51
|
Bichet C, Régis C, Gilot‐Fromont E, Cohas A. Variations in immune parameters with age in a wild rodent population and links with survival. Ecol Evol 2022; 12:e9094. [PMID: 35845372 PMCID: PMC9273568 DOI: 10.1002/ece3.9094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 12/02/2022] Open
Abstract
Recent findings suggest that immune functions do not unidirectionally deteriorate with age but that a potentially adaptive remodeling, where functions of the immune system get downregulated while others get upregulated with age could also occur. Scarce in wild populations, longitudinal studies are yet necessary to properly understand the patterns and consequences of age variations of the immune system in the wild. Meanwhile, it is challenging to understand if the observed variations in immune parameters with age are due to changes at the within-individual level or to selective (dis)appearance of individuals with peculiar immune phenotypes. Thanks to a long-term and longitudinal monitoring of a wild Alpine marmot population, we aimed to understand within- and between-individual variation in the immune phenotype with age, in order to improve our knowledge about the occurrence and the evolutionary consequences of such age variations in the wild. To do so, we recorded the age-specific leukocyte concentration and leukocyte profile in repeatedly sampled dominant individuals. We then tested whether the potential changes with age were attributable to within-individual variations and/or selective (dis)appearance. Finally, we investigated if the leukocyte concentration and profiles were correlated to the probability of death at a given age. The leukocyte concentration was stable with age, but the relative number of lymphocytes decreased, while the relative number of neutrophils increased, over the course of an individual's life. Moreover, between individuals of the same age, individuals with fewer lymphocytes but more neutrophils were more likely to die. Therefore, selective disappearance seems to play a role in the age variations of the immune parameters in this population. Further investigations linking age variations in immune phenotype to individual fitness are needed to understand whether remodeling of the immune system with age could or could not be adaptive.
Collapse
Affiliation(s)
- Coraline Bichet
- Centre d'Etudes Biologiques de ChizéCNRS‐La Rochelle UniversitéVilliers‐en‐BoisFrance
- Institut für Vogelforschung "Vogelwarte Helgoland" (Institute of Avian Research)WilhelmshavenGermany
- UMR‐CNRS 5558, Laboratoire Biométrie et Biologie ÉvolutiveUniversité Claude Bernard Lyon 1VilleurbanneFrance
| | - Corinne Régis
- UMR‐CNRS 5558, Laboratoire Biométrie et Biologie ÉvolutiveUniversité Claude Bernard Lyon 1VilleurbanneFrance
| | - Emmanuelle Gilot‐Fromont
- UMR‐CNRS 5558, Laboratoire Biométrie et Biologie ÉvolutiveUniversité Claude Bernard Lyon 1VilleurbanneFrance
- Université de Lyon, VetAgro SupMarcy‐l'EtoileFrance
| | - Aurélie Cohas
- UMR‐CNRS 5558, Laboratoire Biométrie et Biologie ÉvolutiveUniversité Claude Bernard Lyon 1VilleurbanneFrance
- Institut Universitaire de France (IUF)ParisFrance
| |
Collapse
|
52
|
Klopack ET, Thyagarajan B, Faul JD, Meier HCS, Ramasubramanian R, Kim JK, Crimmins EM. Socioeconomic status and immune aging in older US adults in the health and retirement study. BIODEMOGRAPHY AND SOCIAL BIOLOGY 2022; 67:187-202. [PMID: 36472376 PMCID: PMC9869898 DOI: 10.1080/19485565.2022.2149465] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Socioeconomic and demographic factors including educational attainment, race and ethnicity, and childhood socioeconomic status (SES) are powerful predictors of inequalities in aging, morbidity, and mortality. Immune aging, including accumulation of late-differentiated, senescent-like lymphocytes and lower levels of naïve lymphocytes, may play a role in the development of the age-related health inequalities. This study used nationally representative data from more than 9,000 US adults from the Health and Retirement Study to investigate associations between educational attainment, race and ethnicity, and childhood SES and lymphocyte percentages. Respondents with lower educational attainment, Hispanic adults, and those who had a parent with less than a high school education had lymphocyte percentages consistent with more immune aging compared to those with greater educational attainment, non-Hispanic White adults, and respondents who had parents with a high school education, respectively. Associations between education, Hispanic ethnicity, and parents' education and late differentiated senescent-like T lymphocytes (TemRA) and B cells were largely driven by cytomegalovirus (CMV), suggesting it is a factor in observed SES inequalities in immunosenescence. Naïve T lymphocytes may be particularly affected by socioeconomic position and may therefore be of particular interest to research interested in inequalities in health and aging.
Collapse
Affiliation(s)
- Eric T. Klopack
- Leonard Davis School of Gerontology, University of Southern California
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota
| | | | | | - Ramya Ramasubramanian
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health
| | - Jung Ki Kim
- Leonard Davis School of Gerontology, University of Southern California
| | | |
Collapse
|
53
|
Kumar M, James MM, Kumawat M, Nabi B, Sharma P, Pal N, Shubham S, Tiwari RR, Sarma DK, Nagpal R. Aging and Microbiome in the Modulation of Vaccine Efficacy. Biomedicines 2022; 10:biomedicines10071545. [PMID: 35884849 PMCID: PMC9313064 DOI: 10.3390/biomedicines10071545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 12/29/2022] Open
Abstract
From infancy through to old age, the microbiome plays an important role in modulating the host-immune system. As we age, our immune system and our gut microbiota change significantly in composition and function, which is linked to an increased vulnerability to infectious diseases and a decrease in vaccine responses. Our microbiome remains largely stable throughout adulthood; however, aging causes a major shift in the composition and function of the gut microbiome, as well as a decrease in diversity. Considering the critical role of the gut microbiome in the host-immune system, it is important to address, prevent, and ameliorate age-related dysbiosis, which could be an effective strategy for preventing/restoring functional deficits in immune responses as we grow older. Several factors, such as the host’s genetics and nutritional state, along with the gut microbiome, can influence vaccine efficacy or reaction. Emerging evidence suggests that the microbiome could be a significant determinant of vaccine immunity. Physiological mechanisms such as senescence, or the steady loss of cellular functions, which affect the aging process and vaccination responses, have yet to be comprehended. Recent studies on several COVID-19 vaccines worldwide have provided a considerable amount of data to support the hypothesis that aging plays a crucial role in modulating COVID-19 vaccination efficacy across different populations.
Collapse
Affiliation(s)
- Manoj Kumar
- National Institute for Research in Environmental Health, Bhopal 462030, India; (M.K.); (M.M.J.); (M.K.); (P.S.); (N.P.); (S.S.); (R.R.T.)
| | - Meenu Mariya James
- National Institute for Research in Environmental Health, Bhopal 462030, India; (M.K.); (M.M.J.); (M.K.); (P.S.); (N.P.); (S.S.); (R.R.T.)
| | - Manoj Kumawat
- National Institute for Research in Environmental Health, Bhopal 462030, India; (M.K.); (M.M.J.); (M.K.); (P.S.); (N.P.); (S.S.); (R.R.T.)
| | - Bilkees Nabi
- Department of Biochemistry and Biochemical Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad 211007, India;
| | - Poonam Sharma
- National Institute for Research in Environmental Health, Bhopal 462030, India; (M.K.); (M.M.J.); (M.K.); (P.S.); (N.P.); (S.S.); (R.R.T.)
| | - Namrata Pal
- National Institute for Research in Environmental Health, Bhopal 462030, India; (M.K.); (M.M.J.); (M.K.); (P.S.); (N.P.); (S.S.); (R.R.T.)
| | - Swasti Shubham
- National Institute for Research in Environmental Health, Bhopal 462030, India; (M.K.); (M.M.J.); (M.K.); (P.S.); (N.P.); (S.S.); (R.R.T.)
| | - Rajnarayan R. Tiwari
- National Institute for Research in Environmental Health, Bhopal 462030, India; (M.K.); (M.M.J.); (M.K.); (P.S.); (N.P.); (S.S.); (R.R.T.)
| | - Devojit Kumar Sarma
- National Institute for Research in Environmental Health, Bhopal 462030, India; (M.K.); (M.M.J.); (M.K.); (P.S.); (N.P.); (S.S.); (R.R.T.)
- Correspondence: (D.K.S.); (R.N.)
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32302, USA
- Correspondence: (D.K.S.); (R.N.)
| |
Collapse
|
54
|
Saul N, Dhondt I, Kuokkanen M, Perola M, Verschuuren C, Wouters B, von Chrzanowski H, De Vos WH, Temmerman L, Luyten W, Zečić A, Loier T, Schmitz-Linneweber C, Braeckman BP. Identification of healthspan-promoting genes in Caenorhabditis elegans based on a human GWAS study. Biogerontology 2022; 23:431-452. [PMID: 35748965 PMCID: PMC9388463 DOI: 10.1007/s10522-022-09969-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/16/2022] [Indexed: 12/03/2022]
Abstract
To find drivers of healthy ageing, a genome-wide association study (GWAS) was performed in healthy and unhealthy older individuals. Healthy individuals were defined as free from cardiovascular disease, stroke, heart failure, major adverse cardiovascular event, diabetes, dementia, cancer, chronic obstructive pulmonary disease (COPD), asthma, rheumatism, Crohn’s disease, malabsorption or kidney disease. Six single nucleotide polymorphisms (SNPs) with unknown function associated with ten human genes were identified as candidate healthspan markers. Thirteen homologous or closely related genes were selected in the model organism C. elegans for evaluating healthspan after targeted RNAi-mediated knockdown using pathogen resistance, muscle integrity, chemotaxis index and the activity of known longevity and stress response pathways as healthspan reporters. In addition, lifespan was monitored in the RNAi-treated nematodes. RNAi knockdown of yap-1, wwp-1, paxt-1 and several acdh genes resulted in heterogeneous phenotypes regarding muscle integrity, pathogen resistance, chemotactic behaviour, and lifespan. Based on these observations, we hypothesize that their human homologues WWC2, CDKN2AIP and ACADS may play a role in health maintenance in the elderly.
Collapse
Affiliation(s)
- Nadine Saul
- Molecular Genetics Group, Institute of Biology, Humboldt University of Berlin, Berlin, Germany.
| | - Ineke Dhondt
- Laboratory of Aging Physiology and Molecular Evolution, Biology Department, Ghent University, Ghent, Belgium
| | - Mikko Kuokkanen
- Genomics and Biomarkers Unit, Department of Health, National Institute for Health and Welfare, Helsinki, Finland.,Department of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Markus Perola
- Genomics and Biomarkers Unit, Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| | - Clara Verschuuren
- Laboratory of Aging Physiology and Molecular Evolution, Biology Department, Ghent University, Ghent, Belgium
| | | | - Henrik von Chrzanowski
- Molecular Genetics Group, Institute of Biology, Humboldt University of Berlin, Berlin, Germany.,The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | | | | | - Aleksandra Zečić
- Laboratory of Aging Physiology and Molecular Evolution, Biology Department, Ghent University, Ghent, Belgium
| | - Tim Loier
- Laboratory of Aging Physiology and Molecular Evolution, Biology Department, Ghent University, Ghent, Belgium
| | | | - Bart P Braeckman
- Laboratory of Aging Physiology and Molecular Evolution, Biology Department, Ghent University, Ghent, Belgium
| |
Collapse
|
55
|
SOCIAL ENVIRONMENT IMPROVES THE CYTOKINE PROFILE AND LYMPHOPROLIFERATIVE RESPONSE IN CHRONOLOGICALLY OLD AND PREMATURELY AGING MICE. Mech Ageing Dev 2022; 206:111692. [PMID: 35760213 DOI: 10.1016/j.mad.2022.111692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/07/2022] [Accepted: 06/22/2022] [Indexed: 11/21/2022]
Abstract
Among the age-associated changes in the immune system, the most evident is the decrease in proliferative responses of lymphocytes to mitogenic stimuli, which is accompanied by the loss of cytokine network homeostasis. Chronic low-grade inflammatory stress, termed as sterile inflammation, is also observed during aging. In chronologically and prematurely aging mice, cohabitation with adult animals for two months favored improvements in several immune functions. This study aimed to determine whether cohabitation could restore several cytokine networks, improve lymphoproliferative responses to mitogens, and diminish sterile inflammation. Chronologically old mice (76±4 weeks) and prematurely aging mice (33±4 weeks) (PAM and TH-HZ) were cohabited with adults (without premature aging) for two months. Subsequently, lymphoproliferation in both basal (unstimulated) conditions and in the presence of mitogenic stimuli lipopolysaccharide A (LPS) or concanavalin A (ConA) was analyzed in cultures of peritoneal leukocytes for 48h. Cytokine secretions (IL-1β, TNF-α, IL-6, IL-10, and IL-17) in these cultures were also evaluated. The results showed that cohabitation restored the levels of these cytokines in old and prematurely aging mice and improved the subsequent lymphoproliferative responses. In addition, this social strategy diminished sterile inflammation and decreased inflammatory stress in unstimulated conditions. Therefore, this strategy seems to be capable of restoring the relevant immune function of lymphocytes and reducing the inflammatory stress, which are the improvements required for an adequate immune response.
Collapse
|
56
|
Klopack ET, Crimmins EM, Cole SW, Seeman TE, Carroll JE. Social stressors associated with age-related T lymphocyte percentages in older US adults: Evidence from the US Health and Retirement Study. Proc Natl Acad Sci U S A 2022; 119:e2202780119. [PMID: 35696572 PMCID: PMC9231620 DOI: 10.1073/pnas.2202780119] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/25/2022] [Indexed: 12/31/2022] Open
Abstract
Exposure to stress is a risk factor for poor health and accelerated aging. Immune aging, including declines in naïve and increases in terminally differentiated T cells, plays a role in immune health and tissue specific aging, and may contribute to elevated risk for poor health among those who experience high psychosocial stress. Past data have been limited in estimating the contribution of life stress to the development of accelerated immune aging and investigating mediators such as lifestyle and cytomegalovirus (CMV) infection. This study utilizes a national sample of 5,744 US adults over age 50 to assess the relationship of social stress (viz., everyday discrimination, stressful life events, lifetime discrimination, life trauma, and chronic stress) with flow cytometric estimates of immune aging, including naïve and terminally differentiated T cell percentages and the ratio of CD4+ to CD8+ cells. Experiencing life trauma and chronic stress was related to a lower percentage of CD4+ naïve cells. Discrimination and chronic stress were each associated with a greater percentage of terminally differentiated CD4+ cells. Stressful life events, high lifetime discrimination, and life trauma were related to a lower percentage of CD8+ naïve cells. Stressful life events, high lifetime discrimination, and chronic stress were associated with a higher percentage of terminally differentiated CD8+ cells. High lifetime discrimination and chronic stress were related to a lower CD4+:CD8+ ratio. Lifestyle factors and CMV seropositivity partially reduced these effects. Results identify psychosocial stress as a contributor to accelerating immune aging by decreasing naïve and increasing terminally differentiated T cells.
Collapse
Affiliation(s)
- Eric T. Klopack
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Eileen M. Crimmins
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Steve W. Cole
- Cousins Center for Psychoneuroimmunology, Jane & Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095
| | - Teresa E. Seeman
- Division of Geriatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Judith E. Carroll
- Cousins Center for Psychoneuroimmunology, Department of Psychiatry & Biobehavioral Sciences, Jane & Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095
| |
Collapse
|
57
|
Serrano-Villar S, Wu K, Hunt PW, Lok JJ, Ron R, Sainz T, Moreno S, Deeks SG, Bosch RJ. Predictive value of CD8+ T cell and CD4/CD8 ratio at two years of successful ART in the risk of AIDS and non-AIDS events. EBioMedicine 2022; 80:104072. [PMID: 35644125 PMCID: PMC9156990 DOI: 10.1016/j.ebiom.2022.104072] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND While increased CD8 counts and low CD4/CD8 ratio during treated HIV correlate with immunosenescence, their additional predictive values to identify individuals with HIV at higher risk of clinical events remain controversial. METHODS We selected treatment-naive individuals initiating ART from ACTG studies 384, 388, A5095, A5142, A5202, and A5257 who had achieved viral suppression at year 2. We examined the effect of CD8+ T cell counts and CD4/CD8 at year 2 on the probability of AIDS and serious non-AIDS events in years 3-7. We used inverse probability weighting methods to address informative censoring, combined with multivariable logistic regression models. FINDINGS We analyzed 5133 participants with a median age of 38 years; 959 (19%) were female, pre-ART median CD4 counts were 249 (Q1-Q3 91-372) cell/µL. Compared to participants with CD8 counts between 500/µL and 1499/µL, those with >1500/µL had a higher risk of clinical events during years 3-7 (aOR 1.75; 95%CI 1.33-2.32). CD4/CD8 ratio was not predictive of greater risk of events through year 7. Additional analyses revealed consistent CD8 count effect sizes for the risk of AIDS events and noninfectious non-AIDS events, but opposite effects for the risk of severe infections, which were more frequent among individuals with CD8 counts <500/µL (aOR 1.70; 95%CI 1.09-2.65). INTERPRETATION The results of this analysis with pooled data from clinical trials support the value of the CD8 count as a predictor of clinical progression. People with very high CD8 counts during suppressive ART might benefit from closer monitoring and may be a target population for novel interventions. FUNDING This research was supported by NIH/NIAID awards UM1 AI068634, UM1 AI068636, and UM1 AI106701 and Carlos III Health Institute and FEDER funds (BA21/00017 and BA21/00022).
Collapse
Affiliation(s)
- Sergio Serrano-Villar
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal and IRYCIS, Carretera de Colmenar Viejo, km 9.100, Madrid 28034, Spain; Centro de Investigación Biomédica en Red, Instituto de Salud Carlos III, Madrid, Spain; San Francisco General Hospital, San Francisco, CA, USA.
| | - Kunling Wu
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Peter W Hunt
- San Francisco General Hospital, San Francisco, CA, USA
| | | | - Raquel Ron
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal and IRYCIS, Carretera de Colmenar Viejo, km 9.100, Madrid 28034, Spain; Centro de Investigación Biomédica en Red, Instituto de Salud Carlos III, Madrid, Spain
| | - Talía Sainz
- Centro de Investigación Biomédica en Red, Instituto de Salud Carlos III, Madrid, Spain; Hospital Universitario La Paz and La Paz Research Institute (IdiPAZ), Madrid, Spain
| | - Santiago Moreno
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal and IRYCIS, Carretera de Colmenar Viejo, km 9.100, Madrid 28034, Spain; Centro de Investigación Biomédica en Red, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Ronald J Bosch
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
58
|
Tian J, Chung HK, Moon JS, Nga HT, Lee HY, Kim JT, Chang JY, Kang SG, Ryu D, Che X, Choi J, Tsukasaki M, Sasako T, Lee S, Shong M, Yi H. Skeletal muscle mitoribosomal defects are linked to low bone mass caused by bone marrow inflammation in male mice. J Cachexia Sarcopenia Muscle 2022; 13:1785-1799. [PMID: 35306755 PMCID: PMC9178379 DOI: 10.1002/jcsm.12975] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 02/01/2022] [Accepted: 02/15/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Mitochondrial oxidative phosphorylation (OxPhos) is a critical regulator of skeletal muscle mass and function. Although muscle atrophy due to mitochondrial dysfunction is closely associated with bone loss, the biological characteristics of the relationship between muscle and bone remain obscure. We showed that muscle atrophy caused by skeletal muscle-specific CR6-interacting factor 1 knockout (MKO) modulates the bone marrow (BM) inflammatory response, leading to low bone mass. METHODS MKO mice with lower muscle OxPhos were fed a normal chow or high-fat diet and then evaluated for muscle mass and function, and bone mineral density. Immunophenotyping of BM immune cells was also performed. BM transcriptomic analysis was used to identify key factors regulating bone mass in MKO mice. To determine the effects of BM-derived CXCL12 (C-X-C motif chemokine ligand 12) on regulation of bone homeostasis, a variety of BM niche-resident cells were treated with recombinant CXCL12. Vastus lateralis muscle and BM immune cell samples from 14 patients with hip fracture were investigated to examine the association between muscle function and BM inflammation. RESULTS MKO mice exhibited significant reductions in both muscle mass and expression of OxPhos subunits but increased transcription of mitochondrial stress response-related genes in the extensor digitorum longus (P < 0.01). MKO mice showed a decline in grip strength and a higher drop rate in the wire hanging test (P < 0.01). Micro-computed tomography and von Kossa staining revealed that MKO mice developed a low mass phenotype in cortical and trabecular bone (P < 0.01). Transcriptomic analysis of the BM revealed that mitochondrial stress responses in skeletal muscles induce an inflammatory response and adipogenesis in the BM and that the CXCL12-CXCR4 (C-X-C chemokine receptor 4) axis is important for T-cell homing to the BM. Antagonism of CXCR4 attenuated BM inflammation and increased bone mass in MKO mice. In humans, patients with low body mass index (BMI = 17.2 ± 0.42 kg/m2 ) harboured a larger population of proinflammatory and cytotoxic senescent T-cells in the BMI (P < 0.05) and showed reduced expression of OxPhos subunits in the vastus lateralis, compared with controls with a normal BMI (23.7 ± 0.88 kg/m2 ) (P < 0.01). CONCLUSIONS Defects in muscle mitochondrial OxPhos promote BM inflammation in mice, leading to decreased bone mass. Muscle mitochondrial dysfunction is linked to BM inflammatory cytokine secretion via the CXCL12-CXCR4 signalling axis, which is critical for inducing low bone mass.
Collapse
Affiliation(s)
- Jingwen Tian
- Department of Medical ScienceChungnam National UniversityDaejeonKorea
- Laboratory of Endocrinology and Immune SystemChungnam National University School of MedicineDaejeonKorea
| | - Hyo Kyun Chung
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of MedicineDaejeonKorea
| | - Ji Sun Moon
- Laboratory of Endocrinology and Immune SystemChungnam National University School of MedicineDaejeonKorea
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of MedicineDaejeonKorea
| | - Ha Thi Nga
- Department of Medical ScienceChungnam National UniversityDaejeonKorea
- Laboratory of Endocrinology and Immune SystemChungnam National University School of MedicineDaejeonKorea
| | - Ho Yeop Lee
- Department of Medical ScienceChungnam National UniversityDaejeonKorea
- Laboratory of Endocrinology and Immune SystemChungnam National University School of MedicineDaejeonKorea
| | - Jung Tae Kim
- Department of Medical ScienceChungnam National UniversityDaejeonKorea
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of MedicineDaejeonKorea
| | - Joon Young Chang
- Department of Medical ScienceChungnam National UniversityDaejeonKorea
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of MedicineDaejeonKorea
| | - Seul Gi Kang
- Department of Medical ScienceChungnam National UniversityDaejeonKorea
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of MedicineDaejeonKorea
| | - Dongryeol Ryu
- Department of Molecular Cell BiologySungkyunkwan University School of MedicineSuwonKorea
- Samsung Biomedical Research InstituteSamsung Medical CenterSeoulKorea
| | - Xiangguo Che
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of MedicineKyungpook National UniversityDaeguKorea
- Department of Internal Medicine, Rheumatology and ImmunologyThe Affiliated Hospital of Yanbian UniversityYanjiChina
| | - Je‐Yong Choi
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of MedicineKyungpook National UniversityDaeguKorea
| | - Masayuki Tsukasaki
- Department of Immunology, Graduate School of Medicine and Faculty of MedicineThe University of TokyoTokyoJapan
| | - Takayoshi Sasako
- Department of Diabetes and Metabolic Diseases, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Sang‐Hee Lee
- Bio‐Electron Microscopy Research Center (104‐Dong)Korea Basic Science InstituteCheongjuKorea
| | - Minho Shong
- Department of Medical ScienceChungnam National UniversityDaejeonKorea
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of MedicineDaejeonKorea
| | - Hyon‐Seung Yi
- Department of Medical ScienceChungnam National UniversityDaejeonKorea
- Laboratory of Endocrinology and Immune SystemChungnam National University School of MedicineDaejeonKorea
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of MedicineDaejeonKorea
| |
Collapse
|
59
|
Bell MR, Kutzler MA. An old problem with new solutions: Strategies to improve vaccine efficacy in the elderly. Adv Drug Deliv Rev 2022; 183:114175. [PMID: 35202770 DOI: 10.1016/j.addr.2022.114175] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 11/01/2022]
Abstract
Vaccination is the most effective measure to protect against infections. However, with increasing age, there is a progressive decline in the ability of the immune system to both protect against infection and develop protective immunity from vaccination. This age-related decline of the immune system is due to age-related changes in both the innate and adaptive immune systems. With an aging world population and increased risk of pandemics, there is a need to continue to develop strategies to increase vaccine responses in the elderly. Here, the major age-related changes that occur in both the innate and adaptive immune responses that impair the response to vaccination in the elderly will be highlighted. Existing and future strategies to improve vaccine efficacy in the elderly will then be discussed, including adjuvants, delivery methods, and formulation. These strategies provide mechanisms to improve the efficacy of existing vaccines and develop novel vaccines for the elderly.
Collapse
|
60
|
Pretzsch E, Nieß H, Bösch F, Westphalen C, Jacob S, Neumann J, Werner J, Heinemann V, Angele M. Age and metastasis – How age influences metastatic spread in cancer. Colorectal cancer as a model. Cancer Epidemiol 2022; 77:102112. [DOI: 10.1016/j.canep.2022.102112] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 12/12/2022]
|
61
|
Montano M, Oursler KK, Xu K, Sun YV, Marconi VC. Biological ageing with HIV infection: evaluating the geroscience hypothesis. THE LANCET. HEALTHY LONGEVITY 2022; 3:e194-e205. [PMID: 36092375 PMCID: PMC9454292 DOI: 10.1016/s2666-7568(21)00278-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Although people with HIV are living longer, as they age they remain disproportionately burdened with multimorbidity that is exacerbated in resource-poor settings. The geroscience hypothesis postulates that a discrete set of between five and ten hallmarks of biological ageing drive multimorbidity, but these processes have not been systematically examined in the context of people with HIV. We examine four major hallmarks of ageing (macromolecular damage, senescence, inflammation, and stem-cell dysfunction) as gerodrivers in the context of people with HIV. As a counterbalance, we introduce healthy ageing, physiological reserve, intrinsic capacity, and resilience as promoters of geroprotection that counteract gerodrivers. We discuss emerging geroscience-based diagnostic biomarkers and therapeutic strategies, and provide examples based on recent advances in cellular senescence, and other, non-pharmacological approaches. Finally, we present a conceptual model of biological ageing in the general population and in people with HIV that integrates gerodrivers and geroprotectors as modulators of homoeostatic reserves and organ function over the lifecourse.
Collapse
|
62
|
Fragkou PC, Moschopoulos CD, Reiter R, Berger T, Skevaki C. Host immune responses and possible therapeutic targets for viral respiratory tract infections in susceptible populations: a narrative review. Clin Microbiol Infect 2022; 28:1328-1334. [DOI: 10.1016/j.cmi.2022.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/23/2021] [Accepted: 12/26/2021] [Indexed: 12/11/2022]
|
63
|
DIETARY INFLAMMATORY INDEX IS ASSOCIATED WITH LUNG FUNCTION IN HEALTHY OLDER ADULTS. Nutrition 2022; 99-100:111653. [DOI: 10.1016/j.nut.2022.111653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/10/2022] [Accepted: 02/28/2022] [Indexed: 11/15/2022]
|
64
|
Govers C, Calder PC, Savelkoul HFJ, Albers R, van Neerven RJJ. Ingestion, Immunity, and Infection: Nutrition and Viral Respiratory Tract Infections. Front Immunol 2022; 13:841532. [PMID: 35296080 PMCID: PMC8918570 DOI: 10.3389/fimmu.2022.841532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/02/2022] [Indexed: 12/12/2022] Open
Abstract
Respiratory infections place a heavy burden on the health care system, particularly in the winter months. Individuals with a vulnerable immune system, such as very young children and the elderly, and those with an immune deficiency, are at increased risk of contracting a respiratory infection. Most respiratory infections are relatively mild and affect the upper respiratory tract only, but other infections can be more serious. These can lead to pneumonia and be life-threatening in vulnerable groups. Rather than focus entirely on treating the symptoms of infectious disease, optimizing immune responsiveness to the pathogens causing these infections may help steer towards a more favorable outcome. Nutrition may have a role in such prevention through different immune supporting mechanisms. Nutrition contributes to the normal functioning of the immune system, with various nutrients acting as energy sources and building blocks during the immune response. Many micronutrients (vitamins and minerals) act as regulators of molecular responses of immune cells to infection. It is well described that chronic undernutrition as well as specific micronutrient deficiencies impair many aspects of the immune response and make individuals more susceptible to infectious diseases, especially in the respiratory and gastrointestinal tracts. In addition, other dietary components such as proteins, pre-, pro- and synbiotics, and also animal- and plant-derived bioactive components can further support the immune system. Both the innate and adaptive defense systems contribute to active antiviral respiratory tract immunity. The initial response to viral airway infections is through recognition by the innate immune system of viral components leading to activation of adaptive immune cells in the form of cytotoxic T cells, the production of neutralizing antibodies and the induction of memory T and B cell responses. The aim of this review is to describe the effects of a range different dietary components on anti-infective innate as well as adaptive immune responses and to propose mechanisms by which they may interact with the immune system in the respiratory tract.
Collapse
Affiliation(s)
- Coen Govers
- Cell Biology and Immunology, Wageningen University and Research, Wageningen, Netherlands
| | - Philip C. Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton National Health Service (NHS) Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Huub F. J. Savelkoul
- Cell Biology and Immunology, Wageningen University and Research, Wageningen, Netherlands
| | | | - R. J. Joost van Neerven
- Cell Biology and Immunology, Wageningen University and Research, Wageningen, Netherlands
- Research & Development, FrieslandCampina, Amersfoort, Netherlands
| |
Collapse
|
65
|
Chen B, Yang J, Song Y, Zhang D, Hao F. Skin Immunosenescence and Type 2 Inflammation: A Mini-Review With an Inflammaging Perspective. Front Cell Dev Biol 2022; 10:835675. [PMID: 35281103 PMCID: PMC8908007 DOI: 10.3389/fcell.2022.835675] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Skin-resident stromal cells, including keratinocytes, fibroblasts, adipocytes, and immune cells including Langerhans cells, dendritic cells, T cells, and innate lymphoid cells, and their functional products work in concert to ensure the realization of skin barrier immunity. However, aging-induced immunosenescence predisposes the elderly to pruritic dermatoses, including type 2 inflammation-mediated. Inflammaging, characterized by chronic low level of pro-inflammatory cytokines released from senescent cells with the senescence-associated secretory phenotype (SASP), may drive immunosenescence and tangle with type 2 inflammatory dermatoses. The present mini-review summarizes current evidence on immunosenescence and type 2 inflammation in the skin and further focuses on future needs from an inflammaging perspective to clarify their complexity.
Collapse
Affiliation(s)
- Bangtao Chen
- Department of Dermatology, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Jing Yang
- Department of Dermatology, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yao Song
- Department of Dermatology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Daojun Zhang
- Department of Dermatology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fei Hao
- Department of Dermatology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Fei Hao,
| |
Collapse
|
66
|
Kasten-Jolly J, Lawrence DA. Differential blood leukocyte populations based on individual variances and age. Immunol Res 2022; 70:114-128. [PMID: 35023048 PMCID: PMC8754550 DOI: 10.1007/s12026-021-09257-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/09/2021] [Indexed: 12/26/2022]
Abstract
Blood was collected from the New York State Department of Health (NYSDOH) employees to assess variances in leukocyte numbers in January, May, and September throughout a year and over many years. Women and men of ages 20 to 80 volunteered to donate for this program. Most of the blood came from healthy individuals, and many remained healthy throughout the years of their blood donations. The major objective was to determine the extent that blood leukocyte numbers change so that transient vs more lingering changes may be helpful in assessing health status. Since some donors remained in the program for 14 years, age influences over time could be determined. Within a short period of 2-3 years, the flow cytometric immunophenotypic profile of blood lymphocyte is relatively stable with a CV% of < 20%. However, as humans age, the blood CD3+ T cell, CD8+ T cell, B cell, NKT cell, and CD4-/CD8- double-negative T cell (DN-T cell) subsets declined in cell numbers/μL, but the double-positive CD4+/CD8+ T cells (DP-T cells) increased in numbers. The extent and chronology of a variance, e.g., a subset exceeding its 75th or 90th percentile, might be indicative of a transient or chronic physiological or psychosocial stress affecting health or a developing pathology; however, because of the wide ranges of cell numbers/μL for each subset among individuals reported as healthy, everyone's immunity and health must be carefully evaluated. A CD4 to CD8 ratio (4/8R) of < 1 has been used to define an immunodeficiency such as HIV-induced AIDS, but a high 4/8R is less well associated with health status. A high 4/8R or granulocyte to lymphocyte ratio (GLR) might be an indicator of a stress, infection, or immune-related pathology. Sporadic and longitudinal increases of GLRs are reported. The results suggest that there are some age and sex differences in leukocyte numbers; stress influences on the blood profile of leukocytes likely exist. However, some values exceeding 2 standard deviations from means do not necessarily predict a health concern, whereas a longitudinal increase or decline might be indicative of a need for further evaluations.
Collapse
Affiliation(s)
- Jane Kasten-Jolly
- Wadsworth Center, New York State Department of Health, Albany, NY, 12208, USA
| | - David A Lawrence
- Wadsworth Center, New York State Department of Health, Albany, NY, 12208, USA.
- School of Public Health, University of Albany, Rensselaer, NY, USA.
| |
Collapse
|
67
|
Late-Onset Polyserositis Emerging During Long-Term Clozapine Treatment and Persisting After Clozapine Discontinuation: Is Clozapine Really Innocent? J Clin Psychopharmacol 2022; 42:106-107. [PMID: 34928567 DOI: 10.1097/jcp.0000000000001474] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
68
|
Witkowski JM. Immune system aging and the aging-related diseases in the COVIID-19 era. Immunol Lett 2022; 243:19-27. [PMID: 35108570 PMCID: PMC8801734 DOI: 10.1016/j.imlet.2022.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 12/13/2022]
Abstract
The interest in the process of aging, and specifically in how aging affects the working of our immune system, has recently enormously grown among both specialists (immunologists and gerontologists) and representatives of other disciplines of health sciences. An obvious reason for this interest is the current pandemics of COVID-19, known to affect the elderly more than younger people. In this paper current knowledge about mechanisms and complex facets of human immune system aging is presented, stemming from the knowledge about the working of various parts of the immune system, and leading to understanding of immunological mechanisms of chronic, inflammatory, aging-related diseases and of COVID-19.
Collapse
Affiliation(s)
- Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland.
| |
Collapse
|
69
|
Epidemiological Characteristics of Hospitalized Patients with Moderate versus Severe COVID-19 Infection: A Retrospective Cohort Single Centre Study. Diseases 2021; 10:diseases10010001. [PMID: 35076497 PMCID: PMC8788538 DOI: 10.3390/diseases10010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/11/2021] [Accepted: 12/17/2021] [Indexed: 12/15/2022] Open
Abstract
COVID-19 has a devastating impact worldwide. Recognizing factors that cause its progression is important for the utilization of appropriate resources and improving clinical outcomes. In this study, we aimed to identify the epidemiological and clinical characteristics of patients who were hospitalized with moderate versus severe COVID-19 illness. A single-center, retrospective cohort study was conducted between 3 March and 9 September 2020. Following the CDC guidelines, a two-category variable for COVID-19 severity (moderate versus severe) based on length of stay, need for intensive care or mechanical ventilation and mortality was developed. Data including demographic, clinical characteristics, laboratory parameters, therapeutic interventions and clinical outcomes were assessed using descriptive and inferential analysis. A total of 1002 patients were included, the majority were male (n = 646, 64.5%), Omani citizen (n = 770, 76.8%) and with an average age of 54.2 years. At the bivariate level, patients classified as severe were older (Mean = 55.2, SD = 16) than the moderate patients (Mean = 51.5, SD = 15.8). Diabetes mellitus was the only significant comorbidity potential factor that was more prevalent in severe patients than moderate (n = 321, 46.6%; versus n = 178, 42.4%; p < 0.001). Under the laboratory factors; total white cell count (WBC), C-reactive protein (CRP), Lactate dehydrogenase (LDH), D-dimer and corrected calcium were significant. All selected clinical characteristics and therapeutics were significant. At the multivariate level, under demographic factors, only nationality was significant and no significant comorbidity was identified. Three clinical factors were identified, including; sepsis, Acute respiratory disease syndrome (ARDS) and requirement of non-invasive ventilation (NIV). CRP and steroids were also identified under laboratory and therapeutic factors, respectively. Overall, our study identified only five factors from a total of eighteen proposed due to their significant values (p < 0.05) from the bivariate analysis. There are noticeable differences in levels of COVID-19 severity among nationalities. All the selected clinical and therapeutic factors were significant, implying that they should be a key priority when assessing severity in hospitalized COVID-19 patients. An elevated level of CRP may be a valuable early marker in predicting the progression in non-severe patients with COVID-19. Early recognition and intervention of these factors could ease the management of hospitalized COVID-19 patients and reduce case fatalities as well medical expenditure.
Collapse
|
70
|
Ni YQ, Liu YS. New Insights into the Roles and Mechanisms of Spermidine in Aging and Age-Related Diseases. Aging Dis 2021; 12:1948-1963. [PMID: 34881079 PMCID: PMC8612618 DOI: 10.14336/ad.2021.0603] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022] Open
Abstract
High incidences of morbidity and mortality associated with age-related diseases among the elderly population are a socio-economic challenge. Aging is an irreversible and inevitable process that is a risk factor for pathological progression of diverse age-related diseases. Spermidine, a natural polyamine, plays a critical role in molecular and cellular interactions involved in various physiological and functional processes. Spermidine has been shown to modulate aging, suppress the occurrence and severity of age-related diseases, and prolong lifespan. However, the precise mechanisms through which spermidine exerts its anti-aging effects have not been established. In this review, we elucidate on the mechanisms and roles underlying the beneficial effects of spermidine in aging from a molecular and cellular perspective. Moreover, we provide new insights into the promising potential diagnostic and therapeutic applications of spermidine in aging and age-related diseases.
Collapse
Affiliation(s)
- Yu-Qing Ni
- 1Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,2Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, China
| | - You-Shuo Liu
- 1Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,2Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, China
| |
Collapse
|
71
|
Kingren MS, Starr ME, Saito H. Divergent Sepsis Pathophysiology in Older Adults. Antioxid Redox Signal 2021; 35:1358-1375. [PMID: 34210173 PMCID: PMC8905233 DOI: 10.1089/ars.2021.0056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/12/2022]
Abstract
Significance: Both incidence and mortality rates of sepsis significantly increase with advanced age, and the majority of sepsis patients are late middle-aged or older. With the proportion of older adults rapidly increasing in developed countries, age-dependent sepsis vulnerability is an urgent medical issue. Due to an increasing life expectancy, postsepsis complications and health care costs are expected to increase as well. Recent Advances: Older patients suffer from higher sepsis incidence and mortality rates, likely resulting from frequent comorbidities, increased coagulation, dysgylcemia, and altered immune responses. Critical Issues: Despite a large number of ongoing clinical and basic research studies, there is currently no effective therapeutic strategy targeting older patients with severe sepsis. The disparity between clinical and basic studies is a problem, and this is largely due to the use of animal models lacking clinical relevance. Although the majority of sepsis cases occur in older adults, most laboratory animals used for sepsis research are very young. Further, despite the wide use of combination fluid and antibiotic treatment in intensive care unit (ICU) patients, most animal research does not include such treatment. Future Directions: Because sepsis is a systemic disease with multiple organ dysfunction, combined therapy approaches, not those targeting single pathways or single organs, are essential. As for preclinical research, it is critical to confirm new findings using aged animal models with clinically relevant ICU-like medical treatments. Antioxid. Redox Signal. 35, 1358-1375.
Collapse
Affiliation(s)
- Meagan S. Kingren
- Aging and Critical Care Research Laboratory, Departments of University of Kentucky, Lexington, Kentucky, USA
- Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Marlene E. Starr
- Aging and Critical Care Research Laboratory, Departments of University of Kentucky, Lexington, Kentucky, USA
- Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
- Surgery, University of Kentucky, Lexington, Kentucky, USA
| | - Hiroshi Saito
- Aging and Critical Care Research Laboratory, Departments of University of Kentucky, Lexington, Kentucky, USA
- Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
- Surgery, University of Kentucky, Lexington, Kentucky, USA
- Physiology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
72
|
Association between senescence of T cells and disease activity in patients with systemic lupus erythematosus. Reumatologia 2021; 59:292-301. [PMID: 34819703 PMCID: PMC8609380 DOI: 10.5114/reum.2021.110318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/05/2021] [Indexed: 01/10/2023] Open
Abstract
Objectives Systemic lupus erythematosus (SLE) patients are predisposed to chronic immune activation, leading to accelerated immunosenescence. The aging of the immune system causes the T cells to express several senescence markers such as CD57 and KLRG1, which produce pro-inflammatory cytokine interferon γ (IFN-γ). Immunosenescence was associated with high morbidity and mortality in other diseases. This research was conducted to prove the association between senescent T cells and SLE disease activity. Material and methods This research was an observational cross-sectional study on 53 women aged 16–45 years diagnosed with SLE based on SLICC 2012 criteria. All subjects were recorded for demographic and clinical data, and their SLE disease activity index (SLEDAI) score was measured to evaluate disease activity. Active disease was defined as SLEDAI score ≥ 3. The CD57 antigen and KLRG1 expression on CD4+ and CD8+ T cells were calculated from peripheral blood mononuclear cells (PBMC) by flow cytometry. Interferon γ was measured from serum using ELISA. The comparison was done using the Mann-Whitney U test, and correlation was tested using the Spearman test. Associations between variables were calculated using linear regression models. Results Systemic lupus erythematosus patients with active disease had markedly higher CD4+KLRG1+ (3.1 [1.3–5.5]% vs. 0.3 [0.1–0.5]%), CD8+CD57+ (11.6 ±7.1% vs. 2.4 ±2.0%, p = 0.000), and CD8+KLRG1+ T cell percentages (13.7 ±7.5% vs. 0.3 ±0.1%, p = 0.000), and IFN- γ levels (208.9 [148.3–233.8] vs. 146.7 [130.2–210.8] pg/ml, p = 0.048), compared to the inactive patients. Positive correlation and association was found between the CD8+CD57+ and CD8+KLRG1+ percentages with the SLEDAI score (p = 0.007 and p = 0.007, for the linear regression analysis, respectively). Conclusions Systemic lupus erythematosus patients showed significantly higher senescence T cell markers compared to controls, and the increase of T cell senescence, especially in the CD8 compartment, has some association with increased disease activity in patients with SLE.
Collapse
|
73
|
[Immunosenescence, viral infections and nutrition: A narrative review of scientific available evidence]. Rev Esp Geriatr Gerontol 2021; 57:33-38. [PMID: 34844781 DOI: 10.1016/j.regg.2021.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 01/22/2023]
Abstract
Aging of the immune system, or immunosenescence, alters the viral immune response in the elderly, especially when frailty exists. Research findings have demonstrated an imbalance in pro- and anti-inflammatory mechanisms, reduced production and diversification of T lymphocytes, and an alteration in immunovigilance and antibody synthesis. In this context, nutrition has a role in combating sarcopenia and frailty. Some food components that contribute to immune-competence are protein, vitamin D, n-3 fatty acids, antioxidant vitamins (vitamins C and E), zinc, selenium and iron. In times of a pandemic, nutritional recommendations for immune-competence in the elderly should be based on clinical studies. In this article, immunosenescence and its relationship to nutrition are addressed, including interventions studied in the context of the COVID-19 pandemic.
Collapse
|
74
|
Lisowska KA, Storoniak H, Dębska-Ślizień A. T cell subpopulations and cytokine levels in hemodialysis patients. Hum Immunol 2021; 83:134-143. [PMID: 34802797 DOI: 10.1016/j.humimm.2021.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/23/2021] [Accepted: 11/08/2021] [Indexed: 12/19/2022]
Abstract
HD patients have impaired adaptive immune responses, which might depend on the primary cause of chronic kidney disease (CKD). We analyzed percentages of T cells subpopulations with the expression of CD69, CD25, CD95, and HLA-DR antigens in HD patients to determine the status of T cell activation. Also, we determined serum levels of cytokines: IL12p70, TNF, IL-10, IL-6, IL-1β, IL-8. HD patients had increased percentages of CD4+CD25+, CD4+CD69+, CD4+HLA-DR+, CD8+CD69+, and CD8+HLA-DR+ cells compared to healthy people. Also, their IL-6 and IL-8 serum levels were higher. Changes in T cell subpopulations were seen in patients with diabetic nephropathy (DN) or ischemic nephropathy (IN) but not with glomerulonephritis (GN). HD patients dialyzed for more than six months had a lower percentage of CD4+CD69+, CD8+HLA-DR+, CD8+CD95+ cells, higher IL-12p70 levels, and lower IL-8 levels. Our results show that HD treatment and CKD cause influence T cell activation status.
Collapse
Affiliation(s)
- Katarzyna A Lisowska
- Department of Pathophysiology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland.
| | - Hanna Storoniak
- Department of Nephrology, Transplantology and Internal Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Alicja Dębska-Ślizień
- Department of Nephrology, Transplantology and Internal Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
75
|
Oh HJ, Jin H, Nah SY, Lee BY. Gintonin-enriched fraction improves sarcopenia by maintaining immune homeostasis in 20- to 24-month-old C57BL/6J mice. J Ginseng Res 2021; 45:744-753. [PMID: 34764729 PMCID: PMC8570963 DOI: 10.1016/j.jgr.2021.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 11/15/2022] Open
Abstract
Background Gintonin-enriched fraction (GEF) is a new non-saponin component glycolipoprotein isolated from ginseng root. This study examined the effect of GEF on age-related sarcopenia in old C57BL/6J mice. Methods Young (3–6 months) and old (20–24 months) C57BL/6J mice received oral GEF (50 mg/kg/day or 150 mg/kg/day) daily for 5 weeks. During the oral administration period, body weight and grip strength were measured weekly. After sacrifice, muscles from the hindlimb were excised and used for hematoxylin and eosin staining and western blotting to determine the effects of GEF on sarcopenia. The thymus was photographed to compare size, and flow cytometry was performed to examine the effect of GEF on immune homeostasis in the thymus and spleen. Blood samples were collected, and the concentrations of pro-inflammatory cytokines and IGF-1 were measured. Results GEF caused a significant increase in muscle strength, mass, and fiber size in old mice. GEF restored age-related disruption of immune homeostasis by maintaining T cell compartments and regulating inflammatory biomarkers. Thus, GEF reduced common low-grade chronic inflammatory parameters, which are the main cause of muscle loss. Conclusion GEF maintained immune homeostasis and inhibited markers of chronic inflammation, resulting in anti-sarcopenia effects in aged C57BL/6J mice. Thus, GEF is a potential therapeutic agent that slows sarcopenia in the elderly.
Collapse
Affiliation(s)
- Hyun-Ji Oh
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam, Kyonggi, Republic of Korea
| | - Heegu Jin
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam, Kyonggi, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Boo-Yong Lee
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam, Kyonggi, Republic of Korea
| |
Collapse
|
76
|
Chakraborty A, Banerjee S, Mukherjee B, Poddar MK, Ali N. Calorie restriction modulates neuro-immune system differently in young and aged rats. Int Immunopharmacol 2021; 100:108141. [PMID: 34536745 DOI: 10.1016/j.intimp.2021.108141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/19/2021] [Accepted: 09/05/2021] [Indexed: 02/02/2023]
Abstract
Aging weakens and deregulates the immune system and plays an impact on the central nervous system (CNS). A crosstalk in between the CNS-mediated immune system and the body's overall innate immunity is often found to increase and subsequently accelerate neurodegeneration and behavioural impairment during aging. Dietary calorie restriction (CR) is found to be a beneficial non-invasive anti-aging therapy as it shows rejuvenation of stress response, brain functions and behaviour during aging. The present investigation deals with the consequence of CR diet supplementation for two different duration (one and two consecutive months) on aging-related alteration of the immune response in male albino Wistar rats at the level of (a) lymphocyte viability, proliferation, cytotoxicity, and DNA fragmentation in blood, spleen, and thymus and (b) cytokines (IL-6, IL-10, and TNF-α) in blood, spleen, thymus and different brain-regions to understand the effect of CR diet on neuroimmune system. The results depict that CR diet consumption for consecutive one and two months by the aged (18 and 24 months) rats significantly attenuated the aging-related (a) decrease of blood, splenic and thymic lymphocyte viability, proliferative activity, cytotoxicity, and IL-10 level and (b) increase of (i) blood, splenic and thymic DNA fragmentation and (ii) IL-6 and TNF-α level in those tissues and also in different brain regions. Unlike older rats, in young (4 months) rats, the consumption of CR diet under similar conditions affected those above-mentioned immune parameters reversibly and adversely. This study concludes that (a) aging significantly (p < 0.01) deregulates the above-mentioned immune parameters, (b) consecutive consumption of CR diet for one and two months is (i) beneficial (p < 0.05) to the aging-related immune system [lymphocyte viability, lymphocyte proliferation, cytotoxicity, pro (IL-6 and TNF-α)- and anti (IL-10)-inflammatory cytokines], but (ii) adverse (p < 0.05) to the immune parameters of the young rats, and (c) consumption of CR diet for consecutive two months is more potent (p < 0.05) than that due to one month.
Collapse
Affiliation(s)
- Apala Chakraborty
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S.C Mallick Road, Kolkata 700032, India
| | - Soumyabrata Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S.C Mallick Road, Kolkata 700032, India; Department of Psychology, Neuroscience Program, Field Neurosciences Institute Research Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Biswajit Mukherjee
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S.C Mallick Road, Kolkata 700032, India
| | - Mrinal K Poddar
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S.C Mallick Road, Kolkata 700032, India.
| | - Nahid Ali
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mallick Road, Kolkata 700 032, India
| |
Collapse
|
77
|
Santoro A, Bientinesi E, Monti D. Immunosenescence and inflammaging in the aging process: age-related diseases or longevity? Ageing Res Rev 2021; 71:101422. [PMID: 34391943 DOI: 10.1016/j.arr.2021.101422] [Citation(s) in RCA: 177] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022]
Abstract
During aging the immune system (IS) undergoes remarkable changes that collectively are known as immunosenescence. It is a multifactorial and dynamic phenomenon that affects both natural and acquired immunity and plays a critical role in most chronic diseases in older people. For a long time, immunosenescence has been considered detrimental because it may lead to a low-grade, sterile chronic inflammation we proposed to call "inflammaging" and a progressive reduction in the ability to trigger effective antibody and cellular responses against infections and vaccinations. Recently, many scientists revised this negative meaning because it can be considered an essential adaptation/remodeling resulting from the lifelong immunological biography of single individuals from an evolutionary perspective. Inflammaging can be considered an adaptive process because it can trigger an anti-inflammatory response to counteract the age-related pro-inflammatory environment. Centenarians represent a valuable model to study the beneficial changes occurring in the IS with age. These extraordinary individuals reached the extreme limits of human life by slowing down the aging process and, in most cases, delaying, avoiding or surviving the major age-associated diseases. They indeed show a complex and heterogeneous phenotype determined by an improved ability to adapt and remodel in response to harmful stimuli. This review aims to point out the intimate relationship between immunosenescence and inflammaging and how these processes impact unsuccessful aging rather than longevity. We also describe the gut microbiota age-related changes as one of the significant triggers of inflammaging and the sex/gender differences in the immune system of the elderly, contributing to the sex/gender disparity in terms of epidemiology, pathophysiology, symptoms and severity of age-related diseases. Finally, we discuss how these phenomena could influence the susceptibility to COVID-19 infection.
Collapse
|
78
|
Piotrowicz K, Gąsowski J, Michel JP, Veronese N. Post-COVID-19 acute sarcopenia: physiopathology and management. Aging Clin Exp Res 2021; 33:2887-2898. [PMID: 34328636 PMCID: PMC8323089 DOI: 10.1007/s40520-021-01942-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022]
Abstract
In this review, we discuss the pathophysiologic and management aspects of acute sarcopenia in relation to SARS-CoV-2 infection. COVID-19 is as a multi-organ infectious disease characterized by a severe inflammatory and highly catabolic status, influencing the deep changes in the body build, especially the amount, structure, and function of skeletal muscles which would amount to acutely developed sarcopenia. Acute sarcopenia may largely impact patients’ in-hospital prognosis as well as the vulnerability to the post-COVID-19 functional and physical deterioration. The individual outcome of the COVID-19 and the degree of muscle mass and functional loss may be influenced by multiple factors, including the patient’s general pre-infection medical and functional condition, especially in older adults. This paper gathers the information about how the SARS-CoV-2 hyper-inflammatory involvement exacerbates the immunosenescence process, enhances the endothelial damage, and due to mitochondrial dysfunction and autophagy, induces myofibrillar breakdown and muscle degradation. The aftermath of these acute and complex immunological SARS-CoV-2-related phenomena, augmented by anosmia, ageusia and altered microbiota may lead to decreased food intake and exacerbated catabolism. Moreover, the imposed physical inactivity, lock-down, quarantine or acute hospitalization with bedrest would intensify the acute sarcopenia process. All these deleterious mechanisms must be swiftly put to a check by a multidisciplinary approach including nutritional support, early physical as well cardio-pulmonary rehabilitation, and psychological support and cognitive training. The proposed holistic and early management of COVID-19 patients appears essential to minimize the disastrous functional outcomes of this disease and allow avoiding the long COVID-19 syndrome.
Collapse
Affiliation(s)
- Karolina Piotrowicz
- Department of Internal Medicine and Gerontology, Faculty of Medicine, Jagiellonian University Medical College, 2 Jakubowskiego St., building I, 5th floor, 30-688, Kraków, Poland
| | - Jerzy Gąsowski
- Department of Internal Medicine and Gerontology, Faculty of Medicine, Jagiellonian University Medical College, 2 Jakubowskiego St., building I, 5th floor, 30-688, Kraków, Poland.
| | | | - Nicola Veronese
- Department of Internal Medicine, Geriatrics Section, University of Palermo, Palermo, Italy
| |
Collapse
|
79
|
Simpson RJ, Boßlau TK, Weyh C, Niemiro GM, Batatinha H, Smith KA, Krüger K. Exercise and adrenergic regulation of immunity. Brain Behav Immun 2021; 97:303-318. [PMID: 34302965 DOI: 10.1016/j.bbi.2021.07.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/07/2021] [Accepted: 07/16/2021] [Indexed: 12/14/2022] Open
Abstract
Exercise training has a profound impact on immunity, exerting a multitude of positive effects in indications such as immunosenescence, cancer, viral infections and inflammatory diseases. The immune, endocrine and central nervous systems work in a highly synergistic manner and it has become apparent that catecholamine signaling through leukocyte β-adrenergic receptors (β-ARs) is a key mechanism by which exercise mediates improvements in immune function to help mitigate numerous disease conditions. Central to this is the preferential mobilization and redistribution of effector lymphocytes with potent anti-viral and anti-tumor activity, their interaction with muscle-derived cytokines, and the effects of catecholamine signaling on mitochondrial biogenesis, immunometabolism and the resulting inflammatory response. Here, we review the impact of acute and chronic exercise on adrenergic regulation of immunity in the context of aging, cancer, viral infections and inflammatory disease. We also put forth our contention that exercise interventions designed to improve immunity, prevent disease and reduce inflammation should consider the catecholamine-AR signaling axis as a therapeutic target and ask whether or not the adrenergic signaling machinery can be 'trained' to improve immune responses to stress, disease or during the normal physiological process of aging. Finally, we discuss potential strategies to augment leukocyte catecholamine signaling to boost the effects of exercise on immunity in individuals with desensitized β-ARs or limited exercise tolerance.
Collapse
Affiliation(s)
- Richard J Simpson
- University of Arizona, Department of Nutritional Sciences, Tucson, AZ, USA; University of Arizona, Department of Pediatrics, Tucson, AZ, USA; University of Arizona, Department of Immunobiology, Tucson, AZ, USA; University of Arizona Cancer Center, Tucson, AZ, USA.
| | - Tim K Boßlau
- University of Gießen, Department of Exercise Physiology and Sports Therapy, Gießen, Germany
| | - Christopher Weyh
- University of Gießen, Department of Exercise Physiology and Sports Therapy, Gießen, Germany
| | - Grace M Niemiro
- University of Arizona, Department of Pediatrics, Tucson, AZ, USA; University of Arizona Cancer Center, Tucson, AZ, USA
| | - Helena Batatinha
- University of Arizona, Department of Pediatrics, Tucson, AZ, USA
| | - Kyle A Smith
- University of Arizona, Department of Nutritional Sciences, Tucson, AZ, USA; University of Arizona, Department of Pediatrics, Tucson, AZ, USA
| | - Karsten Krüger
- University of Gießen, Department of Exercise Physiology and Sports Therapy, Gießen, Germany.
| |
Collapse
|
80
|
Silva CS, Reis RL, Martins A, Neves NM. Recapitulation of Thymic Function by Tissue Engineering Strategies. Adv Healthc Mater 2021; 10:e2100773. [PMID: 34197034 DOI: 10.1002/adhm.202100773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Indexed: 11/06/2022]
Abstract
The thymus is responsible for the development and selection of T lymphocytes, which in turn also participate in the maturation of thymic epithelial cells. These events occur through the close interactions between hematopoietic stem cells and developing thymocytes with the thymic stromal cells within an intricate 3D network. The complex thymic microenvironment and function, and the current therapies to induce thymic regeneration or to overcome the lack of a functional thymus are herein reviewed. The recapitulation of the thymic function using tissue engineering strategies has been explored as a way to control the body's tolerance to external grafts and to generate ex vivo T cells for transplantation. In this review, the main advances in the thymus tissue engineering field are disclosed, including both scaffold- and cell-based strategies. In light of the current gaps and limitations of the developed systems, the design of novel biomaterials for this purpose with unique features is also discussed.
Collapse
Affiliation(s)
- Catarina S. Silva
- 3B's Research Group I3Bs – Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine ICVS/3B's – PT Government Associate Laboratory AvePark, Parque da Ciência e Tecnologia, Zona Industrial da Gandra 4805‐017 Barco Guimarães Portugal
| | - Rui L. Reis
- 3B's Research Group I3Bs – Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine ICVS/3B's – PT Government Associate Laboratory AvePark, Parque da Ciência e Tecnologia, Zona Industrial da Gandra 4805‐017 Barco Guimarães Portugal
| | - Albino Martins
- 3B's Research Group I3Bs – Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine ICVS/3B's – PT Government Associate Laboratory AvePark, Parque da Ciência e Tecnologia, Zona Industrial da Gandra 4805‐017 Barco Guimarães Portugal
| | - Nuno M. Neves
- 3B's Research Group I3Bs – Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine ICVS/3B's – PT Government Associate Laboratory AvePark, Parque da Ciência e Tecnologia, Zona Industrial da Gandra 4805‐017 Barco Guimarães Portugal
| |
Collapse
|
81
|
Ozdemir C, Durmaz A, Akbas Gunes N. Epidemiological Characteristics of COVID-19 Patients in Kütahya Province in Turkey. EURASIAN JOURNAL OF FAMILY MEDICINE 2021. [DOI: 10.33880/ejfm.2021100304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Aim: It is aimed to evaluate the epidemiological features of COVID-19 patients and risk factors affecting hospitalization.
Methods: This cross-sectional study included 883 adult patients whose Polymerase Chain Reaction tests were positive for SARS-CoV-2 in Kütahya province until July 2020. The patients were questioned in terms of their socio-demographic characteristics, drugs, comorbidities, and symptoms. They were divided into two groups according to their hospitalization status and outpatient treatment status.
Results: There were 473 female and 410 male participants in the study. 532 of 883 adult patients were hospitalized. The most common symptoms were fatigue (47.9%), myalgia (44.7%), and loss of smell and taste (32.4%). Hospitalization was associated with advanced age, low income, presence of additional disease, several symptoms, smoking, comorbidities including diabetes mellitus, chronic kidney diseases, cardiovascular and respiratory system. In multivariant analyses, advance age, low income, fever, dyspnea and chronic lung diseases were associated with increased odds of hospital admission.
Conclusion: In our study, it was found that independent risk factors for hospitalization were advanced age, low income, fever, shortness of breath, and chronic lung diseases. We think that determining risk factors for hospitalization may be a guide for clinicians in predicting patient prognosis.
Keywords: COVID-19, epidemiology, hospitalization, symptoms, comorbidity
Collapse
Affiliation(s)
| | - Adem Durmaz
- Yıldırım Beyazıt Family Health Center, Kütahya
| | | |
Collapse
|
82
|
Elevated C-reactive protein in early COVID-19 predicts worse survival among hospitalized geriatric patients. PLoS One 2021; 16:e0256931. [PMID: 34506514 PMCID: PMC8432790 DOI: 10.1371/journal.pone.0256931] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/18/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The objective of this cohort study was to determine whether elevated CRP in early COVID-19 was associated with 14-day mortality in geriatric patients. METHODS Plasma CRP levels at hospital admission and 14-day all-cause mortality were assessed in geriatric inpatients hospitalized for COVID-19. Potential confounders were age, sex, functional abilities, history of malignancies, hypertension, cardiomyopathy, albuminemia, number of acute health issues, use of antibiotics and respiratory treatments. RESULTS Ninety-five participants (mean±SD 88.0±5.5years; 49.5%women; mean CRP, 76.7±77.5mg/L; mean albuminemia, 32.9±6.0g/L) were included. Sixteen participants who did not survive at day 14 exhibited higher CRP level at baseline than the others (120.3±71.2 versus 67.9±76.1 mg/L, P = 0.002). There was no difference in albuminemia (P = 0.329). Plasma CRP level was directly associated with 14-day mortality (fully adjusted HR = 1.11, P = 0.025). The cut-off for CRP associated with 14-day mortality was set at 35mg/L (sensitivity = 0.88; specificity = 0.56). Those with CRP<35mg/L had longer survival time than the others (log-rank P<0.001). CONCLUSIONS Elevated CRP levels were associated with poorer 14-day survival in hospitalized geriatric COVID-19 patients.
Collapse
|
83
|
Effect of Advanced Glycation End-Products and Excessive Calorie Intake on Diet-Induced Chronic Low-Grade Inflammation Biomarkers in Murine Models. Nutrients 2021; 13:nu13093091. [PMID: 34578967 PMCID: PMC8468789 DOI: 10.3390/nu13093091] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 08/29/2021] [Accepted: 09/02/2021] [Indexed: 12/29/2022] Open
Abstract
Chronic Low-Grade Inflammation (CLGI) is a non-overt inflammatory state characterized by a continuous activation of inflammation mediators associated with metabolic diseases. It has been linked to the overconsumption of Advanced Glycation End-Products (AGEs), and/or macronutrients which lead to an increase in local and systemic pro-inflammatory biomarkers in humans and animal models. This review provides a summary of research into biomarkers of diet-induced CLGI in murine models, with a focus on AGEs and obesogenic diets, and presents the physiological effects described in the literature. Diet-induced CLGI is associated with metabolic endotoxemia, and/or gut microbiota remodeling in rodents. The mechanisms identified so far are centered on pro-inflammatory axes such as the interaction between AGEs and their main receptor AGEs (RAGE) or increased levels of lipopolysaccharide. The use of murine models has helped to elucidate the local and systemic expression of CLGI mediators. These models have enabled significant advances in identification of diet-induced CLGI biomarkers and resultant physiological effects. Some limitations on the translational (murine → humans) use of biomarkers may arise, but murine models have greatly facilitated the testing of specific dietary components. However, there remains a lack of information at the whole-organism level of organization, as well as a lack of consensus on the best biomarker for use in CLGI studies and recommendations as to future research conclude this review.
Collapse
|
84
|
Veerman SRT, Bogers JPAM, Cohen D, Schulte PFJ. COVID-19: Risks, Complications, and Monitoring in Patients on Clozapine. PHARMACOPSYCHIATRY 2021; 55:48-56. [PMID: 34470068 DOI: 10.1055/a-1562-2521] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The Dutch Clozapine Collaboration Group is frequently asked for advice about the management of clozapine-treated patients when infected with or vaccinated against SARS-CoV-2. We provide state of the art information about the risks of SARS-CoV-2 infection for patients on clozapine and we give advice on measures to be taken, especially in regard to the monitoring of clozapine plasma levels, WBC count and differentiation during COVID-19 and after vaccination. We present an overview of relevant editorials, observational studies, and case studies, in which COVID-19 was reported in patients on clozapine. Patients using clozapine may have a higher risk of infection than patients with schizophrenia spectrum disorders (SSD) using other antipsychotics. SARS-CoV-2 infection can result in a dangerous increase of clozapine plasma levels, and granulocytopenia and lymphocytopenia (generally mild and short-term) may also occur, usually not as a result of clozapine treatment. Clozapine intoxication, pneumonia and delirium are the main complications of COVID-19 in patients on clozapine. In order to prevent clozapine intoxication, reduction of the original dose by half is generally recommended in clozapine users who contract COVID-19. When a cytokine storm is suspected in an advanced stage of COVID-19, reduction by three quarters seems more appropriate. If COVID-19 patients on clozapine develop granulocytopenia, SARS-CoV-2, rather than clozapine, should be considered as the cause. Schizophrenia patients in general and clozapine users in particular belong to a high-risk group that warrants early vaccination on a medical indication.
Collapse
Affiliation(s)
- Selene R T Veerman
- MHO Noord-Holland Noord and the Dutch Clozapine Collaboration Group, Netherland
| | - Jan P A M Bogers
- MHO Rivierduinen and the Dutch Clozapine Collaboration Group, Netherland
| | - Dan Cohen
- MHO Noord-Holland Noord and the Dutch Clozapine Collaboration Group, Netherland
| | - Peter F J Schulte
- MHO Noord-Holland Noord and the Dutch Clozapine Collaboration Group, Netherland
| |
Collapse
|
85
|
Mestre L, Alonso G, Feliú A, Mecha M, Martín C, Villar LM, Guaza C. Aging and neuroinflammation: Changes in immune cell responses, axon integrity, and motor function in a viral model of progressive multiple sclerosis. Aging Cell 2021; 20:e13440. [PMID: 34355492 PMCID: PMC8441417 DOI: 10.1111/acel.13440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/01/2021] [Accepted: 07/04/2021] [Indexed: 12/12/2022] Open
Abstract
Although aggravated multiple sclerosis (MS) disability has been reported in aged patients, the aging impact on immune cells remodeling within the CNS is not well understood. Here, we investigated the influence of aging on immune cells and the neuroinflammatory and neurodegenerative processes that occur in a well‐established viral model of progressive MS. We found an anomalous presence of CD4+ T, CD8+T, B cells, and cells of myeloid lineage in the CNS of old sham mice whereas a blunted cellular innate and adaptive immune response was observed in Theiler's murine encephalomyelitis virus (TMEV) infected old mice. Microglia and macrophages show opposite CNS viral responses regarding cell counts in the old mice. Furthermore, enhanced expression of Programmed Death‐ligand 1 (PD‐L1) was found in microglia isolated from old TMEV‐infected mice and not in isolated CNS macrophages. Immunocytochemical staining of microglial cells confirms the above differences between young and old mice. Age‐related axonal loss integrity in the mouse spinal cord was found in TMEV mice, but a less marked neurodegenerative process was present in old sham mice compared with young sham mice. TMEV and sham old mice also display alterations in innate and adaptive immunity in the spleen compared to the young mice. Our study supports the need of new or adapted pharmacological strategies for MS elderly patients.
Collapse
Affiliation(s)
- Leyre Mestre
- Neuroimmunology Group Functional and Systems Neurobiology Department Instituto CajalCSIC Madrid Spain
- Red Española de Esclerosis Múltiple (REEM) Barcelona Spain
| | - Graciela Alonso
- Neuroimmunology Group Functional and Systems Neurobiology Department Instituto CajalCSIC Madrid Spain
- Red Española de Esclerosis Múltiple (REEM) Barcelona Spain
| | - Ana Feliú
- Neuroimmunology Group Functional and Systems Neurobiology Department Instituto CajalCSIC Madrid Spain
- Red Española de Esclerosis Múltiple (REEM) Barcelona Spain
| | - Miriam Mecha
- Neuroimmunology Group Functional and Systems Neurobiology Department Instituto CajalCSIC Madrid Spain
- Red Española de Esclerosis Múltiple (REEM) Barcelona Spain
| | - Carolina Martín
- Neuroimmunology Group Functional and Systems Neurobiology Department Instituto CajalCSIC Madrid Spain
| | - Luisa M. Villar
- Red Española de Esclerosis Múltiple (REEM) Barcelona Spain
- Immunology Department Hospital Universitario Ramón y CajalInstituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Madrid Spain
| | - Carmen Guaza
- Neuroimmunology Group Functional and Systems Neurobiology Department Instituto CajalCSIC Madrid Spain
- Red Española de Esclerosis Múltiple (REEM) Barcelona Spain
| |
Collapse
|
86
|
Muscat SM, Barrientos RM. The Perfect Cytokine Storm: How Peripheral Immune Challenges Impact Brain Plasticity & Memory Function in Aging. Brain Plast 2021; 7:47-60. [PMID: 34631420 PMCID: PMC8461734 DOI: 10.3233/bpl-210127] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Precipitous declines in cognitive function can occur in older individuals following a variety of peripheral immune insults, such as surgery, infection, injury, and unhealthy diet. Aging is associated with numerous changes to the immune system that shed some light on why this abrupt cognitive deterioration may occur. Normally, peripheral-to-brain immune signaling is tightly regulated and advantageous; communication between the two systems is bi-directional, via either humoral or neural routes. Following an immune challenge, production, secretion, and translocation of cytokines into the brain is critical to the development of adaptive sickness behaviors. However, aging is normally associated with neuroinflammatory priming, notably microglial sensitization. Microglia are the brain's innate immune cells and become sensitized with advanced age, such that upon immune stimulation they will mount more exaggerated neuroimmune responses. The resultant elevation of pro-inflammatory cytokine expression, namely IL-1β, has profound effects on synaptic plasticity and, consequentially, cognition. In this review, we (1) investigate the processes which lead to aberrantly elevated inflammatory cytokine expression in the aged brain and (2) examine the impact of the pro-inflammatory cytokine IL-1β on brain plasticity mechanisms, including its effects on BDNF, AMPA and NMDA receptor-mediated long-term potentiation.
Collapse
Affiliation(s)
- Stephanie M Muscat
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Ruth M Barrientos
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
- Chronic Brain Injury Program, Discovery Themes Initiative, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
87
|
Higher senescence associated secretory phenotype and lower defense mediator in urinary extracellular vesicles of elders with and without Parkinson disease. Sci Rep 2021; 11:15783. [PMID: 34349163 PMCID: PMC8339003 DOI: 10.1038/s41598-021-95062-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 07/09/2021] [Indexed: 01/05/2023] Open
Abstract
Youth fountain and aging culprits are usually sought and identified in blood but not urine. Extracellular vesicles (EVs) possess parental cell properties, circulate in blood, CSF and urine, and provide paracrine and remote cell–cell communication messengers. This study investigated whether senescence‐associated secretory phenotype (SASP) and immune defense factors in EVs of urine could serve as biomarkers in elderly individuals with and without a comorbidity. Urine samples from young adults and elderly individuals with and without Parkinson disease (PD) were collected and stored at − 80 °C until studies. Urine EVs were separated from a drop-through solution and confirmed by verifying CD9, CD63, CD81 and syntenin expression. The EVs and drop-through solution were subjected to measurement of SASP cytokines and defense factors by Milliplex array assays. Many SASP cytokines and defense factors could be detected in urinary EVs but not urinary solutions. Elderly individuals (age > 60) had significantly higher levels of the SASP-associated factors IL-8, IP-10, GRO, and MCP-1 in EVs (p < 0.05). In contrast, some defense factors, IL-4, MDC and IFNα2 in EVs had significantly lower levels in elderly adults than in young adults (age < 30). Patients with and without PD exhibited a similar SASP profile in EVs but significantly lower levels of IL-10 in the EVs from patients with PD. This study used a simple device to separate urinary EVs from solution for comparisons of SASP and defense mediators between young adults and elders with and without PD. Results from this study indicate that aging signature is present in EVs circulating to urine and the signatures include higher inflammatory mediators and lower defense factors in urinary EVs but not solutions, suggesting a simple method to separate urinary EVs from solutions for searching aging mechanistic biomarkers may make prediction of aging and monitoring of anti-senolytic interventions possible.
Collapse
|
88
|
Impact of Cytomegalovirus Infection and Genetic Background on the Frequencies of Peripheral Blood Suppressor Cells in Human Twins. Pathogens 2021; 10:pathogens10080963. [PMID: 34451427 PMCID: PMC8399020 DOI: 10.3390/pathogens10080963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/24/2021] [Accepted: 07/25/2021] [Indexed: 11/21/2022] Open
Abstract
Frequencies and proportions of regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) in peripheral blood may be informative biomarkers for certain disease states. The influence of genetics and lifetime pathogen exposures on Treg and MDSC frequencies is largely unexplored. Cytomegalovirus (CMV) establishes a latent infection and causes an accumulation of late-differentiated CD8+ memory T cells, commonly associated with a lower frequency of naive cells. Here, analyzing peripheral blood mononuclear cells by multicolor flow cytometry, we found a tendency towards lower frequencies of CD4+CD25+FoxP3+ Tregs in CMV-seropositive than -seronegative middle-aged individuals (p = 0.054), whereas frequencies of lineage-negative CD14+HLA-DR-MDSCs were significantly lower in CMV-seropositive participants (p = 0.005). Assessing associations with the presence of antibodies against different CMV structural proteins, rather than merely assigning seropositivity or seronegativity, failed to yield any closer associations. Examining Treg subsets revealed at most a minor role of the individual’s genetic background, based on an analysis of monozygotic (MZ, n = 42) versus dizygotic (DZ, n = 39) twin pairs from the Danish Twin Registry. The same was true for MDSCs. These initial results suggest that an immunological history of exposures is more important than genetics in determining overall human suppressor cell levels.
Collapse
|
89
|
Athanasopoulou S, Simos D, Charalampopoulou M, Tentolouris N, Kokkinos A, Bacopoulou F, Aggelopoulou E, Zigkiri E, Chrousos GP, Darviri C, Gonos ES. Significant improvement of stress and aging biomarkers using a novel stress management program with the cognitive restructuring method "Pythagorean Self-Awareness Intervention" in patients with type 2 diabetes mellitus and healthy adults. Mech Ageing Dev 2021; 198:111538. [PMID: 34217756 DOI: 10.1016/j.mad.2021.111538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/16/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022]
Abstract
Stress accelerates aging by affecting relevant cellular pathways including, among others, leucocyte telomere length (LTL) and proteasome levels. Their impaired function underlies several age-related and non-communicable conditions, such as type 2 diabetes mellitus. The aim of the present study was to investigate, for the first time, the dynamics of stress-related aging factors in the frame of a novel stress-management technique, the Pythagorean Self Awareness Intervention (PSAI), in healthy volunteers and adults with type 2 diabetes. To this end a cohort of 311 healthy volunteers was initially studied and LTL and proteasome levels were analysed in a subgroup of healthy volunteers and adults with type 2 diabetes who were enrolled in the PSAI, with regards to specific physio- and psychometric characteristics of the participants (baseline and post-intervention). We have found a significant improvement of aging biomarkers and of psycho-/bio-factors in all participants. More specifically, post-intervention, both healthy adults and patients with type 2 diabetes demonstrated improved LTL and proteasome levels. Significant improvements were also observed in psychometric, anthropometric and key metabolic features as well as in hair cortisol. In conclusion our results highlighted potential key targets of such interventions and prognostic tools for the assessment of aging pace in clinical practice.
Collapse
Affiliation(s)
- Sophia Athanasopoulou
- Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), Athens, 11635, Greece; Faculty of Medicine, School of Health Sciences, University of Thessaly, Larisa, Greece
| | - Dimitrios Simos
- Postgraduate Course Stress Management and Health Promotion, School of Medicine, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - Maria Charalampopoulou
- Postgraduate Course Stress Management and Health Promotion, School of Medicine, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - Nikolaos Tentolouris
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, 11527, Greece
| | - Alexandros Kokkinos
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, 11527, Greece
| | - Flora Bacopoulou
- Postgraduate Course Stress Management and Health Promotion, School of Medicine, National and Kapodistrian University of Athens, Athens, 11527, Greece; Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, 11527, Greece; University Research Institute of Maternal and Child Health and Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, 11527, Greece
| | - Elena Aggelopoulou
- Postgraduate Course Stress Management and Health Promotion, School of Medicine, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - Eleni Zigkiri
- Postgraduate Course Stress Management and Health Promotion, School of Medicine, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - George P Chrousos
- Postgraduate Course Stress Management and Health Promotion, School of Medicine, National and Kapodistrian University of Athens, Athens, 11527, Greece; University Research Institute of Maternal and Child Health and Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, 11527, Greece; Division of Endocrinology and Metabolism, Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece.
| | - Christina Darviri
- Postgraduate Course Stress Management and Health Promotion, School of Medicine, National and Kapodistrian University of Athens, Athens, 11527, Greece.
| | - Efstathios S Gonos
- Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), Athens, 11635, Greece.
| |
Collapse
|
90
|
Illouz T, Biragyn A, Iulita MF, Flores-Aguilar L, Dierssen M, De Toma I, Antonarakis SE, Yu E, Herault Y, Potier MC, Botté A, Roper R, Sredni B, London J, Mobley W, Strydom A, Okun E. Immune Dysregulation and the Increased Risk of Complications and Mortality Following Respiratory Tract Infections in Adults With Down Syndrome. Front Immunol 2021; 12:621440. [PMID: 34248930 PMCID: PMC8267813 DOI: 10.3389/fimmu.2021.621440] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
The risk of severe outcomes following respiratory tract infections is significantly increased in individuals over 60 years, especially in those with chronic medical conditions, i.e., hypertension, diabetes, cardiovascular disease, dementia, chronic respiratory disease, and cancer. Down Syndrome (DS), the most prevalent intellectual disability, is caused by trisomy-21 in ~1:750 live births worldwide. Over the past few decades, a substantial body of evidence has accumulated, pointing at the occurrence of alterations, impairments, and subsequently dysfunction of the various components of the immune system in individuals with DS. This associates with increased vulnerability to respiratory tract infections in this population, such as the influenza virus, respiratory syncytial virus, SARS-CoV-2 (COVID-19), and bacterial pneumonias. To emphasize this link, here we comprehensively review the immunobiology of DS and its contribution to higher susceptibility to severe illness and mortality from respiratory tract infections.
Collapse
Affiliation(s)
- Tomer Illouz
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
- The Paul Feder Laboratory on Alzheimer’s Disease Research, Bar-Ilan University, Ramat Gan, Israel
| | - Arya Biragyn
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institute of Health, Baltimore, MD, United States
| | - Maria Florencia Iulita
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Lisi Flores-Aguilar
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Mara Dierssen
- Center for Genomic Regulation, The Barcelona Institute for Science and Technology, Barcelona, Spain
- University Pompeu Fabra, Barcelona, Spain
- Biomedical Research Networking Center for Rare Diseases (CIBERER), Barcelona, Spain
| | - Ilario De Toma
- Center for Genomic Regulation, The Barcelona Institute for Science and Technology, Barcelona, Spain
- University Pompeu Fabra, Barcelona, Spain
- Biomedical Research Networking Center for Rare Diseases (CIBERER), Barcelona, Spain
| | - Stylianos E. Antonarakis
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
- Medigenome, Swiss Institute of Genomic Medicine, Geneva, Switzerland
- iGE3 Institute of Genetics and Genomics of Geneva, Geneva, Switzerland
| | - Eugene Yu
- The Children’s Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program and Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
- Genetics, Genomics and Bioinformatics Program, State University of New York at Buffalo, Buffalo, NY, United States
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique Biologie Moléculaire et Cellulaire, IGBMC - UMR 7104 - Inserm U1258, Illkirch, France
| | - Marie-Claude Potier
- Paris Brain Institute (ICM), CNRS UMR7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Alexandra Botté
- Paris Brain Institute (ICM), CNRS UMR7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Randall Roper
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Benjamin Sredni
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | | | - William Mobley
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Andre Strydom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London, United Kingdom
- South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - Eitan Okun
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
- The Paul Feder Laboratory on Alzheimer’s Disease Research, Bar-Ilan University, Ramat Gan, Israel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
91
|
The Effects of Physical Activity on the Aging of Circulating Immune Cells in Humans: A Systematic Review. IMMUNO 2021. [DOI: 10.3390/immuno1030009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Age-induced cellular senescence leads to a decline in efficacy of immune response and an increase in morbidity and mortality. Physical activity may be an intervention to slow down or reverse this process for elderly individuals or even delay it via enhanced activity over their lifespan. The aim of this systematic review was to analyze and discuss the current evidence of the effects of physical activity on senescence in leukocyte subpopulations. Two electronic databases (PubMed, Web of Science) were scanned in July 2020. Studies performing endurance or resistance exercise programs and investigating leukocytes of healthy, particularly elderly subjects were included. Nine human studies were identified, including a total of 440 participants, of which two studies examined different types of exercise training retrospectively, three conducted resistance exercise, three endurance exercise, and one endurance vs. resistance training. Results revealed that exercise training increased the naïve subsets of peripheral T-helper cells and cytotoxic T-cells, whereas the senescent and effector memory T-cells re-expresses CD45RA (TEMRA) subsets decreased. Moreover, the percentage of T-helper- compared to cytotoxic T-cells increased. The results suggest that physical activity reduces or slows down cellular immunosenescence. Endurance exercise seems to affect cellular senescence in a more positive way than resistance training. However, training contents and sex also influence senescent cells. Explicit mechanisms need to be clarified.
Collapse
|
92
|
Garrido-Rodríguez V, Herrero-Fernández I, Castro MJ, Castillo A, Rosado-Sánchez I, Galvá MI, Ramos R, Olivas-Martínez I, Bulnes-Ramos Á, Cañizares J, Leal M, Pacheco YM. Immunological features beyond CD4/CD8 ratio values in older individuals. Aging (Albany NY) 2021; 13:13443-13459. [PMID: 34038386 PMCID: PMC8202849 DOI: 10.18632/aging.203109] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/17/2021] [Indexed: 12/02/2022]
Abstract
The CD4/CD8 T-cell ratio is emerging as a relevant marker of evolution for many pathologies and therapies. We aimed to explore immunological features beyond CD4/CD8 ratio values in older subjects (>65 years old) who were classified as having lower (<1.4), intermediate (1.4-2), or higher (>2) ratio values. The lower group showed a lower thymic output (sj/β-TREC ratio) and frequency of naïve T-cells, concomitant with increased mature T-cells. In these subjects, the CD4 T-cell subset was enriched in CD95+ but depleted of CD98+ cells. The regulatory T-cell (Treg) compartment was enriched in CTLA-4+ cells. The CD8 T-cell pool exhibited increased frequencies of CD95+ cells but decreased frequencies of integrin-β7+ cells. Interestingly, in the intermediate group, the CD4 pool showed greater differences than the CD8 pool, mostly for cellular senescence. Regarding inflammation, only hsCRP was elevated in the lower group; however, negative correlations between the CD4/CD8 ratio and β2-microglobulin and sCD163 were detected. These subjects displayed trends of more comorbidities and less independence in daily activities. Altogether, our data reveal different thymic output and immune profiles for T-cells across CD4/CD8 ratio values that can define immune capabilities, affecting health status in older individuals. Thus, the CD4/CD8 ratio may be used as an integrative marker of biological age.
Collapse
Affiliation(s)
- Vanesa Garrido-Rodríguez
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital (HUVR)/CSIC/University of Seville, Seville, Spain
| | - Inés Herrero-Fernández
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital (HUVR)/CSIC/University of Seville, Seville, Spain
| | - María José Castro
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital (HUVR)/CSIC/University of Seville, Seville, Spain
| | - Ana Castillo
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital (HUVR)/CSIC/University of Seville, Seville, Spain
| | - Isaac Rosado-Sánchez
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital (HUVR)/CSIC/University of Seville, Seville, Spain
| | | | | | - Israel Olivas-Martínez
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital (HUVR)/CSIC/University of Seville, Seville, Spain
| | - Ángel Bulnes-Ramos
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital (HUVR)/CSIC/University of Seville, Seville, Spain
| | | | - Manuel Leal
- Immunovirology Unit, Internal Medicine Service, Viamed Hospital, Santa Ángela de la Cruz, Seville, Spain
| | - Yolanda María Pacheco
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital (HUVR)/CSIC/University of Seville, Seville, Spain
| |
Collapse
|
93
|
Factors associated with negative pleural adenosine deaminase results in the diagnosis of childhood pleural tuberculosis. BMC Infect Dis 2021; 21:473. [PMID: 34034670 PMCID: PMC8152150 DOI: 10.1186/s12879-021-06209-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022] Open
Abstract
Background Until now, the influential factors associated with pleural adenosine deaminase (ADA) activity among children remain unclear. This retrospective study was therefore conducted aiming to investigate the factors associated with negative pleural ADA results in the diagnosis of childhood pleural tuberculosis (TB). Methods Between January 2006 and December 2019, children patients with definite or possible pleural TB were recruited for potential analysis. Then, patients were stratified into two categories: negative pleural ADA results group (experimental group, ≤40 U/L) and positive pleural ADA results group (control group, > 40 U/L). Univariate and multivariate logistic regression analyses were performed to estimate risk factors for negative pleural ADA results. Results A total of 84 patients with pleural TB were recruited and subsequently classified as experimental (n = 17) and control groups (n = 67). Multivariate analysis (Hosmer–Lemeshow goodness-of-fit test: χ2 = 1.881, df = 6, P = 0.930) revealed that variables, such as chest pain (age-adjusted OR = 0.0510, 95% CI: 0.004, 0.583), pleural total protein (≤45.3 g/L, age-adjusted OR = 27.7, 95% CI: 2.5, 307.7), pleural lactate dehydrogenase (LDH, ≤505 U/L, age-adjusted OR = 59.9, 95% CI: 4.2, 857.2) and blood urea nitrogen (≤3.2 mmol/L, age-adjusted OR = 32.0, 95% CI: 2.4, 426.9), were associated with negative pleural ADA results when diagnosing childhood pleural TB. Conclusion Our findings demonstrated that chest pain, pleural total protein, pleural LDH, and blood urea nitrogen were associated with a negative pleural ADA result for the diagnosis of pleural TB among children. When interpreting pleural ADA levels in children with these characteristics, a careful clinical assessment is required for the pleural TB diagnosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06209-1.
Collapse
|
94
|
Palacios-Pedrero MÁ, Osterhaus ADME, Becker T, Elbahesh H, Rimmelzwaan GF, Saletti G. Aging and Options to Halt Declining Immunity to Virus Infections. Front Immunol 2021; 12:681449. [PMID: 34054872 PMCID: PMC8149791 DOI: 10.3389/fimmu.2021.681449] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
Immunosenescence is a process associated with aging that leads to dysregulation of cells of innate and adaptive immunity, which may become dysfunctional. Consequently, older adults show increased severity of viral and bacterial infections and impaired responses to vaccinations. A better understanding of the process of immunosenescence will aid the development of novel strategies to boost the immune system in older adults. In this review, we focus on major alterations of the immune system triggered by aging, and address the effect of chronic viral infections, effectiveness of vaccination of older adults and strategies to improve immune function in this vulnerable age group.
Collapse
Affiliation(s)
| | - Albert D M E Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Tanja Becker
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Husni Elbahesh
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Guus F Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Giulietta Saletti
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
95
|
Andryukov BG, Besednova NN. Older adults: panoramic view on the COVID-19 vaccination. AIMS Public Health 2021; 8:388-415. [PMID: 34395690 PMCID: PMC8334630 DOI: 10.3934/publichealth.2021030] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/06/2021] [Indexed: 12/11/2022] Open
Abstract
In December 2020, COVID-19 vaccination started in many countries, with which the world community hopes to stop the further spread of the current pandemic. More than 90% of sick and deceased patients belong to the category of older adults (65 years and older). This category of the population is most vulnerable to infectious diseases, so vaccination is the most effective preventive strategy, the need for which for older adults is indisputable. Here we briefly summarize information about age-related changes in the immune system and present current data on their impact on the formation of the immune response to vaccination. Older age is accompanied by the process of biological aging accompanied by involution of the immune system with increased susceptibility to infections and a decrease in the effect of immunization. Therefore, in the ongoing mass COVID-19 vaccination, the older adults are a growing public health concern. The authors provide an overview of the various types of COVID-19 vaccines approved for mass immunization of the population by the end of 2020, including older adults, as well as an overview of strategies and platforms to improve the effectiveness of vaccination of this population. In the final part, the authors propose for discussion a system for assessing the safety and monitoring the effectiveness of COVID-19 vaccines for the older adults.
Collapse
Affiliation(s)
- Boris G Andryukov
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087, Vladivostok, Russia
- Far Eastern Federal University (FEFU), 690091, Vladivostok, Russia
| | - Natalya N Besednova
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087, Vladivostok, Russia
| |
Collapse
|
96
|
Herati RS, Silva LV, Vella LA, Muselman A, Alanio C, Bengsch B, Kurupati RK, Kannan S, Manne S, Kossenkov AV, Canaday DH, Doyle SA, Ertl HC, Schmader KE, Wherry EJ. Vaccine-induced ICOS +CD38 + circulating Tfh are sensitive biosensors of age-related changes in inflammatory pathways. CELL REPORTS MEDICINE 2021; 2:100262. [PMID: 34095875 PMCID: PMC8149371 DOI: 10.1016/j.xcrm.2021.100262] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 12/31/2020] [Accepted: 04/06/2021] [Indexed: 12/23/2022]
Abstract
Humoral immune responses are dysregulated with aging, but the cellular and molecular pathways involved remain incompletely understood. In particular, little is known about the effects of aging on T follicular helper (Tfh) CD4 cells, the key cells that provide help to B cells for effective humoral immunity. We performed transcriptional profiling and cellular analysis on circulating Tfh before and after influenza vaccination in young and elderly adults. First, whole-blood transcriptional profiling shows that ICOS+CD38+ cTfh following vaccination preferentially enriches in gene sets associated with youth versus aging compared to other circulating T cell types. Second, vaccine-induced ICOS+CD38+ cTfh from the elderly had increased the expression of genes associated with inflammation, including tumor necrosis factor-nuclear factor κB (TNF-NF-κB) pathway activation. Finally, vaccine-induced ICOS+CD38+ cTfh display strong enrichment for signatures of underlying age-associated biological changes. These data highlight the ability to use vaccine-induced cTfh as cellular “biosensors” of underlying inflammatory and/or overall immune health. Vaccine-induced ICOS+CD38+ cTfh show increased TNF-NF-κB signaling with aging TNF-NF-κB signaling is beneficial for cTfh survival in the elderly Vaccine-induced cTfh are sensors of background changes in immune environment
Collapse
Affiliation(s)
- Ramin Sedaghat Herati
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
- Corresponding author
| | - Luisa Victoria Silva
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Laura A. Vella
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | - Cecile Alanio
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Bertram Bengsch
- Department of Internal Medicine II, University Medical Center Freiburg, and Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | | | | | - Sasikanth Manne
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | | | - David H. Canaday
- Division of Infectious Disease, Case Western Reserve University, Cleveland, OH, USA
- Geriatric Research, Education, and Clinical Center, Cleveland VA Medical Center, Cleveland, OH, 44195, USA
| | - Susan A. Doyle
- Division of Geriatrics, Department of Medicine, Duke University Medical Center, Durham, NC, USA
- Geriatric Research, Education, and Clinical Center, Durham VA Medical Center, Durham, NC 27710, USA
| | | | - Kenneth E. Schmader
- Division of Geriatrics, Department of Medicine, Duke University Medical Center, Durham, NC, USA
- Geriatric Research, Education, and Clinical Center, Durham VA Medical Center, Durham, NC 27710, USA
| | - E. John Wherry
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Corresponding author
| |
Collapse
|
97
|
Chen LY, Hwang AC, Huang CY, Chen LK, Wang FD, Chan YJ. CMV infection, CD19 + B cell depletion, and Lymphopenia as predictors for unexpected admission in the institutionalized elderly. IMMUNITY & AGEING 2021; 18:21. [PMID: 33947427 PMCID: PMC8094471 DOI: 10.1186/s12979-021-00233-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/13/2021] [Indexed: 11/27/2022]
Abstract
Background Chronic infections played a detrimental role on health outcomes in the aged population, and had complex associations with lymphocyte subsets distribution. Our study aimed to explore the predictive roles of chronic infections, lymphopenia, and lymphocyte subsets on unexpected admission and mortality in the institutionalized oldest-old during 3 year follow-up period. Results There were 163 participants enrolled prospectively with median age of 87.3 years (IQR: 83.1–90.2), male of 88.3%, and being followed for 156.4 weeks (IQR: 136.9–156.4 weeks). The unexpected admission and mortality rates were 55.2 and 24.5% respectively. The Cox proportional hazards models demonstrated the 3rd quartile of cytomegalovirus IgG (OR: 3.26, 95% CI: 1.55–6.84), lymphopenia (OR: 2.85, 95% CI: 1.2–6.74), and 1st quartile of CD19+ B cell count (OR: 2.84, 95% CI: 1.29–6.25) predicted elevated risks of unexpected admission after adjusting for potential confounders; while the 3rd quartile of CD3+ T cell indicated a reduced risk of mortality (OR: 0.19, 95% CI: 0.05–0.71). Negative association between CMV IgG and CD19+ B cell count suggested that CMV infection might lead to B cell depletion via decreasing memory B cells repertoire. Conclusions CMV infection, lymphopenia, and CD19+ B cell depletion might predict greater risk of unexpected admission, while more CD3+ T cell would suggest a reduced risk of mortality among the oldest-old population. A non-linear or U-shaped relationship was supposed between health outcomes and CMV infection, CD3+ T cell, or CD19+ B cell counts. Further prospective studies with more participants included would be needed to elucidate above findings.
Collapse
Affiliation(s)
- Liang-Yu Chen
- Institute of Public Health, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St, Taipei, 11221, Taiwan.,Aging and Health Research Center, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St, Taipei, 11221, Taiwan.,Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shi-Pai Rd, Taipei, 11217, Taiwan
| | - An-Chun Hwang
- Institute of Public Health, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St, Taipei, 11221, Taiwan.,Aging and Health Research Center, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St, Taipei, 11221, Taiwan.,Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shi-Pai Rd, Taipei, 11217, Taiwan
| | - Chung-Yu Huang
- Institute of Public Health, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St, Taipei, 11221, Taiwan.,Aging and Health Research Center, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St, Taipei, 11221, Taiwan.,Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shi-Pai Rd, Taipei, 11217, Taiwan
| | - Liang-Kung Chen
- Institute of Public Health, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St, Taipei, 11221, Taiwan.,Aging and Health Research Center, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St, Taipei, 11221, Taiwan.,Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shi-Pai Rd, Taipei, 11217, Taiwan
| | - Fu-Der Wang
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St, Taipei, 11221, Taiwan.,Division of Infectious Disease, Department of Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shi-Pai Rd, Taipei, 11217, Taiwan
| | - Yu-Jiun Chan
- Institute of Public Health, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St, Taipei, 11221, Taiwan. .,Division of Infectious Disease, Department of Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shi-Pai Rd, Taipei, 11217, Taiwan. .,Division of Microbiology, Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shi-Pai Rd, Taipei, 11217, Taiwan.
| |
Collapse
|
98
|
Rackova L, Mach M, Brnoliakova Z. An update in toxicology of ageing. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 84:103611. [PMID: 33581363 DOI: 10.1016/j.etap.2021.103611] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/17/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
The field of ageing research has been rapidly advancing in recent decades and it had provided insight into the complexity of ageing phenomenon. However, as the organism-environment interaction appears to significantly affect the organismal pace of ageing, the systematic approach for gerontogenic risk assessment of environmental factors has yet to be established. This puts demand on development of effective biomarker of ageing, as a relevant tool to quantify effects of gerontogenic exposures, contingent on multidisciplinary research approach. Here we review the current knowledge regarding the main endogenous gerontogenic pathways involved in acceleration of ageing through environmental exposures. These include inflammatory and oxidative stress-triggered processes, dysregulation of maintenance of cellular anabolism and catabolism and loss of protein homeostasis. The most effective biomarkers showing specificity and relevancy to ageing phenotypes are summarized, as well. The crucial part of this review was dedicated to the comprehensive overview of environmental gerontogens including various types of radiation, certain types of pesticides, heavy metals, drugs and addictive substances, unhealthy dietary patterns, and sedentary life as well as psychosocial stress. The reported effects in vitro and in vivo of both recognized and potential gerontogens are described with respect to the up-to-date knowledge in geroscience. Finally, hormetic and ageing decelerating effects of environmental factors are briefly discussed, as well.
Collapse
Affiliation(s)
- Lucia Rackova
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovakia.
| | - Mojmir Mach
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovakia
| | - Zuzana Brnoliakova
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovakia
| |
Collapse
|
99
|
Booth JS, Goldberg E, Patil SA, Barnes RS, Greenwald BD, Sztein MB. Age-dependency of terminal ileum tissue resident memory T cell responsiveness profiles to S. Typhi following oral Ty21a immunization in humans. Immun Ageing 2021; 18:19. [PMID: 33874975 PMCID: PMC8053564 DOI: 10.1186/s12979-021-00227-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/16/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND The impact of aging on the immune system is unequivocal and results in an altered immune status termed immunosenescence. In humans, the mechanisms of immunosenescence have been examined almost exclusively in blood. However, most immune cells are present in tissue compartments and exhibit differential cell (e.g., memory T cells -TM) subset distributions. Thus, it is crucial to understand immunosenescence in tissues, especially those that are exposed to pathogens (e.g., intestine). Using a human model of oral live attenuated typhoid vaccine, Ty21a, we investigated the effect of aging on terminal ileum (TI) tissue resident memory T (TRM) cells. TRM provide immediate adaptive effector immune responsiveness at the infection site. However, it is unknown whether aging impacts TRM S. Typhi-responsive cells at the site of infection (e.g., TI). Here, we determined the effect of aging on the induction of TI S. Typhi-responsive TRM subsets elicited by Ty21a immunization. RESULTS We observed that aging impacts the frequencies of TI-lamina propria mononuclear cells (LPMC) TM and TRM in both Ty21a-vaccinated and control groups. In unvaccinated volunteers, the frequencies of LPMC CD103- CD4+ TRM displayed a positive correlation with age whilst the CD4/CD8 ratio in LPMC displayed a negative correlation with age. We observed that elderly volunteers have weaker S. Typhi-specific mucosal immune responses following Ty21a immunization compared to adults. For example, CD103+ CD4+ TRM showed reduced IL-17A production, while CD103- CD4+ TRM exhibited lower levels of IL-17A and IL-2 in the elderly than in adults following Ty21a immunization. Similar results were observed in LPMC CD8+ TRM and CD103- CD8+ T cell subsets. A comparison of multifunctional (MF) profiles of both CD4+ and CD8+ TRM subsets between elderly and adults also showed significant differences in the quality and quantity of elicited single (S) and MF responses. CONCLUSIONS Aging influences tissue resident TM S. Typhi-specific responses in the terminal ileum following oral Ty21a-immunization. This study is the first to provide insights in the generation of local vaccine-specific responses in the elderly population and highlights the importance of evaluating tissue immune responses in the context of infection and aging. TRIAL REGISTRATION This study was approved by the Institutional Review Board and registered on ClinicalTrials.gov (identifier NCT03970304 , Registered 29 May 2019 - Retrospectively registered).
Collapse
Affiliation(s)
- Jayaum S Booth
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Eric Goldberg
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Seema A Patil
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Robin S Barnes
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Bruce D Greenwald
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marcelo B Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
- Program in Oncology, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, 21201, USA.
| |
Collapse
|
100
|
Chang YC, Hee SW, Chuang LM. T helper 17 cells: A new actor on the stage of type 2 diabetes and aging? J Diabetes Investig 2021; 12:909-913. [PMID: 33686797 PMCID: PMC8169348 DOI: 10.1111/jdi.13541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 12/18/2022] Open
Affiliation(s)
- Yi-Cheng Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Siow-Wey Hee
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Lee-Ming Chuang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Molecular Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|