51
|
Ngwenyama N, Kirabo A, Aronovitz M, Velázquez F, Carrillo-Salinas F, Salvador AM, Nevers T, Amarnath V, Tai A, Blanton RM, Harrison DG, Alcaide P. Isolevuglandin-Modified Cardiac Proteins Drive CD4+ T-Cell Activation in the Heart and Promote Cardiac Dysfunction. Circulation 2021; 143:1242-1255. [PMID: 33463362 PMCID: PMC7987774 DOI: 10.1161/circulationaha.120.051889] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Despite the well-established association between T-cell-mediated inflammation and nonischemic heart failure, the specific mechanisms triggering T-cell activation during the progression of heart failure and the antigens involved are poorly understood. We hypothesized that myocardial oxidative stress induces the formation of isolevuglandin (IsoLG)-modified proteins that function as cardiac neoantigens to elicit CD4+ T-cell receptor (TCR) activation and promote heart failure. METHODS We used transverse aortic constriction in mice to trigger myocardial oxidative stress and T-cell infiltration. We profiled the TCR repertoire by mRNA sequencing of intramyocardial activated CD4+ T cells in Nur77GFP reporter mice, which transiently express GFP on TCR engagement. We assessed the role of antigen presentation and TCR specificity in the development of cardiac dysfunction using antigen presentation-deficient MhcII-/- mice and TCR transgenic OTII mice that lack specificity for endogenous antigens. We detected IsoLG protein adducts in failing human hearts. We also evaluated the role of reactive oxygen species and IsoLGs in eliciting T-cell immune responses in vivo by treating mice with the antioxidant TEMPOL and the IsoLG scavenger 2-hydroxybenzylamine during transverse aortic constriction, and ex vivo in mechanistic studies of CD4+ T-cell proliferation in response to IsoLG-modified cardiac proteins. RESULTS We discovered that TCR antigen recognition increases in the left ventricle as cardiac dysfunction progresses and identified a limited repertoire of activated CD4+ T-cell clonotypes in the left ventricle. Antigen presentation of endogenous antigens was required to develop cardiac dysfunction because MhcII-/- mice reconstituted with CD4+ T cells and OTII mice immunized with their cognate antigen were protected from transverse aortic constriction-induced cardiac dysfunction despite the presence of left ventricle-infiltrated CD4+ T cells. Scavenging IsoLGs with 2-hydroxybenzylamine reduced TCR activation and prevented cardiac dysfunction. Mechanistically, cardiac pressure overload resulted in reactive oxygen species-dependent dendritic cell accumulation of IsoLG protein adducts, which induced robust CD4+ T-cell proliferation. CONCLUSIONS Our study demonstrates an important role of reactive oxygen species-induced formation of IsoLG-modified cardiac neoantigens that lead to TCR-dependent CD4+ T-cell activation within the heart.
Collapse
Affiliation(s)
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Mark Aronovitz
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | | | | | | | - Tania Nevers
- Department of Immunology, Tufts University, Boston, MA
| | - Venkataraman Amarnath
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN
| | - Albert Tai
- Department of Immunology, Tufts University, Boston, MA
| | - Robert M. Blanton
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - David G. Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Pilar Alcaide
- Department of Immunology, Tufts University, Boston, MA
| |
Collapse
|
52
|
Luxán G, Dimmeler S. The vasculature: a therapeutic target in heart failure? Cardiovasc Res 2021; 118:53-64. [PMID: 33620071 PMCID: PMC8752358 DOI: 10.1093/cvr/cvab047] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
It is well established that the vasculature plays a crucial role in maintaining oxygen and nutrients supply to the heart. Increasing evidence further suggest that the microcirculation has additional roles in supporting a healthy microenvironment. Heart failure is well known to be associated with changes and functional impairment of the microvasculature. The specific ablation of protective signals in endothelial cells in experimental models is sufficient to induce heart failure. Therefore, restoring a healthy endothelium and microcirculation may be a valuable therapeutic strategy to treat heart failure. The present review article will summarize the current understanding of the vascular contribution to heart failure with reduced or preserved ejection fraction. Novel therapeutic approaches including next generation pro-angiogenic therapies and non-coding RNA therapeutics, as well as the targeting of metabolites or metabolic signaling, vascular inflammation and senescence will be discussed.
Collapse
Affiliation(s)
- Guillermo Luxán
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany, German Center for Cardiovascular Research DZHK, Berlin, Germany, partner site Frankfurt Rhine-Main, Germany, Cardiopulmonary Institute, Goethe University Frankfurt, Germany
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany, German Center for Cardiovascular Research DZHK, Berlin, Germany, partner site Frankfurt Rhine-Main, Germany, Cardiopulmonary Institute, Goethe University Frankfurt, Germany
| |
Collapse
|
53
|
Abstract
Diffuse myocardial fibrosis resulting from the excessive deposition of collagen fibres through the entire myocardium is encountered in a number of chronic cardiac diseases. This lesion results from alterations in the regulation of fibrillary collagen turnover by fibroblasts, facilitating the excessive deposition of type I and type III collagen fibres within the myocardial interstitium and around intramyocardial vessels. The available evidence suggests that, beyond the extent of fibrous deposits, collagen composition and the physicochemical properties of the fibres are also relevant in the detrimental effects of diffuse myocardial fibrosis on cardiac function and clinical outcomes in patients with heart failure. In this regard, findings from the past 20 years suggest that various clinicopathological phenotypes of diffuse myocardial fibrosis exist in patients with heart failure. In this Review, we summarize the current knowledge on the mechanisms and detrimental consequences of diffuse myocardial fibrosis in heart failure. Furthermore, we discuss the validity and usefulness of available imaging techniques and circulating biomarkers to assess the clinicopathological variation in this lesion and to track its clinical evolution. Finally, we highlight the currently available and potential future therapeutic strategies aimed at personalizing the prevention and reversal of diffuse myocardial fibrosis in patients with heart failure.
Collapse
|
54
|
Bertero E, Dudek J, Cochain C, Delgobo M, Ramos G, Gerull B, Higuchi T, Vaeth M, Zernecke A, Frantz S, Hofmann U, Maack C. Immuno-metabolic interfaces in cardiac disease and failure. Cardiovasc Res 2021; 118:37-52. [PMID: 33537710 DOI: 10.1093/cvr/cvab036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/01/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
The interplay between the cardiovascular system, metabolism, and inflammation plays a central role in the pathophysiology of a wide spectrum of cardiovascular diseases, including heart failure. Here, we provide an overview of the fundamental aspects of the interrelation between inflammation and metabolism, ranging from the role of metabolism in immune cell function to the processes how inflammation modulates systemic and cardiac metabolism. Furthermore, we discuss how disruption of this immuno-metabolic interface is involved in the development and progression of cardiovascular disease, with a special focus on heart failure. Finally, we present new technologies and therapeutic approaches that have recently emerged and hold promise for the future of cardiovascular medicine.
Collapse
Affiliation(s)
- Edoardo Bertero
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Germany
| | - Jan Dudek
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Germany
| | - Clement Cochain
- Institute of Experimental Biomedicine, University Hospital Würzburg, Germany.,Comprehensive Heart Failure Center (CHFC), Würzburg, Germany
| | - Murilo Delgobo
- Comprehensive Heart Failure Center (CHFC), Würzburg, Germany.,Department of Internal Medicine I, University Hospital Würzburg, Germany
| | - Gustavo Ramos
- Comprehensive Heart Failure Center (CHFC), Würzburg, Germany.,Department of Internal Medicine I, University Hospital Würzburg, Germany
| | - Brenda Gerull
- Department of Internal Medicine I, University Hospital Würzburg, Germany.,Department of Cardiovascular Genetics, CHFC, University Hospital Würzburg, Germany
| | - Takahiro Higuchi
- Comprehensive Heart Failure Center (CHFC), Würzburg, Germany.,Department of Nuclear Medicine, University Hospital Würzburg, Germany
| | - Martin Vaeth
- Institute of Systems Immunology, Julius-Maximilians University Würzburg, Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Würzburg, Germany
| | - Stefan Frantz
- Comprehensive Heart Failure Center (CHFC), Würzburg, Germany.,Department of Internal Medicine I, University Hospital Würzburg, Germany
| | - Ulrich Hofmann
- Comprehensive Heart Failure Center (CHFC), Würzburg, Germany.,Department of Internal Medicine I, University Hospital Würzburg, Germany
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Germany.,Department of Internal Medicine I, University Hospital Würzburg, Germany
| |
Collapse
|
55
|
Kim SK, Biwer LA, Moss ME, Man JJ, Aronovitz MJ, Martin GL, Carrillo-Salinas FJ, Salvador AM, Alcaide P, Jaffe IZ. Mineralocorticoid Receptor in Smooth Muscle Contributes to Pressure Overload-Induced Heart Failure. Circ Heart Fail 2021; 14:e007279. [PMID: 33517669 PMCID: PMC7887087 DOI: 10.1161/circheartfailure.120.007279] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Mineralocorticoid receptor (MR) antagonists decrease heart failure (HF) hospitalization and mortality, but the mechanisms are unknown. Preclinical studies reveal that the benefits on cardiac remodeling and dysfunction are not completely explained by inhibition of MR in cardiomyocytes, fibroblasts, or endothelial cells. The role of MR in smooth muscle cells (SMCs) in HF has never been explored. METHODS Male mice with inducible deletion of MR from SMCs (SMC-MR-knockout) and their MR-intact littermates were exposed to HF induced by 27-gauge transverse aortic constriction versus sham surgery. HF phenotypes and mechanisms were measured 4 weeks later using cardiac ultrasound, intracardiac pressure measurements, exercise testing, histology, cardiac gene expression, and leukocyte flow cytometry. RESULTS Deletion of MR from SMC attenuated transverse aortic constriction-induced HF with statistically significant improvements in ejection fraction, cardiac stiffness, chamber dimensions, intracardiac pressure, pulmonary edema, and exercise capacity. Mechanistically, SMC-MR-knockout protected from adverse cardiac remodeling as evidenced by decreased cardiomyocyte hypertrophy and fetal gene expression, interstitial and perivascular fibrosis, and inflammatory and fibrotic gene expression. Exposure to pressure overload resulted in a statistically significant decline in cardiac capillary density and coronary flow reserve in MR-intact mice. These vascular parameters were improved in SMC-MR-knockout mice compared with MR-intact littermates exposed to transverse aortic constriction. CONCLUSIONS These results provide a novel paradigm by which MR inhibition may be beneficial in HF by blocking MR in SMC, thereby improving cardiac blood supply in the setting of pressure overload-induced hypertrophy, which in turn mitigates the adverse cardiac remodeling that contributes to HF progression and symptoms.
Collapse
MESH Headings
- Animals
- Aorta/surgery
- Arterial Pressure
- Cardiomegaly/genetics
- Cardiomegaly/pathology
- Cardiomegaly/physiopathology
- Constriction, Pathologic
- Disease Models, Animal
- Echocardiography
- Gene Knockout Techniques
- Heart Failure/diagnostic imaging
- Heart Failure/genetics
- Heart Failure/pathology
- Heart Failure/physiopathology
- Mice
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/physiology
- Receptors, Mineralocorticoid/genetics
- Ventricular Remodeling/genetics
Collapse
Affiliation(s)
- Seung Kyum Kim
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
- Department of Sports Science, Seoul National University of Science and Technology, Seoul, Republic of Korea
| | - Lauren A. Biwer
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - M. Elizabeth Moss
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA
| | - Joshua J. Man
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA
| | - Mark J. Aronovitz
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - Gregory L. Martin
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | | | - Ane M. Salvador
- Department of Immunology, Tufts University School of Medicine, Boston, MA
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston, MA
| | - Iris Z. Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| |
Collapse
|
56
|
Lebsir D, Cantabella E, Cohen D, Sache A, Ebrahimian T, Kereselidze D, Amine Benadjaoud M, Maurisier FC, Guigon P, René Jourdain J, Benderitter M, Lestaevel P, Souidi M. Effect of repetitive potassium iodide on thyroid and cardiovascular functions in elderly rats. Biochem Biophys Rep 2020; 24:100816. [PMID: 33024842 PMCID: PMC7528076 DOI: 10.1016/j.bbrep.2020.100816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 11/28/2022] Open
Abstract
Background To date, paediatric thyroid cancer has been the most severe health consequence of the Chernobyl accident, caused by radioactive iodine (131I) aerosol's dispersion. WHO recommends a single dose of potassium iodide (KI) to reduce this risk. Following the Fukushima accident, it became obvious that repetitive doses of KI may be necessary due to multiple exposures to 131I. Knowledge about the effects of repeated ITB (Iodine Thyroid Blocking) is scarce and controversial. KI may affect the thyroid hormones synthesis; which is crucial for the cardiovascular function. Furthermore, myocardial and vascular endothelial tissues are sensitizes to subtle changes at the concentration of circulating pituitary and/or thyroid hormones. Objective In this preclinical study, we aimed to assess the effects of repeated ITB in elderly male rats. Methods Twelve months old male Wistar rats were subjected to either KI or saline solution for eight days. Analyses were performed 24 h and 30 days after the treatment discontinuation. Findings We reported a significant increase (18%) in some urinary parameters related to renal function, a subtle decrease of plasma TSH level, a significant increase (379%) in renin and a significant decrease (50%) in aldosterone upon KI administration. At the molecular level, the expression of thyroid and cardiovascular genes was significantly affected by the treatment. However, in our experimental settlement, animal heart rate was not significantly affected thirty days after KI discontinuation. ECG patterns did not change after administration of KI, and arrhythmia was not observed in these conditions despite the PR-intervals decreased significantly. Cardiovascular physiology was preserved. Conclusion Our results indicate that repeated ITB in elderly rats is characterized by molecular modifications of cardiovascular key actors, particularly the Renin-angiotensin-aldosterone axis with a preserved physiological homeostasis. This new scientific evidence may be useful for the maturation of ITB guidelines especially for elderly sub-population. Repeated ITB impairs the expression of genes involved in thyroid and cardiovascular functioning in elderly rats. Repeated ITB impairs biochemical profile and the Renin-Angiotensin- Aldosterone axis. Repeated ITB do not impair cardiovascular function. ITB guidelines especially for elderly sub-population may take into account the risk benefit balance.
Collapse
Affiliation(s)
- Dalila Lebsir
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), 92262, Fontenay-aux-Roses, France
| | - Elsa Cantabella
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), 92262, Fontenay-aux-Roses, France
| | - David Cohen
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), 92262, Fontenay-aux-Roses, France
| | - Amandine Sache
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), 92262, Fontenay-aux-Roses, France
| | - Teni Ebrahimian
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), 92262, Fontenay-aux-Roses, France
| | - Dimitri Kereselidze
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), 92262, Fontenay-aux-Roses, France
| | | | - François Caire Maurisier
- Pharmacie Centrale des Armées, Direction des Approvisionnement en Produits de Santé des Armées, 45000, Orléans, France
| | - Pierre Guigon
- Pharmacie Centrale des Armées, Direction des Approvisionnement en Produits de Santé des Armées, 45000, Orléans, France
| | - Jean René Jourdain
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), 92262, Fontenay-aux-Roses, France
| | - Marc Benderitter
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), 92262, Fontenay-aux-Roses, France
| | - Philippe Lestaevel
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), 92262, Fontenay-aux-Roses, France
| | - Maâmar Souidi
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), 92262, Fontenay-aux-Roses, France
- Corresponding author.
| |
Collapse
|
57
|
Xiu MX, Liu YM, Wang WJ. Investigation of hub genes and immune status in heart transplant rejection using endomyocardial biopsies. J Cell Mol Med 2020; 25:763-773. [PMID: 33230903 PMCID: PMC7812257 DOI: 10.1111/jcmm.16127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/26/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022] Open
Abstract
T cell‒mediated rejection (TCMR) and antibody‐mediated rejection (ABMR) are severe post‐transplantation complications for heart transplantation (HTx), whose molecular and immunological pathogenesis remains unclear. In the present study, the mRNA microarray data set GSE124897 containing 645 stable, 52 TCMR and 144 ABMR endomyocardial biopsies was obtained to screen for differentially expressed genes (DEGs) between rejected and stable HTx samples and to investigate immune cell infiltration. Functional enrichment analyses indicated roles of the DEGs primarily in immune‐related mechanisms. Protein‐protein interaction networks were then constructed, and ICAM1, CD44, HLA‐A and HLA‐B were identified as hub genes using the maximal clique centrality method. Immune cell infiltration analysis revealed differences in adaptive and innate immune cell populations between TCMR, ABMR and stable HTx samples. Additionally, hub gene expression levels significantly correlated with the degree and composition of immune cell infiltration in HTx rejection samples. Furthermore, drug‐gene interactions were constructed, and 12 FDA‐approved drugs were predicted to target hub genes. Finally, an external GSE2596 data set was used to validate the expression of the hub genes, and ROC curves indicated all four hub genes had promising diagnostic value for HTx rejection. This study provides a comprehensive perspective of molecular and immunological regulatory mechanisms underlying HTx rejection.
Collapse
Affiliation(s)
- Meng-Xi Xiu
- Medical School of Nanchang University, Nanchang, China
| | - Yuan-Meng Liu
- Medical School of Nanchang University, Nanchang, China
| | - Wen-Jun Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
58
|
Smolgovsky S, Ibeh U, Tamayo TP, Alcaide P. Adding insult to injury - Inflammation at the heart of cardiac fibrosis. Cell Signal 2020; 77:109828. [PMID: 33166625 DOI: 10.1016/j.cellsig.2020.109828] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023]
Abstract
The fibrotic response has evolutionary worked in tandem with the inflammatory response to facilitate healing following injury or tissue destruction as a result of pathogen clearance. However, excessive inflammation and fibrosis are key pathological drivers of organ tissue damage. Moreover, fibrosis can occur in several conditions associated with chronic inflammation that are not directly caused by overt tissue injury or infection. In the heart, in particular, fibrotic adverse cardiac remodeling is a key pathological driver of cardiac dysfunction in heart failure. Cardiac fibroblast activation and immune cell activation are two mechanistic domains necessary for fibrotic remodeling in the heart, and, independently, their contributions to cardiac fibrosis and cardiac inflammation have been studied and reviewed thoroughly. The interdependence of these two processes, and how their cellular components modulate each other's actions in response to different cardiac insults, is only recently emerging. Here, we review recent literature in cardiac fibrosis and inflammation and discuss the mechanisms involved in the fibrosis-inflammation axis in the context of specific cardiac stresses, such as myocardial ischemia, and in nonischemic heart conditions. We discuss how the search for anti-inflammatory and anti-fibrotic therapies, so far unsuccessful to date, needs to be based on our understanding of the interdependence of immune cell and fibroblast activities. We highlight that in addition to the extensively reviewed role of immune cells modulating fibroblast function, cardiac fibroblasts are central participants in inflammation that may acquire immune like cell functions. Lastly, we review the gut-heart axis as an example of a novel perspective that may contribute to our understanding of how immune and fibrotic modulation may be indirectly modulated as a potential area for therapeutic research.
Collapse
Affiliation(s)
- Sasha Smolgovsky
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States of America; Immunology Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States of America
| | - Udoka Ibeh
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States of America; Cell, Molecular, and Developmental Biology Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States of America
| | - Tatiana Peña Tamayo
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States of America
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States of America; Immunology Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States of America; Cell, Molecular, and Developmental Biology Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States of America.
| |
Collapse
|
59
|
Abstract
Myocardial fibrosis, the expansion of the cardiac interstitium through deposition of extracellular matrix proteins, is a common pathophysiologic companion of many different myocardial conditions. Fibrosis may reflect activation of reparative or maladaptive processes. Activated fibroblasts and myofibroblasts are the central cellular effectors in cardiac fibrosis, serving as the main source of matrix proteins. Immune cells, vascular cells and cardiomyocytes may also acquire a fibrogenic phenotype under conditions of stress, activating fibroblast populations. Fibrogenic growth factors (such as transforming growth factor-β and platelet-derived growth factors), cytokines [including tumour necrosis factor-α, interleukin (IL)-1, IL-6, IL-10, and IL-4], and neurohumoral pathways trigger fibrogenic signalling cascades through binding to surface receptors, and activation of downstream signalling cascades. In addition, matricellular macromolecules are deposited in the remodelling myocardium and regulate matrix assembly, while modulating signal transduction cascades and protease or growth factor activity. Cardiac fibroblasts can also sense mechanical stress through mechanosensitive receptors, ion channels and integrins, activating intracellular fibrogenic cascades that contribute to fibrosis in response to pressure overload. Although subpopulations of fibroblast-like cells may exert important protective actions in both reparative and interstitial/perivascular fibrosis, ultimately fibrotic changes perturb systolic and diastolic function, and may play an important role in the pathogenesis of arrhythmias. This review article discusses the molecular mechanisms involved in the pathogenesis of cardiac fibrosis in various myocardial diseases, including myocardial infarction, heart failure with reduced or preserved ejection fraction, genetic cardiomyopathies, and diabetic heart disease. Development of fibrosis-targeting therapies for patients with myocardial diseases will require not only understanding of the functional pluralism of cardiac fibroblasts and dissection of the molecular basis for fibrotic remodelling, but also appreciation of the pathophysiologic heterogeneity of fibrosis-associated myocardial disease.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- Department of Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| |
Collapse
|
60
|
Yang D, Liu HQ, Liu FY, Tang N, Guo Z, Ma SQ, An P, Wang MY, Wu HM, Yang Z, Fan D, Tang QZ. Critical roles of macrophages in pressure overload-induced cardiac remodeling. J Mol Med (Berl) 2020; 99:33-46. [PMID: 33130927 DOI: 10.1007/s00109-020-02002-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/07/2020] [Accepted: 10/28/2020] [Indexed: 12/19/2022]
Abstract
Macrophages are integral components of the mammalian heart that show extensive expansion in response to various internal or external stimuli. After the onset of sustained pressure overload (PO), the accumulation of cardiac macrophages through local macrophage proliferation and monocyte migration has profound effects on the transition to cardiac hypertrophy and remodeling. In this review, we describe the heterogeneity and diversity of cardiac macrophages and summarize the current understanding of the important roles of macrophages in PO-induced cardiac remodeling. In addition, the possible mechanisms involved in macrophage modulation are also described. Finally, considering the significant effects of cardiac macrophages, we highlight their emerging role as therapeutic targets for alleviating pathological cardiac remodeling after PO.
Collapse
Affiliation(s)
- Dan Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Han-Qing Liu
- Department of Thyroid and Breast, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Fang-Yuan Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Nan Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Zhen Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Shu-Qing Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Peng An
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Ming-Yu Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Hai-Ming Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Zheng Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Di Fan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.
- Cardiovascular Research Institute, Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.
- Cardiovascular Research Institute, Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
61
|
Watanabe H, Kanemaru K, Hagikura K, Matsumoto T, Ayusawa M, Morioka I. Soluble factors released by dedifferentiated fat cells reduce the functional activity of iPS cell-derived cardiomyocytes. Cell Biol Int 2020; 45:295-304. [PMID: 33073424 DOI: 10.1002/cbin.11487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 11/09/2022]
Abstract
Interactions between tissues such as epicardial adipose (EAT), and myocardial tissues is important in the pathogenesis of heart failure. Changes in adipose tissues in obesity or diabetes impair preadipocyte differentiation. Furthermore, proinflammatory cytokine secretion is higher in preadipocytes than in mature adipocytes in diabetes and obesity. However, how undifferentiated cells committed to the adipose lineage directly influence cardiomyocytes is not yet understood. We used human-derived dedifferentiated fat (DFAT) cells as models of undifferentiated cells committed to an adipose lineage. Here, we evaluated the effects of soluble factor interactions in indirect cocultures of DFAT cells and induced pluripotent stem cell-derived cardiomyocytes. Our RNA sequencing findings showed that these interactions were predominantly inflammatory responses. Furthermore, proinflammatory cytokines secreted by DFAT cells reduced myocardial functions such as contraction frequency and catecholamine sensitivity, and simultaneously increased apoptosis, decreased antioxidative stress tolerance, and reduced oxygen consumption rates in cardiomyocytes. These adverse effects might be attributable to monocyte chemoattractant protein-1, chemokine (C-X-C motif) ligands 1 (CXCL1), and 12, granulocyte colony-stimulating factor, interleukins 6 and 8, macrophage migration inhibitory factor (MIF), and plasminogen activator inhibitor 1-A among the proinflammatory mediators secreted by DFAT cells. Our results could be useful for understanding the pathogenesis of EAT-related heart failure in terms of the involvement of undifferentiated cells committed to the adipose lineage. Furthermore, we suggest the importance of focusing on surrounding adipose tissues as a strategy with which to maximize the survival and function of transplanted stem cell-derived cardiomyocytes.
Collapse
Affiliation(s)
- Hirofumi Watanabe
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan.,Wata Clinic, Tokyo, Japan
| | - Kazunori Kanemaru
- Division of Cellular and Molecular Pharmacology, Nihon University School of Medicine, Tokyo, Japan
| | - Kazuhiro Hagikura
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, Tokyo, Japan
| | - Taro Matsumoto
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, Tokyo, Japan
| | - Mamoru Ayusawa
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Ichiro Morioka
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
62
|
Baci D, Bosi A, Parisi L, Buono G, Mortara L, Ambrosio G, Bruno A. Innate Immunity Effector Cells as Inflammatory Drivers of Cardiac Fibrosis. Int J Mol Sci 2020; 21:E7165. [PMID: 32998408 PMCID: PMC7583949 DOI: 10.3390/ijms21197165] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
Despite relevant advances made in therapies for cardiovascular diseases (CVDs), they still represent the first cause of death worldwide. Cardiac fibrosis and excessive extracellular matrix (ECM) remodeling are common end-organ features in diseased hearts, leading to tissue stiffness, impaired myocardial functional, and progression to heart failure. Although fibrosis has been largely recognized to accompany and complicate various CVDs, events and mechanisms driving and governing fibrosis are still not entirely elucidated, and clinical interventions targeting cardiac fibrosis are not yet available. Immune cell types, both from innate and adaptive immunity, are involved not just in the classical response to pathogens, but they take an active part in "sterile" inflammation, in response to ischemia and other forms of injury. In this context, different cell types infiltrate the injured heart and release distinct pro-inflammatory cytokines that initiate the fibrotic response by triggering myofibroblast activation. The complex interplay between immune cells, fibroblasts, and other non-immune/host-derived cells is now considered as the major driving force of cardiac fibrosis. Here, we review and discuss the contribution of inflammatory cells of innate immunity, including neutrophils, macrophages, natural killer cells, eosinophils and mast cells, in modulating the myocardial microenvironment, by orchestrating the fibrogenic process in response to tissue injury. A better understanding of the time frame, sequences of events during immune cells infiltration, and their action in the injured inflammatory heart environment, may provide a rationale to design new and more efficacious therapeutic interventions to reduce cardiac fibrosis.
Collapse
Affiliation(s)
- Denisa Baci
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy;
| | - Annalisa Bosi
- Laboratory of Pharmacology, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy;
| | - Luca Parisi
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20122 Milan, Italy;
| | - Giuseppe Buono
- Unit of Immunology, IRCCS MultiMedica, 20138 Milan, Italy;
| | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy;
| | - Giuseppe Ambrosio
- Division of Cardiology, University of Perugia School of Medicine, 06123 Perugia, Italy;
| | - Antonino Bruno
- Unit of Immunology, IRCCS MultiMedica, 20138 Milan, Italy;
| |
Collapse
|
63
|
O'Brien M, Baicu CF, Van Laer AO, Zhang Y, McDonald LT, LaRue AC, Zile MR, Bradshaw AD. Pressure overload generates a cardiac-specific profile of inflammatory mediators. Am J Physiol Heart Circ Physiol 2020; 319:H331-H340. [PMID: 32589444 DOI: 10.1152/ajpheart.00274.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mechanisms that contribute to myocardial fibrosis, particularly in response to left ventricular pressure overload (LVPO), remain poorly defined. To test the hypothesis that a myocardial-specific profile of secreted factors is produced in response to PO, levels of 44 factors implicated in immune cell recruitment and function were assessed in a murine model of cardiac hypertrophy and compared with levels produced in a model of pulmonary fibrosis (PF). Mice subjected to PO were assessed at 1 and 4 wk. Protein from plasma, LV, lungs, and kidneys were analyzed by specific protein array analysis in parallel with protein from mice subjected to silica-instilled PF. Of the 44 factors assessed, 13 proteins were elevated in 1-wk PO myocardium, whereas 18 proteins were found increased in fibrotic lung. Eight of those increased in 1-wk LVPO were not found to be increased in fibrotic lungs (CCL-11, CCL-12, CCL-17, CCL-19, CCL-21, CCL-22, IL-16, and VEGF). Additionally, six factors were increased in plasma of 1-wk LVPO in the absence of increases in myocardial levels. In contrast, in mice with PF, no factors were found increased in plasma that were not elevated in lung tissue. Of those factors increased at 1 wk, only TIMP-1 remained elevated at 4 wk of LVPO. Immunohistochemistry of myocardial vasculature at 1 and 4 wk revealed similar amounts of total vasculature; however, evidence of activated endothelium was observed at 1 wk and, to a lesser extent, at 4 wk LVPO. In conclusion, PO myocardium generated a unique signature of cytokine expression versus that of fibrotic lung.NEW & NOTEWORTHY Myocardial fibrosis and the resultant increases in myocardial stiffness represent pivotal consequences of chronic pressure overload (PO). In this study, cytokine profiles produced in a murine model of cardiac fibrosis induced by PO were compared with those produced in response to silica-induced lung fibrosis. A unique profile of cardiac tissue-specific and plasma-derived factors generated in response to PO are reported.
Collapse
Affiliation(s)
- Matthew O'Brien
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Catalin F Baicu
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - An O Van Laer
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Yuhua Zhang
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Lindsey T McDonald
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina.,Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| | - Amanda C LaRue
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina.,Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| | - Michael R Zile
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina.,Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| | - Amy D Bradshaw
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina.,Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| |
Collapse
|
64
|
Oh JG, Lee P, Gordon RE, Sahoo S, Kho C, Jeong D. Analysis of extracellular vesicle miRNA profiles in heart failure. J Cell Mol Med 2020; 24:7214-7227. [PMID: 32485073 PMCID: PMC7339231 DOI: 10.1111/jcmm.15251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/25/2020] [Accepted: 03/13/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) have recently emerged as an important carrier for various genetic materials including microRNAs (miRs). Growing evidences suggested that several miRs transported by EVs were particularly involved in modulating cardiac function. However, it has remained unclear what miRs are enriched in EVs and play an important role in the pathological condition. Therefore, we established the miR expression profiles in EVs from murine normal and failing hearts and consecutively identified substantially altered miRs. In addition, we have performed bioinformatics approach to predict potential cardiac outcomes through the identification of miR targets. Conclusively, we observed approximately 63% of predicted targets were validated with previous reports. Notably, the predicted targets by this approach were often involved in both beneficial and malicious signalling pathways, which may reflect heterogeneous cellular origins of EVs in tissues. Lastly, there has been an active debate on U6 whether it is a proper control. Through further analysis of EV miR profiles, miR‐676 was identified as a superior reference control due to its consistent and abundant expressions. In summary, our results contribute to identifying specific EV miRs for the potential therapeutic targets in heart failure and suggest that miR‐676 as a new reference control for the EV miR studies.
Collapse
Affiliation(s)
- Jae Gyun Oh
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Philyoung Lee
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ronald E Gordon
- Pathology Department, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Susmita Sahoo
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Changwon Kho
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Division of Applied Medicine, School of Korean Medicine, Pusan National University, Republic of Korea
| | - Dongtak Jeong
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
65
|
Okyere AD, Tilley DG. Leukocyte-Dependent Regulation of Cardiac Fibrosis. Front Physiol 2020; 11:301. [PMID: 32322219 PMCID: PMC7156539 DOI: 10.3389/fphys.2020.00301] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/17/2020] [Indexed: 12/24/2022] Open
Abstract
Cardiac fibrosis begins as an intrinsic response to injury or ageing that functions to preserve the tissue from further damage. Fibrosis results from activated cardiac myofibroblasts, which secrete extracellular matrix (ECM) proteins in an effort to replace damaged tissue; however, excessive ECM deposition leads to pathological fibrotic remodeling. At this extent, fibrosis gravely disturbs myocardial compliance, and ultimately leads to adverse outcomes like heart failure with heightened mortality. As such, understanding the complexity behind fibrotic remodeling has been a focal point of cardiac research in recent years. Resident cardiac fibroblasts and activated myofibroblasts have been proven integral to the fibrotic response; however, several findings point to additional cell types that may contribute to the development of pathological fibrosis. For one, leukocytes expand in number after injury and exhibit high plasticity, thus their distinct role(s) in cardiac fibrosis is an ongoing and controversial field of study. This review summarizes current findings, focusing on both direct and indirect leukocyte-mediated mechanisms of fibrosis, which may provide novel targeted strategies against fibrotic remodeling.
Collapse
Affiliation(s)
- Ama Dedo Okyere
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Douglas G Tilley
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
66
|
Bekar L, Kalçık M, Katar M, Yetim M, Çelik O, Doğan T, Karavelioğlu Y, Gölbaşı Z. Investigation of ICAM-1 levels in hypertensive patients with fragmented QRS complexes. Acta Cardiol 2020; 75:123-129. [PMID: 30650029 DOI: 10.1080/00015385.2018.1555200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Objective: Fragmented QRS (fQRS) detected on a 12-lead electrocardiogram (ECG) has been demonstrated to be a marker of myocardial fibrosis. Intercellular adhesion molecule-1 (ICAM-1) is a protein which plays an important role in fibro-inflammatory processes. In this study, we aimed to investigate the relationship between ICAM-1 levels and the presence of fQRS in hypertensive patients.Methods: Ninety consecutive patients who were diagnosed with hypertension were included in the study. ECG and transthoracic echocardiography were performed to all patients. fQRS was defined as additional R' wave or notching/splitting of S wave in two contiguous ECG leads. Serum ICAM-1 levels were measured using the enzyme-linked immunosorbent assay method. Patients were divided into two groups according to the presence of fQRS.Results: A total of 90 patients (female, 65%; mean age: 54.6 ± 8.5 years) were included in the study. fQRS was detected on ECG recordings of 47 (52.2%) patients. The demographic characteristics were similar between the groups. Left atrial diameter (p = .003), interventricular septal thickness (p = .013), posterior wall thickness (p = .01), left ventricular mass (p = .002), left ventricular mass index (p < .001), left ventricular hypertrophy (p = .001), and ICAM-1 levels (p < .001) were found to be significantly increased in fQRS(+) group. In multivariate analysis, only high ICAM-1 level was observed to be an independent predictor for the presence of fQRS (odds ratio: 1.029; 95%Confidence Interval: 1.013-1.045, p < .001).Conclusion: A significant association exists between serum ICAM-1 levels and the presence of fQRS in hypertensive patients. The presence of fQRS may be used as an indicator of inflammation in hypertensive patients.
Collapse
Affiliation(s)
- Lütfü Bekar
- Department of Cardiology, Hitit University Faculty of Medicine, Çorum, Turkey
| | - Macit Kalçık
- Department of Cardiology, Hitit University Faculty of Medicine, Çorum, Turkey
| | - Muzaffer Katar
- Department of Biochemistry, Gaziosmanpasa University Faculty of Medicine, Tokat, Turkey
| | - Mucahit Yetim
- Department of Cardiology, Hitit University Faculty of Medicine, Çorum, Turkey
| | - Oğuzhan Çelik
- Department of Cardiology, Muğla Sıtkı Koçman Training and Research Hospital, Muğla, Turkey
| | - Tolga Doğan
- Department of Cardiology, Hitit University Faculty of Medicine, Çorum, Turkey
| | - Yusuf Karavelioğlu
- Department of Cardiology, Hitit University Faculty of Medicine, Çorum, Turkey
| | - Zehra Gölbaşı
- Department of Cardiology, Hitit University Faculty of Medicine, Çorum, Turkey
| |
Collapse
|
67
|
Patel RB, Colangelo LA, Reiner AP, Gross MD, Jacobs DR, Launer LJ, Lima JAC, Lloyd-Jones DM, Shah SJ. Cellular Adhesion Molecules in Young Adulthood and Cardiac Function in Later Life. J Am Coll Cardiol 2020; 75:2156-2165. [PMID: 32194198 DOI: 10.1016/j.jacc.2020.02.060] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND E-selectin and intercellular adhesion molecule (ICAM)-1 are biomarkers of endothelial activation, which has been implicated in the pathogenesis of heart failure (HF) with preserved ejection fraction (HFpEF). However, the temporal associations between E-selectin and ICAM-1 with subclinical cardiac dysfunction are unclear. OBJECTIVES This study sought to assess the longitudinal associations of E-selectin and ICAM-1 with subclinical alterations in cardiac function. METHODS In the Coronary Artery Disease Risk Development in Young Adults study, a cohort of black and white young adults, we evaluated the associations of E-selectin and ICAM-1, obtained at year (Y) 7 (Y7) and Y15 examinations, with cardiac function assessed at Y30 after adjustment for key covariates. RESULTS Higher E-selectin (n = 1,810) and ICAM-1 (n = 1,548) at Y7 were associated with black race, smoking, hypertension, and higher body mass index. After multivariable adjustment, higher E-selectin at Y7 (β coefficient per 1 SD higher: 0.22; SE: 0.06; p < 0.001) and Y15 (β coefficient per 1 SD higher: 0.19; SE: 0.06; p = 0.002) was associated with worse left ventricular (LV) global longitudinal strain (GLS). Additionally, higher Y15 ICAM-1 (β coefficient per 1 SD higher: 0.18; SE: 0.06; p = 0.004) and its increase from Y7 to Y15 (β coefficient per 1 SD higher: 0.16; SE: 0.07; p = 0.03) were also independently associated with worse LV GLS. E-selectin and ICAM-1 partially mediated the associations between higher body mass index and black race with worse GLS. Neither E-selectin nor ICAM-1 was associated with measures of LV diastolic function after multivariable adjustment. CONCLUSION Circulating levels of E-selectin and ICAM-1 and increases in ICAM-1 over the course of young adulthood are associated with worse indices of LV systolic function in midlife. These findings suggest associations of endothelial activation with subclinical HF with preserved ejection fraction.
Collapse
Affiliation(s)
- Ravi B Patel
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| | - Laura A Colangelo
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Alexander P Reiner
- Department of Epidemiology, University of Washington, Seattle, Washington
| | - Myron D Gross
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - David R Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, Bethesda, Maryland
| | - Joao A C Lima
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Donald M Lloyd-Jones
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Sanjiv J Shah
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
68
|
Bacharova L. Missing Link between Molecular Aspects of Ventricular Arrhythmias and QRS Complex Morphology in Left Ventricular Hypertrophy. Int J Mol Sci 2019; 21:E48. [PMID: 31861705 PMCID: PMC6982310 DOI: 10.3390/ijms21010048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 12/27/2022] Open
Abstract
The aim of this opinion paper is to point out the knowledge gap between evidence on the molecular level and clinical diagnostic possibilities in left ventricular hypertrophy (LVH) regarding the prediction of ventricular arrhythmias and monitoring the effect of therapy. LVH is defined as an increase in left ventricular size and is associated with increased occurrence of ventricular arrhythmia. Hypertrophic rebuilding of myocardium comprises interrelated processes on molecular, subcellular, cellular, tissue, and organ levels affecting electrogenesis, creating a substrate for triggering and maintaining arrhythmias. The knowledge of these processes serves as a basis for developing targeted therapy to prevent and treat arrhythmias. In the clinical practice, the method for recording electrical phenomena of the heart is electrocardiography. The recognized clinical electrocardiogram (ECG) predictors of ventricular arrhythmias are related to alterations in electrical impulse propagation, such as QRS complex duration, QT interval, early repolarization, late potentials, and fragmented QRS, and they are not specific for LVH. However, the simulation studies have shown that the QRS complex patterns documented in patients with LVH are also conditioned remarkably by the alterations in impulse propagation. These QRS complex patterns in LVH could be potentially recognized for predicting ventricular arrhythmia and for monitoring the effect of therapy.
Collapse
Affiliation(s)
- Ljuba Bacharova
- International Laser Center, 841 04 Bratislava, Slovakia
- Institute of Pathophysiology, Medical School, Comenius University, 841 04 Bratislava, Slovakia
| |
Collapse
|
69
|
Suetomi T, Miyamoto S, Brown JH. Inflammation in nonischemic heart disease: initiation by cardiomyocyte CaMKII and NLRP3 inflammasome signaling. Am J Physiol Heart Circ Physiol 2019; 317:H877-H890. [PMID: 31441689 PMCID: PMC6879920 DOI: 10.1152/ajpheart.00223.2019] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/09/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022]
Abstract
There is substantial evidence that chronic heart failure in humans and in animal models is associated with inflammation. Ischemic interventions such as myocardial infarction lead to necrotic cell death and release of damage associated molecular patterns, factors that signal cell damage and induce expression of proinflammatory chemokines and cytokines. It has recently become evident that nonischemic interventions are also associated with increases in inflammatory genes and immune cell accumulation in the heart and that these contribute to fibrosis and ventricular dysfunction. How proinflammatory responses are elicited in nonischemic heart disease which is not, at least initially, associated with cell death is a critical unanswered question. In this review we provide evidence supporting the hypothesis that cardiomyocytes are an initiating site of inflammatory gene expression in response to nonischemic stress. Furthermore we discuss the role of the multifunctional Ca2+/calmodulin-regulated kinase, CaMKIIδ, as a transducer of stress signals to nuclear factor-κB activation, expression of proinflammatory cytokines and chemokines, and priming and activation of the NOD-like pyrin domain-containing protein 3 (NLRP3) inflammasome in cardiomyocytes. We summarize recent evidence that subsequent macrophage recruitment, fibrosis and contractile dysfunction induced by angiotensin II infusion or transverse aortic constriction are ameliorated by blockade of CaMKII, of monocyte chemoattractant protein-1/C-C chemokine receptor type 2 signaling, or of NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Takeshi Suetomi
- Division of Cardiology, Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
- Department of Pharmacology, University of California San Diego, La Jolla, California
| | - Shigeki Miyamoto
- Department of Pharmacology, University of California San Diego, La Jolla, California
| | - Joan Heller Brown
- Department of Pharmacology, University of California San Diego, La Jolla, California
| |
Collapse
|
70
|
Moss ME, Carvajal B, Jaffe IZ. The endothelial mineralocorticoid receptor: Contributions to sex differences in cardiovascular disease. Pharmacol Ther 2019; 203:107387. [PMID: 31271793 PMCID: PMC6848769 DOI: 10.1016/j.pharmthera.2019.06.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/26/2019] [Indexed: 12/20/2022]
Abstract
Cardiovascular disease remains the leading cause of death for both men and women. The observation that premenopausal women are protected from cardiovascular disease relative to age-matched men, and that this protection is lost with menopause, has led to extensive study of the role of sex steroid hormones in the pathogenesis of cardiovascular disease. However, the molecular basis for sex differences in cardiovascular disease is still not fully understood, limiting the ability to tailor therapies to male and female patients. Therefore, there is a growing need to investigate molecular pathways outside of traditional sex hormone signaling to fully understand sex differences in cardiovascular disease. Emerging evidence points to the mineralocorticoid receptor (MR), a steroid hormone receptor activated by the adrenal hormone aldosterone, as one such mediator of cardiovascular disease risk, potentially serving as a sex-dependent link between cardiovascular risk factors and disease. Enhanced activation of the MR by aldosterone is associated with increased risk of cardiovascular disease. Emerging evidence implicates the MR specifically within the endothelial cells lining the blood vessels in mediating some of the sex differences observed in cardiovascular pathology. This review summarizes the available clinical and preclinical literature concerning the role of the MR in the pathophysiology of endothelial dysfunction, hypertension, atherosclerosis, and heart failure, with a special emphasis on sex differences in the role of endothelial-specific MR in these pathologies. The available data regarding the molecular mechanisms by which endothelial-specific MR may contribute to sex differences in cardiovascular disease is also summarized. A paradigm emerges from synthesis of the literature in which endothelial-specific MR regulates vascular function in a sex-dependent manner in response to cardiovascular risk factors to contribute to disease. Limitations in this field include the relative paucity of women in clinical trials and, until recently, the nearly exclusive use of male animals in preclinical investigations. Enhanced understanding of the sex-specific roles of endothelial MR could lead to novel mechanistic insights underlying sex differences in cardiovascular disease incidence and outcomes and could identify additional therapeutic targets to effectively treat cardiovascular disease in men and women.
Collapse
Affiliation(s)
- M Elizabeth Moss
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States of America; Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States of America
| | - Brigett Carvajal
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States of America; Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States of America
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States of America; Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States of America.
| |
Collapse
|
71
|
Up-regulation of miR-27 extenuates lipopolysaccharide-induced injury in H9c2 cells via modulating ICAM1 expression. Genes Genomics 2019; 41:1467-1474. [PMID: 31576518 DOI: 10.1007/s13258-019-00863-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/25/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND MiR-27 has been found to present an overt myocardial expression during cardiogenesis. However, whether miR-27 involves in myocarditis development and the possible molecular mechanism remain unknown. The purpose of this study was to investigate the biological characteristic of miR-27 in LPS-damaged H9c2 cells. METHODS H9c2 cells were treated with lipopolysaccharide (LPS, 10 µg/ml) for 12 h to form cell injury. MiR-27 mimic and inhibitor were used to up-regulate or down-regulate miR-27 expression. MTT assay and flow cytometry analysis were conducted to test cell viability and apoptosis. The relative RNA expression level of miR-27 and intercellular adhesion molecule 1 (ICAM1) was determined by qRT-PCR. Luciferase reporter gene assay was utilized to confirm the interaction between miR-27 and ICAM1. Western blot was used to determine the protein expression levels. RESULTS We observed that LPS treatment significantly decreased the level of miR-27 in H9c2 cells. Moreover, LPS exposure suppressed cell viability, promoted cell apoptosis and increased the relative expression of p-NF-κB p65/NF-κB p65 and p-IκBα/IκBα. Up-regulation of miR-27 increased cell proliferation and reduced cell apoptosis, while down-regulation of miR-27 suppressed cell growth and promoted cell apoptosis. ICAM1 was predicted and verified as a target of miR-27, and the expression of ICAM1 is negatively regulated by miR-27. The relative expression of p-NF-κB p65/NF-κB p65 and p-IκBα/IκBα was dramatically decreased by miR-27 mimic and increased by miR-27 inhibitor. CONCLUSION Our study illustrated that up-regulation of miR-27 exhibits a protective effect on LPS-damaged H9c2 cells, which may be achieved by regulating ICAM1 and NF-κB signaling.
Collapse
|
72
|
Suetomi T, Willeford A, Brand CS, Cho Y, Ross RS, Miyamoto S, Brown JH. Inflammation and NLRP3 Inflammasome Activation Initiated in Response to Pressure Overload by Ca 2+/Calmodulin-Dependent Protein Kinase II δ Signaling in Cardiomyocytes Are Essential for Adverse Cardiac Remodeling. Circulation 2019; 138:2530-2544. [PMID: 30571348 DOI: 10.1161/circulationaha.118.034621] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Inflammation is associated with cardiac remodeling and heart failure, but how it is initiated in response to nonischemic interventions in the absence of cell death is not known. We tested the hypothesis that activation of Ca2+/calmodulin-dependent protein kinase II δ (CaMKIIδ) in cardiomyocytes (CMs) in response to pressure overload elicits inflammatory responses leading to adverse remodeling. METHODS Mice in which CaMKIIδ was selectively deleted from CMs (cardiac-specific knockout [CKO]) and floxed control mice were subjected to transverse aortic constriction (TAC). The effects of CM-specific CaMKIIδ deletion on inflammatory gene expression, inflammasome activation, macrophage accumulation, and fibrosis were assessed by quantitative polymerase chain reaction, histochemistry, and ventricular remodeling by echocardiography. RESULTS TAC induced increases in cardiac mRNA levels for proinflammatory chemokines and cytokines in ≤3 days, and these responses were significantly blunted when CM CaMKIIδ was deleted. Apoptotic and necrotic cell death were absent at this time. CMs isolated from TAC hearts mirrored these robust increases in gene expression, which were markedly attenuated in CKO. Priming and activation of the NOD-like receptor pyrin domain-containing protein 3 inflammasome, assessed by measuring interleukin-1β and NOD-like receptor pyrin domain-containing protein 3 mRNA levels, caspase-1 activity, and interleukin-18 cleavage, were increased at day 3 after TAC in control hearts and in CMs isolated from these hearts. These responses were dependent on CaMKIIδ and associated with activation of Nuclear Factor-kappa B and reactive oxygen species. Accumulation of macrophages observed at days 7 to 14 after TAC was diminished in CKO and, by blocking Monocyte Chemotactic Protein-1 signaling, deletion of CM Monocyte Chemotactic Protein-1 or inhibition of inflammasome activation. Fibrosis was also attenuated by these interventions and in the CKO heart. Ventricular dilation and contractile dysfunction observed at day 42 after TAC were diminished in the CKO. Inhibition of CaMKII, Nuclear Factor-kappa B, inflammasome, or Monocyte Chemotactic Protein-1 signaling in the first 1 or 2 weeks after TAC decreased remodeling, but inhibition of CaMKII after 2 weeks did not. CONCLUSIONS Activation of CaMKIIδ in response to pressure overload triggers inflammatory gene expression and activation of the NOD-like receptor pyrin domain-containing protein 3 inflammasome in CMs. These responses provide signals for macrophage recruitment, fibrosis, and myocardial dysfunction in the heart. Our work suggests the importance of targeting early inflammatory responses induced by CM CaMKIIδ signaling to prevent progression to heart failure.
Collapse
Affiliation(s)
- Takeshi Suetomi
- Department of Pharmacology (T.S., A.W., C.S.B., S.M., J.H.B.), University of California San Diego, La Jolla
| | - Andrew Willeford
- Department of Pharmacology (T.S., A.W., C.S.B., S.M., J.H.B.), University of California San Diego, La Jolla
| | - Cameron S Brand
- Department of Pharmacology (T.S., A.W., C.S.B., S.M., J.H.B.), University of California San Diego, La Jolla
| | - Yoshitake Cho
- Department of Medicine, Division of Cardiovascular Medicine (Y.C., R.S.R.), University of California San Diego, La Jolla
| | - Robert S Ross
- Department of Medicine, Division of Cardiovascular Medicine (Y.C., R.S.R.), University of California San Diego, La Jolla.,Veterans Administration Healthcare System, San Diego, CA (R.S.R.)
| | - Shigeki Miyamoto
- Department of Pharmacology (T.S., A.W., C.S.B., S.M., J.H.B.), University of California San Diego, La Jolla
| | - Joan Heller Brown
- Department of Pharmacology (T.S., A.W., C.S.B., S.M., J.H.B.), University of California San Diego, La Jolla
| |
Collapse
|
73
|
Increased frequency of CD4 +CD57 + senescent T cells in patients with newly diagnosed acute heart failure: exploring new pathogenic mechanisms with clinical relevance. Sci Rep 2019; 9:12887. [PMID: 31501486 PMCID: PMC6733929 DOI: 10.1038/s41598-019-49332-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 08/20/2019] [Indexed: 01/03/2023] Open
Abstract
Recent animal studies showed T cells have a direct pathogenic role in the development of heart failure (HF). However, which subsets of T cells contribute to human HF pathogenesis and progression remains unclear. We characterized immunologic properties of various subsets of T cells and their clinical implications in human HF. Thirty-eight consecutive patients with newly diagnosed acute HF (21 males, mean age 66 ± 16 years) and 38 healthy control subjects (21 males, mean age 62 ± 12 years) were enrolled. We found that pro-inflammatory mediators, including CRP, IL-6 and IP-10 and the frequencies of CD57+ T cells in the CD4+ T cell population were significantly elevated in patients with acute HF compared to control subjects. A functional analysis of T cells from patients with acute HF revealed that the CD4+CD57+ T cell population exhibited a higher frequency of IFN-γ- and TNF-α- producing cells compared to the CD4+CD57− T cell population. Furthermore, the frequency of CD4+CD57+ T cells at baseline and its elevation at the six-month follow-up were significantly related with the development of cardiovascular (CV) events, which were defined as CV mortality, cardiac transplantation, or rehospitalization due to HF exacerbation. In conclusion, CD4+CD57+ senescent T cells showed more inflammatory features and polyfunctionality and were associated with clinical outcome in patients with acute HF. More detailed study for senescent T cells might offer new opportunities for the prevention and treatment of human HF.
Collapse
|
74
|
Abstract
The ECM (extracellular matrix) network plays a crucial role in cardiac homeostasis, not only by providing structural support, but also by facilitating force transmission, and by transducing key signals to cardiomyocytes, vascular cells, and interstitial cells. Changes in the profile and biochemistry of the ECM may be critically implicated in the pathogenesis of both heart failure with reduced ejection fraction and heart failure with preserved ejection fraction. The patterns of molecular and biochemical ECM alterations in failing hearts are dependent on the type of underlying injury. Pressure overload triggers early activation of a matrix-synthetic program in cardiac fibroblasts, inducing myofibroblast conversion, and stimulating synthesis of both structural and matricellular ECM proteins. Expansion of the cardiac ECM may increase myocardial stiffness promoting diastolic dysfunction. Cardiomyocytes, vascular cells and immune cells, activated through mechanosensitive pathways or neurohumoral mediators may play a critical role in fibroblast activation through secretion of cytokines and growth factors. Sustained pressure overload leads to dilative remodeling and systolic dysfunction that may be mediated by changes in the interstitial protease/antiprotease balance. On the other hand, ischemic injury causes dynamic changes in the cardiac ECM that contribute to regulation of inflammation and repair and may mediate adverse cardiac remodeling. In other pathophysiologic conditions, such as volume overload, diabetes mellitus, and obesity, the cell biological effectors mediating ECM remodeling are poorly understood and the molecular links between the primary insult and the changes in the matrix environment are unknown. This review article discusses the role of ECM macromolecules in heart failure, focusing on both structural ECM proteins (such as fibrillar and nonfibrillar collagens), and specialized injury-associated matrix macromolecules (such as fibronectin and matricellular proteins). Understanding the role of the ECM in heart failure may identify therapeutic targets to reduce geometric remodeling, to attenuate cardiomyocyte dysfunction, and even to promote myocardial regeneration.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- From the Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
75
|
Carrillo-Salinas FJ, Ngwenyama N, Anastasiou M, Kaur K, Alcaide P. Heart Inflammation: Immune Cell Roles and Roads to the Heart. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1482-1494. [PMID: 31108102 DOI: 10.1016/j.ajpath.2019.04.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/29/2019] [Accepted: 04/18/2019] [Indexed: 02/08/2023]
Abstract
Heart failure (HF) has been traditionally viewed as a disease of the cardiac muscle associated with systemic inflammation. Burgeoning evidence implicates immune effector mechanisms that include immune cell activation and trafficking to the heart. Immune cell infiltration in the myocardium can have adverse effects in the heart and contribute to the pathogenesis of HF. Both innate and adaptive immunity operate sequentially, and the specificity of these responses depends on the initial trigger sensed by the heart. Although the role of the immune system in the initial inflammatory response to infection and injury is well studied, what sets the trajectory to HF from different etiologies and the role of immunity once HF has been established is less understood. Herein, we review experimental and clinical knowledge of cardiac inflammation induced by different triggers that often result in HF from different etiologies. We focus on the mechanisms of immune cell activation systemically and on the pathways immune cells use to traffic to the heart.
Collapse
Affiliation(s)
| | - Njabulo Ngwenyama
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts; Sackler School for Graduate Studies Immunology Program, Tufts University School of Medicine, Boston, Massachusetts
| | - Marina Anastasiou
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts
| | - Kuljeet Kaur
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts; Sackler School for Graduate Studies Immunology Program, Tufts University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
76
|
Endothelial SIRT6 Is Vital to Prevent Hypertension and Associated Cardiorenal Injury Through Targeting Nkx3.2-GATA5 Signaling. Circ Res 2019; 124:1448-1461. [DOI: 10.1161/circresaha.118.314032] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
77
|
Blanton RM, Carrillo-Salinas FJ, Alcaide P. T-cell recruitment to the heart: friendly guests or unwelcome visitors? Am J Physiol Heart Circ Physiol 2019; 317:H124-H140. [PMID: 31074651 DOI: 10.1152/ajpheart.00028.2019] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Myocardial inflammation can lead to lethal acute or chronic heart failure (HF). T lymphocytes (T cells), have been reported in the inflamed heart in different etiologies of HF, and more recent studies support that different T-cell subsets play distinct roles in the heart depending on the inflammation-triggering event. T cells follow sequential steps to extravasate into tissues, but their specific recruitment to the heart is determined by several factors. These include differences in T-cell responsiveness to specific chemokines in the heart environment, as well as differences in the expression of adhesion molecules in response to distinct stimuli, which regulate T-cell recruitment to the heart and have consequences in cardiac remodeling and function. This review focuses on recent advances in our understanding of the role T cells play in the heart, including its critical role for host defense to virus and myocardial healing postischemia, and its pathogenic role in chronic ischemic and nonischemic HF. We discuss a variety of mechanisms that contribute to the inflammatory damage to the heart, as well as regulatory mechanisms that limit the magnitude of T-cell-mediated inflammation. We also highlight areas in which further research is needed to understand the role T cells play in the heart and distinguish the findings reported in experimental animal models and how they may translate to clinical observations in the human heart.
Collapse
Affiliation(s)
- Robert M Blanton
- Molecular Cardiology Research Institute, Tufts Medical Center , Boston, Massachusetts
| | | | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
78
|
Richards DA, Aronovitz MJ, Calamaras TD, Tam K, Martin GL, Liu P, Bowditch HK, Zhang P, Huggins GS, Blanton RM. Distinct Phenotypes Induced by Three Degrees of Transverse Aortic Constriction in Mice. Sci Rep 2019; 9:5844. [PMID: 30971724 PMCID: PMC6458135 DOI: 10.1038/s41598-019-42209-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/27/2019] [Indexed: 02/07/2023] Open
Abstract
Transverse aortic constriction (TAC) is a well-established model of pressure overload-induced cardiac hypertrophy and failure in mice. The degree of constriction “tightness” dictates the TAC severity and is determined by the gauge (G) of needle used. Though many reports use the TAC model, few studies have directly compared the range of resulting phenotypes. In this study adult male mice were randomized to receive TAC surgery with varying degrees of tightness: mild (25G), moderate (26G) or severe (27G) for 4 weeks, alongside sham-operated controls. Weekly echocardiography and terminal haemodynamic measurements determined cardiac remodelling and function. All TAC models induced significant, severity-dependent left ventricular hypertrophy and diastolic dysfunction compared to sham mice. Mice subjected to 26G TAC additionally exhibited mild systolic dysfunction and cardiac fibrosis, whereas mice in the 27G TAC group had more severe systolic and diastolic dysfunction, severe cardiac fibrosis, and were more likely to display features of heart failure, such as elevated plasma BNP. We also observed renal atrophy in 27G TAC mice, in the absence of renal structural, functional or gene expression changes. 25G, 26G and 27G TAC produced different responses in terms of cardiac structure and function. These distinct phenotypes may be useful in different preclinical settings.
Collapse
Affiliation(s)
- Daniel A Richards
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Boston, Massachusetts, 02111, USA
| | - Mark J Aronovitz
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Boston, Massachusetts, 02111, USA
| | - Timothy D Calamaras
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Boston, Massachusetts, 02111, USA
| | - Kelly Tam
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Boston, Massachusetts, 02111, USA
| | - Gregory L Martin
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Boston, Massachusetts, 02111, USA
| | - Peiwen Liu
- Sackler School of Graduate Biomedical Sciences, Tufts University, 145 Harrison Avenue, Boston, MA, 02111, United States
| | - Heather K Bowditch
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Boston, Massachusetts, 02111, USA
| | - Phyllis Zhang
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Boston, Massachusetts, 02111, USA
| | - Gordon S Huggins
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Boston, Massachusetts, 02111, USA
| | - Robert M Blanton
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Boston, Massachusetts, 02111, USA. .,Sackler School of Graduate Biomedical Sciences, Tufts University, 145 Harrison Avenue, Boston, MA, 02111, United States.
| |
Collapse
|
79
|
Ngwenyama N, Salvador AM, Velázquez F, Nevers T, Levy A, Aronovitz M, Luster AD, Huggins GS, Alcaide P. CXCR3 regulates CD4+ T cell cardiotropism in pressure overload-induced cardiac dysfunction. JCI Insight 2019; 4:125527. [PMID: 30779709 DOI: 10.1172/jci.insight.125527] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/14/2019] [Indexed: 12/13/2022] Open
Abstract
Heart failure (HF) is associated in humans and mice with increased circulating levels of CXCL9 and CXCL10, chemokine ligands of the CXCR3 receptor, predominantly expressed on CD4+ Th1 cells. Chemokine engagement of receptors is required for T cell integrin activation and recruitment to sites of inflammation. Th1 cells drive adverse cardiac remodeling in pressure overload-induced cardiac dysfunction, and mice lacking the integrin ligand ICAM-1 show defective T cell recruitment to the heart. Here, we show that CXCR3+ T cells infiltrate the heart in humans and mice with pressure overload-induced cardiac dysfunction. Genetic deletion of CXCR3 disrupts CD4+ T cell heart infiltration and prevents adverse cardiac remodeling. We demonstrate that cardiac fibroblasts and cardiac myeloid cells that include resident and infiltrated macrophages are the source of CXCL9 and CXCL10, which mechanistically promote Th1 cell adhesion to ICAM-1 under shear conditions in a CXCR3-dependent manner. To our knowledge, our findings identify a previously unrecognized role for CXCR3 in Th1 cell recruitment into the heart in pressure overload-induced cardiac dysfunction.
Collapse
Affiliation(s)
| | | | | | | | - Alexander Levy
- Molecular Cardiology Research Institute Tufts University, Boston, Massachusetts, USA
| | - Mark Aronovitz
- Molecular Cardiology Research Institute Tufts University, Boston, Massachusetts, USA
| | - Andrew D Luster
- Division of Rheumatology, Allergy and Immunology, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gordon S Huggins
- Molecular Cardiology Research Institute Tufts University, Boston, Massachusetts, USA
| | | |
Collapse
|
80
|
Recent advances in understanding the roles of T cells in pressure overload-induced cardiac hypertrophy and remodeling. J Mol Cell Cardiol 2019; 129:293-302. [DOI: 10.1016/j.yjmcc.2019.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 12/15/2022]
|
81
|
Gao J, Guo Y, Chen Y, Zhou J, Liu Y, Su P. Adeno-associated virus 9-mediated RNA interference targeting SOCS3 alleviates diastolic heart failure in rats. Gene 2019; 697:11-18. [PMID: 30763670 DOI: 10.1016/j.gene.2019.01.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 01/02/2019] [Accepted: 01/22/2019] [Indexed: 01/16/2023]
Abstract
OBJECTIVE To explore the effect of adeno-associated virus 9-mediated RNA interference targeting SOCS3 (AAV9-SOCS3 siRNA) on the treatment of diastolic heart failure (DHF). METHOD A rat DHF model was established, and cardiac function and hemodynamic changes were measured. HE, Sirius red and TUNEL staining were applied to observe the pathological changes in the myocardium. Immunoblotting and immunohistochemical staining were utilized to detect SOCS3 expression. The expression levels of various factors, including fibrosis-related factors (collagen I, collagen II, α-SMA and TGF-β), inflammatory-related factors (IL-1β, IL-6, TNF-α, p-p65 and ICAM-1) and factors related to the JAK/STAT signal pathway were analyzed by immunoblotting and/or qPCR. The serum levels of IL-1β, IL-6, and TNF-α were measured using ELISA. RESULTS SOCS3 expression was significantly downregulated in the DHF rat model by SOCS3 siRNA delivery. In the successfully established DHF rat model, cardiac function was clearly decreased, and cardiomyocyte apoptosis and myocardial fibrosis were significantly increased. These changes were ameliorated by treatment with AAV9-SOCS3 siRNA. The expression levels of p-JAK2 and p-STAT3 were significantly upregulated in the AAV9-SOCS3 siRNA group compared with the sham and AAV9-siRNA control groups, indicating that SOCS3 is a negative regulator of this signaling pathway. The expression levels of collagen I/III, α-SMA and TGF-β were also decreased at both the mRNA and protein levels. In addition, the serum and myocardial tissue expression levels of inflammatory-related factors, such as IL-6, IL-1β, and TNF-α, were also reduced by the administration of AAV9-SOCS3 siRNA compared with the AAV9-siRNA control. CONCLUSIONS SOCS3 gene silencing by AAV9-SOCS3 siRNA administration in a DHF rat model significantly reduced myocardial fibrosis and the inflammatory response and improved heart function. Therefore, this treatment is a potential therapeutic method for treating DHF.
Collapse
Affiliation(s)
- Jie Gao
- Department of Cardiac Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yulin Guo
- Department of Cardiac Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yingqi Chen
- Department of Cardiac Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jian Zhou
- Department of Cardiac Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yan Liu
- Department of Cardiac Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Pixiong Su
- Department of Cardiac Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
82
|
Biwer LA, Wallingford MC, Jaffe IZ. Vascular Mineralocorticoid Receptor: Evolutionary Mediator of Wound Healing Turned Harmful by Our Modern Lifestyle. Am J Hypertens 2019; 32:123-134. [PMID: 30380007 DOI: 10.1093/ajh/hpy158] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/30/2018] [Indexed: 12/28/2022] Open
Abstract
The mineralocorticoid receptor (MR) is indispensable for survival through its critical role in maintaining blood pressure in response to sodium scarcity or bleeding. Activation of MR by aldosterone in the kidney controls water and electrolyte homeostasis. This review summarizes recent advances in our understanding of MR function, specifically in vascular endothelial and smooth muscle cells. The evolving roles for vascular MR are summarized in the areas of (i) vascular tone regulation, (ii) thrombosis, (iii) inflammation, and (iv) vascular remodeling/fibrosis. Synthesis of the data supports the concept that vascular MR does not contribute substantially to basal homeostasis but rather, MR is poised to be activated when the vasculature is damaged to coordinate blood pressure maintenance and wound healing. Specifically, MR activation in the vascular wall promotes vasoconstriction, inflammation, and exuberant vascular remodeling with fibrosis. A teleological model is proposed in which these functions of vascular MR may have provided a critical evolutionary survival advantage in the face of mechanical vascular injury with bleeding. However, modern lifestyle is characterized by physical inactivity and high fat/high sodium diet resulting in diffuse vascular damage. Under these modern conditions, diffuse, persistent and unregulated activation of vascular MR contributes to post-reproductive cardiovascular disease in growing populations with hypertension, obesity, and advanced age.
Collapse
MESH Headings
- Animals
- Cardiovascular Diseases/epidemiology
- Cardiovascular Diseases/metabolism
- Cardiovascular Diseases/pathology
- Cardiovascular Diseases/physiopathology
- Diet, High-Fat
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiopathology
- Evolution, Molecular
- Hemodynamics
- Humans
- Life Style
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Receptors, Mineralocorticoid/metabolism
- Risk Factors
- Sedentary Behavior
- Signal Transduction
- Sodium, Dietary/adverse effects
- Vascular Remodeling
- Wound Healing
Collapse
Affiliation(s)
- Lauren A Biwer
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Mary C Wallingford
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
- Mother Infant Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
83
|
Kim JB, Kobayashi Y, Kuznetsova T, Moneghetti KJ, Brenner DA, O'Malley R, Dao C, Wu JC, Fischbein M, Craig Miller D, Yeung AC, Liang D, Haddad F, Fearon WF. Cytokines profile of reverse cardiac remodeling following transcatheter aortic valve replacement. Int J Cardiol 2018; 270:83-88. [PMID: 30219541 PMCID: PMC6140353 DOI: 10.1016/j.ijcard.2018.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 04/12/2018] [Accepted: 05/08/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVE Previous studies have suggested that cytokines and growth factors may predict ventricular recovery following aortic valve replacement (AVR). The primary objective of this study was to identify cytokines that predict ventricular recovery following transcatheter AVR (TAVR). METHODS We prospectively enrolled 121 consecutive patients who underwent TAVR. Standard echocardiographic assessment at baseline, 1-month and 1-year after TAVR included left ventricular (LV) mass index (LVMI) and global longitudinal strain (GLS). Blood samples were obtained at the time of the procedure to measure cytokines using a 63-plex Luminex platform. Partial least squares-discriminant analysis was performed to identify cytokines associated with ventricular remodeling and function at baseline as well as 1 year after TAVR. RESULTS The mean age was 84 ± 9 years, with a majority of male subjects (59%), a mean LVMI of 120.4 ± 45.1 g/m2 and LVGLS of -13.0 ± 3.2%. On average, LV mass decreased by 8.1% and GLS improved by 20.3% at 1 year following TAVR. Among cytokines assayed, elevated hepatocyte growth factor (HGF) emerged as a common factor significantly associated with worse baseline LVMI and GLS as well as reduced ventricular recovery (p < 0.005). Other factors associated with ventricular recovery included a select group of vascular growth factors, inflammatory mediators and tumor necrosis factors, including VEGF-D, ICAM-1, TNFβ, and IL1β. CONCLUSION We identified a network of cytokines, including HGF, that are significantly correlated with baseline LVMI and GLS, and ventricular recovery following TAVR.
Collapse
Affiliation(s)
- Juyong Brian Kim
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, United States; Stanford Cardiovascular Institute, Stanford, CA, United States.
| | - Yukari Kobayashi
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, United States; Stanford Cardiovascular Institute, Stanford, CA, United States
| | - Tatiana Kuznetsova
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Kegan J Moneghetti
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, United States; Stanford Cardiovascular Institute, Stanford, CA, United States
| | - Daniel A Brenner
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Ryan O'Malley
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Catherine Dao
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Joseph C Wu
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, United States; Stanford Cardiovascular Institute, Stanford, CA, United States
| | - Michael Fischbein
- Stanford Cardiovascular Institute, Stanford, CA, United States; Department of Cardiovascular Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - D Craig Miller
- Stanford Cardiovascular Institute, Stanford, CA, United States; Department of Cardiovascular Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Alan C Yeung
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, United States; Stanford Cardiovascular Institute, Stanford, CA, United States
| | - David Liang
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, United States; Stanford Cardiovascular Institute, Stanford, CA, United States
| | - Francois Haddad
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, United States; Stanford Cardiovascular Institute, Stanford, CA, United States
| | - William F Fearon
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, United States; Stanford Cardiovascular Institute, Stanford, CA, United States.
| |
Collapse
|
84
|
Frangogiannis NG. Cardiac fibrosis: Cell biological mechanisms, molecular pathways and therapeutic opportunities. Mol Aspects Med 2018; 65:70-99. [PMID: 30056242 DOI: 10.1016/j.mam.2018.07.001] [Citation(s) in RCA: 550] [Impact Index Per Article: 78.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022]
Abstract
Cardiac fibrosis is a common pathophysiologic companion of most myocardial diseases, and is associated with systolic and diastolic dysfunction, arrhythmogenesis, and adverse outcome. Because the adult mammalian heart has negligible regenerative capacity, death of a large number of cardiomyocytes results in reparative fibrosis, a process that is critical for preservation of the structural integrity of the infarcted ventricle. On the other hand, pathophysiologic stimuli, such as pressure overload, volume overload, metabolic dysfunction, and aging may cause interstitial and perivascular fibrosis in the absence of infarction. Activated myofibroblasts are the main effector cells in cardiac fibrosis; their expansion following myocardial injury is primarily driven through activation of resident interstitial cell populations. Several other cell types, including cardiomyocytes, endothelial cells, pericytes, macrophages, lymphocytes and mast cells may contribute to the fibrotic process, by producing proteases that participate in matrix metabolism, by secreting fibrogenic mediators and matricellular proteins, or by exerting contact-dependent actions on fibroblast phenotype. The mechanisms of induction of fibrogenic signals are dependent on the type of primary myocardial injury. Activation of neurohumoral pathways stimulates fibroblasts both directly, and through effects on immune cell populations. Cytokines and growth factors, such as Tumor Necrosis Factor-α, Interleukin (IL)-1, IL-10, chemokines, members of the Transforming Growth Factor-β family, IL-11, and Platelet-Derived Growth Factors are secreted in the cardiac interstitium and play distinct roles in activating specific aspects of the fibrotic response. Secreted fibrogenic mediators and matricellular proteins bind to cell surface receptors in fibroblasts, such as cytokine receptors, integrins, syndecans and CD44, and transduce intracellular signaling cascades that regulate genes involved in synthesis, processing and metabolism of the extracellular matrix. Endogenous pathways involved in negative regulation of fibrosis are critical for cardiac repair and may protect the myocardium from excessive fibrogenic responses. Due to the reparative nature of many forms of cardiac fibrosis, targeting fibrotic remodeling following myocardial injury poses major challenges. Development of effective therapies will require careful dissection of the cell biological mechanisms, study of the functional consequences of fibrotic changes on the myocardium, and identification of heart failure patient subsets with overactive fibrotic responses.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer G46B, Bronx, NY, 10461, USA.
| |
Collapse
|
85
|
Spurthi KM, Sarikhani M, Mishra S, Desingu PA, Yadav S, Rao S, Maity S, Tamta AK, Kumar S, Majumdar S, Jain A, Raghuraman A, Khan D, Singh I, Samuel RJ, Ramachandra SG, Nandi D, Sundaresan NR. Toll-like receptor 2 deficiency hyperactivates the FoxO1 transcription factor and induces aging-associated cardiac dysfunction in mice. J Biol Chem 2018; 293:13073-13089. [PMID: 29929978 DOI: 10.1074/jbc.ra118.001880] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/09/2018] [Indexed: 12/17/2022] Open
Abstract
Toll-like receptors (TLRs) are a family of pattern-recognition receptors involved in innate immunity. Previous studies have shown that TLR2 inhibition protects the heart from acute stress, including myocardial infarction and doxorubicin-induced cardiotoxicity in animal models. However, the role of TLR2 in the development of aging-associated heart failure is not known. In this work, we studied aging-associated changes in structure and function of TLR2-deficient mice hearts. Whereas young TLR2-KO mice did not develop marked cardiac dysfunction, 8- and 12-month-old TLR2-KO mice exhibited spontaneous adverse cardiac remodeling and cardiac dysfunction in an age-dependent manner. The hearts of the 8-month-old TLR2-KO mice had increased fibrosis, cell death, and reactivation of fetal genes. Moreover, TLR2-KO hearts displayed reduced infiltration by macrophages, increased numbers of myofibroblasts and atrophic cardiomyocytes, and higher levels of the atrophy-related ubiquitin ligases MuRF-1 and atrogin-1. Mechanistically, TLR2 deficiency impaired the PI3K/Akt signaling pathway, leading to hyperactivation of the transcription factor Forkhead box protein O1 (FoxO1) and, in turn, to elevated expression of FoxO target genes involved in the regulation of muscle wasting and cell death. AS1842856-mediated chemical inhibition of FoxO1 reduced the expression of the atrophy-related ubiquitin ligases and significantly reversed the adverse cardiac remodeling while improving the contractile functions in the TLR2-KO mice. Interestingly, TLR2 levels decreased in hearts of older mice, and the activation of TLR1/2 signaling improved cardiac functions in these mice. These findings suggest that TLR2 signaling is essential for protecting the heart against aging-associated adverse remodeling and contractile dysfunction in mice.
Collapse
Affiliation(s)
- Kondapalli Mrudula Spurthi
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Mohsen Sarikhani
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Sneha Mishra
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Perumal Arumugam Desingu
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Shikha Yadav
- the Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Swathi Rao
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Sangeeta Maity
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Ankit Kumar Tamta
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Shweta Kumar
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Shamik Majumdar
- the Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Aditi Jain
- the Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India, and
| | - Aishwarya Raghuraman
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Danish Khan
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Ishwar Singh
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Rosa J Samuel
- the Central Animal Facility, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Subbaraya G Ramachandra
- the Central Animal Facility, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Dipankar Nandi
- the Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Nagalingam R Sundaresan
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India,
| |
Collapse
|
86
|
Sydykov A, Mamazhakypov A, Petrovic A, Kosanovic D, Sarybaev AS, Weissmann N, Ghofrani HA, Schermuly RT. Inflammatory Mediators Drive Adverse Right Ventricular Remodeling and Dysfunction and Serve as Potential Biomarkers. Front Physiol 2018; 9:609. [PMID: 29875701 PMCID: PMC5974151 DOI: 10.3389/fphys.2018.00609] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 05/04/2018] [Indexed: 01/07/2023] Open
Abstract
Adverse right ventricular (RV) remodeling leads to ventricular dysfunction and failure that represents an important determinant of outcome in patients with pulmonary hypertension (PH). Recent evidence indicates that inflammatory activation contributes to the pathogenesis of adverse RV remodeling and dysfunction. It has been shown that accumulation of inflammatory cells such as macrophages and mast cells in the right ventricle is associated with maladaptive RV remodeling. In addition, inhibition of inflammation in animal models of RV failure ameliorated RV structural and functional impairment. Furthermore, a number of circulating inflammatory mediators have been demonstrated to be associated with RV performance. This work reviews the role of inflammation in RV remodeling and dysfunction and discusses anti-inflammatory strategies that may attenuate adverse structural alterations while promoting improvement of RV function.
Collapse
Affiliation(s)
- Akylbek Sydykov
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Justus Liebig University of Giessen, Giessen, Germany.,Department of Mountain and Sleep Medicine and Pulmonary Hypertension, National Center of Cardiology and Internal Medicine, Bishkek, Kyrgyzstan
| | - Argen Mamazhakypov
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Justus Liebig University of Giessen, Giessen, Germany
| | - Aleksandar Petrovic
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Justus Liebig University of Giessen, Giessen, Germany
| | - Djuro Kosanovic
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Justus Liebig University of Giessen, Giessen, Germany
| | - Akpay S Sarybaev
- Department of Mountain and Sleep Medicine and Pulmonary Hypertension, National Center of Cardiology and Internal Medicine, Bishkek, Kyrgyzstan
| | - Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Justus Liebig University of Giessen, Giessen, Germany
| | - Hossein A Ghofrani
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Justus Liebig University of Giessen, Giessen, Germany
| | - Ralph T Schermuly
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Justus Liebig University of Giessen, Giessen, Germany
| |
Collapse
|
87
|
The endothelial mineralocorticoid receptor: mediator of the switch from vascular health to disease. Curr Opin Nephrol Hypertens 2018; 26:97-104. [PMID: 27930384 DOI: 10.1097/mnh.0000000000000306] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW Endothelial dysfunction is an early feature of vascular disease induced by cardiovascular risk factors (CRFs). In growing populations with obesity, diabetes, hypertension, and heart failure, mineralocorticoid receptor antagonism improves endothelial function. This review summarizes recent advances in our understanding of the specific role of endothelial cell mineralocorticoid receptor in vascular function in health and disease. RECENT FINDINGS Using transgenic mice with mineralocorticoid receptor expression specifically modulated in endothelial cells, recent studies support the emerging concept that while endothelial cell mineralocorticoid receptor may be protective in health, in the presence of CRFs, endothelial cell mineralocorticoid receptor activity contributes to endothelial dysfunction and progression of vascular disease. Proposed mechanisms include a role for endothelial cell mineralocorticoid receptor in decreased nitric oxide production and bioavailability, increased vascular oxidative stress, regulation of epithelial sodium channels that enhance vascular stiffness, and increased endothelial cell adhesion molecules promoting inflammation. The role of endothelial cell mineralocorticoid receptor may also depend on the sex, race, or vascular bed involved. SUMMARY Recent advances support the idea that endothelial cell mineralocorticoid receptor is a mediator of the switch from vascular health to disease in response to CRFs. Further investigation of the molecular mechanism is underway to identify therapeutic interventions that will limit the detrimental effects of endothelial cell mineralocorticoid receptor in patients at cardiovascular risk.
Collapse
|
88
|
Salvador AM, Moss ME, Aronovitz M, Mueller KB, Blanton RM, Jaffe IZ, Alcaide P. Endothelial mineralocorticoid receptor contributes to systolic dysfunction induced by pressure overload without modulating cardiac hypertrophy or inflammation. Physiol Rep 2018. [PMID: 28637706 PMCID: PMC5492203 DOI: 10.14814/phy2.13313] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Heart Failure (HF) is associated with increased circulating levels of aldosterone and systemic inflammation. Mineralocorticoid receptor (MR) antagonists block aldosterone action and decrease mortality in patients with congestive HF. However, the molecular mechanisms underlying the therapeutic benefits of MR antagonists remain unclear. MR is expressed in all cell types in the heart, including the endothelial cells (EC), in which aldosterone induces the expression of intercellular adhesion molecule 1 (ICAM‐1). Recently, we reported that ICAM‐1 regulates cardiac inflammation and cardiac function in mice subjected to transverse aortic constriction (TAC). Whether MR specifically in endothelial cells (EC) contributes to the several mechanisms of pathological cardiac remodeling and cardiac dysfunction remains unclear. Basal cardiac function and LV dimensions were comparable in mice with MR selectively deleted from ECs (EC‐MR−/−) and wild‐type littermate controls (EC‐MR+/+). MR was specifically deleted in heart EC, and in EC‐containing tissues, but not in leukocytes of TAC EC‐MR−/− mice. While EC‐MR−/−TAC mice showed preserved systolic function and some alterations in the expression of fetal genes, the proinflammatory cytokine TNFα and the endothelin receptors in the LV as compared to EC‐MR+/+TAC mice, no difference was observed between both TAC groups in overall cardiac hypertrophy, ICAM‐1 LV expression and leukocyte infiltration, cardiac fibrosis or capillary rarefaction, all hallmarks of pathological cardiac remodeling. Our data indicate that EC‐MR contributes to the transition of cardiac hypertrophy to systolic dysfunction independently of other maladaptive changes induced by LV pressure overload.
Collapse
Affiliation(s)
- Ane M Salvador
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, Massachusetts.,Centro de Investigaciόn Biomédica, Universidad de Granada, Spain
| | - M Elizabeth Moss
- Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts.,Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts
| | - Mark Aronovitz
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts
| | - Kathleen B Mueller
- Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts.,Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts
| | - Robert M Blanton
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts
| | - Pilar Alcaide
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, Massachusetts .,Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
89
|
Witsch T, Martinod K, Sorvillo N, Portier I, De Meyer SF, Wagner DD. Recombinant Human ADAMTS13 Treatment Improves Myocardial Remodeling and Functionality After Pressure Overload Injury in Mice. J Am Heart Assoc 2018; 7:JAHA.117.007004. [PMID: 29367415 PMCID: PMC5850234 DOI: 10.1161/jaha.117.007004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background A disintegrin‐like metalloproteinase with thrombospondin motif type 1 member 13 (ADAMTS13), the von Willebrand factor–cleaving enzyme, decreases leukocyte and platelet recruitment and, thus, reduces thrombosis and inflammation. Recombinant human ADAMTS13 (rhADAMTS13) is a novel drug candidate for ischemia/reperfusion injury and has shown short‐term benefits in mouse models of myocardial injury, but long‐term outcome has not been investigated. Methods and Results We evaluated the impact of rhADAMTS13 on cardiac remodeling, scarring, and contractile function, under chronic left ventricular pressure overload. The role of von Willebrand factor and the effect of rhADAMTS13 treatment were studied. This model of heart failure, based on ascending aortic constriction, produces a coronary inflammatory response and microvascular dysfunction, resulting in fibrotic remodeling and cardiac failure. Mice were treated with either rhADAMTS13 or vehicle and assessed for coronary vascular inflammation and ventricular function at several postsurgical time points, as well as for cardiac fibrosis after 4 weeks. Early upon induction of pressure overload under rhADAMTS13 treatment, we detected less endothelial‐lumen–associated von Willebrand factor, fewer platelet aggregates, and decreased activated transforming growth factor‐β1 levels than in vehicle‐treated mice. We observed significant preservation of cardiac function and decrease in fibrotic remodeling as a result of rhADAMTS13 administration. Conclusions Herein, we show that rhADAMTS13 decreases coronary vascular dysfunction and improves cardiac remodeling after left ventricular pressure overload in mice. We propose that this effect may, at least in part, be the result of decreased von Willebrand factor–mediated recruitment of platelets, a major source of the activated profibrotic cytokine transforming growth factor‐β1. Our study further supports the therapeutic potential of rhADAMTS13 for conditions characterized by inflammatory cardiac damage that results in fibrosis.
Collapse
Affiliation(s)
- Thilo Witsch
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA.,Department of Pediatrics, Harvard Medical School, Boston, MA.,Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Freiburg, Germany
| | - Kimberly Martinod
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA.,Department of Pediatrics, Harvard Medical School, Boston, MA.,Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Nicoletta Sorvillo
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA.,Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Irina Portier
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Simon F De Meyer
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Denisa D Wagner
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA .,Department of Pediatrics, Harvard Medical School, Boston, MA.,Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
| |
Collapse
|
90
|
Chandran V, Gao K, Swarup V, Versano R, Dong H, Jordan MC, Geschwind DH. Inducible and reversible phenotypes in a novel mouse model of Friedreich's Ataxia. eLife 2017; 6:e30054. [PMID: 29257745 PMCID: PMC5736353 DOI: 10.7554/elife.30054] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/20/2017] [Indexed: 12/13/2022] Open
Abstract
Friedreich's ataxia (FRDA), the most common inherited ataxia, is caused by recessive mutations that reduce the levels of frataxin (FXN), a mitochondrial iron binding protein. We developed an inducible mouse model of Fxn deficiency that enabled us to control the onset and progression of disease phenotypes by the modulation of Fxn levels. Systemic knockdown of Fxn in adult mice led to multiple phenotypes paralleling those observed in human patients across multiple organ systems. By reversing knockdown after clinical features appear, we were able to determine to what extent observed phenotypes represent reversible cellular dysfunction. Remarkably, upon restoration of near wild-type FXN levels, we observed significant recovery of function, associated pathology and transcriptomic dysregulation even after substantial motor dysfunction and pathology were observed. This model will be of broad utility in therapeutic development and in refining our understanding of the relative contribution of reversible cellular dysfunction at different stages in disease.
Collapse
Affiliation(s)
- Vijayendran Chandran
- Program in Neurogenetics, Department of Neurology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Kun Gao
- Program in Neurogenetics, Department of Neurology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Vivek Swarup
- Program in Neurogenetics, Department of Neurology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Revital Versano
- Program in Neurogenetics, Department of Neurology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Hongmei Dong
- Program in Neurogenetics, Department of Neurology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Maria C Jordan
- Department of Physiology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
- Department of Human Genetics, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
91
|
Gröschel C, Sasse A, Röhrborn C, Monecke S, Didié M, Elsner L, Kruse V, Bunt G, Lichtman AH, Toischer K, Zimmermann WH, Hasenfuß G, Dressel R. T helper cells with specificity for an antigen in cardiomyocytes promote pressure overload-induced progression from hypertrophy to heart failure. Sci Rep 2017; 7:15998. [PMID: 29167489 PMCID: PMC5700082 DOI: 10.1038/s41598-017-16147-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/08/2017] [Indexed: 12/13/2022] Open
Abstract
We investigated whether CD4+-T cells with specificity for an antigen in cardiomyocytes promote the progression from hypertrophy to heart failure in mice with increased pressure load due to transverse aortic constriction (TAC). OT-II mice expressing a transgenic T cell receptor (TCR) with specificity for ovalbumin (OVA) on CD4+-T cells and cMy-mOVA mice expressing OVA on cardiomyocytes were crossed. The resulting cMy-mOVA-OT-II mice did not display signs of spontaneous autoimmunity despite the fact that their OVA-specific CD4+-T cells were not anergic. After TAC, progression to heart failure was significantly accelerated in cMy-mOVA-OT-II compared to cMy-mOVA mice. No OVA-specific antibodies were induced in response to TAC in cMy-mOVA-OT-II mice, yet more CD3+ T cells infiltrated their myocardium when compared with TAC-operated cMy-mOVA mice. Systemically, the proportion of activated CD4+-T cells with a Th1 and Th17 cytokine profile was increased in cMy-mOVA-OT-II mice after TAC. Thus, T helper cells with specificity for an antigen in cardiomyocytes can directly promote the progression of heart failure in response to pressure overload independently of autoantibodies.
Collapse
Affiliation(s)
- Carina Gröschel
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), partner site Göttingen, Göttingen, Germany
| | - André Sasse
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Charlotte Röhrborn
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Sebastian Monecke
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), partner site Göttingen, Göttingen, Germany
| | - Michael Didié
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Göttingen, Germany.,Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany.,Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Leslie Elsner
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Vanessa Kruse
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Gertrude Bunt
- Clinical Optical Microscopy, Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Andrew H Lichtman
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Karl Toischer
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Göttingen, Germany.,Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Wolfram-Hubertus Zimmermann
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Göttingen, Germany.,Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
| | - Gerd Hasenfuß
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Göttingen, Germany.,Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Ralf Dressel
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany. .,DZHK (German Center for Cardiovascular Research), partner site Göttingen, Göttingen, Germany.
| |
Collapse
|
92
|
Yim J, Cho H, Rabkin SW. Gene expression and gene associations during the development of heart failure with preserved ejection fraction in the Dahl salt sensitive model of hypertension. Clin Exp Hypertens 2017; 40:155-166. [DOI: 10.1080/10641963.2017.1346113] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jeffrey Yim
- Department of Medicine (Cardiology), University of British Columbia, Vancouver, BC, Canada
| | - Hyokeun Cho
- Department of Medicine (Cardiology), University of British Columbia, Vancouver, BC, Canada
| | - Simon W. Rabkin
- Department of Medicine (Cardiology), University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
93
|
Shu J, Liu Z, Jin L, Wang H. An RNA‑sequencing study identifies candidate genes for angiotensin II‑induced cardiac remodeling. Mol Med Rep 2017; 17:1954-1962. [PMID: 29138860 DOI: 10.3892/mmr.2017.8043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/24/2017] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to reveal the underlying mechanism of angiotensin II (AngII)‑induced cardiac remodeling and to identify potential therapeutic targets for prevention. Rat cardiac fibroblasts (CFs) were cultured with 10 nM AngII for 12 h, and CFs without AngII were used as the control. Following RNA isolation from AngII treated and control CFs, RNA‑sequencing was performed to detect gene expression levels. Differentially‑expressed genes (DEGs) were identified using the linear models for microarray analysis package in R software, and their functions and pathways were examined via enrichment analysis. In addition, potential associations at the protein level were revealed via the construction of a protein‑protein interaction (PPI) network. The expression levels of genes of interest were validated via reverse transcription‑quantitative polymerase chain reaction analysis. In total, 126 upregulated and 140 downregulated DEGs were identified. According to the enrichment analysis, acetyl coA carboxylase β (ACACB), interleukin 1β (IL1B), interleukin 1α (IL1A), nitric oxide synthase 2 (NOS2) and matrix metallopeptidase 3 (MMP3) were associated with the immune response, regulation of angiogenesis, superoxide metabolic process and carboxylic acid binding biological processes. Among them, ACACB and MPP3 were two predominant nodes in the PPI network. In addition, IL1B and MMP3 were demonstrated to be upregulated. These five genes, particularly IL1B and MMP3, may be used as candidate markers for the prevention of AngII‑induced cardiac remodeling.
Collapse
Affiliation(s)
- Jin Shu
- Department of Gerontology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| | - Zhanwen Liu
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| | - Li Jin
- Department of Gerontology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| | - Haiya Wang
- Department of Gerontology, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200001, P.R. China
| |
Collapse
|
94
|
DeBerge M, Zhang S, Glinton K, Grigoryeva L, Hussein I, Vorovich E, Ho K, Luo X, Thorp EB. Efferocytosis and Outside-In Signaling by Cardiac Phagocytes. Links to Repair, Cellular Programming, and Intercellular Crosstalk in Heart. Front Immunol 2017; 8:1428. [PMID: 29163503 PMCID: PMC5671945 DOI: 10.3389/fimmu.2017.01428] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/13/2017] [Indexed: 12/24/2022] Open
Abstract
Phagocytic sensing and engulfment of dying cells and extracellular bodies initiate an intracellular signaling cascade within the phagocyte that can polarize cellular function and promote communication with neighboring non-phagocytes. Accumulating evidence links phagocytic signaling in the heart to cardiac development, adult myocardial homeostasis, and the resolution of cardiac inflammation of infectious, ischemic, and aging-associated etiology. Phagocytic clearance in the heart may be carried out by professional phagocytes, such as macrophages, and non-professional cells, including myofibrolasts and potentially epithelial cells. During cardiac development, phagocytosis initiates growth cues for early cardiac morphogenesis. In diseases of aging, including myocardial infarction, heightened levels of cell death require efficient phagocytic debridement to salvage further loss of terminally differentiated adult cardiomyocytes. Additional risk factors, including insulin resistance and other systemic risk factors, contribute to inefficient phagocytosis, altered phagocytic signaling, and delayed cardiac inflammation resolution. Under such conditions, inflammatory presentation of myocardial antigen may lead to autoimmunity and even possible rejection of transplanted heart allografts. Increased understanding of these basic mechanisms offers therapeutic opportunities.
Collapse
Affiliation(s)
- Matthew DeBerge
- Department of Pathology, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Shuang Zhang
- Department of Pathology, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Kristofor Glinton
- Department of Pathology, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Luba Grigoryeva
- Department of Pathology, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Islam Hussein
- Department of Pathology, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Esther Vorovich
- Department of Pathology, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Karen Ho
- Department of Pathology, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Xunrong Luo
- Department of Pathology, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Edward B Thorp
- Department of Pathology, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
95
|
Nevers T, Salvador AM, Velazquez F, Ngwenyama N, Carrillo-Salinas FJ, Aronovitz M, Blanton RM, Alcaide P. Th1 effector T cells selectively orchestrate cardiac fibrosis in nonischemic heart failure. J Exp Med 2017; 214:3311-3329. [PMID: 28970239 PMCID: PMC5679176 DOI: 10.1084/jem.20161791] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 06/13/2017] [Accepted: 08/21/2017] [Indexed: 12/20/2022] Open
Abstract
Despite emerging data indicating a role for T cells in profibrotic cardiac repair and healing after ischemia, little is known about whether T cells directly impact cardiac fibroblasts (CFBs) to promote cardiac fibrosis (CF) in nonischemic heart failure (HF). Recently, we reported increased T cell infiltration in the fibrotic myocardium of nonischemic HF patients, as well as the protection from CF and HF in TCR-α-/- mice. Here, we report that T cells activated in such a context are mainly IFN-γ+, adhere to CFB, and induce their transition into myofibroblasts. Th1 effector cells selectively drive CF both in vitro and in vivo, whereas adoptive transfer of Th1 cells, opposite to activated IFN-γ-/- Th cells, partially reconstituted CF and HF in TCR-α-/- recipient mice. Mechanistically, Th1 cells use integrin α4 to adhere to and induce TGF-β in CFB in an IFN-γ-dependent manner. Our findings identify a previously unrecognized role for Th1 cells as integrators of perivascular CF and cardiac dysfunction in nonischemic HF.
Collapse
Affiliation(s)
- Tania Nevers
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA
| | - Ane M Salvador
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA
| | - Francisco Velazquez
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA
| | - Njabulo Ngwenyama
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA
| | | | - Mark Aronovitz
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - Robert M Blanton
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - Pilar Alcaide
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA
| |
Collapse
|
96
|
Brown SM, Smith CE, Meuth AI, Khan M, Aroor AR, Cleeton HM, Meininger GA, Sowers JR, DeMarco VG, Chandrasekar B, Nistala R, Bender SB. Dipeptidyl Peptidase-4 Inhibition With Saxagliptin Ameliorates Angiotensin II-Induced Cardiac Diastolic Dysfunction in Male Mice. Endocrinology 2017; 158:3592-3604. [PMID: 28977602 PMCID: PMC5659692 DOI: 10.1210/en.2017-00416] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/25/2017] [Indexed: 12/28/2022]
Abstract
Activation of the renin-angiotensin-aldosterone system is common in hypertension and obesity and contributes to cardiac diastolic dysfunction, a condition for which no treatment currently exists. In light of recent reports that antihyperglycemia incretin enhancing dipeptidyl peptidase (DPP)-4 inhibitors exert cardioprotective effects, we examined the hypothesis that DPP-4 inhibition with saxagliptin (Saxa) attenuates angiotensin II (Ang II)-induced cardiac diastolic dysfunction. Male C57BL/6J mice were infused with either Ang II (500 ng/kg/min) or vehicle for 3 weeks receiving either Saxa (10 mg/kg/d) or placebo during the final 2 weeks. Echocardiography revealed Ang II-induced diastolic dysfunction, evidenced by impaired septal wall motion and prolonged isovolumic relaxation, coincident with aortic stiffening. Ang II induced cardiac hypertrophy, coronary periarterial fibrosis, TRAF3-interacting protein 2 (TRAF3IP2)-dependent proinflammatory signaling [p-p65, p-c-Jun, interleukin (IL)-17, IL-18] associated with increased cardiac macrophage, but not T cell, gene expression. Flow cytometry revealed Ang II-induced increases of cardiac CD45+F4/80+CD11b+ and CD45+F4/80+CD11c+ macrophages and CD45+CD4+ lymphocytes. Treatment with Saxa reduced plasma DPP-4 activity and abrogated Ang II-induced cardiac diastolic dysfunction independent of aortic stiffening or blood pressure. Furthermore, Saxa attenuated Ang II-induced periarterial fibrosis and cardiac inflammation, but not hypertrophy or cardiac macrophage infiltration. Analysis of Saxa-induced changes in cardiac leukocytes revealed Saxa-dependent reduction of the Ang II-mediated increase of cardiac CD11c messenger RNA and increased cardiac CD8 gene expression and memory CD45+CD8+CD44+ lymphocytes. In summary, these results demonstrate that DPP-4 inhibition with Saxa prevents Ang II-induced cardiac diastolic dysfunction, fibrosis, and inflammation associated with unique shifts in CD11c-expressing leukocytes and CD8+ lymphocytes.
Collapse
Affiliation(s)
- Scott M. Brown
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri 65211
| | - Cassandra E. Smith
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Division of Endocrinology, Diabetes, and Metabolism, University of Missouri School of Medicine, Columbia, Missouri 65212
| | - Alex I. Meuth
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri 65211
| | - Maloree Khan
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri 65211
| | - Annayya R. Aroor
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Division of Endocrinology, Diabetes, and Metabolism, University of Missouri School of Medicine, Columbia, Missouri 65212
| | - Hannah M. Cleeton
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri 65211
| | - Gerald A. Meininger
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri 65212
| | - James R. Sowers
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Division of Endocrinology, Diabetes, and Metabolism, University of Missouri School of Medicine, Columbia, Missouri 65212
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri 65212
| | - Vincent G. DeMarco
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Division of Endocrinology, Diabetes, and Metabolism, University of Missouri School of Medicine, Columbia, Missouri 65212
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri 65212
| | - Bysani Chandrasekar
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri 65212
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri 65212
| | - Ravi Nistala
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Division of Nephrology, University of Missouri School of Medicine, Columbia, Missouri 65212
| | - Shawn B. Bender
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri 65211
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211
| |
Collapse
|
97
|
Zhang Y, Bauersachs J, Langer HF. Immune mechanisms in heart failure. Eur J Heart Fail 2017; 19:1379-1389. [DOI: 10.1002/ejhf.942] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/26/2017] [Accepted: 06/19/2017] [Indexed: 12/15/2022] Open
Affiliation(s)
- Yingying Zhang
- University Hospital, Department of Cardiology and Cardiovascular Medicine; Eberhard Karls University Tuebingen; Tuebingen Germany
- Section for Cardioimmunology; Eberhard Karls University Tuebingen; Tübingen Germany
- Affiliated Hospital of Qingdao University, Department of Cardiology and Cardiovascular Medicine; Qingdao University; Qingdao China
| | - Johann Bauersachs
- Department of Cardiology and Angiology; Hannover Medical School; Hannover Germany
| | - Harald F. Langer
- University Hospital, Department of Cardiology and Cardiovascular Medicine; Eberhard Karls University Tuebingen; Tuebingen Germany
- Section for Cardioimmunology; Eberhard Karls University Tuebingen; Tübingen Germany
| |
Collapse
|
98
|
DuPont JJ, Jaffe IZ. 30 YEARS OF THE MINERALOCORTICOID RECEPTOR: The role of the mineralocorticoid receptor in the vasculature. J Endocrinol 2017; 234. [PMID: 28634267 PMCID: PMC5518626 DOI: 10.1530/joe-17-0009] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the mineralocorticoid receptor (MR) was cloned 30 years ago, it has become clear that MR is expressed in extra-renal tissues, including the cardiovascular system, where it is expressed in all cells of the vasculature. Understanding the role of MR in the vasculature has been of particular interest as clinical trials show that MR antagonism improves cardiovascular outcomes out of proportion to changes in blood pressure. The last 30 years of research have demonstrated that MR is a functional hormone-activated transcription factor in vascular smooth muscle cells and endothelial cells. This review summarizes advances in our understanding of the role of vascular MR in regulating blood pressure and vascular function, and its contribution to vascular disease. Specifically, vascular MR contributes directly to blood pressure control and to vascular dysfunction and remodeling in response to hypertension, obesity and vascular injury. The literature is summarized with respect to the role of vascular MR in conditions including: pulmonary hypertension; cerebral vascular remodeling and stroke; vascular inflammation, atherosclerosis and myocardial infarction; acute kidney injury; and vascular pathology in the eye. Considerations regarding the impact of age and sex on the function of vascular MR are also described. Further investigation of the precise molecular mechanisms by which MR contributes to these processes will aid in the identification of novel therapeutic targets to reduce cardiovascular disease (CVD)-related morbidity and mortality.
Collapse
Affiliation(s)
- Jennifer J DuPont
- Molecular Cardiology Research InstituteTufts Medical Center, Boston, MA, USA
| | - Iris Z Jaffe
- Molecular Cardiology Research InstituteTufts Medical Center, Boston, MA, USA
| |
Collapse
|
99
|
Tesch GH, Young MJ. Mineralocorticoid Receptor Signaling as a Therapeutic Target for Renal and Cardiac Fibrosis. Front Pharmacol 2017; 8:313. [PMID: 28611666 PMCID: PMC5447060 DOI: 10.3389/fphar.2017.00313] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 05/12/2017] [Indexed: 12/11/2022] Open
Abstract
Activation of the mineralocorticoid receptor (MR) plays important roles in both physiological and pathological events. Blockade of MR signaling with MR antagonists (MRAs) has been used clinically to treat kidney and cardiac disease associated with hypertension and other chronic diseases, resulting in suppression of fibrosis in these organs. However, the current use of steroidal MRAs has been limited by off target effects on other hormone receptors or adverse effects on kidney tubular function. In this review, we summarize recent insights into the profibrotic roles of MR signaling in kidney and cardiovascular disease. We review experimental in vitro data identifying the pathological mechanisms associated with MR signaling in cell types found in the kidney (mesangial cells, podocytes, tubular cells, macrophages, interstitial fibroblasts) and heart (cardiomyocytes, endothelial cells, vascular smooth muscle cells, macrophages). In addition, we demonstrate the in vivo importance of MR signaling in specific kidney and cardiac cell types by reporting the outcomes of cell type selective MR gene deletion in animal models of kidney and cardiac disease and comparing these findings to those obtained with MRAs treatment. This review also includes a discussion of the potential benefits of novel non-steroidal MRAs for targeting kidney and cardiac fibrosis compared to existing steroidal MRAs, as well as the possibility of novel combination therapies and cell selective delivery of MRAs.
Collapse
Affiliation(s)
- Greg H Tesch
- Department of Nephrology, Monash Health, ClaytonVIC, Australia.,Monash University Department of Medicine, Monash Health, ClaytonVIC, Australia.,Centre for Inflammatory Diseases, Monash Health, ClaytonVIC, Australia
| | - Morag J Young
- Hudson Institute of Medical Research, ClaytonVIC, Australia
| |
Collapse
|
100
|
Marzolla V, Armani A, Mammi C, Moss ME, Pagliarini V, Pontecorvo L, Antelmi A, Fabbri A, Rosano G, Jaffe IZ, Caprio M. Essential role of ICAM-1 in aldosterone-induced atherosclerosis. Int J Cardiol 2017; 232:233-242. [PMID: 28089144 DOI: 10.1016/j.ijcard.2017.01.013] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/25/2016] [Accepted: 01/03/2017] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Elevated aldosterone is associated with increased risk of atherosclerosis complications, whereas treatment with mineralocorticoid receptor (MR) antagonists decreases the rate of cardiovascular events. Here we test the hypothesis that aldosterone promotes early atherosclerosis by modulating intercellular adhesion molecule-1 (ICAM-1) expression and investigate the molecular mechanisms by which aldosterone regulates ICAM-1 expression. METHODS AND RESULTS Apolipoprotein-E (ApoE)-/- mice fed an atherogenic diet and treated with aldosterone for 4weeks showed increased vascular expression of ICAM-1, paralleled by enhanced atherosclerotic plaque size in the aortic root. Moreover, aldosterone treatment resulted in increased plaque lipid and inflammatory cell content, consistent with an unstable plaque phenotype. ApoE/ICAM-1 double knockout (ApoE-/-/ICAM-1-/-) littermates were protected from the aldosterone-induced increase in plaque size, lipid content and macrophage infiltration. Since aldosterone is known to regulate ICAM-1 transcription via MR in human endothelial cells, we explored MR regulation of the ICAM-1 promoter. Luciferase reporter assays performed in HUVECs using deletion constructs of the human ICAM-1 gene promoter showed that a region containing a predicted MR-responsive element (MRE) is required for MR-dependent transcriptional regulation of ICAM-1. CONCLUSIONS Pro-atherogenic effects of aldosterone are mediated by increased ICAM-1 expression, through transcriptional regulation by endothelial MR. These data enhance our understanding of the molecular mechanism by which MR activation promotes atherosclerosis complications.
Collapse
Affiliation(s)
- Vincenzo Marzolla
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, 00166 Rome, Italy
| | - Andrea Armani
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, 00166 Rome, Italy
| | - Caterina Mammi
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, 00166 Rome, Italy
| | - Mary E Moss
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Vittoria Pagliarini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; Laboratory of Neuroembryology, Fondazione Santa Lucia, 00143 Rome, Italy
| | - Laura Pontecorvo
- Laboratory of Pathophysiology of Cachexia and Metabolism of Skeletal Muscle, IRCCS San Raffaele Pisana, 00166 Rome, Italy
| | - Antonella Antelmi
- Interinstitutional Multidisciplinary Biobank (BioBIM), IRCCS San Raffaele Pisana, 00166 Rome, Italy
| | - Andrea Fabbri
- Department of Systems Medicine, Endocrinology Unit, S. Eugenio & CTO A. Alesini Hospitals-ASL RM2, University Tor Vergata, Rome, Italy
| | - Giuseppe Rosano
- Cardiovascular & Cell Science Institute, St George's Hospital NHS Trust, University of London, London, United Kingdom; Department of Medical Sciences, IRCCS San Raffaele, Rome, Italy
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, 00166 Rome, Italy; Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy.
| |
Collapse
|