51
|
Abstract
Dysregulation of lymphocyte function, accumulation of autoantibodies and defective clearance of circulating immune complexes and apoptotic cells are hallmarks of systemic lupus erythematosus (SLE). Moreover, it is now evident that an intricate interplay between the adaptive and innate immune systems contributes to the pathogenesis of SLE, ultimately resulting in chronic inflammation and organ damage. Platelets circulate in the blood and are chiefly recognized for their role in the prevention of bleeding and promotion of haemostasis; however, accumulating evidence points to a role for platelets in both adaptive and innate immunity. Through a broad repertoire of receptors, platelets respond promptly to immune complexes, complement and damage-associated molecular patterns, and represent a major reservoir of immunomodulatory molecules in the circulation. Furthermore, evidence suggests that platelets are activated in patients with SLE, and that they could contribute to the circulatory autoantigenic load through the release of microparticles and mitochondrial antigens. Herein, we highlight how platelets contribute to the immune response and review evidence implicating platelets in the pathogenesis of SLE.
Collapse
|
52
|
Fei M, Xiang L, Chai X, Jin J, You T, Zhao Y, Ruan C, Hao Y, Zhu L. Plasma soluble C-type lectin-like receptor-2 is associated with the risk of coronary artery disease. Front Med 2019; 14:81-90. [PMID: 31280468 DOI: 10.1007/s11684-019-0692-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/03/2019] [Indexed: 01/10/2023]
Abstract
Accumulating evidence suggests that C-type lectin-like receptor-2 (CLEC-2) plays an important role in atherothrombosis. In this case-control study, we investigated the association between CLEC-2 and incidence of coronary artery disease (CAD). A total of 216 patients, including 14 cases of stable angina pectoris (SAP, non-ACS) and 202 cases of acute coronary syndrome (ACS), and 89 non-CAD control subjects were enrolled. Plasma levels of soluble CLEC-2 (sCLEC-2) were measured using the enzyme-linked immunosorbent assay (ELISA). Compared with the control group (65.69 (55.36-143.22) pg/mL), the plasma levels of sCLEC-2 were significantly increased in patients with CAD (133.67 (88.76-220.09) pg/mL) and ACS (134.16 (88.88-225.81) pg/mL). The multivariate adjusted odds ratios (95% confidence interval) of CAD reached 2.01 (1.52-2.66) (Ptrend < 0.001) for each 1-quartile increase in sCLEC-2. Restricted cubic splines showed a positive dose-response association between sCLEC2 and CAD incidence (Plinearity < 0.001). The addition of sCLEC-2 to conventional risk factors improved the C statistic (0.821 vs. 0.761, P = 0.004) and reclassification ability (net reclassification improvement: 57.45%, P < 0.001; integrated discrimination improvement: 8.27%, P < 0.001) for CAD. In conclusion, high plasma sCLEC-2 is independently associated with CAD risk, and the prognostic value of sCLEC-2 may be evaluated in future prospective studies.
Collapse
Affiliation(s)
- Min Fei
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China.,Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou, 215006, China
| | - Li Xiang
- Department of Cardiology, The Second Affiliated Hospital, Soochow University, Suzhou, 215004, China
| | - Xichen Chai
- Department of Cardiology, The First Affiliated Hospital, Soochow University, Suzhou, 215006, China
| | - Jingchun Jin
- Department of Blood Transfusion, The First Affiliated Hospital, China Medical University, Shenyang, 110001, China
| | - Tao You
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China.,Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou, 215006, China
| | - Yiming Zhao
- Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou, 215006, China
| | - Changgeng Ruan
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China.,Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou, 215006, China
| | - Yiwen Hao
- Department of Blood Transfusion, The First Affiliated Hospital, China Medical University, Shenyang, 110001, China.
| | - Li Zhu
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China. .,Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou, 215006, China.
| |
Collapse
|
53
|
Soluble CLEC-2 is generated independently of ADAM10 and is increased in plasma in acute coronary syndrome: comparison with soluble GPVI. Int J Hematol 2019; 110:285-294. [PMID: 31165998 DOI: 10.1007/s12185-019-02680-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 10/26/2022]
Abstract
Soluble forms of platelet membrane proteins are released upon platelet activation. We previously reported that soluble C-type lectin-like receptor 2 (sCLEC-2) is released as a shed fragment (Shed CLEC-2) or as a whole molecule associated with platelet microparticles (MP-CLEC-2). In contrast, soluble glycoprotein VI (sGPVI) is released as a shed fragment (Shed GPVI), but not as a microparticle-associated form (MP-GPVI). However, mechanism of sCLEC-2 generation or plasma sCLEC-2 has not been fully elucidated. Experiments using metalloproteinase inhibitors/stimulators revealed that ADAM10/17 induce GPVI shedding, but not CLEC-2 shedding, and that shed CLEC-2 was partially generated by MMP-2. Although MP-GPVI was not generated, it was generated in the presence of the ADAM10 inhibitor. Moreover, antibodies against the cytoplasmic or extracellular domain of GPVI revealed the presence of the GPVI cytoplasmic domain, but not the extracellular domain, in the microparticles. These findings suggest that most of the GPVI on microparticles are induced to shed by ADAM10; MP-GPVI is thus undetected. Plasma sCLEC-2 level was 1/32 of plasma sGPVI level in normal subjects, but both soluble proteins significantly increased in plasma of patients with acute coronary syndrome. Thus, sCLEC-2 and sGPVI are released by different mechanisms and released in vivo upon platelet activation.
Collapse
|
54
|
Weller CD, Gardiner EE, Arthur JF, Southey M, Andrews RK. Autologous platelet-rich plasma for healing chronic venous leg ulcers: Clinical efficacy and potential mechanisms. Int Wound J 2019; 16:788-792. [PMID: 30864220 PMCID: PMC7949463 DOI: 10.1111/iwj.13098] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/26/2019] [Indexed: 12/13/2022] Open
Abstract
The overall quality of evidence of autologous platelet-rich plasma (PRP) for treating chronic wounds remains low. While further well-designed clinical studies are clearly required to convincingly demonstrate the efficacy of autologous PRP in improved healing of venous leg ulcers (VLUs) and other chronic wounds, there is also an increasing need to better define the underlying mechanisms of action and whether positive outcomes can be predicted based on the analysis of PRP. This brief review will discuss the current understanding of autologous PRP in VLUs and whether molecular evaluation of PRP at the time of collection could potentially be informative to clinical outcomes. Benefits of the autologous PRP treatment strategy include that PRP is easily accessible and is relatively inexpensive and safe. Better understanding of the mechanisms involved could improve treatment, enable supplementation, and/or lead to gains in product development. Analysis of PRP could also add value to future clinical trials on efficacy and potentially personalised treatment regimens.
Collapse
Affiliation(s)
- Carolina D. Weller
- School of Nursing and MidwiferyMonash UniversityMelbourneVictoriaAustralia
| | - Elizabeth E. Gardiner
- Department of Cancer Biology and Therapeutics, John Curtin School of Medical ResearchAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Jane F. Arthur
- Australian Centre for Blood DiseasesMonash UniversityMelbourneVictoriaAustralia
| | - Melissa Southey
- Precision MedicineMonash UniversityMelbourneVictoriaAustralia
- Cancer Epidemiology and Intelligence DivisionCancer Council VictoriaMelbourneVictoriaAustralia
- Department of Clinical PathologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Robert K. Andrews
- Australian Centre for Blood DiseasesMonash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
55
|
Alarcón M. Generation of platelet-derived microparticles through the activation of the toll-like receptor 4. Heliyon 2019; 5:e01486. [PMID: 31008410 PMCID: PMC6458467 DOI: 10.1016/j.heliyon.2019.e01486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/28/2019] [Accepted: 04/03/2019] [Indexed: 12/28/2022] Open
Abstract
Introduction Infection from different bacterial may increase the risk of thrombosis and atherosclerosis risk by production and secretion of many proinflammatory factors. Human platelets have toll-like receptor 4 (TLR4), the principal receptor for lipopolysaccharide (LPS). The activation of platelet produces Platelet-derived Microparticles (PDMPs) measuring less than 1.0 micron (that are very abundant in circulation >90%), which are associated with the development of Cardiovascular Diseases (CVDs), the leading cause of death in the world. Objectives Experiments were designed to evaluate the generation of pro-thrombogenic microparticles in vitro on platelets via TLR4 activation. Methods Platelet-rich plasma and washed platelets from healthy volunteers were incubated for the generation of PDMPs. The best source for the generation of microparticles was washed platelets. Then the washed platelets were incubated for 15 minutes with ultrapure Escherichia coli LPS (0–9 μg/mL) followed by activation with ADP (1 μM, subaggregant concentration), centrifuged for 60 minutes and analyzed by flow cytometry. Results Incubating platelets with LPS (9 μg/mL) and ADP (1 μM) produced a 34-fold increase in PDMPs generation. Finally, we evaluated this protocol to detect the inhibition of PDMPs generation, washed platelets were incubated with acetylsalicylic acid (10 μM) and an inhibition of 7.7-fold in PDMPs generation for activation of TLR4 was found. Conclusion A new and easy protocol for PDMPs generation and analysis by Flow Cytometry is established. In the future it could be used to determine the association of PDMPs with different pathologies.
Collapse
Affiliation(s)
- M Alarcón
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Research Center for Aging, Universidad de Talca, 2 Norte 685, Talca, Post code 3460000, Chile
| |
Collapse
|
56
|
Kardeby C, Fälker K, Haining EJ, Criel M, Lindkvist M, Barroso R, Påhlsson P, Ljungberg LU, Tengdelius M, Rainger GE, Watson S, Eble JA, Hoylaerts MF, Emsley J, Konradsson P, Watson SP, Sun Y, Grenegård M. Synthetic glycopolymers and natural fucoidans cause human platelet aggregation via PEAR1 and GPIbα. Blood Adv 2019; 3:275-287. [PMID: 30700416 PMCID: PMC6373755 DOI: 10.1182/bloodadvances.2018024950] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/27/2018] [Indexed: 12/14/2022] Open
Abstract
Fucoidans are sulfated fucose-based polysaccharides that activate platelets and have pro- and anticoagulant effects; thus, they may have therapeutic value. In the present study, we show that 2 synthetic sulfated α-l-fucoside-pendant glycopolymers (with average monomeric units of 13 and 329) and natural fucoidans activate human platelets through a Src- and phosphatidylinositol 3-kinase (PI3K)-dependent and Syk-independent signaling cascade downstream of the platelet endothelial aggregation receptor 1 (PEAR1). Synthetic glycopolymers and natural fucoidan stimulate marked phosphorylation of PEAR1 and Akt, but not Syk. Platelet aggregation and Akt phosphorylation induced by natural fucoidan and synthetic glycopolymers are blocked by a monoclonal antibody to PEAR1. Direct binding of sulfated glycopolymers to epidermal like growth factor (EGF)-like repeat 13 of PEAR1 was shown by avidity-based extracellular protein interaction screen technology. In contrast, synthetic glycopolymers and natural fucoidans activate mouse platelets through a Src- and Syk-dependent pathway regulated by C-type lectin-like receptor 2 (CLEC-2) with only a minor role for PEAR1. Mouse platelets lacking the extracellular domain of GPIbα and human platelets treated with GPIbα-blocking antibodies display a reduced aggregation response to synthetic glycopolymers. We found that synthetic sulfated glycopolymers bind directly to GPIbα, substantiating that GPIbα facilitates the interaction of synthetic glycopolymers with CLEC-2 or PEAR1. Our results establish PEAR1 as the major signaling receptor for natural fucose-based polysaccharides and synthetic glycopolymers in human, but not in mouse, platelets. Sulfated α-l-fucoside-pendant glycopolymers are unique tools for further investigation of the physiological role of PEAR1 in platelets and beyond.
Collapse
Affiliation(s)
- Caroline Kardeby
- Cardiovascular Research Centre, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Knut Fälker
- Cardiovascular Research Centre, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Elizabeth J Haining
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Maarten Criel
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Madelene Lindkvist
- Cardiovascular Research Centre, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Ruben Barroso
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| | - Peter Påhlsson
- Division of Cell Biology, Department of Clinical and Experimental Medicine, and
| | - Liza U Ljungberg
- Cardiovascular Research Centre, School of Medical Sciences, Örebro University, Örebro, Sweden
| | | | - G Ed Rainger
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Stephanie Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany; and
| | - Marc F Hoylaerts
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Jonas Emsley
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, The Midlands, United Kingdom
- Division of Biomolecular Science and Medicinal Chemistry, Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Peter Konradsson
- Division of Organic Chemistry, Linköping University, Linköping, Sweden
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| | - Yi Sun
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| | - Magnus Grenegård
- Cardiovascular Research Centre, School of Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
57
|
Bergsma A, Ganguly SS, Wiegand ME, Dick D, Williams BO, Miranti CK. Regulation of cytoskeleton and adhesion signaling in osteoclasts by tetraspanin CD82. Bone Rep 2019; 10:100196. [PMID: 30788390 PMCID: PMC6369370 DOI: 10.1016/j.bonr.2019.100196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 01/18/2019] [Accepted: 01/28/2019] [Indexed: 12/11/2022] Open
Abstract
We used a myeloid-specific Cre to conditionally delete CD82 in mouse osteoclasts and their precursors. In contrast to global loss of CD82 (gKO), conditional loss of CD82 (cKO) in osteoclasts does not affect cortical bone, osteoblasts, or adipocytes. CD82 loss results in greater trabecular volume and trabecular number but reduced trabecular space in 6-month old male mice. Though this trend is present in females it did not reach significance; whereas there was an increase in osteoclast numbers and eroded surface area only in female cKO mice. In vitro, there is an increase in osteoclast fusion and defects in actin assembly in both gKO and cKO mice, irrespective of sex. This is accompanied by altered osteoclast morphology and decreased release of CTX in vitro. Integrin αvβ3 expression is reduced, while integrin β1 is increased. Signaling to Src, Syk, and Vav are also compromised. We further discovered that expression of Clec2 and its ligand, Podoplanin, molecules that also signal to Syk and Vav, are increased in differentiated osteoclasts. Loss of CD82 reduces their expression. Thus, CD82 is required for correct assembly of the cytoskeleton and to limit osteoclast fusion, both needed for normal osteoclast function.
Collapse
Affiliation(s)
- Alexis Bergsma
- Center for Cancer and Cell Biology, Program for Skeletal Disease and Tumor Microenvironment, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Sourik S Ganguly
- Center for Cancer and Cell Biology, Program for Skeletal Disease and Tumor Microenvironment, Van Andel Research Institute, Grand Rapids, MI, USA.,Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Mollie E Wiegand
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Daniel Dick
- Center for Cancer and Cell Biology, Program for Skeletal Disease and Tumor Microenvironment, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Bart O Williams
- Center for Cancer and Cell Biology, Program for Skeletal Disease and Tumor Microenvironment, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Cindy K Miranti
- Center for Cancer and Cell Biology, Program for Skeletal Disease and Tumor Microenvironment, Van Andel Research Institute, Grand Rapids, MI, USA.,Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
58
|
Rosa JG, de Albuquerque CZ, Mattaraia VGDM, Santoro ML. Comparative study of platelet aggregation and secretion induced by Bothrops jararaca snake venom and thrombin. Toxicon 2019; 159:50-60. [PMID: 30677414 DOI: 10.1016/j.toxicon.2019.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/04/2019] [Accepted: 01/10/2019] [Indexed: 12/28/2022]
Abstract
Victims of Bothrops jararaca snakebites manifest bleedings, blood incoagulability, platelet dysfunction, and thrombocytopenia, and the latter has been directly implicated in the genesis of hemorrhagic diathesis. We addressed herein the direct effects of B. jararaca venom (BjV) on ex vivo platelet aggregation and granule secretion in washed human and mouse platelets. BjV directly aggregated platelets, but the extent of platelet aggregation was lower in human than mouse platelets. On the other hand, BjV (24.4 μg/mL) and thrombin (0.1 U/mL) induced a similar extent of ATP and platelet factor 4 (PF4) secretion in both species. BjV-induced platelet aggregation was independent of the platelet dense body content, as in pearl mouse (Ap3b1-/-) platelets, whose dense bodies are deficient in adenine nucleotides and serotonin, the extent of platelet aggregation was superior to that induced in BALB/c or C57BL/6 mice. BjV-induced β-hexosaminidase secretion in human platelets was less intense than that evoked by thrombin, and the contrary was observed in mouse platelets. Irreversible inactivation of platelet cyclooxygenase 1 by acetylsalicylic acid did not reduce BjV-induced platelet aggregation. BjV exerted no cytotoxic activity in human and mouse platelets, as evaluated by lactate dehydrogenase loss. Eptifibatide, which inhibits the binding of fibrinogen to platelet glycoprotein complex GPIIb-IIIa, differently blocked BjV-induced platelet aggregation in mice and humans. BjV-induced platelet aggregation did not depend on snake venom serine proteinases nor metalloproteinases in mice, whilst serine proteinases were rather important for platelet aggregation in humans. Our results show that BjV induces direct activation, aggregation, and secretion in human and mouse platelets, but it exerts diverse responses in them, which should be considered in comparative studies to understand pathophysiological events during Bothrops envenomation.
Collapse
Affiliation(s)
- Jaqueline Gomes Rosa
- Instituto Butantan, Laboratório de Fisiopatologia, Av. Dr. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | - Marcelo Larami Santoro
- Instituto Butantan, Laboratório de Fisiopatologia, Av. Dr. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
59
|
Soluble GPVI is elevated in injured patients: shedding is mediated by fibrin activation of GPVI. Blood Adv 2019; 2:240-251. [PMID: 29437639 DOI: 10.1182/bloodadvances.2017011171] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 12/13/2017] [Indexed: 12/18/2022] Open
Abstract
Soluble glycoprotein VI (sGPVI) is shed from the platelet surface and is a marker of platelet activation in thrombotic conditions. We assessed sGPVI levels together with patient and clinical parameters in acute and chronic inflammatory conditions, including patients with thermal injury and inflammatory bowel disease and patients admitted to the intensive care unit (ICU) for elective cardiac surgery, trauma, acute brain injury, or prolonged ventilation. Plasma sGPVI was measured by enzyme-linked immunosorbent assay and was elevated on day 14 after thermal injury, and was higher in patients who developed sepsis. sGPVI levels were associated with sepsis, and the value for predicting sepsis was increased in combination with platelet count and Abbreviated Burn Severity Index. sGPVI levels positively correlated with levels of D-dimer (a fibrin degradation product) in ICU patients and patients with thermal injury. sGPVI levels in ICU patients at admission were significantly associated with 28- and 90-day mortality independent of platelet count. sGPVI levels in patients with thermal injury were associated with 28-day mortality at days 1, 14, and 21 when adjusting for platelet count. In both cohorts, sGPVI associations with mortality were stronger than D-dimer levels. Mechanistically, release of GPVI was triggered by exposure of platelets to polymerized fibrin, but not by engagement of G protein-coupled receptors by thrombin, adenosine 5'-diphosphate, or thromboxane mimetics. Enhanced fibrin production in these patients may therefore contribute to the observed elevated sGPVI levels. sGPVI is an important platelet-specific marker for platelet activation that predicts sepsis progression and mortality in injured patients.
Collapse
|
60
|
Cunin P, Nigrovic PA. Megakaryocytes as immune cells. J Leukoc Biol 2019; 105:1111-1121. [PMID: 30645026 DOI: 10.1002/jlb.mr0718-261rr] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 12/19/2022] Open
Abstract
Platelets play well-recognized roles in inflammation, but their cell of origin-the megakaryocyte-is not typically considered an immune lineage. Megakaryocytes are large polyploid cells most commonly identified in bone marrow. Egress via sinusoids enables migration to the pulmonary capillary bed, where elaboration of platelets can continue. Beyond receptors involved in hemostasis and thrombosis, megakaryocytes express receptors that confer immune sensing capacity, including TLRs and Fc-γ receptors. They control the proliferation of hematopoietic cells, facilitate neutrophil egress from marrow, possess the capacity to cross-present antigen, and can promote systemic inflammation through microparticles rich in IL-1. Megakaryocytes internalize other hematopoietic lineages, especially neutrophils, in an intriguing cell-in-cell interaction termed emperipolesis. Together, these observations implicate megakaryocytes as direct participants in inflammation and immunity.
Collapse
Affiliation(s)
- Pierre Cunin
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter A Nigrovic
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine, Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
61
|
Rayes J, Watson SP, Nieswandt B. Functional significance of the platelet immune receptors GPVI and CLEC-2. J Clin Invest 2019; 129:12-23. [PMID: 30601137 DOI: 10.1172/jci122955] [Citation(s) in RCA: 208] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Although platelets are best known for their role in hemostasis, they are also crucial in development, host defense, inflammation, and tissue repair. Many of these roles are regulated by the immune-like receptors glycoprotein VI (GPVI) and C-type lectin receptor 2 (CLEC-2), which signal through an immunoreceptor tyrosine-based activation motif (ITAM). GPVI is activated by collagen in the subendothelial matrix, by fibrin and fibrinogen in the thrombus, and by a remarkable number of other ligands. CLEC-2 is activated by the transmembrane protein podoplanin, which is found outside of the vasculature and is upregulated in development, inflammation, and cancer, but there is also evidence for additional ligands. In this Review, we discuss the physiological and pathological roles of CLEC-2 and GPVI and their potential as targets in thrombosis and thrombo-inflammatory disorders (i.e., disorders in which inflammation plays a critical role in the ensuing thrombosis) relative to current antiplatelet drugs.
Collapse
Affiliation(s)
- Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, United Kingdom
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| |
Collapse
|
62
|
Rondina MT, Zimmerman GA. The Role of Platelets in Inflammation. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00028-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
63
|
Krishnan H, Miller WT, Blanco FJ, Goldberg GS. Src and podoplanin forge a path to destruction. Drug Discov Today 2019; 24:241-249. [DOI: 10.1016/j.drudis.2018.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/18/2018] [Accepted: 07/27/2018] [Indexed: 12/20/2022]
|
64
|
|
65
|
|
66
|
Deppermann C, Kubes P. Start a fire, kill the bug: The role of platelets in inflammation and infection. Innate Immun 2018; 24:335-348. [PMID: 30049243 PMCID: PMC6830908 DOI: 10.1177/1753425918789255] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/16/2018] [Accepted: 06/26/2018] [Indexed: 11/19/2022] Open
Abstract
Platelets are the main players in thrombosis and hemostasis; however they also play important roles during inflammation and infection. Through their surface receptors, platelets can directly interact with pathogens and immune cells. Platelets form complexes with neutrophils to modulate their capacities to produce reactive oxygen species or form neutrophil extracellular traps. Furthermore, they release microbicidal factors and cytokines that kill pathogens and influence the immune response, respectively. Platelets also maintain the vascular integrity during inflammation by a mechanism that is different from classical platelet activation. In this review we summarize the current knowledge about how platelets interact with the innate immune system during inflammation and infection and highlight recent advances in the field.
Collapse
Affiliation(s)
- Carsten Deppermann
- Calvin, Phoebe and Joan Snyder Institute for Chronic
Diseases, University of Calgary, Calgary, AB, Canada
| | - Paul Kubes
- Calvin, Phoebe and Joan Snyder Institute for Chronic
Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
67
|
Seyoum M, Enawgaw B, Melku M. Human blood platelets and viruses: defense mechanism and role in the removal of viral pathogens. Thromb J 2018; 16:16. [PMID: 30026673 PMCID: PMC6048695 DOI: 10.1186/s12959-018-0170-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/18/2018] [Indexed: 12/19/2022] Open
Abstract
Platelets are small non-nucleated cell fragments and the second most abundant cell that play crucial role in managing vascular integrity and regulating hemostasis. Recent finding shows, beyond its hemostatic function platelets also play a main role in fighting against pathogen including viruses. With their receptors, platelet interacts with viral pathogen and this interaction between platelets and viral pathogens result in activation of platelets. Activated platelet releases different molecules that have antiviral activity including kinocidins and other platelet microbicidal peptides. In addition, activated platelet has antiviral role by different mechanism including; phagocytosis of viral pathogen, produce reactive oxygen species and interact with and activate other immune cells. In other side, antiplatelet treatments are one of defending mechanism of viral pathogen. This narrative review summarizes what is known regarding the role of human platelets in fighting viral pathogen.
Collapse
Affiliation(s)
- Masresha Seyoum
- University of Gondar hospital, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
- Department of Hematology & Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Bamlaku Enawgaw
- Department of Hematology & Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Mulugeta Melku
- Department of Hematology & Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
68
|
Suzuki-Inoue K. Roles of the CLEC-2-podoplanin interaction in tumor progression. Platelets 2018; 29:1-7. [PMID: 29863945 DOI: 10.1080/09537104.2018.1478401] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/14/2018] [Accepted: 04/07/2018] [Indexed: 12/12/2022]
Abstract
Podoplanin is a type-I transmembrane sialomucin-like glycoprotein expressed on the surface of several kinds of tumor cells. The podoplanin receptor is a platelet activation receptor known as C-type lectin-like receptor 2 (CLEC-2), which has been identified as a receptor for the platelet-activating snake venom protein rhodocytin. CLEC-2 is highly expressed in platelets and megakaryocytes and expressed at lower levels in liver Kupffer cells. Podoplanin is expressed in certain types of tumor cells, including squamous cell carcinomas, seminomas, and brain tumors. Podoplanin is also expressed in a wide range of normal cells, including fibroblastic reticular cells in lymph nodes, kidney podocytes, and lymphatic endothelial cells, but not vascular endothelial cells. Metastasis of podoplanin-positive lung tumors injected from the tail vein is greatly inhibited in CLEC-2-depleted mice or in anti-podoplanin antibody-treated mice. These findings suggest that the CLEC-2-podoplanin interaction facilitates hematogenous tumor metastasis. Platelets may increase the survival of tumor cells by covering tumor cells and physically protecting them from shear stress or immune cells in the bloodstream. Alternatively, platelets may stimulate the epithelial-mesenchymal transition of tumor cells to facilitate their extravasation from blood vessels. Cell proliferation is stimulated in podoplanin-expressing tumor cells by the coculture with platelets, but the effects of the CLEC-2-podoplanin interaction on tumor growth in vivo are not yet resolved. It is possible that the CLEC-2-podoplanin interaction facilitates tumor-related thrombosis, subsequent inflammation, inflammation-induced cachexia, and reduced survival. Considering these findings, anti-podoplanin and anti-CLEC-2 drugs are promising therapies for the prevention of tumor metastasis, progression, and tumor-related symptoms, which may result in longer survival in cancer patients. There are advantages and disadvantages of anti-podoplanin vs. anti-CLEC-2 therapy. Side effects in podoplanin-expressing normal tissues due to treatment with anti-podoplanin and temporal thrombocytopenia due to treatment with anti-CLEC2 are potential problems, although solutions to these problems have been reported.
Collapse
Affiliation(s)
- Katsue Suzuki-Inoue
- a Department of Clinical and Laboratory Medicine, Faculty of Medicine , University of Yamanashi , Yamanashi , Japan
| |
Collapse
|
69
|
Sasaki T, Shirai T, Tsukiji N, Otake S, Tamura S, Ichikawa J, Osada M, Satoh K, Ozaki Y, Suzuki-Inoue K. Functional characterization of recombinant snake venom rhodocytin: rhodocytin mutant blocks CLEC-2/podoplanin-dependent platelet aggregation and lung metastasis. J Thromb Haemost 2018; 16:960-972. [PMID: 29488681 DOI: 10.1111/jth.13987] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Indexed: 12/11/2022]
Abstract
Essentials We generated recombinant rhodocytin that could aggregate platelets via CLEC-2. Recombinant wild-type rhodocytin formed heterooctamer with four α- and β-subunits. Asp 4 in α-subunit of rhodocytin was required for binding to CLEC-2. Inhibitory mutant of rhodocytin blocked podoplanin-dependent hematogenous metastasis. SUMMARY Background Rhodocytin, a disulfide-linked heterodimeric C-type lectin from Calloselasma rhodostoma consisting of α-subunits and β-subunits, induces platelet aggregation through C-type lectin-like receptor 2 (CLEC-2). CLEC-2 is a physiological binding partner of podoplanin (PDPN), which is expressed on some tumor cell types, and is involved in tumor cell-induced platelet aggregation and tumor metastasis. Thus, modified rhodocytin may be a possible source of anti-CLEC-2 drugs for both antiplatelet and antimetastasis therapy. However, its molecular function has not been well characterized, because of the lack of recombinant rhodocytin that induces platelet aggregation. Objective To produce recombinant rhodocytin, in order to verify its function with mutagenesis, and to develop an anti-CLEC-2 drug based on the findings. Methods We used Chinese hamster ovary cells to express recombinant rhodocytin (wild-type [WT] and mutant), which was analyzed for induction/inhibition of platelet aggregation with light transmission aggregometry, the formation of multimers with blue native PAGE, and binding to CLEC-2 with flow cytometry. Finally, we investigated whether mutant rhodocytin could suppress PDPN-induced metastasis in an experimental lung metastasis mouse model. Results Functional WT] rhodocytin (αWTβWT) was obtained by coexpression of both subunits. Asp4 in α-subunits of rhodocytin was required for CLEC-2 binding. αWTβWT formed a heterooctamer similarly to native rhodocytin. Moreover, an inhibitory mutant of rhodocytin (αWTβK53A/R56A), forming a heterotetramer, bound to CLEC-2 without inducing platelet aggregation, and blocked CLEC-2-PDPN interaction-dependent platelet aggregation and experimental lung metastasis. Conclusion These findings provide molecular characterization information on rhodocytin, and suggest that mutant rhodocytin could be used as a therapeutic agent to target CLEC-2.
Collapse
Affiliation(s)
- T Sasaki
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Kofu, Japan
| | - T Shirai
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Kofu, Japan
| | - N Tsukiji
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Kofu, Japan
| | | | - S Tamura
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - J Ichikawa
- Department of Orthopedic Surgery, Faculty of Medicine, University of Yamanashi, Kofu, Japan
| | - M Osada
- School of Medical Technology, Gunma Paz University, Takasaki, Japan
| | - K Satoh
- Division of Laboratory Medicine, University of Yamanashi Hospital, Kofu, Japan
| | - Y Ozaki
- Fuefuki Central Hospital, Fuefuki, Japan
| | - K Suzuki-Inoue
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Kofu, Japan
| |
Collapse
|
70
|
Hardy AT, Palma-Barqueros V, Watson SK, Malcor JD, Eble JA, Gardiner EE, Blanco JE, Guijarro-Campillo R, Delgado JL, Lozano ML, Teruel-Montoya R, Vicente V, Watson SP, Rivera J, Ferrer-Marín F. Significant Hypo-Responsiveness to GPVI and CLEC-2 Agonists in Pre-Term and Full-Term Neonatal Platelets and following Immune Thrombocytopenia. Thromb Haemost 2018; 118:1009-1020. [PMID: 29695020 PMCID: PMC6202930 DOI: 10.1055/s-0038-1646924] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Neonatal platelets are hypo-reactive to the tyrosine kinase-linked receptor agonist collagen. Here, we have investigated whether the hypo-responsiveness is related to altered levels of glycoprotein VI (GPVI) and integrin α2β1, or to defects in downstream signalling events by comparison to platelet activation by C-type lectin-like receptor 2 (CLEC-2). GPVI and CLEC-2 activate a Src- and Syk-dependent signalling pathway upstream of phospholipase C (PLC) γ2. Phosphorylation of a conserved YxxL sequence known as a (hemi) immunotyrosine-based-activation-motif (ITAM) in both receptors is critical for Syk activation. Platelets from human pre-term and full-term neonates display mildly reduced expression of GPVI and CLEC-2, as well as integrin αIIbβ3, accounted for at the transcriptional level. They are also hypo-responsive to the two ITAM receptors, as shown by measurement of integrin αIIbβ3 activation, P-selectin expression and Syk and PLCγ2 phosphorylation. Mouse platelets are also hypo-responsive to GPVI and CLEC-2 from late gestation to 2 weeks of age, as determined by measurement of integrin αIIbβ3 activation. In contrast, the response to G protein-coupled receptor agonists was only mildly reduced and in some cases not altered in neonatal platelets of both species. A reduction in response to GPVI and CLEC-2, but not protease-activated receptor 4 (PAR-4) peptide, was also observed in adult mouse platelets following immune thrombocytopenia, whereas receptor expression was not impaired. Our results demonstrate developmental differences in platelet responsiveness to GPVI and CLEC-2, and also following immune platelet depletion leading to reduced Syk activation. The rapid generation of platelets during development or following platelet depletion is achieved at the expense of signalling by ITAM-coupled receptors.
Collapse
Affiliation(s)
- Alexander T Hardy
- Institute of Cardiovascular Science, IBR Building, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Verónica Palma-Barqueros
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, U765-CIBERER, Murcia, Spain
| | - Stephanie K Watson
- Institute of Cardiovascular Science, IBR Building, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jean-Daniel Malcor
- Department of Biochemistry, University of Cambridge, Downing Site, Cambridge, United Kingdom
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Elizabeth E Gardiner
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - José E Blanco
- Departamento de Ginecología y Obstetricia, Hospital Clínico Universitario Virgen de la Arrixaca. IMIB-Arrixaca, Murcia, Spain
| | - Rafael Guijarro-Campillo
- Departamento de Ginecología y Obstetricia, Hospital Clínico Universitario Virgen de la Arrixaca. IMIB-Arrixaca, Murcia, Spain
| | - Juan L Delgado
- Departamento de Ginecología y Obstetricia, Hospital Clínico Universitario Virgen de la Arrixaca. IMIB-Arrixaca, Murcia, Spain
| | - María L Lozano
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, U765-CIBERER, Murcia, Spain
| | - Raúl Teruel-Montoya
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, U765-CIBERER, Murcia, Spain
| | - Vicente Vicente
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, U765-CIBERER, Murcia, Spain
| | - Steve P Watson
- Institute of Cardiovascular Science, IBR Building, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, United Kingdom
| | - José Rivera
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, U765-CIBERER, Murcia, Spain
| | - Francisca Ferrer-Marín
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, U765-CIBERER, Murcia, Spain.,Grado de Medicina, Universidad Católica San Antonio de Murcia, Murcia, Spain
| |
Collapse
|
71
|
Scherlinger M, Sisirak V, Richez C, Lazaro E, Duffau P, Blanco P. New Insights on Platelets and Platelet-Derived Microparticles in Systemic Lupus Erythematosus. Curr Rheumatol Rep 2018; 19:48. [PMID: 28718063 DOI: 10.1007/s11926-017-0678-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Current knowledge on the role of platelets and platelet-derived microparticles (PMPs) on the immune system has been fast-growing. Systemic lupus erythematosus (SLE) is a systemic auto-immune disorder characterized by a loss of tolerance toward nuclear auto-antigens. Although recent studies allowed a better understanding of SLE pathogenesis, there is an urgent need for the development of new treatments and the identification of new biomarkers to assess the disease activity. We describe here the state-of-the-art knowledge linking platelets and PMPs to SLE. RECENT FINDINGS Platelet system activation is a key event in the pathogenesis of SLE. Circulating immune complexes, anti-phospholipid antibodies, and infectious agents such as virus are the main activators of platelets in SLE. Platelet activation can be monitored through different ways such as P-selectin expression, mean platelet volume, or circulating PMP levels, suggesting their potential use as biomarkers. Upon activation, platelets promote type I interferon production, NETosis, dendritic cell activation, and T and B lymphocyte activation, all essential events contributing to the development of SLE. Of interest, platelets also play a fundamental role in SLE organ disease such as the development of cardiovascular, thrombotic, and renal diseases. Finally, we review current knowledge on drugs targeting platelet activation and their potential impact on SLE pathogenesis. Platelets play a major role in SLE pathogenesis and organ disease and represent a great potential for novel biomarkers and drug development.
Collapse
Affiliation(s)
- Marc Scherlinger
- Service de Rhumatologie, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, place Amélie Raba Léon, 33076, Bordeaux, France.,Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France.,CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Vanja Sisirak
- Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France.,CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Christophe Richez
- Service de Rhumatologie, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, place Amélie Raba Léon, 33076, Bordeaux, France.,Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France.,CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Estibaliz Lazaro
- Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France.,CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France.,Laboratoire d'Immunologie et Immunogénétique, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, place Amélie Raba Léon, 33076, Bordeaux, France
| | - Pierre Duffau
- Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France.,CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France.,Service de médecine interne, FHU ACRONIM, Hôpital Saint André, Centre Hospitalier Universitaire, 1 rue Jean Burguet, 33076, Bordeaux, France
| | - Patrick Blanco
- Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France. .,CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France. .,Laboratoire d'Immunologie et Immunogénétique, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, place Amélie Raba Léon, 33076, Bordeaux, France.
| |
Collapse
|
72
|
Boilard E. Extracellular vesicles and their content in bioactive lipid mediators: more than a sack of microRNA. J Lipid Res 2018; 59:2037-2046. [PMID: 29678959 DOI: 10.1194/jlr.r084640] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/26/2018] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EVs), such as exosomes and microvesicles, are small membrane-bound vesicles released by cells under various conditions. In a multitude of physiological and pathological conditions, EVs contribute to intercellular communication by facilitating exchange of material between cells. Rapidly growing interest is aimed at better understanding EV function and their use as biomarkers. The vast EV cargo includes cytokines, growth factors, organelles, nucleic acids (messenger and micro RNA), and transcription factors. A large proportion of research dedicated to EVs is focused on their microRNA cargo; however, much less is known about other EV constituents, in particular, eicosanoids. These potent bioactive lipid mediators, derived from arachidonic acid, are shuttled in EVs along with the enzymes in charge of their synthesis. In the extracellular milieu, EVs also interact with secreted phospholipases to generate eicosanoids, which then regulate the transfer of cargo into a cellular recipient. Eicosanoids are useful as biomarkers and contribute to a variety of biological functions, including modulation of distal immune responses. Here, we review the reported roles of eicosanoids conveyed by EVs and describe their potential as biomarkers.
Collapse
Affiliation(s)
- Eric Boilard
- Centre de Recherche du CHU de Québec - Université Laval, Department of Infectious Diseases and Immunity, Quebec City, QC, Canada, and Canadian National Transplantation Research Program, Edmonton, AB, Canada
| |
Collapse
|
73
|
Recabarren-Leiva D, Alarcón M. Standardization of a fast and effective method for the generation and detection of platelet-derived microparticles by a flow cytometer. Immunol Lett 2018; 194:79-84. [PMID: 29329679 DOI: 10.1016/j.imlet.2018.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/08/2018] [Indexed: 12/24/2022]
Abstract
The Flow Cytometry is the principal method used to measure platelet-derived microparticles (PDMPs), by fluorescent properties analysis. PDMPs (0.1-1.0 μm) are abundant in circulation, accounting for approximately 90% of the microparticles and are associated with Cardiovascular Disease, the leading cause of death in the world.
Collapse
Affiliation(s)
| | - Marcelo Alarcón
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Chile; Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca 3460000, Chile.
| |
Collapse
|
74
|
Vögtle T, Cherpokova D, Bender M, Nieswandt B. Targeting platelet receptors in thrombotic and thrombo-inflammatory disorders. Hamostaseologie 2017; 35:235-43. [DOI: 10.5482/hamo-14-10-0049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 01/21/2015] [Indexed: 12/20/2022] Open
Abstract
SummaryPlatelet activation at sites of vascular injury is critical for the formation of a hemostatic plug which limits excessive blood loss, but also represents a major pathomechanism of ischemic cardio- and cerebrovascular diseases. Although currently available antiplatelet therapies have proved beneficial in preventing the recurrence of vascular events, their adverse effects on primary hemostasis emphasize the necessity to identify and characterize novel pharmacological targets for platelet inhibition. Increasing experimental evidence has suggested that several major platelet surface receptors which regulate initial steps of platelet adhesion and activation may become promising new targets for anti-platelet drugs due to their involvement in thrombotic and thrombo-inflammatory signaling cascades.This review summarizes recent developments in understanding the function of glycoprotein (GP)Ib, GPVI and the C-type lectin-like receptor 2 (CLEC-2) in hemostasis, arterial thrombosis and thrombo-inflammation and will discuss the suitability of the receptors as novel targets to treat these diseases in humans.
Collapse
|
75
|
Abstract
Innate immune cells sense danger through a plethora of germline-encoded receptors that recognize pathogen-associated molecular patterns (PAMPs) or cellular molecules that are exposed only by stressed, infected, malignant, or dead cells. Many of these danger-sensing receptors belong to the C-type lectin-like superfamily (CLSF) and therefore are called C-type lectin-like receptors (CTLRs). Certain activating CTLRs, namely, CLEC-2, Dectin-1, DNGR-1, NKp80, and NKp65, which are encoded by genes that are clustered together in a subregion of the mammalian natural killer gene complex (NKC), use a single copy tyrosine signaling module termed the hemi-immunoreceptor tyrosine-based activation motif (hemITAM). These hemITAM-bearing CTLRs are present on myeloid cells and innate lymphocytes and stimulate various functions, such as phagocytosis, cytokine production, and cytotoxicity. Proximal signaling mechanisms involve the tyrosine phosphorylation of the hemITAM and the subsequent activation of the kinase Syk. Signaling and Syk recruitment by the hemITAM appear to be tuned by variable amino acids within or near the hemITAM, which give rise to differences in downstream signaling events and diverging functional outcomes among hemITAM-bearing receptors.
Collapse
Affiliation(s)
- Björn Bauer
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Alexander Steinle
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany.
| |
Collapse
|
76
|
Ridger VC, Boulanger CM, Angelillo-Scherrer A, Badimon L, Blanc-Brude O, Bochaton-Piallat ML, Boilard E, Buzas EI, Caporali A, Dignat-George F, Evans PC, Lacroix R, Lutgens E, Ketelhuth DFJ, Nieuwland R, Toti F, Tunon J, Weber C, Hoefer IE. Microvesicles in vascular homeostasis and diseases. Position Paper of the European Society of Cardiology (ESC) Working Group on Atherosclerosis and Vascular Biology. Thromb Haemost 2017; 117:1296-1316. [PMID: 28569921 DOI: 10.1160/th16-12-0943] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/27/2017] [Indexed: 12/15/2022]
Abstract
Microvesicles are members of the family of extracellular vesicles shed from the plasma membrane of activated or apoptotic cells. Microvesicles were initially characterised by their pro-coagulant activity and described as "microparticles". There is mounting evidence revealing a role for microvesicles in intercellular communication, with particular relevance to hemostasis and vascular biology. Coupled with this, the potential of microvesicles as meaningful biomarkers is under intense investigation. This Position Paper will summarise the current knowledge on the mechanisms of formation and composition of microvesicles of endothelial, platelet, red blood cell and leukocyte origin. This paper will also review and discuss the different methods used for their analysis and quantification, will underline the potential biological roles of these vesicles with respect to vascular homeostasis and thrombosis and define important themes for future research.
Collapse
Affiliation(s)
| | - Chantal M Boulanger
- Victoria Ridger, PhD, Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, UK, E-mail: , or, Chantal M. Boulanger, PhD, INSERM UMR-S 970, Paris Cardiovascular Research Center - PARCC, 56 rue Leblanc, 75015 Paris, France, E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Abstract
Interest in cell-derived extracellular vesicles and their physiological and pathological implications is constantly growing. Microvesicles, also known as microparticles, are small extracellular vesicles released by cells in response to activation or apoptosis. Among the different microvesicles present in the blood of healthy individuals, platelet-derived microvesicles (PMVs) are the most abundant. Their characterization has revealed a heterogeneous cargo that includes a set of adhesion molecules. Similarly to platelets, PMVs are also involved in thrombosis through support of the coagulation cascade. The levels of circulatory PMVs are altered during several disease manifestations such as coagulation disorders, rheumatoid arthritis, systemic lupus erythematosus, cancers, cardiovascular diseases, and infections, pointing to their potential contribution to disease and their development as a biomarker. This review highlights recent findings in the field of PMV research and addresses their contribution to both healthy and diseased states.
Collapse
Affiliation(s)
- Imene Melki
- a Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculty of Medicine , Department of Infectious Diseases and Immunity, Université Laval , Quebec City , QC , Canada
| | - Nicolas Tessandier
- a Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculty of Medicine , Department of Infectious Diseases and Immunity, Université Laval , Quebec City , QC , Canada
| | - Anne Zufferey
- a Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculty of Medicine , Department of Infectious Diseases and Immunity, Université Laval , Quebec City , QC , Canada
| | - Eric Boilard
- a Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculty of Medicine , Department of Infectious Diseases and Immunity, Université Laval , Quebec City , QC , Canada
| |
Collapse
|
78
|
Pretorius E, Akeredolu OO, Soma P, Kell DB. Major involvement of bacterial components in rheumatoid arthritis and its accompanying oxidative stress, systemic inflammation and hypercoagulability. Exp Biol Med (Maywood) 2016; 242:355-373. [PMID: 27889698 PMCID: PMC5298544 DOI: 10.1177/1535370216681549] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We review the evidence that infectious agents, including those that become dormant within the host, have a major role to play in much of the etiology of rheumatoid arthritis and the inflammation that is its hallmark. This occurs in particular because they can produce cross-reactive (auto-)antigens, as well as potent inflammagens such as lipopolysaccharide that can themselves catalyze further inflammagenesis, including via β-amyloid formation. A series of observables coexist in many chronic, inflammatory diseases as well as rheumatoid arthritis. They include iron dysregulation, hypercoagulability, anomalous morphologies of host erythrocytes, and microparticle formation. Iron dysregulation may be responsible for the periodic regrowth and resuscitation of the dormant bacteria, with concomitant inflammagen production. The present systems biology analysis benefits from the philosophical idea of "coherence," that reflects the principle that if a series of ostensibly unrelated findings are brought together into a self-consistent narrative, that narrative is thereby strengthened. As such, we provide a coherent and testable narrative for the major involvement of (often dormant) bacteria in rheumatoid arthritis.
Collapse
Affiliation(s)
- Etheresia Pretorius
- 1 Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, Pretoria 0007, South Africa
| | - Oore-Ofe Akeredolu
- 1 Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, Pretoria 0007, South Africa
| | - Prashilla Soma
- 1 Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, Pretoria 0007, South Africa
| | - Douglas B Kell
- 2 School of Chemistry, The University of Manchester, Manchester, M13 9PL, UK.,3 The Manchester Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, UK.,4 Centre for Synthetic Biology of Fine and Speciality Chemicals, The University of Manchester, Manchester, M1 7DN, UK
| |
Collapse
|
79
|
Marcoux G, Duchez AC, Cloutier N, Provost P, Nigrovic PA, Boilard E. Revealing the diversity of extracellular vesicles using high-dimensional flow cytometry analyses. Sci Rep 2016; 6:35928. [PMID: 27786276 PMCID: PMC5081512 DOI: 10.1038/srep35928] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 10/07/2016] [Indexed: 01/12/2023] Open
Abstract
Extracellular vesicles (EV) are small membrane vesicles produced by cells upon activation and apoptosis. EVs are heterogeneous according to their origin, mode of release, membrane composition, organelle and biochemical content, and other factors. Whereas it is apparent that EVs are implicated in intercellular communication, they can also be used as biomarkers. Continuous improvements in pre-analytical parameters and flow cytometry permit more efficient assessment of EVs; however, methods to more objectively distinguish EVs from cells and background, and to interpret multiple single-EV parameters are lacking. We used spanning-tree progression analysis of density-normalized events (SPADE) as a computational approach for the organization of EV subpopulations released by platelets and erythrocytes. SPADE distinguished EVs, and logically organized EVs detected by high-sensitivity flow cytofluorometry based on size estimation, granularity, mitochondrial content, and phosphatidylserine and protein receptor surface expression. Plasma EVs were organized by hierarchy, permitting appreciation of their heterogeneity. Furthermore, SPADE was used to analyze EVs present in the synovial fluid of patients with inflammatory arthritis. Its algorithm efficiently revealed subtypes of arthritic patients based on EV heterogeneity patterns. Our study reveals that computational algorithms are useful for the analysis of high-dimensional single EV data, thereby facilitating comprehension of EV functions and biomarker development.
Collapse
Affiliation(s)
- Geneviève Marcoux
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculté de Médecine de l'Université Laval, Département de microbiologie et immunologie, Québec, QC, Canada
| | - Anne-Claire Duchez
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculté de Médecine de l'Université Laval, Département de microbiologie et immunologie, Québec, QC, Canada
| | - Nathalie Cloutier
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculté de Médecine de l'Université Laval, Département de microbiologie et immunologie, Québec, QC, Canada
| | - Patrick Provost
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculté de Médecine de l'Université Laval, Département de microbiologie et immunologie, Québec, QC, Canada
| | - Peter A Nigrovic
- Department of Medicine, Division of Rheumatology Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Eric Boilard
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculté de Médecine de l'Université Laval, Département de microbiologie et immunologie, Québec, QC, Canada
| |
Collapse
|
80
|
Badimon L, Suades R, Fuentes E, Palomo I, Padró T. Role of Platelet-Derived Microvesicles As Crosstalk Mediators in Atherothrombosis and Future Pharmacology Targets: A Link between Inflammation, Atherosclerosis, and Thrombosis. Front Pharmacol 2016; 7:293. [PMID: 27630570 PMCID: PMC5005978 DOI: 10.3389/fphar.2016.00293] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/22/2016] [Indexed: 12/24/2022] Open
Abstract
Reports in the last decade have suggested that the role of platelets in atherosclerosis and its thrombotic complications may be mediated, in part, by local secretion of platelet-derived microvesicles (pMVs), small cell blebs released during the platelet activation process. MVs are the most abundant cell-derived microvesicle subtype in the circulation. High concentrations of circulating MVs have been reported in patients with atherosclerosis, acute vascular syndromes, and/or diabetes mellitus, suggesting a potential correlation between the quantity of microvesicles and the clinical severity of the atherosclerotic disease. pMVs are considered to be biomarkers of disease but new information indicates that pMVs are also involved in signaling functions. pMVs evoke or promote haemostatic and inflammatory responses, neovascularization, cell survival, and apoptosis, processes involved in the pathophysiology of cardiovascular disease. This review is focused on the complex cross-talk between platelet-derived microvesicles, inflammatory cells and vascular elements and their relevance in the development of the atherosclerotic disease and its clinical outcomes, providing an updated state-of-the art of pMV involvement in atherothrombosis and pMV potential use as therapeutic agent influencing cardiovascular biomedicine in the future.
Collapse
Affiliation(s)
- Lina Badimon
- Cardiovascular Research Center, Consejo Superior de Investigaciones Científicas - Institut Català de Ciències Cardiovasculars, Institut d'Investigació Biomèdica Sant Pau, Hospital Santa Creu i Sant PauBarcelona, Spain; Cardiovascular Research Chair, Universitat Autònoma de BarcelonaBarcelona, Spain
| | - Rosa Suades
- Cardiovascular Research Center, Consejo Superior de Investigaciones Científicas - Institut Català de Ciències Cardiovasculars, Institut d'Investigació Biomèdica Sant Pau, Hospital Santa Creu i Sant Pau Barcelona, Spain
| | - Eduardo Fuentes
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging, Universidad de TalcaTalca, Chile; Centro de Estudios en Alimentos Procesados, Conicyt-RegionalGore-Maule, Talca, Chile
| | - Iván Palomo
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging, Universidad de TalcaTalca, Chile; Centro de Estudios en Alimentos Procesados, Conicyt-RegionalGore-Maule, Talca, Chile
| | - Teresa Padró
- Cardiovascular Research Center, Consejo Superior de Investigaciones Científicas - Institut Català de Ciències Cardiovasculars, Institut d'Investigació Biomèdica Sant Pau, Hospital Santa Creu i Sant Pau Barcelona, Spain
| |
Collapse
|
81
|
Lymphovenous hemostasis and the role of platelets in regulating lymphatic flow and lymphatic vessel maturation. Blood 2016; 128:1169-73. [PMID: 27385789 DOI: 10.1182/blood-2016-04-636415] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/02/2016] [Indexed: 12/12/2022] Open
Abstract
Aside from the established role for platelets in regulating hemostasis and thrombosis, recent research has revealed a discrete role for platelets in the separation of the blood and lymphatic vascular systems. Platelets are activated by interaction with lymphatic endothelial cells at the lymphovenous junction, the site in the body where the lymphatic system drains into the blood vascular system, resulting in a platelet plug that, with the lymphovenous valve, prevents blood from entering the lymphatic circulation. This process, known as "lymphovenous hemostasis," is mediated by activation of platelet CLEC-2 receptors by the transmembrane ligand podoplanin expressed by lymphatic endothelial cells. Lymphovenous hemostasis is required for normal lymph flow, and mice deficient in lymphovenous hemostasis exhibit lymphedema and sometimes chylothorax phenotypes indicative of lymphatic insufficiency. Unexpectedly, the loss of lymph flow in these mice causes defects in maturation of collecting lymphatic vessels and lymphatic valve formation, uncovering an important role for fluid flow in driving endothelial cell signaling during development of collecting lymphatics. This article summarizes the current understanding of lymphovenous hemostasis and its effect on lymphatic vessel maturation and synthesizes the outstanding questions in the field, with relationship to human disease.
Collapse
|
82
|
Affiliation(s)
- Markus Bender
- Department of Experimental Biomedicine, University of Würzburg, University Hospital and Rudolf Virchow Center, Würzburg, Germany
| | - David Stegner
- Department of Experimental Biomedicine, University of Würzburg, University Hospital and Rudolf Virchow Center, Würzburg, Germany
| | - Bernhard Nieswandt
- Department of Experimental Biomedicine, University of Würzburg, University Hospital and Rudolf Virchow Center, Würzburg, Germany
| |
Collapse
|
83
|
Abstract
Platelets are megakaryocyte-derived cellular fragments, which lack a nucleus and are the smallest circulating cells and are classically known to have a major role in supporting hemostasis. Apart from this well-established role, it is now becoming evident that platelets are also capable of conveying other important functions, such as during infection and inflammation. This paper will outline these nonhemostatic functions in two major sections termed "Platelets versus pathogens" and "Platelet-target cell communication". Platelets actively contribute to protection against invading pathogens and are capable of regulating immune functions in various target cells, all through sophisticated and efficient mechanisms. These relatively novel features will be highlighted, illustrating the multifunctional role of platelets in inflammation.
Collapse
Affiliation(s)
- Rick Kapur
- Toronto Platelet Immunobiology Group, Keenan Research Centre for Biomedical Science, St. Michael׳s Hospital, Canadian Blood Services, Toronto, Ontario, Canada
| | - John W Semple
- Toronto Platelet Immunobiology Group, Keenan Research Centre for Biomedical Science, St. Michael׳s Hospital, Canadian Blood Services, Toronto, Ontario, Canada; Departments of Pharmacology, Medicine, and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
84
|
Karachaliou N, Pilotto S, Bria E, Rosell R. Platelets and their role in cancer evolution and immune system. Transl Lung Cancer Res 2016; 4:713-20. [PMID: 26798580 DOI: 10.3978/j.issn.2218-6751.2015.10.09] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Platelets are anucleate fragments formed from the cytoplasm of megakaryocytes and represent the smallest circulating hematopoietic cells. Thought for almost a century to possess solely hemostatic potentials, platelets actually play a much wider role in tissue regeneration and repair and interact intimately with tumor cells. On the one hand, tumor cells induce platelet aggregation, known to act as the trigger of cancer-associated thrombosis and on the other hand, platelets recruited to the tumor microenvironment interact directly with tumor cells favoring proliferation, and indirectly through the release of angiogenic and mitogenic proteins. Furthermore, platelets are immunosuppressive cells that protect metastatic cancer cells from surveillance by killer cells, nullifying the effects of immunotherapy.
Collapse
Affiliation(s)
- Niki Karachaliou
- 1 Instituto Oncológico Dr Rosell, Quiron-Dexeus University Hospital, Barcelona, Spain ; 2 Department of Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy ; 3 Pangaea Biotech, Barcelona, Spain ; 4 Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Spain ; 5 Molecular Oncology Research (MORe) Foundation, Barcelona, Spain ; 6 Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Spain
| | - Sara Pilotto
- 1 Instituto Oncológico Dr Rosell, Quiron-Dexeus University Hospital, Barcelona, Spain ; 2 Department of Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy ; 3 Pangaea Biotech, Barcelona, Spain ; 4 Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Spain ; 5 Molecular Oncology Research (MORe) Foundation, Barcelona, Spain ; 6 Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Spain
| | - Emilio Bria
- 1 Instituto Oncológico Dr Rosell, Quiron-Dexeus University Hospital, Barcelona, Spain ; 2 Department of Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy ; 3 Pangaea Biotech, Barcelona, Spain ; 4 Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Spain ; 5 Molecular Oncology Research (MORe) Foundation, Barcelona, Spain ; 6 Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Spain
| | - Rafael Rosell
- 1 Instituto Oncológico Dr Rosell, Quiron-Dexeus University Hospital, Barcelona, Spain ; 2 Department of Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy ; 3 Pangaea Biotech, Barcelona, Spain ; 4 Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Spain ; 5 Molecular Oncology Research (MORe) Foundation, Barcelona, Spain ; 6 Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Spain
| |
Collapse
|
85
|
|
86
|
Kapur R, Zufferey A, Boilard E, Semple JW. Nouvelle cuisine: platelets served with inflammation. THE JOURNAL OF IMMUNOLOGY 2015; 194:5579-87. [PMID: 26048965 DOI: 10.4049/jimmunol.1500259] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Platelets are small cellular fragments with the primary physiological role of maintaining hemostasis. In addition to this well-described classical function, it is becoming increasingly clear that platelets have an intimate connection with infection and inflammation. This stems from several platelet characteristics, including their ability to bind infectious agents and secrete many immunomodulatory cytokines and chemokines, as well as their expression of receptors for various immune effector and regulatory functions, such as TLRs, which allow them to sense pathogen-associated molecular patterns. Furthermore, platelets contain RNA that can be nascently translated under different environmental stresses, and they are able to release membrane microparticles that can transport inflammatory cargo to inflammatory cells. Interestingly, acute infections can also result in platelet breakdown and thrombocytopenia. This report highlights these relatively new aspects of platelets and, thus, their nonhemostatic nature in an inflammatory setting.
Collapse
Affiliation(s)
- Rick Kapur
- Toronto Platelet Immunobiology Group, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada; Canadian Blood Services, Toronto, Ontario M5B 1W8, Canada
| | - Anne Zufferey
- Toronto Platelet Immunobiology Group, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
| | - Eric Boilard
- Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculté de Médecine de l'Université Laval, Quebec City, Quebec G1V 4G2, Canada
| | - John W Semple
- Toronto Platelet Immunobiology Group, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada; Canadian Blood Services, Toronto, Ontario M5B 1W8, Canada; Department of Pharmacology, University of Toronto, Toronto, Ontario M5B 1W8, Canada; Department of Medicine, University of Toronto, Toronto, Ontario M5B 1W8, Canada; and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| |
Collapse
|
87
|
Fibrin activates GPVI in human and mouse platelets. Blood 2015; 126:1601-8. [PMID: 26282541 DOI: 10.1182/blood-2015-04-641654] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/11/2015] [Indexed: 01/09/2023] Open
Abstract
The glycoprotein VI (GPVI)-Fc receptor γ (FcRγ) chain is the major platelet signaling receptor for collagen. Paradoxically, in a FeCl3 injury model, occlusion, but not initiation of thrombus formation, is delayed in GPVI-deficient and GPVI-depleted mice. In this study, we demonstrate that GPVI is a receptor for fibrin and speculate that this contributes to development of an occlusive thrombus. We observed a marked increase in tyrosine phosphorylation, including the FcRγ chain and Syk, in human and mouse platelets induced by thrombin in the presence of fibrinogen and the αIIbβ3 blocker eptifibatide. This was not seen in platelets stimulated by a protease activated receptor (PAR)-4 peptide, which is unable to generate fibrin from fibrinogen. The pattern of tyrosine phosphorylation was similar to that induced by activation of GPVI. Consistent with this, thrombin did not induce tyrosine phosphorylation of Syk and the FcRγ chain in GPVI-deficient mouse platelets. Mouse platelets underwent full spreading on fibrin but not fibrinogen, which was blocked in the presence of a Src kinase inhibitor or in the absence of GPVI. Spreading on fibrin was associated with phosphatidylserine exposure (procoagulant activity), and this too was blocked in GPVI-deficient platelets. The ectodomain of GPVI was shown to bind to immobilized monomeric and polymerized fibrin. A marked increase in embolization was seen following FeCl3 injury in GPVI-deficient mice, likely contributing to the delay in occlusion in this model. These results demonstrate that GPVI is a receptor for fibrin and provide evidence that this interaction contributes to thrombus growth and stability.
Collapse
|
88
|
Lowe KL, Navarro-Núñez L, Bénézech C, Nayar S, Kingston BL, Nieswandt B, Barone F, Watson SP, Buckley CD, Desanti GE. The expression of mouse CLEC-2 on leucocyte subsets varies according to their anatomical location and inflammatory state. Eur J Immunol 2015; 45:2484-93. [PMID: 26173808 PMCID: PMC4737233 DOI: 10.1002/eji.201445314] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 07/06/2015] [Accepted: 07/10/2015] [Indexed: 11/08/2022]
Abstract
Expression of mouse C-type lectin-like receptor 2 (CLEC-2) has been reported on circulating CD11b(high) Gr-1(high) myeloid cells and dendritic cells (DCs) under basal conditions, as well as on a variety of leucocyte subsets following inflammatory stimuli or in vitro cell culture. However, previous studies assessing CLEC-2 expression failed to use CLEC-2-deficient mice as negative controls and instead relied heavily on single antibody clones. Here, we generated CLEC-2-deficient adult mice using two independent approaches and employed two anti-mouse CLEC-2 antibody clones to investigate surface expression on hematopoietic cells from peripheral blood and secondary lymphoid organs. We rule out constitutive CLEC-2 expression on resting DCs and show that CLEC-2 is upregulated in response to LPS-induced systemic inflammation in a small subset of activated DCs isolated from the mesenteric lymph nodes but not the spleen. Moreover, we demonstrate for the first time that peripheral blood B lymphocytes present exogenously derived CLEC-2 and suggest that both circulating B lymphocytes and CD11b(high) Gr-1(high) myeloid cells lose CLEC-2 following entry into secondary lymphoid organs. These results have significant implications for our understanding of CLEC-2 physiological functions.
Collapse
Affiliation(s)
- Kate L Lowe
- Centre for Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Leyre Navarro-Núñez
- Centre for Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Cécile Bénézech
- MRC Centre for Immune Regulation, University of Birmingham, Birmingham, UK
| | - Saba Nayar
- Centre for Translational Inflammation Research, Rheumatology Research Group, University of Birmingham, Birmingham, UK
| | - Bethany L Kingston
- Centre for Translational Inflammation Research, Rheumatology Research Group, University of Birmingham, Birmingham, UK.,Medical School, University of Oxford, Oxford, UK
| | - Bernhard Nieswandt
- Department of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
| | - Francesca Barone
- Centre for Translational Inflammation Research, Rheumatology Research Group, University of Birmingham, Birmingham, UK
| | - Steve P Watson
- Centre for Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Christopher D Buckley
- Centre for Translational Inflammation Research, Rheumatology Research Group, University of Birmingham, Birmingham, UK
| | - Guillaume E Desanti
- Centre for Translational Inflammation Research, Rheumatology Research Group, University of Birmingham, Birmingham, UK
| |
Collapse
|
89
|
Selected Aspects in the Pathogenesis of Autoimmune Diseases. Mediators Inflamm 2015; 2015:351732. [PMID: 26300591 PMCID: PMC4537751 DOI: 10.1155/2015/351732] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/24/2015] [Indexed: 11/26/2022] Open
Abstract
Autoimmune processes can be found in physiological circumstances. However, they are quenched with properly functioning regulatory mechanisms and do not evolve into full-blown autoimmune diseases. Once developed, autoimmune diseases are characterized by signature clinical features, accompanied by sustained cellular and/or humoral immunological abnormalities. Genetic, environmental, and hormonal defects, as well as a quantitative and qualitative impairment of immunoregulatory functions, have been shown in parallel to the relative dominance of proinflammatory Th17 cells in many of these diseases. In this review we focus on the derailed balance between regulatory and Th17 cells in the pathogenesis of autoimmune diseases. Additionally, we depict a cytokine imbalance, which gives rise to a biased T-cell homeostasis. The assessment of Th17/Treg-cell ratio and the simultaneous quantitation of cytokines, may give a useful diagnostic tool in autoimmune diseases. We also depict the multifaceted role of dendritic cells, serving as antigen presenting cells, contributing to the development of the pathognomonic cytokine signature and promote cellular and humoral autoimmune responses. Finally we describe the function and role of extracellular vesicles in particular autoimmune diseases. Targeting these key players of disease progression in patients with autoimmune diseases by immunomodulating therapy may be beneficial in future therapeutic strategies.
Collapse
|
90
|
Olumuyiwa-Akeredolu OOO, Pretorius E. Platelet and red blood cell interactions and their role in rheumatoid arthritis. Rheumatol Int 2015; 35:1955-64. [PMID: 26059943 DOI: 10.1007/s00296-015-3300-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/26/2015] [Indexed: 12/23/2022]
Abstract
Cytokines, lymphocytes, platelets and several biomolecules have long been implicated in the pathology of rheumatoid arthritis (RA), and the influences of antibody production and tagging, and cytokine, chemokine and enzyme production at specific rheumatoid joints were thought to be exclusive to the advancement of disease parameters. Another role player in RA is red blood cells (RBCs) which, of late, have been found to be involved in RA pathobiology, as there is a positive correlation between RBC counts and joint pathology, as well as with inflammatory biomarkers in the disease. There is also an association between RBC distribution width and the incidence of myocardial infarction amongst RA patients, and there is a change in the lipid distribution within RBC membranes. Of late, certain RBC-associated factors with previously obscure roles and cell-derived particles thought to be inconsequential to the other constituents of plasma were found to be active biomolecular players. Several of these have been discovered to be present in or originating from RBCs. Their influences have been shown to involve in membrane dynamics that cause structural and functional changes in both platelets and RBCs. RBC-derived microparticles are emerging entities found to play direct roles in immunomodulation via interactions with other plasma cells. These correlations highlight the direct influences of RBCs on exacerbating RA pathology. This review will attempt to shed more light on how RBCs, in the true inflammatory milieu of RA, are playing an even greater role than previously assumed.
Collapse
Affiliation(s)
- Oore-Ofe O Olumuyiwa-Akeredolu
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Private Bag x323, Arcadia, 0007, South Africa
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Private Bag x323, Arcadia, 0007, South Africa.
| |
Collapse
|
91
|
Arman M, Krauel K. Human platelet IgG Fc receptor FcγRIIA in immunity and thrombosis. J Thromb Haemost 2015; 13:893-908. [PMID: 25900780 DOI: 10.1111/jth.12905] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/10/2015] [Indexed: 01/23/2023]
Abstract
Beyond their prominent role in hemostasis and thrombosis, platelets are increasingly recognized as having immunologic functions. Supporting this, human platelets express FcγRIIA (CD32a), a low-affinity Fc receptor (FcR) for the constant region of IgG that recognizes immune complexes (ICs) and IgG-opsonized cells with high avidity. In leukocytes, FcγRIIA engagement initiates strong effector functions that are key for immune and inflammatory responses, including cytokine release, antibody-dependent cell-mediated killing of pathogens, and internalization of ICs. However, the physiologic relevance of platelet-expressed FcγRIIA has received little attention in previous reviews on FcRs. This article summarizes and discusses the available information on human platelet FcγRIIA. The importance of this receptor in heparin-induced thrombocytopenia, a prothrombotic adverse drug effect, is well documented. However, studies demonstrating platelet activation by IgG-opsonized bacteria point to the physiologic relevance of platelet FcγRIIA in immunity. In this context, platelet activation and secretion may facilitate both a direct antimicrobial function of platelets and crosstalk with other immune cells. Additionally, a role for platelet FcγRIIA in IgG-independent hemostasis and physiologic thrombosis, by means of amplifying integrin αII b β3 outside-in signaling, has also been proposed. Nonetheless, the thrombotic complications found in some infective and autoimmune diseases may result from unbalanced FcγRIIA-mediated platelet aggregation. Moreover, FcγRIIA is not expressed in mice, and thrombocytopenia and/or thrombotic events found after drug administration can only be recapitulated by the use of human FcγRIIA-transgenic mice. Altogether, the available data support a functional role for platelet FcγRIIA in health and disease, and emphasize the need for further investigation of this receptor.
Collapse
Affiliation(s)
- M Arman
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - K Krauel
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
92
|
Kazama F, Nakamura J, Osada M, Inoue O, Oosawa M, Tamura S, Tsukiji N, Aida K, Kawaguchi A, Takizawa S, Kaneshige M, Tanaka S, Suzuki-Inoue K, Ozaki Y. Measurement of soluble C-type lectin-like receptor 2 in human plasma. Platelets 2015; 26:711-9. [PMID: 25856065 DOI: 10.3109/09537104.2015.1021319] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Detection of platelet activation in vivo is useful to identify patients at risk of thrombotic diseases. Platelet factor 4 (PF4) and β-thromboglobulin (β-TG) are used for this purpose; however, they are easily released upon the minimal platelet activation that occurs during sampling. Soluble forms of several platelet membrane proteins are released upon platelet activation; however, the soluble form of C-type lectin-like receptor 2 (sCLEC-2) has not yet been fully investigated. Western blotting with an anti-CLEC-2 antibody showed that sCLEC-2 was released from washed human platelets stimulated with collagen mimetics. To detect sCLEC-2 in plasma, we established a sandwich enzyme-linked immunosorbent assay (ELISA) using F(ab')2 anti-CLEC-2 monoclonal antibodies. Although plasma mixed with citrate, adenosine, theophylline and adenosine (CTAD) is needed for the PF4 and β-TG assays, effects of anti-coagulants (EDTA, citrate and CTAD) on the sCLEC-2 ELISA were negligible. Moreover, while special techniques are required for blood sampling and sample preparation for PF4 and β-TG assay, the standard blood collections procedures used in daily clinical laboratory tests have shown to suffice for sCLEC-2 analysis. In this study, we found that two forms of sCLEC-2 are released after platelet activation: a shed fragment and a microparticle-bound full-length protein, both of which are detected by the sCLEC-2 ELISA. The average concentration of sCLEC-2 in the plasma of 10 healthy individuals was 97 ± 55 pg/ml, whereas that in the plasma of 25 patients with diabetes mellitus (DM) was 149 ± 260 pg/ml. A trend towards an increase in sCLEC-2 concentration in the DM patients may reflect in vivo platelet activation in the patients, suggesting that sCLEC-2 may have clinical significance as a biomarker of in vivo platelet activation.
Collapse
Affiliation(s)
- Fuminori Kazama
- a Department of Clinical and Laboratory Medicine, Faculty of Medicine , University of Yamanashi , Chuo , Yamanashi , Japan
| | - Junya Nakamura
- b Department of Antibody Group, Narita R&D Department, Research and Development Division , LSI Medicine Corporation , Takomachi, Katori-gun , Chiba , Japan
| | - Makoto Osada
- a Department of Clinical and Laboratory Medicine, Faculty of Medicine , University of Yamanashi , Chuo , Yamanashi , Japan
| | - Osamu Inoue
- c Faculty of Medicine , Infection Control Office, University of Yamanashi Hospital, University of Yamanashi , Chuo , Yamanashi , Japan
| | - Mitsuru Oosawa
- b Department of Antibody Group, Narita R&D Department, Research and Development Division , LSI Medicine Corporation , Takomachi, Katori-gun , Chiba , Japan
| | - Shogo Tamura
- a Department of Clinical and Laboratory Medicine, Faculty of Medicine , University of Yamanashi , Chuo , Yamanashi , Japan .,d Japan Society for the Promotion of Science , Tokyo , Japan , and
| | - Nagaharu Tsukiji
- a Department of Clinical and Laboratory Medicine, Faculty of Medicine , University of Yamanashi , Chuo , Yamanashi , Japan
| | - Kaoru Aida
- e Department of Internal Medicine III , Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi , Chuo , Yamanashi , Japan
| | - Akio Kawaguchi
- e Department of Internal Medicine III , Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi , Chuo , Yamanashi , Japan
| | - Soichi Takizawa
- e Department of Internal Medicine III , Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi , Chuo , Yamanashi , Japan
| | - Masahiro Kaneshige
- e Department of Internal Medicine III , Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi , Chuo , Yamanashi , Japan
| | - Shoichiro Tanaka
- e Department of Internal Medicine III , Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi , Chuo , Yamanashi , Japan
| | - Katsue Suzuki-Inoue
- a Department of Clinical and Laboratory Medicine, Faculty of Medicine , University of Yamanashi , Chuo , Yamanashi , Japan
| | - Yukio Ozaki
- a Department of Clinical and Laboratory Medicine, Faculty of Medicine , University of Yamanashi , Chuo , Yamanashi , Japan
| |
Collapse
|
93
|
Targeted downregulation of platelet CLEC-2 occurs through Syk-independent internalization. Blood 2015; 125:4069-77. [PMID: 25795918 DOI: 10.1182/blood-2014-11-611905] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/13/2015] [Indexed: 12/16/2022] Open
Abstract
Platelet aggregation at sites of vascular injury is not only essential for hemostasis, but may also cause acute ischemic disease states such as myocardial infarction or stroke. The hemi-immunoreceptor tyrosine-based activation motif-containing C-type lectinlike receptor 2 (CLEC-2) mediates powerful platelet activation through a Src- and spleen tyrosine kinase (Syk)-dependent tyrosine phosphorylation cascade. Thereby, CLEC-2 not only contributes to thrombus formation and stabilization but also plays a central role in blood-lymphatic vessel development, tumor metastasis, and prevention of inflammatory bleeding, making it a potential pharmacologic target to modulate these processes. We have previously shown that injection of the anti-CLEC-2 antibody, INU1, results in virtually complete immunodepletion of platelet CLEC-2 in mice, which is, however, preceded by a severe transient thrombocytopenia thereby limiting its potential therapeutic use. The mechanisms underlying this targeted CLEC-2 downregulation have remained elusive. Here, we show that INU1-induced CLEC-2 immunodepletion occurs through Src-family kinase-dependent receptor internalization in vitro and in vivo, presumably followed by intracellular degradation. In mice with platelet-specific Syk deficiency, INU1-induced CLEC-2 internalization/degradation was fully preserved whereas the associated thrombocytopenia was largely prevented. These results show for the first time that CLEC-2 can be downregulated from the platelet surface through internalization in vitro and in vivo and that this can be mechanistically uncoupled from the associated antibody-induced thrombocytopenia.
Collapse
|
94
|
Manne BK, Badolia R, Dangelmaier C, Eble JA, Ellmeier W, Kahn M, Kunapuli SP. Distinct pathways regulate Syk protein activation downstream of immune tyrosine activation motif (ITAM) and hemITAM receptors in platelets. J Biol Chem 2015; 290:11557-68. [PMID: 25767114 DOI: 10.1074/jbc.m114.629527] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Indexed: 11/06/2022] Open
Abstract
Tyrosine kinase pathways are known to play an important role in the activation of platelets. In particular, the GPVI and CLEC-2 receptors are known to activate Syk upon tyrosine phosphorylation of an immune tyrosine activation motif (ITAM) and hemITAM, respectively. However, unlike GPVI, the CLEC-2 receptor contains only one tyrosine motif in the intracellular domain. The mechanisms by which this receptor activates Syk are not completely understood. In this study, we identified a novel signaling mechanism in CLEC-2-mediated Syk activation. CLEC-2-mediated, but not GPVI-mediated, platelet activation and Syk phosphorylation were abolished by inhibition of PI3K, which demonstrates that PI3K regulates Syk downstream of CLEC-2. Ibrutinib, a Tec family kinase inhibitor, also completely abolished CLEC-2-mediated aggregation and Syk phosphorylation in human and murine platelets. Furthermore, embryos lacking both Btk and Tec exhibited cutaneous edema associated with blood-filled vessels in a typical lymphatic pattern similar to CLEC-2 or Syk-deficient embryos. Thus, our data show, for the first time, that PI3K and Tec family kinases play a crucial role in the regulation of platelet activation and Syk phosphorylation downstream of the CLEC-2 receptor.
Collapse
Affiliation(s)
- Bhanu Kanth Manne
- From the Department of Physiology, Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Rachit Badolia
- From the Department of Physiology, Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Carol Dangelmaier
- From the Department of Physiology, Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Johannes A Eble
- the Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Wilfried Ellmeier
- the Division of Immunobiology, Institution of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090 Vienna, Austria, and
| | - Mark Kahn
- the Department of Medicine and Division of Cardiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-5159
| | - Satya P Kunapuli
- From the Department of Physiology, Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140,
| |
Collapse
|
95
|
Navarro-Núñez L, Pollitt AY, Lowe K, Latif A, Nash GB, Watson SP. Platelet adhesion to podoplanin under flow is mediated by the receptor CLEC-2 and stabilised by Src/Syk-dependent platelet signalling. Thromb Haemost 2015; 113:1109-20. [PMID: 25694214 PMCID: PMC4990172 DOI: 10.1160/th14-09-0762] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 01/06/2015] [Indexed: 12/31/2022]
Abstract
Platelet-specific deletion of CLEC-2, which signals through Src and Syk kinases, or global deletion of its ligand podoplanin results in blood-filled lymphatics during mouse development. Platelet-specific Syk deficiency phenocopies this defect, indicating that platelet activation is required for lymphatic development. In the present study, we investigated whether CLEC-2-podoplanin interactions could support platelet arrest from blood flow and whether platelet signalling is required for stable platelet adhesion to lymphatic endothelial cells (LECs) and recombinant podoplanin under flow. Perfusion of human or mouse blood over human LEC monolayers led to platelet adhesion and aggregation. Following αIIbβ3 blockade, individual platelets still adhered. Platelet binding occurred at venous but not arterial shear rates. There was no adhesion using CLEC-2-deficient blood or to vascular endothelial cells (which lack podoplanin). Perfusion of human blood over human Fc-podoplanin (hFcPDPN) in the presence of monoclonal antibody IV.3 to block FcγRIIA receptors led to platelet arrest at similar shear rates to those used on LECs. Src and Syk inhibitors significantly reduced global adhesion of human or mouse platelets to LECs and hFcPDPN. A similar result was seen using Syk-deficient mouse platelets. Reduced platelet adhesion was due to a decrease in the stability of binding. In conclusion, our data reveal that CLEC-2 is an adhesive receptor that supports platelet arrest to podoplanin under venous shear. Src/Syk-dependent signalling stabilises platelet adhesion to podoplanin, providing a possible molecular mechanism contributing to the lymphatic defects of Syk-deficient mice.
Collapse
Affiliation(s)
- Leyre Navarro-Núñez
- Leyre Navarro-Núñez, Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, United Kingdom, Tel.: +44 1214158678; Fax: +44 1214158817, E-mail:
| | | | | | | | | | - Steve P Watson
- Steve P. Watson, Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, United Kingdom, Tel.: +44 1214158678; Fax: +44 1214158817, E-mail: s.
| |
Collapse
|
96
|
Flierl U, Nero TL, Lim B, Arthur JF, Yao Y, Jung SM, Gitz E, Pollitt AY, Zaldivia MTK, Jandrot-Perrus M, Schäfer A, Nieswandt B, Andrews RK, Parker MW, Gardiner EE, Peter K. Phosphorothioate backbone modifications of nucleotide-based drugs are potent platelet activators. ACTA ACUST UNITED AC 2015; 212:129-37. [PMID: 25646267 PMCID: PMC4322051 DOI: 10.1084/jem.20140391] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Flierl et al. show that phosphorothioate (PS) oligonucleotides activate platelets via interacting with the collagen receptor GPVI. As PS backbone modification is currently used for nucleotide-based drug candidates, the findings suggest that this widely used method may present a risk to patients in the form of arterial thrombosis. Nucleotide-based drug candidates such as antisense oligonucleotides, aptamers, immunoreceptor-activating nucleotides, or (anti)microRNAs hold great therapeutic promise for many human diseases. Phosphorothioate (PS) backbone modification of nucleotide-based drugs is common practice to protect these promising drug candidates from rapid degradation by plasma and intracellular nucleases. Effects of the changes in physicochemical properties associated with PS modification on platelets have not been elucidated so far. Here we report the unexpected binding of PS-modified oligonucleotides to platelets eliciting strong platelet activation, signaling, reactive oxygen species generation, adhesion, spreading, aggregation, and thrombus formation in vitro and in vivo. Mechanistically, the platelet-specific receptor glycoprotein VI (GPVI) mediates these platelet-activating effects. Notably, platelets from GPVI function–deficient patients do not exhibit binding of PS-modified oligonucleotides, and platelet activation is fully abolished. Our data demonstrate a novel, unexpected, PS backbone–dependent, platelet-activating effect of nucleotide-based drug candidates mediated by GPVI. This unforeseen effect should be considered in the ongoing development programs for the broad range of upcoming and promising DNA/RNA therapeutics.
Collapse
Affiliation(s)
- Ulrike Flierl
- Baker IDI Heart and Diabetes Institute, St. Vincent's Institute of Medical Research, and Bio21 Institute, University of Melbourne, Melbourne, Victoria 3010, Australia Department of Cardiology and Angiology, Hannover Medical School, 30625 Hannover, Germany
| | - Tracy L Nero
- Baker IDI Heart and Diabetes Institute, St. Vincent's Institute of Medical Research, and Bio21 Institute, University of Melbourne, Melbourne, Victoria 3010, Australia Baker IDI Heart and Diabetes Institute, St. Vincent's Institute of Medical Research, and Bio21 Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Bock Lim
- Baker IDI Heart and Diabetes Institute, St. Vincent's Institute of Medical Research, and Bio21 Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Jane F Arthur
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia
| | - Yu Yao
- Baker IDI Heart and Diabetes Institute, St. Vincent's Institute of Medical Research, and Bio21 Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Stephanie M Jung
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, England, UK
| | - Eelo Gitz
- Centre for Cardiovascular Sciences, University of Birmingham, Birmingham B15 2TT, England, UK
| | - Alice Y Pollitt
- Centre for Cardiovascular Sciences, University of Birmingham, Birmingham B15 2TT, England, UK
| | - Maria T K Zaldivia
- Baker IDI Heart and Diabetes Institute, St. Vincent's Institute of Medical Research, and Bio21 Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | | | - Andreas Schäfer
- Department of Cardiology and Angiology, Hannover Medical School, 30625 Hannover, Germany
| | - Bernhard Nieswandt
- Rudolf Virchow Centre for Experimental Biomedicine, D-97080 Würzburg, Germany
| | - Robert K Andrews
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia
| | - Michael W Parker
- Baker IDI Heart and Diabetes Institute, St. Vincent's Institute of Medical Research, and Bio21 Institute, University of Melbourne, Melbourne, Victoria 3010, Australia Baker IDI Heart and Diabetes Institute, St. Vincent's Institute of Medical Research, and Bio21 Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Elizabeth E Gardiner
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia
| | - Karlheinz Peter
- Baker IDI Heart and Diabetes Institute, St. Vincent's Institute of Medical Research, and Bio21 Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
97
|
Salunkhe V, van der Meer PF, de Korte D, Seghatchian J, Gutiérrez L. Development of blood transfusion product pathogen reduction treatments: A review of methods, current applications and demands. Transfus Apher Sci 2015; 52:19-34. [DOI: 10.1016/j.transci.2014.12.016] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
98
|
Naitoh K, Hosaka Y, Honda M, Ogawa K, Shirakawa K, Furusako S. Properties of soluble glycoprotein VI, a potential platelet activation biomarker. Platelets 2014; 26:745-50. [PMID: 25549161 DOI: 10.3109/09537104.2014.991707] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Glycoprotein VI (GPVI) plays a critical role in the platelet response to collagen. Clinical studies suggest that the plasma level of soluble GPVI (sGPVI) is a highly specific and useful platelet activation marker. However, many properties of sGPVI have not been fully characterized, such as its sensitivity in detecting platelet activation and its elimination rate from the blood. In this study we established a sandwich enzyme-linked immunosorbent assay for human sGPVI, which cross-reacts to cynomolgus monkey sGPVI, and evaluated the time course of sGPVI production in a cynomolgus monkey model of lipopolysaccharide (LPS)-induced thrombocytopenia. The sGPVI levels in this model were dramatically elevated and returned to baseline by 24 hours after LPS injection, the change was more pronounced than the existing platelet activation biomarker, soluble P-selectin (sP-selectin) levels. The elimination half-life of recombinant human sGPVI was about 2.5 hours following intravenous administration to monkeys. These results suggest that plasma sGPVI closely reflects platelet activation in the bloodstream and has a short half-life. sGPVI would be a useful biomarker for disorders marked by platelet activation and for monitoring anti-platelet therapy.
Collapse
Affiliation(s)
- Katsuki Naitoh
- a Biology Laboratory, Discovery Research, Mochida Pharmaceutical Co., LTD. , Jimba , Gotemba , Shizuoka , Japan
| | - Yoshitaka Hosaka
- a Biology Laboratory, Discovery Research, Mochida Pharmaceutical Co., LTD. , Jimba , Gotemba , Shizuoka , Japan
| | - Motoyasu Honda
- a Biology Laboratory, Discovery Research, Mochida Pharmaceutical Co., LTD. , Jimba , Gotemba , Shizuoka , Japan
| | - Kumiko Ogawa
- a Biology Laboratory, Discovery Research, Mochida Pharmaceutical Co., LTD. , Jimba , Gotemba , Shizuoka , Japan
| | - Kamon Shirakawa
- a Biology Laboratory, Discovery Research, Mochida Pharmaceutical Co., LTD. , Jimba , Gotemba , Shizuoka , Japan
| | - Shoji Furusako
- a Biology Laboratory, Discovery Research, Mochida Pharmaceutical Co., LTD. , Jimba , Gotemba , Shizuoka , Japan
| |
Collapse
|