suita, Osaka, Japan
| | - Kenichiro Sawada
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Centre, Suita, Osaka, Japan
| | - Hideo Matama
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Centre, Suita, Osaka, Japan
| | - Satoshi Honda
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Centre, Suita, Osaka, Japan
| | - Masashi Fujino
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Centre, Suita, Osaka, Japan
| | - Syuichi Yoneda
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Centre, Suita, Osaka, Japan
| | - Kensuke Takagi
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Centre, Suita, Osaka, Japan
| | - Fumiyuki Otsuka
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Centre, Suita, Osaka, Japan
| | - Yasuhide Asaumi
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Centre, Suita, Osaka, Japan
| | - Kiminori Hosoda
- Division of Diabetes and Lipid Metabolism, National Cerebral & Cardiovascular Center, Suita, Osaka, Japan
| | | | - Satoshi Yasuda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teruo Noguchi
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Centre, Suita, Osaka, Japan
| |
Collapse
|
79
|
Chen M, Hu J, Chen C, Hao G, Hu S, Xu J, Hu C. Radiomics analysis of pericoronary adipose tissue based on plain CT for preliminary screening of coronary artery disease in patients with type 2 diabetes mellitus. Acta Radiol 2023; 64:2704-2713. [PMID: 37603886 DOI: 10.1177/02841851231189998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is associated with a markedly increased prevalence of coronary artery disease (CAD). Radiomics features of pericoronary adipose tissue (PCAT) were correlated with inflammation, which may have potential value in the prediction of CAD. PURPOSE To determine whether radiomics analysis of PCAT captured by plain computed tomography (CT) could predict obstructive CAD in patients with T2DM. MATERIAL AND METHODS The study included 155 patients with T2DM with suspected CAD between January 2020 and December 2021. Volumes of right coronary artery of 10-50 mm were delineated in the plain CT to extract radiomics features and PCAT CT attenuation (PCATa). Least absolute shrinkage and selection operator was used to select the useful radiomics features to calculate the radiomics score (Rad-score). Univariate and multivariable logistic regression were applied to select independent predictors. The predictive performance was evaluated by the area under the receiver operating characteristics curve (AUC). RESULTS Rad-score (per 0.1 increments: odds ratio [OR] = 1.297; P < 0.001), coronary artery calcium score (CACS) (OR = 1.003; P = 0.037), and sex (OR = 3.245; P = 0.026) were identified as independent predictors for obstructive CAD. Rad-score (AUC = 0.835) outperformed CACS (AUC = 0.780), sex (AUC = 0.665), and PCATa (AUC = 0.550) in predicting obstructive CAD (P = 0.017 and 0.003 for Rad-score vs. sex and PCATa, respectively); however, the improvement between Rad-score and CACS had no statistical significance (P = 0.490). CONCLUSION Plain CT-derived Rad-score may be used as a preliminary screening tool for obstructive CAD in patients with T2DM.
Collapse
Affiliation(s)
- Meng Chen
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, PR China
- Institute of Medical Imaging, Soochow University, Suzhou, PR China
| | - Jingcheng Hu
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, PR China
| | - Can Chen
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, PR China
- Institute of Medical Imaging, Soochow University, Suzhou, PR China
| | - Guangyu Hao
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, PR China
- Institute of Medical Imaging, Soochow University, Suzhou, PR China
| | - Su Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, PR China
- Institute of Medical Imaging, Soochow University, Suzhou, PR China
| | - Jialiang Xu
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, PR China
| | - Chunhong Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, PR China
- Institute of Medical Imaging, Soochow University, Suzhou, PR China
| |
Collapse
|
80
|
Patel KV, Budoff MJ, Valero-Elizondo J, Lahan S, Ali SS, Taha MB, Blaha MJ, Blankstein R, Shapiro MD, Pandey A, Arias L, Feldman T, Cury RC, Cainzos-Achirica M, Shah SH, Ziffer JA, Fialkow J, Nasir K. Coronary Atherosclerosis Across the Glycemic Spectrum Among Asymptomatic Adults: The Miami Heart Study at Baptist Health South Florida. Circ Cardiovasc Imaging 2023; 16:e015314. [PMID: 37772409 PMCID: PMC10695004 DOI: 10.1161/circimaging.123.015314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/01/2023] [Indexed: 09/30/2023]
Abstract
BACKGROUND The contemporary burden and characteristics of coronary atherosclerosis, assessed using coronary computed tomography angiography (CCTA), is unknown among asymptomatic adults with diabetes and prediabetes in the United States. The pooled cohort equations and coronary artery calcium (CAC) score stratify atherosclerotic cardiovascular disease risk, but their association with CCTA findings across glycemic categories is not well established. METHODS Asymptomatic adults without atherosclerotic cardiovascular disease enrolled in the Miami Heart Study were included. Participants underwent CAC and CCTA testing and were classified into glycemic categories. Prevalence of coronary atherosclerosis (any plaque, noncalcified plaque, plaque with ≥1 high-risk feature, maximal stenosis ≥50%) assessed by CCTA was described across glycemic categories and further stratified by pooled cohort equations-estimated atherosclerotic cardiovascular disease risk and CAC score. Adjusted logistic regression was used to evaluate the associations between glycemic categories and coronary outcomes. RESULTS Among 2352 participants (49.5% women), the prevalence of euglycemia, prediabetes, and diabetes was 63%, 30%, and 7%, respectively. Coronary plaque was more commonly present across worsening glycemic categories (euglycemia, 43%; prediabetes, 58%; diabetes, 69%), and similar pattern was observed for other coronary outcomes. In adjusted analyses, compared with euglycemia, prediabetes and diabetes were each associated with higher odds of any coronary plaque (OR, 1.30 [95% CI, 1.05-1.60] and 1.75 [1.17-2.61], respectively), noncalcified plaque (OR, 1.47 [1.19-1.81] and 1.99 [1.38-2.87], respectively), and plaque with ≥1 high-risk feature (OR, 1.65 [1.14-2.39] and 2.53 [1.48-4.33], respectively). Diabetes was associated with stenosis ≥50% (OR, 3.01 [1.79-5.08]; reference=euglycemia). Among participants with diabetes and estimated atherosclerotic cardiovascular disease risk <5%, 46% had coronary plaque and 10% had stenosis ≥50%. Among participants with diabetes and CAC=0, 30% had coronary plaque and 3% had stenosis ≥50%. CONCLUSIONS Among asymptomatic adults, worse glycemic status is associated with higher prevalence and extent of coronary atherosclerosis, high-risk plaque, and stenosis. In diabetes, CAC was more closely associated with CCTA findings and informative in a larger population than the pooled cohort equations.
Collapse
Affiliation(s)
- Kershaw V Patel
- Division of Cardiovascular Prevention and Wellness, Department of Cardiology, Houston Methodist DeBakey Heart & Vascular Center, TX (K.V.P., J.V.-E., S.L., M.B.T., K.N.)
| | - Matthew J Budoff
- Harbor-UCLA Medical Center, Torrance, CA (M.J.B.)
- David Geffen School of Medicine, University of California, Los Angeles (M.J.B.)
| | - Javier Valero-Elizondo
- Division of Cardiovascular Prevention and Wellness, Department of Cardiology, Houston Methodist DeBakey Heart & Vascular Center, TX (K.V.P., J.V.-E., S.L., M.B.T., K.N.)
- Center for Outcomes Research, Houston Methodist (J.V.-E., K.N.)
| | - Shubham Lahan
- Division of Cardiovascular Prevention and Wellness, Department of Cardiology, Houston Methodist DeBakey Heart & Vascular Center, TX (K.V.P., J.V.-E., S.L., M.B.T., K.N.)
| | - Shozab S Ali
- Miami Cardiac and Vascular Institute, Baptist Health South Florida (S.S.A., L.A., T.F., R.C.C., J.A.Z., J.F.)
- Herbert Wertheim College of Medicine, Florida International University, Miami (S.S.A., T.F., R.C.C.)
| | - Mohamad B Taha
- Division of Cardiovascular Prevention and Wellness, Department of Cardiology, Houston Methodist DeBakey Heart & Vascular Center, TX (K.V.P., J.V.-E., S.L., M.B.T., K.N.)
| | - Michael J Blaha
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore (M.J.B., M.C.-A., K.N.)
| | - Ron Blankstein
- Brigham and Women's Hospital Heart and Vascular Center, and Harvard Medical School, Boston, MA (R.B.)
| | - Michael D Shapiro
- Center for Prevention of Cardiovascular Disease, Section on Cardiovascular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC (M.D.S.)
| | - Ambarish Pandey
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas (A.P.)
| | - Lara Arias
- Miami Cardiac and Vascular Institute, Baptist Health South Florida (S.S.A., L.A., T.F., R.C.C., J.A.Z., J.F.)
| | - Theodore Feldman
- Miami Cardiac and Vascular Institute, Baptist Health South Florida (S.S.A., L.A., T.F., R.C.C., J.A.Z., J.F.)
- Herbert Wertheim College of Medicine, Florida International University, Miami (S.S.A., T.F., R.C.C.)
| | - Ricardo C Cury
- Miami Cardiac and Vascular Institute, Baptist Health South Florida (S.S.A., L.A., T.F., R.C.C., J.A.Z., J.F.)
- Herbert Wertheim College of Medicine, Florida International University, Miami (S.S.A., T.F., R.C.C.)
| | - Miguel Cainzos-Achirica
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore (M.J.B., M.C.-A., K.N.)
- Department of Cardiology, Hospital del Mar and Hospital del Mar Research Institute, Barcelona, Spain (M.C.-A.)
| | - Svati H Shah
- Duke Clinical Research Institute, Durham, NC (S.H.S.)
| | - Jack A Ziffer
- Miami Cardiac and Vascular Institute, Baptist Health South Florida (S.S.A., L.A., T.F., R.C.C., J.A.Z., J.F.)
| | - Jonathan Fialkow
- Miami Cardiac and Vascular Institute, Baptist Health South Florida (S.S.A., L.A., T.F., R.C.C., J.A.Z., J.F.)
| | - Khurram Nasir
- Division of Cardiovascular Prevention and Wellness, Department of Cardiology, Houston Methodist DeBakey Heart & Vascular Center, TX (K.V.P., J.V.-E., S.L., M.B.T., K.N.)
- Center for Outcomes Research, Houston Methodist (J.V.-E., K.N.)
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore (M.J.B., M.C.-A., K.N.)
| |
Collapse
|
81
|
Gindri dos Santos B, Goedeke L. Macrophage immunometabolism in diabetes-associated atherosclerosis. IMMUNOMETABOLISM (COBHAM, SURREY) 2023; 5:e00032. [PMID: 37849988 PMCID: PMC10578522 DOI: 10.1097/in9.0000000000000032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/15/2023] [Indexed: 10/19/2023]
Abstract
Macrophages play fundamental roles in atherosclerotic plaque formation, growth, and regression. These cells are extremely plastic and perform different immune functions depending on the stimuli they receive. Initial in vitro studies have identified specific metabolic pathways that are crucial for the proper function of pro-inflammatory and pro-resolving macrophages. However, the plaque microenvironment, especially in the context of insulin resistance and type 2 diabetes, constantly challenges macrophages with several simultaneous inflammatory and metabolic stimuli, which may explain why atherosclerosis is accelerated in diabetic patients. In this mini review, we discuss how macrophage mitochondrial function and metabolism of carbohydrates, lipids, and amino acids may be affected by this complex plaque microenvironment and how risk factors associated with type 2 diabetes alter the metabolic rewiring of macrophages and disease progression. We also briefly discuss current challenges in assessing macrophage metabolism and identify future tools and possible strategies to alter macrophage metabolism to improve treatment options for diabetes-associated atherosclerosis.
Collapse
Affiliation(s)
- Bernardo Gindri dos Santos
- Department of Medicine (Cardiology), The Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leigh Goedeke
- Department of Medicine (Cardiology), The Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine (Endocrinology), The Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
82
|
Hu Y, Zhao Y, Li P, Lu H, Li H, Ge J. Hypoxia and panvascular diseases: exploring the role of hypoxia-inducible factors in vascular smooth muscle cells under panvascular pathologies. Sci Bull (Beijing) 2023; 68:1954-1974. [PMID: 37541793 DOI: 10.1016/j.scib.2023.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/13/2023] [Accepted: 07/10/2023] [Indexed: 08/06/2023]
Abstract
As an emerging discipline, panvascular diseases are a set of vascular diseases with atherosclerosis as the common pathogenic hallmark, which mostly affect vital organs like the heart, brain, kidney, and limbs. As the major responser to the most common stressor in the vasculature (hypoxia)-hypoxia-inducible factors (HIFs), and the primary regulator of pressure and oxygen delivery in the vasculature-vascular smooth muscle cells (VSMCs), their own multifaceted nature and their interactions with each other are fascinating. Abnormally active VSMCs (e.g., atherosclerosis, pulmonary hypertension) or abnormally dysfunctional VSMCs (e.g., aneurysms, vascular calcification) are associated with HIFs. These widespread systemic diseases also reflect the interdisciplinary nature of panvascular medicine. Moreover, given the comparable proliferative characteristics exhibited by VSMCs and cancer cells, and the delicate equilibrium between angiogenesis and cancer progression, there is a pressing need for more accurate modulation targets or combination approaches to bolster the effectiveness of HIF targeting therapies. Based on the aforementioned content, this review primarily focused on the significance of integrating the overall and local perspectives, as well as temporal and spatial balance, in the context of the HIF signaling pathway in VSMC-related panvascular diseases. Furthermore, the review discussed the implications of HIF-targeting drugs on panvascular disorders, while considering the trade-offs involved.
Collapse
Affiliation(s)
- Yiqing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Yongchao Zhao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Peng Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Shanghai Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| | - Hua Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Shanghai Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai 200032, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
83
|
Chen C, Chen M, Tao Q, Hu S, Hu C. Non-contrast CT-based radiomics nomogram of pericoronary adipose tissue for predicting haemodynamically significant coronary stenosis in patients with type 2 diabetes. BMC Med Imaging 2023; 23:99. [PMID: 37507716 PMCID: PMC10386261 DOI: 10.1186/s12880-023-01051-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) patients have a higher incidence of coronary artery disease than the general population. The aim of this study was to develop a radiomics nomogram of pericoronary adipose tissue (PCAT) based on non-contrast CT to predict haemodynamically significant coronary stenosis in T2DM patients. METHODS The study enrolled 215 T2DM patients who underwent non-contrast CT and coronary computed tomography angiography (CCTA). CCTA derived fractional flow reserve (FFRCT) ≤ 0.80 was defined as hemodynamically significant stenosis.1691 radiomics features were extracted from PCAT on non-contrast CT. Minimum redundancy maximum relevance (mRMR) and least absolute shrinkage and selection operator (LASSO) were used to select useful radiomics features to construct Radscore. Logistic regression was applied to select significant factors among Radscore, fat attenuation index (FAI) and coronary artery calcium score (CACS) to construct radiomics nomogram. RESULTS Radscore [odds ratio (OR) = 2.84; P < 0.001] and CACS (OR = 1.00; P = 0.023) were identified as independent predictors to construct the radiomics nomogram. The radiomics nomogram showed excellent performance [training cohort: area under the curve (AUC) = 0.81; 95% CI: 0.76-0.86; validation cohort: AUC = 0.83; 95%CI: 0.76-0.90] to predict haemodynamically significant coronary stenosis in patients with T2DM. Decision curve analysis demonstrated high clinical value of the radiomics nomogram. CONCLUSION The non-contrast CT-based radiomics nomogram of PCAT could effectively predict haemodynamically significant coronary stenosis in patients with T2DM, which might be a potential noninvasive tool for screening of high-risk patients.
Collapse
Affiliation(s)
- Can Chen
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu Province, China
| | - Meng Chen
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu Province, China
| | - Qing Tao
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu Province, China
| | - Su Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu Province, China.
| | - Chunhong Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu Province, China.
| |
Collapse
|
84
|
Wang S, Zhang L, Jin Z, Wang Y, Zhang B, Zhao L. Visualizing temporal dynamics and research trends of macrophage-related diabetes studies between 2000 and 2022: a bibliometric analysis. Front Immunol 2023; 14:1194738. [PMID: 37564641 PMCID: PMC10410279 DOI: 10.3389/fimmu.2023.1194738] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Background Macrophages are considered an essential source of inflammatory cytokines, which play a pivotal role in the development of diabetes and its sequent complications. Therefore, a better understanding of the intersection between the development of diabetes and macrophage is of massive importance. Objectives In this study, we performed an informative bibliometric analysis to enlighten relevant research directions, provide valuable metrics for financing decisions, and help academics to gain a quick understanding of the current macrophage-related diabetes studies knowledge domain. Methods The Web of Science Core Collection database was used for literature retrieval and dataset export. Bibliometrix R-package was performed to conduct raw data screening, calculating, and visualizing. Results Between 2000 and 2022, the annual publication and citation trends steadily increased. Wu Yonggui was the scholar with the most published papers in this field. The institute with the highest number of published papers was the University of Michigan. The most robust academic collaboration was observed between China and the United States of America. Diabetologia was the journal that published the most relevant publications. The author's keywords with the highest occurrences were "inflammation", "diabetic nephropathy", and "obesity". In addition, "Macrophage polarization" was the current motor topic with potential research prospects. Conclusions These comprehensive and visualized bibliometric results summarized the significant findings in macrophage-related diabetes studies over the past 20 years. It would enlighten subsequent studies from a macro viewpoint and is also expected to strengthen investment policies in future macrophage-related diabetes studies.
Collapse
Affiliation(s)
- Sicheng Wang
- Institute of Metabolic Diseases, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lili Zhang
- Institute of Metabolic Diseases, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zishan Jin
- Institute of Metabolic Diseases, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yayun Wang
- Institute of Metabolic Diseases, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Changchun University of Chinese Medicine, Jilin, China
| | - Boxun Zhang
- Institute of Metabolic Diseases, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
85
|
van Dijk RA, Kleemann R, Schaapherder AF, van den Bogaerdt A, Hedin U, Matic L, Lindeman JH. Validating human and mouse tissues commonly used in atherosclerosis research with coronary and aortic reference tissue: similarities but profound differences in disease initiation and plaque stability. JVS Vasc Sci 2023; 4:100118. [PMID: 37810738 PMCID: PMC10551657 DOI: 10.1016/j.jvssci.2023.100118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/14/2023] [Indexed: 10/10/2023] Open
Abstract
Objective Characterization of the atherosclerotic process fully relies on histological evaluation and staging through a consensus grading system. So far, a head-to-head comparison of atherosclerotic process in experimental models and tissue resources commonly applied in atherosclerosis research with the actual human atherosclerotic process is missing. Material and Methods Aspects of the atherosclerotic process present in established murine atherosclerosis models and human carotid endarterectomy specimen were systematically graded using the modified American Heart Association histological classification (Virmani classification). Aspects were aligned with the atherosclerotic process observed in human coronary artery and aortic atherosclerosis reference tissues that were available through biobanks based on human tissue/organ donor material. Results Apart from absent intraplaque hemorrhages in aortic lesions, the histological characteristics of the different stages of human coronary and aortic atherosclerosis are similar. Carotid endarterectomy samples all represent end-stage "fibrous calcified plaque" lesions, although secondary, progressive, and vulnerable lesions with gross morphologies similar to coronary/aortic lesions occasionally present along the primary lesions. For the murine lesions, clear histological parallels were observed for the intermediate lesion types ("pathological intimal thickening," and "early fibroatheroma"). However, none of the murine lesions studied progressed to an equivalent of late fibroatheroma or beyond. Notable contrasts were observed for disease initiation: whereas disease initiation in humans is characterized by a mesenchymal cell influx in the intima, the earliest murine lesions are exclusively intimal, with subendothelial accumulation foam cells. A mesenchymal (and medial) response are absent. In fact, it is concluded that the stage of "adaptive intimal thickening" is absent in all mouse models included in this study. Conclusions The Virmani classification for coronary atherosclerosis can be applied for systematically grading experimental and clinical atherosclerosis. Application of this histological grading tool shows clear parallels for intermediate human and murine atherosclerotic lesions. However, clear contrasts are observed for disease initiation, and late stage atherosclerotic lesions. Carotid endarterectomy all represent end-stage fibrous calcified plaque lesions, although secondary earlier lesions may present in a subset of samples.
Collapse
Affiliation(s)
- Rogier A. van Dijk
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert Kleemann
- The Netherlands Organization for Applied Scientific Research (TNO), Department of Metabolic Health Research, TNO Metabolic Health Research, Leiden, The Netherlands
| | | | | | - Ulf Hedin
- Division of Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Sweden
| | - Ljubica Matic
- Division of Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Sweden
| | - Jan H.N. Lindeman
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
86
|
Neels JG, Gollentz C, Chinetti G. Macrophage death in atherosclerosis: potential role in calcification. Front Immunol 2023; 14:1215612. [PMID: 37469518 PMCID: PMC10352763 DOI: 10.3389/fimmu.2023.1215612] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/20/2023] [Indexed: 07/21/2023] Open
Abstract
Cell death is an important aspect of atherosclerotic plaque development. Insufficient efferocytosis of death cells by phagocytic macrophages leads to the buildup of a necrotic core that impacts stability of the plaque. Furthermore, in the presence of calcium and phosphate, apoptotic bodies resulting from death cells can act as nucleation sites for the formation of calcium phosphate crystals, mostly in the form of hydroxyapatite, which leads to calcification of the atherosclerotic plaque, further impacting plaque stability. Excessive uptake of cholesterol-loaded oxidized LDL particles by macrophages present in atherosclerotic plaques leads to foam cell formation, which not only reduces their efferocytosis capacity, but also can induce apoptosis in these cells. The resulting apoptotic bodies can contribute to calcification of the atherosclerotic plaque. Moreover, other forms of macrophage cell death, such as pyroptosis, necroptosis, parthanatos, and ferroptosis can also contribute by similar mechanisms to plaque calcification. This review focuses on macrophage death in atherosclerosis, and its potential role in calcification. Reducing macrophage cell death and/or increasing their efferocytosis capacity could be a novel therapeutic strategy to reduce the formation of a necrotic core and calcification and thereby improving atherosclerotic plaque stability.
Collapse
Affiliation(s)
- Jaap G. Neels
- Université Côte d’Azur, Institut national de la santé et de la recherche médicale (INSERM), Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
| | - Claire Gollentz
- Université Côte d’Azur, Centre Hospitalier Universitaire (CHU), Institut national de la santé et de la recherche médicale (NSERM), Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
| | - Giulia Chinetti
- Université Côte d’Azur, Centre Hospitalier Universitaire (CHU), Institut national de la santé et de la recherche médicale (NSERM), Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
| |
Collapse
|
87
|
Zuo P, Xu R, Hu L, Hu W, Tong S. Association between monocyte lymphocyte ratio and abdominal aortic calcification in US adults: A cross-sectional study. Clinics (Sao Paulo) 2023; 78:100232. [PMID: 37364352 DOI: 10.1016/j.clinsp.2023.100232] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/09/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND This study aimed to evaluate the association between Monocyte Lymphocyte Ratio (MLR) and Abdominal Aortic Calcification (AAC) in adults over 40 years of age in the United States. METHODS Data were collected from the 2013-2014 National Health and Nutrition Examination Survey (NHANES). AAC was quantified by the Kauppila score system based on dual-energy X-Ray absorptiometry. Severe AAC was defined as a total AAC score > 6. The lymphocyte count and monocyte count can be directly obtained from laboratory data files. Multivariable logistic regression models were used to determine the association between MLR and the AAC score and severe AAC. RESULTS A total of 3,045 participants were included in the present study. After adjusting for multiple covariates, MLR was positively associated with higher AAC score (β = 0.21, 95% CI 0.07, 0.34, p = 0.0032) and the odds of severe AAC increased by 14% per 0.1 unit increase in the MLR (OR = 1.14, 95% CI 1.00, 1.31, p = 0.0541). The Odds Ratio (OR) (95% CI) of severe AAC for participants in MLR tertile 3 was 1.88 (1.02, 3.47) compared with those in tertile 1 (p for trend = 0.0341). Subgroup analyses showed that a stronger association was detected in the elderly compared with non-elderly (p for interaction = 0.0346) and diabetes compared with non-diabetes (borderline significant p for interaction = 0.0578). CONCLUSION In adults in the United States, MLR was associated with higher AAC scores and a higher probability of severe AAC. MLR may become a promising tool to predict the risk of AAC.
Collapse
Affiliation(s)
- Peiyuan Zuo
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ranran Xu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liya Hu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Hu
- Department of Pediatric, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Tong
- Department of Thoracic Surgery, Union Hospital Tongji Medical College Huazhong University of Science and Technology, China.
| |
Collapse
|
88
|
Giannarelli C. Single-Point Vulnerabilities in Atherosclerotic Plaque. J Am Coll Cardiol 2023; 81:2228-2230. [PMID: 37286251 DOI: 10.1016/j.jacc.2023.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 06/09/2023]
Affiliation(s)
- Chiara Giannarelli
- Department of Medicine, Division of Cardiology, New York University (NYU) Cardiovascular Research Center, New York, New York, USA; Department of Pathology, NYU Grossman School of Medicine, NYU Langone Health, New York, New York, USA.
| |
Collapse
|
89
|
Cervantes J, Kanter JE. Monocyte and macrophage foam cells in diabetes-accelerated atherosclerosis. Front Cardiovasc Med 2023; 10:1213177. [PMID: 37378396 PMCID: PMC10291141 DOI: 10.3389/fcvm.2023.1213177] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Diabetes results in an increased risk of atherosclerotic cardiovascular disease. This minireview will discuss whether monocyte and macrophage lipid loading contribute to this increased risk, as monocytes and macrophages are critically involved in the progression of atherosclerosis. Both uptake and efflux pathways have been described as being altered by diabetes or conditions associated with diabetes, which may contribute to the increased accumulation of lipids seen in macrophages in diabetes. More recently, monocytes have also been described as lipid-laden in response to elevated lipids, including triglyceride-rich lipoproteins, the class of lipids often elevated in the setting of diabetes.
Collapse
Affiliation(s)
| | - Jenny E. Kanter
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, WA, United States
| |
Collapse
|
90
|
Sojo L, Santos-González E, Riera L, Aguilera A, Barahona R, Pellicer P, Buxó M, Mayneris-Perxachs J, Fernandez-Balsells M, Fernández-Real JM. Plasma Lipidomics Profiles Highlight the Associations of the Dual Antioxidant/Pro-oxidant Molecules Sphingomyelin and Phosphatidylcholine with Subclinical Atherosclerosis in Patients with Type 1 Diabetes. Antioxidants (Basel) 2023; 12:antiox12051132. [PMID: 37237999 DOI: 10.3390/antiox12051132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Here, we report on our study of plasma lipidomics profiles of patients with type 1 diabetes (T1DM) and explore potential associations. One hundred and seven patients with T1DM were consecutively recruited. Ultrasound imaging of peripheral arteries was performed using a high image resolution B-mode ultrasound system. Untargeted lipidomics analysis was performed using UHPLC coupled to qTOF/MS. The associations were evaluated using machine learning algorithms. SM(32:2) and ether lipid species (PC(O-30:1)/PC(P-30:0)) were significantly and positively associated with subclinical atherosclerosis (SA). This association was further confirmed in patients with overweight/obesity (specifically with SM(40:2)). A negative association between SA and lysophosphatidylcholine species was found among lean subjects. Phosphatidylcholines (PC(40:6) and PC(36:6)) and cholesterol esters (ChoE(20:5)) were associated positively with intima-media thickness both in subjects with and without overweight/obesity. In summary, the plasma antioxidant molecules SM and PC differed according to the presence of SA and/or overweight status in patients with T1DM. This is the first study showing the associations in T1DM, and the findings may be useful in the targeting of a personalized approach aimed at preventing cardiovascular disease in these patients.
Collapse
Affiliation(s)
- Lidia Sojo
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta Hospital, 17007 Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), 17007 Girona, Spain
| | - Elena Santos-González
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta Hospital, 17007 Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), 17007 Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Lídia Riera
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta Hospital, 17007 Girona, Spain
| | - Alex Aguilera
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta Hospital, 17007 Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), 17007 Girona, Spain
- Department of Medical Sciences, School of Medicine, 17003 Girona, Spain
| | - Rebeca Barahona
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta Hospital, 17007 Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), 17007 Girona, Spain
- Department of Medical Sciences, School of Medicine, 17003 Girona, Spain
| | - Paula Pellicer
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta Hospital, 17007 Girona, Spain
| | - Maria Buxó
- Girona Biomedical Research Institute (IDIBGI), 17007 Girona, Spain
| | - Jordi Mayneris-Perxachs
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta Hospital, 17007 Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), 17007 Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Mercè Fernandez-Balsells
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta Hospital, 17007 Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), 17007 Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Department of Medical Sciences, School of Medicine, 17003 Girona, Spain
| | - José-Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta Hospital, 17007 Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), 17007 Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Department of Medical Sciences, School of Medicine, 17003 Girona, Spain
| |
Collapse
|
91
|
Narayanan S, Röhl S, Lengquist M, Kronqvist M, Matic L, Razuvaev A. Transcriptomic and physiological analyses reveal temporal changes contributing to the delayed healing response to arterial injury in diabetic rats. JVS Vasc Sci 2023; 4:100111. [PMID: 37519334 PMCID: PMC10372325 DOI: 10.1016/j.jvssci.2023.100111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/12/2023] [Indexed: 08/01/2023] Open
Abstract
Objective Atherosclerosis is a leading cause of mortality in the rapidly growing population with diabetes mellitus. Vascular interventions in patients with diabetes can lead to complications attributed to defective vascular remodeling and impaired healing response in the vessel wall. In this study, we aim to elucidate the molecular differences in the vascular healing response over time using a rat model of arterial injury applied to healthy and diabetic conditions. Methods Wistar (healthy) and Goto-Kakizaki (GK, diabetic) rats (n = 40 per strain) were subjected to left common carotid artery (CCA) balloon injury and euthanized at different timepoints: 0 and 20 hours, 5 days, and 2, 4, and 6 weeks. Noninvasive morphological and physiological assessment of the CCA was performed with ultrasound biomicroscopy (Vevo 2100) and corroborated with histology. Total RNA was isolated from the injured CCA at each timepoint, and microarray profiling was performed (n = 3 rats per timepoint; RaGene-1_0-st-v1 platform). Bioinformatic analyses were conducted using R software, DAVID bioinformatic tool, online STRING database, and Cytoscape software. Results Significant increase in the neointimal thickness (P < .01; two-way analysis of variance) as well as exaggerated negative remodeling was observed after 2 weeks of injury in GK rats compared with heathy rats, which was confirmed by histological analyses. Bioinformatic analyses showed defective expression patterns for smooth muscle cells and immune cell markers, along with reduced expression of key extracellular matrix-related genes and increased expression of pro-thrombotic genes, indicating potential faults on cell regulation level. Transcription factor-protein-protein interaction analysis provided mechanistic evidence with an array of transcription factors dysregulated in diabetic rats. Conclusions In this study, we have demonstrated that diabetic rats exhibit impaired arterial remodeling characterized by a delayed healing response. We show that increased contractile smooth muscle cell marker expression coincided with decreased matrix metalloproteinase expression, indicating a potential mechanism for a lack of extracellular matrix reorganization in the impaired vascular healing in GK rats. These results further corroborate the higher prevalence of restenosis in patients with diabetes and provide vital molecular insights into the mechanisms contributing to the impaired arterial healing response in diabetes. Moreover, the presented study provides the research community with the valuable longitudinal gene expression data bank for further exploration of diabetic vasculopathy.
Collapse
Affiliation(s)
| | | | | | | | | | - Anton Razuvaev
- Correspondence: Anton Razuvaev, MD, PhD, Department of Molecular Medicine and Surgery, BioClinicum J8:20, Visionsgatan 4, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| |
Collapse
|
92
|
Huang Q, Tian L, Zhang Y, Qiu Z, Lei S, Xia ZY. Nobiletin alleviates myocardial ischemia-reperfusion injury via ferroptosis in rats with type-2 diabetes mellitus. Biomed Pharmacother 2023; 163:114795. [PMID: 37146415 DOI: 10.1016/j.biopha.2023.114795] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/07/2023] Open
Abstract
Susceptibility to myocardial ischemia-reperfusion (IR) injury in type-2 diabetes (T2DM) remains disputed, although studies have reported that ferroptosis is associated with myocardial IR injury. Nobiletin, a flavonoid isolated from citrus peels, is an antioxidant that possesses anti-inflammatory and anti-diabetic activities. However, it remains unknown whether nobiletin has any protective effects on susceptibility to myocardial IR injury during T2DM in rats via ferroptosis. To investigate the effects and underlying mechanisms of nobiletin on myocardial IR injury during T2DM, we induced myocardial IR model in rats at T2DM onset vs mature disease. We also established a high-fat high-glucose (HFHG) and hypoxia-reoxygenation (H/R) model in H9c2 cells to imitate abnormal glycolipid metabolism during T2DM. Myocardial injury, oxidative stress and ferroptosis towards myocardial IR in rats with mature T2DM but not at T2DM onset were increased. These changes were restored under treatment with ferrostain-1 or nobiletin. Both ferrostain-1 and nobiletin decreased the expression of ferroptosis-related proteins including Acyl-CoA synthetase long chain family member 4 (ACSL4) and nuclear receptor coactivator 4 (NCOA4) but not glutathione peroxidase 4 (GPX4) in rats with mature T2DM and cells with HFHG and H/R injury. Nobiletin strengthened the effect of si-ACSL4 on inhibiting ACSL4 expression, and also inhibited the effect of Erastin or oe-ACSL4 on increasing ACSL4 expression. Taken together, our data indicates that ferroptosis involves in susceptibility to myocardial IR injury in rats during T2DM. Nobiletin has therapeutic potential for alleviating myocardial IR injury associated with ACSL4- and NCOA4-related ferroptosis.
Collapse
Affiliation(s)
- Qin Huang
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China
| | - Liqun Tian
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China; Department of Anaesthesiology, The First Affiliated Hospital of Chongqing Medical University, PR China
| | - Yi Zhang
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China; Department of Anaesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincical Qianfoshan Hospital, Shandong Institute of Anesthesia and Resoiratory Critical Medicine, PR China
| | - Zhen Qiu
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China
| | - Shaoqing Lei
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China
| | - Zhong-Yuan Xia
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China.
| |
Collapse
|
93
|
Cai Y, Sun Z, Shao C, Wang Z, Li L. Role of galectin-3 in vascular calcification. Glycoconj J 2023; 40:149-158. [PMID: 36807052 DOI: 10.1007/s10719-023-10106-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/23/2023]
Abstract
Vascular calcification is an abnormal process in which bone specific hydroxyapatite crystals are actively deposited on the vascular wall mediated by phenotypic differentiated smooth muscle cells and other mesenchymal cells under various pathological conditions. It is one of the important characteristics in the occurrence and development of atherosclerosis, prevalent in patients with type 2 diabetes and advanced chronic kidney disease, especially those requiring maintenance hemodialysis, with severely threatening human health. Previous studies have shown that the early diagnosis and control of vascular calcification is of great significance for cardiovascular risk stratification, prevention of acute cardiovascular events, which can greatly improve the prognosis and quality of life of patients. Galectins are a family of lectin superfamily. It is widely distributed in various animals and plays an important role in many physiological and pathological processes, such as cell adhesion, apoptosis, inflammatory response, tumor metastasis and so on. Many biomarker-and association-related studies and Preclinical-mechanistic studies have suggested that galactose-specific lectin-3 (galectin-3) plays an important role in vascular calcification and vascular intimal calcification (VIC) calcification induced by Wnt/βcatenin signaling pathway, NF-κB signaling pathway and ERK1/2 signaling pathway. This paper mainly expounds the role and mechanism of galectin-3 in vascular calcification under different pathological conditions including atherosclerosis, diabetes and chronic kidney disease.
Collapse
Affiliation(s)
- Yaoyao Cai
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chen Shao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
94
|
Zhou W, Yuan X, Li J, Wang W, Ye S. Retinol binding protein 4 promotes the phenotypic transformation of vascular smooth muscle cells under high glucose condition via modulating RhoA/ROCK1 pathway. Transl Res 2023:S1931-5244(23)00055-5. [PMID: 37003483 DOI: 10.1016/j.trsl.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/13/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Phenotypic switch of vascular smooth muscle cells (VSMCs) contributes to the pathogenesis of atherosclerosis (AS). High level of retinol binding protein 4 (RBP4) is regarded as a risk factor in cardiac-cerebral vascular disease. This study is performed to clarify the biological function of RBP4 in modulating the phenotypic switch of VSMCs induced via RhoA/ROCK1 signaling pathway. METHODS AND MATERIALS In vivo experiment, all the rats were dividedinto control group (NC), diabetic group (DM) and diabetic atherosclerosis group(DAS). The expressions of biochemical indicators, RhoA and Rho associated coiled-coil containing protein kinase 1 (ROCK1) were detected. In vitro experiment, VSMCs were cultured under high glucose condition, and ectogenic RBP4, HA-1100, rapamycin or 3-Methyladenine (3-MA) were supplemented to treat the VSMCs, respectively. The proliferation and migration of VSMCs were evaluated. The regulatory relationship between RBP4 and ROCK1was predicted by bioinformatics analysis, and validated by qRT-PCR and Western blot. The regulatory effects of RBP4 on contractile phenotypic markers such as calponin, MYH11, α-SMA and autophagy markers including LC3II, LC3I and Beclin-1 as well as mTOR were also detected. Moreover, VSMCs were cultured exposed to ROCK1 overexpressed plasmid or short hairpin RNA (shRNA), the proliferation and migration of VSMCs were evluated and the regulatory effects of RhoA/ROCK1 signaling pathway on contractile phenotypic markers and autophagy markers were also detected. RESULTS In vivo, RhoA, ROCK1 and mTOR were highly expressed in the rats intraperitoneally injected with RBP4. In vitro, the expressions of calponin, MYH11, α-SMA, LC3II, LC3I and Beclin-1 were decreased in VSMCs treated with ROCK1-OA under high glucose condition, conversely, the expressions were increased in VSMCs exposed to ROCK1-shRNA. Ectogenic RBP4 facilitated high glucose-induced proliferation and migration of VSMCs, and it repressed the expression of calponin, MYH11, α-SMA, LC3II/Iand Beclin-1 in VSMCs. As expected, ROCK1 inhibit or counteracted the biological effects of RBP4 on VSMCs. In addition, the expressions of contractile phenotypic markers, LC3II/I and Beclin-1 were promoted and mTOR were decreased after the VSMCs treated with autophagy agonist, whereas no significant difference was observed in the expressions of ROCK1, RhoA. CONCLUSION RBP4 is an injurious factor in the pathogenesis of diabetic AS, and it promotes the phenotypic switch of VSMCs via activating RhoA/ROCK1 pathway and inhibiting autophagy.
Collapse
Affiliation(s)
- Wan Zhou
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Xiaojing Yuan
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Jie Li
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230001, China; Department of Endocrinology, affiliated provincial hospital of Anhui Medical University, Anhui Medical University of China, Hefei, China
| | - Wei Wang
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Shandong Ye
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230001, China
| |
Collapse
|
95
|
Chai B, Shen Y, Li Y, Wang X. Meta-analysis and trial sequential analysis of ezetimibe for coronary atherosclerotic plaque compositions. Front Pharmacol 2023; 14:1166762. [PMID: 37050908 PMCID: PMC10084938 DOI: 10.3389/fphar.2023.1166762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/14/2023] [Indexed: 03/28/2023] Open
Abstract
Background: Lipid aggregation, inflammatory cell infiltration, fibrous cap formation, and disruption are the major causes of atherosclerotic cardiovascular disease (ASCVD) and the pathologic features of atherosclerotic plaques. Although ezetimibe’s role in decreasing blood lipids is widely known, there are insufficient data to determine which part of the drug has an effect on atherosclerotic plaque compositions.Objective: The study aimed to systematically evaluate the efficacy of ezetimibe for coronary atherosclerotic plaque compositions.Methods: Two researchers independently searched the PubMed, Embase, Cochrane Library, and Web of Science databases for randomized controlled trials (RCTs) on the efficacy of ezetimibe for coronary atherosclerotic plaques from inception until 22 January 2023. The meta-analysis and trial sequential analysis (TSA) were performed using Stata 14.0 and TSA 0.9.5.10 Beta software, respectively.Results: Four RCTs were finally included this study, which comprised 349 coronary artery disease patients. Meta-analysis findings showed that, compared with the control group, intervention measures could effectively reduce the fibro-fatty plaque (FFP) volume [WMD = −2.90, 95% CI (−4.79 and −1.00), and p = 0.003 < 0.05]; there were no significant difference in the reduction of fibrous plaque (FP) volume [WMD = −4.92, 95% CI (−11.57 and 1.74), and p = 0.15 > 0.05], necrotic core (NC) volume [WMD = −2.26, 95% CI (−6.99 and 2.46), and p = 0.35 > 0.05], and change dense calcification (change DC) volume [WMD = −0.07, 95% CI (−0.34 and 0.20), and p = 0.62 > 0.05] between the treatment group and the control group. TSA findings showed more studies are still required to confirm the efficacy of ezetimibe for FP and NC in the future.Conclusion: Compared to the control group, ezetimibe significantly decreased FFP, but it had no statistically significant difference on FP, NC, or change DC. According to TSA, further research will be required to confirm the efficacy of ezetimibe for FP and NC in the future.
Collapse
Affiliation(s)
- Bofeng Chai
- Graduate School of Qinghai University, Xining, China
| | - Youlu Shen
- Affiliated Hospital of Qinghai University, Xining, China
- *Correspondence: Youlu Shen, ; Yuhong Li,
| | - Yuhong Li
- Affiliated Hospital of Qinghai University, Xining, China
- *Correspondence: Youlu Shen, ; Yuhong Li,
| | - Xiaoyu Wang
- The Third People’s Hospital of Tianshui, Tianshui, China
| |
Collapse
|
96
|
Lan Z, Ding X, Yu Y, Yu L, Yang W, Dai X, Ling R, Wang Y, Yang W, Zhang J. CT-derived fractional flow reserve for prediction of major adverse cardiovascular events in diabetic patients. Cardiovasc Diabetol 2023; 22:65. [PMID: 36944990 PMCID: PMC10032006 DOI: 10.1186/s12933-023-01801-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/13/2023] [Indexed: 03/23/2023] Open
Abstract
OBJECTIVES To investigate the prognostic value of computed tomography fractional flow reserve (CT-FFR) in patients with diabetes and to establish a risk stratification model for major adverse cardiac event (MACE). METHODS Diabetic patients with intermediate pre-test probability of coronary artery disease were prospectively enrolled. All patients were referred for coronary computed tomography angiography and followed up for at least 2 years. In the training cohort comprising of 957 patients, two models were developed: model1 with the inclusion of clinical and conventional imaging parameters, model2 incorporating the above parameters + CT-FFR. An internal validation cohort comprising 411 patients and an independent external test cohort of 429 patients were used to validate the proposed models. RESULTS 1797 patients (mean age: 61.0 ± 7.0 years, 1031 males) were finally included in the present study. MACE occurred in 7.18% (129/1797) of the current cohort during follow- up. Multivariate Cox regression analysis revealed that CT-FFR ≤ 0.80 (hazard ratio [HR] = 4.534, p < 0.001), HbA1c (HR = 1.142, p = 0.015) and low attenuation plaque (LAP) (HR = 3.973, p = 0.041) were the independent predictors for MACE. In the training cohort, the Log-likelihood test showed statistical significance between model1 and model2 (p < 0.001). The C-index of model2 was significantly larger than that of model1 (C-index = 0.82 [0.77-0.87] vs. 0.80 [0.75-0.85], p = 0.021). Similar findings were found in internal validation and external test cohorts. CONCLUSION CT-FFR was a strong independent predictor for MACE in diabetic cohort. The model incorporating CT-FFR, LAP and HbA1c yielded excellent performance in predicting MACE.
Collapse
Affiliation(s)
- Ziting Lan
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, #85 Wujin Rd, Shanghai, 200080, China
| | - Xiaoying Ding
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, #85 Wujin Rd, Shanghai, China
| | - Yarong Yu
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, #85 Wujin Rd, Shanghai, 200080, China
| | - Lihua Yu
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, #85 Wujin Rd, Shanghai, 200080, China
| | - Wenli Yang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, #85 Wujin Rd, Shanghai, 200080, China
| | - Xu Dai
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, #600, Yishan Rd, Shanghai, China
| | - Runjianya Ling
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, #600, Yishan Rd, Shanghai, China
| | - Yufan Wang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, #85 Wujin Rd, Shanghai, China
| | - Wenyi Yang
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, #85 Wujin Rd, Shanghai, China.
| | - Jiayin Zhang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, #85 Wujin Rd, Shanghai, 200080, China.
| |
Collapse
|
97
|
Wu L, Kong Q, Huang H, Xu S, Qu W, Zhang P, Yu Z, Luo X. Effect of PCSK9 inhibition in combination with statin therapy on intracranial atherosclerotic stenosis: A high-resolution MRI study. Front Aging Neurosci 2023; 15:1127534. [PMID: 36967822 PMCID: PMC10033935 DOI: 10.3389/fnagi.2023.1127534] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
IntroductionIntracranial atherosclerotic stenosis (ICAS) is a common cause of stroke worldwide. Evolocumab, a proprotein convertase subtilisin/kexin type-9 inhibitor (PCSK9i), effectively lowers low-density lipoprotein (LDL) and produces favorable changes in coronary atherosclerosis. This study aimed to determine the effects of PCSK9i on intracranial plaques in moderate-intensity statin-treated individuals with ICAS.MethodsThis prospective, observational study monitored the imaging and clinical outcomes of individuals with ICAS who were consecutively treated with moderate-intensity statins with or without PCSK9i. Individuals underwent monthly visits and repeat high-resolution MRI (HR-MRI) at week 12. The primary outcome was a change in HR-MRI after 12 weeks of treatment and the secondary outcome was major vascular events during follow-up.ResultsForty-nine individuals were studied (PCSK9i group: 26 individuals with 28 abnormal vascular regions; statin group: 23 with 27 regions). The PCSK9i group showed a significant reduction in the normalized wall index (0.83 vs. 0.86, p = 0.028) and stenosis degree (65.5 vs. 74.2%, p = 0.01). Similarly, a greater percentage of individuals with a good response to the efficacy of treatment were treated in the PCSK9i group than that in the statin group (75 vs. 44.4%, p = 0.021). The incidence of major vascular events was overall similar between the groups. The treatment options (OR = 8.441, p = 0.01) and prior diabetes (OR = 0.061, p = 0.001) were significantly associated with the efficacy of treatment.DiscussionStatin and PCSK9i combination treatment stabilized intracranial atherosclerotic plaques more often compared to statins alone, as documented by HR-MRI. Further study is warranted to determine if combination treatment improves clinical outcomes in ICAS.
Collapse
Affiliation(s)
- Lingshan Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qianqian Kong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hao Huang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Shabei Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Wensheng Qu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiyuan Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Luo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Xiang Luo,
| |
Collapse
|
98
|
Giannella A, Castelblanco E, Zambon CF, Basso D, Hernandez M, Ortega E, Alonso N, Mauricio D, Avogaro A, Ceolotto G, Vigili de Kreutzenberg S. Circulating Small Noncoding RNA Profiling as a Potential Biomarker of Atherosclerotic Plaque Composition in Type 1 Diabetes. Diabetes Care 2023; 46:551-560. [PMID: 36577032 PMCID: PMC10020028 DOI: 10.2337/dc22-1441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 12/05/2022] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Cardiovascular disease (CVD) accounts for most deaths in patients with type 1 diabetes (T1D); however, the determinants of plaque composition are unknown. miRNAs regulate gene expression, participate in the development of atherosclerosis, and represent promising CVD biomarkers. This study analyzed the circulating miRNA expression profile in T1D with either carotid calcified (CCP) or fibrous plaque (CFP). RESEARCH DESIGN AND METHODS Circulating small noncoding RNAs were sequenced and quantified using next-generation sequencing and bioinformatic analysis in an exploratory set of 26 subjects with T1D with CCP and in 25 with CFP. Then, in a validation set of 40 subjects with CCP, 40 with CFP, and 24 control subjects with T1D, selected miRNA expression was measured by digital droplet PCR. Putative gene targets enriched for pathways implicated in atherosclerosis/vascular calcification/diabetes were analyzed. The patients' main clinical characteristics were also recorded. RESULTS miR-503-5p, let-7d-5p, miR-106b-3p, and miR-93-5p were significantly upregulated, while miR-10a-5p was downregulated in patients with CCP compared with CFP (all fold change >±1.5; P < 0.05). All candidate miRNAs showed a significant correlation with LDL-cholesterol, direct for the upregulated and inverse for the downregulated miRNA, in CCP. Many target genes of upregulated miRNAs in CCP participate in osteogenic differentiation, apoptosis, inflammation, cholesterol metabolism, and extracellular matrix organization. CONCLUSIONS These findings characterize miRNAs and their signature in the regulatory network of carotid plaque phenotype in T1D, providing new insights into plaque pathophysiology and possibly novel biomarkers of plaque composition.
Collapse
Affiliation(s)
| | - Esmeralda Castelblanco
- Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
- Unitat de Suport a la Recerca Barcelona, Institut Universitari d’Investigació en Atenció Primària Jordi Gol i Gurina, Barcelona, Spain
| | | | - Daniela Basso
- Department of Medicine, University of Padova, Padova, Italy
| | - Marta Hernandez
- Department of Endocrinology & Nutrition, Hospital Arnau de Vilanova and Institut d’Investigació Biomédica de Lleida, Lleida, Spain
| | - Emilio Ortega
- Department of Endocrinology & Nutrition, Diabetes Unit, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Center for Biomedical Research on Pathophysiology of Obesity and Nutrition, Instituto de Salud Carlos III, Madrid, Spain
| | - Nuria Alonso
- Department of Endocrinology and Nutrition, Health Sciences Research Institute and University Hospital Germans Trias i Pujol, Badalona, Spain
- CIBERDEM, Barcelona, Spain
| | - Didac Mauricio
- Unitat de Suport a la Recerca Barcelona, Institut Universitari d’Investigació en Atenció Primària Jordi Gol i Gurina, Barcelona, Spain
- CIBERDEM, Barcelona, Spain
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau and Sant Pau Biomedical Research Institute, Barcelona, Spain
- Faculty of Medicine, University of Vic–Central University of Catalonia, Vic, Spain
| | - Angelo Avogaro
- Department of Medicine, University of Padova, Padova, Italy
- Corresponding authors: Saula Vigili de Kreutzenberg, , and Angelo Avogaro,
| | | | - Saula Vigili de Kreutzenberg
- Department of Medicine, University of Padova, Padova, Italy
- Corresponding authors: Saula Vigili de Kreutzenberg, , and Angelo Avogaro,
| |
Collapse
|
99
|
Senders ML, Calcagno C, Tawakol A, Nahrendorf M, Mulder WJM, Fayad ZA. PET/MR imaging of inflammation in atherosclerosis. Nat Biomed Eng 2023; 7:202-220. [PMID: 36522465 DOI: 10.1038/s41551-022-00970-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 10/25/2022] [Indexed: 12/23/2022]
Abstract
Myocardial infarction, stroke, mental disorders, neurodegenerative processes, autoimmune diseases, cancer and the human immunodeficiency virus impact the haematopoietic system, which through immunity and inflammation may aggravate pre-existing atherosclerosis. The interplay between the haematopoietic system and its modulation of atherosclerosis has been studied by imaging the cardiovascular system and the activation of haematopoietic organs via scanners integrating positron emission tomography and resonance imaging (PET/MRI). In this Perspective, we review the applicability of integrated whole-body PET/MRI for the study of immune-mediated phenomena associated with haematopoietic activity and cardiovascular disease, and discuss the translational opportunities and challenges of the technology.
Collapse
Affiliation(s)
- Max L Senders
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Claudia Calcagno
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ahmed Tawakol
- Cardiology Division and Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthias Nahrendorf
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Willem J M Mulder
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands.
- Laboratory of Chemical Biology, Department of Biochemical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - Zahi A Fayad
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
100
|
Fu Y, Xu L, Zhang H, Ding N, Zhang J, Ma S, Yang A, Hao Y, Gao Y, Jiang Y. Identification and Validation of Immune-Related Genes Diagnostic for Progression of Atherosclerosis and Diabetes. J Inflamm Res 2023; 16:505-521. [PMID: 36798871 PMCID: PMC9926990 DOI: 10.2147/jir.s393788] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
Background Atherosclerosis and type 2 diabetes mellitus contribute to a large part of cardiovascular events, but the underlying mechanism remains unclear. In this study, we focused on identifying the linking genes of the diagnostic biomarkers and effective therapeutic targets associated with these two diseases. Methods The transcriptomic datasets of atherosclerosis and type 2 diabetes mellitus were obtained from the GEO database. Differentially expressed genes analysis was performed by R studio software, and differential analysis including functional enrichment, therapeutic small molecular agents prediction, and protein-protein interaction analysis were applied to the common shared differentially expressed genes. Hub genes were identified and further validated using an independent dataset and clinical samples. Furthermore, we measured the expression correlations, immune cell infiltration, and diagnostic capability of the three key genes. Results We screened out 28 up-regulated and six down-regulated common shared differentially expressed genes. Functional enrichment analysis showed that cytokines and immune activation were involved in the development of these two diseases. Six small molecules with the highest absolute enrichment value were identified. Three critical genes (CD4, PLEK, and THY1) were further validated both in validation sets and clinical samples. The gene correlation analysis showed that CD4 was strongly positively correlated with PLEK, and ROC curves confirmed the good discriminatory capacity of CD4 and PLEK in two diseases. We have established the co-expression network between atherosclerosis lesions progressions and type 2 diabetes mellitus, and identified CD4 and PLEK as key genes in the two diseases, which may facilitate both development of diagnosis and therapeutic strategies.
Collapse
Affiliation(s)
- Yajuan Fu
- National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, People’s Republic of China,Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Lingbo Xu
- National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, People’s Republic of China,Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, People’s Republic of China,School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Hui Zhang
- National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, People’s Republic of China,Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, People’s Republic of China,School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Ning Ding
- National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, People’s Republic of China,Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, People’s Republic of China,School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Juan Zhang
- National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, People’s Republic of China,Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, People’s Republic of China,School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Shengchao Ma
- National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, People’s Republic of China,Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, People’s Republic of China,School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Anning Yang
- National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, People’s Republic of China,Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, People’s Republic of China,School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Yinjv Hao
- National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, People’s Republic of China,Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, People’s Republic of China,School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Yujing Gao
- National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, People’s Republic of China,Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, People’s Republic of China,Correspondence: Yujing Gao; Yideng Jiang, Email ;
| | - Yideng Jiang
- National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, People’s Republic of China,Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, People’s Republic of China,School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, People’s Republic of China
| |
Collapse
|