51
|
Sharif NA. PAF-induced inflammatory and immuno-allergic ophthalmic diseases and their mitigation with PAF receptor antagonists: Cell and nuclear effects. Biofactors 2022; 48:1226-1249. [PMID: 35594054 PMCID: PMC10084252 DOI: 10.1002/biof.1848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/17/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023]
Abstract
Ocular allergies are becoming more prevalent as more airborne pollutants, irritants and microbes pervade our environment. Inflammatory and allergic mediators released by dendritic and mast cells within the conjunctiva cause allergic conjunctivitis (AC), a prevalent ocular surface disorder that affects >40% of the world's human population on a seasonal or perennial basis. Even though histamine is a major culprit, platelet-activating factor (PAF) also contributes to AC, acting either directly or synergistically with histamine and other mediators. PAF receptor-meditated inflammatory reactions, via cell-membrane-bound and nuclear-membrane-bound and nuclear PAF receptors, are also implicated in the etiology of other eye diseases such as uveitis, diabetic retinopathy, corneal and choroidal neovascularization, and age-related macular degeneration which cause serious visual impairment and can lead to blindness. This review highlights the various deleterious elements implicated in the pathological aspects of ocular allergic reactions and inflammation and provides concepts and treatment options to mitigate these eye disorders with a special focus on PAF and PAF receptor antagonists.
Collapse
Affiliation(s)
- Najam A Sharif
- Singapore Eye Research Institute (SERI), Singapore, Singapore
- Department of Pharmacology and Neuroscience, University of North Texas Health Sciences Center, Fort Worth, Texas, USA
- Department of Pharmacy Sciences, Creighton University, Omaha, Nebraska, USA
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas, USA
- Department of Surgery & Cancer, Imperial College of Science and Technology, London, UK
- Duke-National University of Singapore Medical School, SingHealth, Singapore, Singapore
| |
Collapse
|
52
|
Zhao Z, Behm C, Tian Z, Rausch MA, Rausch-Fan X, Andrukhov O. Cyclic tensile strain-induced yes-associated protein activity modulates the response of human periodontal ligament mesenchymal stromal cells to tumor necrosis factor-α. Arch Oral Biol 2022; 143:105527. [DOI: 10.1016/j.archoralbio.2022.105527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/02/2022]
|
53
|
Identification of immune-related mechanisms of cetuximab induced skin toxicity in colorectal cancer patients. PLoS One 2022; 17:e0276497. [PMID: 36269747 PMCID: PMC9586384 DOI: 10.1371/journal.pone.0276497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/08/2022] [Indexed: 11/07/2022] Open
Abstract
Skin rash is a well-known predictive marker of the response to cetuximab (Cmab) in metastatic colorectal cancer (mCRC). However, the mechanism of skin rash development is not well understood. Following exposure to EGFR-targeted therapies, changes in IL-8 levels have been reported. The aim of this study was to evaluate the association between skin rash and inflammatory cytokine levels, including IL-8. Between 2014 and 2017, we prospectively enrolled 38 mCRC patients who underwent chemotherapy with either Cmab or bevacizumab (Bmab) at two hospitals. We performed multiplex cytokine ELISA with 20 inflammatory cytokines including E-selectin, GM-CSF, IFN-alpha, IFN-γ, IL-1 alpha, IL-1 beta, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, IL-17A, IP-10, MCP-1, MIP-1 alpha, MIP-1 beta, P-selectin, sICAM-1, and TNF-alpha at baseline before cycle 1, 24 h after cycle 1, before cycle 2 (= 14 d), and before cycle 3 (= 28 d). Cytokine levels were compared using ANOVA after log-transformation. IL-8 genotypes in 30 patients treated with Cmab were determined using the polymerase chain reaction restriction fragment length polymorphism technique. Depending on the RAS mutational status, 30 and eight patients were treated with Cmab and Bmab-based chemotherapy, respectively. Skin rash developed in 23 (76.6%) of the 30 patients treated with Cmab plus FOLFIRI, after cycle 1. Only the mean log-transformed serum IL-8 level in patients with skin toxicity was statistically lower (2.83 ± 0.15) than in patients who did not experience skin toxicity (3.65 ± 0.27) and received Bmab (3.10 ± 0.26) (ANOVA test, p value = 0.0341). In addition, IL-8 polymorphism did not affect IL-8 levels, skin toxicity, or tumor response in Cmab treated patients. This study suggests that the inflammatory cytokine levels might be affected by Cmab exposure and are associated with the development of skin rash in mCRC patients. Further studies are warranted to evaluate this interaction in Cmab treated patients.
Collapse
|
54
|
Matrix Metalloproteinase 9 (MMP-9) and Interleukin-8 (IL-8) in Gingival Crevicular Fluid after Regenerative Therapy in Periodontal Intrabony Defects with and without Systemic Antibiotics-Randomized Clinical Trial. Pathogens 2022; 11:pathogens11101184. [PMID: 36297241 PMCID: PMC9611622 DOI: 10.3390/pathogens11101184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
The aim of our study was to assess changes in the levels of IL-8 and MMP-9 in gingival crevicular fluid (GCF) collected from the periodontal pocket before and after regenerative surgery with deproteinized bovine bone mineral (DBBM) and collagen membrane (GTR) either independently (DBBM/GTR) or with the postoperative administration of antibiotic (DBBM/GTR+AB). The study involved 41 patients, each with one intrabony defect. IL-8 and MMP-9 were determined before therapy and after 2 weeks, 4 weeks and 6 months following the surgical procedure by means of dedicated ELISA kits. No statistical differences were observed in the levels of IL-8 and MMP-9 after 2 weeks, 4 weeks and 6 months between the groups. The changes in the level of MMP-9 over time were not statistically significant in any group. The changes in the level of IL-8 were significant for the group given antibiotic but not in the nonantibiotic group in the follow-up period. IL-8 and MMP-9 were found to correlate positively but not after 4 weeks in the test group. Current assessment of IL-8 and MMP-9 obtained from GCF samples provides evidence that collagen matrix turnover occurs actively during the early healing phase in the periodontium after regenerative procedures. We observed positive correlations of MMP-9 and IL-8 throughout the study. However, we failed to reveal any differences regard parameters studied between the two groups.
Collapse
|
55
|
Williams ESCP, Martins TB, Hill HR, Coiras M, Shah KS, Planelles V, Spivak AM. Plasma cytokine levels reveal deficiencies in IL-8 and gamma interferon in Long-COVID. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.10.03.22280661. [PMID: 36238724 PMCID: PMC9558442 DOI: 10.1101/2022.10.03.22280661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Up to half of individuals who contract SARS-CoV-2 develop symptoms of long-COVID approximately three months after initial infection. These symptoms are highly variable, and the mechanisms inducing them are yet to be understood. We compared plasma cytokine levels from individuals with long-COVID to healthy individuals and found that those with long-COVID had 100% reductions in circulating levels of interferon gamma (IFNγ) and interleukin-8 (IL-8). Additionally, we found significant reductions in levels of IL-6, IL-2, IL-17, IL-13, and IL-4 in individuals with long-COVID. We propose immune exhaustion as the driver of long-COVID, with the complete absence of IFNγ and IL-8 preventing the lungs and other organs from healing after acute infection, and reducing the ability to fight off subsequent infections, both contributing to the myriad of symptoms suffered by those with long-COVID.
Collapse
|
56
|
Zubova SV, Kosyakova NI, Grachev SV, Prokhorenko IR. Rhodobacter capsulatus PG Lipopolysaccharide Blocks the Effects of a Lipoteichoic Acid, a Toll-Like Receptor 2 Agonist. Acta Naturae 2022; 14:69-74. [PMID: 36694898 PMCID: PMC9844088 DOI: 10.32607/actanaturae.11747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/02/2022] [Indexed: 01/22/2023] Open
Abstract
Lipopolysaccharides (LPS) and lipoteichoic acids (LTA) are the major inducers of the inflammatory response of blood cells caused by Gram-negative and some Gram-positive bacteria. CD14 is a common receptor for LPS and LTA that transfers the ligands to TLR4 and TLR2, respectively. In this work, we have demonstrated that the non-toxic LPS from Rhodobacter capsulatus PG blocks the synthesis of pro-inflammatory cytokines during the activation of blood cells by Streptococcus pyogenes LTA through binding to the CD14 receptor, resulting in the signal transduction to TLR2/TLR6 being blocked. The LPS from Rhodobacter capsulatus PG can be considered a prototype for developing preparations to protect blood cells against the LTA of gram-positive bacteria.
Collapse
Affiliation(s)
- S. V. Zubova
- Institute of Basic Biological Problems of RAS FRC PSCBR RAS, Pushchino, 142290 Russia
| | - N. I. Kosyakova
- Clinical Hospital at the Pushchino Research Center, Pushchino, 142290 Russia
| | - S. V. Grachev
- Institute of Basic Biological Problems of RAS FRC PSCBR RAS, Pushchino, 142290 Russia
- First Moscow State Medical University named I.M. Sechenov of Russia Health Ministry (Sechenov University), Moscow, 119991 Russia
| | - I. R. Prokhorenko
- Institute of Basic Biological Problems of RAS FRC PSCBR RAS, Pushchino, 142290 Russia
| |
Collapse
|
57
|
Rarani FZ, Rashidi B, Jafari Najaf Abadi MH, Hamblin MR, Reza Hashemian SM, Mirzaei H. Cytokines and microRNAs in SARS-CoV-2: What do we know? MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:219-242. [PMID: 35782361 PMCID: PMC9233348 DOI: 10.1016/j.omtn.2022.06.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic constitutes a global health emergency. Currently, there are no completely effective therapeutic medications for the management of this outbreak. The cytokine storm is a hyperinflammatory medical condition due to excessive and uncontrolled release of pro-inflammatory cytokines in patients suffering from severe COVID-19, leading to the development of acute respiratory distress syndrome (ARDS) and multiple organ dysfunction syndrome (MODS) and even mortality. Understanding the pathophysiology of COVID-19 can be helpful for the treatment of patients. Evidence suggests that the levels of tumor necrosis factor alpha (TNF-α) and interleukin (IL)-1 and IL-6 are dramatically different between mild and severe patients, so they may be important contributors to the cytokine storm. Several serum markers can be predictors for the cytokine storm. This review discusses the cytokines involved in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, focusing on interferons (IFNs) and ILs, and whether they can be used in COVID-19 treatment. Moreover, we highlight several microRNAs that are involved in these cytokines and their role in the cytokine storm caused by COVID-19.
Collapse
Affiliation(s)
- Fahimeh Zamani Rarani
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahman Rashidi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Seyed Mohammad Reza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, IR, Iran
| |
Collapse
|
58
|
Olivera I, Sanz-Pamplona R, Bolaños E, Rodriguez I, Etxeberria I, Cirella A, Egea J, Garasa S, Migueliz I, Eguren-Santamaria I, Sanmamed MF, Glez-Vaz J, Azpilikueta A, Alvarez M, Ochoa MC, Malacrida B, Propper D, de Andrea CE, Berraondo P, Balkwill FR, Teijeira Á, Melero I. A Therapeutically Actionable Protumoral Axis of Cytokines Involving IL-8, TNFα, and IL-1β. Cancer Discov 2022; 12:2140-2157. [PMID: 35771565 DOI: 10.1158/2159-8290.cd-21-1115] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 05/20/2022] [Accepted: 06/26/2022] [Indexed: 11/16/2022]
Abstract
Interleukin-8 (CXCL8) produced in the tumor microenvironment correlates with poor response to checkpoint inhibitors and is known to chemoattract and activate immunosuppressive myeloid leukocytes. In human cancer, IL8 mRNA levels correlate with IL1B and TNF transcripts. Both cytokines induced IL-8 functional expression from a broad variety of human cancer cell lines, primary colon carcinoma organoids, and fresh human tumor explants. Although IL8 is absent from the mouse genome, a similar murine axis in which TNFα and IL-1β upregulate CXCL1 and CXCL2 in tumor cells was revealed. Furthermore, intratumoral injection of TNFα and IL-1β induced IL-8 release from human malignant cells xenografted in immunodeficient mice. In all these cases, the clinically used TNFα blockers infliximab and etanercept or the IL-1β inhibitor anakinra was able to interfere with this pathogenic cytokine loop. Finally, in paired plasma samples of patients with cancer undergoing TNFα blockade with infliximab in a clinical trial, reductions of circulating IL-8 were substantiated. SIGNIFICANCE IL-8 attracts immunosuppressive protumor myeloid cells to the tumor microenvironment, and IL-8 levels correlate with poor response to checkpoint inhibitors. TNFα and IL-1β are identified as major inducers of IL-8 expression on malignant cells across cancer types and models in a manner that is druggable with clinically available neutralizing agents. This article is highlighted in the In This Issue feature, p. 2007.
Collapse
Affiliation(s)
- Irene Olivera
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona Spain
| | - Rebeca Sanz-Pamplona
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Oncobell Program, Catalan Institute of Cancer (ICO), Bellvitge Biomedical Research Institute (IDIBELL), CIBERESP, Hospitalet de Llobregat, Barcelona, Spain and ARAID Researcher, Aragon Health Research institute (IIS Aragon), Zaragoza, Spain
| | - Elixabet Bolaños
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona Spain
| | - Inmaculada Rodriguez
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona Spain
| | - Iñaki Etxeberria
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona Spain
| | - Assunta Cirella
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona Spain
| | - Josune Egea
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona Spain
| | - Saray Garasa
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Itziar Migueliz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona Spain
| | - Iñaki Eguren-Santamaria
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona Spain
| | - Miguel F Sanmamed
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Javier Glez-Vaz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona Spain
| | - Arantza Azpilikueta
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona Spain
| | - Maite Alvarez
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - María C Ochoa
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Beatrice Malacrida
- Center for tumour microenvironment, Barts Cancer Institute, Queen Mary University of London, London, United Kindgom
| | - David Propper
- Center for tumour microenvironment, Barts Cancer Institute, Queen Mary University of London, London, United Kindgom
| | - Carlos E de Andrea
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Pathology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Frances R Balkwill
- Center for tumour microenvironment, Barts Cancer Institute, Queen Mary University of London, London, United Kindgom
| | - Álvaro Teijeira
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
59
|
Macrophages and neutrophils are necessary for ER stress-induced β cell loss. Cell Rep 2022; 40:111255. [PMID: 36001973 PMCID: PMC9444341 DOI: 10.1016/j.celrep.2022.111255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/09/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022] Open
Abstract
Persistent endoplasmic reticulum (ER) stress induces islet inflammation and β cell loss. How islet inflammation contributes to β cell loss remains uncertain. We have reported previously that chronic overnutrition-induced ER stress in β cells causes Ripk3-mediated islet inflammation, macrophage recruitment, and a reduction of β cell numbers in a zebrafish model. We show here that β cell loss results from the intricate communications among β cells, macrophages, and neutrophils. Macrophage-derived Tnfa induces cxcl8a in β cells. Cxcl8a, in turn, attracts neutrophils to macrophage-contacted “hotspots” where β cell loss occurs. We also show potentiation of chemokine expression in stressed mammalian β cells by macrophage-derived TNFA. In Akita and db/db mice, there is an increase in CXCL15-positive β cells and intra-islet neutrophils. Blocking neutrophil recruitment in Akita mice preserves β cell mass and slows diabetes progression. These results reveal an important role of neutrophils in persistent ER stress-induced β cell loss. Yang et al. show a pivotal role of communications among β cells, macrophages, and neutrophils in chronic overnutrition-induced loss of pancreatic β cells in a diabetes-prone zebrafish model.
Collapse
|
60
|
Mao XC, Yang CC, Yang YF, Yan LJ, Ding ZN, Liu H, Yan YC, Dong ZR, Wang DX, Li T. Peripheral cytokine levels as novel predictors of survival in cancer patients treated with immune checkpoint inhibitors: A systematic review and meta-analysis. Front Immunol 2022; 13:884592. [PMID: 36072577 PMCID: PMC9441870 DOI: 10.3389/fimmu.2022.884592] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022] Open
Abstract
Background Early identification of patients who will benefit from immune checkpoint inhibitors (ICIs) has recently become a hot issue in cancer immunotherapy. Peripheral cytokines are key regulators in the immune system that can induce the expression of immune checkpoint molecules; however, the association between peripheral cytokines and the efficiency of ICIs remains unclear. Methods A systematic review was conducted in several public databases from inception through 3 February 2022 to identify studies investigating the association between peripheral cytokines (i.e., IL-1β, IL-2, IL-2RA, IL-2R, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, IL-15, IL-17, TNF-α, IFN-γ, and TGF-β) and ICI treatment. Survival data, including overall survival (OS) and/or progression-free survival (PFS), were extracted, and meta-analyses were performed. Results Twenty-four studies were included in this analysis. The pooled results demonstrated that the pretreatment peripheral levels of IL-6 (univariate analysis: HR = 2.53, 95% CI = 2.21–2.89, p < 0.00001; multivariate analysis: HR = 2.21, 95% CI = 1.67–2.93, p < 0.00001) and IL-8 (univariate analysis: HR = 2.17, 95% CI = 1.98–2.38, p < 0.00001; multivariate analysis: HR = 1.88, 95% CI= 1.70–2.07, p < 0.00001) were significantly associated with worse OS of cancer patients receiving ICI treatment in both univariate and multivariate analysis. However, high heterogeneity was found for IL-6, which might be attributed to region, cancer type, treatment method, sample source, and detection method. Conclusion The peripheral level of IL-8 may be used as a prognostic marker to identify patients with inferior response to ICIs. More high-quality prospective studies are warranted to assess the predictive value of peripheral cytokines for ICI treatment.
Collapse
Affiliation(s)
- Xin-Cheng Mao
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Chun-Cheng Yang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Ya-Fei Yang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Lun-Jie Yan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Zi-Niu Ding
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Hui Liu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Yu-Chuan Yan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Zhao-Ru Dong
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Dong-Xu Wang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Tao Li
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
- Department of Hepatobiliary Surgery, The Second Hospital of Shandong University, Jinan, China
- *Correspondence: Tao Li,
| |
Collapse
|
61
|
Beaumont JEJ, Beelen NA, Wieten L, Rouschop KMA. The Immunomodulatory Role of Hypoxic Tumor-Derived Extracellular Vesicles. Cancers (Basel) 2022; 14:4001. [PMID: 36010994 PMCID: PMC9406714 DOI: 10.3390/cancers14164001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 12/04/2022] Open
Abstract
Tumor-associated immune cells frequently display tumor-supportive phenotypes. These phenotypes, induced by the tumor microenvironment (TME), are described for both the adaptive and the innate arms of the immune system. Furthermore, they occur at all stages of immune cell development, up to effector function. One major factor that contributes to the immunosuppressive nature of the TME is hypoxia. In addition to directly inhibiting immune cell function, hypoxia affects intercellular crosstalk between tumor cells and immune cells. Extracellular vesicles (EVs) play an important role in this intercellular crosstalk, and changes in both the number and content of hypoxic cancer-cell-derived EVs are linked to the transfer of hypoxia tolerance. Here, we review the current knowledge about the role of these hypoxic cancer-cell-derived EVs in immunosuppression. In addition, we provide an overview of hypoxia-induced factors (i.e., miRNA and proteins) in tumor-derived EVs, and their role in immunomodulation.
Collapse
Affiliation(s)
- Joel E. J. Beaumont
- Department of Radiotherapy, GROW—School for Oncology and Reproduction, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| | - Nicky A. Beelen
- Department of Internal Medicine, GROW—School for Oncology and Reproduction, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
- Department of Transplantation Immunology, GROW—School for Oncology and Reproduction, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| | - Lotte Wieten
- Department of Transplantation Immunology, GROW—School for Oncology and Reproduction, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| | - Kasper M. A. Rouschop
- Department of Radiotherapy, GROW—School for Oncology and Reproduction, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
62
|
Zwack EE, Chen Z, Devlin JC, Li Z, Zheng X, Weinstock A, Lacey KA, Fisher EA, Fenyö D, Ruggles KV, Loke P, Torres VJ. Staphylococcus aureus induces a muted host response in human blood that blunts the recruitment of neutrophils. Proc Natl Acad Sci U S A 2022; 119:e2123017119. [PMID: 35881802 PMCID: PMC9351360 DOI: 10.1073/pnas.2123017119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/29/2022] [Indexed: 11/18/2022] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen and chief among bloodstream-infecting bacteria. S. aureus produces an array of human-specific virulence factors that may contribute to immune suppression. Here, we defined the response of primary human phagocytes following infection with S. aureus using RNA-sequencing (RNA-Seq). We found that the overall transcriptional response to S. aureus was weak both in the number of genes and in the magnitude of response. Using an ex vivo bacteremia model with fresh human blood, we uncovered that infection with S. aureus resulted in the down-regulation of genes related to innate immune response and cytokine and chemokine signaling. This muted transcriptional response was conserved across diverse S. aureus clones but absent in blood exposed to heat-killed S. aureus or blood infected with the less virulent staphylococcal species Staphylococcus epidermidis. Notably, this signature was also present in patients with S. aureus bacteremia. We identified the master regulator S. aureus exoprotein expression (SaeRS) and the SaeRS-regulated pore-forming toxins as key mediators of the transcriptional suppression. The S. aureus-mediated suppression of chemokine and cytokine transcription was reflected by circulating protein levels in the plasma. Wild-type S. aureus elicited a soluble milieu that was restrictive in the recruitment of human neutrophils compared with strains lacking saeRS. Thus, S. aureus blunts the inflammatory response resulting in impaired neutrophil recruitment, which could promote the survival of the pathogen during invasive infection.
Collapse
Affiliation(s)
- Erin E. Zwack
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016
| | - Ze Chen
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016
| | - Joseph C. Devlin
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016
| | - Zhi Li
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY 10016
| | - Xuhui Zheng
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016
| | - Ada Weinstock
- Department of Medicine Cardiology, New York University Grossman School of Medicine, New York, NY 10016
| | - Keenan A. Lacey
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016
| | - Edward A. Fisher
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016
- Department of Medicine Cardiology, New York University Grossman School of Medicine, New York, NY 10016
| | - David Fenyö
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY 10016
- Department for Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016
| | - Kelly V. Ruggles
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY 10016
- Division of Translational Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016
| | - P’ng Loke
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Victor J. Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY 10016
| |
Collapse
|
63
|
Plasmid-mediated gene transfer of Cas9 induces vector-related but not SpCas9-related immune responses in human retinal pigment epithelial cells. Sci Rep 2022; 12:13202. [PMID: 35915300 PMCID: PMC9343442 DOI: 10.1038/s41598-022-17269-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 9 (Cas9) system represents a powerful gene-editing tool and could enable treatment of blinding diseases of the retina. As a peptide of bacterial origin, we investigated the immunogenic potential of Cas9 in models of retinal immunocompetent cells: human microglia (IMhu) and ARPE-19 cells. Transfection with Streptococcus pyogenes-Cas9 expression plasmids (SpCas9 plasmid) induced Cas9 protein expression in both cell lines. However, only ARPE-19 cells, not IMhu cells, responded with pro-inflammatory immune responses as evidenced by the upregulation of IL-8, IL-6, and the cellular activation markers HLA-ABC and CD54 (ICAM). These pro-inflammatory responses were also induced through transfection with equally sized non-coding control plasmids. Moreover, viability rates of ARPE-19 cells were reduced after transfection with both the SpCas9 plasmids and the control plasmids. Although these results demonstrate cell type-specific responses to the DNA plasmid vector, they show no evidence of an immunogenic effect due to the presence of Cas9 in models of human retinal pigment epithelial and microglia cells. These findings add another layer of confidence in the immunological safety of potential future Cas9-mediated retinal gene therapies.
Collapse
|
64
|
IL-8 Is Upregulated in the Tissue-Derived EVs of Odontogenic Keratocysts. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9453270. [PMID: 35941973 PMCID: PMC9356892 DOI: 10.1155/2022/9453270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/30/2022] [Indexed: 11/30/2022]
Abstract
Background Interleukin 8 (IL-8) is a chemotactic cytokine released by various cells including leukocytes, endothelial cells, and epithelial cells. IL-8 has multiple functions in inflammation, tumour invasion, or angiogenesis. Human odontogenic cystic lesions are chronic and frequently inflamed. Tissue-derived extracellular vesicles (Ti-EVs) are widely present in various tissues and could more accurately reflect the characteristics of the primary tissue. However, the involvement of IL-8 in Ti-EVs of human odontogenic lesions is still unclear. This study aimed to explore the expression of IL-8 in Ti-EVs of human odontogenic lesions and the potential roles of Ti-EVs that carried IL-8. Methods Fresh tissue samples of dentigerous cyst (DC, n = 5) and odontogenic keratocyst (OKC, n = 5) were collected for Ti-EVs isolation. Ti-EVs were characterised by transmission electron microscopy and nano-flow cytometry analysis. The cytokine profile of Ti-EVs was explored by cytokine antibody array. The IL-8 expression was examined by immunochemical staining in tissue of odontogenic lesions (DC, n =12; OKC, n =28). Antioxidants (N-acetyl-L-cysteine and diphenyleneiodonium) were employed to treat HaCaT cells, and the expression of IL-8 was detected by enzyme-linked immunosorbent assay. The gene expression of MMP9 was explored by quantitative real-time polymerase chain reaction in co-culture system of fibroblasts of OKC with Ti-EVs. Results Compared with DC, the expression of IL-8 in Ti-EVs and fixed tissue specimens of OKC was markedly upregulated. The antioxidants decreased the expression level of IL-8 protein in the supernatant of HaCaT cells. The Ti-EVs treatment (10 μg/ml) of fibroblasts significantly induced the MMP9 mRNA expressions in OKC fibroblasts. Conclusions IL-8 was upregulated in Ti-EVs of OKC and might be involved in the tissue destruction of OKC.
Collapse
|
65
|
Trung NB, Nguyen TP, Hsueh HY, Loh JY, Wangkahart E, Wong ASF, Lee PT. Sterile alpha and TIR motif-containing protein 1 is a negative regulator in the anti-bacterial immune responses in nile tilapia (Oreochromis niloticus). Front Immunol 2022; 13:940877. [PMID: 35928810 PMCID: PMC9344004 DOI: 10.3389/fimmu.2022.940877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Nile tilapia (Oreochromis niloticus) is one of the most important food fish in the world. However, the farming industry has encountered significant challenges, such as pathogen infections. Toll-like receptors (TLRs) play an essential role in the initiation of the innate immune system against pathogens. Sterile alpha and TIR motif-containing protein 1 (SARM1) is one of the most evolutionarily conserved TLR adaptors, and its orthologs are present in various species from worms to humans. SARM1 plays an important role in negatively regulating TIR domain-containing adaptor proteins inducing IFNβ (TRIF)-dependent TLR signaling in mammals, but its immune function remains poorly understood in fish. In this study, O. niloticus SARM1 (OnSARM1) was cloned and its evolutionary status was verified using bioinformatic analyses. mRNA expression of OnSARM1 was found at a higher level in the trunk kidney and muscle in healthy fish. The examination of its subcellular location showed that the OnSARM1 was detected only in the cytoplasm of THK cells, and colocalized with OnMyD88, OnTRIF and OnTRIF in small speckle-like condensed granules. The transcript levels of OnMyD88, OnTIRAP, OnTRIF, and downstream effectors, including interleukin (IL)-1β, IL-8, IL-12b and type I interferon (IFN)d2.13, were regulated conversely to the expression of OnSARM1 in the head kidney from Aeromonas hydrophila and Streptococcus agalactiae infected fish. Moreover, the treatment of THK cells with lysates from A. hydrophila and S. agalactiae enhanced the activity of the NF-κB promoter, but the effects were inhibited in the OnSARM1 overexpressed THK cells. Overexpression of OnSARM1 alone did not activate the NF-κB-luciferase reporter, but it suppressed OnMyD88- and OnTIRAP-mediated NF-κB promoter activity. Additionally, OnSARM1 inhibited the mRNA expression of proinflammatory cytokines and hepcidin in A. hydrophila lysate stimulated THK cells. Taken together, these findings suggest that OnSARM1 serves as a negative regulator by inhibiting NF-κB activity, thereby influencing the transcript level of proinflammatory cytokines and antimicrobial peptides in the antibacterial responses.
Collapse
Affiliation(s)
- Nguyen Bao Trung
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
- College of Aquaculture and Fisheries, Can Tho University, Can Tho, Vietnam
| | - Tan-Phat Nguyen
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Hao-Yun Hsueh
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Jiun-Yan Loh
- Centre of Research for Advanced Aquaculture (CORAA), UCSI University, Kuala Lumpur, Malaysia
| | - Eakapol Wangkahart
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Mahasarakham, Thailand
| | - Alice Sui Fung Wong
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Po-Tsang Lee
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
- *Correspondence: Po-Tsang Lee,
| |
Collapse
|
66
|
Frimpong A, Owusu EDA, Amponsah JA, Obeng-Aboagye E, van der Puije W, Frempong AF, Kusi KA, Ofori MF. Cytokines as Potential Biomarkers for Differential Diagnosis of Sepsis and Other Non-Septic Disease Conditions. Front Cell Infect Microbiol 2022; 12:901433. [PMID: 35811678 PMCID: PMC9260692 DOI: 10.3389/fcimb.2022.901433] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/16/2022] [Indexed: 01/08/2023] Open
Abstract
Sepsis defined as a dysregulated immune response is a major cause of morbidity in children. In sub-Saharan Africa, the clinical features of sepsis overlap with other frequent infections such as malaria, thus sepsis is usually misdiagnosed in the absence of confirmatory tests. Therefore, it becomes necessary to identify biomarkers that can be used to distinguish sepsis from other infectious diseases. We measured and compared the plasma levels of 18 cytokines (Th1 [GM-CSF, IFN-γ, TNF-α, IL-1β, 1L-2, IL-6, IL-8, IL-12/IL-23p40, IL-15], Th2[IL-4, IL-5, IL-13), Th17 [IL17A], Regulatory cytokine (IL-10) and 7 chemokines (MCP-1/CCL2, MIP-1α/CCL3, MIP-1β/CCL4, RANTES/CCL5, Eotaxin/CCL11, MIG/CXCL9 and IP-10/CXCL10 using the Human Cytokine Magnetic 25-Plex Panel in plasma samples obtained from children with sepsis, clinical malaria and other febrile conditions. Children with sepsis had significantly higher levels of IL-1β, IL-12 and IL-17A compared to febrile controls but lower levels of MIP1-β/CCL4, RANTES/CCL5 and IP10/CXCL10 when compared to children with malaria and febrile controls. Even though levels of most inflammatory responses were higher in malaria compared to sepsis, children with sepsis had a higher pro-inflammatory to anti-inflammatory ratio which seemed to be mediated by mostly monocytes. A principal component analysis and a receiver operator characteristic curve analysis, identified seven potential biomarkers; IL-1β, IL-7, IL-12, IL-1RA, RANTES/CCL5, MIP1β/CCL4 and IP10/CXCL10 that could discriminate children with sepsis from clinical malaria and other febrile conditions. The data suggests that sepsis is associated with a higher pro-inflammatory environment. These pro-inflammatory cytokines/chemokines could further be evaluated for their diagnostic potential to differentiate sepsis from malaria and other febrile conditions in areas burdened with infectious diseases.
Collapse
Affiliation(s)
- Augustina Frimpong
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- *Correspondence: Augustina Frimpong, ; Michael Fokuo Ofori,
| | - Ewurama D. A. Owusu
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Jones Amo Amponsah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Elizabeth Obeng-Aboagye
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana
| | - William van der Puije
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Abena Fremaah Frempong
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Kwadwo Asamoah Kusi
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Michael Fokuo Ofori
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- *Correspondence: Augustina Frimpong, ; Michael Fokuo Ofori,
| |
Collapse
|
67
|
Calvert BA, Quiroz EJ, Lorenzana Z, Doan N, Kim S, Senger CN, Wallace WD, Salomon MP, Henley J, Ryan AL. Neutrophilic inflammation promotes SARS-CoV-2 infectivity and augments the inflammatory responses in airway epithelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2021.08.09.455472. [PMID: 34401877 PMCID: PMC8366793 DOI: 10.1101/2021.08.09.455472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In response to viral infection, neutrophils release inflammatory mediators as part of the innate immune response, contributing to pathogen clearance through virus internalization and killing. Pre-existing co- morbidities correlating to incidence of severe COVID-19 are associated with chronic airway neutrophilia. Furthermore, examination of COVID-19 explanted lung tissue revealed a series of epithelial pathologies associated with the infiltration and activation of neutrophils, indicating neutrophil activity in response to SARS- CoV-2 infection. To determine the impact of neutrophil-epithelial interactions on the infectivity and inflammatory responses to SARS-CoV-2 infection, we developed a co-culture model of airway neutrophilia. SARS-CoV-2 infection of the airway epithelium alone does not result in a notable pro-inflammatory response from the epithelium. The addition of neutrophils induces the release of proinflammatory cytokines and stimulates a significantly augmented pro-inflammatory response subsequent SARS-CoV-2 infection. The resulting inflammatory response is polarized with differential release from the apical and basolateral side of the epithelium. Additionally, the integrity of the epithelial barrier is impaired with notable epithelial damage and infection of basal stem cells. This study reveals a key role for neutrophil-epithelial interactions in determining inflammation and infectivity in response to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- BA Calvert
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - EJ Quiroz
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Z Lorenzana
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | - N Doan
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | - S Kim
- The Salk Institute of Biological Studies, 10010 North Torey Pines Road, La Jolla, Ca, USA
| | - CN Senger
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - WD Wallace
- Department of Pathology, University of Southern California, Los Angeles, CA, USA
| | - MP Salomon
- Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | - J Henley
- Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | - AL Ryan
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
68
|
Russo M, Nastasi C. Targeting the Tumor Microenvironment: A Close Up of Tumor-Associated Macrophages and Neutrophils. Front Oncol 2022; 12:871513. [PMID: 35664746 PMCID: PMC9160747 DOI: 10.3389/fonc.2022.871513] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/11/2022] [Indexed: 12/15/2022] Open
Abstract
The importance of the tumor microenvironment (TME) in dynamically regulating cancer progression and influencing the therapeutic outcome is widely accepted and appreciated. Several therapeutic strategies to modify or modulate the TME, like angiogenesis or immune checkpoint inhibitors, showed clinical efficacy and received approval from regulatory authorities. Within recent decades, new promising strategies targeting myeloid cells have been implemented in preclinical cancer models. The predominance of specific cell phenotypes in the TME has been attributed to pro- or anti-tumoral. Hence, their modulation can, in turn, alter the responses to standard-of-care treatments, making them more or less effective. Here, we summarize and discuss the current knowledge and the correlated challenges about the tumor-associated macrophages and neutrophils targeting strategies, current treatments, and future developments.
Collapse
Affiliation(s)
- Massimo Russo
- Laboratory of Cancer Metastasis Therapeutics, Department of Oncology, Mario Negri Pharmacological Research Institute (IRCCS), Milan, Italy
| | - Claudia Nastasi
- Laboratory of Cancer Pharmacology, Department of Oncology, Mario Negri Pharmacological Research Institute (IRCCS), Milan, Italy
| |
Collapse
|
69
|
Malézieux-Picard A, Nascè A, Azurmendi L, Pagano S, Vuilleumier N, Sanchez JC, Reny JL, Zekry D, Roux X, Stirnemann J, Garin N, Prendki V. Kinetics of inflammatory biomarkers to predict one-year mortality in older patients hospitalized for pneumonia: a multivariable analysis. Int J Infect Dis 2022; 122:63-69. [PMID: 35550179 DOI: 10.1016/j.ijid.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/25/2022] [Accepted: 05/01/2022] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES Long-term mortality is increased in older patients with pneumonia. We aimed to test whether residual inflammation is predictive of one-year mortality after pneumonia. METHODS Inflammation biomarkers (C-reactive protein [CRP], interleukin [IL]-6 and IL-8, tumor necrosis factor-α, serum amyloid A, neopterin, myeloperoxidase, anti-apolipoprotein A-1, and anti-phosphorylcholine IgM) were measured at admission and discharge in older patients hospitalized for pneumonia in a prospective study. Univariate and multivariate analyses were conducted using absolute level at discharge and relative and absolute differences between admission and discharge for all biomarkers, along with usual prognostic factors. RESULTS In the 133 included patients (median age, 83 years [interquartile range: 78-89]), one-year mortality was 26%. In univariate analysis, the relative difference of CRP levels had the highest area under the receiver operating characteristic curve (0.70; 95% confidence interval [CI] 0.60-0.80). A decrease of CRP levels of more than 67% between admission and discharge had 68% sensitivity and 68% specificity to predict survival. In multivariate analysis, lower body mass index (hazard ratio=0.87 [CI 95% 0.79-0.96], P-value=0.01), higher IL-8 (hazard ratio=1.02 [CI 95% 1.00-1.04], P-value=0.02), and higher CRP (1.01 [95% CI 1.00-1.02], P=0.01) at discharge were independently associated with mortality. CONCLUSION Higher IL-8 and CRP levels at discharge were independently associated with one-year mortality. The relative CRP difference during hospitalization was the best individual biomarker for predicting one-year mortality.
Collapse
Affiliation(s)
- Astrid Malézieux-Picard
- Division of Internal Medicine for the Elderly, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Genève, Switzerland.
| | - Alberto Nascè
- Division of Internal Medicine for the Elderly, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Genève, Switzerland
| | - Leire Azurmendi
- Department of Internal Medicine, Medical Faculty, Geneva University Hospitals, Genève, Switzerland
| | - Sabrina Pagano
- Department of Internal Medicine, Medical Faculty, Geneva University Hospitals, Genève, Switzerland; Division of Laboratory Medicine, Diagnostic Department, Geneva University Hospitals, Genève, Switzerland
| | - Nicolas Vuilleumier
- Department of Internal Medicine, Medical Faculty, Geneva University Hospitals, Genève, Switzerland; Division of Laboratory Medicine, Diagnostic Department, Geneva University Hospitals, Genève, Switzerland; Medical Faculty, University of Geneva, Genève, Switzerland
| | - Jean-Charles Sanchez
- Department of Internal Medicine, Medical Faculty, Geneva University Hospitals, Genève, Switzerland; Medical Faculty, University of Geneva, Genève, Switzerland
| | - Jean-Luc Reny
- Division of General Internal Medicine, Department of Internal Medicine, Rehabilitation and Geriatrics, Geneva University Hospitals, Genève, Switzerland; Medical Faculty, University of Geneva, Genève, Switzerland
| | - Dina Zekry
- Division of Internal Medicine for the Elderly, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Genève, Switzerland; Medical Faculty, University of Geneva, Genève, Switzerland
| | - Xavier Roux
- Division of Internal Medicine for the Elderly, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Genève, Switzerland; Intensive Care Division, Geneva University Hospitals, Genève, Switzerland
| | - Jérôme Stirnemann
- Division of General Internal Medicine, Department of Internal Medicine, Rehabilitation and Geriatrics, Geneva University Hospitals, Genève, Switzerland; Medical Faculty, University of Geneva, Genève, Switzerland
| | - Nicolas Garin
- Medical Faculty, University of Geneva, Genève, Switzerland; Department of General Internal Medicine, Riviera-Chablais Hospital, Rennaz, Switzerland
| | - Virginie Prendki
- Division of Internal Medicine for the Elderly, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Genève, Switzerland; Medical Faculty, University of Geneva, Genève, Switzerland; Division of Infectious Diseases, Geneva University Hospitals, Genève, Switzerland
| |
Collapse
|
70
|
Li Y, Zhu Y, Chu B, Liu N, Chen S, Wang J, Zou Y. Map of Enteropathogenic Escherichia coli Targets Mitochondria and Triggers DRP-1-Mediated Mitochondrial Fission and Cell Apoptosis in Bovine Mastitis. Int J Mol Sci 2022; 23:ijms23094907. [PMID: 35563295 PMCID: PMC9105652 DOI: 10.3390/ijms23094907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/05/2023] Open
Abstract
Bovine mastitis seriously affects bovine health and dairy product quality. Escherichia coli is the most important pathogen in the environment and dairy products. Enteropathogenic Escherichia coli (EPEC) is a zoonotic pathogen, which seriously threatens the health of people and dairy cows. We recently reported that E. coli can induce endogenous apoptosis in bovine mammary epithelial cells. However, the mechanism of EPEC-damaged mitochondria and -induced bovine mastitis is unclear. In this study, we found that EPEC can induce DRP-1-dependent mitochondrial fission and apoptosis. This was verified by the application of Mdivi, a DRP-1 inhibitor. Meanwhile, in order to verify the role of the Map virulence factor in EPEC-induced bovine mastitis, we constructed a map mutant, complementary strain, and recombinant plasmid MapHis. In the present study, we find that Map induced DRP-1-mediated mitochondrial fission, resulting in mitochondrial dysfunction and apoptosis. These inferences were further verified in vivo by establishing a mouse mastitis model. After the map gene was knocked out, breast inflammation and apoptosis in mice were significantly alleviated. All results show that EPEC targets mitochondria by secreting the Map virulence factor to induce DRP-1-mediated mitochondrial fission, mitochondrial dysfunction, and endogenous apoptosis in bovine mastitis.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiufeng Wang
- Correspondence: (J.W.); (Y.Z.); Tel.: +86-10-6273-1094 (J.W.)
| | - Yunjing Zou
- Correspondence: (J.W.); (Y.Z.); Tel.: +86-10-6273-1094 (J.W.)
| |
Collapse
|
71
|
Hsu RJ, Yu WC, Peng GR, Ye CH, Hu S, Chong PCT, Yap KY, Lee JYC, Lin WC, Yu SH. The Role of Cytokines and Chemokines in Severe Acute Respiratory Syndrome Coronavirus 2 Infections. Front Immunol 2022; 13:832394. [PMID: 35464491 PMCID: PMC9021400 DOI: 10.3389/fimmu.2022.832394] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/24/2022] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in countless infections and caused millions of deaths since its emergence in 2019. Coronavirus disease 2019 (COVID-19)-associated mortality is caused by uncontrolled inflammation, aberrant immune response, cytokine storm, and an imbalanced hyperactive immune system. The cytokine storm further results in multiple organ failure and lung immunopathology. Therefore, any potential treatments should focus on the direct elimination of viral particles, prevention strategies, and mitigation of the imbalanced (hyperactive) immune system. This review focuses on cytokine secretions of innate and adaptive immune responses against COVID-19, including interleukins, interferons, tumor necrosis factor-alpha, and other chemokines. In addition to the review focus, we discuss potential immunotherapeutic approaches based on relevant pathophysiological features, the systemic immune response against SARS-CoV-2, and data from recent clinical trials and experiments on the COVID-19-associated cytokine storm. Prompt use of these cytokines as diagnostic markers and aggressive prevention and management of the cytokine storm can help determine COVID-19-associated morbidity and mortality. The prophylaxis and rapid management of the cytokine storm appear to significantly improve disease outcomes. For these reasons, this study aims to provide advanced information to facilitate innovative strategies to survive in the COVID-19 pandemic.
Collapse
Affiliation(s)
- Ren-Jun Hsu
- Cancer Center, Hualien Tzu Chi Hospital, Buddhist Tzuchi Medical Foundation, Hualien, Taiwan.,School of Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wei-Chieh Yu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Guan-Ru Peng
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Chih-Hung Ye
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - SuiYun Hu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | | | - Kah Yi Yap
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | | | - Wei-Chen Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Shu-Han Yu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
72
|
Shiezadeh F, Azami N, Arab HR, Rezaee SAR, Moeintaghavi A, Banihashemrad A. Evaluation of Neutrophilic Receptors; CXCL8 and CXCR2 in Patients with Chronic Periodontitis Compared to Healthy Subjects by Real Time PCR Method. Open Dent J 2022. [DOI: 10.2174/18742106-v16-e2202241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Objective:
This study aimed to evaluate the levels of CXCL8 and its receptor (CXCR2) in gingival tissue neutrophils from patients with chronic periodontitis compared to periodontal healthy subjects using Real Time PCR method.
Methods:
The test group consisted of 21 patients with chronic periodontitis and the control group consisted of 18 healthy individuals. In both groups, gingival tissue samples were obtained during periodontal surgery.CXCL8 and CXCR2 RNA in tissue samples were examined by PCR method, and then the levels of genes expression were measured. Mann-Whitney U nonparametric test was used for statistical analysis.
Results:
CXCL8 gene expression in the gingival tissue of the test group with chronic periodontitis was significantly higher than the control group (p=0.028). CXCR2 gene expression in the gingival tissue of the test group with chronic periodontitis was significantly lower than the control group (p=0.043). In both test and control groups, there was a negative correlation between CXCL8 and CXCR2 gene expression. This correlation was statistically significant in the test group (p=0.001), but there was no significant correlation in the control group (p=0.431).
Conclusion:
The results of this present study suggested that the level of gene expression for CXCL8 was greater in patients with chronic periodontitis and CXCR2 was greater in healthy individuals. Although in people with chronic periodontitis, CXCR2 decreases slightly as CXCL8 levels increase.
Collapse
|
73
|
Guo J, Lin WHW, Zucker JE, Nandakumar R, Uhlemann AC, Wang S, Shivakoti R. Inflammation and Mortality in COVID-19 Hospitalized Patients With and Without Type 2 Diabetes. J Clin Endocrinol Metab 2022; 107:e1961-e1968. [PMID: 34999821 PMCID: PMC8755390 DOI: 10.1210/clinem/dgac003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Indexed: 12/15/2022]
Abstract
CONTEXT COVID-19 mortality is increased in patients with diabetes. A common hypothesis is that the relationship of inflammation with COVID-19 mortality differs by diabetes status. OBJECTIVE The aim of this study was to determine the relationship of inflammation with mortality in COVID-19 hospitalized patients and to assess if the relationship differs by strata of type 2 diabetes status. METHODS A case-control (died-survived) study of 538 COVID-19 hospitalized patients, stratified by diabetes status, was conducted at Columbia University Irving Medical Center. We quantified the levels of 8 cytokines and chemokines in serum, including interferon (IFN)-α2, IFN-γ, interleukin (IL)-1α, IL-1β, IL-6, IL-8/CXCL8, IFNγ-induced protein 10 (IP10)/CXCL10 and tumor necrosis factor α (TNF-α) using immunoassays. Logistic regression models were used to model the relationships of log-transformed inflammatory markers (or their principal components) and mortality. RESULTS In multiple logistic regression models, higher serum levels of IL-6 (adjusted odds ratio [aOR]:1.74, 95% CI [1.48, 2.06]), IL-8 (aOR: 1.75 [1.41, 2.19]) and IP10 (aOR: 1.36 [1.24, 1.51]), were significantly associated with mortality. This association was also seen in second principal component with loadings reflecting similarities among these 3 markers (aOR: 1.88 [1.54-2.31]). Significant positive association of these same inflammatory markers with mortality was also observed within each strata of diabetes. CONCLUSION We show that mortality in COVID-19 patients is associated with elevated serum levels of innate inflammatory cytokine IL-6 and inflammatory chemokines IL-8 and IP10. This relationship is consistent across strata of diabetes, suggesting interventions targeting these innate immune pathways could potentially also benefit patients with diabetes.
Collapse
Affiliation(s)
- Jia Guo
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Wen-Hsuan W Lin
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jason E Zucker
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Renu Nandakumar
- Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Anne-Catrin Uhlemann
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Shuang Wang
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Rupak Shivakoti
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| |
Collapse
|
74
|
Szylar G, Wysoczanski R, Marshall H, Marks DJB, José R, Ehrenstein MR, Brown JS. A novel Streptococcus pneumoniae human challenge model demonstrates Treg lymphocyte recruitment to the infection site. Sci Rep 2022; 12:3990. [PMID: 35256717 PMCID: PMC8901783 DOI: 10.1038/s41598-022-07914-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/14/2022] [Indexed: 12/04/2022] Open
Abstract
To investigate local tissue responses to infection we have developed a human model of killed Streptococcus pneumoniae challenge by intradermal injection into the forearm. S. pneumoniae intradermal challenge caused an initial local influx of granulocytes and increases in TNF, IL6 and CXCL8. However, by 48 h lymphocytes were the dominant cell population, mainly consisting of CD4 and CD8 T cells. Increases in local levels of IL17 and IL22 and the high proportion of CD4 cells that were CCR6+ suggested a significant Th17 response. Furthermore, at 48 h the CD4 population contained a surprisingly high proportion of likely memory Treg cells (CCR6 positive and CD45RA negative CD4+CD25highCD127low cells) at 39%. These results demonstrate that the intradermal challenge model can provide novel insights into the human response to S. pneumoniae and that Tregs form a substantial contribution of the normal human lymphocyte response to infection with this important pathogen.
Collapse
Affiliation(s)
- Gabriella Szylar
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, Rayne Building, 5 University Street, London, WC1E 6JF, UK
| | - Riccardo Wysoczanski
- Centre for Molecular Medicine, UCL Division of Medicine, Rayne Institute, 5 University Street, London, WC1E 6JF, UK
| | - Helina Marshall
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, Rayne Building, 5 University Street, London, WC1E 6JF, UK
| | - Daniel J B Marks
- Centre for Molecular Medicine, UCL Division of Medicine, Rayne Institute, 5 University Street, London, WC1E 6JF, UK
| | - Ricardo José
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, Rayne Building, 5 University Street, London, WC1E 6JF, UK
| | - Michael R Ehrenstein
- Centre for Rheumatology, UCL Division of Medicine, Rayne Building, 5 University Street, London, WC1E 6JF, UK
| | - Jeremy S Brown
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, Rayne Building, 5 University Street, London, WC1E 6JF, UK.
| |
Collapse
|
75
|
von Itzstein MS, Gonugunta AS, Sheffield T, Homsi J, Dowell JE, Koh AY, Raj P, Fattah F, Wang Y, Basava VS, Khan S, Park JY, Popat V, Saltarski JM, Gloria-McCutchen Y, Hsiehchen D, Ostmeyer J, Xie Y, Li QZ, Wakeland EK, Gerber DE. Association between Antibiotic Exposure and Systemic Immune Parameters in Cancer Patients Receiving Checkpoint Inhibitor Therapy. Cancers (Basel) 2022; 14:1327. [PMID: 35267634 PMCID: PMC8909108 DOI: 10.3390/cancers14051327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 01/19/2023] Open
Abstract
Antibiotic administration is associated with worse clinical outcomes and changes to the gut microbiome in cancer patients receiving immune checkpoint inhibitors (ICI). However, the effects of antibiotics on systemic immune function are unknown. We, therefore, evaluated antibiotic exposure, therapeutic responses, and multiplex panels of 40 serum cytokines and 124 antibodies at baseline and six weeks after ICI initiation, with p < 0.05 and false discovery rate (FDR) < 0.2 considered significant. A total of 251 patients were included, of whom the 135 (54%) who received antibiotics had lower response rates and shorter survival. Patients who received antibiotics prior to ICI initiation had modestly but significantly lower baseline levels of nucleolin, MDA5, c-reactive protein, and liver cytosol antigen type 1 (LC1) antibodies, as well as higher levels of heparin sulfate and Matrigel antibodies. After ICI initiation, antibiotic-treated patients had significantly lower levels of MDA5, CENP.B, and nucleolin antibodies. Although there were no clear differences in cytokines in the overall cohort, in the lung cancer subset (53% of the study population), we observed differences in IFN-γ, IL-8, and macrophage inflammatory proteins. In ICI-treated patients, antibiotic exposure is associated with changes in certain antibodies and cytokines. Understanding the relationship between these factors may improve the clinical management of patients receiving ICI.
Collapse
Affiliation(s)
- Mitchell S. von Itzstein
- Department of Internal Medicine, Division of Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (M.S.v.I.); (J.H.); (J.E.D.); (D.H.)
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (F.F.); (V.S.B.); (J.M.S.); (Y.G.-M.); (Y.X.)
| | - Amrit S. Gonugunta
- School of Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.S.G.); (V.P.)
| | - Thomas Sheffield
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (T.S.); (Y.W.); (J.O.)
| | - Jade Homsi
- Department of Internal Medicine, Division of Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (M.S.v.I.); (J.H.); (J.E.D.); (D.H.)
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (F.F.); (V.S.B.); (J.M.S.); (Y.G.-M.); (Y.X.)
| | - Jonathan E. Dowell
- Department of Internal Medicine, Division of Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (M.S.v.I.); (J.H.); (J.E.D.); (D.H.)
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (F.F.); (V.S.B.); (J.M.S.); (Y.G.-M.); (Y.X.)
| | - Andrew Y. Koh
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Prithvi Raj
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (P.R.); (S.K.); (Q.-Z.L.); (E.K.W.)
| | - Farjana Fattah
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (F.F.); (V.S.B.); (J.M.S.); (Y.G.-M.); (Y.X.)
| | - Yiqing Wang
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (T.S.); (Y.W.); (J.O.)
| | - Vijay S. Basava
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (F.F.); (V.S.B.); (J.M.S.); (Y.G.-M.); (Y.X.)
| | - Shaheen Khan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (P.R.); (S.K.); (Q.-Z.L.); (E.K.W.)
| | - Jason Y. Park
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Vinita Popat
- School of Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.S.G.); (V.P.)
| | - Jessica M. Saltarski
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (F.F.); (V.S.B.); (J.M.S.); (Y.G.-M.); (Y.X.)
| | - Yvonne Gloria-McCutchen
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (F.F.); (V.S.B.); (J.M.S.); (Y.G.-M.); (Y.X.)
| | - David Hsiehchen
- Department of Internal Medicine, Division of Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (M.S.v.I.); (J.H.); (J.E.D.); (D.H.)
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (F.F.); (V.S.B.); (J.M.S.); (Y.G.-M.); (Y.X.)
| | - Jared Ostmeyer
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (T.S.); (Y.W.); (J.O.)
| | - Yang Xie
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (F.F.); (V.S.B.); (J.M.S.); (Y.G.-M.); (Y.X.)
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (T.S.); (Y.W.); (J.O.)
| | - Quan-Zhen Li
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (P.R.); (S.K.); (Q.-Z.L.); (E.K.W.)
| | - Edward K. Wakeland
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (P.R.); (S.K.); (Q.-Z.L.); (E.K.W.)
| | - David E. Gerber
- Department of Internal Medicine, Division of Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (M.S.v.I.); (J.H.); (J.E.D.); (D.H.)
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (F.F.); (V.S.B.); (J.M.S.); (Y.G.-M.); (Y.X.)
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (T.S.); (Y.W.); (J.O.)
| |
Collapse
|
76
|
Greene ES, Adeogun E, Orlowski SK, Nayani K, Dridi S. Effects of heat stress on cyto(chemo)kine and inflammasome gene expression and mechanical properties in isolated red and white blood cells from 4 commercial broiler lines and their ancestor jungle fowl. Poult Sci 2022; 101:101827. [PMID: 35390570 PMCID: PMC8987627 DOI: 10.1016/j.psj.2022.101827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/23/2022] [Accepted: 03/02/2022] [Indexed: 12/04/2022] Open
Abstract
Commercial broilers have been selected for high growth rate and productivity; however, this has negatively impacted their susceptibility to heat stress (HS). Insight into the molecular mechanisms underlying this vulnerability can help design targeted strategies for improvement of HS tolerance. Red blood cells (RBC) and white blood cells (WBC) were isolated from red jungle fowl and 4 lines of commercial modern broilers. Lines A and B are considered standard-yielding lines, whereas Lines C and D are high-yielding. Cells were cultured at either 37°C or 45°C for 2 h to induce heat stress (HS). Gene expression of cytokines, chemokines, and inflammasome components were measured. Heat shock proteins 27 and 70 (HSPs) in RBC were significantly affected by line (P < 0.05), whereas HSP27 and 60 were affected by temperature (P < 0.05). In WBC, there was a significant line effect on HSP gene expression (P < 0.05), and a significant increase (P < 0.05) in HSP90 in Line D in HS compared to TN conditions. In RBC, there was a main effect of HS on TNFα, CCL4, and CCLL4 (P < 0.05). HS significantly increased IL-8L1 (>30-fold, P < 0.0001) in Line C. Inflammasome genes (NLRP3, NLRC5 and NLRC3) were significantly affected by the line studied (P < 0.05). In WBC, the effect of line was significant for all cytokines, chemokines, and inflammasome components studied (P < 0.05). To examine the mechanical properties of isolated RBC from the 4 commercial lines and jungle fowl, RBC were placed into nematic liquid crystals, where Lines B and D were the most strained, and Line A and the jungle fowl were the least strained. Together, these findings indicate not only the dynamic nature of circulating cells, but the differences in the stress and inflammatory response among commercially available lines and their common ancestor. These profiles have the potential to serve as a future marker for stress responses in broilers, though further study is warranted.
Collapse
|
77
|
Wen B, Njunge JM, Bourdon C, Gonzales GB, Gichuki BM, Lee D, Wishart DS, Ngari M, Chimwezi E, Thitiri J, Mwalekwa L, Voskuijl W, Berkley JA, Bandsma RHJ. Systemic inflammation and metabolic disturbances underlie inpatient mortality among ill children with severe malnutrition. SCIENCE ADVANCES 2022; 8:eabj6779. [PMID: 35171682 PMCID: PMC8849276 DOI: 10.1126/sciadv.abj6779] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Children admitted to hospital with an acute illness and concurrent severe malnutrition [complicated severe malnutrition (CSM)] have a high risk of dying. The biological processes underlying their mortality are poorly understood. In this case-control study nested within a multicenter randomized controlled trial among children with CSM in Kenya and Malawi, we found that blood metabolomic and proteomic profiles robustly differentiated children who died (n = 92) from those who survived (n = 92). Fatalities were characterized by increased energetic substrates (tricarboxylic acid cycle metabolites), microbial metabolites (e.g., propionate and isobutyrate), acute phase proteins (e.g., calprotectin and C-reactive protein), and inflammatory markers (e.g., interleukin-8 and tumor necrosis factor-α). These perturbations indicated disruptions in mitochondria-related bioenergetic pathways and sepsis-like responses. This study identified specific biomolecular disturbances associated with CSM mortality, revealing that systemic inflammation and bioenergetic deficits are targetable pathophysiological processes for improving survival of this vulnerable population.
Collapse
Affiliation(s)
- Bijun Wen
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada
- Department of Translational medicine, Hospital for Sick Children, Toronto, Canada
| | - James M. Njunge
- The Childhood Acute Illness & Nutrition Network, Nairobi, Kenya
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
| | - Celine Bourdon
- Department of Translational medicine, Hospital for Sick Children, Toronto, Canada
- The Childhood Acute Illness & Nutrition Network, Nairobi, Kenya
| | - Gerard Bryan Gonzales
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, Netherlands
| | - Bonface M. Gichuki
- The Childhood Acute Illness & Nutrition Network, Nairobi, Kenya
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
| | - Dorothy Lee
- Department of Translational medicine, Hospital for Sick Children, Toronto, Canada
| | | | - Moses Ngari
- The Childhood Acute Illness & Nutrition Network, Nairobi, Kenya
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Johnstone Thitiri
- The Childhood Acute Illness & Nutrition Network, Nairobi, Kenya
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
| | - Laura Mwalekwa
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Paediatrics, Coast General Hospital, Mombasa, Kenya
| | - Wieger Voskuijl
- The Childhood Acute Illness & Nutrition Network, Nairobi, Kenya
- Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam University Medical Centres, Amsterdam, Netherlands
- Department of Pediatrics, the College of Medicine, University of Malawi, Blantyre, Malawi
| | - James A. Berkley
- The Childhood Acute Illness & Nutrition Network, Nairobi, Kenya
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Robert HJ Bandsma
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada
- Department of Translational medicine, Hospital for Sick Children, Toronto, Canada
- The Childhood Acute Illness & Nutrition Network, Nairobi, Kenya
- Department of Pediatrics, the College of Medicine, University of Malawi, Blantyre, Malawi
- Department of Biomedical Sciences, the College of Medicine, University of Malawi, Blantyre, Malawi
| |
Collapse
|
78
|
Van Royen T, Rossey I, Sedeyn K, Schepens B, Saelens X. How RSV Proteins Join Forces to Overcome the Host Innate Immune Response. Viruses 2022; 14:v14020419. [PMID: 35216012 PMCID: PMC8874859 DOI: 10.3390/v14020419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/10/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of severe acute lower respiratory tract infections in infants worldwide. Although several pattern recognition receptors (PRRs) can sense RSV-derived pathogen-associated molecular patterns (PAMPs), infection with RSV is typically associated with low to undetectable levels of type I interferons (IFNs). Multiple RSV proteins can hinder the host’s innate immune response. The main players are NS1 and NS2 which suppress type I IFN production and signalling in multiple ways. The recruitment of innate immune cells and the production of several cytokines are reduced by RSV G. Next, RSV N can sequester immunostimulatory proteins to inclusion bodies (IBs). N might also facilitate the assembly of a multiprotein complex that is responsible for the negative regulation of innate immune pathways. Furthermore, RSV M modulates the host’s innate immune response. The nuclear accumulation of RSV M has been linked to an impaired host gene transcription, in particular for nuclear-encoded mitochondrial proteins. In addition, RSV M might also directly target mitochondrial proteins which results in a reduced mitochondrion-mediated innate immune recognition of RSV. Lastly, RSV SH might prolong the viral replication in infected cells and influence cytokine production.
Collapse
Affiliation(s)
- Tessa Van Royen
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium; (T.V.R.); (I.R.); (K.S.); (B.S.)
- Department for Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Iebe Rossey
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium; (T.V.R.); (I.R.); (K.S.); (B.S.)
- Department for Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Koen Sedeyn
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium; (T.V.R.); (I.R.); (K.S.); (B.S.)
- Department for Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Bert Schepens
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium; (T.V.R.); (I.R.); (K.S.); (B.S.)
- Department for Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium; (T.V.R.); (I.R.); (K.S.); (B.S.)
- Department for Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
- Correspondence:
| |
Collapse
|
79
|
Sørensen NV, Orlovska-Waast S, Jeppesen R, Christensen RH, Benros ME. Neuroimmunological investigations of cerebrospinal fluid in patients with recent onset depression - a study protocol. BMC Psychiatry 2022; 22:35. [PMID: 35022028 PMCID: PMC8756720 DOI: 10.1186/s12888-021-03633-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/30/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND A proinflammatory response has been suggested to be involved in the pathophysiology of depression in a subgroup of patients. However, comprehensive largescale studies on neuroimmunological investigations of the cerebrospinal fluid (CSF) are lacking and no largescale longitudinal CSF studies comparing patients with depression to healthy controls currently exist. METHODS A longitudinal case-control study including at least 100 patients with first time depression (ICD-10: F32) within the past year with ongoing symptoms and at least 100 sex and age matched healthy controls with collection of CSF, blood, and fecal samples. All individuals will be evaluated by neurological examination including neurological soft signs, interviewed for psychopathology assessment and have symptomatology evaluated by relevant rating scales. Level of functioning and quality of life will be evaluated by a panel of interview questions and rating scales, and cognitive function assessed by a relevant test battery. In addition, a large number of potential confounders will be registered (BMI, smoking status, current medication etc.). Primary outcomes: CSF white cell count, CSF/serum albumin ratio, CSF total protein levels, IgG index, CSF levels of IL-6 and IL-8, and the prevalence of any CNS-reactive autoantibody in CSF and/or blood. SECONDARY OUTCOMES exploratory analyses of a wide range of neuroimmunological markers and specific autoantibodies. Power calculations are computed for all primary outcomes based on previous CSF studies including patients with depression and healthy controls. DISCUSSION This study will represent the hitherto largest investigation of CSF in patients with recent onset depression compared to healthy controls. We expect to elucidate neuroimmunological alterations in individuals with depression and characterize an immunological profile paving the way for the development of effective treatments based on biomarkers. TRIAL REGISTRATION The study is approved by The Regional Committee on Health Research Ethics (Capital Region, j.no: H-16030985) and The Danish Data Protection Agency (j.no: RHP-2016-020, I-Suite no.: 04945).
Collapse
Affiliation(s)
- Nina Vindegaard Sørensen
- grid.4973.90000 0004 0646 7373Biological and Precision Psychiatry, Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Gentofte Hospitalsvej 15, 4. sal, 2900 Hellerup, Denmark ,grid.5254.60000 0001 0674 042XDepartment of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sonja Orlovska-Waast
- grid.4973.90000 0004 0646 7373Biological and Precision Psychiatry, Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Gentofte Hospitalsvej 15, 4. sal, 2900 Hellerup, Denmark ,grid.5254.60000 0001 0674 042XDepartment of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rose Jeppesen
- grid.4973.90000 0004 0646 7373Biological and Precision Psychiatry, Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Gentofte Hospitalsvej 15, 4. sal, 2900 Hellerup, Denmark ,grid.5254.60000 0001 0674 042XDepartment of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rune Haubo Christensen
- grid.4973.90000 0004 0646 7373Biological and Precision Psychiatry, Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Gentofte Hospitalsvej 15, 4. sal, 2900 Hellerup, Denmark
| | - Michael Eriksen Benros
- Biological and Precision Psychiatry, Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Gentofte Hospitalsvej 15, 4. sal, 2900, Hellerup, Denmark. .,Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
80
|
Morning Cortisol and Circulating Inflammatory Cytokine Levels: A Mendelian Randomisation Study. Genes (Basel) 2022; 13:genes13010116. [PMID: 35052454 PMCID: PMC8774857 DOI: 10.3390/genes13010116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/19/2021] [Accepted: 01/04/2022] [Indexed: 02/07/2023] Open
Abstract
Cortisol exerts a broad anti-inflammatory effect on the immune system. Inflammatory cytokines contribute to the molecular signalling pathways implicated in various autoimmune and inflammatory conditions. However, the mechanisms by which cortisol modulates such signalling pathways remain uncertain. Leveraging summary-level data from the CORtisol NETwork (CORNET, n = 25,314) and FINRISK (n = 8293) genome-wide association studies, we used two-sample Mendelian randomisation to investigate the causal effect of genetically proxied morning cortisol levels on 42 circulating cytokines. We found that increased genetically proxied morning cortisol levels were associated with reduced levels of IL-8 and increased levels of MIF. These results provide mechanistic insight into the immunomodulatory effects of endogenous cortisol and the therapeutic effects of exogenous corticosteroids. Clinically, our findings underline the therapeutic importance of steroids in inflammatory conditions where IL-8 and MIF play a central pathophysiological role in the onset and progression of disease.
Collapse
|
81
|
Tamimou R, Lumbroso S, Mouzat K, Lopez-Castroman J. Genetic variations related to inflammation in suicidal ideation and behavior: A systematic review. Front Psychiatry 2022; 13:1003034. [PMID: 36325529 PMCID: PMC9621324 DOI: 10.3389/fpsyt.2022.1003034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND/OBJECTIVES Immune-inflammatory changes have been found in all types of suicidal ideation and behavior (SIB), independently of associated mental disorders. Since several Single Nucleotide Polymorphisms (SNPs) affect the function of inflammation-related genes, we searched the literature for genetic variations potentially altering inflammatory processes in SIB. METHODS We included studies that looked for associations between SIB and SNPs in genes related to inflammatory processes. Case reports, literature reviews, and animal studies were excluded. Articles were retrieved from PubMed and PsycINFO databases, Google Scholar and GreySource Index until September 17th, 2022. Quality was assessed using Q-Genie. RESULTS We analyzed 32 studies. SIB has been associated with eighteen SNPs located in genes encoding for interleukin-8 (rs4073), C-reactive protein (rs1130864), tumor necrosis factor α (rs1800629, rs361525, and rs1099724), tumor necrosis factor receptor 2 (rs1061622), transforming growth factor β-1 (rs1982073), acid phosphatase 1 (rs7419262, rs300774), interleukin-10 (rs1800896), interferon γ (rs2430561), amino-carboxy muconate semialdehyde decarboxylase (rs2121337), interleukin 7 (rs10448044, rs10448042), macrophage migration inhibitory factor (rs755622), interleukin 1-α (rs1800587), and interleukin 1-β (rs1143634 and rs16944. A genome-wide association study reported one association at the threshold of significance with the rs300774 SNP, located in the 2p25 region containing ACP1 gene. DISCUSSION The studies included were methodologically and clinically diverse and of moderate quality. Their findings suggest that some inflammation-related SNPs could increase the likelihood of SIB but the evidence to date is insufficient. Further research using gene-gene (GxG) and gene-environment (GxE) approaches is warranted. SYSTEMATIC REVIEW REGISTRATION [https://www.crd.york.ac.uk], identifier [CRD42022296310].
Collapse
Affiliation(s)
- Rabah Tamimou
- Department of Psychiatry, Nimes University Hospital, Nimes, France.,Laboratory of Biochemistry and Molecular Biology, Nimes University Hospital, University of Montpellier, Nimes, France.,Institut de Génomique Fonctionnelle, University of Montpellier, CNRS-INSERM, Montpellier, France
| | - Serge Lumbroso
- Laboratory of Biochemistry and Molecular Biology, Nimes University Hospital, University of Montpellier, Nimes, France
| | - Kevin Mouzat
- Laboratory of Biochemistry and Molecular Biology, Nimes University Hospital, University of Montpellier, Nimes, France
| | - Jorge Lopez-Castroman
- Department of Psychiatry, Nimes University Hospital, Nimes, France.,Institut de Génomique Fonctionnelle, University of Montpellier, CNRS-INSERM, Montpellier, France.,Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain
| |
Collapse
|
82
|
Insertive condom-protected and condomless vaginal sex both have a profound impact on the penile immune correlates of HIV susceptibility. PLoS Pathog 2022; 18:e1009948. [PMID: 34982799 PMCID: PMC8769335 DOI: 10.1371/journal.ppat.1009948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/19/2022] [Accepted: 12/13/2021] [Indexed: 12/18/2022] Open
Abstract
The penis is the primary site of HIV acquisition in heterosexual men. Elevated penile inflammatory cytokines increase sexual acquisition risk, and topically applied cytokines enhance foreskin HIV susceptibility in an explant model. However, the impact of penile-vaginal sex on these immune parameters is undefined. Heterosexual couples were recruited to the Sex, Couples and Science (SECS) Study, with the collection of penile swabs, semen, cervico-vaginal secretions, and blood after a period of abstinence, and repeated sampling up to 72 hours after either condomless (n = 30) or condom-protected (n = 8) penile-vaginal sex. Soluble immune parameters were quantified by multiplex immunoassay. Co-primary immune endpoints were penile levels of IL-8 and MIG, cytokines previously linked to penile HIV acquisition. One hour after sex there were dramatic increases in penile IL-8 and MIG levels, regardless of condom use, with a gradual return to baseline by 72 hours; similar patterns were observed for other chemoattractant chemokines. Penile cytokine changes were similar in circumcised and uncircumcised men, and repeated measures ANOVA and ANCOVA models demonstrated that the degree of change after condomless sex was explained by cytokine levels in their partners’ cervico-vaginal secretions. This may have important implications for the biology of penile HIV acquisition. In heterosexual men, the penis is the primary site of Human Immunodeficiency Virus (HIV) acquisition. Levels of inflammatory cytokines in the coronal sulcus are associated with an increased HIV risk, and we hypothesized that these may be altered after insertive penile sex. Therefore, we designed the Sex, Couples and Science Study (SECS study) to define the impact of penile-vaginal sex on the penile immune correlates of HIV susceptibility. We found that multiple coronal sulcus cytokines increased dramatically and rapidly after sex, regardless of condom use, with a return to baseline levels by 72 hours. The changes observed after condomless sex were strongly predicted by cytokine concentrations in the vaginal secretions of the female partner, and were similar in circumcised and uncircumcised men. We believe that these findings have important implications for understanding the immunopathogenesis of penile HIV acquisition; in addition, they have important implications for the design of clinical studies of penile HIV acquisition and prevention.
Collapse
|
83
|
Tung JP, Chiaretti S, Dean MM, Sultana AJ, Reade MC, Fung YL. Transfusion-related acute lung injury (TRALI): Potential pathways of development, strategies for prevention and treatment, and future research directions. Blood Rev 2022; 53:100926. [DOI: 10.1016/j.blre.2021.100926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/01/2021] [Accepted: 12/30/2021] [Indexed: 02/08/2023]
|
84
|
Williams ESCP, Martins TB, Shah KS, Hill HR, Coiras M, Spivak AM, Planelles V. Cytokine Deficiencies in Patients with Long-COVID. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2022; 13:672. [PMID: 36742994 PMCID: PMC9894377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Up to half of individuals who contract SARS-CoV-2 develop symptoms of long-COVID approximately three months after initial infection. These symptoms are highly variable, and the mechanisms inducing them are yet to be understood. We compared plasma cytokine levels from individuals with long-COVID to healthy individuals and found that those with long-COVID had 100% reductions in circulating levels of Interferon Gamma (IFNγ) and Interleukin-8 (IL-8). Additionally, we found significant reductions in levels of IL-6, IL-2, IL-17, IL-13, and IL-4 in individuals with long-COVID. We propose immune exhaustion as the driver of long-COVID, with the complete absence of IFNγ and IL-8preventing the lungs and other organs from healing after acute infection, and reducing the ability to fight off subsequent infections, both contributing to the myriad of symptoms suffered by those with long-COVID.
Collapse
Affiliation(s)
- Elizabeth SCP Williams
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, United States
| | - Thomas B. Martins
- ARUP Institute for Clinical and Experimental Pathology, 1950 Circle of Hope Drive, Salt Lake City, United States
| | - Kevin S. Shah
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, United States
| | - Harry R. Hill
- ARUP Institute for Clinical and Experimental Pathology, 1950 Circle of Hope Drive, Salt Lake City, United States;,Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, United States;,Department of Pathology and Pediatrics, University of Utah School of Medicine, Salt Lake City, United States
| | - Mayte Coiras
- AIDS Immunopathology Unit, National Center of Microbiology, Madrid, Spain
| | - Adam M. Spivak
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, United States;,Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, United States
| | - Vicente Planelles
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, United States
| |
Collapse
|
85
|
Role of Clinical Characteristics and Biomarkers at Admission to Predict One-Year Mortality in Elderly Patients with Pneumonia. J Clin Med 2021; 11:jcm11010105. [PMID: 35011845 PMCID: PMC8745347 DOI: 10.3390/jcm11010105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND A hospitalization for community-acquired pneumonia results in a decrease in long-term survival in elderly patients. We assessed biomarkers at admission to predict one-year mortality in a cohort of elderly patients with pneumonia. METHODS A prospective observational study included patients >65 years hospitalized with pneumonia. Assessment of PSI, CURB-65, and biomarkers (C-reactive protein (CRP), procalcitonin (PCT), NT-pro-B-type natriuretic peptide (NT-proBNP), interleukin (IL)-6 and -8, tumor necrosis factor alpha (TNF-α), serum amyloid A (SAA), neopterin (NP), myeloperoxidase (MPO), anti-apolipoprotein A-1 IgG (anti-apoA-1), and anti-phosphorylcholine IgM (anti-PC IgM)) was used to calculate prognostic values for one-year mortality using ROC curve analyses. Post hoc optimal cutoffs with corresponding sensitivity (SE) and specificity (SP) were determined using the Youden index. RESULTS A total of 133 patients were included (median age 83 years [IQR: 78-89]). Age, dementia, BMI, NT-proBNP (AUROC 0.65 (95% CI: 0.55-0.77)), and IL-8 (AUROC 0.66 (95% CI: 0.56-0.75)) were significantly associated with mortality, with NT-proBNP (HR 1.01 (95% CI 1.00-1.02) and BMI (HR 0.92 (95% CI 0.85-1.000) being independent of age, gender, comorbidities, and PSI with Cox regression. At the cutoff value of 2200 ng/L, NT-proBNP had 67% sensitivity and 70% specificity. PSI and CURB-65 were not associated with mortality. CONCLUSIONS NT-proBNP levels upon admission and BMI displayed the highest prognostic accuracy for one-year mortality and may help clinicians to identify patients with poor long-term prognosis.
Collapse
|
86
|
Nelli RK, Mora-Díaz JC, Giménez-Lirola LG. The Betacoronavirus PHEV Replicates and Disrupts the Respiratory Epithelia and Upregulates Key Pattern Recognition Receptor Genes and Downstream Mediators, Including IL-8 and IFN-λ. mSphere 2021; 6:e0082021. [PMID: 34935443 PMCID: PMC8694173 DOI: 10.1128/msphere.00820-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/03/2021] [Indexed: 11/20/2022] Open
Abstract
The upper respiratory tract is the primary site of infection by porcine hemagglutinating encephalomyelitis virus (PHEV). In this study, primary porcine respiratory epithelial cells (PRECs) were cultured in an air-liquid interface (ALI) to differentiate into a pseudostratified columnar epithelium, proliferative basal cells, M cells, ciliated cells, and mucus-secreting goblet cells. ALI-PRECs recreates a cell culture environment morphologically and functionally more representative of the epithelial lining of the swine trachea than traditional culture systems. PHEV replicated actively in this environment, inducing cytopathic changes and progressive disruption of the mucociliary apparatus. The innate immunity against PHEV was comparatively evaluated in ALI-PREC cultures and tracheal tissue sections derived from the same cesarean-derived, colostrum-deprived (CDCD) neonatal donor pigs. Increased expression levels of TLR3 and/or TLR7, RIG1, and MyD88 genes were detected in response to infection, resulting in the transcriptional upregulation of IFN-λ1 in both ALI-PREC cultures and tracheal epithelia. IFN-λ1 triggered the upregulation of the transcription factor STAT1, which in turn induced the expression of the antiviral IFN-stimulated genes OAS1 and Mx1. No significant modulation of the major proinflammatory cytokines interleukin-1β (IL-1β), IL-6, and tumor necrosis factor alpha (TNF-α) was detected in response to PHEV infection. However, a significant upregulation of different chemokines was observed in ALI-PREC cultures (CCL2, CCL5, CXCL8, and CXCL10) and tracheal epithelium (CXCL8 and CXCL10). This study shed light on the molecular mechanisms driving the innate immune response to PHEV at the airway epithelium, underscoring the important role of respiratory epithelial cells in the maintenance of respiratory homeostasis and on the initiation, resolution, and outcome of the infectious process. IMPORTANCE The neurotropic betacoronavirus porcine hemagglutinating encephalomyelitis virus (PHEV) primarily infects and replicates in the swine upper respiratory tract, causing vomiting and wasting disease and/or encephalomyelitis in suckling pigs. This study investigated the modulation of key early innate immune genes at the respiratory epithelia in vivo, on tracheal tissue sections from experimentally infected pigs, and in vitro, on air-liquid interface porcine respiratory cell cultures. The results from the study underscore the important role of respiratory epithelial cells in maintaining respiratory homeostasis and on the initiation, resolution, and outcome of the PHEV infectious process.
Collapse
Affiliation(s)
- Rahul K. Nelli
- Veterinary Diagnostic Laboratory, Department of Veterinary Diagnostic & Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Juan Carlos Mora-Díaz
- Veterinary Diagnostic Laboratory, Department of Veterinary Diagnostic & Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Luis G. Giménez-Lirola
- Veterinary Diagnostic Laboratory, Department of Veterinary Diagnostic & Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
87
|
Hosseini Mansoub N. The role of keratinocyte function on the defected diabetic wound healing. INTERNATIONAL JOURNAL OF BURNS AND TRAUMA 2021; 11:430-441. [PMID: 35111377 PMCID: PMC8784740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
Non-healing wounds are a major complication of diabetes that can lead to limb amputation and disability in patients. The normal process of wound repair progresses through well-defined stages including hemostasis, inflammation, proliferative, and remodeling, which may be impaired in diabetic wounds. In recent years, it has been reported that keratinocytes, a major cell type in human skin, play a key role in the healing process of wounds. In this overview, firstly, a summary of the wound healing process is provided and the role of keratinocytes in wound healing is briefly reviewed. Then, a set of evidence about the impaired keratinocytes activities in diabetic wounds and clinical trials focused mainly on improving keratinocytes in the context of diabetic wound therapeutics are summarized. Keratinocytes can produce signaling molecules that act in a paracrine and autocrine way, causing pleiotropic effects on various cell types. The affected cells respond to keratinocytes by creating several signaling molecules, which also adjust keratinocyte activation through wound healing. In diabetic wounds, disruption of various biological mechanisms leads to dysfunction of keratinocytes including impaired migration, adhesion, and proliferation. The function of abnormal keratinocytes can lead to poor diabetic wound healing. Taken together, clarification of molecular and functional disturbances of keratinocyte cells and applying them in diabetic wounds can contribute to enhanced treatment of diabetic wounds. Based on the location of keratinocytes in the epidermis and the central role of keratinocytes in the diabetic wound healing process, applying keratinocytes has great potential for the treatment of diabetic burn wounds.
Collapse
Affiliation(s)
- Navid Hosseini Mansoub
- Department of Medical Biochemistry, Faculty of Medicine, Ege University Izmir 35100, Turkey
| |
Collapse
|
88
|
Pulz LH, Cordeiro YG, Huete GC, Cadrobbi KG, Rochetti AL, Xavier PLP, Nishiya AT, de Freitas SH, Fukumasu H, Strefezzi RF. Intercellular interactions between mast cells and stromal fibroblasts obtained from canine cutaneous mast cell tumours. Sci Rep 2021; 11:23881. [PMID: 34903806 PMCID: PMC8668961 DOI: 10.1038/s41598-021-03390-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/05/2021] [Indexed: 11/18/2022] Open
Abstract
Mast cell tumours (MCTs) are the most frequent malignant skin neoplasm in dogs. Due to the difficulty in purifying large numbers of canine neoplastic mast cells, relatively little is known about their properties. A reproducible in vitro model is needed to increase the understanding about the phenotype and functional properties of neoplastic mast cells. In the present study, we describe the establishment of primary cocultures of neoplastic mast cells from canine cutaneous MCTs and cancer-associated fibroblasts. We confirmed the inability of canine neoplastic mast cells to remain viable for long periods in vitro without the addition of growth factors or in vivo passages in mice. Using a transwell system, we observed that mast cell viability was significantly higher when there is cell-to-cell contact in comparison to non-physical contact conditions and that mast cell viability was significantly higher in high-grade than in low-grade derived primary cultures. Moreover, the use of conditioned medium from co-cultured cells led to a significantly higher tumoral mast cell viability when in monoculture. Signalling mechanisms involved in these interactions might be attractive therapeutic targets to block canine MCT progression and deserve more in-depth investigations.
Collapse
Affiliation(s)
- Lidia H Pulz
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, SP, CEP 05508-270, Brazil
- Laboratório de Oncologia Comparada e Translacional, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Campus "Fernando Costa", Av. Duque de Caxias Norte 225, Pirassununga, SP, CEP 13635-900, Brazil
| | - Yonara G Cordeiro
- Laboratório de Oncologia Comparada e Translacional, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Campus "Fernando Costa", Av. Duque de Caxias Norte 225, Pirassununga, SP, CEP 13635-900, Brazil
| | - Greice C Huete
- Laboratório de Oncologia Comparada e Translacional, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Campus "Fernando Costa", Av. Duque de Caxias Norte 225, Pirassununga, SP, CEP 13635-900, Brazil
| | - Karine G Cadrobbi
- Laboratório de Oncologia Comparada e Translacional, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Campus "Fernando Costa", Av. Duque de Caxias Norte 225, Pirassununga, SP, CEP 13635-900, Brazil
| | - Arina L Rochetti
- Laboratório de Oncologia Comparada e Translacional, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Campus "Fernando Costa", Av. Duque de Caxias Norte 225, Pirassununga, SP, CEP 13635-900, Brazil
| | - Pedro L P Xavier
- Laboratório de Oncologia Comparada e Translacional, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Campus "Fernando Costa", Av. Duque de Caxias Norte 225, Pirassununga, SP, CEP 13635-900, Brazil
| | - Adriana Tomoko Nishiya
- Hospital Veterinário da Universidade Anhembi Morumbi, R. Conselheiro Lafaiete, 64, São Paulo, SP, CEP 03101-00, Brazil
| | - Silvio Henrique de Freitas
- Laboratório de Oncologia Comparada e Translacional, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Campus "Fernando Costa", Av. Duque de Caxias Norte 225, Pirassununga, SP, CEP 13635-900, Brazil
| | - Heidge Fukumasu
- Laboratório de Oncologia Comparada e Translacional, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Campus "Fernando Costa", Av. Duque de Caxias Norte 225, Pirassununga, SP, CEP 13635-900, Brazil
| | - Ricardo F Strefezzi
- Laboratório de Oncologia Comparada e Translacional, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Campus "Fernando Costa", Av. Duque de Caxias Norte 225, Pirassununga, SP, CEP 13635-900, Brazil.
| |
Collapse
|
89
|
Kleymenov DA, Bykonia EN, Popova LI, Mazunina EP, Gushchin VA, Kolobukhina LV, Burgasova OA, Kruzhkova IS, Kuznetsova NA, Shidlovskaya EV, Divisenko EV, Pochtovyi AA, Bacalin VV, Smetanina SV, Tkachuk AP, Logunov DY, Gintsburg AL. A Deep Look Into COVID-19 Severity Through Dynamic Changes in Blood Cytokine Levels. Front Immunol 2021; 12:771609. [PMID: 34858428 PMCID: PMC8630739 DOI: 10.3389/fimmu.2021.771609] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/11/2021] [Indexed: 12/29/2022] Open
Abstract
An excessive inflammatory response to SARS-CoV-2 is thought to be a major cause of disease severity and mortality in patients with COVID-19. Longitudinal analysis of cytokine release can expand our understanding of the initial stages of disease development and help to identify early markers serving as predictors of disease severity. In this study, we performed a comprehensive analysis of 46 cytokines (including chemokines and growth factors) in the peripheral blood of a large cohort of COVID-19 patients (n=444). The patients were classified into five severity groups. Longitudinal analysis of all patients revealed two groups of cytokines, characterizing the "early" and "late" stages of the disease course and the switch between type 1 and type 2 immunity. We found significantly increased levels of cytokines associated with different severities of COVID-19, and levels of some cytokines were significantly higher during the first three days from symptom onset (DfSO) in patients who eventually required intensive care unit (ICU) therapy. Additionally, we identified nine cytokines, TNF-α, IL-10, MIG, IL-6, IP-10, M-CSF, G-CSF, GM-CSF, and IFN-α2, that can be used as good predictors of ICU requirement at 4-6 DfSO.
Collapse
Affiliation(s)
- Denis A Kleymenov
- Federal State Budget Institution "National Research Centre for Epidemiology and Microbiology Named After Honorary Academician N. F. Gamaleya" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Evgeniia N Bykonia
- Federal State Budget Institution "National Research Centre for Epidemiology and Microbiology Named After Honorary Academician N. F. Gamaleya" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Liubov I Popova
- Federal State Budget Institution "National Research Centre for Epidemiology and Microbiology Named After Honorary Academician N. F. Gamaleya" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Elena P Mazunina
- Federal State Budget Institution "National Research Centre for Epidemiology and Microbiology Named After Honorary Academician N. F. Gamaleya" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vladimir A Gushchin
- Federal State Budget Institution "National Research Centre for Epidemiology and Microbiology Named After Honorary Academician N. F. Gamaleya" of the Ministry of Health of the Russian Federation, Moscow, Russia.,Department of Virology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Liudmila V Kolobukhina
- Federal State Budget Institution "National Research Centre for Epidemiology and Microbiology Named After Honorary Academician N. F. Gamaleya" of the Ministry of Health of the Russian Federation, Moscow, Russia.,Moscow Healthcare Department, Moscow, Russia
| | - Olga A Burgasova
- Federal State Budget Institution "National Research Centre for Epidemiology and Microbiology Named After Honorary Academician N. F. Gamaleya" of the Ministry of Health of the Russian Federation, Moscow, Russia.,Moscow Healthcare Department, Moscow, Russia.,Department of Infectious Diseases, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | | | - Nadezhda A Kuznetsova
- Federal State Budget Institution "National Research Centre for Epidemiology and Microbiology Named After Honorary Academician N. F. Gamaleya" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Elena V Shidlovskaya
- Federal State Budget Institution "National Research Centre for Epidemiology and Microbiology Named After Honorary Academician N. F. Gamaleya" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Elizaveta V Divisenko
- Federal State Budget Institution "National Research Centre for Epidemiology and Microbiology Named After Honorary Academician N. F. Gamaleya" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrei A Pochtovyi
- Federal State Budget Institution "National Research Centre for Epidemiology and Microbiology Named After Honorary Academician N. F. Gamaleya" of the Ministry of Health of the Russian Federation, Moscow, Russia.,Department of Virology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Valeria V Bacalin
- Moscow Healthcare Department, Moscow, Russia.,Department of Infectious Diseases, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | | | - Artem P Tkachuk
- Federal State Budget Institution "National Research Centre for Epidemiology and Microbiology Named After Honorary Academician N. F. Gamaleya" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Denis Y Logunov
- Federal State Budget Institution "National Research Centre for Epidemiology and Microbiology Named After Honorary Academician N. F. Gamaleya" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexander L Gintsburg
- Federal State Budget Institution "National Research Centre for Epidemiology and Microbiology Named After Honorary Academician N. F. Gamaleya" of the Ministry of Health of the Russian Federation, Moscow, Russia.,Department of Infectiology and Virology, Federal State Autonomous Educational Institution of Higher Education I. M. Sechenov, First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| |
Collapse
|
90
|
Manzano-Moreno FJ, Costela-Ruiz VJ, García-Recio E, Olmedo-Gaya MV, Ruiz C, Reyes-Botella C. Role of Salivary MicroRNA and Cytokines in the Diagnosis and Prognosis of Oral Squamous Cell Carcinoma. Int J Mol Sci 2021; 22:12215. [PMID: 34830096 PMCID: PMC8624198 DOI: 10.3390/ijms222212215] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most prevalent oral malignant tumor worldwide. An early diagnosis can have a major positive impact on its prognosis. Human saliva contains cytokines, DNA and RNA molecules, circulating cells, and derivatives of tissues and extracellular vesicles, among other factors that can serve as biomarkers. Hence, the analysis of saliva may provide useful information for the early diagnosis of OSCC for its prognosis. The objective of this review was to determine the potential usefulness of salivary biomarkers (cytokines and microRNA) to diagnose OSCC and improve its prognosis. A combination of salivary miRNA and proteomic data could allow a definitive and early diagnosis to be obtained. However, there remains a need to optimize and standardize the protocols used to quantify miRNAs.
Collapse
Affiliation(s)
- Francisco Javier Manzano-Moreno
- Biomedical Group (BIO277), Department of Stomatology, School of Dentistry, University of Granada, 18071 Granada, Spain; (F.J.M.-M.); (C.R.-B.)
- Instituto Investigación Biosanitaria, ibs.Granada, 18071 Granada, Spain; (V.J.C.-R.); (E.G.-R.)
| | - Victor J. Costela-Ruiz
- Instituto Investigación Biosanitaria, ibs.Granada, 18071 Granada, Spain; (V.J.C.-R.); (E.G.-R.)
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, Campus de Ceuta, University of Granada, 51001 Ceuta, Spain
| | - Enrique García-Recio
- Instituto Investigación Biosanitaria, ibs.Granada, 18071 Granada, Spain; (V.J.C.-R.); (E.G.-R.)
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, Campus de Melilla, University of Granada, 52005 Melilla, Spain
| | | | - Concepción Ruiz
- Instituto Investigación Biosanitaria, ibs.Granada, 18071 Granada, Spain; (V.J.C.-R.); (E.G.-R.)
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, 18016 Granada, Spain
- Institute of Neuroscience, University of Granada, 18071 Granada, Spain
| | - Candelaria Reyes-Botella
- Biomedical Group (BIO277), Department of Stomatology, School of Dentistry, University of Granada, 18071 Granada, Spain; (F.J.M.-M.); (C.R.-B.)
- Instituto Investigación Biosanitaria, ibs.Granada, 18071 Granada, Spain; (V.J.C.-R.); (E.G.-R.)
| |
Collapse
|
91
|
Xu X, Ye L, Zhang Q, Shen H, Li S, Zhang X, Ye M, Liang T. Group-2 Innate Lymphoid Cells Promote HCC Progression Through CXCL2-Neutrophil-Induced Immunosuppression. Hepatology 2021; 74:2526-2543. [PMID: 33829508 PMCID: PMC8597094 DOI: 10.1002/hep.31855] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/27/2021] [Accepted: 03/28/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND AIMS Due to their inherent characteristics, the function of group-2 innate lymphoid cells (ILC2s) varies in a context-dependent manner. ILC2s are involved in certain liver diseases; however, their involvement in HCC is unknown. In the present study, we assessed the role of an HCC-derived ILC2 population in tumor progression. APPROACH AND RESULTS Through FACS and single-cell RNA sequencing, we discovered that ILC2s were highly enriched in human HCC and correlated significantly with tumor recurrence and worse progression-free survival as well as overall survival in patients. Mass cytometry identified a subset of HCC-derived ILC2s that had lost the expression of killer cell lectin-like receptor subfamily G, member 1 (KLRG1). Distinct from their circulating counterparts, these hepatic ILC2s highly expressed CD69 and an array of tissue resident-related genes. Furthermore, reduction of E-cadherin in tumor cells caused the loss of KLRG1 expression in ILC2s, leading to their increased proliferation and subsequent accumulation in HCC sites. The KLRG1- ILC2 subset showed elevated production of chemotaxis factors, including C-X-C motif chemokine (C-X-C motif) ligand (CXCL)-2 and CXCL8, which in turn recruited neutrophils to form an immunosuppressive microenvironment, leading to tumor progression. Accordingly, restoring KLRG1 in ILC2s, inhibiting CXCL2 in ILC2s, or depleting neutrophils inhibited tumor progression in a murine HCC model. CONCLUSIONS We identified HCC-associated ILC2s as an immune regulatory cell type that promotes tumor development, suggesting that targeting these ILC2s might lead to new treatments for HCC.
Collapse
Affiliation(s)
- Xingyuan Xu
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina,Zhejiang Provincial Key Laboratory of Pancreatic DiseaseHangzhouChina
| | - Longyun Ye
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina,Zhejiang Provincial Key Laboratory of Pancreatic DiseaseHangzhouChina
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina,Zhejiang Provincial Key Laboratory of Pancreatic DiseaseHangzhouChina
| | - Hang Shen
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina,Zhejiang Provincial Key Laboratory of Pancreatic DiseaseHangzhouChina
| | - Shanshan Li
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina,Zhejiang Provincial Key Laboratory of Pancreatic DiseaseHangzhouChina
| | - Xiaoyu Zhang
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina,Zhejiang Provincial Key Laboratory of Pancreatic DiseaseHangzhouChina
| | - Mao Ye
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina,Zhejiang Provincial Key Laboratory of Pancreatic DiseaseHangzhouChina
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina,Zhejiang Provincial Key Laboratory of Pancreatic DiseaseHangzhouChina,Innovation Center for the Study of Pancreatic Disease of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
92
|
Cytokine signature and COVID-19 prediction models in the two waves of pandemics. Sci Rep 2021; 11:20793. [PMID: 34675240 PMCID: PMC8531346 DOI: 10.1038/s41598-021-00190-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 10/05/2021] [Indexed: 12/29/2022] Open
Abstract
In Europe, multiple waves of infections with SARS-CoV-2 (COVID-19) have been observed. Here, we have investigated whether common patterns of cytokines could be detected in individuals with mild and severe forms of COVID-19 in two pandemic waves, and whether machine learning approach could be useful to identify the best predictors. An increasing trend of multiple cytokines was observed in patients with mild or severe/critical symptoms of COVID-19, compared with healthy volunteers. Linear Discriminant Analysis (LDA) clearly recognized the three groups based on cytokine patterns. Classification and Regression Tree (CART) further indicated that IL-6 discriminated controls and COVID-19 patients, whilst IL-8 defined disease severity. During the second wave of pandemics, a less intense cytokine storm was observed, as compared with the first. IL-6 was the most robust predictor of infection and discriminated moderate COVID-19 patients from healthy controls, regardless of epidemic peak curve. Thus, serum cytokine patterns provide biomarkers useful for COVID-19 diagnosis and prognosis. Further definition of individual cytokines may allow to envision novel therapeutic options and pave the way to set up innovative diagnostic tools.
Collapse
|
93
|
Goswami SK, Ranjan P, Dutta RK, Verma SK. Management of inflammation in cardiovascular diseases. Pharmacol Res 2021; 173:105912. [PMID: 34562603 DOI: 10.1016/j.phrs.2021.105912] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 09/01/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease is the leading cause of morbidity and mortality world-wide. Recently, the role of inflammation in the progression of diseases has significantly attracted considerable attention. In addition, various comorbidities, including diabetes, obesity, etc. exacerbate inflammation in the cardiovascular system, which ultimately leads to heart failure. Furthermore, cytokines released from specialized immune cells are key mediators of cardiac inflammation. Here, in this review article, we focused on the role of selected immune cells and cytokines (both pro-inflammatory and anti-inflammatory) in the regulation of cardiac inflammation and ultimately in cardiovascular diseases. While IL-1β, IL-6, TNFα, and IFNγ are associated with cardiac inflammation; IL-10, TGFβ, etc. are associated with resolution of inflammation and cardiac repair. IL-10 reduces cardiovascular inflammation and protects the cardiovascular system via interaction with SMAD2, p53, HuR, miR-375 and miR-21 pathway. In addition, we also highlighted recent advancements in the management of cardiac inflammation, including clinical trials of anti-inflammatory molecules to alleviate cardiovascular diseases.
Collapse
Affiliation(s)
- Sumanta Kumar Goswami
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Prabhat Ranjan
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Roshan Kumar Dutta
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Suresh Kumar Verma
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| |
Collapse
|
94
|
Wang Z, Hou Y, Yao Z, Zhan Y, Chen W, Liu Y. Expressivity of Interleukin-8 and Gastric Cancer Prognosis Susceptibility: A Systematic Review and Meta-Analysis. Dose Response 2021; 19:15593258211037127. [PMID: 34531708 PMCID: PMC8438942 DOI: 10.1177/15593258211037127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/23/2022] Open
Abstract
Background The relationship between interleukin-8 (IL-8) expression and the prognosis of gastric cancer (GC) patients has been reported, but the results are contradictory. Aim To investigate the effect of IL-8 expression on the prognosis of patients with GC. Method A comprehensive search strategy was used to search the PubMed, Web of Science and Cochrane Library databases. The total survival time was analysed using the RevMan 5.4 software. Through extensive search and meta-analysis of relevant studies, studies examining the relationship between IL-8 expression and prognosis in patients with GC were conducted to obtain more accurate estimates. Findings Eight studies (1843 patients) were included. The combined results of all the studies showed that high expression of IL-8 was a risk factor for poor prognosis in patients with GC (hazard ratio (HR): 2.08; 95% CI: 1.81–2.39). Sensitivity analysis suggested that the pooled HR was stable, and omitting a single study did not change the significance of the pooled HR. Funnel plots revealed no significant publication bias in the meta-analysis. Conclusion High IL-8 expression could be a negative prognostic biomarker for patients with GC.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Department of Nuclear Accident Medical Emergency, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuhan Hou
- Department of Nuclear Accident Medical Emergency, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhen Yao
- Department of Nuclear Accident Medical Emergency, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yanyan Zhan
- Department of Nuclear Accident Medical Emergency, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenyue Chen
- Department of Nuclear Accident Medical Emergency, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yulong Liu
- Department of Nuclear Accident Medical Emergency, The Second Affiliated Hospital of Soochow University, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| |
Collapse
|
95
|
Whang EC, Rossetti M, Guerra MR, Cheng E, Marcus EA, McDiarmid SV, Venick RS, Farmer DG, Reed EF, Wozniak LJ. Differential cytokine and chemokine expression during rejection and infection following intestinal transplantation. Transpl Immunol 2021; 69:101447. [PMID: 34400246 DOI: 10.1016/j.trim.2021.101447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND/OBJECTIVES Rejection and infectious enteritis in intestinal transplant (ITx) patients present with virtually identical symptoms. Currently, the gold standard for differentiating between these two conditions is endoscopy, which is invasive and costly. Our primary aim was to identify differences in peripheral blood cytokines during episodes of acute cellular rejection (ACR) and infectious enteritis in patients with intestinal transplants. METHODS This was a prospective, cross-sectional study involving ITx patients transplanted between 2000 and 2016. We studied 63 blood samples collected from 29 ITx patients during periods of normal (n = 24) and abnormal (n = 17) allograft function. PBMCs from whole blood samples were cultured under unstimulated or stimulated conditions with phytohemagglutinin (PHA). The supernatant from these cultures were collected to measure cytokine and chemokine levels using a 38-plex luminex panel. RESULTS Our study found that cytokines and chemokines are differentially expressed in normal, ACR, and infectious enteritis samples under unstimulated conditions based on heatmap analysis. Although each cohort displayed distinctive signatures, only MDC (p = 0.037) was found to be significantly different between ACR and infectious enteritis. Upon stimulation of PBMCs, patients with ACR demonstrated increased immune reactivity compared to infectious enteritis; though this did not reach statistical significance. CONCLUSIONS To our knowledge, this is the first comprehensive study comparing cytokine expression during acute rejection and infectious enteritis in intestinal transplant recipients. Our results suggest that cytokines have the potential to be used as clinical markers for risk stratification and/or diagnosis of ACR and infectious enteritis.
Collapse
Affiliation(s)
- E C Whang
- Pediatric Gastroenterology, Hepatology, and Nutrition, David Geffen School of Medicine, UCLA, United States.
| | - M Rossetti
- Immunogenetics Center, UCLA, United States
| | - M R Guerra
- Pediatric Gastroenterology, Hepatology, and Nutrition, David Geffen School of Medicine, UCLA, United States
| | - E Cheng
- Liver and Pancreas Transplantation, David Geffen School of Medicine, UCLA, United States
| | - E A Marcus
- Pediatric Gastroenterology, Hepatology, and Nutrition, David Geffen School of Medicine, UCLA, United States; VA Greater Los Angeles Health Care System, United States
| | - S V McDiarmid
- Pediatric Gastroenterology, Hepatology, and Nutrition, David Geffen School of Medicine, UCLA, United States; Liver and Pancreas Transplantation, David Geffen School of Medicine, UCLA, United States
| | - R S Venick
- Pediatric Gastroenterology, Hepatology, and Nutrition, David Geffen School of Medicine, UCLA, United States; Liver and Pancreas Transplantation, David Geffen School of Medicine, UCLA, United States
| | - D G Farmer
- Liver and Pancreas Transplantation, David Geffen School of Medicine, UCLA, United States
| | - E F Reed
- Immunogenetics Center, UCLA, United States
| | - L J Wozniak
- Pediatric Gastroenterology, Hepatology, and Nutrition, David Geffen School of Medicine, UCLA, United States
| |
Collapse
|
96
|
ISLAM RAFIQUL, KUMAR HARENDRA, NANDI SUKDEB, PATRA MK. Marked up-regulation of anti inflammatory cytokine gene expression in the peripheral blood mononuclear cells of postpartum cows with endometritis. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2021. [DOI: 10.56093/ijans.v91i2.113817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study was designed to determine the mRNA expression profile of inflammatory and anti-inflammatory cytokines in peripheral blood mononuclear cells (PBMC) of endometritic and non-endometritic cows to find out a possible marker for diagnosis of endometritis. Cows (21) including 12 endometritic, and 9 normal (non-endometritic) that did not develop uterine diseases postpartum (pp) were selected. Expression profile (mRNA) of cytokines, viz. IL-1β, TNFα, IL-8 and IL-4 in endometritic cows relative to non-endometritic was studied in PBMC isolated from the blood of the cows collected within 4 to 5 weeks pp. Fold difference (n-fold) in cytokine gene expression in the PBMC of endometritic cows relative to normal was calculated using relative quantification method (2-ΔΔCt). The relative fold change in gene expression for IL-1 was significantly lower in endometritic animals (0.31) than in cows that did not develop endometritis. Significant up-regulation was noted for the proinflammatory cytokine TNFα (9.53 fold and anti-inflammatory cytokine IL-4 (90.09) in cows suffering from endometritis relative to nonendometritic cows. Up-regulation of chemokine IL-8 gene (6.25 fold; was also observed in endometritic compared to non-endometritic cows. Highest and significant up-regulation of mRNA expression for IL-4 followed by TNFα in PBMC of endometritic cows recorded in the study may indicate the development of endometritis in postpartum cows.
Collapse
|
97
|
Blum VF, Cimerman S, Hunter JR, Tierno P, Lacerda A, Soeiro A, Cardoso F, Bellei NC, Maricato J, Mantovani N, Vassao M, Dias D, Galinskas J, Janini LMR, Santos-Oliveira JR, Da-Cruz AM, Diaz RS. Nitazoxanide superiority to placebo to treat moderate COVID-19 - A Pilot prove of concept randomized double-blind clinical trial. EClinicalMedicine 2021; 37:100981. [PMID: 34222847 PMCID: PMC8235996 DOI: 10.1016/j.eclinm.2021.100981] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/14/2021] [Accepted: 06/03/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The absence of specific antivirals to treat COVID-19 leads to the repositioning of candidates' drugs. Nitazoxanide (NTZ) has a broad antiviral effect. METHODS This was a randomized, double-blind pilot clinical trial comparing NTZ 600 mg BID versus Placebo for seven days among 50 individuals (25 each arm) with SARS-COV-2 RT-PCR+ (PCR) that were hospitalized with mild respiratory insufficiency from May 20th, 2020, to September 21st, 2020 (ClinicalTrials.gov NCT04348409). Clinical and virologic endpoints and inflammatory biomarkers were evaluated. A five-point scale for disease severity (SSD) was used. FINDINGS Two patients died in the NTZ arm compared to 6 in the placebo arm (p = 0.564). NTZ was superior to placebo when considering SSD (p < 0001), the mean time for hospital discharge (6.6 vs. 14 days, p = 0.021), and negative PCR at day 21 (p = 0.035), whereas the placebo group presented more adverse events (p = 0.04). Among adverse events likely related to the study drug, 14 were detected in the NTZ group and 22 in placebo (p = 0.24). Among the 30 adverse events unlikely related, 21 occurred in the placebo group (p = 0.04). A decrease from baseline was higher in the NTZ group for d-Dimer (p = 0.001), US-RCP (p < 0.002), TNF (p < 0.038), IL-6 (p < 0.001), IL-8 (p = 0.014), HLA DR. on CD4+ T lymphocytes (p < 0.05), CD38 in CD4+ and CD8+ T (both p < 0.05), and CD38 and HLA-DR. on CD4+ (p < 0.01). INTERPRETATION Compared to placebo in clinical and virologic outcomes and improvement of inflammatory outcomes, the superiority of NTZ warrants further investigation of this drug for moderate COVID-19 in larger clinical trials. A higher incidence of adverse events in the placebo arm might be attributed to COVID-19 related symptoms.
Collapse
Affiliation(s)
| | | | | | - Paulo Tierno
- Hospital Municipal Dr. Francisco Moran (Barueri), Rua Ângela Mirella, Brazil
| | | | | | | | | | | | | | | | - Danilo Dias
- Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | - Alda Maria Da-Cruz
- Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, Brazil (Laboratório Interdisciplinar de Pesquisa Médicas, Instituto Oswaldo Cruz (FIOCRUZ), Brazil
| | | |
Collapse
|
98
|
Alosaimi B, Mubarak A, Hamed ME, Almutairi AZ, Alrashed AA, AlJuryyan A, Enani M, Alenzi FQ, Alturaiki W. Complement Anaphylatoxins and Inflammatory Cytokines as Prognostic Markers for COVID-19 Severity and In-Hospital Mortality. Front Immunol 2021; 12:668725. [PMID: 34276659 PMCID: PMC8281279 DOI: 10.3389/fimmu.2021.668725] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/28/2021] [Indexed: 12/19/2022] Open
Abstract
COVID-19 severity due to innate immunity dysregulation accounts for prolonged hospitalization, critical complications, and mortality. Severe SARS-CoV-2 infections involve the complement pathway activation for cytokine storm development. Nevertheless, the role of complement in COVID-19 immunopathology, complement-modulating treatment strategies against COVID-19, and the complement and SARS-CoV-2 interaction with clinical disease outcomes remain elusive. This study investigated the potential changes in complement signaling, and the associated inflammatory mediators, in mild-to-critical COVID-19 patients and their clinical outcomes. A total of 53 patients infected with SARS-CoV-2 were enrolled in the study (26 critical and 27 mild cases), and additional 18 healthy control patients were also included. Complement proteins and inflammatory cytokines and chemokines were measured in the sera of patients with COVID-19 as well as healthy controls by specific enzyme-linked immunosorbent assay. C3a, C5a, and factor P (properdin), as well as interleukin (IL)-1β, IL-6, IL-8, tumor necrosis factor (TNF)-α, and IgM antibody levels, were higher in critical COVID-19 patients compared to mild COVID-19 patients. Additionally, compared to the mild COVID-19 patients, factor I and C4-BP levels were significantly decreased in the critical COVID-19 patients. Meanwhile, RANTES levels were significantly higher in the mild patients compared to critical patients. Furthermore, the critical COVID-19 intra-group analysis showed significantly higher C5a, C3a, and factor P levels in the critical COVID-19 non-survival group than in the survival group. Additionally, IL-1β, IL-6, and IL-8 were significantly upregulated in the critical COVID-19 non-survival group compared to the survival group. Finally, C5a, C3a, factor P, and serum IL-1β, IL-6, and IL-8 levels positively correlated with critical COVID-19 in-hospital deaths. These findings highlight the potential prognostic utility of the complement system for predicting COVID-19 severity and mortality while suggesting that complement anaphylatoxins and inflammatory cytokines are potential treatment targets against COVID-19.
Collapse
Affiliation(s)
- Bandar Alosaimi
- Research Center, King Fahad Medical City, Riyadh, Saudi Arabia
- College of Medicine, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ayman Mubarak
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Maaweya E. Hamed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Ahmed A. Alrashed
- Pharmaceutical Service Department, Main Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Abdullah AlJuryyan
- Pathology and Clinical Laboratory Management, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Mushira Enani
- Medical Specialties Department, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Faris Q. Alenzi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| |
Collapse
|
99
|
Cyclic tensile strain affects the response of human periodontal ligament stromal cells to tumor necrosis factor-α. Clin Oral Investig 2021; 26:609-622. [PMID: 34185172 PMCID: PMC8791913 DOI: 10.1007/s00784-021-04039-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/14/2021] [Indexed: 11/25/2022]
Abstract
Objectives Orthodontic treatment in adult patients predisposed to mild or severe periodontal disease is challenging for orthodontists. Orthodontic malpractice or hyper-occlusal forces may aggravate periodontitis-induced destruction of periodontal tissues, but the specific mechanism remains unknown. In the present study, the combined effect of mechanical stress and tumor necrosis factor (TNF)-α on the inflammatory response in human periodontal ligament stromal cells (hPDLSCs) was investigated. Materials and methods hPDLSCs from 5 healthy donors were treated with TNF-α and/or subjected to cyclic tensile strain (CTS) of 6% or 12% elongation with 0.1 Hz for 6- and 24 h. The gene expression of interleukin (IL)-6, IL-8 and cell adhesion molecules VCAM and ICAM was analyzed by qPCR. The protein levels of IL-6 and IL-8 in conditioned media was measured by ELISA. The surface expression of VCAM-1 and ICAM-1 was quantified by immunostaining followed by flow cytometry analysis. Results TNF-α-induced IL-6 gene and protein expression was inhibited by CTS, whereas TNF-α-induced IL-8 expression was decreased at mRNA expression level but enhanced at the protein level in a magnitude-dependent manner. CTS downregulated the gene expression of VCAM-1 and ICAM-1 under TNF-α stimulation, but the downregulation of the surface expression analyzed by flow cytometry was observed chiefly for VCAM-1. Conclusions Our findings show that mechanical force differentially regulates TNF-α-induced expression of inflammatory mediators and adhesion molecules at the early stage of force application. The effect of cyclic tensile strain is complex and could be either anti-inflammatory or pro-inflammatory depending on the type of pro-inflammatory mediators and force magnitude. Clinical relevance Orthodontic forces regulate the inflammatory mediators of periodontitis. The underlying mechanism may have significant implications for future strategies of combined periodontal and orthodontic treatment. Supplementary Information The online version contains supplementary material available at 10.1007/s00784-021-04039-8.
Collapse
|
100
|
Jyoti A, Kumar S, Kumar Srivastava V, Kaushik S, Govind Singh S. Neonatal sepsis at point of care. Clin Chim Acta 2021; 521:45-58. [PMID: 34153274 DOI: 10.1016/j.cca.2021.06.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 01/03/2023]
Abstract
Sepsis, which includes infection followed by inflammation, is one of the leading causes of death among neonates worldwide. The major attribute of this disease process is dysregulated host response to infection leading to organ dysfunction and potentially death. A comprehensive understanding of the host response as well as the pathogen itself are important factors contributing to outcome. Early diagnosis is paramount, as it leads to accurate assessment and improved clinical management. Accordingly, a number of diagnostic platforms have been introduced to assess the presence of blood stream pathogens in septic neonates. Unfortunately, current point-of-care (POC) methods rely on a single parameter/biomarker and thus lack a comprehensive evaluation. The emerging field of biosensing has, however, resulted in the development of a wide range of analytical devices that may be useful at POC. This review discusses currently available methods to screen the inflammatory process in neonatal sepsis. We describe POC sensor-based methods for single platform multi-analyte detection and highlight the latest advances in this evolving technology. Finally, we critically evaluate the applicability of these POC devices clinically for early diagnosis of sepsis in neonates.
Collapse
Affiliation(s)
- Anupam Jyoti
- Amity Institute of Biotechnology, Amity University, Jaipur, Rajasthan 303002, India; Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh, 173229, India.
| | - Sanni Kumar
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, Telangana 502285, India.
| | | | - Sanket Kaushik
- Amity Institute of Biotechnology, Amity University, Jaipur, Rajasthan 303002, India.
| | - Shiv Govind Singh
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, Telangana 502285, India.
| |
Collapse
|