51
|
Evans MA, Shields CW, Krishnan V, Wang LL, Zhao Z, Ukidve A, Lewandowski M, Gao Y, Mitragotri S. Macrophage‐Mediated Delivery of Hypoxia‐Activated Prodrug Nanoparticles. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900162] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Michael A. Evans
- John A. Paulson School of Engineering and Applied SciencesHarvard University 29 Oxford St. Cambridge MA 02138 USA
- Wyss Institute for Biologically Inspired EngineeringHarvard University Cambridge MA 02138 USA
| | - C. Wyatt Shields
- John A. Paulson School of Engineering and Applied SciencesHarvard University 29 Oxford St. Cambridge MA 02138 USA
- Wyss Institute for Biologically Inspired EngineeringHarvard University Cambridge MA 02138 USA
| | - Vinu Krishnan
- John A. Paulson School of Engineering and Applied SciencesHarvard University 29 Oxford St. Cambridge MA 02138 USA
- Wyss Institute for Biologically Inspired EngineeringHarvard University Cambridge MA 02138 USA
| | - Lily Li‐Wen Wang
- John A. Paulson School of Engineering and Applied SciencesHarvard University 29 Oxford St. Cambridge MA 02138 USA
- Wyss Institute for Biologically Inspired EngineeringHarvard University Cambridge MA 02138 USA
- Harvard‐MIT Division of Health Sciences and TechnologyMassachusetts Institute of Technology Cambridge MA 02139 USA
| | - Zhongmin Zhao
- John A. Paulson School of Engineering and Applied SciencesHarvard University 29 Oxford St. Cambridge MA 02138 USA
- Wyss Institute for Biologically Inspired EngineeringHarvard University Cambridge MA 02138 USA
| | - Anvay Ukidve
- John A. Paulson School of Engineering and Applied SciencesHarvard University 29 Oxford St. Cambridge MA 02138 USA
- Wyss Institute for Biologically Inspired EngineeringHarvard University Cambridge MA 02138 USA
| | - Michael Lewandowski
- Wyss Institute for Biologically Inspired EngineeringHarvard University Cambridge MA 02138 USA
| | - Yongsheng Gao
- John A. Paulson School of Engineering and Applied SciencesHarvard University 29 Oxford St. Cambridge MA 02138 USA
- Wyss Institute for Biologically Inspired EngineeringHarvard University Cambridge MA 02138 USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied SciencesHarvard University 29 Oxford St. Cambridge MA 02138 USA
- Wyss Institute for Biologically Inspired EngineeringHarvard University Cambridge MA 02138 USA
| |
Collapse
|
52
|
Liao W, Wang J, Xu J, You F, Pan M, Xu X, Weng J, Han X, Li S, Li Y, Liang K, Peng Q, Gao Y. High-throughput three-dimensional spheroid tumor model using a novel stamp-like tool. J Tissue Eng 2019; 10:2041731419889184. [PMID: 31827757 PMCID: PMC6886283 DOI: 10.1177/2041731419889184] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/29/2019] [Indexed: 12/28/2022] Open
Abstract
Spheroid culture is a widely used three-dimensional culture technology that simulates the three-dimensional structure of tumors in vivo and has been considered a good model for tumor research. However, current commercialized spheroid culture tools have the shortcomings of high cost or relatively poor spheroid-forming results for some special cells. To solve such problems, we designed a 3D printed, reusable, stamp-like resin mold that could shape microstructures for spheroid culture of tumor cells on the surface of agarose substrate in a 96-well plate. We applied this homemade three-dimensional culture tool in spheroid formation for hepatocellular carcinoma cells. The experimental data show that the effect of spheroid culture on four hepatocellular carcinoma cell lines in our homemade spheroid culture plate is better than that of the commercialized ultralow attachment spheroid culture plate, and compared to two-dimensional culture, three-dimensional culture improves cell functions. In addition, the drug-sensitive test based on patient-derived hepatocellular carcinoma cells showed a different pattern between spheroid and two-dimensional cultures. In conclusion, our spheroid culture tool is characterized by its low cost, reusability, low cell consumption, convenience in medium exchange, and good effect of spheroid formation, suggesting that this technique could be widely used in individual treatment and high-throughput drug screening.
Collapse
Affiliation(s)
- Wei Liao
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Jieqing Wang
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiecheng Xu
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Fuyu You
- Department of Hepatobiliary Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Mingxin Pan
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Xiaoping Xu
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Jun Weng
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Xu Han
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Shao Li
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Yang Li
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Kangyan Liang
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Qing Peng
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
53
|
Ye D, Li T, Yi Y, Zhang X, Zou L. Characteristics of endophytic fungi from Polygonum hydropiper suggest potential application for P-phytoextraction. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2019.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
54
|
Nam S, Khawar IA, Park JK, Chang S, Kuh HJ. Cellular context-dependent interaction between cancer and stellate cells in hetero-type multicellular spheroids of pancreatic tumor. Biochem Biophys Res Commun 2019; 515:183-189. [DOI: 10.1016/j.bbrc.2019.05.101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 05/13/2019] [Indexed: 11/24/2022]
|
55
|
Cytotoxicity of multicellular cancer spheroids, antibacterial, and antifungal of selected sulfonamide derivatives coupled with a salicylamide and/or anisamide scaffold. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02382-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
56
|
Bidkar AP, Sanpui P, Ghosh SS. Combination Therapy with MAPK-Pathway-Specific Inhibitor and Folic-Acid-Receptor-Targeted Selenium Nanoparticles Induces Synergistic Antiproliferative Response in BRAF Mutant Cancer Cells. ACS Biomater Sci Eng 2019; 5:2222-2234. [DOI: 10.1021/acsbiomaterials.9b00112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Anil Parsram Bidkar
- Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Guwahati 39, Assam, India
| | - Pallab Sanpui
- Department of Biotechnology, Academic Building, BITS Pilani Dubai Campus, Dubai International Academic City, P.O. Box No. 345055, Dubai, UAE
| | - Siddhartha Sankar Ghosh
- Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Guwahati 39, Assam, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 39, Assam, India
| |
Collapse
|
57
|
Damiani E, Solorio JA, Doyle AP, Wallace HM. How reliable are in vitro IC50 values? Values vary with cytotoxicity assays in human glioblastoma cells. Toxicol Lett 2019; 302:28-34. [DOI: 10.1016/j.toxlet.2018.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 11/30/2022]
|
58
|
Cadavid-Vargas JF, Villa-Pérez C, Ruiz MC, León IE, Valencia-Uribe GC, Soria DB, Etcheverry SB, Di Virgilio AL. 6-Methoxyquinoline complexes as lung carcinoma agents: induction of oxidative damage on A549 monolayer and multicellular spheroid model. J Biol Inorg Chem 2019; 24:271-285. [PMID: 30701359 DOI: 10.1007/s00775-019-01644-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/17/2019] [Indexed: 01/08/2023]
Abstract
The aim of this work was to study the antitumor effects and the mechanisms of toxic action of a series of 6-methoxyquinoline (6MQ) complexes in vitro. The Cu(II) and Zn(II) complexes (Cu6MQ and Zn6MQ) are formulated as M(6MQ)2Cl2; the Co(II) and Ag(I) compounds (Co6MQ and Ag6MQ) are ionic with formulae [Ag(6MQ)2]+NO3- and H(6MQ)+[Co(6MQ)Cl3]- (where H(6MQ)+ is the protonated ligand). We found that the copper complex, outperformed the Co(II), Zn(II) and Ag(I) complexes with a lower IC50 (57.9 µM) in A549 cells exposed for 24 h. Cu6MQ decreased cell proliferation and induced oxidative stress detected with H2DCFDA at 40 µM, which reduces GSH/GSSG ratio. This redox imbalance induced oxidative DNA damage revealed by the Micronucleus test and the Comet assay, which turned into a cell cycle arrest at G2/M phase and induced apoptosis. In multicellular spheroids, the IC50 values tripled the monolayer model (187.3 µM for 24 h). At this concentration, the proportion of live/dead cells diminished, and the spheroids could not proliferate or invade. Although Zn6MQ also decreased GSH/GSSG ratio from 200 µM and the cytotoxicity is related to oxidative stress, the induction of the hydrogen peroxide levels only doubled the control value. Zn6MQ induced S phase arrest, which relates with the increased micronucleus frequency and with the induction of necrosis. Finally, our results reveal a synergistic activity with a 1:1 ratio of both complexes in the monolayer and multicellular spheroids.
Collapse
Affiliation(s)
- J F Cadavid-Vargas
- CEQUINOR (CONICET-UNLP), Bv. 120 N 1465, La Plata, Argentina.,Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina
| | - C Villa-Pérez
- CEQUINOR (CONICET-UNLP), Bv. 120 N 1465, La Plata, Argentina
| | - M C Ruiz
- CEQUINOR (CONICET-UNLP), Bv. 120 N 1465, La Plata, Argentina.,Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina
| | - I E León
- CEQUINOR (CONICET-UNLP), Bv. 120 N 1465, La Plata, Argentina
| | - G C Valencia-Uribe
- GIAFOT, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Medellín, Medellín, Colombia
| | - D B Soria
- CEQUINOR (CONICET-UNLP), Bv. 120 N 1465, La Plata, Argentina
| | - S B Etcheverry
- CEQUINOR (CONICET-UNLP), Bv. 120 N 1465, La Plata, Argentina.,Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina
| | - A L Di Virgilio
- CEQUINOR (CONICET-UNLP), Bv. 120 N 1465, La Plata, Argentina. .,Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina.
| |
Collapse
|
59
|
Lai H, Lu M, Chen F, Lalevée J, Stenzel MH, Xiao P. Amphiphilic polymer coated nanodiamonds: a promising platform to deliver azonafide. Polym Chem 2019. [DOI: 10.1039/c9py00055k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An amphiphilic polymer is grafted on nanodiamonds to improve the colloidal stability and to deliver an anticancer drug azonafide.
Collapse
Affiliation(s)
- H. Lai
- Centre for Advanced Macromolecular Design
- School of Chemistry
- University of New South Wales
- Sydney
- Australia
| | - M. Lu
- Centre for Advanced Macromolecular Design
- School of Chemistry
- University of New South Wales
- Sydney
- Australia
| | - F. Chen
- Centre for Advanced Macromolecular Design
- School of Chemistry
- University of New South Wales
- Sydney
- Australia
| | - J. Lalevée
- Université de Haute-Alsace
- CNRS
- IS2M UMR 7361
- F-68100 Mulhouse
- France
| | - M. H. Stenzel
- Centre for Advanced Macromolecular Design
- School of Chemistry
- University of New South Wales
- Sydney
- Australia
| | - P. Xiao
- Centre for Advanced Macromolecular Design
- School of Chemistry
- University of New South Wales
- Sydney
- Australia
| |
Collapse
|
60
|
Diaz-Rodriguez P, Chen H, Erndt-Marino JD, Liu F, Totsingan F, Gross RA, Hahn MS. Impact of Select Sophorolipid Derivatives on Macrophage Polarization and Viability. ACS APPLIED BIO MATERIALS 2018; 2:601-612. [DOI: 10.1021/acsabm.8b00799] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
61
|
da Conceicao Ribeiro R, Pal D, Ferreira AM, Gentile P, Benning M, Dalgarno K. Reactive jet impingement bioprinting of high cell density gels for bone microtissue fabrication. Biofabrication 2018; 11:015014. [DOI: 10.1088/1758-5090/aaf625] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
62
|
Tham HP, Xu K, Lim WQ, Chen H, Zheng M, Thng TGS, Venkatraman SS, Xu C, Zhao Y. Microneedle-Assisted Topical Delivery of Photodynamically Active Mesoporous Formulation for Combination Therapy of Deep-Seated Melanoma. ACS NANO 2018; 12:11936-11948. [PMID: 30444343 DOI: 10.1021/acsnano.8b03007] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Topical treatment using photodynamic therapy (PDT) for many types of skin cancers has largely been limited by the inability of existing photosensitizers to penetrate into the deep skin tissue. To overcome these problems, we developed a mesoporous nanovehicle with dual loading of photosensitizers and clinically relevant drugs for combination therapy, while utilizing microneedle technology to facilitate their penetration into deep skin tissue. Sub-50 nm photodynamically active mesoporous organosilica nanoparticles were synthesized with photosensitizers covalently bonded to the silica matrix, which dramatically increased the quantum yield and photostability of these photosensitizers. The mesopores of the nanoparticles were further loaded with small-molecule inhibitors, i. e., dabrafenib and trametinib, that target the hyperactive mitogen-activated protein kinase (MAPK) pathway for melanoma treatment. As-prepared empty nanovehicle was cytocompatible with normal skin cells in the dark, while NIR-irradiated drug-loaded nanovehicle showed a synergistic killing effect on skin cancer cells mainly through reactive oxygen species and caspase-activated apoptosis. The nanovehicle could significantly inhibit the proliferation of tumor cells in a 3D spheroid model in vitro. Porcine skin fluorescence imaging demonstrated that microneedles could facilitate the penetration of nanovehicle across the epidermis layer of skin to reach deep-seated melanoma sites. Tumor regression studies in a xenografted melanoma mouse model confirmed superior therapeutic efficacy of the nanovehicle through combinational PDT and targeted therapy.
Collapse
Affiliation(s)
- Huijun Phoebe Tham
- Interdisciplinary Graduate School , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
| | - Keming Xu
- Department of Analytical Chemistry , China Pharmaceutical University , 24 Tongjia Alley , Nanjing 210008 , China
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 70 Nanyang Drive , 637457 , Singapore
| | - Wei Qi Lim
- Interdisciplinary Graduate School , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Hongzhong Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Mengjia Zheng
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 70 Nanyang Drive , 637457 , Singapore
| | - Tien Guan Steven Thng
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
| | - Subramanian S Venkatraman
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 70 Nanyang Drive , 637457 , Singapore
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
| |
Collapse
|
63
|
Pavithra PS, Mehta A, Verma RS. Induction of apoptosis by essential oil from P. missionis in skin epidermoid cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 50:184-195. [PMID: 30466977 DOI: 10.1016/j.phymed.2017.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/02/2017] [Accepted: 11/12/2017] [Indexed: 06/09/2023]
Abstract
BACKGROUND The genus Pamburus (Rutaceae) comprises the only species, Pamburus missionis (Wight) Swingle. Pamburus missionis is traditionally used in the treatment of swellings, chronic rheumatism, paralysis and puerperal diseases. PURPOSE The present study investigates the cancer chemotherapeutic potential of essential oil (EO) from P. missionis. METHODS EO was isolated by steam distillation and chemical composition was determined by GC-MS. Cell viability was used to detect cytotoxic activity. Mechanism of cell death was studied using Annexin V-FITC/PI binding, cell cycle analysis, measurement of MMP and ROS generation by flow cytometry. Expression of apoptosis related proteins was investigated by western blot. RESULTS GC-MS analysis of the essential oil revealed the presence of 51 components. The major components were β-Caryophyllene, 4(14),11-Eudesmadiene, Aromadendrene oxide-(2) and Phytol. EO inhibited the growth and colony formation ability of A431 and HaCaT cells. EO treatment induced nuclear condensation and loss of membrane integrity, DNA fragmentation, increase in sub-G1 DNA content and increase in intracellular ROS level. Inhibition of intracellular ROS by ascorbic acid and N-acetyl cysteine treatment blocked EO induced apoptosis, revealing that apoptotic activity was by ROS accumulation. EO induced apoptosis was found to be due to the loss of mitochondrial membrane potential (ΔΨm), increase in Bax/Bcl-2 ratio, release of cytochrome c and activation of caspases (cleaved form of caspase-3, caspase-8, caspase-9) and by PARP cleavage. CONCLUSION The present study revealed cancer chemotherapeutic potential of EO from P. missionis. EO induces cell death through intrinsic (mitochondrial) and extrinsic apoptotic pathway in A431 and HaCaT cells. These results suggest that EO could be used as a potential therapeutic agent for the treatment of skin epidermoid cancer.
Collapse
Affiliation(s)
- P S Pavithra
- School of Bio Sciences and Technology, VIT University, Vellore 632 014, India
| | - Alka Mehta
- School of Bio Sciences and Technology, VIT University, Vellore 632 014, India
| | - Rama S Verma
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600 036, India.
| |
Collapse
|
64
|
Khawar IA, Park JK, Jung ES, Lee MA, Chang S, Kuh HJ. Three Dimensional Mixed-Cell Spheroids Mimic Stroma-Mediated Chemoresistance and Invasive Migration in hepatocellular carcinoma. Neoplasia 2018; 20:800-812. [PMID: 29981501 PMCID: PMC6034588 DOI: 10.1016/j.neo.2018.05.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/23/2018] [Accepted: 05/30/2018] [Indexed: 02/07/2023] Open
Abstract
Interactions between cancer cells and cancer-associated fibroblasts (CAFs) within the tumor microenvironment (TME) play an important role in promoting the profibrotic microenvironment and epithelial-mesenchymal transition (EMT), resulting in tumor progression and drug resistance in hepatocellular carcinoma (HCC). In the present study, we developed a mixed-cell spheroid model using Huh-7 HCC cells and LX-2 stellate cells to simulate the in vivo tumor environment with respect to tumor-CAF interactions. Spheroids were cultured from cancer cells alone (monospheroids) or as a mixture (mixed-cell spheroids) in ultra-low-attachment plates. Compact, well-mixed, and stroma-rich mixed-cell spheroids were successfully established with heterotypic cell-cell contacts shown by the presence of gap junctions and desmosomes. Mixed-cell spheroids showed enhanced expression of collagen type-I (Col‐I) and pro‐fibrotic factors such as, transforming growth factor beta1 (TGF-β1), and connective tissue growth factor (CTGF) compared to the levels expressed in mono-spheroids. The EMT phenotype was evident in mixed-cell spheroids as shown by the altered expression of E-cadherin and vimentin. Differential drug sensitivity was observed in mixed-cell spheroids, and only sorafenib and oxaliplatin showed dose-dependent antiproliferative effects. Simultaneous treatment with TGF-β inhibitors further improved sorafenib efficacy in the mixed-cell spheroids, indicating the involvement of TGF-β in the mechanism of sorafenib resistance. In 3D matrix invasion assay, mixed-cell spheroids exhibited fibroblast-led collective cell movement. Overall, our results provide evidence that mixed-cell spheroids formed with Huh-7 and LX-2 cells well represent HCC tumors and their TME in vivo and hence are useful in studying tumor-stroma interactions as mechanisms associated with drug resistance and increased cell motility.
Collapse
Affiliation(s)
- Iftikhar Ali Khawar
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jong Kook Park
- Department of Biomedical Science, Hallym University, Chuncheon, Republic of Korea
| | - Eun Sun Jung
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Myung Ah Lee
- Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Suhwan Chang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyo-Jeong Kuh
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
65
|
Moritani Y, Usui M, Sano K, Nakazawa K, Hanatani T, Nakatomi M, Iwata T, Sato T, Ariyoshi W, Nishihara T, Nakashima K. Spheroid culture enhances osteogenic potential of periodontal ligament mesenchymal stem cells. J Periodontal Res 2018; 53:870-882. [PMID: 29900548 DOI: 10.1111/jre.12577] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVE AND BACKGROUND Human periodontal ligament mesenchymal stem cells (hPDLMSCs) are reported to be responsible for homeostasis and regeneration of periodontal tissue. Although hPDLMSCs are commonly cultured in monolayers, monolayer cultures have been reported as inferior to 3-dimensional cultures such as spheroids, which are spherical clusters of cells formed by self-assembly. The aim of this study was to examine the osteogenic phenotype of spheroids of hPDLMSCs, compared with monolayer cultures of hPDLMSC, in vitro and in vivo. MATERIAL AND METHODS Spheroids were formed using microwell chips that were tagged with polyethylene glycol. Mesenchymal stem cell (MSC) markers in hPDLMSC spheroids were examined by flow cytometer. Real-time polymerase chain reaction analysis was examined to measure the expressions of stemness markers and osteogenesis-related genes in monolayer and spheroid-cultured hPDLMSCs. Immunofluorescence analysis was performed to confirm protein expressions of stemness markers in PDLMSC spheroids. Nodule formation assay, alkaline phosphatase (ALP) activity assay and transplantation assay in a mouse calvarial defect model were performed to confirm the osteogenic potential of hPDLMSC spheroids. To elucidate the mechanism of spheroid culture enhanced osteogenesis in hPDLMSCs with osteoinductive medium (OIM), a small interfering RNA (siRNA) assay targeted with secreted frizzled-related protein 3 (SFRP3) was examined. The levels of SFRP3 expression in monolayer and spheroid-cultured hPDLMSCs with OIM were measured by real-time polymerase chain reaction and western blotting analysis. ALP gene expression and ALP activity were examined in SFRP3-deficient hPDLMSC spheroids. RESULTS The hPDLMSC spheroids expressed MSC markers, which were similar to hPDLMSCs grown in monolayer cultures. Intriguingly, the protein and mRNA expressions of transcription factors that regulate "stemness" were significantly increased in hPDLMSC spheroids, compared with hPDLMSCs in monolayer cultures. Nodule formation by hPDLMSCs was significantly increased in spheroid cultures grown with OIM, compared with monolayer-cultured hPDLMSCs. ALP activity and expression of osteogenesis-related genes were also significantly enhanced in hPDLMSC spheroids, compared with monolayer cultures. Treatment with hPDLMSC spheroids significantly enhanced new bone formation in a murine calvarial defect model, compared with hPDLMSCs in monolayer culture. Finally, to elucidate mechanisms by which spheroid culture enhances ALP activation in hPDLMSCs grown with OIM, an siRNA assay was used to manipulate expression of SFRP3, a Wnt signaling antagonist. Knockdown of SFRP3 suppressed ALP gene expression in hPDLMSCs grown in OIM; further, it suppressed ALP activity in spheroid culture. These data suggest that the enhancement of osteogenic potential in hPDLMSC spheroids is regulated through SFRP3-mediated ALP activation. CONCLUSION Spheroid cultures of hPDLMSCs may be a novel and useful tool in regenerative medicine.
Collapse
Affiliation(s)
- Y Moritani
- Division of Periodontology, Department of Oral Function, Kyushu Dental University, Kitakyushu, Japan
| | - M Usui
- Division of Periodontology, Department of Oral Function, Kyushu Dental University, Kitakyushu, Japan
| | - K Sano
- Division of Periodontology, Department of Oral Function, Kyushu Dental University, Kitakyushu, Japan
| | - K Nakazawa
- Department of Life and Environment Engineering, The University of Kitakyushu, Kitakyushu, Japan
| | - T Hanatani
- Division of Periodontology, Department of Oral Function, Kyushu Dental University, Kitakyushu, Japan
| | - M Nakatomi
- Division of Anatomy, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Japan
| | - T Iwata
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University (TWIns), Tokyo, Japan
| | - T Sato
- Department of Oral and Maxillofacial Surgery, Saitama Medical University, Saitama, Japan
| | - W Ariyoshi
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Japan
| | - T Nishihara
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Japan
| | - K Nakashima
- Division of Periodontology, Department of Oral Function, Kyushu Dental University, Kitakyushu, Japan
| |
Collapse
|
66
|
Turrini E, Catanzaro E, Muraro MG, Governa V, Trella E, Mele V, Calcabrini C, Morroni F, Sita G, Hrelia P, Tacchini M, Fimognari C. Hemidesmus indicus induces immunogenic death in human colorectal cancer cells. Oncotarget 2018; 9:24443-24456. [PMID: 29849952 PMCID: PMC5966270 DOI: 10.18632/oncotarget.25325] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 04/16/2018] [Indexed: 12/13/2022] Open
Abstract
The ability of anticancer treatments to promote the activation of tumor-reactive adaptive immune responses is emerging as a critical requirement underlying their clinical effectiveness. We investigated the ability of Hemidesmus indicus, a promising anticancer botanical drug, to stimulate immunogenic cell death in a human colorectal cancer cell line (DLD1). Here we show that Hemidesmus treatment induces tumor cell cytotoxicity characterized by surface expression of calreticulin, increased HSP70 expression and release of ATP and HMGB1. Remarkably, the exposure to released ICD-inducer factors from Hemidesmus-treated DLD1 cells caused a modest induction of CD14-derived dendritic cells maturation, as demonstrated by the increased expression of CD83. Moreover, at sub-toxic concentrations, H.i. treatment of monocytes and dendritic cells induced their mild activation, suggesting its additional direct immunostimulatory activity. These data indicate that Hemidesmus indicus induces immunogenic cell death in human tumor cells and suggest its potential relevance in innovative cancer immunotherapy protocols.
Collapse
Affiliation(s)
- Eleonora Turrini
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Rimini, Italy
| | - Elena Catanzaro
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Rimini, Italy
| | - Manuele G Muraro
- Oncology Surgery, Department of Biomedicine, University Hospital of Basel and University of Basel, ZLF, Basel-Switzerland
| | - Valeria Governa
- Cancer Immunotherapy, Department of Biomedicine, University Hospital of Basel and University of Basel, ZLF, Basel-Switzerland
| | - Emanuele Trella
- Oncology Surgery, Department of Biomedicine, University Hospital of Basel and University of Basel, ZLF, Basel-Switzerland
| | - Valentina Mele
- Cancer Immunotherapy, Department of Biomedicine, University Hospital of Basel and University of Basel, ZLF, Basel-Switzerland
| | - Cinzia Calcabrini
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Rimini, Italy
| | - Fabiana Morroni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Giulia Sita
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Massimo Tacchini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Carmela Fimognari
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Rimini, Italy
| |
Collapse
|
67
|
Facile Tumor Spheroids Formation in Large Quantity with Controllable Size and High Uniformity. Sci Rep 2018; 8:6837. [PMID: 29717201 PMCID: PMC5931581 DOI: 10.1038/s41598-018-25203-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/11/2018] [Indexed: 12/16/2022] Open
Abstract
A facile method for generation of tumor spheroids in large quantity with controllable size and high uniformity is presented. HCT-116 cells are used as a model cell line. Individual tumor cells are sparsely seeded onto petri-dishes. After a few days of growth, separated cellular islets are formed and then detached by dispase while maintaining their sheet shape. These detached cell sheets are transferred to dispase-doped media under orbital shaking conditions. Assisted by the shear flow under shaking and inhibition of cell-to-extracellular matrix junctions by dispase, the cell sheets curl up and eventually tumor spheroids are formed. The average size of the spheroids can be controlled by tuning the cell sheet culturing period and spheroid shaking period. The uniformity can be controlled by a set of sieves which were home-made using stainless steel meshes. Since this method is based on simple petri-dish cell culturing and shaking, it is rather facile for forming tumor spheroids with no theoretical quantity limit. This method has been used to form HeLa, A431 and U87 MG tumor spheroids and application of the formed tumor spheroids in drug screening is also demonstrated. The viability, 3D structure, and necrosis of the spheroids are characterized.
Collapse
|
68
|
Evans MA, Huang PJ, Iwamoto Y, Ibsen KN, Chan EM, Hitomi Y, Ford PC, Mitragotri S. Macrophage-mediated delivery of light activated nitric oxide prodrugs with spatial, temporal and concentration control. Chem Sci 2018; 9:3729-3741. [PMID: 29780505 PMCID: PMC5939611 DOI: 10.1039/c8sc00015h] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/12/2018] [Indexed: 12/31/2022] Open
Abstract
Nitric oxide (NO) holds great promise as a treatment for cancer hypoxia, if its concentration and localization can be precisely controlled. Here, we report a "Trojan Horse" strategy to provide the necessary spatial, temporal, and dosage control of such drug-delivery therapies at targeted tissues. Described is a unique package consisting of (1) a manganese-nitrosyl complex, which is a photoactivated NO-releasing moiety (photoNORM), plus Nd3+-doped upconverting nanoparticles (Nd-UCNPs) incorporated into (2) biodegradable polymer microparticles that are taken up by (3) bone-marrow derived murine macrophages. Both the photoNORM [Mn(NO)dpaqNO2 ]BPh4(dpaqNO2 = 2-[N,N-bis(pyridin-2-yl-methyl)]-amino-N'-5-nitro-quinolin-8-yl-acetamido) and the Nd-UCNPs are activated by tissue-penetrating near-infrared (NIR) light at ∼800 nm. Thus, simultaneous therapeutic NO delivery and photoluminescence (PL) imaging can be achieved with a NIR diode laser source. The loaded microparticles are non-toxic to their macrophage hosts in the absence of light. The microparticle-carrying macrophages deeply penetrate into NIH-3T3/4T1 tumor spheroid models, and when the infiltrated spheroids are irradiated with NIR light, NO is released in quantifiable amounts while emission from the Nd-UCNPs provides images of microparticle location. Furthermore, varying the intensity of the NIR excitation allows photochemical control over NO release. Low doses reduce levels of hypoxia inducible factor 1 alpha (HIF-1α) in the tumor cells, while high doses are cytotoxic. The use of macrophages to carry microparticles with a NIR photo-activated theranostic payload into a tumor overcomes challenges often faced with therapeutic administration of NO and offers the potential of multiple treatment strategies with a single system.
Collapse
Affiliation(s)
- Michael A Evans
- Department of Chemistry and Biochemistry , University of California, Santa Barbara , Santa Barbara , CA , 93106 USA .
- Department of Chemical Engineering , Center for Bioengineering , University of California, Santa Barbara , Santa Barbara , CA , 93106 USA
- John A. Paulson School of Engineering and Applied Sciences , Harvard University , 29 Oxford St. , Cambridge , MA 02138 , USA .
| | - Po-Ju Huang
- Department of Chemistry and Biochemistry , University of California, Santa Barbara , Santa Barbara , CA , 93106 USA .
| | - Yuji Iwamoto
- Department of Chemistry and Biochemistry , Doshisha University , 1-3 Tatara Miyakodani, Kyotanabe , Kyoto 610-0394 , Japan
| | - Kelly N Ibsen
- Department of Chemical Engineering , Center for Bioengineering , University of California, Santa Barbara , Santa Barbara , CA , 93106 USA
| | - Emory M Chan
- Molecular Foundry , Lawrence Berkeley National Laboratory , Berkeley , CA , USA
| | - Yutaka Hitomi
- Department of Chemistry and Biochemistry , Doshisha University , 1-3 Tatara Miyakodani, Kyotanabe , Kyoto 610-0394 , Japan
| | - Peter C Ford
- Department of Chemistry and Biochemistry , University of California, Santa Barbara , Santa Barbara , CA , 93106 USA .
| | - Samir Mitragotri
- Department of Chemical Engineering , Center for Bioengineering , University of California, Santa Barbara , Santa Barbara , CA , 93106 USA
- John A. Paulson School of Engineering and Applied Sciences , Harvard University , 29 Oxford St. , Cambridge , MA 02138 , USA .
| |
Collapse
|
69
|
Inhibition of sirtuins 1 and 2 impairs cell survival and migration and modulates the expression of P-glycoprotein and MRP3 in hepatocellular carcinoma cell lines. Toxicol Lett 2018; 289:63-74. [PMID: 29545174 DOI: 10.1016/j.toxlet.2018.03.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 02/26/2018] [Accepted: 03/10/2018] [Indexed: 01/15/2023]
Abstract
Sirtuins (SIRTs) 1 and 2 deacetylases are overexpressed in hepatocellular carcinoma (HCC) and are associated with tumoral progression and multidrug resistance (MDR). In this study we analyzed whether SIRTs 1 and 2 activities blockage was able to affect cellular survival and migration and to modulate p53 and FoxO1 acetylation in HepG2 and Huh7 cells. Moreover, we analyzed ABC transporters P-glycoprotein (P-gp) and multidrug resistance-associated protein 3 (MRP3) expression. We used cambinol and EX-527 as SIRTs inhibitors. Both drugs reduced cellular viability, number of colonies and cellular migration and augmented apoptosis. In 3D cultures, SIRTs inhibitors diminished spheroid growth and viability. 3D culture was less sensitive to drugs than 2D culture. The levels of acetylated p53 and FoxO1 increased after treatments. Drugs induced a decrease in ABC transporters mRNA and protein levels in HepG2 cells; however, only EX-527 was able to reduce MRP3 mRNA and protein levels in Huh7 cells. This is the first work demonstrating the regulation of MRP3 by SIRTs. In conclusion, both drugs decreased HCC cells survival and migration, suggesting SIRTs 1 and 2 activities blockage could be beneficial during HCC therapy. Downregulation of the expression of P-gp and MRP3 supports the potential application of SIRTs 1 and 2 inhibitions in combination with conventional chemotherapy.
Collapse
|
70
|
Aromadendrene oxide 2, induces apoptosis in skin epidermoid cancer cells through ROS mediated mitochondrial pathway. Life Sci 2018; 197:19-29. [DOI: 10.1016/j.lfs.2018.01.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/20/2018] [Accepted: 01/29/2018] [Indexed: 11/23/2022]
|
71
|
Belfiore L, Saunders DN, Ranson M, Thurecht KJ, Storm G, Vine KL. Towards clinical translation of ligand-functionalized liposomes in targeted cancer therapy: Challenges and opportunities. J Control Release 2018; 277:1-13. [PMID: 29501721 DOI: 10.1016/j.jconrel.2018.02.040] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 01/03/2023]
Abstract
The development of therapeutic resistance to targeted anticancer therapies remains a significant clinical problem, with intratumoral heterogeneity playing a key role. In this context, improving the therapeutic outcome through simultaneous targeting of multiple tumor cell subtypes within a heterogeneous tumor is a promising approach. Liposomes have emerged as useful drug carriers that can reduce systemic toxicity and increase drug delivery to the tumor site. While clinically used liposomal drug formulations show marked therapeutic advantages over free drug formulations, ligand-functionalized liposomes that can target multiple tumor cell subtypes may further improve the therapeutic efficacy by facilitating drug delivery to a broader population of tumor cells making up the heterogeneous tumor tissue. Ligand-directed liposomes enable the so-called active targeting of cell receptors via surface-attached ligands that direct drug uptake into tumor cells or tumor-associated stromal cells, and so can increase the selectivity of drug delivery. Despite promising preclinical results demonstrating improved targeting and anti-tumor effects of ligand-directed liposomes, there has been limited translation of this approach to the clinic. Key challenges for translation include the lack of established methods to scale up production and comprehensively characterize ligand-functionalized liposome formulations, as well as the inadequate recapitulation of in vivo tumors in the preclinical models currently used to evaluate their performance. Herein, we discuss the utility of recent ligand-directed liposome approaches, with a focus on dual-ligand liposomes, for the treatment of solid tumors and examine the drawbacks limiting their progression to clinical adoption.
Collapse
Affiliation(s)
- Lisa Belfiore
- Illawarra Health and Medical Research Institute, Centre for Medical and Molecular Bioscience, School of Biological Sciences, University of Wollongong, Wollongong, Australia
| | - Darren N Saunders
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Marie Ranson
- Illawarra Health and Medical Research Institute, Centre for Medical and Molecular Bioscience, School of Biological Sciences, University of Wollongong, Wollongong, Australia
| | - Kristofer J Thurecht
- Australian Institute for Bioengineering and Nanotechnology (AIBN), Centre for Advanced Imaging (CAI), Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Australia
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, CG, The Netherlands
| | - Kara L Vine
- Illawarra Health and Medical Research Institute, Centre for Medical and Molecular Bioscience, School of Biological Sciences, University of Wollongong, Wollongong, Australia.
| |
Collapse
|
72
|
Zhao C, Tong Y, Li X, Shao L, Chen L, Lu J, Deng X, Wang X, Wu Y. Photosensitive Nanoparticles Combining Vascular-Independent Intratumor Distribution and On-Demand Oxygen-Depot Delivery for Enhanced Cancer Photodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1703045. [PMID: 29405618 DOI: 10.1002/smll.201703045] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/20/2017] [Indexed: 05/13/2023]
Abstract
In drug delivery, the poor tumor perfusion results in disappointing therapeutic efficacy. Nanomedicines for photodynamic therapy (PDT) greatly need deep tumor penetration due to short lifespan and weak diffusion of the cytotoxic reactive oxygen species (ROS). The damage of only shallow cells can easily cause invasiveness and metastasis. Moreover, even if the nanomedicines enter into deeper lesion, the effectiveness of PDT is limited due to the hypoxic microenvironment. Here, a deep penetrating and oxygen self-sufficient PDT nanoparticle is developed for balanced ROS distribution within tumor and efficient cancer therapy. The designed nanoparticles (CNPs/IP) are doubly emulsified (W/O/W) from poly(ethylene glycol)-poly(ε-caprolactone) copolymers doped with photosensitizer IR780 in the O layer and oxygen depot perfluorooctyl bromide (PFOB) inside the core, and functionalized with the tumor penetrating peptide Cys-Arg-Gly-Asp-Lys (CRGDK). The CRGDK modification significantly improves penetration depth of CNPs/IP and makes the CNPs/IP arrive at both the periphery and hypoxic interior of tumors where the PFOB releases oxygen, effectively alleviating hypoxia and guaranteeing efficient PDT performance. The improved intratumoral distribution of photosensitizer and adequate oxygen supply augment the sensitivity of tumor cells to PDT and significantly improve PDT efficiency. Such a nanosystem provides a potential platform for improved therapeutic index in anticancer therapy.
Collapse
Affiliation(s)
- Caiyan Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yujia Tong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xianlei Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Leihou Shao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Long Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianqing Lu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xiongwei Deng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xuan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
73
|
Perut F, Sbrana FV, Avnet S, De Milito A, Baldini N. Spheroid-based 3D cell cultures identify salinomycin as a promising drug for the treatment of chondrosarcoma. J Orthop Res 2018; 36:2305-2312. [PMID: 29469166 DOI: 10.1002/jor.23880] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/15/2018] [Indexed: 02/04/2023]
Abstract
Chondrosarcoma (CS) is a cartilage malignancy of adulthood that is treated by surgery alone, since chemotherapy is considered ineffective. Unfortunately, a large proportion of patients with CS develop lung metastases, and several die of the disease. In this study, we compared 3D-spheroid cultures and conventional cell monolayer models in order to identify the best way to select anticancer agents that could be effective for the systemic control of CS. Using SW1353 cells, we developed a three-dimensional (3D) in vitro culture model to mimic in vivo features of CS microenvironment and evaluated the efficacy of different drugs to modulate CS cell proliferation and survival in 2D versus 3D-cultures. Doxorubicin (DXR) and cisplatin, that are widely employed in sarcomas, were less effective on 3D-CS spheroids when compared to standard monolayer models, whereas treatment with the ionophore salinomycin (SAL) had a strong cytotoxic effect both on 2D and 3D-cultures. Furthermore, as demonstrated by the reduced viability and the enhanced DXR nuclear localization, SAL enhanced DXR cytotoxicity in 3D-CS spheroids also at sub-lethal doses. SAL activity on 3D-CS spheroids was mediated by a significant induction of apoptosis via caspase activation. This study demonstrates that preclinical tests significantly differ in monolayer and 3D cultures of CS cells. Using this approach, SAL, alone or, at sub-lethal concentrations, in combination with DXR, represents a promising agent for the systemic treatment of CS. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Collapse
Affiliation(s)
- Francesca Perut
- Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, Bologna, 40136, Italy
| | - Francesca V Sbrana
- Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, Bologna, 40136, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, 40123, Italy
| | - Sofia Avnet
- Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, Bologna, 40136, Italy
| | - Angelo De Milito
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | - Nicola Baldini
- Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, Bologna, 40136, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, 40123, Italy
| |
Collapse
|
74
|
Harper BWJ, Petruzzella E, Sirota R, Faccioli FF, Aldrich-Wright JR, Gandin V, Gibson D. Synthesis, characterization and in vitro and in vivo anticancer activity of Pt(iv) derivatives of [Pt(1S,2S-DACH)(5,6-dimethyl-1,10-phenanthroline)]. Dalton Trans 2018; 46:7005-7019. [PMID: 28513693 DOI: 10.1039/c7dt01054k] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This report describes the synthesis, characterization and biological activity of a series of platinum(iv) derivatives of [Pt(1S,2S-DACH)(5,6-dimethyl-1,10-phenanthroline)] (Pt56MeSS) with non-bioactive, lipophilic and bioactive axial ligands. In an attempt to explore the anticancer activity potential of the Pt(iv) derivatives, 2D and 3D cytotoxic screening and a preliminary in vivo study were performed. The average IC50 values of the platinum(iv) derivatives ranged from 1.26 to 5.39 μM, compared with 1.24 μM for Pt56MeSS, suggesting that the axial ligands have a relatively minor effect on the potency of the compounds. Preliminary in vivo studies indicate that the platinum(iv) derivatives of Pt56MeSS are active in vivo and can reduce the tumor to a similar extent to cisplatin.
Collapse
Affiliation(s)
- Benjamin W J Harper
- Institute for Drug Research, School of Pharmacy, The Hebrew University, Jerusalem, 91120, Israel.
| | | | | | | | | | | | | |
Collapse
|
75
|
Däster S, Amatruda N, Calabrese D, Ivanek R, Turrini E, Droeser RA, Zajac P, Fimognari C, Spagnoli GC, Iezzi G, Mele V, Muraro MG. Induction of hypoxia and necrosis in multicellular tumor spheroids is associated with resistance to chemotherapy treatment. Oncotarget 2018; 8:1725-1736. [PMID: 27965457 PMCID: PMC5352092 DOI: 10.18632/oncotarget.13857] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 09/19/2016] [Indexed: 12/11/2022] Open
Abstract
Culture of cancerous cells in standard monolayer conditions poorly mirrors growth in three-dimensional architectures typically observed in a wide majority of cancers of different histological origin. Multicellular tumor spheroid (MCTS) culture models were developed to mimic these features. However, in vivo tumor growth is also characterized by the presence of ischemic and necrotic areas generated by oxygenation gradients and differential access to nutrients. Hypoxia and necrosis play key roles in tumor progression and resistance to treatment. To provide in vitro models recapitulating these events in highly controlled and standardized conditions, we have generated colorectal cancer (CRC) cell spheroids of different sizes and analyzed their gene expression profiles and sensitivity to treatment with 5FU, currently used in therapeutic protocols. Here we identify three MCTS stages, corresponding to defined spheroid sizes, characterized by normoxia, hypoxia, and hypoxia plus necrosis, respectively. Importantly, we show that MCTS including both hypoxic and necrotic areas most closely mimic gene expression profiles of in vivo-developing tumors and display the highest resistance to 5FU. Taken together, our data indicate that MCTS may mimic in vitro generation of ischemic and necrotic areas in highly standardized and controlled conditions, thereby qualifying as relevant models for drug screening purposes.
Collapse
Affiliation(s)
- Silvio Däster
- Department of Surgery, University Hospital Basel, Basel, Switzerland
| | - Nunzia Amatruda
- Department of Surgery, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Diego Calabrese
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Robert Ivanek
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Eleonora Turrini
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Raoul A Droeser
- Department of Surgery, University Hospital Basel, Basel, Switzerland
| | - Paul Zajac
- Department of Surgery, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Carmela Fimognari
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Giulio C Spagnoli
- Department of Surgery, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Giandomenica Iezzi
- Department of Surgery, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Valentina Mele
- Department of Surgery, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Manuele G Muraro
- Department of Surgery, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
76
|
Chen D, Yang L, Chen X, Zhang X, Liu Y, Guo Z, Zhang LW. Automated contour analysis of multi-cellular spheroids spreading through high content imaging. Phys Biol 2018; 15:026006. [PMID: 29251623 DOI: 10.1088/1478-3975/aaa27b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The morphology of 2D cell colonies has been studied to understand tumor metastasis in the past decades. However, 2D cell cultures are lacking many features of 3D tissues, and their physiological behaviors are quite different from solid tumors in vivo. In this work, we studied the multi-cellular tumor spheroid (MCTS) spreading on the substrate, which keeps parts of 3D tissue characteristics and facilitates cell tracking through 2D imaging. By using a high content imaging system (HCS), we tracked multiple spheroids in one single 96-well plate for 36 h. An automated algorithm based on Otsu's method was developed to investigate the morphological details of spheroids through the quantification of radius length and its coefficients of variation. Spheroid spreading is altered by the PIP-platin, which was a novel platinum based drug previously reported by us with an inhibitory effect on cell migration. All parameters showed dose dependent decreases when PIP-platin concentration increased, indicating the inhibition of spheroid expansion by this compound. To investigate the surface roughness of spheroids affected by the drug, we applied the Fourier parameter β and the normalized standard deviation of the radius STD r / [Formula: see text], which were found inversely proportional to the concentrations of PIP-platin. Particularly at the low drug concentrations, the indices of contour roughness appeared to be more sensitive than spheroid sizes, which could be the potential morphological markers for high content screening of drugs.
Collapse
Affiliation(s)
- Dandan Chen
- School of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, Jiangsu 215006, People's Republic of China. Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu 215006, People's Republic of China. Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, Jiangsu 215006, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
77
|
Pellegrini P, Dyczynski M, Sbrana FV, Karlgren M, Buoncervello M, Hägg-Olofsson M, Ma R, Hartman J, Bajalica-Lagercrantz S, Grander D, Kharaziha P, De Milito A. Tumor acidosis enhances cytotoxic effects and autophagy inhibition by salinomycin on cancer cell lines and cancer stem cells. Oncotarget 2018; 7:35703-35723. [PMID: 27248168 PMCID: PMC5094956 DOI: 10.18632/oncotarget.9601] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/20/2016] [Indexed: 01/07/2023] Open
Abstract
Sustained autophagy contributes to the metabolic adaptation of cancer cells to hypoxic and acidic microenvironments. Since cells in such environments are resistant to conventional cytotoxic drugs, inhibition of autophagy represents a promising therapeutic strategy in clinical oncology. We previously reported that the efficacy of hydroxychloroquine (HCQ), an autophagy inhibitor under clinical investigation is strongly impaired in acidic tumor environments, due to poor uptake of the drug, a phenomenon widely associated with drug resistance towards many weak bases. In this study we identified salinomycin (SAL) as a potent inhibitor of autophagy and cytotoxic agent effective on several cancer cell lines under conditions of transient and chronic acidosis. Since SAL has been reported to specifically target cancer-stem cells (CSC), we used an established model of breast CSC and CSC derived from breast cancer patients to examine whether this specificity may be associated with autophagy inhibition. We indeed found that CSC-like cells are more sensitive to autophagy inhibition compared to cells not expressing CSC markers. We also report that the ability of SAL to inhibit mammosphere formation from CSC-like cells was dramatically enhanced in acidic conditions. We propose that the development and use of clinically suitable SAL derivatives may result in improved autophagy inhibition in cancer cells and CSC in the acidic tumor microenvironment and lead to clinical benefits.
Collapse
Affiliation(s)
- Paola Pellegrini
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | - Matheus Dyczynski
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | | | - Maria Karlgren
- Department of Pharmacy and Uppsala University Drug Optimization and Pharmaceutical Profiling Platform (UDOPP) - Science for Life Laboratory, Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, Sweden
| | | | - Maria Hägg-Olofsson
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | - Ran Ma
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | - Johan Hartman
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | | | - Dan Grander
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | - Pedram Kharaziha
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | - Angelo De Milito
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
78
|
Scolamiero G, Pazzini C, Bonafè F, Guarnieri C, Muscari C. Effects of α-Mangostin on Viability, Growth and Cohesion of Multicellular Spheroids Derived from Human Breast Cancer Cell Lines. Int J Med Sci 2018; 15:23-30. [PMID: 29333084 PMCID: PMC5765736 DOI: 10.7150/ijms.22002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 10/12/2017] [Indexed: 12/16/2022] Open
Abstract
Background: α-Mangostin (αMG) is extracted from Garcinia mangostana Linn and exerts antiproliferative activities. Although several researches on αMG were performed using cell monolayers, the in vitro pharmacological effects on 3D cancer models have never been investigated. Aim of the present study was to find new anticancer properties of αMG by evaluating the changes that this compound provokes in multicellular tumour spheroids (MCTSs). Methods: MCTSs were generated from MDA-MB-231 and MCF-7 breast tumour cell lines and then treated with 0.1÷30 μg/ml αMG for 24 and 48 h. MCTS size, density, and cell migration were determined by software elaboration of phase contrast images captured by a digital camera. Cell viability was evaluated by resazurin and acid phosphatase assays, while cell apoptosis was assessed by a fluorescent assay of caspase activity. The distribution of living cells inside MCTSs was shown by live/dead fluorescence staining. Results: A dose-dependent decrease in cell viability was obtained by treating MDA-MB-231 spheroids with αMG for 48 h (IC50 = 0.70-1.25 μg/ml). A significant reduction in spheroid volume, paralleled by its increased compactness, was observed only at concentration of 30 μg/ml, but not with lower doses of αMG. By contrast, αMG in the range of 5-15 μg/ml increased the size of MCTSs due to a parallel reduction in cell aggregation. The same window of concentrations was also able to stimulate cell apoptosis in a dose-dependent manner. Bimodal volumetric effects were also obtained by treating the spheroids generated from the MCF-7 cells with 0.1÷30 μg/ml αMG for 48 h. Finally, doses higher than 5 μg/ml caused a progressive impairment in cell migration from the edge of MDA-MB-231 MCTSs. Conclusion: After exposure at doses of αMG just above IC50, MDA-MB-231 spheroids showed a significant reduction in cell adhesion that did not stimulate cell migration but, on the contrary, blunted cell motility. These findings suggest a novel anticancer feature of αMG that could be taken into consideration to improve conventional drug penetration into the tumour bulk.
Collapse
Affiliation(s)
- Giuseppe Scolamiero
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Claudia Pazzini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Francesca Bonafè
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Carlo Guarnieri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Claudio Muscari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.,Health Sciences and Technologies, Interdepartmental Centre for Industrial Research, University of Bologna, 40064 Ozzano dell'Emilia (BO), Italy
| |
Collapse
|
79
|
Dai Q, Bertleff‐Zieschang N, Braunger JA, Björnmalm M, Cortez‐Jugo C, Caruso F. Particle Targeting in Complex Biological Media. Adv Healthc Mater 2018; 7. [PMID: 28809092 DOI: 10.1002/adhm.201700575] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/04/2017] [Indexed: 12/22/2022]
Abstract
Over the past few decades, nanoengineered particles have gained increasing interest for applications in the biomedical realm, including diagnosis, imaging, and therapy. When functionalized with targeting ligands, these particles have the potential to interact with specific cells and tissues, and accumulate at desired target sites, reducing side effects and improve overall efficacy in applications such as vaccination and drug delivery. However, when targeted particles enter a complex biological environment, the adsorption of biomolecules and the formation of a surface coating (e.g., a protein corona) changes the properties of the carriers and can render their behavior unpredictable. For this reason, it is of importance to consider the potential challenges imposed by the biological environment at the early stages of particle design. This review describes parameters that affect the targeting ability of particulate drug carriers, with an emphasis on the effect of the protein corona. We highlight strategies for exploiting the protein corona to improve the targeting ability of particles. Finally, we provide suggestions for complementing current in vitro assays used for the evaluation of targeting and carrier efficacy with new and emerging techniques (e.g., 3D models and flow-based technologies) to advance fundamental understanding in bio-nano science and to accelerate the development of targeted particles for biomedical applications.
Collapse
Affiliation(s)
- Qiong Dai
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Nadja Bertleff‐Zieschang
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Julia A. Braunger
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Mattias Björnmalm
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Christina Cortez‐Jugo
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| |
Collapse
|
80
|
Mittler F, Obeïd P, Rulina AV, Haguet V, Gidrol X, Balakirev MY. High-Content Monitoring of Drug Effects in a 3D Spheroid Model. Front Oncol 2017; 7:293. [PMID: 29322028 PMCID: PMC5732143 DOI: 10.3389/fonc.2017.00293] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 11/15/2017] [Indexed: 12/15/2022] Open
Abstract
A recent decline in the discovery of novel medications challenges the widespread use of 2D monolayer cell assays in the drug discovery process. As a result, the need for more appropriate cellular models of human physiology and disease has renewed the interest in spheroid 3D culture as a pertinent model for drug screening. However, despite technological progress that has significantly simplified spheroid production and analysis, the seeming complexity of the 3D approach has delayed its adoption in many laboratories. The present report demonstrates that the use of a spheroid model may be straightforward and can provide information that is not directly available with a standard 2D approach. We describe a cost-efficient method that allows for the production of an array of uniform spheroids, their staining with vital dyes, real-time monitoring of drug effects, and an ATP-endpoint assay, all in the same 96-well U-bottom plate. To demonstrate the method performance, we analyzed the effect of the preclinical anticancer drug MLN4924 on spheroids formed by VCaP and LNCaP prostate cancer cells. The drug has different outcomes in these cell lines, varying from cell cycle arrest and protective dormancy to senescence and apoptosis. We demonstrate that by using high-content analysis of spheroid arrays, the effect of the drug can be described as a series of EC50 values that clearly dissect the cytostatic and cytotoxic drug actions. The method was further evaluated using four standard cancer chemotherapeutics with different mechanisms of action, and the effect of each drug is described as a unique multi-EC50 diagram. Once fully validated in a wider range of conditions, this method could be particularly valuable for phenotype-based drug discovery.
Collapse
Affiliation(s)
| | - Patricia Obeïd
- Université Grenoble Alpes, CEA, INSERM, BIG, BGE, Grenoble, France
| | - Anastasia V. Rulina
- Université Grenoble Alpes, CEA, INSERM, BIG, BGE, Grenoble, France
- Université Lyon 1, ENS de Lyon, INSERM, CNRS, CIRI, Lyon, France
| | - Vincent Haguet
- Université Grenoble Alpes, CEA, INSERM, BIG, BGE, Grenoble, France
| | - Xavier Gidrol
- Université Grenoble Alpes, CEA, INSERM, BIG, BGE, Grenoble, France
| | | |
Collapse
|
81
|
Organotypic three-dimensional cancer cell cultures mirror drug responses in vivo: lessons learned from the inhibition of EGFR signaling. Oncotarget 2017; 8:107423-107440. [PMID: 29296175 PMCID: PMC5746077 DOI: 10.18632/oncotarget.22475] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/27/2017] [Indexed: 01/07/2023] Open
Abstract
Complex three-dimensional (3D) in vitro models that recapitulate human tumor biology are essential to understand the pathophysiology of the disease and to aid in the discovery of novel anti-cancer therapies. 3D organotypic cultures exhibit intercellular communication, nutrient and oxygen gradients, and cell polarity that is lacking in two-dimensional (2D) monolayer cultures. In the present study, we demonstrate that 2D and 3D cancer models exhibit different drug sensitivities towards both targeted inhibitors of EGFR signaling and broad acting cytotoxic agents. Changes in the kinase activities of ErbB family members and differential expression of apoptosis- and survival-associated genes before and after drug treatment may account for the differential drug sensitivities. Importantly, EGFR oncoprotein addiction was evident only in the 3D cultures mirroring the effect of EGFR inhibition in the clinic. Furthermore, targeted drug efficacy was strongly increased when incorporating cancer-associated fibroblasts into the 3D cultures. Taken together, we provide conclusive evidence that complex 3D cultures are more predictive of the clinical outcome than their 2D counterparts. In the future, 3D cultures will be instrumental for understanding the mode of action of drugs, identifying genotype-drug response relationships and developing patient-specific and personalized cancer treatments.
Collapse
|
82
|
In-depth phenotypic characterization of multicellular tumor spheroids: Effects of 5-Fluorouracil. PLoS One 2017; 12:e0188100. [PMID: 29141026 PMCID: PMC5687732 DOI: 10.1371/journal.pone.0188100] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/31/2017] [Indexed: 01/27/2023] Open
Abstract
MultiCellular Tumor Spheroids (MCTS), which mimic the 3-Dimensional (3D) organization of a tumor, are considered as better models than conventional cultures in 2-Dimensions (2D) to study cancer cell biology and to evaluate the response to chemotherapeutic drugs. A real time and quantitative follow-up of MCTS with simple and robust readouts to evaluate drug efficacy is still missing. Here, we evaluate the chemotherapeutic drug 5-Fluorouracil (5-FU) response on the growth and integrity of MCTS two days after treatment of MCTS and for three colorectal carcinoma cell lines with different cohesive properties (HT29, HCT116 and SW480). We found different sensitivity to 5-FU for the three CRC cell lines, ranging from high (SW480), intermediate (HCT116) and low (HT29) and the same hierarchy of CRC cell lines sensitivity is conserved in 2D. We also evidence that 5-FU has a strong impact on spheroid cohesion, with the apparition of a number of single detaching cells from the spheroid in a 5-FU dose- and cell line-dependent manner. We propose an innovative methodology for the chemosensitivity evaluation in 3D MCTS that recapitulates and regionalizes the 5-FU-induced changes within MCTS over time. These robust phenotypic read-outs could be easily scalable for high-throughput drug screening that may include different types of cancer cells to take into account tumor heterogeneity and resistance to treatment.
Collapse
|
83
|
Therapeutic potential of the phosphino Cu(I) complex (HydroCuP) in the treatment of solid tumors. Sci Rep 2017; 7:13936. [PMID: 29066771 PMCID: PMC5655689 DOI: 10.1038/s41598-017-13698-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/22/2017] [Indexed: 11/08/2022] Open
Abstract
[Cu(thp)4][PF6] (HydroCuP) is a phosphino copper(I) complex highly soluble and stable in physiological media that has been developed as a possible viable alternative to platinum-based drugs for anticancer therapy. HydroCuP potently inhibited the growth of human cancer cells derived from solid tumors by inducing endoplasmatic reticulum (ER) stress thus leading to cell death through paraptosis with a preferential efficacy against cancer rather than non-cancer cells. Aim of the present study was to assess the therapeutic potential of HydroCuP in vivo, in syngenic and xenograft murine models of solid tumors by triggering the Unfolded Protein Response (UPR) pathway. With respect to platinum drugs, HydroCuP induced a markedly higher reduction of tumor growth associated with minimal animal toxicity. In human colorectal cancer xenografts, chemotherapy with HydroCuP was extremely effective in both oxaliplatin-sensitive and resistant models. The favorable in vivo tolerability of HydroCuP was also correlated to an encouraging biodistribution profile. Additionally, no signs of drug-related neurotoxicity and nephrotoxicity were observed. Altogether, these results demonstrate that HydroCuP appears worth of further investigation to evaluate its therapeutic activity towards a broad spectrum of solid malignancies.
Collapse
|
84
|
Langan LM, Harper GM, Owen SF, Purcell WM, Jackson SK, Jha AN. Application of the rainbow trout derived intestinal cell line (RTgutGC) for ecotoxicological studies: molecular and cellular responses following exposure to copper. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:1117-1133. [PMID: 28785844 PMCID: PMC5617881 DOI: 10.1007/s10646-017-1838-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/13/2017] [Indexed: 06/07/2023]
Abstract
There is an acknowledged need for in vitro fish intestinal model to help understand dietary exposure to chemicals in the aquatic environment. The presence and use of such models is however largely restrictive due to technical difficulties in the culturing of enterocytes in general and the availability of appropriate established cell lines in particular. In this study, the rainbow trout (Oncorhynchus mykiss) intestinal derived cell line (RTgutGC) was used as a surrogate for the "gut sac" method. To facilitate comparison, RTgutGC cells were grown as monolayers (double-seeded) on permeable Transwell supports leading to a two-compartment intestinal model consisting of polarised epithelium. This two-compartment model divides the system into an upper apical (lumen) and a lower basolateral (portal blood) compartment. In our studies, these cells stained weakly for mucosubstances, expressed the tight junction protein ZO-1 in addition to E-cadherin and revealed the presence of polarised epithelium in addition to microvilli protrusions. The cells also revealed a comparable transepithelial electrical resistance (TEER) to the in vivo situation. Importantly, the cell line tolerated apical saline (1:1 ratio) thus mimicking the intact organ to allow assessment of uptake of compounds across the intestine. Following an exposure over 72 h, our study demonstrated that the RTgutGC cell line under sub-lethal concentrations of copper sulphate (Cu) and modified saline solutions demonstrated uptake of the metal with saturation levels comparable to short term ex situ gut sac preparations. Gene expression analysis revealed no significant influence of pH or time on mRNA expression levels of key stress related genes (i.e. CYP3A, GST, mtA, Pgp and SOD) in the Transwell model. However, significant positive correlations were found between all genes investigated suggesting a co-operative relationship amongst the genes studied. When the outlined characteristics of the cell line are combined with the division of compartments, the RTgutGC double seeded model represents a potential animal replacement model for ecotoxicological studies. Overall, this model could be used to study the effects and predict aquatic gastrointestinal permeability of metals and other environmentally relevant contaminants in a cost effective and high throughput manner.
Collapse
Affiliation(s)
- Laura M Langan
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Glenn M Harper
- Electron Microscopy Unit, Faculty of Science and Engineering, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Stewart F Owen
- AstraZeneca, Alderly Park, Macclesfield, Cheshire, SK10 4TF, UK
| | - Wendy M Purcell
- School of Biomedical and Health Care Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Simon K Jackson
- School of Biomedical and Health Care Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK.
| |
Collapse
|
85
|
Arbe MF, Fondello C, Agnetti L, Álvarez GM, Tellado MN, Glikin GC, Finocchiaro LME, Villaverde MS. Inhibition of bioenergetic metabolism by the combination of metformin and 2-deoxyglucose highly decreases viability of feline mammary carcinoma cells. Res Vet Sci 2017; 114:461-468. [PMID: 28802138 DOI: 10.1016/j.rvsc.2017.07.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 06/19/2017] [Accepted: 07/31/2017] [Indexed: 01/05/2023]
Abstract
Feline mammary carcinoma (FMC) is a highly aggressive pathology that has been proposed as an interesting model of breast cancer disease, especially for the hormone refractory subgroup. Recently, cancer cell metabolism has been described as a hallmark of cancer cells. Here, we investigate the effects and mechanism of metabolic modulation by metformin (MET, anti-diabetic drug), 2-deoxyglucose (2DG, hexokinase inhibitor) or a combination of both drugs, MET/2DG on two established FMC cells lines: AlRB (HER2 (3+) and Ki67<5%) and AlRATN (HER2 (-) and Ki67>15%). We found that treatments significantly decreased both FMC cells viability by up to 80%. AlRB resulted more sensitive to 2DG than AlRATN (IC50: 3.15 vs 6.32mM, respectively). The combination of MET/2DG potentiated the effects of the individually added drugs on FMC cells. In addition, MET/2DG caused an increased in intracellular oxidants, autophagic vesicles and completely inhibited colony formation. Conversely, only MET significantly altered plasma membrane integrity, presented late apoptotic/necrotic cells and increased both glucose consumption and lactate concentration. Our results support further studies to investigate the potential use of this metabolic modulation approach in a clinical veterinary setting.
Collapse
Affiliation(s)
- María Florencia Arbe
- Unidad de Transferencia Genética, Instituto de Oncología Dr. Ángel Roffo, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma Buenos Aires, Argentina
| | - Chiara Fondello
- Unidad de Transferencia Genética, Instituto de Oncología Dr. Ángel Roffo, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma Buenos Aires, Argentina
| | - Lucrecia Agnetti
- Unidad de Transferencia Genética, Instituto de Oncología Dr. Ángel Roffo, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma Buenos Aires, Argentina
| | - Gabriel Martín Álvarez
- Cátedra de Química Biológica, Facultad de Veterinaria, Universidad de Buenos, Ciudad Autónoma de Buenos Aires, Argentina
| | - Matías Nicolás Tellado
- Cátedra de Química Biológica, Facultad de Veterinaria, Universidad de Buenos, Ciudad Autónoma de Buenos Aires, Argentina
| | - Gerardo Claudio Glikin
- Unidad de Transferencia Genética, Instituto de Oncología Dr. Ángel Roffo, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma Buenos Aires, Argentina
| | - Liliana María Elena Finocchiaro
- Unidad de Transferencia Genética, Instituto de Oncología Dr. Ángel Roffo, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma Buenos Aires, Argentina
| | - Marcela Solange Villaverde
- Unidad de Transferencia Genética, Instituto de Oncología Dr. Ángel Roffo, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma Buenos Aires, Argentina.
| |
Collapse
|
86
|
Liu J, Yan F, Chen H, Wang W, Liu W, Hao K, Wang G, Zhou F, Zhang J. A novel individual-cell-based mathematical model based on multicellular tumour spheroids for evaluating doxorubicin-related delivery in avascular regions. Br J Pharmacol 2017; 174:2862-2879. [PMID: 28608595 DOI: 10.1111/bph.13909] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/25/2017] [Accepted: 06/05/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Effective drug delivery in the avascular regions of tumours, which is crucial for the promising antitumour activity of doxorubicin-related therapy, is governed by two inseparable processes: intercellular diffusion and intracellular retention. To accurately evaluate doxorubicin-related delivery in the avascular regions, these two processes should be assessed together. Here we describe a new approach to such an assessment. EXPERIMENTAL APPROACH An individual-cell-based mathematical model based on multicellular tumour spheroids was developed that describes the different intercellular diffusion and intracellular retention kinetics of doxorubicin in each cell layer. The different effects of a P-glycoprotein inhibitor (LY335979) and a hypoxia inhibitor (YC-1) were quantitatively evaluated and compared, in vitro (tumour spheroids) and in vivo (HepG2 tumours in mice). This approach was further tested by evaluating in these models, an experimental doxorubicin derivative, INNO 206, which is in Phase II clinical trials. KEY RESULTS Inhomogeneous, hypoxia-induced, P-glycoprotein expression compromised active transport of doxorubicin in the central area, that is, far from the vasculature. LY335979 inhibited efflux due to P-glycoprotein but limited levels of doxorubicin outside the inner cells, whereas YC-1 co-administration specifically increased doxorubicin accumulation in the inner cells without affecting the extracellular levels. INNO 206 exhibited a more effective distribution profile than doxorubicin. CONCLUSIONS AND IMPLICATIONS The individual-cell-based mathematical model accurately evaluated and predicted doxorubicin-related delivery and regulation in the avascular regions of tumours. The described framework provides a mechanistic basis for the proper development of doxorubicin-related drug co-administration profiles and nanoparticle development and could avoid unnecessary clinical trials.
Collapse
Affiliation(s)
- Jiali Liu
- Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Fangrong Yan
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Hongzhu Chen
- Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Wenjie Wang
- Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Wenyue Liu
- Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Kun Hao
- Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Guangji Wang
- Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Fang Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Jingwei Zhang
- Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
87
|
Leek R, Grimes DR, Harris AL, McIntyre A. Methods: Using Three-Dimensional Culture (Spheroids) as an In Vitro Model of Tumour Hypoxia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 899:167-96. [PMID: 27325267 DOI: 10.1007/978-3-319-26666-4_10] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Regions of hypoxia in tumours can be modelled in vitro in 2D cell cultures with a hypoxic chamber or incubator in which oxygen levels can be regulated. Although this system is useful in many respects, it disregards the additional physiological gradients of the hypoxic microenvironment, which result in reduced nutrients and more acidic pH. Another approach to hypoxia modelling is to use three-dimensional spheroid cultures. In spheroids, the physiological gradients of the hypoxic tumour microenvironment can be inexpensively modelled and explored. In addition, spheroids offer the advantage of more representative modelling of tumour therapy responses compared with 2D culture. Here, we review the use of spheroids in hypoxia tumour biology research and highlight the different methodologies for spheroid formation and how to obtain uniformity. We explore the challenge of spheroid analyses and how to determine the effect on the hypoxic versus normoxic components of spheroids. We discuss the use of high-throughput analyses in hypoxia screening of spheroids. Furthermore, we examine the use of mathematical modelling of spheroids to understand more fully the hypoxic tumour microenvironment.
Collapse
Affiliation(s)
- Russell Leek
- Nuffield Division of Clinical Laboratory Sciences, Department of Oncology, University of Oxford, Oxford, OX3 9DU, UK
| | - David Robert Grimes
- Gray Laboratory, Cancer Research UK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, off Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Adrian L Harris
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Alan McIntyre
- Cancer Biology, Division of Cancer and Stem Cells, University of Nottingham, QMC, D Floor, West Block, W/D/1374, Nottingham, NG7 2UH, UK.
| |
Collapse
|
88
|
Pereira PMR, Berisha N, Bhupathiraju NVSDK, Fernandes R, Tomé JPC, Drain CM. Cancer cell spheroids are a better screen for the photodynamic efficiency of glycosylated photosensitizers. PLoS One 2017; 12:e0177737. [PMID: 28545086 PMCID: PMC5435229 DOI: 10.1371/journal.pone.0177737] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 05/02/2017] [Indexed: 01/18/2023] Open
Abstract
Photodynamic Therapy (PDT) relies on the use of non-toxic photosensitizers that are locally and selectively activated by light to induce cell death or apoptosis through reactive oxygen species generation. The conjugation of porphyrinoids with sugars that target cancer is increasingly viewed as an effective way to increase the selectivity of PDT. To date, in vitro PDT efficacy is mostly screened using two-dimensional monolayer cultures. Compared to monolayer cultures, three-dimensional spheroid cultures have unique spatial distributions of nutrients, metabolites, oxygen and signalling molecules; therefore better mimic in vivo conditions. We obtained 0.05 mm3 spheroids with four different human tumor cell lines (HCT-116, MCF-7, UM-UC-3 and HeLa) with appropriate sizes for screening PDT agents. We observed that detachment from monolayer culture and growth as tumor spheroids was accompanied by changes in glucose metabolism, endogenous ROS levels, galectin-1 and glucose transporter GLUT1 protein levels. We compared the phototoxic responses of a porphyrin conjugated with four glucose molecules (PorGlu4) in monolayer and spheroid cultures. The uptake and phototoxicity of PorGlu4 is highly dependent on the monolayer versus spheroid model used and on the different levels of GLUT1 protein expressed by these in vitro platforms. This study demonstrates that HCT-116, MCF-7, UM-UC-3 and HeLa spheroids afford a more rational platform for the screening of new glycosylated-photosensitizers compared to monolayer cultures of these cancer cells.
Collapse
Affiliation(s)
- Patrícia M R Pereira
- QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Department of Chemistry, Hunter College of the City University of New York, New York, New York, United States of America
| | - Naxhije Berisha
- Department of Chemistry, Hunter College of the City University of New York, New York, New York, United States of America
| | - N V S Dinesh K Bhupathiraju
- Department of Chemistry, Hunter College of the City University of New York, New York, New York, United States of America
| | - Rosa Fernandes
- IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - João P C Tomé
- QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Charles Michael Drain
- Department of Chemistry, Hunter College of the City University of New York, New York, New York, United States of America
- Graduate Center of the City University of New York, New York, New York, United States of America
- The Rockefeller University, New York, New York, United States of America
| |
Collapse
|
89
|
O’Hara T, Seddon B, O’Connor A, McClean S, Singh B, Iwuoha E, Fuku X, Dempsey E. Quantum Dot Nanotoxicity Investigations Using Human Lung Cells and TOXOR Electrochemical Enzyme Assay Methodology. ACS Sens 2017; 2:165-171. [PMID: 28722443 DOI: 10.1021/acssensors.6b00673] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent studies have suggested that certain nanomaterials can interfere with optically based cytotoxicity assays resulting in underestimations of nanomaterial toxicity. As a result there has been growing interest in the use of whole cell electrochemical biosensors for nanotoxicity applications. Herein we report application of an electrochemical cytotoxicity assay developed in house (TOXOR) in the evaluation of toxic effects of mercaptosuccinic acid capped cadmium telluride quantum dots (MSA capped CdTe QDs), toward mammalian cells. MSA capped CdTe QDs were synthesized, characterized, and their cytotoxicity toward A549 human lung epithelial cells investigated. The internalization of QDs within cells was scrutinized via confocal microscopy. The cytotoxicity assay is based on the measurement of changes in cellular enzyme acid phosphatase upon 24 h exposure to QDs. Acid phosphatase catalyzes dephosphorylation of 2-naphthyl phosphate to 2-naphthol (determined by chronocoulometry) and is indicative of metabolic activity in cells. The 24 h IC50 (concentration resulting in 50% reduction in acid phosphatase activity) value for MSA capped CdTe QDs was found to be 118 ± 49 μg/mL using the TOXOR assay and was in agreement with the MTT assay (157 ± 31 μg/mL). Potential uses of this electrochemical assay include the screening of nanomaterials, environmental toxins, in addition to applications in the pharmaceutical, food, and health sectors.
Collapse
Affiliation(s)
| | | | | | | | | | - Emmanuel Iwuoha
- SensorLab,
Department of Chemistry, University of the Western Cape, Private Bag
X17, Bellville, 7535, South Africa
| | - Xolile Fuku
- SensorLab,
Department of Chemistry, University of the Western Cape, Private Bag
X17, Bellville, 7535, South Africa
| | | |
Collapse
|
90
|
Ivanov DP, Grabowska AM, Garnett MC. High-Throughput Spheroid Screens Using Volume, Resazurin Reduction, and Acid Phosphatase Activity. Methods Mol Biol 2017; 1601:43-59. [PMID: 28470516 DOI: 10.1007/978-1-4939-6960-9_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mainstream adoption of physiologically relevant three-dimensional models has been slow in the last 50 years due to long, manual protocols with poor reproducibility, high price, and closed commercial platforms. This chapter describes high-throughput, low-cost, open methods for spheroid viability assessment which use readily available reagents and open-source software to analyze spheroid volume, metabolism, and enzymatic activity. We provide two ImageJ macros for automated spheroid size determination-for both single images and images in stacks. We also share an Excel template spreadsheet allowing users to rapidly process spheroid size data, analyze plate uniformity (such as edge effects and systematic seeding errors), detect outliers, and calculate dose-response. The methods would be useful to researchers in preclinical and translational research planning to move away from simplistic monolayer studies and explore 3D spheroid screens for drug safety and efficacy without substantial investment in money or time.
Collapse
Affiliation(s)
- Delyan P Ivanov
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK.
| | - Anna M Grabowska
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | | |
Collapse
|
91
|
Lazzari G, Couvreur P, Mura S. Multicellular tumor spheroids: a relevant 3D model for the in vitro preclinical investigation of polymer nanomedicines. Polym Chem 2017. [DOI: 10.1039/c7py00559h] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Application of 3D multicellular tumor spheroids to the investigation of polymer nanomedicines.
Collapse
Affiliation(s)
- Gianpiero Lazzari
- Institut Galien Paris-Sud
- UMR 8612
- CNRS
- Univ Paris-Sud
- Université Paris-Saclay
| | - Patrick Couvreur
- Institut Galien Paris-Sud
- UMR 8612
- CNRS
- Univ Paris-Sud
- Université Paris-Saclay
| | - Simona Mura
- Institut Galien Paris-Sud
- UMR 8612
- CNRS
- Univ Paris-Sud
- Université Paris-Saclay
| |
Collapse
|
92
|
Liu J, Meng T, Yuan M, Wen L, Cheng B, Liu N, Huang X, Hong Y, Yuan H, Hu F. MicroRNA-200c delivered by solid lipid nanoparticles enhances the effect of paclitaxel on breast cancer stem cell. Int J Nanomedicine 2016; 11:6713-6725. [PMID: 28003747 PMCID: PMC5161334 DOI: 10.2147/ijn.s111647] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background One of the major obstacles in the treatment of breast cancer is breast cancer stem cells (BCSC) which are resistant to standard chemotherapeutic drugs. It has been proven that microRNA-200c (miR-200c) can restore sensitivity to microtubule-targeting chemotherapeutic drugs by reducing the expression of class III β-tubulin. In this study, combination therapy with miR-200c and paclitaxel (PTX) mediated by lipid nanoparticles was investigated as an alternative strategy against BCSC. Materials and methods A cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane was strategically selected to formulate solid lipid nanoparticles (SLN) for miR-200c delivery. Nanostructured lipid carriers (NLC) with 20 wt% oleic acid were prepared for PTX delivery. Mammospheres, which gained the characteristics of BCSC, were used as a cell model to evaluate the efficiency of combination therapy. Results The cationic SLN could condense anionic miRNA to form SLN/miRNA complexes via charge interactions and could protect miRNA from degradation by ribonuclease. SLN/miR-200c complexes achieved 11.6-fold expression of miR-200c after incubation for 24 hours, compared with that of Lipofectamine™ 2000/miR-200c complexes (*P<0.05). Intracellular drug release assay proved that miRNA can be released from SLN/miRNA complexes efficiently in 12 hours after cellular uptake. After BCSC were transfected with SLN/miR-200c, the expression of class III β-tubulin was effectively downregulated and the cellular cytotoxicity of PTX-loaded NLC (NLC/PTX) against BCSC was enhanced significantly (**P<0.01). Conclusion The results indicated that the cationic SLN could serve as a promising carrier for miRNA delivery. In addition, the combination therapy of miR-200c and PTX revealed a novel therapeutic strategy for the treatment of BCSC.
Collapse
Affiliation(s)
- Jingwen Liu
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou
| | - Tingting Meng
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou
| | - Ming Yuan
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou
| | - Lijuan Wen
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou
| | - Bolin Cheng
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou
| | - Na Liu
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou
| | - Xuan Huang
- Department of Pharmacy, School of Medicine Science, Jiaxing University, Jiaxing
| | - Yun Hong
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Hong Yuan
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou
| | - Fuqiang Hu
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou
| |
Collapse
|
93
|
3D tumor spheroids: an overview on the tools and techniques used for their analysis. Biotechnol Adv 2016; 34:1427-1441. [PMID: 27845258 DOI: 10.1016/j.biotechadv.2016.11.002] [Citation(s) in RCA: 533] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 11/03/2016] [Accepted: 11/10/2016] [Indexed: 12/14/2022]
Abstract
In comparison with 2D cell culture models, 3D spheroids are able to accurately mimic some features of solid tumors, such as their spatial architecture, physiological responses, secretion of soluble mediators, gene expression patterns and drug resistance mechanisms. These unique characteristics highlight the potential of 3D cellular aggregates to be used as in vitro models for screening new anticancer therapeutics, both at a small and large scale. Nevertheless, few reports have focused on describing the tools and techniques currently available to extract significant biological data from these models. Such information will be fundamental to drug and therapeutic discovery process using 3D cell culture models. The present review provides an overview of the techniques that can be employed to characterize and evaluate the efficacy of anticancer therapeutics in 3D tumor spheroids.
Collapse
|
94
|
Pereira JFS, Awatade NT, Loureiro CA, Matos P, Amaral MD, Jordan P. The third dimension: new developments in cell culture models for colorectal research. Cell Mol Life Sci 2016; 73:3971-89. [PMID: 27147463 PMCID: PMC11108567 DOI: 10.1007/s00018-016-2258-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/20/2016] [Accepted: 04/28/2016] [Indexed: 12/23/2022]
Abstract
Cellular models are important tools in various research areas related to colorectal biology and associated diseases. Herein, we review the most widely used cell lines and the different techniques to grow them, either as cell monolayer, polarized two-dimensional epithelia on membrane filters, or as three-dimensional spheres in scaffold-free or matrix-supported culture conditions. Moreover, recent developments, such as gut-on-chip devices or the ex vivo growth of biopsy-derived organoids, are also discussed. We provide an overview on the potential applications but also on the limitations for each of these techniques, while evaluating their contribution to provide more reliable cellular models for research, diagnostic testing, or pharmacological validation related to colon physiology and pathophysiology.
Collapse
Affiliation(s)
- Joana F S Pereira
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisbon, Portugal
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Nikhil T Awatade
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Cláudia A Loureiro
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisbon, Portugal
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Paulo Matos
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisbon, Portugal
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Margarida D Amaral
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Peter Jordan
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisbon, Portugal.
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
95
|
Eynali S, Khoei S, Khoee S, Esmaelbeygi E. Evaluation of the cytotoxic effects of hyperthermia and 5-fluorouracil-loaded magnetic nanoparticles on human colon cancer cell line HT-29. Int J Hyperthermia 2016; 33:327-335. [DOI: 10.1080/02656736.2016.1243260] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Samira Eynali
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samideh Khoei
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Razi Drug Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Sepideh Khoee
- Department of Polymer Chemistry, School of Sciences, University of Tehran, Tehran, Iran
| | - Elaheh Esmaelbeygi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
96
|
In vitro and in vivo antitumor effects of the VO-chrysin complex on a new three-dimensional osteosarcoma spheroids model and a xenograft tumor in mice. J Biol Inorg Chem 2016; 21:1009-1020. [PMID: 27696106 DOI: 10.1007/s00775-016-1397-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/16/2016] [Indexed: 01/25/2023]
Abstract
Osteosarcoma (OS) is the most common primary tumor of bone, occurring predominantly in the second decade of life. High-dose cytotoxic chemotherapy and surgical resection have improved prognosis, with long-term survival for patients with localized disease. Vanadium is an ultra-trace element that after being absorbed accumulates in bone. Besides, vanadium compounds have been studied during recent years to be considered as representative of a new class of non-platinum antitumor agents. Moreover, flavonoids are a wide family of polyphenolic compounds that display many interesting biological effects. Since coordination of ligands to metals can improve the pharmacological properties, we report herein, for the first time, the in vitro and in vivo effects of an oxidovanadium(IV) complex with the flavonoid chrysin on the new 3D human osteosarcoma and xenograft osteosarcoma mice models. The pharmacological results show that VOchrys inhibited the cell viability affecting the shape and volume of the spheroids and VOchrys suppressed MG-63 tumor growth in the nude mice without inducing toxicity and side effects. As a whole, the results presented herein demonstrate that the antitumor action of the complex was very promissory on human osteosarcoma models, whereby suggesting that VOchrys is a potentially good candidate for future use in alternative antitumor treatments.
Collapse
|
97
|
Anticancer activity of some [1,2,4]triazepino[2,3-a] quinazoline derivatives: monolayer and multicellular spheroids in vitro models. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1639-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
98
|
Champa D, Orlacchio A, Patel B, Ranieri M, Shemetov AA, Verkhusha VV, Cuervo AM, Di Cristofano A. Obatoclax kills anaplastic thyroid cancer cells by inducing lysosome neutralization and necrosis. Oncotarget 2016; 7:34453-71. [PMID: 27144341 PMCID: PMC5085168 DOI: 10.18632/oncotarget.9121] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/16/2016] [Indexed: 12/03/2022] Open
Abstract
Poorly differentiated and anaplastic thyroid carcinomas are very aggressive, almost invariably lethal neoplasms for which no effective treatment exists. These tumors are intrinsically resistant to cell death, even when their driver oncogenic signaling pathways are inhibited.We have undertaken a detailed analysis, in mouse and human thyroid cancer cells, of the mechanism through which Obatoclax, a pan-inhibitor of the anti-apoptotic proteins of the BCL2 family, effectively reduces tumor growth in vitro and in vivo.We demonstrate that Obatoclax does not induce apoptosis, but rather necrosis of thyroid cancer cells, and that non-transformed thyroid cells are significantly less affected by this compound. Surprisingly, we show that Obatoclax rapidly localizes to the lysosomes and induces loss of acidification, block of lysosomal fusion with autophagic vacuoles, and subsequent lysosomal permeabilization. Notably, prior lysosome neutralization using different V-ATPase inhibitors partially protects cancer cells from the toxic effects of Obatoclax. Although inhibition of autophagy does not affect Obatoclax-induced cell death, selective down-regulation of ATG7, but not of ATG5, partially impairs Obatoclax effects, suggesting the existence of autophagy-independent functions for ATG7. Strikingly, Obatoclax killing activity depends only on its accumulation in the lysosomes, and not on its interaction with BCL2 family members.Finally, we show that also other lysosome-targeting compounds, Mefloquine and LLOMe, readily induce necrosis in thyroid cancer cells, and that Mefloquine significantly impairs tumor growth in vivo, highlighting a clear vulnerability of these aggressive, apoptosis-resistant tumors that can be therapeutically exploited.
Collapse
Affiliation(s)
- Devora Champa
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Arturo Orlacchio
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Bindi Patel
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michela Ranieri
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Anton A Shemetov
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Vladislav V Verkhusha
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Antonio Di Cristofano
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
99
|
The proteasome deubiquitinase inhibitor VLX1570 shows selectivity for ubiquitin-specific protease-14 and induces apoptosis of multiple myeloma cells. Sci Rep 2016; 6:26979. [PMID: 27264969 PMCID: PMC4893612 DOI: 10.1038/srep26979] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/26/2016] [Indexed: 12/29/2022] Open
Abstract
Inhibition of deubiquitinase (DUB) activity is a promising strategy for cancer therapy. VLX1570 is an inhibitor of proteasome DUB activity currently in clinical trials for relapsed multiple myeloma. Here we show that VLX1570 binds to and inhibits the activity of ubiquitin-specific protease-14 (USP14) in vitro, with comparatively weaker inhibitory activity towards UCHL5 (ubiquitin-C-terminal hydrolase-5). Exposure of multiple myeloma cells to VLX1570 resulted in thermostabilization of USP14 at therapeutically relevant concentrations. Transient knockdown of USP14 or UCHL5 expression by electroporation of siRNA reduced the viability of multiple myeloma cells. Treatment of multiple myeloma cells with VLX1570 induced the accumulation of proteasome-bound high molecular weight polyubiquitin conjugates and an apoptotic response. Sensitivity to VLX1570 was moderately affected by altered drug uptake, but was unaffected by overexpression of BCL2-family proteins or inhibitors of caspase activity. Finally, treatment with VLX1570 was found to lead to extended survival in xenograft models of multiple myeloma. Our findings demonstrate promising antiproliferative activity of VLX1570 in multiple myeloma, primarily associated with inhibition of USP14 activity.
Collapse
|
100
|
Wang JZ, Zhu YX, Ma HC, Chen SN, Chao JY, Ruan WD, Wang D, Du FG, Meng YZ. Developing multi-cellular tumor spheroid model (MCTS) in the chitosan/collagen/alginate (CCA) fibrous scaffold for anticancer drug screening. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:215-25. [DOI: 10.1016/j.msec.2016.01.045] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 12/23/2015] [Accepted: 01/19/2016] [Indexed: 01/17/2023]
|