51
|
Zhang L, Jiang YH, Fan C, Zhang Q, Jiang YH, Li Y, Xue YT. MCC950 attenuates doxorubicin-induced myocardial injury in vivo and in vitro by inhibiting NLRP3-mediated pyroptosis. Biomed Pharmacother 2021; 143:112133. [PMID: 34474337 DOI: 10.1016/j.biopha.2021.112133] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/16/2021] [Accepted: 08/25/2021] [Indexed: 12/18/2022] Open
Abstract
MCC950, an NLRP3 inflammasome inhibitor, displays multiple pharmacological properties. However, the protective potential and underlying mechanism of MCC950 against doxorubicin (DOX)-induced myocardial injury has not been well investigated yet. Herein, DOX-induced myocardial injury in mice and in H9c2 myocardial cells was investigated, and the protective effects and underlying mechanism of MCC950 were fully explored. The results showed that MCC950 co-treatment significantly improved myocardial function, inhibited inflammatory and myocardial fibrosis, and attenuated cardiomyocyte pyroptosis in DOX-treated mice. Mechanismly, MCC950 had the potential to inhibit DOX-induced the cleavage of NLRP3, ASC, Caspase-1, IL-18, IL-1β and GSDMD in vivo. Moreover, MCC950 co-treatment in vivo suppressed DOX-induced cytotoxicity as well as inflammatory and cardiomyocyte pyroptosis through the same molecular mechanism. Taken together, our findings validated that MCC950, an NLRP3 inflammasome inhibitor, has the potential to attenuate doxorubicin-induced myocardial injury in vivo and in vitro by inhibiting NLRP3-mediated pyroptosis.
Collapse
Affiliation(s)
- Lei Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250000, Shandong, China
| | - Yue-Hua Jiang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250000, Shandong, China; Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250000, Shandong, China
| | - Cundong Fan
- Department of Neurology, Key Lab of Cerebral Microcirculation in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| | - Qian Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250000, Shandong, China
| | - Yong-Hao Jiang
- Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250000, Shandong, China
| | - Yan Li
- Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250000, Shandong, China.
| | - Yi-Tao Xue
- Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250000, Shandong, China.
| |
Collapse
|
52
|
Porritt RA, Zemmour D, Abe M, Lee Y, Narayanan M, Carvalho TT, Gomez AC, Martinon D, Santiskulvong C, Fishbein MC, Chen S, Crother TR, Shimada K, Arditi M, Noval Rivas M. NLRP3 Inflammasome Mediates Immune-Stromal Interactions in Vasculitis. Circ Res 2021; 129:e183-e200. [PMID: 34517723 DOI: 10.1161/circresaha.121.319153] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Rebecca A Porritt
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Department of Biomedical Sciences, Infectious and Immunologic Diseases Research Center (IIDRC) (R.A.P., M.A., Y.L., M.N., T.T.d.C., A.C.G., D.M., S.C., T.R.C., K.S., M.A., M.N.R.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - David Zemmour
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA (D.Z.)
| | - Masanori Abe
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Department of Biomedical Sciences, Infectious and Immunologic Diseases Research Center (IIDRC) (R.A.P., M.A., Y.L., M.N., T.T.d.C., A.C.G., D.M., S.C., T.R.C., K.S., M.A., M.N.R.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Youngho Lee
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Department of Biomedical Sciences, Infectious and Immunologic Diseases Research Center (IIDRC) (R.A.P., M.A., Y.L., M.N., T.T.d.C., A.C.G., D.M., S.C., T.R.C., K.S., M.A., M.N.R.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Meena Narayanan
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Department of Biomedical Sciences, Infectious and Immunologic Diseases Research Center (IIDRC) (R.A.P., M.A., Y.L., M.N., T.T.d.C., A.C.G., D.M., S.C., T.R.C., K.S., M.A., M.N.R.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Thacyana T Carvalho
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Department of Biomedical Sciences, Infectious and Immunologic Diseases Research Center (IIDRC) (R.A.P., M.A., Y.L., M.N., T.T.d.C., A.C.G., D.M., S.C., T.R.C., K.S., M.A., M.N.R.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Angela C Gomez
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Department of Biomedical Sciences, Infectious and Immunologic Diseases Research Center (IIDRC) (R.A.P., M.A., Y.L., M.N., T.T.d.C., A.C.G., D.M., S.C., T.R.C., K.S., M.A., M.N.R.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Daisy Martinon
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Department of Biomedical Sciences, Infectious and Immunologic Diseases Research Center (IIDRC) (R.A.P., M.A., Y.L., M.N., T.T.d.C., A.C.G., D.M., S.C., T.R.C., K.S., M.A., M.N.R.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Chintda Santiskulvong
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Department of Biomedical Sciences, Infectious and Immunologic Diseases Research Center (IIDRC) (R.A.P., M.A., Y.L., M.N., T.T.d.C., A.C.G., D.M., S.C., T.R.C., K.S., M.A., M.N.R.), Cedars-Sinai Medical Center, Los Angeles, CA.,CS Cancer (C.S.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Michael C Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA (M.C.F.)
| | | | - Timothy R Crother
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Department of Biomedical Sciences, Infectious and Immunologic Diseases Research Center (IIDRC) (R.A.P., M.A., Y.L., M.N., T.T.d.C., A.C.G., D.M., S.C., T.R.C., K.S., M.A., M.N.R.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Kenichi Shimada
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Department of Biomedical Sciences, Infectious and Immunologic Diseases Research Center (IIDRC) (R.A.P., M.A., Y.L., M.N., T.T.d.C., A.C.G., D.M., S.C., T.R.C., K.S., M.A., M.N.R.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Moshe Arditi
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Department of Biomedical Sciences, Infectious and Immunologic Diseases Research Center (IIDRC) (R.A.P., M.A., Y.L., M.N., T.T.d.C., A.C.G., D.M., S.C., T.R.C., K.S., M.A., M.N.R.), Cedars-Sinai Medical Center, Los Angeles, CA.,Smidt Heart Institute (M.A.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Magali Noval Rivas
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Department of Biomedical Sciences, Infectious and Immunologic Diseases Research Center (IIDRC) (R.A.P., M.A., Y.L., M.N., T.T.d.C., A.C.G., D.M., S.C., T.R.C., K.S., M.A., M.N.R.), Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
53
|
Peng W, Zhang B, Sun Z, Zhang M, Guo L. Targeting the Nod-like receptor protein 3 Inflammasome with inhibitor MCC950 rescues lipopolysaccharide-induced inhibition of osteogenesis in Human periodontal ligament cells. Arch Oral Biol 2021; 131:105269. [PMID: 34601319 DOI: 10.1016/j.archoralbio.2021.105269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVE We aim to investigate whether lipopolysaccharide-stimulated activition of Nod-like receptor protein 3 (NLRP3) Inflammasome inhibits osteogenesis in Human periodontal ligament cells (HPDLCs). Futhermore, to study whether MCC950 (a inhibitor of NLRP3 Inflammasome) rescues lipopolysaccharide-induced inhibition of osteogenesis in HPDLCs as well as the underlying mechanisms. METHODS HPDLCs were isolated from periodontal ligament of healthy orthodontic teeth from teenagers, and cells surface marker protein were detected by flow cytometry. Cells viability were determined by Cell Counting kit 8 assay. Enzyme-linked immunosorbent assay was used to analyze the secretion of proinflammatory factors. Western blot and real-time quantitative polymerase chain reaction (RT-qPCR) were measured assessing the expression of NLRP3 and Caspase-1. RT-qPCR, Alizarin red staining and Alkaline phosphatase staining were tested to determine the osteogenic differentiation capacity of HPDLCs. RESULTS It was found that lipopolysaccharide in the range of concentrations from 10 to 100 μg/ml significantly inhibited HPDLCs viability at 24 h and significantly improved proinflammatory cytokine expressions at 8 h and 24 h. MCC950 reversed lipopolysaccharide-stimulated proinflammatory cytokine expressions including interleukin-1β and interleukin-18, but not tumor necrosis factor-α. In addition, MCC950 rescued the lipopolysaccharide-inhibited osteogenic gene (Alkaline phosphatase, Runt-related transcription factor 2, and Osteocalcin). Moreover, MCC950 downregulated lipopolysaccharide-induced relative protein of NLRP3 Inflammasome signaling pathway, such as NLRP3 and Caspase-1. CONCLUSION MCC950 rescues lipopolysaccharide-induced inhibition of osteogenesis in HPDLCs via blocking NLRP3 Inflammasome signaling pathway, and it may be used as a promising therapeutic agent for periodontitis or periondontal regenerative related disease.
Collapse
Affiliation(s)
- Wei Peng
- Department of prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan, China.
| | - Bo Zhang
- Department of prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan, China.
| | - Zhengfan Sun
- Department of prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan, China.
| | - Meifeng Zhang
- Department of prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan, China.
| | - Ling Guo
- Department of prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
54
|
Programmed cell death in aortic aneurysm and dissection: A potential therapeutic target. J Mol Cell Cardiol 2021; 163:67-80. [PMID: 34597613 DOI: 10.1016/j.yjmcc.2021.09.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/07/2021] [Accepted: 09/23/2021] [Indexed: 12/20/2022]
Abstract
Rupture of aortic aneurysm and dissection (AAD) remains a leading cause of death. Progressive smooth muscle cell (SMC) loss is a crucial feature of AAD that contributes to aortic dysfunction and degeneration, leading to aortic aneurysm, dissection, and, ultimately, rupture. Understanding the molecular mechanisms of SMC loss and identifying pathways that promote SMC death in AAD are critical for developing an effective pharmacologic therapy to prevent aortic destruction and disease progression. Cell death is controlled by programmed cell death pathways, including apoptosis, necroptosis, pyroptosis, and ferroptosis. Although these pathways share common stimuli and triggers, each type of programmed cell death has unique features and activation pathways. A growing body of evidence supports a critical role for programmed cell death in the pathogenesis of AAD, and inhibitors of various types of programmed cell death represent a promising therapeutic strategy. This review discusses the different types of programmed cell death pathways and their features, induction, contributions to AAD development, and therapeutic potential. We also highlight the clinical significance of programmed cell death for further studies.
Collapse
|
55
|
Wortmann M, Peters AS, Erhart P, Körfer D, Böckler D, Dihlmann S. Inflammasomes in the Pathophysiology of Aortic Disease. Cells 2021; 10:cells10092433. [PMID: 34572082 PMCID: PMC8468335 DOI: 10.3390/cells10092433] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 12/27/2022] Open
Abstract
Aortic diseases comprise aneurysms, dissections, and several other pathologies. In general, aging is associated with a slow but progressive dilation of the aorta, along with increased stiffness and pulse pressure. The progression of aortic disease is characterized by subclinical development or acute presentation. Recent evidence suggests that inflammation participates causally in different clinical manifestations of aortic diseases. As of yet, diagnostic imaging and surveillance is mainly based on ultrasonography, computed tomography (CT), and magnetic resonance imaging (MRI). Little medical therapy is available so far to prevent or treat the majority of aortic diseases. Endovascular therapy by the introduction of covered stentgrafts provides the main treatment option, although open surgery and implantation of synthetic grafts remain necessary in many situations. Because of the risks associated with surgery, there is a need for identification of pharmaceutical targets interfering with the pathophysiology of aortic remodeling. The participation of innate immunity and inflammasome activation in different cell types is common in aortic diseases. This review will thus focus on inflammasome activities in vascular cells of different chronic and acute aortic diseases and discuss their role in development and progression. We will also identify research gaps and suggest promising therapeutic targets, which may be used for future medical interventions.
Collapse
|
56
|
Ngetich E, Lapolla P, Chandrashekar A, Handa A, Lee R. The role of dipeptidyl peptidase-IV in abdominal aortic aneurysm pathogenesis: A systematic review. Vasc Med 2021; 27:77-87. [PMID: 34392748 PMCID: PMC8808362 DOI: 10.1177/1358863x211034574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Abdominal aortic aneurysm (AAA) is an important vascular disease carrying significant mortality implications due to the risk of aneurysm rupture. Current management relies exclusively on surgical repair as there is no effective medical therapy. A key element of AAA pathogenesis is the chronic inflammation mediated by inflammatory cells releasing proteases, including the enzyme dipeptidyl peptidase IV (DPP-IV). This review sought to recapitulate available evidence on the involvement of DPP-IV in AAA development. Further, we assessed the experimental use of currently available DPP-IV inhibitors for AAA management in murine models. Embase, Medline, PubMed, and Web of Science databases were utilised to access the relevant studies. The review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). A narrative synthesis approach was used. Sixty-four studies were identified from the searched databases; a final 11 were included in the analysis. DPP-IV was reported to be significantly increased in both AAA tissue and plasma of patients and correlated with AAA growth. DPP-IV inhibitors (sitagliptin, vildagliptin, alogliptin, and teneligliptin) were all shown to attenuate AAA formation in murine models by reducing monocyte differentiation, the release of reactive oxygen species (ROS), and metalloproteinases (MMP-2 and MMP-9). DPP-IV seems to play a role in AAA pathogenesis by propagating the inflammatory microenvironment. This is supported by observations of decreased AAA formation and reduction in macrophage infiltration, ROS, matrix MMPs, and interleukins following the use of DPP-IV inhibitors in murine models. There is an existing translational gap from preclinical observations to clinical trials in this important and novel mechanism of AAA pathogenesis. This prior literature highlights the need for further research on molecular targets involved in AAA formation.
Collapse
Affiliation(s)
- Elisha Ngetich
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Pierfrancesco Lapolla
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Anirudh Chandrashekar
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Ashok Handa
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Regent Lee
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
57
|
Lowes DJ, Miao J, Al-Waqfi RA, Avad KA, Hevener KE, Peters BM. Identification of Dual-Target Compounds with Antifungal and Anti-NLRP3 Inflammasome Activity. ACS Infect Dis 2021; 7:2522-2535. [PMID: 34260210 PMCID: PMC11344480 DOI: 10.1021/acsinfecdis.1c00270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Invasive and superficial infections caused by the Candida species result in significant global morbidity and mortality. As the pathogenicity of these organisms is intimately intertwined with host immune response, therapies to target both the fungus and host inflammation may be warranted. Structural similarities exist between established inhibitors of the NLRP3 inflammasome and those of fungal acetohydroxyacid synthase (AHAS). Therefore, we leveraged this information to conduct an in silico molecular docking screen to find novel polypharmacologic inhibitors of these targets that resulted in the identification of 12 candidate molecules. Of these, compound 10 significantly attenuated activation of the NLPR3 inflammasome by LPS + ATP, while also demonstrating growth inhibitory activity against C. albicans that was alleviated in the presence of exogenous branched chain amino acids, consistent with targeting of fungal AHAS. SAR studies delineated an essential molecular scaffold required for dual activity. Ultimately, 10 and its analog 10a resulted in IC50 (IL-1β release) and MIC50 (fungal growth) values with low μM potency against several Candida species. Collectively, this work demonstrates promising potential of dual-target approaches for improved management of fungal infections.
Collapse
Affiliation(s)
- David J Lowes
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Jian Miao
- Graduate Program in Pharmaceutical Sciences, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Rand A Al-Waqfi
- Graduate Program in Pharmaceutical Sciences, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Kristiana A Avad
- Graduate Program in Pharmaceutical Sciences, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Doctor of Pharmacy Program, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Kirk E Hevener
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Brian M Peters
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
58
|
Silencing IL12p35 Promotes Angiotensin II-Mediated Abdominal Aortic Aneurysm through Activating the STAT4 Pathway. Mediators Inflamm 2021; 2021:9450843. [PMID: 34354545 PMCID: PMC8331298 DOI: 10.1155/2021/9450843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
Background and Purpose. Abdominal aortic aneurysm (AAA) is a chronic inflammatory disorder and the important causes of death among men over the age of 65 years. Interleukin-12p35 (IL12p35) is an inflammatory cytokine that participates in a variety of inflammatory diseases. However, the role of IL12p35 in the formation and development of AAA is still unknown. Experimental Approach. Male apolipoprotein E-deficient (Apoe−/−) mice were generated and infused with 1.44 mg/kg angiotensin II (Ang II) per day. We found that IL12p35 expression was noticeably increased in the murine AAA aorta and isolated aortic smooth muscle cells (SMCs) after Ang II stimulation. IL12p35 silencing promoted Ang II-induced AAA formation and rupture in Apoe−/− mice. IL12p35 silencing markedly increased the expression of inflammatory cytokines, including IL-1β, IL-6, and tumor necrosis factor-α (TNF-α), in both the serum and AAA aorta. Additionally, IL12p35 silencing exacerbated SMC apoptosis in Apoe−/− mice after Ang II infusion. IL12p35 silencing significantly increased signal transducer and activator of transcription (STAT) 4 phosphorylation levels in AAA mice, and STAT4 knockdown abolished the IL12p35-mediated proinflammatory response and SMC apoptosis. Interpretation. Silencing IL12p35 promotes AAA formation by activating the STAT4 pathway, and IL12p35 may serve as a novel and promising therapeutic target for AAA treatment.
Collapse
|
59
|
Dodd WS, Noda I, Martinez M, Hosaka K, Hoh BL. NLRP3 inhibition attenuates early brain injury and delayed cerebral vasospasm after subarachnoid hemorrhage. J Neuroinflammation 2021; 18:163. [PMID: 34284798 PMCID: PMC8293512 DOI: 10.1186/s12974-021-02207-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/25/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The NLRP3 inflammasome is a critical mediator of several vascular diseases through positive regulation of proinflammatory pathways. In this study, we defined the role of NLRP3 in both the acute and delayed phases following subarachnoid hemorrhage (SAH). SAH is associated with devastating early brain injury (EBI) in the acute phase, and those that survive remain at risk for developing delayed cerebral ischemia (DCI) due to cerebral vasospasm. Current therapies are not effective in preventing the morbidity and mortality associated with EBI and DCI. NLRP3 activation is known to drive IL-1β production and stimulate microglia reactivity, both hallmarks of SAH pathology; thus, we hypothesized that inhibition of NLRP3 could alleviate SAH-induced vascular dysfunction and functional deficits. METHODS We studied NLRP3 in an anterior circulation autologous blood injection model of SAH in mice. Mice were randomized to either sham surgery + vehicle, SAH + vehicle, or SAH + MCC950 (a selective NLRP3 inhibitor). The acute phase was studied at 1 day post-SAH and delayed phase at 5 days post-SAH. RESULTS NLRP3 inhibition improved outcomes at both 1 and 5 days post-SAH. In the acute (1 day post-SAH) phase, NLRP3 inhibition attenuated cerebral edema, tight junction disruption, microthrombosis, and microglial reactive morphology shift. Further, we observed a decrease in apoptosis of neurons in mice treated with MCC950. NLRP3 inhibition also prevented middle cerebral artery vasospasm in the delayed (5 days post-SAH) phase and blunted SAH-induced sensorimotor deficits. CONCLUSIONS We demonstrate a novel association between NLRP3-mediated neuroinflammation and cerebrovascular dysfunction in both the early and delayed phases after SAH. MCC950 and other NLRP3 inhibitors could be promising tools in the development of therapeutics for EBI and DCI.
Collapse
Affiliation(s)
- William S Dodd
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Imaray Noda
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Melanie Martinez
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Koji Hosaka
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Brian L Hoh
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
60
|
Corcoran SE, Halai R, Cooper MA. Pharmacological Inhibition of the Nod-Like Receptor Family Pyrin Domain Containing 3 Inflammasome with MCC950. Pharmacol Rev 2021; 73:968-1000. [PMID: 34117094 DOI: 10.1124/pharmrev.120.000171] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Activation of the Nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome drives release of the proinflammatory cytokines interleukin (IL)-1β and IL-18 and induces pyroptosis (lytic cell death). These events drive chronic inflammation, and as such, NLRP3 has been implicated in a large number of human diseases. These range from autoimmune conditions, the simplest of which is NLRP3 gain-of-function mutations leading to an orphan disease, cryopyrin-associated period syndrome, to large disease burden indications, such as atherosclerosis, heart failure, stroke, neurodegeneration, asthma, ulcerative colitis, and arthritis. The potential clinical utility of NLRP3 inhibitors is substantiated by an expanding list of indications in which NLRP3 activation has been shown to play a detrimental role. Studies of pharmacological inhibition of NLRP3 in nonclinical models of disease using MCC950 in combination with human genetics, epigenetics, and analyses of the efficacy of biologic inhibitors of IL-1β, such as anakinra and canakinumab, can help to prioritize clinical trials of NLRP3-directed therapeutics. Although MCC950 shows excellent (nanomolar) potency and high target selectivity, its pharmacokinetic and toxicokinetic properties limited its therapeutic development in the clinic. Several improved, next-generation inhibitors are now in clinical trials. Hence the body of research in a plethora of conditions reviewed herein may inform analysis of the potential translational value of NLRP3 inhibition in diseases with significant unmet medical need. SIGNIFICANCE STATEMENT: The nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is one of the most widely studied and best validated biological targets in innate immunity. Activation of NLRP3 can be inhibited with MCC950, resulting in efficacy in more than 100 nonclinical models of inflammatory diseases. As several next-generation NLRP3 inhibitors are entering proof-of-concept clinical trials in 2020, a review of the pharmacology of MCC950 is timely and significant.
Collapse
Affiliation(s)
- Sarah E Corcoran
- Trinity College Dublin, Dublin, Ireland (S.E.C.); Inflazome, D6 Grain House, Mill Court, Great Shelford, Cambridge, United Kingdom (R.H., M.A.C.); and Institute for Molecular Bioscience, University of Queensland, Queensland, Australia (M.A.C.)
| | - Reena Halai
- Trinity College Dublin, Dublin, Ireland (S.E.C.); Inflazome, D6 Grain House, Mill Court, Great Shelford, Cambridge, United Kingdom (R.H., M.A.C.); and Institute for Molecular Bioscience, University of Queensland, Queensland, Australia (M.A.C.)
| | - Matthew A Cooper
- Trinity College Dublin, Dublin, Ireland (S.E.C.); Inflazome, D6 Grain House, Mill Court, Great Shelford, Cambridge, United Kingdom (R.H., M.A.C.); and Institute for Molecular Bioscience, University of Queensland, Queensland, Australia (M.A.C.)
| |
Collapse
|
61
|
Shi J, Guo J, Li Z, Xu B, Miyata M. Importance of NLRP3 Inflammasome in Abdominal Aortic Aneurysms. J Atheroscler Thromb 2021; 28:454-466. [PMID: 33678767 PMCID: PMC8193780 DOI: 10.5551/jat.rv17048] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a chronic inflammatory degenerative aortic disease, which particularly affects older people. Nucleotide-binding oligomerization domain-like receptor family protein 3 (NLRP3) inflammasome is a multi-protein complex and mediates inflammatory responses by activating caspase 1 for processing premature interleukin (IL)-1β and IL-18. In this review, we first summarize the principle of NLRP3 inflammasome activation and the functionally distinct classes of small molecule NLRP3 inflammasome inhibitors. Next, we provide a comprehensive literature review on the expression of NLRP3 inflammasome effector mediators (IL-1β and IL-18) and components (caspase 1, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and NLRP3) in clinical and experimental AAAs. Finally, we discuss the influence of genetic deficiency or pharmacological inhibition of individual effector mediators and components of NLRP3 inflammasome on experimental AAAs. Accumulating clinical and experimental evidence suggests that NLRP3 inflammasome may be a promise therapeutic target for developing pharmacological strategies for clinical AAA management.
Collapse
Affiliation(s)
- Jinyun Shi
- Center for Hypertension Care, Shanxi Medical University First Hospital, Taiyuan, Shanxi Province, P. R. China
| | - Jia Guo
- Center for Hypertension Care, Shanxi Medical University First Hospital, Taiyuan, Shanxi Province, P. R. China
| | - Zhidong Li
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi Province, P. R. China
| | - Baohui Xu
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Masaaki Miyata
- School of Health Science, Faculty of Medicine, Kagoshima University, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
62
|
Abstract
Atherosclerosis and abdominal aortic aneurysm (AAA) are multifactorial diseases characterized by inflammatory cell infiltration, matrix degradation, and thrombosis in the arterial wall. Although there are some differences between atherosclerosis and AAA, inflammation is a prominent common feature of these disorders. The nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is a cytosolic multiprotein complex that activates caspase-1 and regulates the release of proinflammatory cytokines interleukin (IL)-1β and IL-18, as well as the induction of lytic cell death, termed pyroptosis, thereby leading to inflammation. Previous experimental and clinical studies have demonstrated that inflammation in atherosclerosis and AAA is mediated primarily through the NLRP3 inflammasome. Furthermore, recent results of the Canakinumab Anti-inflammatory Thrombosis and Outcome Study (CANTOS) showed that IL-1β inhibition reduces systemic inflammation and prevents atherothrombotic events; this supports the concept that the NLRP3 inflammasome is a promising therapeutic target for cardiovascular diseases, including atherosclerosis and AAA. This review summarizes current knowledge with a focus on the role of the NLRP3 inflammasome in atherosclerosis and AAA, and discusses the prospects of NLRP3 inflammasome-targeted therapy.
Collapse
Affiliation(s)
- Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University
| |
Collapse
|
63
|
Mezzaroma E, Abbate A, Toldo S. NLRP3 Inflammasome Inhibitors in Cardiovascular Diseases. Molecules 2021; 26:976. [PMID: 33673188 PMCID: PMC7917621 DOI: 10.3390/molecules26040976] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/23/2022] Open
Abstract
Virtually all types of cardiovascular diseases are associated with pathological activation of the innate immune system. The NACHT, leucine-rich repeat (LRR), and pyrin domain (PYD)-containing protein 3 (NLRP3) inflammasome is a protein complex that functions as a platform for rapid induction of the inflammatory response to infection or sterile injury. NLRP3 is an intracellular sensor that is sensitive to danger signals, such as ischemia and extracellular or intracellular alarmins during tissue injury. The NLRP3 inflammasome is regulated by the presence of damage-associated molecular patterns and initiates or amplifies inflammatory response through the production of interleukin-1β (IL-1β) and/or IL-18. NLRP3 activation regulates cell survival through the activity of caspase-1 and gasdermin-D. The development of NLRP3 inflammasome inhibitors has opened the possibility to targeting the deleterious effects of NLRP3. Here, we examine the scientific evidence supporting a role for NLRP3 and the effects of inhibitors in cardiovascular diseases.
Collapse
Affiliation(s)
- Eleonora Mezzaroma
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298, USA; (E.M.); (A.A.)
- Pharmacotherapy and Outcomes Sciences, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Antonio Abbate
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298, USA; (E.M.); (A.A.)
| | - Stefano Toldo
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298, USA; (E.M.); (A.A.)
| |
Collapse
|
64
|
Chen X, Xiang X, Xie T, Chen Z, Mou Y, Gao Z, Xie X, Song M, Huang H, Gao Z, Chen M. Memantine protects blood-brain barrier integrity and attenuates neurological deficits through inhibiting nitric oxide synthase ser1412 phosphorylation in intracerebral hemorrhage rats: involvement of peroxynitrite-related matrix metalloproteinase-9/NLRP3 inflammasome activation. Neuroreport 2021; 32:228-237. [PMID: 33470757 PMCID: PMC7870044 DOI: 10.1097/wnr.0000000000001577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/05/2020] [Indexed: 01/08/2023]
Abstract
Memantine has demonstrated beneficial effects on several types of brain insults via therapeutic mechanisms mainly related to its activity as a receptor antagonist of N-methyl-d-aspartate. However, the influences of memantine on intracerebral hemorrhage (ICH) remain obscure. This research probed into the neurovascular protective mechanisms of memantine after ICH and its impacts on neuronal nitric oxide synthase (nNOS) ser1412 phosphorylation. ICH model was established by employing intrastriatal collagenase injection in rats. After modeling, rats were then allocated randomly into sham-operated (sham), vehicle-treated (ICH+V), and memantine-administrated (ICH+M) groups. Memantine (20 mg/kg/day) was intraperitoneally administered 30 min after ICH and thenceforth once daily. Rats were dedicated at 0.25, 6, 12, 24 h, 3 and 7 d post-ICH for measurement of corresponding indexes. Behavioral changes, brain edema, levels of nNOS ser1412 phosphorylation, peroxynitrite, matrix metalloproteinase (MMP)-9, NLRP3, IL-1β and numbers of dying neurons, as well as the cellular localization of gelatinolytic activity, were detected among the groups. Memantine improved the neurologic deficits and mitigated brain water content, levels of MMP-9, NLRP3, IL-1β and dying neurons. Additionally, treatment with memantine also reduced nNOS ser1412 phosphorylation and peroxynitrite formation compared with the ICH+V group at 24 h after ICH. In situ zymography simultaneously revealed that gelatinase activity was primarily colocalized with vessel walls and neurons. We concluded that memantine ameliorated blood-brain barrier disruption and neurologic dysfunction in an ICH rat model. The underlying mechanism might involve repression of nNOS ser1412 phosphorylation, as well as peroxynitrite-related MMP-9 and NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Xiaowei Chen
- Department of Neurosurgery, the First People’s Hospital of Jingmen City
| | - Xu Xiang
- Department of Neurosurgery, Jingmen Clinical Medical School, Hubei Minzu University, Hubei Province
| | - Teng Xie
- Department of Neurosurgery, the First People’s Hospital of Jingmen City
| | - Zhijun Chen
- Department of Neurosurgery, the First People’s Hospital of Jingmen City
| | - Yu Mou
- Department of Neurosurgery, Jingmen Clinical Medical School, Hubei Minzu University, Hubei Province
| | - Zixu Gao
- The Second Clinical Medical College of Nanchang University
| | - Xun Xie
- The Second Clinical Medical College of Nanchang University
| | - Min Song
- The Second Clinical Medical College of Nanchang University
| | - Hui Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Ziyun Gao
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Min Chen
- The Second Clinical Medical College of Nanchang University
| |
Collapse
|
65
|
Yuan Z, Lu Y, Wei J, Wu J, Yang J, Cai Z. Abdominal Aortic Aneurysm: Roles of Inflammatory Cells. Front Immunol 2021; 11:609161. [PMID: 33613530 PMCID: PMC7886696 DOI: 10.3389/fimmu.2020.609161] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022] Open
Abstract
Abdominal aortic aneurysms (AAAs) are local dilations of infrarenal segment of aortas. Molecular mechanisms underlying the pathogenesis of AAA remain not fully clear. However, inflammation has been considered as a central player in the development of AAA. In the past few decades, studies demonstrated a host of inflammatory cells, including T cells, macrophages, dendritic cells, neutrophils, B cells, and mast cells, etc. infiltrating into aortic walls, which implicated their crucial roles. In addition to direct cell contacts and cytokine or protease secretions, special structures like inflammasomes and neutrophil extracellular traps have been investigated to explore their functions in aneurysm formation. The above-mentioned inflammatory cells and associated structures may initiate and promote AAA expansion. Understanding their impacts and interaction networks formation is meaningful to develop new strategies of screening and pharmacological interventions for AAA. In this review, we aim to discuss the roles and mechanisms of these inflammatory cells in AAA pathogenesis.
Collapse
Affiliation(s)
- Zhen Yuan
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Lu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Wei
- Department of Urology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaqi Wu
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Jin Yang
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, Hangzhou, China
| | - Zhejun Cai
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Jiaxing Key Laboratory of Cardiac Rehabilitation, Jiaxing, China
| |
Collapse
|
66
|
Takahashi M. NLRP3 inflammasome as a key driver of vascular disease. Cardiovasc Res 2021; 118:372-385. [PMID: 33483732 DOI: 10.1093/cvr/cvab010] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/12/2020] [Accepted: 01/16/2021] [Indexed: 12/12/2022] Open
Abstract
NLRP3 (nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3) is an intracellular innate immune receptor that recognizes a diverse range of stimuli derived from pathogens, damaged or dead cells, and irritants. NLRP3 activation causes the assembly of a large multiprotein complex termed the NLRP3 inflammasome, and leads to the secretion of bioactive interleukin (IL)-1β and IL-18 as well as the induction of inflammatory cell death termed pyroptosis. Accumulating evidence indicates that NLRP3 inflammasome plays a key role in the pathogenesis of sterile inflammatory diseases, including atherosclerosis and other vascular diseases. Indeed, the results of the Canakinumab Anti-inflammatory Thrombosis Outcome Study (CANTOS) trial demonstrated that IL-1β-mediated inflammation plays an important role in atherothrombotic events and suggested that NLRP3 inflammasome is a key driver of atherosclerosis. In this review, we will summarize the current state of knowledge regarding the role of NLRP3 inflammasome in vascular diseases, in particular in atherosclerosis, vascular injury, aortic aneurysm, and Kawasaki disease vasculitis, and discuss NLRP3 inflammasome as a therapeutic target for these disorders.
Collapse
Affiliation(s)
- Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
67
|
De Miguel C, Pelegrín P, Baroja-Mazo A, Cuevas S. Emerging Role of the Inflammasome and Pyroptosis in Hypertension. Int J Mol Sci 2021; 22:ijms22031064. [PMID: 33494430 PMCID: PMC7865380 DOI: 10.3390/ijms22031064] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammasomes are components of the innate immune response that have recently emerged as crucial controllers of tissue homeostasis. In particular, the nucleotide-binding domain, leucine-rich-containing (NLR) family pyrin domain containing 3 (NLRP3) inflammasome is a complex platform involved in the activation of caspase-1 and the maturation of interleukin (IL)-1β and IL-18, which are mainly released via pyroptosis. Pyroptosis is a caspase-1-dependent type of cell death that is mediated by the cleavage of gasdermin D and the subsequent formation of structurally stable pores in the cell membrane. Through these pores formed by gasdermin proteins cytosolic contents are released into the extracellular space and act as damage-associated molecular patterns, which are pro-inflammatory signals. Inflammation is a main contributor to the development of hypertension and it also is known to stimulate fibrosis and end-organ damage. Patients with essential hypertension and animal models of hypertension exhibit elevated levels of circulating IL-1β. Downregulation of the expression of key components of the NLRP3 inflammasome delays the development of hypertension and pharmacological inhibition of this inflammasome leads to reduced blood pressure in animal models and humans. Although the relationship between pyroptosis and hypertension is not well established yet, pyroptosis has been associated with renal and cardiovascular diseases, instances where high blood pressure is a critical risk factor. In this review, we summarize the recent literature addressing the role of pyroptosis and the inflammasome in the development of hypertension and discuss the potential use of approaches targeting this pathway as future anti-hypertensive strategies.
Collapse
Affiliation(s)
- Carmen De Miguel
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Correspondence: (C.D.M.); (S.C.); Tel.: +34-868-885031 (S.C.)
| | - Pablo Pelegrín
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (P.P.); (A.B.-M.)
| | - Alberto Baroja-Mazo
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (P.P.); (A.B.-M.)
| | - Santiago Cuevas
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (P.P.); (A.B.-M.)
- Correspondence: (C.D.M.); (S.C.); Tel.: +34-868-885031 (S.C.)
| |
Collapse
|
68
|
Chen Y, Li Y, Guo L, Hong J, Zhao W, Hu X, Chang C, Liu W, Xiong K. Bibliometric Analysis of the Inflammasome and Pyroptosis in Brain. Front Pharmacol 2021; 11:626502. [PMID: 33551822 PMCID: PMC7854385 DOI: 10.3389/fphar.2020.626502] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Considering the pivotal role of inflammasome/pyroptosis in biological function, we visually analyzed the research hotspots of inflammasome/pyroptosis related to the brain in this work through the method of bibliometrics from the Web of Science (WOS) Core database over the past two decades. Methods: Documents were retrieved from WOS Core Collection on October 16, 2020. The search terms and strategies used for the WOS database are as follow: # 1, “pyroptosis”; # 2, “pyroptotic”; # 3, “inflammasome”; # 4, “pyroptosome”; # 5 “brain”; # 6, “# 1” OR “# 2” OR “# 3” OR “# 4”; # 7, “# 5” AND “# 6”. We selected articles and reviews published in English from 2000 to 2020. Visualization analysis and statistical analysis were performed by VOSviewer 1.6.15 and CiteSpace 5.7. R2. Results: 1,222 documents were selected for analysis. In the approximately 20 years since the pyroptosis was first presented, the publications regarding the inflammasome and pyroptosis in brain were presented since 2005. The number of annual publications increased gradually over a decade, which are involved in this work, and will continue to increase in 2020. The most prolific country was China with 523 documents but the United States was with 16,328 citations. The most influential author was Juan Pablo de Rivero Vaccari with 27 documents who worked at the University of Miami. The bibliometric analysis showed that inflammasome/pyroptosis involved a variety of brain cell types (microglia, astrocyte, neuron, etc.), physiological processes, ER stress, mitochondrial function, oxidative stress, and disease (traumatic brain injuries, stroke, Alzheimer’s disease, and Parkinson’s disease). Conclusion: The research of inflammasome/pyroptosis in brain will continue to be the hotspot. We recommend investigating the mechanism of mitochondrial molecules involved in the complex crosstalk of pyroptosis and regulated cell deaths (RCDs) in brain glial cells, which will facilitate the development of effective therapeutic strategies targeting inflammasome/pyroptosis and large-scale clinical trials. Thus, this study presents the trend and characteristic of inflammasome/pyroptosis in brain, which provided a helpful bibliometric analysis for researchers to further studies.
Collapse
Affiliation(s)
- Yuhua Chen
- Central Laboratory of Medicine School, Xi'an Peihua University, Xi'an, China.,Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China.,Department of Neurosurgery, First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yan Li
- Department of Histology and Embryology, School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| | - Limin Guo
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Jun Hong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Wenjuan Zhao
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Ximin Hu
- Clinical Medicine Eight-year Program, 02 Class, 17 Grade, Xiangya School of Medicine, Central South University, Changsha, China
| | - Cuicui Chang
- Central Laboratory of Medicine School, Xi'an Peihua University, Xi'an, China
| | - Wei Liu
- Department of Neurosurgery, First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China
| |
Collapse
|
69
|
Wang L, Lei W, Zhang S, Yao L. MCC950, a NLRP3 inhibitor, ameliorates lipopolysaccharide-induced lung inflammation in mice. Bioorg Med Chem 2021; 30:115954. [DOI: 10.1016/j.bmc.2020.115954] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/29/2022]
|
70
|
Golledge J, Krishna SM, Wang Y. Mouse models for abdominal aortic aneurysm. Br J Pharmacol 2020; 179:792-810. [PMID: 32914434 DOI: 10.1111/bph.15260] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/25/2020] [Accepted: 09/03/2020] [Indexed: 12/21/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) rupture is estimated to cause 200,000 deaths each year. Currently, the only treatment for AAA is surgical repair; however, this is only indicated for large asymptomatic, symptomatic or ruptured aneurysms, is not always durable, and is associated with a risk of serious perioperative complications. As a result, patients with small asymptomatic aneurysms or who are otherwise unfit for surgery are treated conservatively, but up to 70% of small aneurysms continue to grow, increasing the risk of rupture. There is thus an urgent need to develop drug therapies effective at slowing AAA growth. This review describes the commonly used mouse models for AAA. Recent research in these models highlights key roles for pathways involved in inflammation and cell turnover in AAA pathogenesis. There is also evidence for long non-coding RNAs and thrombosis in aneurysm pathology. Further well-designed research in clinically relevant models is expected to be translated into effective AAA drugs.
Collapse
Affiliation(s)
- Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia.,The Department of Vascular and Endovascular Surgery, The Townsville University Hospital, Townsville, Queensland, Australia.,The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
| | - Smriti Murali Krishna
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia.,The Department of Vascular and Endovascular Surgery, The Townsville University Hospital, Townsville, Queensland, Australia.,The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
| | - Yutang Wang
- Discipline of Life Sciences, School of Health and Life Sciences, Federation University Australia, Ballarat, Victoria, Australia
| |
Collapse
|
71
|
Ferrero-Andrés A, Panisello-Roselló A, Roselló-Catafau J, Folch-Puy E. NLRP3 Inflammasome-Mediated Inflammation in Acute Pancreatitis. Int J Mol Sci 2020; 21:5386. [PMID: 32751171 PMCID: PMC7432368 DOI: 10.3390/ijms21155386] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/17/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
The discovery of inflammasomes has enriched our knowledge in the pathogenesis of multiple inflammatory diseases. The NLR pyrin domain-containing protein 3 (NLRP3) has emerged as the most versatile and well-characterized inflammasome, consisting of an intracellular multi-protein complex that acts as a central driver of inflammation. Its activation depends on a tightly regulated two-step process, which includes a wide variety of unrelated stimuli. It is therefore not surprising that the specific regulatory mechanisms of NLRP3 inflammasome activation remain unclear. Inflammasome-mediated inflammation has become increasingly important in acute pancreatitis, an inflammatory disorder of the pancreas that is one of the fatal diseases of the gastrointestinal tract. This review presents an update on the progress of research into the contribution of the NLRP3 inflammasome to acute pancreatic injury, examining the mechanisms of NLRP3 activation by multiple signaling events, the downstream interleukin 1 family of cytokines involved and the current state of the literature on NLRP3 inflammasome-specific inhibitors.
Collapse
Affiliation(s)
- Ana Ferrero-Andrés
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones científicas (IIBB-CSIC), Barcelona, 08036 Catalonia, Spain; (A.F.-A.); (A.P.-R.)
| | - Arnau Panisello-Roselló
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones científicas (IIBB-CSIC), Barcelona, 08036 Catalonia, Spain; (A.F.-A.); (A.P.-R.)
| | - Joan Roselló-Catafau
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones científicas (IIBB-CSIC), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036 Catalonia, Spain;
| | - Emma Folch-Puy
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones científicas (IIBB-CSIC), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036 Catalonia, Spain;
| |
Collapse
|
72
|
Ren P, Wu D, Appel R, Zhang L, Zhang C, Luo W, Robertson AAB, Cooper MA, Coselli JS, Milewicz DM, Shen YH, LeMaire SA. Targeting the NLRP3 Inflammasome With Inhibitor MCC950 Prevents Aortic Aneurysms and Dissections in Mice. J Am Heart Assoc 2020; 9:e014044. [PMID: 32223388 PMCID: PMC7428617 DOI: 10.1161/jaha.119.014044] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Aortic aneurysms and dissections are highly lethal diseases for which an effective treatment strategy is critically needed to prevent disease progression. The nucleotide‐binding oligomerization domain–like receptor pyrin domain containing 3 (NLRP3)–caspase‐1 inflammasome cascade was recently shown to play an important role in aortic destruction and disease development. In this study, we tested the effects of MCC950, a potent, selective NLRP3 inhibitor, on preventing aortic destruction and aortic aneurysm and dissection formation. Methods and Results In a model of sporadic aortic aneurysm and dissection induced by challenging wild‐type mice with a high‐fat, high‐cholesterol diet and angiotensin II infusion, MCC950 treatment significantly inhibited challenge‐induced aortic dilatation, dissection, and rupture in different thoracic and abdominal aortic segments in both male and female mice. Aortic disease reduction by MCC950 was associated with the prevention of NLRP3–caspase‐1 upregulation, smooth muscle cell contractile protein degradation, aortic cell death, and extracellular matrix destruction. Further investigation revealed that preventing matrix metallopeptidase 9 (MMP‐9) expression and activation in macrophages is an important mechanism underlying MCC950's protective effect. We found that caspase‐1 directly activated MMP‐9 by cleaving its N‐terminal inhibitory domain. Moreover, the genetic knockdown of Nlrp3 or Casp‐1 in mice or treatment of mice with MCC950 diminished the challenge‐induced N‐terminal cleavage of MMP‐9, MMP‐9 activation, and aortic destruction. Conclusions Our findings suggest that the NLRP3–caspase‐1 inflammasome directly activates MMP‐9. Targeting the inflammasome with MCC950 is a promising approach for preventing aortic destruction and aortic aneurysm and dissection development.
Collapse
Affiliation(s)
- Pingping Ren
- Division of Cardiothoracic Surgery Michael E. DeBakey Department of Surgery Baylor College of Medicine Houston TX.,Department of Cardiovascular Surgery Texas Heart Institute Houston TX.,Cardiovascular Research Institute Baylor College of Medicine Houston TX
| | - Darrell Wu
- Division of Cardiothoracic Surgery Michael E. DeBakey Department of Surgery Baylor College of Medicine Houston TX.,Department of Cardiovascular Surgery Texas Heart Institute Houston TX.,Cardiovascular Research Institute Baylor College of Medicine Houston TX
| | - Richard Appel
- Division of Cardiothoracic Surgery Michael E. DeBakey Department of Surgery Baylor College of Medicine Houston TX.,Department of Cardiovascular Surgery Texas Heart Institute Houston TX.,Cardiovascular Research Institute Baylor College of Medicine Houston TX
| | - Lin Zhang
- Division of Cardiothoracic Surgery Michael E. DeBakey Department of Surgery Baylor College of Medicine Houston TX.,Department of Cardiovascular Surgery Texas Heart Institute Houston TX.,Cardiovascular Research Institute Baylor College of Medicine Houston TX
| | - Chen Zhang
- Division of Cardiothoracic Surgery Michael E. DeBakey Department of Surgery Baylor College of Medicine Houston TX.,Department of Cardiovascular Surgery Texas Heart Institute Houston TX.,Cardiovascular Research Institute Baylor College of Medicine Houston TX
| | - Wei Luo
- Division of Cardiothoracic Surgery Michael E. DeBakey Department of Surgery Baylor College of Medicine Houston TX.,Department of Cardiovascular Surgery Texas Heart Institute Houston TX.,Cardiovascular Research Institute Baylor College of Medicine Houston TX
| | - Avril A B Robertson
- Institute for Molecular Bioscience University of Queensland Brisbane Australia
| | - Matthew A Cooper
- Institute for Molecular Bioscience University of Queensland Brisbane Australia
| | - Joseph S Coselli
- Division of Cardiothoracic Surgery Michael E. DeBakey Department of Surgery Baylor College of Medicine Houston TX.,Department of Cardiovascular Surgery Texas Heart Institute Houston TX.,Cardiovascular Research Institute Baylor College of Medicine Houston TX
| | - Dianna M Milewicz
- Division of Medical Genetics Department of Internal Medicine The University of Texas Health Science Center at Houston TX
| | - Ying H Shen
- Division of Cardiothoracic Surgery Michael E. DeBakey Department of Surgery Baylor College of Medicine Houston TX.,Department of Cardiovascular Surgery Texas Heart Institute Houston TX.,Cardiovascular Research Institute Baylor College of Medicine Houston TX
| | - Scott A LeMaire
- Division of Cardiothoracic Surgery Michael E. DeBakey Department of Surgery Baylor College of Medicine Houston TX.,Department of Cardiovascular Surgery Texas Heart Institute Houston TX.,Cardiovascular Research Institute Baylor College of Medicine Houston TX
| |
Collapse
|