51
|
Ye M, Yu X, Yuan Y, He M, Zhuang J, Xiong S, Li J, Wang Y, Li C, Xiong X, Deng H. Design a dual-response two-photon fluorescent probe for simultaneous imaging of mitochondrial viscosity and peroxynitrite in a thrombosis model. Anal Chim Acta 2024; 1287:342088. [PMID: 38182381 DOI: 10.1016/j.aca.2023.342088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/13/2023] [Accepted: 11/28/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Venous thromboembolism is a sudden cardiovascular disease that can lead to death, and its pathologic development is closely related to vascular viscosity and inflammation. However, direct evidence from in vivo is really scarce. The key limitation is that the combined probes cannot detect multiple markers simultaneously, which may lead to unreliable results. Therefore, to develop a single probe that can simultaneously monitor the variations of viscosity in the vascular microenvironment as well as inflammation level during venous thrombosis. RESULTS A dual-responsive two-photon fluorescent probe, Cou-ONOO, was designed and synthesized. Cou-ONOO provides a visualization tool for monitoring the viscosity of the vascular as well as the inflammatory marker ONOO‾ during thromboembolism via dual-channel simultaneous imaging. As a single probe that can recognize dual targets, Cou-ONOO effectively avoids the problems from unreliable results caused by complex synthesis and differences in intracellular localization, diffusion, and metabolism of different dyes as using combinatorial probes. Using Cou-ONOO, simultaneous imaging the variations of viscosity and ONOO‾at the cellular and tissue levels was successfully performed. In addition, Cou-ONOO also successfully visualized and tracked the viscosity of the vascular microenvironment and ONOO‾ during venous embolism in mice. SIGNIFICANCE Experimental results show that both viscosity and inflammation are abnormally overexpressed in the microenvironment at the thrombus site during venous thrombosis. An intuitive visualization tool to elucidate the variations of viscosity as well as inflammation level in the vascular microenvironment during thrombosis was provided, which will facilitate a better clinical understanding of the pathological process of thrombosis.
Collapse
Affiliation(s)
- Miantai Ye
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Material Science, South-central Minzu University, Wuhan, 430074, China
| | - Xiaohui Yu
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yan Yuan
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Meng He
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Material Science, South-central Minzu University, Wuhan, 430074, China
| | - Junli Zhuang
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Sizheng Xiong
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jie Li
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yanying Wang
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Material Science, South-central Minzu University, Wuhan, 430074, China
| | - Chunya Li
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Material Science, South-central Minzu University, Wuhan, 430074, China.
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Hongping Deng
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
52
|
Pandey N, Kaur H, Chandaluri L, Anand SK, Chokhawala H, Magdy T, Stokes KY, Orr AW, Rom O, Dhanesha N. CD14 Blockade Does Not Improve Outcomes of Deep Vein Thrombosis Following Inferior Vena Cava Stenosis in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575099. [PMID: 38260582 PMCID: PMC10802629 DOI: 10.1101/2024.01.10.575099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Background Neutrophil-mediated persistent inflammation and neutrophil extracellular trap formation (NETosis) promote deep vein thrombosis (DVT). CD14, a co-receptor for toll-like receptor 4 (TLR4), is actively synthesized by neutrophils, and the CD14/TLR4 signaling pathway has been implicated in proinflammatory cytokine overproduction and several aspects of thromboinflammation. The role of CD14 in the pathogenesis of DVT remains unclear. Objective To determine whether CD14 blockade improves DVT outcomes. Methods Bulk RNA sequencing and proteomic analyses were performed using isolated neutrophils following inferior vena cava (IVC) stenosis in mice. DVT outcomes (IVC thrombus weight and length, thrombosis incidence, neutrophil recruitment, and NETosis) were evaluated following IVC stenosis in mice treated with a specific anti-CD14 antibody, 4C1, or control antibody. Results Mice with IVC stenosis exhibited increased plasma levels of granulocyte colony-stimulating factor (G-CSF) along with a higher neutrophil-to-lymphocyte ratio and increased plasma levels of cell-free DNA, elastase, and myeloperoxidase. Quantitative measurement of total neutrophil mRNA and protein expression revealed distinct profiles in mice with IVC stenosis compared to mice with sham surgery. Neutrophils of mice with IVC stenosis exhibited increased inflammatory transcriptional and proteomic responses, along with increased expression of CD14. Treatment with a specific anti-CD14 antibody, 4C1, did not result in any significant changes in the IVC thrombus weight, thrombosis incidence, or neutrophil recruitment to the thrombus. Conclusion The results of the current study are important for understanding the role of CD14 in the regulation of DVT and suggest that CD14 lacks an essential role in the pathogenesis of DVT following IVC stenosis.
Collapse
Affiliation(s)
- Nilesh Pandey
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Harpreet Kaur
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Lakshmi Chandaluri
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Sumit Kumar Anand
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Himanshu Chokhawala
- Department of Neurology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, USA
| | - Tarek Magdy
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Karen Y Stokes
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, USA
| | - A Wayne Orr
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, USA
| | - Oren Rom
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, USA
| | - Nirav Dhanesha
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| |
Collapse
|
53
|
Liu R, Wang Q, Zhang X. Identification of prognostic coagulation-related signatures in clear cell renal cell carcinoma through integrated multi-omics analysis and machine learning. Comput Biol Med 2024; 168:107779. [PMID: 38061153 DOI: 10.1016/j.compbiomed.2023.107779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/30/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024]
Abstract
Clear cell renal cell carcinoma is a threat to public health with high morbidity and mortality. Clinical evidence has shown that cancer-associated thrombosis poses significant challenges to treatments, including drug resistance and difficulties in surgical decision-making in ccRCC. However, the coagulation pathway, one of the core mechanisms of cancer-associated thrombosis, recently found closely related to the tumor microenvironment and immune-related pathway, is rarely researched in ccRCC. Therefore, we integrated bulk RNA-seq data, DNA mutation and methylation data, single-cell data, and proteomic data to perform a comprehensive analysis of coagulation-related genes in ccRCC. First, we demonstrated the importance of the coagulation-related gene set by consensus clustering. Based on machine learning, we identified 5 coagulation signature genes and verified their clinical value in TCGA, ICGC, and E-MTAB-1980 databases. It's also demonstrated that the specific expression patterns of coagulation signature genes driven by CNV and methylation were closely correlated with pathways including apoptosis, immune infiltration, angiogenesis, and the construction of extracellular matrix. Moreover, we identified two types of tumor cells in single-cell data by machine learning, and the coagulation signature genes were differentially expressed in two types of tumor cells. Besides, the signature genes were proven to influence immune cells especially the differentiation of T cells. And their protein level was also validated.
Collapse
Affiliation(s)
- Ruijie Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Qi Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| |
Collapse
|
54
|
Jakobsen SS, Frøkjaer JB, Fisker RV, Kristensen SR, Thorlacius-Ussing O, Larsen AC. Monocyte recruitment in venous pulmonary embolism at time of cancer diagnosis in upper gastrointestinal cancer patients. J Thromb Thrombolysis 2024; 57:11-20. [PMID: 37792208 PMCID: PMC10830795 DOI: 10.1007/s11239-023-02897-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/12/2023] [Indexed: 10/05/2023]
Abstract
Upper gastrointestinal cancer is frequently complicated by venous thromboembolisms (VTE), especially pulmonary embolisms (PE) increase the mortality rate. Monocytes are a part of the innate immune system and up-regulation may indicate an ongoing inflammatory response or infectious disease and has lately been associated with a moderate risk of suffering from VTE. This prospectively study aims to compare the incidence of pulmonary embolism with markers of coagulation and compare it to the absolute monocyte count. A consecutive cohort of 250 patients with biopsy proven upper gastrointestinal cancer (i.e. pancreas, biliary tract, esophagus and gastric cancer) where included at the time of cancer diagnosis and before treatment. All patients underwent bilateral compression ultrasonography for detection of deep vein thrombosis (DVT). Of these 143 had an additionally pulmonary angiografi (CTPA) with the staging computer tomography. 13 of 250 patients (5.2%) had a DVT and 11 of 143 (7.7%) had CTPA proven PE. PE was significantly more common among patients with elevated D-dimer (OR 11.62, 95%CI: 1.13-119, P = 0.039) and elevated absolute monocyte count (OR 7.59, 95%CI: 1.37-41.98, P = 0.020). Only patients with pancreatic cancer had a significantly higher risk of DVT (OR 11.03, 95%CI: 1.25-97.43, P = 0.031). The sensitivity of absolute monocyte count was 63.6 (95%CI: 30.8-89.1) and specificity 80.3 (95%CI: 72.5-86.7), with a negative predictive value of 96.4 (95%CI: 91-99) in PE. An increased absolute monocyte count was detected in patients suffering from PE but not DVT, suggesting a possible interaction with the innate immune system.
Collapse
Affiliation(s)
- Sarah S Jakobsen
- Department of Gastrointestinal Surgery, Aalborg University Hospital, Hobrovej 18-22, 9000, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, 9000, Aalborg, Denmark
| | - Jens B Frøkjaer
- Department of Radiology, Aalborg University Hospital, 9000, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, 9000, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, 9000, Aalborg, Denmark
| | - Rune V Fisker
- Department of Radiology, Aalborg University Hospital, 9000, Aalborg, Denmark
- Department of Nuclear Medicine, Aalborg University Hospital, 9000, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, 9000, Aalborg, Denmark
| | - Søren R Kristensen
- Department of Biochemistry, Aalborg University Hospital, 9000, Aalborg, Denmark
- Cardiovascular Research Center, Aalborg University, 9000, Aalborg, Denmark
| | - Ole Thorlacius-Ussing
- Department of Gastrointestinal Surgery, Aalborg University Hospital, Hobrovej 18-22, 9000, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, 9000, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, 9000, Aalborg, Denmark
| | - Anders C Larsen
- Department of Gastrointestinal Surgery, Aalborg University Hospital, Hobrovej 18-22, 9000, Aalborg, Denmark.
- Clinical Cancer Research Center, Aalborg University Hospital, 9000, Aalborg, Denmark.
- Department of Clinical Medicine, Aalborg University, 9000, Aalborg, Denmark.
| |
Collapse
|
55
|
Lan F, Liu T, Guan C, Lin Y, Lin Z, Zhang H, Qi X, Chen X, Huang J. Nomogram for Risk of Secondary Venous Thromboembolism in Stroke Patients: A Study Based on the MIMIC-IV Database. Clin Appl Thromb Hemost 2024; 30:10760296241254104. [PMID: 38772566 PMCID: PMC11110519 DOI: 10.1177/10760296241254104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 05/23/2024] Open
Abstract
This study aims to identify risk factors for secondary venous thromboembolism (VTE) in stroke patients and establish a nomogram, an accurate predictor of probability of VTE occurrence during hospitalization in stroke patients. Medical Information Mart for Intensive Care IV (MIMIC-IV) database of critical care medicine was utilized to retrieve information of stroke patients admitted to the hospital between 2008 and 2019. Patients were randomly allocated into train set and test set at 7:3. Univariate and multivariate logistic regression analyses were used to identify independent risk factors for secondary VTE in stroke patients. A predictive nomogram model was constructed, and the predictive ability of the nomogram was evaluated using receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA). This study included 266 stroke patients, with 26 patients suffering secondary VTE after stroke. A nomogram for predicting risk of secondary VTE in stroke patients was built according to pulmonary infection, partial thromboplastin time (PTT), log-formed D-dimer, and mean corpuscular hemoglobin (MCH). Area under the curve (AUC) of the predictive model nomogram was 0.880 and 0.878 in the train and test sets, respectively. The calibration curve was near the diagonal, and DCA curve presented positive net benefit. This indicates the model's good predictive performance and clinical utility. The nomogram effectively predicts the risk probability of secondary VTE in stroke patients, aiding clinicians in early identification and personalized treatment of stroke patients at risk of developing secondary VTE.
Collapse
Affiliation(s)
- Folin Lan
- Department of Neurosurgery, Longyan First Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Tianqing Liu
- Department of Neurosurgery, Longyan First Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Celin Guan
- Department of Neurosurgery, Longyan First Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Yufen Lin
- Department of Neurosurgery, Longyan First Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Zhiqin Lin
- Department of Neurosurgery, Longyan First Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Huawei Zhang
- Department of Neurosurgery, Longyan First Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Xiaolong Qi
- Department of Neurosurgery, Longyan First Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Xiaomei Chen
- Department of Neurosurgery, Longyan First Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Junlong Huang
- Department of Neurosurgery, Longyan First Affiliated Hospital of Fujian Medical University, Fujian, China
| |
Collapse
|
56
|
Ghani H, Pepke-Zaba J. Chronic Thromboembolic Pulmonary Hypertension: A Review of the Multifaceted Pathobiology. Biomedicines 2023; 12:46. [PMID: 38255153 PMCID: PMC10813488 DOI: 10.3390/biomedicines12010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Chronic thromboembolic pulmonary disease results from the incomplete resolution of thrombi, leading to fibrotic obstructions. These vascular obstructions and additional microvasculopathy may lead to chronic thromboembolic pulmonary hypertension (CTEPH) with increased pulmonary arterial pressure and pulmonary vascular resistance, which, if left untreated, can lead to right heart failure and death. The pathobiology of CTEPH has been challenging to unravel due to its rarity, possible interference of results with anticoagulation, difficulty in selecting the most relevant study time point in relation to presentation with acute pulmonary embolism (PE), and lack of animal models. In this article, we review the most relevant multifaceted cross-talking pathogenic mechanisms and advances in understanding the pathobiology in CTEPH, as well as its challenges and future direction. There appears to be a genetic background affecting the relevant pathological pathways. This includes genetic associations with dysfibrinogenemia resulting in fibrinolysis resistance, defective angiogenesis affecting thrombus resolution, and inflammatory mediators driving chronic inflammation in CTEPH. However, these are not necessarily specific to CTEPH and some of the pathways are also described in acute PE or deep vein thrombosis. In addition, there is a complex interplay between angiogenic and inflammatory mediators driving thrombus non-resolution, endothelial dysfunction, and vascular remodeling. Furthermore, there are data to suggest that infection, the microbiome, circulating microparticles, and the plasma metabolome are contributing to the pathobiology of CTEPH.
Collapse
Affiliation(s)
- Hakim Ghani
- Pulmonary Vascular Disease Unit, Royal Papworth Hospital, Cambridge CB2 0AY, UK;
| | | |
Collapse
|
57
|
Tan Q, Zhou L, Lu Y, Huang W. Comparison of different intervention methods to reduce the incidence of venous thromboembolism: study protocol for a cluster-randomized, crossover trial. Trials 2023; 24:816. [PMID: 38115127 PMCID: PMC10731867 DOI: 10.1186/s13063-023-07868-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/10/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Venous thromboembolism (VTE) remains a priority challenge among orthopedic trauma patients. It is crucial to further improve the prophylaxis against VTE in routine orthopedic treatment. This study aims to compare the efficacy of two low molecular weight heparin (LMWH) regimens and additional intermittent pneumatic compression in preventing VTE among orthopedic trauma patients. METHODS AND ANALYSIS This is a cluster-randomized crossover clinical study conducted in four hospitals in Shanghai from December 2019 to December 2023. The unit of randomization is orthopedic wards, and each ward will define a cluster. All clusters will implement four diverse intervention measures and one control measure in a given random sequence. Perioperative orthopedic trauma patients aged ≥ 18 years with stable vital signs, Caprini score > 2, and no contraindication of anticoagulation or intermittent pneumatic compression (IPC) devices will be eligible. The sample size will be determined to be 2590, considering cluster effect, period effect, and interactions. We will generally use the intention-to-treat (ITT) at the subject level for each outcome. For the primary outcome of the study, the incidence of VTE will be presented as risk ratio and 95% CIs. Generalized estimating equation (GEE) will be deployed to compare differences and adjust cluster effect, period effect, and interaction among interventions and periods if applicable. DISCUSSION VTE is a complication that cannot be underestimated after major orthopedic surgery. Early identification, early assessment, and early prevention can significantly reduce the incidence of VTE. Most guidelines recommend both medical and physical prevention, and we hope to demonstrate how they would affect the incidence among perioperative orthopedic patients. We want to explore if there is a difference between the two types of LWMH with or without an IPC device to provide more evidence for future guidelines and prevent more patients from the threat of VTE. ETHICS AND DISSEMINATION The study received approval from the IRB of the coordinating center and all participating hospitals. Findings will be disseminated through peer-reviewed publications and conference presentations. TRIAL REGISTRATION ChiCTR1900027659. Registered on 17 November 2019.
Collapse
Affiliation(s)
- Qin Tan
- Department of Critical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Lu Zhou
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Yihan Lu
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China.
- National Health Commission Key Laboratory of Health Technology Assessment (Fudan University), 131 Dong' an Road, Shanghai, 200032, China.
| | - Weifeng Huang
- Department of Critical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
58
|
Zelaya H, Arellano-Arriagada L, Fukuyama K, Matsumoto K, Marranzino G, Namai F, Salva S, Alvarez S, Agüero G, Kitazawa H, Villena J. Lacticaseibacillus rhamnosus CRL1505 Peptidoglycan Modulates the Inflammation-Coagulation Response Triggered by Poly(I:C) in the Respiratory Tract. Int J Mol Sci 2023; 24:16907. [PMID: 38069229 PMCID: PMC10707514 DOI: 10.3390/ijms242316907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Lacticaseibacillus rhamnosus CRL1505 beneficially modulates the inflammation-coagulation response during respiratory viral infections. This study evaluated the capacity of the peptidoglycan obtained from the CRL1505 strain (PG-Lr1505) to modulate the immuno-coagulative response triggered by the viral pathogen-associated molecular pattern poly(I:C) in the respiratory tract. Adult BALB/c mice were nasally treated with PG-Lr1505 for two days. Treated and untreated control mice were then nasally challenged with poly(I:C). Mice received three doses of poly(I:C) with a 24 h rest period between each administration. The immuno-coagulative response was studied after the last administration of poly(I:C). The challenge with poly(I:C) significantly increased blood and respiratory pro-inflammatory mediators, decreased prothrombin activity (PT), and increased von Willebrand factor (vWF) levels in plasma. Furthermore, tissue factor (TF), tissue factor pathway inhibitor (TFPI), and thrombomodulin (TM) expressions were increased in the lungs. PG-Lr1505-treated mice showed significant modulation of hemostatic parameters in plasma (PT in %, Control = 71.3 ± 3.8, PG-Lr1505 = 94.0 ± 4.0, p < 0.01) and lungs. Moreover, PG-Lr1505-treated mice demonstrated reduced TF in F4/80 cells from lungs, higher pro-inflammatory mediators, and increased IL-10 compared to poly(I:C) control mice (IL-10 in pg/mL, Control = 379.1 ± 12.1, PG-Lr1505 = 483.9 ± 11.3, p < 0.0001). These changes induced by PG-Lr1505 correlated with a significant reduction in lung tissue damage. Complementary in vitro studies using Raw 264.7 cells confirmed the beneficial effect of PG-Lr1505 on poly(I:C)-induced inflammation, since increased IL-10 expression, as well as reduced damage, production of inflammatory mediators, and hemostatic parameter expressions were observed. In addition, protease-activated receptor-1 (PAR1) activation in lungs and Raw 264.7 cells was observed after TLR3 stimulation, which was differentially modulated by PG-Lr1505. The peptidoglycan from L. rhamnosus CRL1505 is able to regulate inflammation, the procoagulant state, and PAR1 activation in mice and macrophages in the context of the activation of TLR3 signaling pathways, contributing to a beneficial modulation of inflammation-hemostasis crosstalk.
Collapse
Affiliation(s)
- Hortensia Zelaya
- Institute of Applied Biochemistry, Tucuman University, Tucuman 4000, Argentina; (H.Z.); (S.A.); (G.A.)
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina; (L.A.-A.); (G.M.); (S.S.)
| | - Luciano Arellano-Arriagada
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina; (L.A.-A.); (G.M.); (S.S.)
| | - Kohtaro Fukuyama
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan; (K.F.); (K.M.); (F.N.)
| | - Kaho Matsumoto
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan; (K.F.); (K.M.); (F.N.)
| | - Gabriela Marranzino
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina; (L.A.-A.); (G.M.); (S.S.)
- Facultad de Ciencias de la Salud, Universidad del Norte Santo Tomás de Aquino (UNSTA), Tucuman 4000, Argentina
| | - Fu Namai
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan; (K.F.); (K.M.); (F.N.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan
| | - Susana Salva
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina; (L.A.-A.); (G.M.); (S.S.)
| | - Susana Alvarez
- Institute of Applied Biochemistry, Tucuman University, Tucuman 4000, Argentina; (H.Z.); (S.A.); (G.A.)
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina; (L.A.-A.); (G.M.); (S.S.)
| | - Graciela Agüero
- Institute of Applied Biochemistry, Tucuman University, Tucuman 4000, Argentina; (H.Z.); (S.A.); (G.A.)
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan; (K.F.); (K.M.); (F.N.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina; (L.A.-A.); (G.M.); (S.S.)
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan; (K.F.); (K.M.); (F.N.)
| |
Collapse
|
59
|
Chooklin S, Chuklin S. PATHOPHYSIOLOGICAL MECHANISMS OF DEEP VEIN THROMBOSIS. FIZIOLOHICHNYĬ ZHURNAL 2023; 69:133-144. [DOI: 10.15407/fz69.06.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Deep venous thrombosis is a frequent multifactorial disease and most of the time is triggered by the interaction between acquired risk factors, particularly immobility, and hereditary risk factors such as thrombophilias. The mechanisms underlying deep venous thrombosis are not fully elucidated; however, in recent years the role of venous flow, endothelium, platelets, leukocytes, and the interaction between inflammation and hemostasis has been determined. Alteration of venous blood flow produces endothelial activation, favoring the adhesion of platelets and leukocytes, which, through tissue factor expression and neutrophil extracellular traps formation, contribute to the activation of coagulation, trapping more cells, such as red blood cells, monocytes, eosinophils, lymphocytes. The coagulation factor XI-driven propagation phase of blood coagulation plays a major role in venous thrombus growth, but a minor role in hemostasis. In this work, the main mechanisms involved in the pathophysiology of deep vein thrombosis are described.
Collapse
|
60
|
Min L, Bao H, Bu F, Li X, Guo Q, Liu M, Zhu S, Meng J, Zhang S, Wang S. Machine-Learning-Assisted Procoagulant Extracellular Vesicle Barcode Assay toward High-Performance Evaluation of Thrombosis-Induced Death Risk in Cancer Patients. ACS NANO 2023; 17:19914-19924. [PMID: 37791763 DOI: 10.1021/acsnano.3c04615] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Venous thromboembolism (VTE) is the most fatal complication in cancer patients. Unfortunately, the frequent misdiagnosis of VTE owing to the lack of accurate and efficient evaluation approaches may cause belated medical intervention and even sudden death. Herein, we present a rapid, easily operable, highly specific, and highly sensitive procoagulant extracellular vesicle barcode (PEVB) assay composed of TiO2 nanoflower (TiNFs) for visually evaluating VTE risk in cancer patients. TiNFs demonstrate rapid label-free EV capture capability by the synergetic effect of TiO2-phospholipids molecular interactions and topological interactions between TiNFs and EVs. From ordinary plasma samples, the PEVB assay can evaluate potential VTE risk by integrating TiNFs-based EV capture and in situ EV procoagulant ability test with machine-learning-assisted clinical data analysis. We demonstrate the feasibility of this PEVB assay in VTE risk evaluation by screening 167 cancer patients, as well as the high specificity (97.1%) and high sensitivity (96.8%), fully exceeding the nonspecific and posterior traditional VTE test. Together, we proposed a TiNFs platform allowing for highly accurate and timely diagnosis of VTE in cancer patients.
Collapse
Affiliation(s)
- Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, P. R. China
| | - Han Bao
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Fanqin Bu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, P. R. China
| | - Xueqing Li
- Department of Gastroenterology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030001, P. R. China
| | - Qingdong Guo
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, P. R. China
| | - Mingyuan Liu
- Department of Vascular Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, P. R. China
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, P. R. China
| | - Jingxin Meng
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Weiqiao-UCAS Science and Technology Park, Binzhou Institute of Technology, Binzhou City, Shandong Province 256606, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Weiqiao-UCAS Science and Technology Park, Binzhou Institute of Technology, Binzhou City, Shandong Province 256606, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| |
Collapse
|
61
|
Chen T, Huang W, Loh C, Huang H, Chi C. Risk of Incident Venous Thromboembolism Among Patients With Bullous Pemphigoid or Pemphigus Vulgaris: A Nationwide Cohort Study With Meta-Analysis. J Am Heart Assoc 2023; 12:e029740. [PMID: 37642024 PMCID: PMC10547313 DOI: 10.1161/jaha.123.029740] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/15/2023] [Indexed: 08/31/2023]
Abstract
Background Bullous pemphigoid (BP) and pemphigus vulgaris (PV) share similar pathophysiology with venous thromboembolism (VTE) involving platelet activation, immune dysregulation, and systemic inflammation. Nevertheless, their associations have not been well established. Methods and Results To examine the risk of incident VTE among patients with BP or PV, we performed a nationwide cohort study using Taiwan's National Health Insurance Research Database and enrolled 12 162 adults with BP or PV and 12 162 controls. A Cox regression model considering stabilized inverse probability weighting was used to calculate the hazard ratios (HRs) for incident VTE associated with BP or PV. To consolidate the findings, a meta-analysis that incorporated results from the present cohort study with previous literature was also conducted. Compared with controls, patients with BP or PV had an increased risk for incident VTE (HR, 1.87 [95% CI, 1.55-2.26]; P<0.001). The incidence of VTE was 6.47 and 2.20 per 1000 person-years in the BP and PV cohorts, respectively. The risk for incident VTE significantly increased among patients with BP (HR, 1.85 [95% CI, 1.52-2.24]; P<0.001) and PV (HR, 1.99 [95% CI, 1.02-3.91]; P=0.04). In the meta-analysis of 8 studies including ours, BP and PV were associated with an increased risk for incident VTE (pooled relative risk, 2.17 [95% CI, 1.82-2.62]; P<0.001). Conclusions BP and PV are associated with an increased risk for VTE. Preventive approaches and cardiovascular evaluation should be considered particularly for patients with BP or PV with concomitant risk factors such as hospitalization or immobilization.
Collapse
Affiliation(s)
- Tai‐Li Chen
- Department of DermatologyTaipei Veterans General HospitalTaipeiTaiwan
- Department of Medical Education, Medical Administration Office, Hualien Tzu Chi HospitalBuddhist Tzu Chi Medical FoundationHualienTaiwan
| | - Wan‐Ting Huang
- Epidemiology and Biostatistics Center, Hualien Tzu Chi HospitalBuddhist Tzu Chi Medical FoundationHualienTaiwan
| | - Ching‐Hui Loh
- Center for Aging and HealthHualien Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationHualienTaiwan
- School of MedicineTzu Chi UniversityHualienTaiwan
| | - Huei‐Kai Huang
- School of MedicineTzu Chi UniversityHualienTaiwan
- Department of Family MedicineHualien Tzu Chi HospitalBuddhist Tzu Chi Medical FoundationHualienTaiwan
- Department of Medical Research, Hualien Tzu Chi HospitalBuddhist Tzu Chi Medical FoundationHualienTaiwan
| | - Ching‐Chi Chi
- Department of DermatologyChang Gung Memorial Hospital, LinkouTaoyuanTaiwan
- School of MedicineCollege of Medicine, Chang Gung UniversityTaoyuanTaiwan
| |
Collapse
|
62
|
Potere N, Garrad E, Kanthi Y, Di Nisio M, Kaplanski G, Bonaventura A, Connors JM, De Caterina R, Abbate A. NLRP3 inflammasome and interleukin-1 contributions to COVID-19-associated coagulopathy and immunothrombosis. Cardiovasc Res 2023; 119:2046-2060. [PMID: 37253117 PMCID: PMC10893977 DOI: 10.1093/cvr/cvad084] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 01/30/2023] [Accepted: 02/21/2023] [Indexed: 06/01/2023] Open
Abstract
Immunothrombosis-immune-mediated activation of coagulation-is protective against pathogens, but excessive immunothrombosis can result in pathological thrombosis and multiorgan damage, as in severe coronavirus disease 2019 (COVID-19). The NACHT-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome produces major proinflammatory cytokines of the interleukin (IL)-1 family, IL-1β and IL-18, and induces pyroptotic cell death. Activation of the NLRP3 inflammasome pathway also promotes immunothrombotic programs including release of neutrophil extracellular traps and tissue factor by leukocytes, and prothrombotic responses by platelets and the vascular endothelium. NLRP3 inflammasome activation occurs in patients with COVID-19 pneumonia. In preclinical models, NLRP3 inflammasome pathway blockade restrains COVID-19-like hyperinflammation and pathology. Anakinra, recombinant human IL-1 receptor antagonist, showed safety and efficacy and is approved for the treatment of hypoxaemic COVID-19 patients with early signs of hyperinflammation. The non-selective NLRP3 inhibitor colchicine reduced hospitalization and death in a subgroup of COVID-19 outpatients but is not approved for the treatment of COVID-19. Additional COVID-19 trials testing NLRP3 inflammasome pathway blockers are inconclusive or ongoing. We herein outline the contribution of immunothrombosis to COVID-19-associated coagulopathy, and review preclinical and clinical evidence suggesting an engagement of the NLRP3 inflammasome pathway in the immunothrombotic pathogenesis of COVID-19. We also summarize current efforts to target the NLRP3 inflammasome pathway in COVID-19, and discuss challenges, unmet gaps, and the therapeutic potential that inflammasome-targeted strategies may provide for inflammation-driven thrombotic disorders including COVID-19.
Collapse
Affiliation(s)
- Nicola Potere
- Department of Medicine and Ageing Sciences, ‘G. d’Annunzio’ University, Via Luigi Polacchi 11, Chieti 66100, Italy
| | - Evan Garrad
- Laboratory of Vascular Thrombosis and Inflammation, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- University of Missouri School of Medicine, Columbia, MO, USA
| | - Yogendra Kanthi
- Laboratory of Vascular Thrombosis and Inflammation, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marcello Di Nisio
- Department of Medicine and Ageing Sciences, ‘G. d’Annunzio’ University, Via Luigi Polacchi 11, Chieti 66100, Italy
| | - Gilles Kaplanski
- Aix-Marseille Université, INSERM, INRAE, Marseille, France
- Division of Internal Medicine and Clinical Immunology, Assistance Publique - Hôpitaux de Marseille, Hôpital Conception, Aix-Marseille Université, Marseille, France
| | - Aldo Bonaventura
- Department of Internal Medicine, Medicina Generale 1, Medical Center, Ospedale di Circolo e Fondazione Macchi, ASST Sette Laghi, Varese, Italy
| | - Jean Marie Connors
- Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Raffaele De Caterina
- University Cardiology Division, Pisa University Hospital, Pisa, Italy
- Chair and Postgraduate School of Cardiology, University of Pisa, Pisa, Italy
- Fondazione Villa Serena per la Ricerca, Città Sant’Angelo, Pescara, Italy
| | - Antonio Abbate
- Robert M. Berne Cardiovascular Research Center, Department of Medicine, Division of Cardiovascular Medicine, University of Virginia, 415 Lane Rd (MR5), PO Box 801394, Charlottesville, VA 22903, USA
| |
Collapse
|
63
|
Potere N, Abbate A, Kanthi Y, Carrier M, Toldo S, Porreca E, Di Nisio M. Inflammasome Signaling, Thromboinflammation, and Venous Thromboembolism. JACC Basic Transl Sci 2023; 8:1245-1261. [PMID: 37791298 PMCID: PMC10544095 DOI: 10.1016/j.jacbts.2023.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 10/05/2023]
Abstract
Venous thromboembolism (VTE) remains a major health burden despite anticoagulation advances, suggesting incomplete management of pathogenic mechanisms. The NLRP3 (NACHT-, LRR- and pyrin domain-containing protein 3) inflammasome, interleukin (IL)-1, and pyroptosis are emerging contributors to the inflammatory pathogenesis of VTE. Inflammasome pathway activation occurs in patients with VTE. In preclinical models, inflammasome signaling blockade reduces venous thrombogenesis and vascular injury, suggesting that this therapeutic approach may potentially maximize anticoagulation benefits, protecting from VTE occurrence, recurrence, and ensuing post-thrombotic syndrome. The nonselective NLRP3 inhibitor colchicine and the anti-IL-1β agent canakinumab reduce atherothrombosis without increasing bleeding. Rosuvastatin reduces primary venous thrombotic events at least in part through lipid-lowering independent mechanisms, paving the way to targeted anti-inflammatory strategies in VTE. This review outlines recent preclinical and clinical evidence supporting a role for inflammasome pathway activation in venous thrombosis, and discusses the, yet unexplored, therapeutic potential of modulating inflammasome signaling to prevent and manage VTE.
Collapse
Affiliation(s)
- Nicola Potere
- Department of Medicine and Ageing Sciences, “G. d'Annunzio” University, Chieti, Italy
| | - Antonio Abbate
- Robert M. Berne Cardiovascular Research Center, Department of Medicine, Division of Cardiovascular Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Yogendra Kanthi
- Vascular Thrombosis & Inflammation Section, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Marc Carrier
- Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Stefano Toldo
- Robert M. Berne Cardiovascular Research Center, Department of Medicine, Division of Cardiovascular Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Ettore Porreca
- Department of Innovative Technologies in Medicine and Dentistry, School of Medicine and Health Sciences, “G. d'Annunzio” University, Chieti, Italy
| | - Marcello Di Nisio
- Department of Medicine and Ageing Sciences, “G. d'Annunzio” University, Chieti, Italy
| |
Collapse
|
64
|
Lan H, Zheng Q, Wang K, Li C, Xiong T, Shi J, Dong N. Cinnamaldehyde protects donor heart from cold ischemia-reperfusion injury via the PI3K/AKT/mTOR pathway. Biomed Pharmacother 2023; 165:114867. [PMID: 37385214 DOI: 10.1016/j.biopha.2023.114867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/30/2023] [Accepted: 05/10/2023] [Indexed: 07/01/2023] Open
Abstract
With the growing shortage of organs, improvements in donor organ protection are needed to meet the increasing demands for transplantation. Here, the aim was to investigate the protective effect of cinnamaldehyde against ischemia-reperfusion injury (IRI) in donor hearts exposed to prolonged cold ischemia. Donor hearts were harvested from rats pretreated with or without cinnamaldehyde, then subjected to 24 h of cold preservation and 1 h of ex vivo perfusion. Hemodynamic changes, myocardial inflammation, oxidative stress, and myocardial apoptosis were evaluated. The PI3K/AKT/mTOR pathway involved in the cardioprotective effects of cinnamaldehyde was explored through RNA sequencing and western blot analysis. Intriguingly, cinnamaldehyde pretreatment remarkably improved cardiac function through increasing coronary flow, left ventricular systolic pressure, +dp/dtmax, and -dp/dtmax, decreasing coronary vascular resistance and left ventricular end-diastolic pressure. Moreover, our findings indicated that cinnamaldehyde pretreatment protected the heart from IRI by alleviating myocardial inflammation, attenuating oxidative stress, and reducing myocardial apoptosis. Further studies showed that the PI3K/AKT/mTOR pathway was activated after cinnamaldehyde treatment during IRI. The protective effects of cinnamaldehyde were abolished by LY294002. In conclusion, cinnamaldehyde pretreatment alleviated IRI in donor hearts suffering from prolonged cold ischemia. Cinnamaldehyde exerted cardioprotective effects through the activation of the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Hongwen Lan
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Zheng
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kan Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenghao Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tixiusi Xiong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
65
|
Anijs RJS, Cannegieter SC, Versteeg HH, Buijs JT. "MicroRNAs as prognostic biomarkers for (cancer-associated) venous thromboembolism?": reply. J Thromb Haemost 2023; 21:2638-2639. [PMID: 37597903 DOI: 10.1016/j.jtha.2023.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 08/21/2023]
Affiliation(s)
- Rayna J S Anijs
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands; Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands. https://twitter.com/AnijsRayna
| | - Suzanne C Cannegieter
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands; Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Henri H Versteeg
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen T Buijs
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
66
|
Xu D, Hu X, Zhang H, Gao Q, Guo C, Liu S, Tang B, Zhang G, Zhang C, Tang M. Analysis of risk factors for deep vein thrombosis after spinal infection surgery and construction of a nomogram preoperative prediction model. Front Cell Infect Microbiol 2023; 13:1220456. [PMID: 37600944 PMCID: PMC10435901 DOI: 10.3389/fcimb.2023.1220456] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Objective To investigate the differences in postoperative deep venous thrombosis (DVT) between patients with spinal infection and those with non-infected spinal disease; to construct a clinical prediction model using patients' preoperative clinical information and routine laboratory indicators to predict the likelihood of DVT after surgery. Method According to the inclusion criteria, 314 cases of spinal infection (SINF) and 314 cases of non-infected spinal disease (NSINF) were collected from January 1, 2016 to December 31, 2021 at Xiangya Hospital, Central South University, and the differences between the two groups in terms of postoperative DVT were analyzed by chi-square test. The spinal infection cases were divided into a thrombotic group (DVT) and a non-thrombotic group (NDVT) according to whether they developed DVT after surgery. Pre-operative clinical information and routine laboratory indicators of patients in the DVT and NDVT groups were used to compare the differences between groups for each variable, and variables with predictive significance were screened out by least absolute shrinkage and operator selection (LASSO) regression analysis, and a predictive model and nomogram of postoperative DVT was established using multi-factor logistic regression, with a Hosmer- Lemeshow goodness-of-fit test was used to plot the calibration curve of the model, and the predictive effect of the model was evaluated by the area under the ROC curve (AUC). Result The incidence of postoperative DVT in patients with spinal infection was 28%, significantly higher than 16% in the NSINF group, and statistically different from the NSINF group (P < 0.000). Five predictor variables for postoperative DVT in patients with spinal infection were screened by LASSO regression, and plotted as a nomogram. Calibration curves showed that the model was a good fit. The AUC of the predicted model was 0.8457 in the training cohort and 0.7917 in the validation cohort. Conclusion In this study, a nomogram prediction model was developed for predicting postoperative DVT in patients with spinal infection. The nomogram included five preoperative predictor variables, which would effectively predict the likelihood of DVT after spinal infection and may have greater clinical value for the treatment and prevention of postoperative DVT.
Collapse
Affiliation(s)
- Dongcheng Xu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- China for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaojiang Hu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- China for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongqi Zhang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- China for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qile Gao
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- China for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chaofeng Guo
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- China for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shaohua Liu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- China for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Bo Tang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- China for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Guang Zhang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- China for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chengran Zhang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- China for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Mingxing Tang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- China for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
67
|
Zeng G, Li X, Li W, Wen Z, Wang S, Zheng S, Lin X, Zhong H, Zheng J, Sun C. A nomogram model based on the combination of the systemic immune-inflammation index, body mass index, and neutrophil/lymphocyte ratio to predict the risk of preoperative deep venous thrombosis in elderly patients with intertrochanteric femoral fracture: a retrospective cohort study. J Orthop Surg Res 2023; 18:561. [PMID: 37533084 PMCID: PMC10398922 DOI: 10.1186/s13018-023-03966-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/29/2023] [Indexed: 08/04/2023] Open
Abstract
OBJECTIVES Deep vein thrombosis (DVT) has been considered as a frequent and serious consequence of intertrochanteric femoral fractures in the elderly. Several negative repercussions of DVT can be considerably mitigated by its timely recognition and treatment. The current work was aimed at exploring the factors independently predicting DVT among cases suffering from intertrochanteric femoral fractures and validate their predictive usefulness in diagnosing DVT. METHODS Between April 2017 and July 2022, clinical information from 209 cases showing preoperative DVT for femoral intertrochanteric fractures were retrospectively evaluated. In patients with femoral intertrochanteric fractures, logistic regression analysis with a backward stepwise method was adopted for detecting independent predictors for the diagnosis of preoperative DVT. Using multivariate logistic regression, a nomogram prediction model was developed and verified with the testing group. RESULTS According to multivariate logistic regression model, body mass index (BMI) (OR 0.79, 95% CI 0.63-0.99, P = 0.042), neutrophil/lymphocyte ratio (NLR) (OR 7.29, 95% CI 1.53, 34.64, P = 0.0012), and systemic immune-inflammation index (SII) (OR 6.61, 95% CI 2.35, 18.59, P = 0.001) were independent predictors for DVT before surgery among cases developing intertrochanteric femoral fracture. AUC values were 0.862 and 0.767 for training and testing groups, separately, while their mean errors in the calibration curve were 0.027 and 0.038 separately. Decision curve analysis (DCA) curve revealed a high value of clinical application for both groups. CONCLUSION Upon admission, BMI, NLR, and SII are independent predictors of DVT before surgery among cases developing intertrochanteric femoral fractures. Additionally, the nomogram based on the BMI, NLR, and SII can assist clinicians in determining if preventive and symptomatic therapies are required to improve DVT prognosis and reduce its associated mortality.
Collapse
Affiliation(s)
- Guowei Zeng
- Department of the Orthopedics, Huizhou First Hospital, Guangdong Medical University, Huizhou, 516000, Guangdong, China
- Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Xu Li
- Department of the Orthopedics, Huizhou First Hospital, Guangdong Medical University, Huizhou, 516000, Guangdong, China
| | - Wencai Li
- Department of Neurosurgery, Huizhou Central People's Hospital, Huizhou, China
| | - Zhijia Wen
- Department of the Orthopedics, Huizhou First Hospital, Guangdong Medical University, Huizhou, 516000, Guangdong, China
- Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Shenjie Wang
- Department of the Orthopedics, Huizhou First Hospital, Guangdong Medical University, Huizhou, 516000, Guangdong, China
- Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Shaowei Zheng
- Department of the Orthopedics, Huizhou First Hospital, Guangdong Medical University, Huizhou, 516000, Guangdong, China
| | - Xia Lin
- Department of the Orthopedics, Huizhou First Hospital, Guangdong Medical University, Huizhou, 516000, Guangdong, China
- Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Haobo Zhong
- Department of the Orthopedics, Huizhou First Hospital, Guangdong Medical University, Huizhou, 516000, Guangdong, China.
- Guangdong Medical University, Zhanjiang, 524000, Guangdong, China.
| | - Jianping Zheng
- Department of the Orthopedics, Huizhou First Hospital, Guangdong Medical University, Huizhou, 516000, Guangdong, China.
| | - Chunhan Sun
- Department of the Orthopedics, Huizhou First Hospital, Guangdong Medical University, Huizhou, 516000, Guangdong, China.
- Guangdong Medical University, Zhanjiang, 524000, Guangdong, China.
| |
Collapse
|
68
|
Hoofnagle MH, Hess A, Nalugo M, Ghosh S, Hughes SW, Fuchs A, Welsh JD, Kahn ML, Bochicchio GV, Randolph GJ, Leonard JM, Turnbull IR. Defects in vein valve PROX1/FOXC2 antithrombotic pathway in endothelial cells drive the hypercoagulable state induced by trauma and critical illness. J Trauma Acute Care Surg 2023; 95:197-204. [PMID: 37072887 PMCID: PMC10524206 DOI: 10.1097/ta.0000000000003945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
OBJECTIVES Deep venous thrombosis (DVT) causes significant morbidity and mortality after trauma. Recently, we have shown that blood flow patterns at vein valves induce oscillatory stress genes, which maintain an anticoagulant endothelial phenotype that inhibits spontaneous clotting at vein valves and sinuses, is lost in the presence of DVT in human pathological samples, and is dependent on expression of the transcription factor FOXC2. We describe an assay, modifying our mouse multiple injury system, which shows evidence of clinically relevant microthrombosis and hypercoagulability applicable to the study of spontaneous DVT in trauma without requiring direct vascular injury or ligation. Finally, we investigated whether these model findings are relevant to a human model of critical illness by examining gene expression changes by quantitative polymerase chain reaction and immunofluorescence in veins collected from critically ill. METHODS C57/Bl6 mice were subjected to a modified mouse multiple injury model with liver crush injury, crush and pseudofracture of a single lower extremity, and 15% total blood volume hemorrhage. Serum was assayed for d-dimer at 2, 6, 24, and 48 hours after injury by enzyme-linked immunosorbent assay. For the thrombin clotting assay, veins of the leg were exposed, 100 μL of 1 mM rhodamine (6 g) was injected retro-orbitally, and 450 μg/mL thrombin was then applied to the surface of the vein with examination of real-time clot formation via in vivo immunofluorescence microscopy. Images were then examined for percentage area of clot coverage of visible mouse saphenous and common femoral vein. Vein valve specific knockout of FOXC2 was induced with tamoxifen treatment in PROX1 Ert2Cre FOXC2 fl/fl mice as previously described. Animals were then subjected to a modified mouse multiple injury model with liver crush injury, crush and pseudofracture of a single lower extremity, and 15% total blood volume hemorrhage. Twenty-four hours after injury, we examined the valve phenotype in naive versus multiple injury animals, with and without loss of the FOXC2 gene from the vein valve (FOXC2 del ) via the thrombin assay. Images were then examined for proximity of clot formation to the valve present at the junction of the mouse saphenous, tibial, and superficial femoral vein and presence of spontaneous microthrombi present in the veins before exposure to thrombin. Human vein samples were obtained from excess tissue preserved after harvest for elective cardiac surgery and from organ donors after organ procurement. Sections were submitted for paraffin embedding and then assayed by immunofluorescence for PROX1, FOXC2, thrombomodulin, endothelial protein C receptor, and von Willebrand's factor. All animal studies were reviewed and approved by the Institutional Animal Care and Use Committee, and all human studies reviewed and approved by the institutional review board. RESULTS After mouse multiple injuries, enzyme-linked immunosorbent assay for d-dimer showed evidence of products of fibrin breakdown consistent with formation of clot related to injury, fibrinolysis, and/or microthrombosis. The thrombin clotting assay demonstrated higher percentage area of vein covered with clot when exposed to thrombin in the multiple injury animals compared with uninjured (45% vs. 27% p = 0.0002) consistent with a phenotype of hypercoagulable state after trauma in our model system. Unmanipulated FoxC2 knockout mice manifest increased clotting at the vein valve as compared with unmanipulated wild type animals. After multiple injuries, wild type mice manifest increase clotting at the vein after thrombin exposure ( p = 0.0033), and equivalent to that of valvular knockout of FoxC2 (FoxC2del), recapitulating the phenotype seen in FoxC2 knockout animals. The combination of multiple injuries and FoxC2 knockout resulted in spontaneous microthrombi in 50% of the animals, a phenotype not observed with either multiple injuries or FoxC2 deficiency alone (χ 2 , p = 0.017). Finally, human vein samples demonstrated the protective vein valve phenotype of increased FOXC2 and PROX1 and showed decreased expression in the critically ill organ donor population by immunofluorescence imaging in organ donor samples. CONCLUSION We have established a novel model of posttrauma hypercoagulation that does not require direct restriction of venous flow or direct injury to the vessel endothelium to assay for hypercoagulability and can generate spontaneous microthrombosis when combined with valve-specific FOXC2 knockout. We find that multiple injuries induce a procoagulant phenotype that recapitulates the valvular hypercoagulability seen in FOXC2 knockout and, in critically ill human specimens, find evidence for loss of oscillatory shear stress-induced gene expression of FOXC2 and PROX1 in the valvular endothelium consistent with potential loss of DVT-protective valvular phenotype.
Collapse
Affiliation(s)
- Mark H Hoofnagle
- From the Section of Acute and Critical Care Surgery, Department of Surgery (M.H.H., A.H., S.G., S.-W.H., A.F., G.V.B., J.M.L., I.R.T.), Section of Vascular Surgery, Department of Surgery (M.N.), and Department of Pathology (G.J.R.), School of Medicine, Washington University in Saint Louis, St. Louis, Missouri; Osciflex LLC (J.D.W.); and Department of Medicine (M.L.K.), Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Kamstrup P, Rastoder E, Hellmann PH, Sivapalan P, Larsen EL, Vestbo J, Ulrik CS, Goetze JP, Knop FK, Jensen JUS. Effect of 10-Day Treatment with 50 mg Prednisolone Once-Daily on Haemostasis in Healthy Men-A Randomised Placebo-Controlled Trial. Biomedicines 2023; 11:2052. [PMID: 37509691 PMCID: PMC10377059 DOI: 10.3390/biomedicines11072052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Synthetic corticosteroids are widely used due to their anti-inflammatory and immunosuppressant effects. Their use has been associated with venous thromboembolism, but it is unknown whether thromboembolism has a causal relationship with corticosteroid treatment. In a randomised, double-blind, placebo-controlled trial in normal to overweight healthy men, the effect of the corticosteroid prednisolone on haemostasis using either 50 mg prednisolone or matching placebo once daily for ten days was investigated. The primary outcome was a change from baseline in the viscoelastic measurement maximal amplitude of clot in kaolin-activated thromboelastography (TEG). Changes from baseline in other TEG measurements, D-dimer, von Willebrand factor (VWF) antigen, and ristocetin cofactor activity (RCo), antithrombin, protein C, prothrombin, fibrinogen, INR, APTT, and platelet count were secondary outcomes. Thirty-four men participated in this study. Compared to placebo, prednisolone treatment did not affect maximal amplitude of clot (difference -0.77 (95% confidence interval (CI) -2.48, 0.94) mm, p = 0.37, missing: n = 2), but it altered VWF antigen (28%, p = 0.0004), VWF:RCo (19%, p = 0.0006), prothrombin (5%, p = 0.05), protein C (31%, p < 0.0001), antithrombin (5%, p = 0.013), and fibrinogen (-15%, p = 0.004). Thus, prednisolone treatment did not alter TEG-assessed maximal amplitude of clot, despite that it affected prothrombotic markers (increased prothrombin, VWF antigen, VWF:RCo, prothrombin, and decreased fibrinogen) and increased antithrombotic markers (protein C and antithrombin).
Collapse
Affiliation(s)
- Peter Kamstrup
- Section of Respiratory Medicine, Department of Medicine, Copenhagen University Hospital-Herlev and Gentofte, 2900 Hellerup, Denmark
| | - Ema Rastoder
- Section of Respiratory Medicine, Department of Medicine, Copenhagen University Hospital-Herlev and Gentofte, 2900 Hellerup, Denmark
| | - Pernille Høgh Hellmann
- Center for Clinical Metabolic Research, Department of Medicine, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
| | - Pradeesh Sivapalan
- Section of Respiratory Medicine, Department of Medicine, Copenhagen University Hospital-Herlev and Gentofte, 2900 Hellerup, Denmark
| | - Emil List Larsen
- Department of Clinical Biochemistry, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
| | - Jørgen Vestbo
- Allergi og Lungeklinikken Vanløse, 2720 Vanløse, Denmark
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Charlotte Suppli Ulrik
- Department of Respiratory Medicine, Copenhagen University Hospital-Hvidovre, 2650 Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens P Goetze
- Department of Clinical Biochemistry, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Filip Krag Knop
- Center for Clinical Metabolic Research, Department of Medicine, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
| | - Jens Ulrik Stæhr Jensen
- Section of Respiratory Medicine, Department of Medicine, Copenhagen University Hospital-Herlev and Gentofte, 2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
70
|
Yu J, Yang J, He Q, Zhang Z, Xu G. Comprehensive bioinformatics analysis reveals the crosstalk genes and immune relationship between the systemic lupus erythematosus and venous thromboembolism. Front Immunol 2023; 14:1196064. [PMID: 37465678 PMCID: PMC10350530 DOI: 10.3389/fimmu.2023.1196064] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/30/2023] [Indexed: 07/20/2023] Open
Abstract
Background It is well known that patients with systemic lupus erythematosus (SLE) had a high risk of venous thromboembolism (VTE). This study aimed to identify the crosstalk genes between SLE and VTE and explored their clinical value and molecular mechanism initially. Methods We downloaded microarray datasets of SLE and VTE from the Gene Expression Omnibus (GEO) dataset. Differential expression analysis was applied to identify the crosstalk genes (CGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed on the shared genes. The shared diagnostic biomarkers of the two diseases were further screened from CGs using least absolute shrinkage and selection operator (Lasso) regression. Two risk scores for SLE and VTE were constructed separately to predict the likelihood of illness according to the diagnostic biomarkers using a logical regression algorithm. The immune infiltration levels of SEL and VTE were estimated via the CIBERSORT algorithm and the relationship of CGs with immune cell infiltration was investigated. Finally, we explored potential phenotype subgroups in SLE and VTE based on the expression level of CGs through the consensus clustering method and studied immune cell infiltration in different subtypes. Result A total of 171 CGs were obtained by the intersection of differentially expressed genes (DEGs) between SLE and VTE cohorts. The functional enrichment shown these CGs were mainly related to immune pathways. After screening by lasso regression, we found that three hub CGs (RSAD2, HSP90AB1, and FPR2) were the optimal shared diagnostic biomarkers for SLE and VTE. Based on the expression level of RSAD2 and HSP90AB1, two risk prediction models for SLE and VTE were built by multifactor logistic regression and systemically validated in internal and external validation datasets. The immune infiltration results revealed that CGs were highly correlated with multiple infiltrated immunocytes. Consensus clustering was used to respectively regroup SLE and VTE patients into C1 and C2 clusters based on the CGs expression profile. The levels of immune cell infiltration and immune activation were higher in C1 than in C2 subtypes. Conclusion In our study, we further screen out diagnostic biomarkers from crosstalk genes SLE and VTE and built two risk scores. Our findings reveal a close relationship between CGs and the immune microenvironment of diseases. This provides clues for further exploring the common mechanism and interaction between the two diseases.
Collapse
Affiliation(s)
- Jingfan Yu
- Department of Vascular Surgery and Intervention, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Jian Yang
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qifan He
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhixuan Zhang
- Department of Vascular Surgery and Intervention, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Guoxiong Xu
- Department of Vascular Surgery and Intervention, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| |
Collapse
|
71
|
Wang D, Cui SP, Chen Q, Ren ZY, Lyu SC, Zhao X, Lang R. The coagulation-related genes for prognosis and tumor microenvironment in pancreatic ductal adenocarcinoma. BMC Cancer 2023; 23:601. [PMID: 37386391 DOI: 10.1186/s12885-023-11032-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a malignancy characterized by challenging early diagnosis and poor prognosis. It is believed that coagulation has an impact on the tumor microenvironment of PDAC. The aim of this study is to further distinguish coagulation-related genes and investigate immune infiltration in PDAC. METHODS We gathered two subtypes of coagulation-related genes from the KEGG database, and acquired transcriptome sequencing data and clinical information on PDAC from The Cancer Genome Atlas (TCGA) database. Using an unsupervised clustering method, we categorized patients into distinct clusters. We investigated the mutation frequency to explore genomic features and performed enrichment analysis, utilizing Gene Ontology (GO) and Kyoto Encyclopedia of Genes (KEGG) to explore pathways. CIBERSORT was used to analyze the relationship between tumor immune infiltration and the two clusters. A prognostic model was created for risk stratification, and a nomogram was established to assist in determining the risk score. The response to immunotherapy was assessed using the IMvigor210 cohort. Finally, PDAC patients were recruited, and experimental samples were collected to validate the infiltration of neutrophils using immunohistochemistry. In addition, and identify the ITGA2 expression and function were identified by analyzing single cell sequencing data. RESULTS Two coagulation-related clusters were established based on the coagulation pathways present in PDAC patients. Functional enrichment analysis revealed different pathways in the two clusters. Approximately 49.4% of PDAC patients experienced DNA mutation in coagulation-related genes. Patients in the two clusters displayed significant differences in terms of immune cell infiltration, immune checkpoint, tumor microenvironment and TMB. We developed a 4-gene prognostic stratified model through LASSO analysis. Based on the risk score, the nomogram can accurately predict the prognosis in PDAC patients. We identified ITGA2 as a hub gene, which linked to poor overall survival (OS) and short disease-free survival (DFS). Single-cell sequencing analysis demonstrated that ITGA2 was expressed by ductal cells in PDAC. CONCLUSIONS Our study demonstrated the correlation between coagulation-related genes and the tumor immune microenvironment. The stratified model can predict the prognosis and calculate the benefits of drug therapy, thus providing the recommendations for clinical personalized treatment.
Collapse
Affiliation(s)
- Di Wang
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongtinan Road, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Song-Ping Cui
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongtinan Road, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Qing Chen
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongtinan Road, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Zhang-Yong Ren
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongtinan Road, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Shao-Cheng Lyu
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongtinan Road, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Xin Zhao
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongtinan Road, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Ren Lang
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongtinan Road, Chaoyang District, Beijing, 100020, People's Republic of China.
| |
Collapse
|
72
|
Ahrén J, Pirouzifard M, Holmquist B, Sundquist J, Halling A, Sundquist K, Zöller B. A hypothesis - generating Swedish extended national cross-sectional family study of multimorbidity severity and venous thromboembolism. BMJ Open 2023; 13:e072934. [PMID: 37328186 PMCID: PMC10277039 DOI: 10.1136/bmjopen-2023-072934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/02/2023] [Indexed: 06/18/2023] Open
Abstract
OBJECTIVES Venous thromboembolism (VTE) is a common worldwide disease. The burden of multimorbidity, that is, two or more chronic diseases, has increased. Whether multimorbidity is associated with VTE risk remains to be studied. Our aim was to determine any association between multimorbidity and VTE and any possible shared familial susceptibility. DESIGN A nationwide extended cross-sectional hypothesis - generating family study between 1997 and 2015. SETTING The Swedish Multigeneration Register, the National Patient Register, the Total Population Register and the Swedish cause of death register were linked. PARTICIPANTS 2 694 442 unique individuals were analysed for VTE and multimorbidity. MAIN OUTCOMES AND MEASURES Multimorbidity was determined by a counting method using 45 non-communicable diseases. Multimorbidity was defined by the occurrence of ≥2 diseases. A multimorbidity score was constructed defined by 0, 1, 2, 3, 4 or 5 or more diseases. RESULTS Sixteen percent (n=440 742) of the study population was multimorbid. Of the multimorbid patients, 58% were females. There was an association between multimorbidity and VTE. The adjusted odds ratio (OR) for VTE in individuals with multimorbidity (2 ≥ diagnoses) was 3.16 (95% CI: 3.06 to 3.27) compared with individuals without multimorbidity. There was an association between number of diseases and VTE. The adjusted OR was 1.94 (95% CI: 1.86 to 2.02) for one disease, 2.93 (95% CI: 2.80 to 3.08) for two diseases, 4.07 (95% CI: 3.85 to 4.31) for three diseases, 5.46 (95% CI: 5.10 to 5.85) for four diseases and 9.08 (95% CI: 8.56 to 9.64) for 5 ≥ diseases. The association between multimorbidity and VTE was stronger in males OR 3.45 (3.29 to 3.62) than in females OR 2.91 (2.77 to 3.04). There were significant but mostly weak familial associations between multimorbidity in relatives and VTE. CONCLUSIONS Increasing multimorbidity exhibits a strong and increasing association with VTE. Familial associations suggest a weak shared familial susceptibility. The association between multimorbidity and VTE suggests that future cohort studies where multimorbidity is used to predict VTE might be worthwhile.
Collapse
Affiliation(s)
- Jonatan Ahrén
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University/Region Skåne, Malmö, Sweden
| | - MirNabi Pirouzifard
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University/Region Skåne, Malmö, Sweden
| | | | - Jan Sundquist
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University/Region Skåne, Malmö, Sweden
| | - Anders Halling
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University/Region Skåne, Malmö, Sweden
| | - Kristina Sundquist
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University/Region Skåne, Malmö, Sweden
| | - Bengt Zöller
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University/Region Skåne, Malmö, Sweden
| |
Collapse
|
73
|
Yuan H, Huang X, Ding J. Toll-like receptor 4 deficiency in mice impairs venous thrombus resolution. Front Mol Biosci 2023; 10:1165589. [PMID: 37251076 PMCID: PMC10213506 DOI: 10.3389/fmolb.2023.1165589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/13/2023] [Indexed: 05/31/2023] Open
Abstract
Objective: Toll-like receptor 4 (TLR4) is crucial to the development of sterile inflammatory responses. The deep venous thrombosis resolution (DVT) is similar to sterile inflammation, so we hypothesize that TLR4 is involved. Methods and Results: We evaluated the effects of TLR4 deficiency on thrombus lysis in vivo, and explored the mechanisms in vitro. DVT mouse model was established by inferior vena cava (IVC) ligation. After the IVC ligation (1, 3, and 7 d), the mice were euthanized to collect the venous thrombus. The Tlr4-/- mice had significantly elevated weight/length ratios of thrombi at 3 and 7 d and increased collagen content at 3 d after IVC ligation, in addition to significantly lesser intrathrombus infiltration of neutrophils and macrophages, lower monocyte chemoattractant protein-1 (MCP-1) and matrix metalloproteinase-9 (MMP-9) expression in thrombus tissue sections and homogenates, and lower pro-MMP-9 activity at 3 d after IVC ligation than wild-type mice. After 7 days of IVC ligation, VEGF, IFNβ, and MCP-5 protein expression were decreased in venous thrombus from Tlr4-/- mice. 2 ml of 3% thioglycolate was injected intraperitoneally and peritoneal exudate was collected 3 days later from Tlr4-/- and wild type mice respectively. The intraperitoneal macrophages were isolated from adherent culture after centrifugation. Lipopolysaccharide (LPS) can activate TLR4/NF-κB signalling pathway in a concentration-dependent manner, initiated p65 nuclear translocation, IκBα phosphorylation and degradation, MMP-9 and MCP-1 transcription in WT intraperitoneal macrophages but not in Tlr4-/- intraperitoneal macrophages. Conclusion: TLR4 is involved in venous thrombosis resolution through NF-κB pathway. Loss of TLR4 in mice impairs the process.
Collapse
|
74
|
Ben S, Huang X, Shi Y, Xu Z, Xiao H. Change in cytokine profiles released by mast cells mediated by lung cancer-derived exosome activation may contribute to cancer-associated coagulation disorders. Cell Commun Signal 2023; 21:97. [PMID: 37143160 PMCID: PMC10161433 DOI: 10.1186/s12964-023-01110-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/22/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Coagulation disorders are a significant cause of lung cancer mortality. Although mast cells are known to play a role in coagulation abnormalities, their specific role in this process has not yet been elucidated. METHOD We detected mast cells in the tumor microenvironment using single-cell sequencing data and examined their correlation with thrombosis-related genes, neutrophil-related genes, neutrophil extracellular trap-related signature genes, and immune infiltration levels in lung cancer patients through bioinformatics analysis. Bone marrow mast cell uptake of exosomes isolated from the lung adenocarcinoma cell line A549, which were labeled using PKH67, was observed using confocal microscopy. Mast cell degranulation was detected by measuring the β-hexosaminidase release rate. Additionally, cytokine array analysis was performed to identify altered mediators released by bone marrow mast cells after uptake of the exosomes. RESULTS In our study, we found a close correlation between the proportion of mast cells in lung cancer patients and the expression levels of thrombosis-related genes and neutrophil extracellular trap signature genes, both of which play a key role in thrombophilic disorder. Moreover, we discovered that lung cancer cell-derived exosomes can be taken up by mast cells, which in turn become activated to release procoagulant mediators. CONCLUSION Our study shows that exosomes derived from lung cancer cells can activate mast cells to release procoagulants that may contribute to abnormal blood clotting in lung cancer patients. Video Abstract.
Collapse
Affiliation(s)
- Suqin Ben
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiulin Huang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongxin Shi
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziheng Xu
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Xiao
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
75
|
Dhanesha N, Ansari J, Pandey N, Kaur H, Virk C, Stokes KY. Poststroke venous thromboembolism and neutrophil activation: an illustrated review. Res Pract Thromb Haemost 2023; 7:100170. [PMID: 37274177 PMCID: PMC10236222 DOI: 10.1016/j.rpth.2023.100170] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 06/06/2023] Open
Abstract
Patients with acute ischemic stroke are at a high risk of venous thromboembolism (VTE), such as deep vein thrombosis (DVT), estimated to affect approximately 80,000 patients with stroke each year in the United States. The prevalence of symptomatic DVT after acute stroke is approximately 10%. VTE is associated with increased rates of in-hospital death and disability, with higher prevalence of in-hospital complications and increased 1-year mortality in patients with stroke. Current guidelines recommend the use of pharmacologic VTE prophylaxis in patients with acute ischemic stroke. However, thromboprophylaxis prevents only half of expected VTE events and is associated with high risk of bleeding, suggesting the need for targeted alternative treatments to reduce VTE risk in these patients. Neutrophils are among the first cells in blood to respond after ischemic stroke. Importantly, coordinated interactions among neutrophils, platelets, and endothelial cells contribute to the development of DVT. In case of stroke and other related immune disorders, such as antiphospholipid syndrome, neutrophils potentiate thrombus propagation through the formation of neutrophil-platelet aggregates, secreting inflammatory mediators, complement activation, releasing tissue factor, and producing neutrophil extracellular traps. In this illustrated review article, we present epidemiology and management of poststroke VTE, preclinical and clinical evidence of neutrophil hyperactivation in stroke, and mechanisms for neutrophil-mediated VTE in the context of stroke. Given the hyperactivation of circulating neutrophils in patients with stroke, we propose that a better understanding of molecular mechanisms leading to neutrophil activation may result in the development of novel therapeutics to reduce the risk of VTE in this patient population.
Collapse
Affiliation(s)
- Nirav Dhanesha
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, USA
| | - Junaid Ansari
- Department of Neurology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, USA
| | - Nilesh Pandey
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, USA
| | - Harpreet Kaur
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, USA
| | - Chiranjiv Virk
- Division of Vascular Surgery and Endovascular Surgery, Louisiana State University Health Sciences Center at Shreveport, Shreveport, USA
| | - Karen Y. Stokes
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, USA
| |
Collapse
|
76
|
Wang JF, Sun BW, Marshall JC. Editorial: Neutrophil death regulation in critical illness. Front Immunol 2023; 14:1181056. [PMID: 37006251 PMCID: PMC10050726 DOI: 10.3389/fimmu.2023.1181056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Affiliation(s)
- Jia-feng Wang
- Faculty of Anesthesiology, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Bing-wei Sun
- Department of Burns and Plastic Surgery, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- *Correspondence: Bing-wei Sun, ; John C. Marshall,
| | - John C. Marshall
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, Toronto, ON, Canada
- Department of Surgery, St Michael’s Hospital, Toronto, ON, Canada
- Department of Critical Care Medicine, St Michael’s Hospital, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- *Correspondence: Bing-wei Sun, ; John C. Marshall,
| |
Collapse
|
77
|
Song Y, He Y, Rong L, Wang Z, Ma Y, Zhang N, Wang B. "Platelet-coated bullets" biomimetic nanoparticles to ameliorate experimental colitis by targeting endothelial cells. BIOMATERIALS ADVANCES 2023; 148:213378. [PMID: 36963342 DOI: 10.1016/j.bioadv.2023.213378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023]
Abstract
Intestinal vascular impairment is critical to the recovery of inflammatory bowel disease (IBD), and targeting vascular endothelial cells is a promising emerging therapeutic option. Considering the natural homing properties of platelets to activated vascular endothelium, platelet membrane-mimetic nanoparticles are expected to achieve precise treatment of IBD. Patchouli alcohol (PA) has proven efficacy in experimental colitis, yet its pharmacochemical properties require improvement to enhance efficacy. The rationale for targeting vascular lesions in IBD was analyzed by network pharmacology, and PA-affecting pathways were predicted. PA-encapsulated bio-nanoparticles (PNPs) were constructed to investigate the efficacy of agents on mouse intestinal microvascular endothelial cells (MIMVEC) inflammation model and dextran sulfate sodium (DSS)-induced acute mouse colitis model. PNPs were endocytosed by MIMVEC in vitro and efficiently enriched in inflamed colon. PNPs significantly alleviated the symptoms of experimental colitis and improved neutrophil infiltration. PNPs down-regulated LPS-induced aberrant elevation of il1β, tnfα and il6 mRNAs and reduced p65 phosphorylation in MIMVEC. Intracellular calcium expression, mitochondrial respiration and reactive oxygen species expression were also downregulated by PNPs. PNPs amplified the potency of PA as a calcium antagonist, restrained intracellular Ca2+ perturbations to prevent endothelial activation, which may block leukocyte recruitment in vivo to improve colitis.
Collapse
Affiliation(s)
- Yijie Song
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yihao He
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Lan Rong
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zhicheng Wang
- Department of Transfusion Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yueming Ma
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Ning Zhang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Bing Wang
- Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
78
|
Whitehead B, Velazquez-Cruz R, Albowaidey A, Zhang N, Karelina K, Weil ZM. Mild Traumatic Brain Injury Induces Time- and Sex-Dependent Cerebrovascular Dysfunction and Stroke Vulnerability. J Neurotrauma 2023; 40:578-591. [PMID: 36322789 PMCID: PMC9986031 DOI: 10.1089/neu.2022.0335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mild traumatic brain injury (mTBI) produces subtle cerebrovascular impairments that persist over time and promote increased ischemic stroke vulnerability. We recently established a role for vascular impairments in exacerbating stroke outcomes 1 week after TBI, but there is a lack of research regarding long-term impacts of mTBI-induced vascular dysfunction, as well as a significant need to understand how mTBI promotes stroke vulnerability in both males and females. Here, we present data using a mild closed head TBI model and an experimental stroke occurring either 7 or 28 days later in both male and female mice. We report that mTBI induces larger stroke volumes 7 days after injury, however, this increased vulnerability to stroke persists out to 28 days in female but not male mice. Importantly, mTBI-induced changes in blood-brain barrier permeability, intravascular coagulation, angiogenic factors, total vascular area, and glial expression were differentially altered across time and by sex. Taken together, these data suggest that mTBI can result in persistent cerebrovascular dysfunction and increased susceptibility to worsened ischemic outcomes, although these dysfunctions occur differently in male and female mice.
Collapse
Affiliation(s)
- Bailey Whitehead
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA
| | - Ruth Velazquez-Cruz
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA
| | - Ali Albowaidey
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA
| | - Ning Zhang
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA
| | - Kate Karelina
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA
| | - Zachary M. Weil
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
79
|
Butt AL, Wyatt EC, Tanaka KA, Stewart K. Comment on "Association of Intraoperative Red Blood Cell Transfusions With Venous Thromboembolism and Adverse Outcomes After Cardiac Surgery". ANNALS OF SURGERY OPEN 2023; 4:e242. [PMID: 37600877 PMCID: PMC10431451 DOI: 10.1097/as9.0000000000000242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 01/31/2023] Open
Affiliation(s)
- Amir L. Butt
- From the Department of Anesthesiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Elyse C. Wyatt
- Department of Anesthesiology, University of Oklahoma College of Medicine, Oklahoma City, OK
| | - Kenichi A. Tanaka
- From the Department of Anesthesiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Kenneth Stewart
- Department of Surgery and Anesthesiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
80
|
Salem M, El-Bardissy A, Elshafei MN, Khalil A, Mahmoud H, Fahmi AM, Kasem M, Bader L, Sherbash M, Elawady MI, Abdalazim W, Howady F, Elewa H. Warfarin-Rifampin-Gene (WARIF-G) Interaction: A Retrospective, Genetic, Case-Control Study. Clin Pharmacol Ther 2023; 113:1150-1159. [PMID: 36789833 DOI: 10.1002/cpt.2871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/05/2023] [Indexed: 02/16/2023]
Abstract
Warfarin is extensively metabolized by cytochrome P450 2C9 (CYP2C9). Concomitant use with the potent CYP2C9 inducer, rifampin, requires close monitoring and dosage adjustments. Although, in theory, warfarin dose increase should overcome this interaction, most reported cases over the last 50 years have not responded even to high warfarin doses, but some have responded to modest doses. To investigate the genetic polymorphisms' impact on this unexplained interpatient variability, we performed genotyping of CYP2C9, VKORC1, and CYP4F2 for warfarin and rifampin concomitant receivers from 2016 to 2022 at Hamad Medical Corporation, Doha, Qatar. We identified and included 36 patients: 22 responders and 14 nonresponders. Warfarin-responders were significantly more likely to have one or more warfarin-sensitizing CYP2C9/VKORC1 alleles than nonresponders (odds ratio = 23.2, 95% confidence interval = 3.2-195.6; P = 0.0001). The mean genetic-based pre-interaction calculated dose was significantly lower for responders than for nonresponders (P < 0.001); and was negatively correlated with warfarin sensitivity index (WSI) (r = -0.58; P = 0.0002). The median percentage time in therapeutic range and mean WSI were significantly higher in the warfarin-sensitizing CYP2C9/VKORC1 alleles carriers than noncarriers (P = 0.017 and 0.0004, respectively). Whereas the warfarin-sensitizing CYP2C9/VKORC1 genotypes were associated with modest on-rifampin warfarin dose requirements, the noncarriers would have required more than double these doses to respond. Warfarin-sensitizing CYP2C9/VKORC1 genotypes and low genetic-based warfarin calculated doses were associated with higher warfarin sensitivity and better anticoagulation quality in patients receiving rifampin concomitantly.
Collapse
Affiliation(s)
- Muhammad Salem
- Clinical Pharmacy Department, Hamad Medical Corporation, Doha, Qatar
| | - Ahmed El-Bardissy
- Clinical Pharmacy Department, Hamad Medical Corporation, Doha, Qatar
| | | | - Ahmed Khalil
- Clinical Pharmacy Department, Hamad Medical Corporation, Doha, Qatar
| | - Hesham Mahmoud
- Clinical Pharmacy Department, Hamad Medical Corporation, Doha, Qatar
| | - Amr Mohamed Fahmi
- Clinical Pharmacy Department, Hamad Medical Corporation, Doha, Qatar.,College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Mohamed Kasem
- Clinical Pharmacy Department, Hamad Medical Corporation, Doha, Qatar
| | - Loulia Bader
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Mohamed Sherbash
- Clinical Pharmacy Department, Hamad Medical Corporation, Doha, Qatar.,College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | | | - Walaa Abdalazim
- Infectious Diseases Department, Hamad Medical Corporation, Doha, Qatar
| | - Faraj Howady
- Infectious Diseases Department, Hamad Medical Corporation, Doha, Qatar
| | - Hazem Elewa
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
81
|
Wang F, Chemakin K, Shamamian P, Punn I, Campbell T, Ricci JA. Rectus Plication Does Not Increase Risk of Thromboembolic Events Following Abdominal Body Contouring: A Matched Case-Control Analysis. Aesthet Surg J 2022; 42:1435-1444. [PMID: 36074733 DOI: 10.1093/asj/sjac195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Rectus abdominis plication increases intra-abdominal pressure and lower-extremity venous stasis, which may increase the incidence of venous thromboembolism (VTE) events. OBJECTIVES The aim of this study was to investigate the potential association between VTE and rectus abdominis muscle plication during surgery. METHODS A retrospective review of all patients who underwent abdominal body contouring at the authors' institution between 2010 and 2020 was completed. Cases were those with postoperative VTEs and were matched to controls (1:4) via potential confounders. Variables collected include demographic data, operative details, comorbidities, and postoperative complications. Statistical analysis was performed with parametric, nonparametric, and multivariable regression modeling. RESULTS Overall, 1198 patients were included; 19 (1.59%) experienced a postoperative VTE and were matched to 76 controls. The overall cohort was 92.7% female with an average age of 44 years, an average Charlson Comorbidity Index of 1 point, and an average BMI of 30.1 kg/m2. History of cerebrovascular events (14.5% vs 36.8%, P = 0.026) differed significantly between cohorts, but no significant associations were noted in all other baseline demographics. Additionally, VTE cases were more likely to have received intraoperative blood transfusions (odds ratio = 8.4, P = 0.04). Bivariate analysis demonstrated cases were significantly more likely to experience concurrent complications, including delayed wound healing (0% vs 5.3%, P = 0.044), seroma formation (5.3% vs 21.1%, P = 0.027), and fat necrosis (0% vs 5.3%, P = 0.044). However, these findings were not significant in a multivariable regression model. Plication was not associated with VTE outcomes. CONCLUSIONS Rectus plication does not increase the risk of VTE. However, the odds of VTE are significantly increased in patients who received intraoperative blood products compared with those who did not. LEVEL OF EVIDENCE: 3
Collapse
Affiliation(s)
- Fei Wang
- Division of Plastic Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, New York, NY, USA
| | - Katherine Chemakin
- Division of Plastic Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, New York, NY, USA
| | - Peter Shamamian
- Division of Plastic Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, New York, NY, USA
| | - Isha Punn
- Division of Plastic Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, New York, NY, USA
| | - Tessa Campbell
- Division of Plastic Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, New York, NY, USA
| | - Joseph A Ricci
- Division of Plastic Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, New York, NY, USA
| |
Collapse
|
82
|
Deischinger C, Dervic E, Nopp S, Kaleta M, Klimek P, Kautzky-Willer A. Diabetes mellitus is associated with a higher relative risk for venous thromboembolism in females than in males. Diabetes Res Clin Pract 2022; 194:110190. [PMID: 36471550 DOI: 10.1016/j.diabres.2022.110190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/12/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
AIMS The risk for developing venous thromboembolism (VTE) is about equal in both sexes. Research suggests diabetes mellitus (DM) is a risk factor for pulmonary embolism and deep vein thrombosis, both forms of VTE. We aimed at investigating the sex-specific impact of DM on VTE risk. MATERIALS AND METHODS Medical claims data were analyzed in a retrospective, population-level cohort study in Austria between 1997 and 2014. 180,034 patients with DM were extracted and compared to 540,102 sex and age-matched controls without DM in terms of VTE risk and whether specific DM medications might modulate VTE risk. RESULTS The risk to develop VTE was 1.4 times higher amongst patients with DM than controls (95% CI 1.36-1.43, p < 0.001). The association of DM with newly diagnosed VTE was significantly greater in females (OR = 1.52, 95% CI 1.46-1.58, p < 0.001) resulting in a relative risk increase of 1.17 (95% CI 1.11-1.23) across all age groups with a peak of 1.65 (95% CI 1.43-1.89) between 50 and 59 years. Dipeptidyl peptidase 4 inhibitors were associated with a higher risk for VTE amongst female DM patients (OR = 2.3, 95% CI 1.3-4.3, p = 0.0096). CONCLUSION Amongst DM patients, females appear to be associated with a higher relative risk increase in VTE than males, especially during perimenopause.
Collapse
Affiliation(s)
- Carola Deischinger
- Department of Internal Medicine III, Clinical Division of Endocrinology and Metabolism, Gender Medicine Unit, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Elma Dervic
- Section for Science of Complex Systems, CeMSIIS, Medical University of Vienna, Spitalgasse 23, Vienna, Austria; Complexity Science Hub Vienna, Josefstädter Straße 39, 1080 Vienna, Austria
| | - Stephan Nopp
- Department of Internal Medicine I, Clinical Division of Hematology and Hemostaseology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Michaela Kaleta
- Section for Science of Complex Systems, CeMSIIS, Medical University of Vienna, Spitalgasse 23, Vienna, Austria; Complexity Science Hub Vienna, Josefstädter Straße 39, 1080 Vienna, Austria
| | - Peter Klimek
- Section for Science of Complex Systems, CeMSIIS, Medical University of Vienna, Spitalgasse 23, Vienna, Austria; Complexity Science Hub Vienna, Josefstädter Straße 39, 1080 Vienna, Austria
| | - Alexandra Kautzky-Willer
- Department of Internal Medicine III, Clinical Division of Endocrinology and Metabolism, Gender Medicine Unit, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; Gender Institute, Gars am Kamp, Austria.
| |
Collapse
|
83
|
Ma Y, Wang B, He P, Qi W, Xiang L, Maswikiti EP, Chen H. Coagulation- and fibrinolysis-related genes for predicting survival and immunotherapy efficacy in colorectal cancer. Front Immunol 2022; 13:1023908. [PMID: 36532065 PMCID: PMC9748552 DOI: 10.3389/fimmu.2022.1023908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/04/2022] [Indexed: 12/03/2022] Open
Abstract
Background Colorectal cancer (CRC) is a common cancer and has a poor prognosis. The coagulation system and fibrinolysis system are closely related to the progression of malignant tumors and is also related to the immunotherapy of malignant tumors. Herein, we tried to predict survival and the immunotherapy effect for patients with CRC using a novel potential prognostic model. Methods Through online data of TCGA and GEO, we screened significantly differentially expressed genes (DEGs) to construct a prognostic model, followed by obtaining immune-related genes (IRGs) from the ImmPort database and coagulation- and fibrinolysis-related genes (CFRGs) from the GeneCards database. The predictive power of the model is assessed by Kaplan-Meier survival curves as well as the time-dependent ROC curve. Moreover, univariate and multivariate analyses were conducted for OS using Cox regression models, and the nomogram prognostic model was built. In the end, we further studied the possibility that CXCL8 was associated with immunocyte infiltration or immunotherapy effect and identified it by immunohistochemistry and Western blot. Results Five DEGs (CXCL8, MMP12, GDF15, SPP1, and NR3C2) were identified as being prognostic for CRC and were selected to establish the prognostic model. Expression of these genes was confirmed in CRC samples using RT-qPCR. Notably, those selected genes, both CFRGs and IRGs, can accurately predict the OS of CRC patients. Furthermore, CXCL8 is highly correlated with the tumor microenvironment and immunotherapy response in CRC. Conclusion Overall, our established IRGPI can very accurately predict the OS of CRC patients. CXCL8 reflects the immune microenvironment and reveals the correlation with immune checkpoints among CRC patients.
Collapse
Affiliation(s)
- Yanling Ma
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Bofang Wang
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Puyi He
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Wenbo Qi
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Ling Xiang
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | | | - Hao Chen
- Department of Cancer Center, Lanzhou University Second Hospital, Lanzhou, China,*Correspondence: Hao Chen,
| |
Collapse
|
84
|
Jing H, Wu X, Xiang M, Liu L, Novakovic VA, Shi J. Pathophysiological mechanisms of thrombosis in acute and long COVID-19. Front Immunol 2022; 13:992384. [PMID: 36466841 PMCID: PMC9709252 DOI: 10.3389/fimmu.2022.992384] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/27/2022] [Indexed: 08/02/2023] Open
Abstract
COVID-19 patients have a high incidence of thrombosis, and thromboembolic complications are associated with severe COVID-19 and high mortality. COVID-19 disease is associated with a hyper-inflammatory response (cytokine storm) mediated by the immune system. However, the role of the inflammatory response in thrombosis remains incompletely understood. In this review, we investigate the crosstalk between inflammation and thrombosis in the context of COVID-19, focusing on the contributions of inflammation to the pathogenesis of thrombosis, and propose combined use of anti-inflammatory and anticoagulant therapeutics. Under inflammatory conditions, the interactions between neutrophils and platelets, platelet activation, monocyte tissue factor expression, microparticle release, and phosphatidylserine (PS) externalization as well as complement activation are collectively involved in immune-thrombosis. Inflammation results in the activation and apoptosis of blood cells, leading to microparticle release and PS externalization on blood cells and microparticles, which significantly enhances the catalytic efficiency of the tenase and prothrombinase complexes, and promotes thrombin-mediated fibrin generation and local blood clot formation. Given the risk of thrombosis in the COVID-19, the importance of antithrombotic therapies has been generally recognized, but certain deficiencies and treatment gaps in remain. Antiplatelet drugs are not in combination with anticoagulant treatments, thus fail to dampen platelet procoagulant activity. Current treatments also do not propose an optimal time for anticoagulation. The efficacy of anticoagulant treatments depends on the time of therapy initiation. The best time for antithrombotic therapy is as early as possible after diagnosis, ideally in the early stage of the disease. We also elaborate on the possible mechanisms of long COVID thromboembolic complications, including persistent inflammation, endothelial injury and dysfunction, and coagulation abnormalities. The above-mentioned contents provide therapeutic strategies for COVID-19 patients and further improve patient outcomes.
Collapse
Affiliation(s)
- Haijiao Jing
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
| | - Xiaoming Wu
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
| | - Mengqi Xiang
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
| | - Langjiao Liu
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
| | - Valerie A. Novakovic
- Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA, United States
| | - Jialan Shi
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
- Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
85
|
Neutrophils: As a Key Bridge between Inflammation and Thrombosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1151910. [PMID: 36408343 PMCID: PMC9668459 DOI: 10.1155/2022/1151910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/14/2022] [Accepted: 09/29/2022] [Indexed: 11/10/2022]
Abstract
Immunothrombosis is a mechanism of defense of the organism against pathogenic microorganisms that increases their recognition, limitation, and clearance and is part of the innate immune defense. Physiological immunothrombosis is beneficial to the body against the invasion of pathogenic microorganisms, but when immunothrombosis is out of control, it is easy to cause thrombotic diseases, thus, causing unpredictable consequences to the body. Neutrophils play a pivotal role in this process. Understanding the mechanism of neutrophils in immune thrombosis and out-of-control is particularly important for the treatment of related thrombotic diseases. In this review, we studied the role of neutrophils in immune thrombosis and each link out of control (including endothelial cell dysfunction; activation of platelets; activation of coagulation factor; inhibition of the anticoagulation system; and inhibition of the fibrinolysis system).
Collapse
|
86
|
B lymphocyte-deficiency in mice promotes venous thrombosis. Heliyon 2022; 8:e11740. [DOI: 10.1016/j.heliyon.2022.e11740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/30/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
|
87
|
Han F, Zhang C, Xuan M, Xie Z, Zhang K, Li Y. Effects of Hyperthyroidism on Venous Thromboembolism: A Mendelian Randomization Study. J Immunol Res 2022; 2022:2339678. [PMID: 36277472 PMCID: PMC9581675 DOI: 10.1155/2022/2339678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/11/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Objective Observational studies show the correlation between thyroid dysfunction and risk of venous thromboembolism. However, the causal effects remain uncertain. Our study was conducted to evaluate whether thyroid function and dysfunction were causally linked to the risk of venous thromboembolism. Methods Publicly available summary data of thyrotropin (TSH) and free thyroxine (FT4), hypothyroidism, and hyperthyroidism were obtained from the ThyroidOmics Consortium and the UK Biobank. With single nucleotide polymorphisms (SNPs) as instrumental variables, the casual effects of genetically predicted TSH and FT4 and hypo- and hyperthyroidism on venous thromboembolism outcome were estimated through Mendelian randomization analysis methods (inverse variance weighted (IVW), MR-Egger, weighted median, simple mode, and weighted mode). Cochran's Q test was performed to evaluate the heterogeneity and horizontal pleiotropy. Results Our study selected 15 FT4-, 36 TSH-, 3 hyperthyroidism-, and 79 hypothyroidism-associated SNPs as instrumental variables. The IVW analysis results showed that the odds ratio of venous thromboembolism for hyperthyroidism was 1.124 (95% confidence interval: 1.019-1.240; p = 0.019), demonstrating the casual effect of hyperthyroidism not FT4, TSH, and hypothyroidism on venous thromboembolism. No heterogeneity or horizontal pleiotropy was observed according to Cochran's Q test. Conclusion Our Mendelian randomization analysis supports the causal effect of hypothyroidism on risk of venous thromboembolism. There is no evidence that genetically predicted TSH, FT4, and hypothyroidism have casual effects on venous thromboembolism. Future studies should be conducted to elucidate the underlying pathophysiological mechanisms.
Collapse
Affiliation(s)
- Fushi Han
- Department of Nuclear Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Chunyang Zhang
- Department of Endocrinology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Miao Xuan
- Department of Endocrinology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Zhuangli Xie
- Department of Endocrinology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Kunming Zhang
- Department of Oncology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Ying Li
- Department of Endocrinology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| |
Collapse
|
88
|
Lu L, Xiong Y, Zhou J, Wang G, Mi B, Liu G. The Therapeutic Roles of Cinnamaldehyde against Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9177108. [PMID: 36254234 PMCID: PMC9569207 DOI: 10.1155/2022/9177108] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/06/2022] [Accepted: 09/15/2022] [Indexed: 11/18/2022]
Abstract
Evidence from epidemiological studies has demonstrated that the incidence and mortality of cardiovascular diseases (CVDs) increase year by year, which pose a great threat on social economy and human health worldwide. Due to limited therapeutic benefits and associated adverse effects of current medications, there is an urgent need to uncover novel agents with favorable safety and efficacy. Cinnamaldehyde (CA) is a bioactive phytochemical isolated from the stem bark of Chinese herbal medicine Cinnamon and has been suggested to possess curative roles against the development of CVDs. This integrated review intends to summarize the physicochemical and pharmacokinetic features of CA and discuss the recent advances in underlying mechanisms and potential targets responsible for anti-CVD properties of CA. The CA-related cardiovascular protective mechanisms could be attributed to the inhibition of inflammation and oxidative stress, improvement of lipid and glucose metabolism, regulation of cell proliferation and apoptosis, suppression of cardiac fibrosis, and platelet aggregation and promotion of vasodilation and angiogenesis. Furthermore, CA is likely to inhibit CVD progression via affecting other possible processes including autophagy and ER stress regulation, gut microbiota and immune homeostasis, ion metabolism, ncRNA expression, and TRPA1 activation. Collectively, experiments reported previously highlight the therapeutic effects of CA and clinical trials are advocated to offer scientific basis for the compound future applied in clinical practice for CVD prophylaxis and treatment.
Collapse
Affiliation(s)
- Li Lu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuan Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Juan Zhou
- Department of Cardiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430073, China
| | - Guangji Wang
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
89
|
Polysaccharide extracted from Morchella esculenta inhibits carrageenan-induced thrombosis in mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
90
|
Kondreddy V, Keshava S, Das K, Magisetty J, Rao LVM, Pendurthi UR. The Gab2-MALT1 axis regulates thromboinflammation and deep vein thrombosis. Blood 2022; 140:1549-1564. [PMID: 35895897 PMCID: PMC9523376 DOI: 10.1182/blood.2022016424] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/20/2022] [Indexed: 11/20/2022] Open
Abstract
Deep vein thrombosis (DVT) is the third most common cause of cardiovascular mortality. Several studies suggest that DVT occurs at the intersection of dysregulated inflammation and coagulation upon activation of inflammasome and secretion of interleukin 1β (IL-1β) in restricted venous flow conditions. Our recent studies showed a signaling adapter protein, Gab2 (Grb2-associated binder 2), plays a crucial role in propagating inflammatory signaling triggered by IL-1β and other inflammatory mediators in endothelial cells. The present study shows that Gab2 facilitates the assembly of the CBM (CARMA3 [CARD recruited membrane-associated guanylate kinase protein 3]-BCL-10 [B-cell lymphoma 10]-MALT1 [mucosa-associated lymphoid tissue lymphoma translocation protein 1]) signalosome, which mediates the activation of Rho and NF-κB in endothelial cells. Gene silencing of Gab2 or MALT1, the effector signaling molecule in the CBM signalosome, or pharmacological inhibition of MALT1 with a specific inhibitor, mepazine, significantly reduced IL-1β-induced Rho-dependent exocytosis of P-selectin and von Willebrand factor (VWF) and the subsequent adhesion of neutrophils to endothelial cells. MALT1 inhibition also reduced IL-1β-induced NF-κB-dependent expression of tissue factor and vascular cell adhesion molecule 1. Consistent with the in vitro data, Gab2 deficiency or pharmacological inhibition of MALT1 suppressed the accumulation of monocytes and neutrophils at the injury site and attenuated venous thrombosis induced by the inferior vena cava ligation-induced stenosis or stasis in mice. Overall, our data reveal a previously unrecognized role of the Gab2-MALT1 axis in thromboinflammation. Targeting the Gab2-MALT1 axis with MALT1 inhibitors may become an effective strategy to treat DVT by suppressing thromboinflammation without inducing bleeding complications.
Collapse
Affiliation(s)
- Vijay Kondreddy
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX
| | - Shiva Keshava
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX
| | - Kaushik Das
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX
| | - Jhansi Magisetty
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX
| | - L Vijaya Mohan Rao
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX
| | - Usha R Pendurthi
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX
| |
Collapse
|
91
|
Knight R, Walker V, Ip S, Cooper JA, Bolton T, Keene S, Denholm R, Akbari A, Abbasizanjani H, Torabi F, Omigie E, Hollings S, North TL, Toms R, Jiang X, Angelantonio ED, Denaxas S, Thygesen JH, Tomlinson C, Bray B, Smith CJ, Barber M, Khunti K, Davey Smith G, Chaturvedi N, Sudlow C, Whiteley WN, Wood AM, Sterne JA. Association of COVID-19 With Major Arterial and Venous Thrombotic Diseases: A Population-Wide Cohort Study of 48 Million Adults in England and Wales. Circulation 2022; 146:892-906. [PMID: 36121907 PMCID: PMC9484653 DOI: 10.1161/circulationaha.122.060785] [Citation(s) in RCA: 134] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces a prothrombotic state, but long-term effects of COVID-19 on incidence of vascular diseases are unclear. METHODS We studied vascular diseases after COVID-19 diagnosis in population-wide anonymized linked English and Welsh electronic health records from January 1 to December 7, 2020. We estimated adjusted hazard ratios comparing the incidence of arterial thromboses and venous thromboembolic events (VTEs) after diagnosis of COVID-19 with the incidence in people without a COVID-19 diagnosis. We conducted subgroup analyses by COVID-19 severity, demographic characteristics, and previous history. RESULTS Among 48 million adults, 125 985 were hospitalized and 1 319 789 were not hospitalized within 28 days of COVID-19 diagnosis. In England, there were 260 279 first arterial thromboses and 59 421 first VTEs during 41.6 million person-years of follow-up. Adjusted hazard ratios for first arterial thrombosis after COVID-19 diagnosis compared with no COVID-19 diagnosis declined from 21.7 (95% CI, 21.0-22.4) in week 1 after COVID-19 diagnosis to 1.34 (95% CI, 1.21-1.48) during weeks 27 to 49. Adjusted hazard ratios for first VTE after COVID-19 diagnosis declined from 33.2 (95% CI, 31.3-35.2) in week 1 to 1.80 (95% CI, 1.50-2.17) during weeks 27 to 49. Adjusted hazard ratios were higher, for longer after diagnosis, after hospitalized versus nonhospitalized COVID-19, among Black or Asian versus White people, and among people without versus with a previous event. The estimated whole-population increases in risk of arterial thromboses and VTEs 49 weeks after COVID-19 diagnosis were 0.5% and 0.25%, respectively, corresponding to 7200 and 3500 additional events, respectively, after 1.4 million COVID-19 diagnoses. CONCLUSIONS High relative incidence of vascular events soon after COVID-19 diagnosis declines more rapidly for arterial thromboses than VTEs. However, incidence remains elevated up to 49 weeks after COVID-19 diagnosis. These results support policies to prevent severe COVID-19 by means of COVID-19 vaccines, early review after discharge, risk factor control, and use of secondary preventive agents in high-risk patients.
Collapse
Affiliation(s)
- Rochelle Knight
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, UK (R.K., V.W., J.A.C., R.D., T.-L.N., R.T., G.D.S., J.A.C.S.)
- NIHR Bristol Biomedical Research Centre, UK (R.K., J.A.C., R.D., J.A.C.S.)
- NIHR Applied Research Collaboration West, Bristol, UK (R.K.)
- MRC Integrative Epidemiology Unit, Bristol, UK (R.K., V.W., G.D.S.)
| | - Venexia Walker
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, UK (R.K., V.W., J.A.C., R.D., T.-L.N., R.T., G.D.S., J.A.C.S.)
- MRC Integrative Epidemiology Unit, Bristol, UK (R.K., V.W., G.D.S.)
| | - Samantha Ip
- British Heart Foundation Cardiovascular Epidemiology Unit (S.I., T.B., S.K., X.J., E.D.A., A.M.W.), University of Cambridge, UK
- Centre for Cancer Genetic Epidemiology (S.I.), University of Cambridge, UK
| | - Jennifer A. Cooper
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, UK (R.K., V.W., J.A.C., R.D., T.-L.N., R.T., G.D.S., J.A.C.S.)
- NIHR Bristol Biomedical Research Centre, UK (R.K., J.A.C., R.D., J.A.C.S.)
| | - Thomas Bolton
- British Heart Foundation Cardiovascular Epidemiology Unit (S.I., T.B., S.K., X.J., E.D.A., A.M.W.), University of Cambridge, UK
- Department of Public Health and Primary Care, NIHR Blood and Transplant Research Unit in Donor Health and Genomics (T.B., S.K., E.D.A., A.M.W.), University of Cambridge, UK
- British Heart Foundation Data Science Centre (T.B., C.S.), London
| | - Spencer Keene
- British Heart Foundation Cardiovascular Epidemiology Unit (S.I., T.B., S.K., X.J., E.D.A., A.M.W.), University of Cambridge, UK
- Department of Public Health and Primary Care, NIHR Blood and Transplant Research Unit in Donor Health and Genomics (T.B., S.K., E.D.A., A.M.W.), University of Cambridge, UK
| | - Rachel Denholm
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, UK (R.K., V.W., J.A.C., R.D., T.-L.N., R.T., G.D.S., J.A.C.S.)
- NIHR Bristol Biomedical Research Centre, UK (R.K., J.A.C., R.D., J.A.C.S.)
- Health Data Research UK South-West, Bristol (R.D., J.A.C.S.)
| | - Ashley Akbari
- Population Data Science, Swansea University Medical School, Swansea University, Wales, UK (A.A., H.A., F.T.)
| | - Hoda Abbasizanjani
- Population Data Science, Swansea University Medical School, Swansea University, Wales, UK (A.A., H.A., F.T.)
| | - Fatemeh Torabi
- Population Data Science, Swansea University Medical School, Swansea University, Wales, UK (A.A., H.A., F.T.)
| | - Efosa Omigie
- National Health Service Digital, Leeds, UK (E.O., S.H.)
| | - Sam Hollings
- National Health Service Digital, Leeds, UK (E.O., S.H.)
| | - Teri-Louise North
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, UK (R.K., V.W., J.A.C., R.D., T.-L.N., R.T., G.D.S., J.A.C.S.)
| | - Renin Toms
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, UK (R.K., V.W., J.A.C., R.D., T.-L.N., R.T., G.D.S., J.A.C.S.)
- School of Health Sciences, Cardiff Metropolitan University, UK (R.T.)
| | - Xiyun Jiang
- British Heart Foundation Cardiovascular Epidemiology Unit (S.I., T.B., S.K., X.J., E.D.A., A.M.W.), University of Cambridge, UK
| | - Emanuele Di Angelantonio
- British Heart Foundation Cardiovascular Epidemiology Unit (S.I., T.B., S.K., X.J., E.D.A., A.M.W.), University of Cambridge, UK
- Department of Public Health and Primary Care, NIHR Blood and Transplant Research Unit in Donor Health and Genomics (T.B., S.K., E.D.A., A.M.W.), University of Cambridge, UK
- British Heart Foundation Centre of Research Excellence (E.D.A., A.M.W.), University of Cambridge, UK
- Wellcome Genome Campus, Health Data Research UK Cambridge (E.D.A., A.M.W.)
| | - Spiros Denaxas
- Health Data Research UK (S.D.), London
- Institute of Health Informatics (S.D., J.H.T., C.T.), University College London, UK
- University College London Hospitals Biomedical Research Centre (C.T., S.D.), University College London, UK
- BHF Accelerator, London, UK (S.D.)
| | - Johan H. Thygesen
- Institute of Health Informatics (S.D., J.H.T., C.T.), University College London, UK
| | - Christopher Tomlinson
- Institute of Health Informatics (S.D., J.H.T., C.T.), University College London, UK
- UK Research and Innovation Centre for Doctoral Training in AI-Enabled Healthcare Systems (C.T.), University College London, UK
- University College London Hospitals Biomedical Research Centre (C.T., S.D.), University College London, UK
| | - Ben Bray
- School of Population Health and Environmental Sciences, King’s College London, UK (B.B.)
| | - Craig J. Smith
- Geoffrey Jefferson Brain Research Centre, Manchester Centre for Clinical Neurosciences, Northern Care Alliance National Health Service Foundation Trust, Salford Royal Hospital, UK (C.J.S.)
- Division of Cardiovascular Sciences, Manchester Academic Health Science Centre, University of Manchester, UK (C.J.S.)
| | | | - Kamlesh Khunti
- Diabetes Research Centre, University of Leicester, UK (K.K.)
| | - George Davey Smith
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, UK (R.K., V.W., J.A.C., R.D., T.-L.N., R.T., G.D.S., J.A.C.S.)
- MRC Integrative Epidemiology Unit, Bristol, UK (R.K., V.W., G.D.S.)
| | - Nishi Chaturvedi
- MRC Unit for Lifelong Health and Ageing at UCL, Institute of Cardiovascular Science (N.C.), University College London, UK
| | - Cathie Sudlow
- British Heart Foundation Data Science Centre (T.B., C.S.), London
| | - William N. Whiteley
- Centre for Clinical Brain Sciences, University of Edinburgh, UK (W.N.W.)
- Nuffield Department of Population Health, University of Oxford, UK (W.N.W.)
| | - Angela M. Wood
- British Heart Foundation Cardiovascular Epidemiology Unit (S.I., T.B., S.K., X.J., E.D.A., A.M.W.), University of Cambridge, UK
- Department of Public Health and Primary Care, NIHR Blood and Transplant Research Unit in Donor Health and Genomics (T.B., S.K., E.D.A., A.M.W.), University of Cambridge, UK
- British Heart Foundation Centre of Research Excellence (E.D.A., A.M.W.), University of Cambridge, UK
- Wellcome Genome Campus, Health Data Research UK Cambridge (E.D.A., A.M.W.)
- NIHR Cambridge Biomedical Research Centre, UK (A.M.W.)
- Cambridge Centre for AI in Medicine, UK (A.M.W.)
| | - Jonathan A.C. Sterne
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, UK (R.K., V.W., J.A.C., R.D., T.-L.N., R.T., G.D.S., J.A.C.S.)
- NIHR Bristol Biomedical Research Centre, UK (R.K., J.A.C., R.D., J.A.C.S.)
- Health Data Research UK South-West, Bristol (R.D., J.A.C.S.)
| |
Collapse
|
92
|
Dix C, Zeller J, Stevens H, Eisenhardt SU, Shing KSCT, Nero TL, Morton CJ, Parker MW, Peter K, McFadyen JD. C-reactive protein, immunothrombosis and venous thromboembolism. Front Immunol 2022; 13:1002652. [PMID: 36177015 PMCID: PMC9513482 DOI: 10.3389/fimmu.2022.1002652] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
C-reactive protein (CRP) is a member of the highly conserved pentraxin superfamily of proteins and is often used in clinical practice as a marker of infection and inflammation. There is now increasing evidence that CRP is not only a marker of inflammation, but also that destabilized isoforms of CRP possess pro-inflammatory and pro-thrombotic properties. CRP circulates as a functionally inert pentameric form (pCRP), which relaxes its conformation to pCRP* after binding to phosphocholine-enriched membranes and then dissociates to monomeric CRP (mCRP). with the latter two being destabilized isoforms possessing highly pro-inflammatory features. pCRP* and mCRP have significant biological effects in regulating many of the aspects central to pathogenesis of atherothrombosis and venous thromboembolism (VTE), by directly activating platelets and triggering the classical complement pathway. Importantly, it is now well appreciated that VTE is a consequence of thromboinflammation. Accordingly, acute VTE is known to be associated with classical inflammatory responses and elevations of CRP, and indeed VTE risk is elevated in conditions associated with inflammation, such as inflammatory bowel disease, COVID-19 and sepsis. Although the clinical data regarding the utility of CRP as a biomarker in predicting VTE remains modest, and in some cases conflicting, the clinical utility of CRP appears to be improved in subsets of the population such as in predicting VTE recurrence, in cancer-associated thrombosis and in those with COVID-19. Therefore, given the known biological function of CRP in amplifying inflammation and tissue damage, this raises the prospect that CRP may play a role in promoting VTE formation in the context of concurrent inflammation. However, further investigation is required to unravel whether CRP plays a direct role in the pathogenesis of VTE, the utility of which will be in developing novel prophylactic or therapeutic strategies to target thromboinflammation.
Collapse
Affiliation(s)
- Caroline Dix
- Department of Haematology, Alfred Hospital, Melbourne, VIC, Australia
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Johannes Zeller
- Atherothrombosis and Vascular Biology Program, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Plastic and Hand Surgery, University of Freiburg Medical Centre, Medical Faculty of the University of Freiburg, Freiburg, Germany
| | - Hannah Stevens
- Department of Haematology, Alfred Hospital, Melbourne, VIC, Australia
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
- Atherothrombosis and Vascular Biology Program, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Steffen U. Eisenhardt
- Department of Plastic and Hand Surgery, University of Freiburg Medical Centre, Medical Faculty of the University of Freiburg, Freiburg, Germany
| | - Karen S. Cheung Tung Shing
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC, Australia
| | - Tracy L. Nero
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC, Australia
| | - Craig J. Morton
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Biomedical Manufacturing Program, Clayton, VIC, Australia
| | - Michael W. Parker
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC, Australia
- Structural Biology Unit, St. Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Program, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, VIC, Australia
| | - James D. McFadyen
- Department of Haematology, Alfred Hospital, Melbourne, VIC, Australia
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
- Atherothrombosis and Vascular Biology Program, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC, Australia
- *Correspondence: James D. McFadyen,
| |
Collapse
|
93
|
Pu W, Su Z, Wazir J, Zhao C, Wei L, Wang R, Chen Q, Zheng S, Zhang S, Wang H. Protective effect of α7 nicotinic acetylcholine receptor activation on experimental colitis and its mechanism. Mol Med 2022; 28:104. [PMID: 36058917 PMCID: PMC9441089 DOI: 10.1186/s10020-022-00532-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Background Inflammatory bowel disease (IBD) is a common chronic remitting disease with no satisfactory treatment. The aim of this study was to investigate the protective effect of α7 nicotinic acetylcholine receptor (α7nAChR), and to determine the underlying mechanism of its activity. Methods The expression and distribution of α7nAChR in the intestinal tissue of patients with ulcerative colitis and Crohn’s disease were analyzed. The effects of vagal excitation on murine experimental colitis were investigated. The colitis model was induced in C57BL/6 mice by the administration of 3% dextran sulfate sodium (DSS). The therapeutic group received treatment with the α7nAChR agonist PNU-282987 by intraperitoneal injection. Results Our results showed that there was significantly increased expression of α7nAChR in colitis and Crohn’s disease intestinal tissue, and its expression was mainly located in macrophages and neutrophils, which were extensively infiltrated in the disease status. Treatment with an α7nAChR agonist potently ameliorated the DSS-induced illness state, including weight loss, stool consistency, bleeding, colon shortening, and colon histological injury. α7nAChR agonist exerted anti-inflammatory effects in DSS colitis mice by suppressing the secretion of multiple types of proinflammatory factors, such as IL6, TNFα, and IL1β, and it also inhibited the colonic infiltration of inflammatory cells by blocking the DSS-induced overactivation of the NF-κB and MAPK signaling pathways. Mechanistically, activation of α7nAChR decreased the number of infiltrated M1 macrophages in the colitis intestine and inhibited the phagocytosis ability of macrophages, which were activated in response to LPS stimulation. Conclusion Thus, an α7nAChR agonist ameliorated colonic pathology and inflammation in DSS-induced colitis mice by blocking the activation of inflammatory M1 macrophages.
Collapse
Affiliation(s)
- Wenyuan Pu
- State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China
| | - Zhenzi Su
- The Affiliated Suqian Hospital of Xuzhou Medical University and Nanjing Drum Tower Hospital Group Suqian Hospital, Suqian, 223800, China
| | - Junaid Wazir
- State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China
| | - Chen Zhao
- State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China
| | - Lulu Wei
- State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China
| | - Ranran Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China
| | - Qiyi Chen
- Department of Colorectal Disease, Intestinal Microenvironment Treatment Center, Shanghai Tenth People's Hospital, Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Saifang Zheng
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, China
| | - Shaoyi Zhang
- Department of Colorectal Disease, Intestinal Microenvironment Treatment Center, Shanghai Tenth People's Hospital, Tenth People's Hospital of Tongji University, Shanghai, 200072, China.
| | - Hongwei Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
94
|
Shi H, Knight JS, Kanthi Y. Reply. Arthritis Rheumatol 2022; 74:1603-1604. [PMID: 35436032 PMCID: PMC9082470 DOI: 10.1002/art.42141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 11/22/2022]
Affiliation(s)
- Hui Shi
- University of Michigan Ann Arbor, MIand Shanghai Jiao Tong University School of MedicineShanghaiChina
| | | | - Yogendra Kanthi
- National Heart, Lung, and Blood Institute Bethesda, MD and University of MichiganAnn ArborMI
| |
Collapse
|
95
|
Leung C, Su L, Simões e Silva AC. Better healthcare can reduce the risk of COVID-19 in-hospital post-partum maternal death: evidence from Brazil. Int J Epidemiol 2022; 51:1733-1744. [PMID: 35947762 PMCID: PMC9384644 DOI: 10.1093/ije/dyac157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/22/2022] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE COVID-19 in post-partum women is commonly overlooked. The present study assessed whether puerperium is an independent risk factor of COVID-19 related in-hospital maternal death and whether fatality is preventable in the Brazilian context. METHODS We retrospectively studied the clinical data of post-partum/pregnant patients hospitalized with COVID-19 gathered from a national database that registered severe acute respiratory syndromes (SIVEP-Gripe) in Brazil. Logistic regressions were used to examine the associations of in-hospital mortality with obstetric status and with the type of public healthcare provider, adjusting for socio-demographic, epidemiologic, clinical and healthcare-related measures. RESULTS As of 30 November 2021, 1943 (21%) post-partum and 7446 (79%) pregnant patients of age between 15 and 45 years with COVID-19 that had reached the clinical endpoint (death or discharge) were eligible for inclusion. Case-fatality rates for the two groups were 19.8% and 9.2%, respectively. After the adjustment for covariates, post-partum patients had almost twice the odds of in-hospital mortality compared with pregnant patients. Patients admitted to private (not-for-profit) hospitals, those that had an obstetric centre or those located in metropolitan areas were less likely to succumb to SARS-CoV-2 infection. Those admitted to the Emergency Care Unit had similar mortality risk to those admitted to other public healthcare providers. CONCLUSION We demonstrated that puerperium was associated with an increased odds of COVID-19-related in-hospital mortality. Only part of the risk can be reduced by quality healthcare such as non-profit private hospitals, those that have an obstetric centre or those located in urban areas.
Collapse
Affiliation(s)
- Char Leung
- Corresponding author. School of Clinical Medicine, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 0QQ, UK. E-mail:
| | - Li Su
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
96
|
Wan Q, Xu C, Zhu L, Zhang Y, Peng Z, Chen H, Rao H, Zhang E, Wang H, Chu F, Ning X, Yang X, Yuan J, Wu Y, Huang Y, Hu S, Liu DP, Wang M. Targeting PDE4B (Phosphodiesterase-4 Subtype B) for Cardioprotection in Acute Myocardial Infarction via Neutrophils and Microcirculation. Circ Res 2022; 131:442-455. [PMID: 35899614 DOI: 10.1161/circresaha.122.321365] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Timely and complete restoration of blood flow is the most effective intervention for patients with acute myocardial infarction. However, the efficacy is limited by myocardial ischemia-reperfusion (MI/R) injury. PDE4 (phosphodiesterase-4) hydrolyzes intracellular cAMP and it has 4 subtypes A-D. This study aimed to delineate the role of PDE4B (phosphodiesterase-4 subtype B) in MI/R injury. METHODS Mice were subjected to 30-minute coronary artery ligation, followed by 24-hour reperfusion. Cardiac perfusion was assessed by laser Doppler flow. Vasomotor reactivities were determined in mouse and human coronary (micro-)arteries. RESULTS Cardiac expression of PDE4B, but not other PDE4 subtypes, was increased in mice following reperfusion. PDE4B was detected primarily in endothelial and myeloid cells of mouse and human hearts. PDE4B deletion strikingly reduced infarct size and improved cardiac function 24-hour or 28-day after MI/R. PDE4B in bone marrow-derived cells promoted MI/R injury and vascular PDE4B further exaggerated this injury. Mechanistically, PDE4B-mediated neutrophil-endothelial cell interaction and PKA (protein kinase A)-dependent expression of cell adhesion molecules, neutrophil cardiac infiltration, and release of proinflammatory cytokines. Meanwhile, PDE4B promoted coronary microcirculatory obstruction and vascular permeability in MI/R, without affecting flow restriction-induced thrombosis. PDE4B blockade increased flow-mediated vasodilatation and promoted endothelium-dependent dilatation of coronary arteries in a PKA- and nitric oxide-dependent manner. Furthermore, postischemia administration with piclamilast, a PDE4 pan-inhibitor, improved cardiac microcirculation, suppressed inflammation, and attenuated MI/R injury in mice. Incubation with sera from patients with acute myocardial infarction impaired acetylcholine-induced relaxations in human coronary microarteries, which was abolished by PDE4 inhibition. Similar protection against MI/R-related coronary injury was recapitulated in mice with PDE4B deletion or inhibition, but not with the pure vasodilator, sodium nitroprusside. CONCLUSIONS PDE4B is critically involved in neutrophil inflammation and microvascular obstruction, leading to MI/R injury. Selective inhibition of PDE4B might protect cardiac function in patients with acute myocardial infarction designated for reperfusion therapy.
Collapse
Affiliation(s)
- Qing Wan
- State Key Laboratory of Cardiovascular Disease (Q.W., C.X., L.Z., Y.Z., Z.P., H.C., H.R., F.C., X.N., X.Y., S.H., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chuansheng Xu
- State Key Laboratory of Cardiovascular Disease (Q.W., C.X., L.Z., Y.Z., Z.P., H.C., H.R., F.C., X.N., X.Y., S.H., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liyuan Zhu
- State Key Laboratory of Cardiovascular Disease (Q.W., C.X., L.Z., Y.Z., Z.P., H.C., H.R., F.C., X.N., X.Y., S.H., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuze Zhang
- State Key Laboratory of Cardiovascular Disease (Q.W., C.X., L.Z., Y.Z., Z.P., H.C., H.R., F.C., X.N., X.Y., S.H., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zekun Peng
- State Key Laboratory of Cardiovascular Disease (Q.W., C.X., L.Z., Y.Z., Z.P., H.C., H.R., F.C., X.N., X.Y., S.H., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong Chen
- State Key Laboratory of Cardiovascular Disease (Q.W., C.X., L.Z., Y.Z., Z.P., H.C., H.R., F.C., X.N., X.Y., S.H., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haojie Rao
- State Key Laboratory of Cardiovascular Disease (Q.W., C.X., L.Z., Y.Z., Z.P., H.C., H.R., F.C., X.N., X.Y., S.H., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Erli Zhang
- Department of Cardiology (E.Z., J.Y., Y.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongyue Wang
- Department of Pathology (H.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei Chu
- State Key Laboratory of Cardiovascular Disease (Q.W., C.X., L.Z., Y.Z., Z.P., H.C., H.R., F.C., X.N., X.Y., S.H., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Pharmacy, First Affiliated Hospital, Bengbu Medical College, Anhui, China (F.C.)
| | - Xuan Ning
- State Key Laboratory of Cardiovascular Disease (Q.W., C.X., L.Z., Y.Z., Z.P., H.C., H.R., F.C., X.N., X.Y., S.H., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuejian Yang
- State Key Laboratory of Cardiovascular Disease (Q.W., C.X., L.Z., Y.Z., Z.P., H.C., H.R., F.C., X.N., X.Y., S.H., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinqing Yuan
- Department of Cardiology (E.Z., J.Y., Y.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongjian Wu
- Department of Cardiology (E.Z., J.Y., Y.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Huang
- Department of Biomedical Sciences, The City University of Hong Kong, Hong Kong SAR, China (Y.H.)
| | - Shengshou Hu
- State Key Laboratory of Cardiovascular Disease (Q.W., C.X., L.Z., Y.Z., Z.P., H.C., H.R., F.C., X.N., X.Y., S.H., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Cardiovascular Surgery (S.H.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - De-Pei Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (D.-P.L.)
| | - Miao Wang
- State Key Laboratory of Cardiovascular Disease (Q.W., C.X., L.Z., Y.Z., Z.P., H.C., H.R., F.C., X.N., X.Y., S.H., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Clinical Pharmacology Center (M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
97
|
Manoharan R, Kore RA, Mehta JL. Mesenchymal stem cell treatment for hyperactive immune response in patients with COVID-19. Immunotherapy 2022; 14:1055-1065. [PMID: 35855633 PMCID: PMC9298490 DOI: 10.2217/imt-2021-0245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The human immune system protects the body against invasive organisms and kicks into a hyperactive mode in COVID-19 patients, particularly in those who are critically sick. Therapeutic regimens directed at the hyperactive immune system have been found to be effective in the treatment of patients with COVID-19. An evolving potential treatment option is therapy with mesenchymal stem cells (MSCs) due to their regenerative and reparative ability in epithelial cells. Clinical trials have reported the safe usage of MSC therapy. Systemic effects of MSC treatment have included a reduction in pro-inflammatory cytokines and a decrease in the levels of CRP, IL-6, and lactase dehydrogenase, which function as independent biomarkers for COVID-19 mortality and respiratory failure. Treatment of COVID-19 is becoming increasingly difficult because of new variants, such as Delta, and more recently Omicron. Each virus variant becomes smarter at being able to evade the body’s immune system, vaccines and drug treatments. The biggest challenge in treating COVID-19 is when the body’s immune system starts to become hyperactive. In such a scenario, the immune system releases the compounds that are supposed to be released in small doses all at once. Thus, overwhelming the body and causing many complications. One possible solution to this is the mesenchymal stem cell. Multiple clinical trials have shown that mesenchymal stem cells can heal all different cell types in the body and stop the hyperactive immune system.
Collapse
Affiliation(s)
- Ragul Manoharan
- School of Medicine, St George's University, St George, Grenada, West Indies
| | - Rajshekhar A Kore
- Division of Cardiology, University of Arkansas for Medical Sciences & The Veterans Affairs Medical Center, Little Rock, AR 72205-5484, USA
| | - Jawahar L Mehta
- Division of Cardiology, University of Arkansas for Medical Sciences & The Veterans Affairs Medical Center, Little Rock, AR 72205-5484, USA
| |
Collapse
|
98
|
He J, Jiang Q, Yao Y, Shen Y, Li J, Yang J, Ma R, Zhang N, Liu C. Blood Cells and Venous Thromboembolism Risk: A Two-Sample Mendelian Randomization Study. Front Cardiovasc Med 2022; 9:919640. [PMID: 35872889 PMCID: PMC9304581 DOI: 10.3389/fcvm.2022.919640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background Previous studies have shown that various cell indices are associated with a higher risk of venous thromboembolism (VTE), however, whether these findings reflect a causal relationship remains unclear. Therefore, we performed a two-sample Mendelian randomization (MR) analysis to assess the causal association of various blood cells with VTE risk. Study Design and Methods Summary statistics of genetic instruments representing cell indices for erythrocytes, leukocytes, and platelets were extracted from genome-wide association studies of European ancestry, by Two-Sample Mendelian Randomization. Inverse variance weighting (IVW) was used as the primary analytical method for MR. Sensitivity analyses were performed to detect horizontal pleiotropy and heterogeneity. Results Genetically predicted red blood cell distribution width, mean reticulocyte volume, and mean red blood cell volume were positively associated with VTE, with odds ratio (OR) of 1.002 [CI 1.000-1.003, P = 0.022), 1.003 (CI 1.001-1.004, P = 0.001, respectively)] and 1.001 (CI 1.000-1.002, P = 0.005). Genetically predicted monocyte count was negatively correlated with VTE, with OR = 0.998 (CI 0.996-0.999, P = 0.041). Conclusion Genetically liability to high- red blood cell distribution width, mean reticulocyte volume, mean red blood cell volume, and low monocyte count are associated with the higher risk of VTE. Targeting these factors might be a potential strategy to prevent VTE.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Chunli Liu
- State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
99
|
Galli E, Maggio E, Pomero F. Venous Thromboembolism in Sepsis: From Bench to Bedside. Biomedicines 2022; 10:biomedicines10071651. [PMID: 35884956 PMCID: PMC9313423 DOI: 10.3390/biomedicines10071651] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 12/22/2022] Open
Abstract
Septic patients were commonly affected by coagulation disorders; thus, they are at high risk of thrombotic complications. In the last decades, novel knowledge has emerged about the interconnected and reciprocal influence of immune and coagulation systems. This phenomenon is called immunothrombosis, and it indicates an effective response whereby immune cells and the coagulation cascade cooperate to limit pathogen invasion and endothelial damage. When this network becomes dysregulated due to a systemic inflammatory activation, as occurs during sepsis, it can result in pathological thrombosis. Endothelium, platelets and neutrophils are the main characters involved in this process, together with the TF and coagulation cascade, playing a critical role in both the host defense and in thrombogenesis. A deeper understanding of this relationship may allow us to answer the growing need for clinical instruments to establish the thrombotic risk and treatments that consider more the connection between coagulation and inflammation. Heparin remains the principal therapeutical response to this phenomenon, although not sufficiently effective. To date, no other significant alternatives have been found yet. In this review, we discuss the role of sepsis-related inflammation in the development and resolution of venous thromboembolism and its clinical implications, from bench to bedside.
Collapse
Affiliation(s)
- Eleonora Galli
- Internal Medicine Residency Program, University of Turin, 10100 Turin, TO, Italy;
- Department of Internal Medicine, M. and P. Ferrero Hospital, 12060 Verduno, CN, Italy;
| | - Elena Maggio
- Department of Internal Medicine, M. and P. Ferrero Hospital, 12060 Verduno, CN, Italy;
| | - Fulvio Pomero
- Department of Internal Medicine, M. and P. Ferrero Hospital, 12060 Verduno, CN, Italy;
- Correspondence: ; Tel.: +39-01721408100
| |
Collapse
|
100
|
Gupta A, Al-Tamimi AO, Halwani R, Alsaidi H, Kannan M, Ahmad F. Lipocalin-2, S100A8/A9, and cystatin C: Potential predictive biomarkers of cardiovascular complications in COVID-19. Exp Biol Med (Maywood) 2022; 247:1205-1213. [PMID: 35466734 PMCID: PMC9379606 DOI: 10.1177/15353702221091990] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Severe coronavirus (SARS-COV-2) infection often leads to systemic inflammation accompanied by cardiovascular complications including venous thromboembolism (VTE). However, it is largely undefined if inflammatory markers such as lipocalin-2 (LNC2), calprotectin (S100A8/A9), and cystatin C (CST3), previously linked with VTE, play roles in cardiovascular complications and advancement of COVID-19 severity. To investigate the same, hospitalized moderate and severe (presented pneumonia and required intensive care) COVID-19 patients were recruited. The levels of plasma LNC2, S100A8/A9, CST3, myoglobin, and cardiac Troponin I (cTnI) were assessed through enzyme-linked immunosorbent assay (ELISA). The investigation revealed a significantly upregulated level of plasma LNC2 at the moderate stage of SARS-CoV-2 infection. In contrast, the levels of S100A8/A9 and CST3 in moderate patients were comparable to healthy controls; however, a profound induction was observed only in severe COVID-19 patients. The tissue injury marker myoglobin was unchanged in moderate patients; however, a significantly elevated level was observed in the critically ill COVID-19 patients. In contrast, cTnI level was unchanged both in moderate and severe patients. Analysis revealed a positive correlation between the levels of S100A8/A9 and CST3 with myoglobin in COVID-19. In silico analysis predicted interactions of S100A8/A9 with toll-like receptor 4 (TLR-4), MyD88 LY96, and LCN2 with several other inflammatory mediators including MMP2, MMP9, TIMP1, and interleukins (IL-6, IL-17A, and IL-10). In summary, early induction of LCN2 likely plays a role in advancing the COVID-19 severity. A positive correlation of S100A8/A9 and CST3 with myoglobin suggests that these proteins may serve as predictive biomarkers for thromboembolism and tissue injury in COVID-19.
Collapse
Affiliation(s)
- Anamika Gupta
- Cardiovascular Research Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, UAE
| | - Abaher O Al-Tamimi
- Cardiovascular Research Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, UAE
| | - Rabih Halwani
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, UAE
| | - Hend Alsaidi
- Department of Internal Medicine, Rashid Hospital, Dubai 4545, UAE
| | - Meganathan Kannan
- Blood and Vascular Biology Research Lab, Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610005, India
| | - Firdos Ahmad
- Cardiovascular Research Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, UAE,Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, UAE,Firdos Ahmad.
| |
Collapse
|