51
|
Hashani M, Witzel HR, Pawella LM, Lehmann-Koch J, Schumacher J, Mechtersheimer G, Schnölzer M, Schirmacher P, Roth W, Straub BK. Widespread expression of perilipin 5 in normal human tissues and in diseases is restricted to distinct lipid droplet subpopulations. Cell Tissue Res 2018; 374:121-136. [PMID: 29752569 DOI: 10.1007/s00441-018-2845-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/18/2018] [Indexed: 12/18/2022]
Abstract
Diseases associated with the accumulation of lipid droplets are increasing in western countries. Lipid droplet biogenesis, structure and degradation are regulated by proteins of the perilipin family. Perilipin 5 has been shown to regulate basal lipolysis in oxidative tissues. We examine perilipin 5 in normal human tissues and in diseases using protein biochemical and microscopic techniques. Perilipin 5 was constitutively located at small lipid droplets in skeletal myocytes, cardiomyocytes and brown adipocytes. In addition, perilipin 5 was detected in the epithelia of the gastrointestinal and urogenital tract, especially in hepatocytes, the mitochondria-rich parietal cells of the stomach, tubular kidney cells and ductal cells of the salivary gland and pancreas. Granular cytoplasmic expression, without a lipid droplet-bound localization was detected elsewhere. In cardiomyopathies, in skeletal muscle diseases and during hepatocyte steatogenesis, perilipin 5 was upregulated and localized to larger and more numerous lipid droplets. In steatotic human hepatocytes, perilipin 5 was moderately increased and colocalized with perilipins 1 and 2 but not with perilipin 3 at lipid droplets. In liver diseases implicated in alterations of mitochondria, such as mitochondriopathies, alcoholic liver disease, Wilson's disease and acute liver injury, perilipin 5 was frequently localized to small lipid droplets and less in the cytoplasm. In tumorigenesis, perilipin 5 was especially upregulated in lipo-, leio- and rhabdomyosarcoma and hepatocellular and renal cell carcinoma. In summary, our study provides evidence that perilipin 5 is not restricted to certain cell types but localizes to distinct lipid droplet subpopulations reflecting a possible function in oxidative energy supply in normal tissues and in diseases.
Collapse
Affiliation(s)
- Merita Hashani
- Department of General Pathology, Institute of Pathology, University Hospital, Heidelberg, Germany.,Institute of Pathology, University Hospital of Prishtina, Prishtina, Kosovo
| | - Hagen Roland Witzel
- Institute of Pathology, University Medicine, Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Lena Maria Pawella
- Department of General Pathology, Institute of Pathology, University Hospital, Heidelberg, Germany
| | - Judith Lehmann-Koch
- Department of General Pathology, Institute of Pathology, University Hospital, Heidelberg, Germany
| | - Jens Schumacher
- Department of Internal Medicine III, Division of Translational and Experimental Oncology, University Hospital Mainz, Mainz, Germany
| | - Gunhild Mechtersheimer
- Department of General Pathology, Institute of Pathology, University Hospital, Heidelberg, Germany
| | - Martina Schnölzer
- Functional Proteome Analysis, German Cancer Research Center Heidelberg (DKFZ), INF 580, Heidelberg, Germany
| | - Peter Schirmacher
- Department of General Pathology, Institute of Pathology, University Hospital, Heidelberg, Germany
| | - Wilfried Roth
- Institute of Pathology, University Medicine, Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Beate Katharina Straub
- Department of General Pathology, Institute of Pathology, University Hospital, Heidelberg, Germany. .,Institute of Pathology, University Medicine, Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany.
| |
Collapse
|
52
|
Xu S, Zhang X, Liu P. Lipid droplet proteins and metabolic diseases. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1968-1983. [DOI: 10.1016/j.bbadis.2017.07.019] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/14/2017] [Accepted: 07/19/2017] [Indexed: 12/13/2022]
|
53
|
Benador IY, Veliova M, Mahdaviani K, Petcherski A, Wikstrom JD, Assali EA, Acín-Pérez R, Shum M, Oliveira MF, Cinti S, Sztalryd C, Barshop WD, Wohlschlegel JA, Corkey BE, Liesa M, Shirihai OS. Mitochondria Bound to Lipid Droplets Have Unique Bioenergetics, Composition, and Dynamics that Support Lipid Droplet Expansion. Cell Metab 2018; 27:869-885.e6. [PMID: 29617645 PMCID: PMC5969538 DOI: 10.1016/j.cmet.2018.03.003] [Citation(s) in RCA: 345] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 01/07/2018] [Accepted: 03/13/2018] [Indexed: 01/05/2023]
Abstract
Mitochondria associate with lipid droplets (LDs) in fat-oxidizing tissues, but the functional role of these peridroplet mitochondria (PDM) is unknown. Microscopic observation of interscapular brown adipose tissue reveals that PDM have unique protein composition and cristae structure and remain adherent to the LD in the tissue homogenate. We developed an approach to isolate PDM based on their adherence to LDs. Comparison of purified PDM to cytoplasmic mitochondria reveals that (1) PDM have increased pyruvate oxidation, electron transport, and ATP synthesis capacities; (2) PDM have reduced β-oxidation capacity and depart from LDs upon activation of brown adipose tissue thermogenesis and β-oxidation; (3) PDM support LD expansion as Perilipin5-induced recruitment of mitochondria to LDs increases ATP synthase-dependent triacylglyceride synthesis; and (4) PDM maintain a distinct protein composition due to uniquely low fusion-fission dynamics. We conclude that PDM represent a segregated mitochondrial population with unique structure and function that supports triacylglyceride synthesis.
Collapse
Affiliation(s)
- Ilan Y Benador
- Division of Endocrinology, Department of Medicine, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Obesity Research Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Michaela Veliova
- Division of Endocrinology, Department of Medicine, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Kiana Mahdaviani
- Obesity Research Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Anton Petcherski
- Division of Endocrinology, Department of Medicine, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jakob D Wikstrom
- Dermatology and Venereology Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Dermato-Venereology, Karolinska University Hospital, Stockholm, Sweden
| | - Essam A Assali
- Division of Endocrinology, Department of Medicine, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Clinical Biochemistry, School of Medicine, Ben Gurion University of The Negev, Beer-Sheva, Israel
| | - Rebeca Acín-Pérez
- Division of Endocrinology, Department of Medicine, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Michaël Shum
- Division of Endocrinology, Department of Medicine, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Marcus F Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine, University of Ancona, Ancona, Italy
| | - Carole Sztalryd
- Department of Medicine, School of Medicine, University of Maryland Baltimore, MD, USA
| | - William D Barshop
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Barbara E Corkey
- Obesity Research Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Marc Liesa
- Division of Endocrinology, Department of Medicine, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | - Orian S Shirihai
- Division of Endocrinology, Department of Medicine, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Obesity Research Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Department of Clinical Biochemistry, School of Medicine, Ben Gurion University of The Negev, Beer-Sheva, Israel.
| |
Collapse
|
54
|
Montgomery MK, Mokhtar R, Bayliss J, Parkington HC, Suturin VM, Bruce CR, Watt MJ. Perilipin 5 Deletion Unmasks an Endoplasmic Reticulum Stress-Fibroblast Growth Factor 21 Axis in Skeletal Muscle. Diabetes 2018; 67:594-606. [PMID: 29378767 DOI: 10.2337/db17-0923] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 01/16/2018] [Indexed: 11/13/2022]
Abstract
Lipid droplets (LDs) are critical for the regulation of lipid metabolism, and dysregulated lipid metabolism contributes to the pathogenesis of several diseases, including type 2 diabetes. We generated mice with muscle-specific deletion of the LD-associated protein perilipin 5 (PLIN5, Plin5MKO ) and investigated PLIN5's role in regulating skeletal muscle lipid metabolism, intracellular signaling, and whole-body metabolic homeostasis. High-fat feeding induced changes in muscle lipid metabolism of Plin5MKO mice, which included increased fatty acid oxidation and oxidative stress but, surprisingly, a reduction in inflammation and endoplasmic reticulum (ER) stress. These muscle-specific effects were accompanied by whole-body glucose intolerance, adipose tissue insulin resistance, and reduced circulating insulin and C-peptide levels in Plin5MKO mice. This coincided with reduced secretion of fibroblast growth factor 21 (FGF21) from skeletal muscle and liver, resulting in reduced circulating FGF21. Intriguingly, muscle-secreted factors from Plin5MKO , but not wild-type mice, reduced hepatocyte FGF21 secretion. Exogenous correction of FGF21 levels restored glycemic control and insulin secretion in Plin5MKO mice. These results show that changes in lipid metabolism resulting from PLIN5 deletion reduce ER stress in muscle, decrease FGF21 production by muscle and liver, and impair glycemic control. Further, these studies highlight the importance for muscle-liver cross talk in metabolic regulation.
Collapse
Affiliation(s)
- Magdalene K Montgomery
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, and Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Ruzaidi Mokhtar
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, and Department of Physiology, Monash University, Clayton, Victoria, Australia
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Jacqueline Bayliss
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, and Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Helena C Parkington
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, and Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Victor M Suturin
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, and Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Clinton R Bruce
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
| | - Matthew J Watt
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, and Department of Physiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
55
|
Rausch V, Mueller S. Suppressed Fat Mobilization Due to PNPLA3 rs738409 -Associated Liver Damage in Heavy Drinkers: The Liver Damage Feedback Hypothesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1032:153-172. [PMID: 30362098 DOI: 10.1007/978-3-319-98788-0_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PNPLA3 variant rs738409 has been identified as important progression factor in patients with ALD and NAFLD, the most common liver diseases worldwide. These findings point towards similarities between metabolism of alcohol and fat with regard to the PNPLA3 gene. However, despite many efforts, neither the mechanisms of PNPLA3-related liver damage nor the physiological role of PNPLA3 are fully understood. Based on a large monocentric cohort of Caucasian heavy drinkers we could recently provide evidence that PNPLA3 GG primarily correlated with signs of liver damage (steatohepatitis, ballooning) but less with steatosis. Moreover, upon alcohol withdrawal, PNPLA3 GG carriers showed a delayed inflammation-associated resolution of liver stiffness. In line with the histological findings, hepatic fat content as quantified by CAP (controlled attenuation parameter) did not depend on PNPLA3 status and decreased equally in all genotypes by ca. 30 dB/m during alcohol withdrawal. Preliminary additional analysis from this large cohort indicates that PNPLA3 GG carriers (8.2%) drink significantly less high percentage beverages (23% vs 55%, p < 0.001) but show no metabolic phenotype such as increased weight, BMI or diabetes. On the molecular level, key molecules, important for lipolysis and flow of free fatty acids to the liver were drastically reduced in G carriers. These included the liver-synthesized serum ApoA1, the LD-associated protein perilipin5 and the recently identified hepato-protective transcriptional cofactor transducin beta-like-related 1 (TBLR1). Based on these findings, we here introduce the liver damage feedback hypothesis. Accordingly, PNPLA3-mediated liver damage (e.g. by enhanced metabolic activity) suppresses the mobilization of fat towards the liver at various levels (reduced serum lipid flux to the liver and fat mobilization from peripheric adipose tissues, suppressed hepatocyte fat release and avoidance of high percentage alcohol beverages). Finally, the liver damage feedback hypothesis identifies a novel and central role of liver damage on systemic fat homeostasis, which has not been appreciated so far.
Collapse
Affiliation(s)
- Vanessa Rausch
- Center for Alcohol Research, University Hospital Heidelberg and Salem Medical Center, Heidelberg, Germany.
| | - Sebastian Mueller
- Department of Internal Medicine, Salem Medical Center and Center for Alcohol Research, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
56
|
Ueno M, Suzuki J, Hirose M, Sato S, Imagawa M, Zenimaru Y, Takahashi S, Ikuyama S, Koizumi T, Konoshita T, Kraemer FB, Ishizuka T. Cardiac overexpression of perilipin 2 induces dynamic steatosis: prevention by hormone-sensitive lipase. Am J Physiol Endocrinol Metab 2017; 313:E699-E709. [PMID: 28851734 PMCID: PMC6415650 DOI: 10.1152/ajpendo.00098.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 08/24/2017] [Accepted: 08/24/2017] [Indexed: 11/22/2022]
Abstract
Cardiac intracellular lipid accumulation (steatosis) is a pathophysiological phenomenon observed in starvation and diabetes mellitus. Perilipin 2 (PLIN2) is a lipid droplet (LD)-associated protein expressed in nonadipose tissues, including the heart. To explore the pathophysiological function of myocardial PLIN2, we generated transgenic (Tg) mice by cardiac-specific overexpression of PLIN2. Tg hearts showed accumulation of numerous small LDs associated with mitochondrial chains and high cardiac triacylglycerol (TAG) content [8-fold greater than wild-type (WT) mice]. Despite massive steatosis, cardiac uptake of glucose, fatty acids and VLDL, systolic function, and expression of metabolic genes were comparable in the two genotypes, and no morphological changes were observed by electron microscopy in the Tg hearts. Twenty-four hours of fasting markedly reduced steatosis in Tg hearts, whereas WT mice showed accumulation of LDs. Although activity of adipose triglyceride lipase in heart homogenate was comparable between WT and Tg mice, activity of hormone-sensitive lipase (HSL) was 40-50% less in Tg than WT mice under both feeding and fasting conditions, suggesting interference of PLIN2 with HSL. Mice generated through crossing of PLIN2-Tg mice and HSL-Tg mice showed cardiac-specific HSL overexpression and complete lack of steatosis. The results suggest that cardiac PLIN2 plays an important pathophysiological role in the development of dynamic steatosis and that the latter was prevented by upregulation of intracellular lipases, including HSL.
Collapse
Affiliation(s)
- Masami Ueno
- Third Department of Internal Medicine, University of Fukui, Faculty of Medical Sciences, Fukui, Japan
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California; and
- Division of Endocrinology, Stanford University, Stanford, California
| | - Jinya Suzuki
- Third Department of Internal Medicine, University of Fukui, Faculty of Medical Sciences, Fukui, Japan;
| | | | - Satsuki Sato
- Third Department of Internal Medicine, University of Fukui, Faculty of Medical Sciences, Fukui, Japan
| | - Michiko Imagawa
- Third Department of Internal Medicine, University of Fukui, Faculty of Medical Sciences, Fukui, Japan
| | - Yasuo Zenimaru
- Third Department of Internal Medicine, University of Fukui, Faculty of Medical Sciences, Fukui, Japan
| | - Sadao Takahashi
- Division of Diabetes Medicine, Ageo Central General Hospital, Saitama, Japan
| | - Shoichiro Ikuyama
- Division of Endocrinology and Metabolism, Oita San-ai Medical Center, Oita, Japan
| | - Tsutomu Koizumi
- Research and Education Program for Life Science, University of Fukui, Faculty of Medical Sciences, Fukui, Japan
| | - Tadashi Konoshita
- Third Department of Internal Medicine, University of Fukui, Faculty of Medical Sciences, Fukui, Japan
| | - Fredric B Kraemer
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California; and
- Division of Endocrinology, Stanford University, Stanford, California
| | - Tamotsu Ishizuka
- Third Department of Internal Medicine, University of Fukui, Faculty of Medical Sciences, Fukui, Japan
| |
Collapse
|
57
|
Molecular mechanisms of cardiac pathology in diabetes - Experimental insights. Biochim Biophys Acta Mol Basis Dis 2017; 1864:1949-1959. [PMID: 29109032 DOI: 10.1016/j.bbadis.2017.10.035] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/09/2017] [Accepted: 10/27/2017] [Indexed: 12/11/2022]
Abstract
Diabetic cardiomyopathy is a distinct pathology independent of co-morbidities such as coronary artery disease and hypertension. Diminished glucose uptake due to impaired insulin signaling and decreased expression of glucose transporters is associated with a shift towards increased reliance on fatty acid oxidation and reduced cardiac efficiency in diabetic hearts. The cardiac metabolic profile in diabetes is influenced by disturbances in circulating glucose, insulin and fatty acids, and alterations in cardiomyocyte signaling. In this review, we focus on recent preclinical advances in understanding the molecular mechanisms of diabetic cardiomyopathy. Genetic manipulation of cardiomyocyte insulin signaling intermediates has demonstrated that partial cardiac functional rescue can be achieved by upregulation of the insulin signaling pathway in diabetic hearts. Inconsistent findings have been reported relating to the role of cardiac AMPK and β-adrenergic signaling in diabetes, and systemic administration of agents targeting these pathways appear to elicit some cardiac benefit, but whether these effects are related to direct cardiac actions is uncertain. Overload of cardiomyocyte fuel storage is evident in the diabetic heart, with accumulation of glycogen and lipid droplets. Cardiac metabolic dysregulation in diabetes has been linked with oxidative stress and autophagy disturbance, which may lead to cell death induction, fibrotic 'backfill' and cardiac dysfunction. This review examines the weight of evidence relating to the molecular mechanisms of diabetic cardiomyopathy, with a particular focus on metabolic and signaling pathways. Areas of uncertainty in the field are highlighted and important knowledge gaps for further investigation are identified. This article is part of a Special issue entitled Cardiac adaptations to obesity, diabetes and insulin resistance, edited by Professors Jan F.C. Glatz, Jason R.B. Dyck and Christine Des Rosiers.
Collapse
|
58
|
Wang X, Hao TB, Balamurugan S, Yang WD, Liu JS, Dong HP, Li HY. A lipid droplet-associated protein involved in lipid droplet biogenesis and triacylglycerol accumulation in the oleaginous microalga Phaeodactylum tricornutum. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.07.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
59
|
Sztalryd C, Brasaemle DL. The perilipin family of lipid droplet proteins: Gatekeepers of intracellular lipolysis. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1221-1232. [PMID: 28754637 DOI: 10.1016/j.bbalip.2017.07.009] [Citation(s) in RCA: 339] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 12/21/2022]
Abstract
Lipid droplets in chordates are decorated by two or more members of the perilipin family of lipid droplet surface proteins. The perilipins sequester lipids by protecting lipid droplets from lipase action. Their relative expression and protective nature is adapted to the balance of lipid storage and utilization in specific cells. Most cells of the body have tiny lipid droplets with perilipins 2 and 3 at the surfaces, whereas specialized fat-storing cells with larger lipid droplets also express perilipins 1, 4, and/or 5. Perilipins 1, 2, and 5 modulate lipolysis by controlling the access of lipases and co-factors of lipases to substrate lipids stored within lipid droplets. Although perilipin 2 is relatively permissive to lipolysis, perilipins 1 and 5 have distinct control mechanisms that are altered by phosphorylation. Here we evaluate recent progress toward understanding functions of the perilipins with a focus on their role in regulating lipolysis and autophagy. This article is part of a Special Issue entitled: Recent Advances in Lipid Droplet Biology edited by Rosalind Coleman and Matthijs Hesselink.
Collapse
Affiliation(s)
- Carole Sztalryd
- Department of Medicine, Division of Endocrinology, School of Medicine, University of Maryland, Baltimore, MD, USA; Geriatric Research, Education, and Clinical Center, Baltimore Veterans Affairs Health Care Center, Baltimore, MD, USA.
| | - Dawn L Brasaemle
- Department of Nutritional Sciences and Center for Lipid Research, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
60
|
The expanding role of sphingolipids in lipid droplet biogenesis. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1155-1165. [PMID: 28743537 DOI: 10.1016/j.bbalip.2017.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 01/17/2023]
Abstract
Sphingolipids are a diverse class of lipids that have regulatory, structural, and metabolic functions. Although chemically distinct from the neutral lipids and the glycerophospholipids, which are the main lipid components of the lipid droplets, sphingolipids have nonetheless been shown to influence lipid droplet formation. The goal of this article is to review the available information and provide a cohesive picture of the role sphingolipids play in lipid droplet biogenesis. The following topics are discussed: (i) the abundance of sphingolipids in lipid droplets and their functional significance; (ii) cross-talk between the synthetic pathways of sphingolipids, glycerophospholipids, and neutral lipids; (iii) the impact of bioactive sphingolipids on TAG synthesis and degradation; (iv) interactions between sphingolipids and other lipid droplet components, like cholesterol esters and proteins; (v) inhibition/genetic deletion of specific sphingolipid metabolic enzymes and the resulting effects on lipid droplet formation in mouse models. This article is part of a Special Issue entitled: Recent Advances in Lipid Droplet Biology edited by Rosalind Coleman and Matthijs Hesselink.
Collapse
|
61
|
Kimmel AR, Sztalryd C. The Perilipins: Major Cytosolic Lipid Droplet-Associated Proteins and Their Roles in Cellular Lipid Storage, Mobilization, and Systemic Homeostasis. Annu Rev Nutr 2017; 36:471-509. [PMID: 27431369 DOI: 10.1146/annurev-nutr-071813-105410] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The discovery by Dr. Constantine Londos of perilipin 1, the major scaffold protein at the surface of cytosolic lipid droplets in adipocytes, marked a fundamental conceptual change in the understanding of lipolytic regulation. Focus then shifted from the enzymatic activation of lipases to substrate accessibility, mediated by perilipin-dependent protein sequestration and recruitment. Consequently, the lipid droplet became recognized as a unique, metabolically active cellular organelle and its surface as the active site for novel protein-protein interactions. A new area of investigation emerged, centered on lipid droplets' biology and their role in energy homeostasis. The perilipin family is of ancient origin and has expanded to include five mammalian genes and a growing list of evolutionarily conserved members. Universally, the perilipins modulate cellular lipid storage. This review provides a summary that connects the perilipins to both cellular and whole-body homeostasis.
Collapse
Affiliation(s)
- Alan R Kimmel
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, Maryland 20892;
| | - Carole Sztalryd
- The Geriatric Research Education and Clinical Center, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland 21201.,Division of Endocrinology, Department of Medicine, School of Medicine, University of Maryland, Baltimore, Maryland 21201;
| |
Collapse
|
62
|
Abstract
The heart utilizes large amounts of fatty acids as energy providing substrates. The physiological balance of lipid uptake and oxidation prevents accumulation of excess lipids. Several processes that affect cardiac function, including ischemia, obesity, diabetes mellitus, sepsis, and most forms of heart failure lead to altered fatty acid oxidation and often also to the accumulation of lipids. There is now mounting evidence associating certain species of these lipids with cardiac lipotoxicity and subsequent myocardial dysfunction. Experimental and clinical data are discussed and paths to reduction of toxic lipids as a means to improve cardiac function are suggested.
Collapse
Affiliation(s)
- P Christian Schulze
- From the Divisions of Cardiology, Friedrich-Schiller-University Jena, Germany, and Columbia University, New York, NY (P.C.S.); Metabolic Biology Laboratory, Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (K.D.); and Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, NY (I.J.G.).
| | - Konstantinos Drosatos
- From the Divisions of Cardiology, Friedrich-Schiller-University Jena, Germany, and Columbia University, New York, NY (P.C.S.); Metabolic Biology Laboratory, Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (K.D.); and Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, NY (I.J.G.)
| | - Ira J Goldberg
- From the Divisions of Cardiology, Friedrich-Schiller-University Jena, Germany, and Columbia University, New York, NY (P.C.S.); Metabolic Biology Laboratory, Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (K.D.); and Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, NY (I.J.G.)
| |
Collapse
|
63
|
Blood-based omic profiling supports female susceptibility to tobacco smoke-induced cardiovascular diseases. Sci Rep 2017; 7:42870. [PMID: 28225026 PMCID: PMC5320491 DOI: 10.1038/srep42870] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 01/16/2017] [Indexed: 12/11/2022] Open
Abstract
We recently reported that differential gene expression and DNA methylation profiles in blood leukocytes of apparently healthy smokers predicts with remarkable efficiency diseases and conditions known to be causally associated with smoking, suggesting that blood-based omic profiling of human populations may be useful for linking environmental exposures to potential health effects. Here we report on the sex-specific effects of tobacco smoking on transcriptomic and epigenetic features derived from genome-wide profiling in white blood cells, identifying 26 expression probes and 92 CpG sites, almost all of which are affected only in female smokers. Strikingly, these features relate to numerous genes with a key role in the pathogenesis of cardiovascular disease, especially thrombin signaling, including the thrombin receptors on platelets F2R (coagulation factor II (thrombin) receptor; PAR1) and GP5 (glycoprotein 5), as well as HMOX1 (haem oxygenase 1) and BCL2L1 (BCL2-like 1) which are involved in protection against oxidative stress and apoptosis, respectively. These results are in concordance with epidemiological evidence of higher female susceptibility to tobacco-induced cardiovascular disease and underline the potential of blood-based omic profiling in hazard and risk assessment.
Collapse
|
64
|
Zheng P, Xie Z, Yuan Y, Sui W, Wang C, Gao X, Zhao Y, Zhang F, Gu Y, Hu P, Ye J, Feng X, Zhang L. Plin5 alleviates myocardial ischaemia/reperfusion injury by reducing oxidative stress through inhibiting the lipolysis of lipid droplets. Sci Rep 2017; 7:42574. [PMID: 28218306 PMCID: PMC5316932 DOI: 10.1038/srep42574] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 01/12/2017] [Indexed: 12/31/2022] Open
Abstract
Myocardial ischaemia-reperfusion (I/R) injury is a complex pathophysiological process. Current research has suggested that energy metabolism disorders, of which the abnormal consumption of fatty acids is closely related, compose the main pathological basis for myocardial I/R injury. Lipid droplets (LD) are critical regulators of lipid metabolism by LD-associated proteins. Among the lipid droplet proteins, the perilipin family members regulate lipolysis and lipogenesis through different mechanisms. Plin5, an important perilipin protein, promotes LD generation and lowers fatty acid oxidation, thus protecting the myocardium from lipotoxicity. This study investigated the protective effects of Plin5 in I/R myocardium. Our results indicated that Plin5 deficiency exacerbated the myocardial infarct area, aggravated left ventricular systolic dysfunction, reduced lipid storage, and elevated free fatty acids. Plin5-deficient myocardium exhibited severely damaged mitochondria, elevated reactive oxygen species (ROS) and malondialdehyde (MDA) levels, and decreased superoxide dismutase (SOD) activity. Furthermore, the decreased phosphorylation of PI3K/Akt in Plin5-null cardiomyocytes might contribute to I/R injury aggravation. In conclusion, Plin5, a new regulator of myocardial lipid metabolism, decreases free fatty acid peroxidation by inhibiting the lipolysis of intracellular lipid droplets, thus providing cardioprotection against I/R injury and shedding new light on therapeutic solutions for I/R diseases.
Collapse
Affiliation(s)
- Pengfei Zheng
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China.,Department of Cardiology, The Sixteenth Hospital of PLA, Aletai 836500, Xinjiang Province, China
| | - Zhonglin Xie
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Yuan Yuan
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Wen Sui
- Department of Stomatology Center, Shenzhen Hospital of Southern Medical University, Shenzhen, 518000, Guangdong Province, China
| | - Chao Wang
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Xing Gao
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Yuanlin Zhao
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Feng Zhang
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Yu Gu
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Peizhen Hu
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Jing Ye
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Xuyang Feng
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Lijun Zhang
- Department of Clinical Diagnosis, Tangdu Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| |
Collapse
|
65
|
Drevinge C, Dalen KT, Mannila MN, Täng MS, Ståhlman M, Klevstig M, Lundqvist A, Mardani I, Haugen F, Fogelstrand P, Adiels M, Asin-Cayuela J, Ekestam C, Gådin JR, Lee YK, Nebb H, Svedlund S, Johansson BR, Hultén LM, Romeo S, Redfors B, Omerovic E, Levin M, Gan LM, Eriksson P, Andersson L, Ehrenborg E, Kimmel AR, Borén J, Levin MC. Perilipin 5 is protective in the ischemic heart. Int J Cardiol 2016; 219:446-54. [DOI: 10.1016/j.ijcard.2016.06.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/12/2016] [Indexed: 10/21/2022]
|
66
|
Gallardo-Montejano VI, Saxena G, Kusminski CM, Yang C, McAfee JL, Hahner L, Hoch K, Dubinsky W, Narkar VA, Bickel PE. Nuclear Perilipin 5 integrates lipid droplet lipolysis with PGC-1α/SIRT1-dependent transcriptional regulation of mitochondrial function. Nat Commun 2016; 7:12723. [PMID: 27554864 PMCID: PMC4999519 DOI: 10.1038/ncomms12723] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 07/27/2016] [Indexed: 12/18/2022] Open
Abstract
Dysfunctional cellular lipid metabolism contributes to common chronic human diseases, including type 2 diabetes, obesity, fatty liver disease and diabetic cardiomyopathy. How cells balance lipid storage and mitochondrial oxidative capacity is poorly understood. Here we identify the lipid droplet protein Perilipin 5 as a catecholamine-triggered interaction partner of PGC-1α. We report that during catecholamine-stimulated lipolysis, Perilipin 5 is phosphorylated by protein kinase A and forms transcriptional complexes with PGC-1α and SIRT1 in the nucleus. Perilipin 5 promotes PGC-1α co-activator function by disinhibiting SIRT1 deacetylase activity. We show by gain-and-loss of function studies in cells that nuclear Perilipin 5 promotes transcription of genes that mediate mitochondrial biogenesis and oxidative function. We propose that Perilipin 5 is an important molecular link that couples the coordinated catecholamine activation of the PKA pathway and of lipid droplet lipolysis with transcriptional regulation to promote efficient fatty acid catabolism and prevent mitochondrial dysfunction.
Collapse
Affiliation(s)
- Violeta I. Gallardo-Montejano
- Division of Endocrinology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Geetu Saxena
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for The Prevention Of Human Diseases, UT Health, Houston, Texas 77030, USA
| | - Christine M. Kusminski
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Chaofeng Yang
- Division of Endocrinology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - John L. McAfee
- Division of Endocrinology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Lisa Hahner
- Division of Endocrinology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Kathleen Hoch
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for The Prevention Of Human Diseases, UT Health, Houston, Texas 77030, USA
| | - William Dubinsky
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for The Prevention Of Human Diseases, UT Health, Houston, Texas 77030, USA
| | - Vihang A. Narkar
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for The Prevention Of Human Diseases, UT Health, Houston, Texas 77030, USA
| | - Perry E. Bickel
- Division of Endocrinology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
67
|
Mohktar RAM, Montgomery MK, Murphy RM, Watt MJ. Perilipin 5 is dispensable for normal substrate metabolism and in the adaptation of skeletal muscle to exercise training. Am J Physiol Endocrinol Metab 2016; 311:E128-37. [PMID: 27189934 DOI: 10.1152/ajpendo.00084.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/09/2016] [Indexed: 11/22/2022]
Abstract
Cytoplasmic lipid droplets provide a reservoir for triglyceride storage and are a central hub for fatty acid trafficking in cells. The protein perilipin 5 (PLIN5) is highly expressed in oxidative tissues such as skeletal muscle and regulates lipid metabolism by coordinating the trafficking and the reversible interactions of effector proteins at the lipid droplet. PLIN5 may also regulate mitochondrial function, although this remains unsubstantiated. Hence, the aims of this study were to examine the role of PLIN5 in the regulation of skeletal muscle substrate metabolism during acute exercise and to determine whether PLIN5 is required for the metabolic adaptations and enhancement in exercise tolerance following endurance exercise training. Using muscle-specific Plin5 knockout mice (Plin5(MKO)), we show that PLIN5 is dispensable for normal substrate metabolism during exercise, as reflected by levels of blood metabolites and rates of glycogen and triglyceride depletion that were indistinguishable from control (lox/lox) mice. Plin5(MKO) mice exhibited a functional impairment in their response to endurance exercise training, as reflected by reduced maximal running capacity (20%) and reduced time to fatigue during prolonged submaximal exercise (15%). The reduction in exercise performance was not accompanied by alterations in carbohydrate and fatty acid metabolism during submaximal exercise. Similarly, mitochondrial capacity (mtDNA, respiratory complex proteins, citrate synthase activity) and mitochondrial function (oxygen consumption rate in muscle fiber bundles) were not different between lox/lox and Plin5(MKO) mice. Thus, PLIN5 is dispensable for normal substrate metabolism during exercise and is not required to promote mitochondrial biogenesis or enhance the cellular adaptations to endurance exercise training.
Collapse
Affiliation(s)
- Ruzaidi A M Mohktar
- Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity Program, and Department of Physiology, Monash University, Clayton, Victoria, Australia; Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Sabah, Malaysia; and
| | - Magda K Montgomery
- Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity Program, and Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Matthew J Watt
- Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity Program, and Department of Physiology, Monash University, Clayton, Victoria, Australia;
| |
Collapse
|
68
|
Abstract
As a greater proportion of patients survive their initial cardiac insult, medical systems worldwide are being faced with an ever-growing need to understand the mechanisms behind the pathogenesis of chronic heart failure (HF). There is a wealth of information about the role of inflammatory cells and pathways during acute injury and the reparative processes that are subsequently activated. We discuss the different causes that lead to chronic HF development and how the sum of initial inflammatory and reparative responses only sets the trajectory for disease progression. Unfortunately, comparatively little is known about the contribution of the immune system once the trajectory has been set, and chronic HF has been established—which clinically represents the majority of patients. It is known that chronic HF is associated with circulating inflammatory cytokines that can predict clinical outcomes, yet the causative role inflammation plays in disease progression is not well defined, and the majority of clinical trials that target aspects of inflammation in patients with chronic HF have largely been negative. This review will present what is currently known about inflammation in chronic HF in both humans and animal models as a means to highlight the gap in our knowledge base that requires further examination.
Collapse
Affiliation(s)
- Sarah A. Dick
- From the Division of Cardiology, Department of Medicine, University Health Network, Toronto, Ontario, Canada (S.A.D, S.E.); University of Toronto, Toronto, Ontario, Canada (S.E); Peter Munk Cardiac Centre, Toronto, Ontario, Canada (S.A.D, S.E.); and Toronto General Hospital Research Institute, Toronto, Ontario, Canada (S.A.D, S.E.)
| | - Slava Epelman
- From the Division of Cardiology, Department of Medicine, University Health Network, Toronto, Ontario, Canada (S.A.D, S.E.); University of Toronto, Toronto, Ontario, Canada (S.E); Peter Munk Cardiac Centre, Toronto, Ontario, Canada (S.A.D, S.E.); and Toronto General Hospital Research Institute, Toronto, Ontario, Canada (S.A.D, S.E.)
| |
Collapse
|
69
|
Holzem KM, Vinnakota KC, Ravikumar VK, Madden EJ, Ewald GA, Dikranian K, Beard DA, Efimov IR. Mitochondrial structure and function are not different between nonfailing donor and end-stage failing human hearts. FASEB J 2016; 30:2698-707. [PMID: 27075244 DOI: 10.1096/fj.201500118r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 04/05/2016] [Indexed: 01/06/2023]
Abstract
During human heart failure, the balance of cardiac energy use switches from predominantly fatty acids (FAs) to glucose. We hypothesized that this substrate shift was the result of mitochondrial degeneration; therefore, we examined mitochondrial oxidation and ultrastructure in the failing human heart by using respirometry, transmission electron microscopy, and gene expression studies of demographically matched donor and failing human heart left ventricular (LV) tissues. Surprisingly, respiratory capacities for failing LV isolated mitochondria (n = 9) were not significantly diminished compared with donor LV isolated mitochondria (n = 7) for glycolysis (pyruvate + malate)- or FA (palmitoylcarnitine)-derived substrates, and mitochondrial densities, assessed via citrate synthase activity, were consistent between groups. Transmission electron microscopy images also showed no ultrastructural remodeling for failing vs. donor mitochondria; however, the fraction of lipid droplets (LDs) in direct contact with a mitochondrion was reduced, and the average distance between an LD and its nearest neighboring mitochondrion was increased. Analysis of FA processing gene expression between donor and failing LVs revealed 0.64-fold reduced transcript levels for the mitochondrial-LD tether, perilipin 5, in the failing myocardium (P = 0.003). Thus, reduced FA use in heart failure may result from improper delivery, potentially via decreased perilipin 5 expression and mitochondrial-LD tethering, and not from intrinsic mitochondrial dysfunction.-Holzem, K. M., Vinnakota, K. C., Ravikumar, V. K., Madden, E. J., Ewald, G. A., Dikranian, K., Beard, D. A., Efimov, I. R. Mitochondrial structure and function are not different between nonfailing donor and end-stage failing human hearts.
Collapse
Affiliation(s)
- Katherine M Holzem
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Kalyan C Vinnakota
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Vinod K Ravikumar
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Eli J Madden
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Gregory A Ewald
- Washington University School of Medicine, St. Louis, Missouri, USA
| | - Krikor Dikranian
- Washington University School of Medicine, St. Louis, Missouri, USA
| | - Daniel A Beard
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Igor R Efimov
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA; George Washington University, Washington, D.C., USA
| |
Collapse
|
70
|
Lipid metabolism and signaling in cardiac lipotoxicity. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1513-24. [PMID: 26924249 DOI: 10.1016/j.bbalip.2016.02.016] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/19/2016] [Accepted: 02/19/2016] [Indexed: 01/01/2023]
Abstract
The heart balances uptake, metabolism and oxidation of fatty acids (FAs) to maintain ATP production, membrane biosynthesis and lipid signaling. Under conditions where FA uptake outpaces FA oxidation and FA sequestration as triacylglycerols in lipid droplets, toxic FA metabolites such as ceramides, diacylglycerols, long-chain acyl-CoAs, and acylcarnitines can accumulate in cardiomyocytes and cause cardiomyopathy. Moreover, studies using mutant mice have shown that dysregulation of enzymes involved in triacylglycerol, phospholipid, and sphingolipid metabolism in the heart can lead to the excess deposition of toxic lipid species that adversely affect cardiomyocyte function. This review summarizes our current understanding of lipid uptake, metabolism and signaling pathways that have been implicated in the development of lipotoxic cardiomyopathy under conditions including obesity, diabetes, aging, and myocardial ischemia-reperfusion. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.
Collapse
|
71
|
Heier C, Haemmerle G. Fat in the heart: The enzymatic machinery regulating cardiac triacylglycerol metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1500-12. [PMID: 26924251 DOI: 10.1016/j.bbalip.2016.02.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 01/22/2023]
Abstract
The heart predominantly utilizes fatty acids (FAs) as energy substrate. FAs that enter cardiomyocytes can be activated and directly oxidized within mitochondria (and peroxisomes) or they can be esterified and intracellularly deposited as triacylglycerol (TAG) often simply referred to as fat. An increase in cardiac TAG can be a signature of the diseased heart and may implicate a minor role of TAG synthesis and breakdown in normal cardiac energy metabolism. Often overlooked, the heart has an extremely high TAG turnover and the transient deposition of FAs within the cardiac TAG pool critically determines the availability of FAs as energy substrate and signaling molecules. We herein review the recent literature regarding the enzymes and co-regulators involved in cardiomyocyte TAG synthesis and catabolism and discuss the interconnection of these metabolic pathways in the normal and diseased heart. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.
Collapse
Affiliation(s)
- Christoph Heier
- Institute of Molecular Biosciences, University of Graz, Austria
| | | |
Collapse
|
72
|
Chirumbolo S. Commentary: Heart Fat Infiltration in Subjects With and Without Coronary Artery Disease. Front Cardiovasc Med 2016; 3:2. [PMID: 26870737 PMCID: PMC4740777 DOI: 10.3389/fcvm.2016.00002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/11/2016] [Indexed: 11/13/2022] Open
|
73
|
Billecke N, Bosma M, Rock W, Fleissner F, Best G, Schrauwen P, Kersten S, Bonn M, Hesselink MKC, Parekh SH. Perilipin 5 mediated lipid droplet remodelling revealed by coherent Raman imaging. Integr Biol (Camb) 2015; 7:467-76. [PMID: 25804837 DOI: 10.1039/c4ib00271g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Accumulation of fat in muscle tissue as intramyocellular lipids (IMCLs) is closely related to the development of insulin resistance and subsequent type 2 diabetes. Most IMCLs organize into lipid droplets (LDs), the fates of which are regulated by lipid droplet coat proteins. Perilipin 5 (PLIN5) is an LD coating protein, which is strongly linked to lipid storage in muscle tissue. Here we employ a tandem in vitro/ex vivo approach and use chemical imaging by label-free, hyperspectral coherent Raman microscopy to quantify compositional changes in individual LDs upon PLIN5 overexpression. Our results directly show that PLIN5 overexpression in muscle alters individual LD composition and physiology, resulting in larger LDs with higher esterified acyl chain concentration, increased methylene content, and more saturated lipid species. These results suggest that lipotoxic protection afforded by natural PLIN5 upregulation in muscle involves molecular changes in lipid composition within LDs.
Collapse
Affiliation(s)
- Nils Billecke
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Bosma M. Lipid droplet dynamics in skeletal muscle. Exp Cell Res 2015; 340:180-6. [PMID: 26515552 DOI: 10.1016/j.yexcr.2015.10.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/20/2015] [Accepted: 10/23/2015] [Indexed: 02/07/2023]
Abstract
The skeletal muscle is subjected to high mechanical and energetic demands. Lipid droplets are an important source of energy substrates for the working muscle. Muscle cells contain a variety of lipid droplets, which are fundamentally smaller than those found in adipocytes. This translates into a greater lipid droplet surface area serving as the interface for intracellular lipid metabolism. The skeletal muscle has a high plasticity, it is subjected to major remodeling following training and detraining. This coincides with adaptations in lipid droplet characteristics and dynamics. The majority of lipid droplets in skeletal muscle are located in the subsarcolemmal region or in-between the myofibrils, in close vicinity to mitochondria. The vastly organized nature of skeletal muscle fibers limits organelle mobility. The high metabolic rate and substrate turnover in skeletal muscle demands a strict coordination of intramyocellular lipid metabolism and LD dynamics, in which lipid droplet coat proteins play an important role. This review provides insights into the characteristics, diversity and dynamics of skeletal muscle lipid droplets.
Collapse
Affiliation(s)
- Madeleen Bosma
- Department of Cell and Molecular Biology, Karolinska Institutet, P.O. Box 285, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
75
|
Osumi T, Kuramoto K. Heart lipid droplets and lipid droplet-binding proteins: Biochemistry, physiology, and pathology. Exp Cell Res 2015; 340:198-204. [PMID: 26524506 DOI: 10.1016/j.yexcr.2015.10.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/29/2015] [Accepted: 10/29/2015] [Indexed: 10/22/2022]
Affiliation(s)
- Takashi Osumi
- Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Hyogo 678-1297, Japan.
| | - Kenta Kuramoto
- Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Hyogo 678-1297, Japan
| |
Collapse
|
76
|
Trevino MB, Mazur-Hart D, Machida Y, King T, Nadler J, Galkina EV, Poddar A, Dutta S, Imai Y. Liver Perilipin 5 Expression Worsens Hepatosteatosis But Not Insulin Resistance in High Fat-Fed Mice. Mol Endocrinol 2015; 29:1414-25. [PMID: 26296152 DOI: 10.1210/me.2015-1069] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Perilipin 5 (PLIN5) is a lipid droplet (LD) protein highly expressed in oxidative tissues, including the fasted liver. However, its expression also increases in nonalcoholic fatty liver. To determine whether PLIN5 regulates metabolic phenotypes of hepatosteatosis under nutritional excess, liver targeted overexpression of PLIN5 was achieved using adenoviral vector (Ad-PLIN5) in male C57BL/6J mice fed high-fat diet. Mice treated with adenovirus expressing green fluorescent protein (GFP) (Ad-GFP) served as control. Ad-PLIN5 livers increased LD in the liver section, and liquid chromatography with tandem mass spectrometry revealed increases in lipid classes associated with LD, including triacylglycerol, cholesterol ester, and phospholipid classes, compared with Ad-GFP liver. Lipids commonly associated with hepatic lipotoxicity, diacylglycerol, and ceramides, were also increased in Ad-PLIN5 liver. The expression of genes in lipid metabolism regulated by peroxisome proliferator-activated receptor-α was reduced suggestive of slower mobilization of stored lipids in Ad-PLIN5 mice. However, the increase of hepatosteatosis by PLIN5 overexpression did not worsen glucose homeostasis. Rather, serum insulin levels were decreased, indicating better insulin sensitivity in Ad-PLIN5 mice. Moreover, genes associated with liver injury were unaltered in Ad-PLIN5 steatotic liver compared with Ad-GFP control. Phosphorylation of protein kinase B was increased in Ad-PLIN5-transduced AML12 hepatocyte despite of the promotion of fatty acid incorporation to triacylglycerol as well. Collectively, our data indicates that the increase in liver PLIN5 during hepatosteatosis drives further lipid accumulation but does not adversely affect hepatic health or insulin sensitivity.
Collapse
Affiliation(s)
- Michelle B Trevino
- Department of Internal Medicine (M.B.T., D.M.-H., Y.M., T.K., J.N., Y.I.), Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia 23507; Department of Microbiology and Molecular Cell Biology (E.V.G.), Eastern Virginia Medical School, Norfolk, Virginia 23507; Department of Mathematics and Statistics (A.P.), Old Dominion University, Norfolk, Virginia 23529; and Leroy T. Canoles Cancer Research Center (S.D.), Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - David Mazur-Hart
- Department of Internal Medicine (M.B.T., D.M.-H., Y.M., T.K., J.N., Y.I.), Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia 23507; Department of Microbiology and Molecular Cell Biology (E.V.G.), Eastern Virginia Medical School, Norfolk, Virginia 23507; Department of Mathematics and Statistics (A.P.), Old Dominion University, Norfolk, Virginia 23529; and Leroy T. Canoles Cancer Research Center (S.D.), Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Yui Machida
- Department of Internal Medicine (M.B.T., D.M.-H., Y.M., T.K., J.N., Y.I.), Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia 23507; Department of Microbiology and Molecular Cell Biology (E.V.G.), Eastern Virginia Medical School, Norfolk, Virginia 23507; Department of Mathematics and Statistics (A.P.), Old Dominion University, Norfolk, Virginia 23529; and Leroy T. Canoles Cancer Research Center (S.D.), Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Timothy King
- Department of Internal Medicine (M.B.T., D.M.-H., Y.M., T.K., J.N., Y.I.), Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia 23507; Department of Microbiology and Molecular Cell Biology (E.V.G.), Eastern Virginia Medical School, Norfolk, Virginia 23507; Department of Mathematics and Statistics (A.P.), Old Dominion University, Norfolk, Virginia 23529; and Leroy T. Canoles Cancer Research Center (S.D.), Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Joseph Nadler
- Department of Internal Medicine (M.B.T., D.M.-H., Y.M., T.K., J.N., Y.I.), Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia 23507; Department of Microbiology and Molecular Cell Biology (E.V.G.), Eastern Virginia Medical School, Norfolk, Virginia 23507; Department of Mathematics and Statistics (A.P.), Old Dominion University, Norfolk, Virginia 23529; and Leroy T. Canoles Cancer Research Center (S.D.), Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Elena V Galkina
- Department of Internal Medicine (M.B.T., D.M.-H., Y.M., T.K., J.N., Y.I.), Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia 23507; Department of Microbiology and Molecular Cell Biology (E.V.G.), Eastern Virginia Medical School, Norfolk, Virginia 23507; Department of Mathematics and Statistics (A.P.), Old Dominion University, Norfolk, Virginia 23529; and Leroy T. Canoles Cancer Research Center (S.D.), Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Arjun Poddar
- Department of Internal Medicine (M.B.T., D.M.-H., Y.M., T.K., J.N., Y.I.), Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia 23507; Department of Microbiology and Molecular Cell Biology (E.V.G.), Eastern Virginia Medical School, Norfolk, Virginia 23507; Department of Mathematics and Statistics (A.P.), Old Dominion University, Norfolk, Virginia 23529; and Leroy T. Canoles Cancer Research Center (S.D.), Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Sucharita Dutta
- Department of Internal Medicine (M.B.T., D.M.-H., Y.M., T.K., J.N., Y.I.), Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia 23507; Department of Microbiology and Molecular Cell Biology (E.V.G.), Eastern Virginia Medical School, Norfolk, Virginia 23507; Department of Mathematics and Statistics (A.P.), Old Dominion University, Norfolk, Virginia 23529; and Leroy T. Canoles Cancer Research Center (S.D.), Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Yumi Imai
- Department of Internal Medicine (M.B.T., D.M.-H., Y.M., T.K., J.N., Y.I.), Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia 23507; Department of Microbiology and Molecular Cell Biology (E.V.G.), Eastern Virginia Medical School, Norfolk, Virginia 23507; Department of Mathematics and Statistics (A.P.), Old Dominion University, Norfolk, Virginia 23529; and Leroy T. Canoles Cancer Research Center (S.D.), Eastern Virginia Medical School, Norfolk, Virginia 23507
| |
Collapse
|
77
|
Schilling JD. The mitochondria in diabetic heart failure: from pathogenesis to therapeutic promise. Antioxid Redox Signal 2015; 22:1515-26. [PMID: 25761843 PMCID: PMC4449623 DOI: 10.1089/ars.2015.6294] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
SIGNIFICANCE Diabetes is an important risk factor for the development of heart failure (HF). Given the increasing prevalence of diabetes in the population, strategies are needed to reduce the burden of HF in these patients. RECENT ADVANCES Diabetes is associated with several pathologic findings in the heart including dysregulated metabolism, lipid accumulation, oxidative stress, and inflammation. Emerging evidence suggests that mitochondrial dysfunction may be a central mediator of these pathologic responses. The development of therapeutic approaches targeting mitochondrial biology holds promise for the management of HF in diabetic patients. CRITICAL ISSUES Despite significant data implicating mitochondrial pathology in diabetic cardiomyopathy, the optimal pharmacologic approach to improve mitochondrial function remains undefined. FUTURE DIRECTIONS Detailed mechanistic studies coupled with more robust clinical phenotyping will be necessary to develop novel approaches to improve cardiac function in diabetes. Moreover, understanding the interplay between diabetes and other cardiac stressors (hypertension, ischemia, and valvular disease) will be of the utmost importance for clinical translation of scientific discoveries made in this field.
Collapse
Affiliation(s)
- Joel D Schilling
- 1Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, Missouri.,2Department of Medicine, Washington University School of Medicine, St. Louis, Missouri.,3Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
78
|
Aon MA, Tocchetti CG, Bhatt N, Paolocci N, Cortassa S. Protective mechanisms of mitochondria and heart function in diabetes. Antioxid Redox Signal 2015; 22:1563-86. [PMID: 25674814 PMCID: PMC4449630 DOI: 10.1089/ars.2014.6123] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE The heart depends on continuous mitochondrial ATP supply and maintained redox balance to properly develop force, particularly under increased workload. During diabetes, however, myocardial energetic-redox balance is perturbed, contributing to the systolic and diastolic dysfunction known as diabetic cardiomyopathy (DC). CRITICAL ISSUES How these energetic and redox alterations intertwine to influence the DC progression is still poorly understood. Excessive bioavailability of both glucose and fatty acids (FAs) play a central role, leading, among other effects, to mitochondrial dysfunction. However, where and how this nutrient excess affects mitochondrial and cytoplasmic energetic/redox crossroads remains to be defined in greater detail. RECENT ADVANCES We review how high glucose alters cellular redox balance and affects mitochondrial DNA. Next, we address how lipid excess, either stored in lipid droplets or utilized by mitochondria, affects performance in diabetic hearts by influencing cardiac energetic and redox assets. Finally, we examine how the reciprocal energetic/redox influence between mitochondrial and cytoplasmic compartments shapes myocardial mechanical activity during the course of DC, focusing especially on the glutathione and thioredoxin systems. FUTURE DIRECTIONS Protecting mitochondria from losing their ability to generate energy, and to control their own reactive oxygen species emission is essential to prevent the onset and/or to slow down DC progression. We highlight mechanisms enforced by the diabetic heart to counteract glucose/FAs surplus-induced damage, such as lipid storage, enhanced mitochondria-lipid droplet interaction, and upregulation of key antioxidant enzymes. Learning more on the nature and location of mechanisms sheltering mitochondrial functions would certainly help in further optimizing therapies for human DC.
Collapse
Affiliation(s)
- Miguel A Aon
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Carlo G Tocchetti
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Niraj Bhatt
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nazareno Paolocci
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sonia Cortassa
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
79
|
Barbosa AD, Savage DB, Siniossoglou S. Lipid droplet-organelle interactions: emerging roles in lipid metabolism. Curr Opin Cell Biol 2015; 35:91-7. [PMID: 25988547 DOI: 10.1016/j.ceb.2015.04.017] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 01/02/2023]
Abstract
Cellular homeostasis depends on the precisely coordinated use of lipids as fuels for energy production, building blocks for membrane biogenesis or chemical signals for intra-cellular and inter-cellular communication. Lipid droplets (LDs) are universally conserved dynamic organelles that can store and mobilize fatty acids and other lipid species for their multiple cellular roles. Increasing evidence suggests that contact zones between LDs and other organelles play important roles in the trafficking of lipids and in the regulation of lipid metabolism. Here we review recent advances regarding the nature and functional relevance of interactions between LDs and other organelles-particularly the endoplasmic reticulum (ER), LDs, mitochondria and vacuoles-that highlight their importance for lipid metabolism.
Collapse
Affiliation(s)
- Antonio Daniel Barbosa
- Cambridge Institute for Medical Research, University of Cambridge, CB2 0XY Cambridge, United Kingdom
| | - David B Savage
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ, United Kingdom
| | - Symeon Siniossoglou
- Cambridge Institute for Medical Research, University of Cambridge, CB2 0XY Cambridge, United Kingdom.
| |
Collapse
|
80
|
Trevino MB, Machida Y, Hallinger DR, Garcia E, Christensen A, Dutta S, Peake DA, Ikeda Y, Imai Y. Perilipin 5 regulates islet lipid metabolism and insulin secretion in a cAMP-dependent manner: implication of its role in the postprandial insulin secretion. Diabetes 2015; 64:1299-310. [PMID: 25392244 PMCID: PMC4375085 DOI: 10.2337/db14-0559] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Elevation of circulating fatty acids (FA) during fasting supports postprandial (PP) insulin secretion that is critical for glucose homeostasis and is impaired in diabetes. We tested our hypothesis that lipid droplet (LD) protein perilipin 5 (PLIN5) in β-cells aids PP insulin secretion by regulating intracellular lipid metabolism. We demonstrated that PLIN5 serves as an LD protein in human islets. In vivo, Plin5 and triglycerides were increased by fasting in mouse islets. MIN6 cells expressing PLIN5 (adenovirus [Ad]-PLIN5) and those expressing perilipin 2 (PLIN2) (Ad-PLIN2) had higher [(3)H]FA incorporation into triglycerides than Ad-GFP control, which support their roles as LD proteins. However, Ad-PLIN5 cells had higher lipolysis than Ad-PLIN2 cells, which increased further by 8-Br-cAMP, indicating that PLIN5 facilitates FA mobilization upon cAMP stimulation as seen postprandially. Ad-PLIN5 in islets enhanced the augmentation of glucose-stimulated insulin secretion by FA and 8-Br-cAMP in G-protein-coupled receptor 40 (GPR40)- and cAMP-activated protein kinase-dependent manners, respectively. When PLIN5 was increased in mouse β-cells in vivo, glucose tolerance after an acute exenatide challenge was improved. Therefore, the elevation of islet PLIN5 during fasting allows partitioning of FA into LD that is released upon refeeding to support PP insulin secretion in cAMP- and GPR40-dependent manners.
Collapse
Affiliation(s)
- Michelle B Trevino
- Department of Internal Medicine, Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, VA
| | - Yui Machida
- Department of Internal Medicine, Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, VA
| | - Daniel R Hallinger
- Department of Internal Medicine, Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, VA
| | - Eden Garcia
- Department of Internal Medicine, Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, VA
| | - Aaron Christensen
- Department of Internal Medicine, Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, VA
| | - Sucharita Dutta
- Leroy T. Canoles Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA
| | | | - Yasuhiro Ikeda
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN
| | - Yumi Imai
- Department of Internal Medicine, Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, VA
| |
Collapse
|
81
|
Mason RR, Watt MJ. Unraveling the roles of PLIN5: linking cell biology to physiology. Trends Endocrinol Metab 2015; 26:144-52. [PMID: 25682370 DOI: 10.1016/j.tem.2015.01.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 01/07/2023]
Abstract
The discovery of perilipin (PLIN) 1 provided a major conceptual shift in the understanding of adipose tissue lipolysis and generated intense interest in lipid droplet biology research. The subsequent discovery of other PLIN proteins revealed unique tissue distribution profiles, subcellular locations, and lipid-binding properties and divergent cellular functions. PLIN5 is highly expressed in oxidative tissues such as skeletal muscle, liver, and heart and is central to lipid homeostasis in these tissues. Studies in cell systems have ascribed several metabolic roles to PLIN5 and demonstrated interactions with other proteins that are requisite for these functions. We examine recent in vivo studies and ask whether the evidence from the cell biology approaches is consistent with the physiological roles of PLIN5.
Collapse
Affiliation(s)
- Rachael R Mason
- Department of Physiology, Monash University, Clayton, Victoria 3800, Australia
| | - Matthew J Watt
- Department of Physiology, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
82
|
Pollak NM, Jaeger D, Kolleritsch S, Zimmermann R, Zechner R, Lass A, Haemmerle G. The interplay of protein kinase A and perilipin 5 regulates cardiac lipolysis. J Biol Chem 2015; 290:1295-306. [PMID: 25418045 PMCID: PMC4340377 DOI: 10.1074/jbc.m114.604744] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/21/2014] [Indexed: 12/21/2022] Open
Abstract
Defective lipolysis in mice lacking adipose triglyceride lipase provokes severe cardiac steatosis and heart dysfunction, markedly shortening life span. Similarly, cardiac muscle (CM)-specific Plin5 overexpression (CM-Plin5) leads to severe triglyceride (TG) accumulation in cardiomyocytes via impairing TG breakdown. Interestingly, cardiac steatosis due to overexpression of Plin5 is compatible with normal heart function and life span indicating a more moderate impact of Plin5 overexpression on cardiac lipolysis and energy metabolism. We hypothesized that cardiac Plin5 overexpression does not constantly impair cardiac lipolysis. In line with this assumption, TG levels decreased in CM of fasted compared with nonfasted CM-Plin5 mice indicating that fasting may lead to a diminished barrier function of Plin5. Recent studies demonstrated that Plin5 is phosphorylated, and activation of adenylyl cyclase leads to phosphorylation of Plin5, suggesting that Plin5 is a substrate for PKA. Furthermore, any significance of Plin5 phosphorylation by PKA in the regulation of TG mobilization from lipid droplets (LDs) is unknown. Here, we show that the lipolytic barrier of Plin5-enriched LDs, either prepared from cardiac tissue of CM-Plin5 mice or Plin5-transfected cells, is abrogated by incubation with PKA. Notably, PKA-induced lipolysis of LDs enriched with Plin5 carrying a single mutation at serine 155 (PlinS155A) of the putative PKA phosphorylation site was substantially impaired revealing a critical role for PKA in Plin5-regulated lipolysis. The strong increase in protein levels of phosphorylated PKA in CM of Plin5 transgenic mice may partially restore fatty acid release from Plin5-enriched LDs, rendering these hearts compatible with normal heart function despite massive steatosis.
Collapse
Affiliation(s)
- Nina M Pollak
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Doris Jaeger
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | | | - Robert Zimmermann
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Rudolf Zechner
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Achim Lass
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Guenter Haemmerle
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| |
Collapse
|
83
|
Heier C, Zimmermann R. The sparing use of fat: G0s2 controls lipolysis and fatty acid oxidation. Diabetologia 2015; 58:7-9. [PMID: 25351607 DOI: 10.1007/s00125-014-3430-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/06/2014] [Indexed: 10/24/2022]
Affiliation(s)
- Christoph Heier
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31A, 8010, Graz, Austria
| | | |
Collapse
|
84
|
Deficiency of a lipid droplet protein, perilipin 5, suppresses myocardial lipid accumulation, thereby preventing type 1 diabetes-induced heart malfunction. Mol Cell Biol 2014; 34:2721-31. [PMID: 24820416 DOI: 10.1128/mcb.00133-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Lipid droplet (LD) is a ubiquitous organelle that stores triacylglycerol and other neutral lipids. Perilipin 5 (Plin5), a member of the perilipin protein family that is abundantly expressed in the heart, is essential to protect LDs from attack by lipases, including adipose triglyceride lipase. Plin5 controls heart metabolism and performance by maintaining LDs under physiological conditions. Aberrant lipid accumulation in the heart leads to organ malfunction, or cardiomyopathy. To elucidate the role of Plin5 in a metabolically disordered state and the mechanism of lipid-induced cardiomyopathy, we studied the effects of streptozotocin-induced type 1 diabetes in Plin5-knockout (KO) mice. In contrast to diabetic wild-type mice, diabetic Plin5-KO mice lacked detectable LDs in the heart and did not exhibit aberrant lipid accumulation, excessive reactive oxygen species (ROS) generation, or heart malfunction. Moreover, diabetic Plin5-KO mice exhibited lower heart levels of lipotoxic molecules, such as diacylglycerol and ceramide, than wild-type mice. Membrane translocation of protein kinase C and the assembly of NADPH oxidase 2 complex on the membrane were also suppressed. The results suggest that diabetic Plin5-KO mice are resistant to type 1 diabetes-induced heart malfunction due to the suppression of the diacylglycerol/ceramide-protein kinase C pathway and of excessive ROS generation by NADPH oxidase.
Collapse
|
85
|
Liu S, Geng B, Zou L, Wei S, Wang W, Deng J, Xu C, Zhao X, Lyu Y, Su X, Xu G. Development of hypertrophic cardiomyopathy in perilipin-1 null mice with adipose tissue dysfunction. Cardiovasc Res 2014; 105:20-30. [DOI: 10.1093/cvr/cvu214] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
86
|
Lahey R, Wang X, Carley AN, Lewandowski ED. Dietary fat supply to failing hearts determines dynamic lipid signaling for nuclear receptor activation and oxidation of stored triglyceride. Circulation 2014; 130:1790-9. [PMID: 25266948 PMCID: PMC4229424 DOI: 10.1161/circulationaha.114.011687] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Intramyocardial triglyceride (TG) turnover is reduced in pressure-overloaded, failing hearts, limiting the availability of this rich source of long-chain fatty acids for mitochondrial β-oxidation and nuclear receptor activation. This study explored 2 major dietary fats, palmitate and oleate, in supporting endogenous TG dynamics and peroxisome proliferator-activated receptor-α activation in sham-operated (SHAM) and hypertrophied (transverse aortic constriction [TAC]) rat hearts. METHODS AND RESULTS Isolated SHAM and TAC hearts were provided media containing carbohydrate with either (13)C-palmitate or (13)C-oleate for dynamic (13)C nuclear magnetic resonance spectroscopy and end point liquid chromatography/mass spectrometry of TG dynamics. With palmitate, TAC hearts contained 48% less TG versus SHAM (P=0.0003), whereas oleate maintained elevated TG in TAC, similar to SHAM. TG turnover in TAC was greatly reduced with palmitate (TAC, 46.7±12.2 nmol/g dry weight per min; SHAM, 84.3±4.9; P=0.0212), as was β-oxidation of TG. Oleate elevated TG turnover in both TAC (140.4±11.2) and SHAM (143.9±15.6), restoring TG oxidation in TAC. Peroxisome proliferator-activated receptor-α target gene transcripts were reduced by 70% in TAC with palmitate, whereas oleate induced normal transcript levels. Additionally, mRNA levels for peroxisome proliferator-activated receptor-γ-coactivator-1α and peroxisome proliferator-activated receptor-γ-coactivator-1β in TAC hearts were maintained by oleate. With these metabolic effects, oleate also supported a 25% improvement in contractility over palmitate with TAC (P=0.0202). CONCLUSIONS The findings link reduced intracellular lipid storage dynamics to impaired peroxisome proliferator-activated receptor-α signaling and contractility in diseased hearts, consistent with a rate-dependent lipolytic activation of peroxisome proliferator-activated receptor-α. In decompensated hearts, oleate may serve as a beneficial energy substrate versus palmitate by upregulating TG dynamics and nuclear receptor signaling.
Collapse
MESH Headings
- Animals
- Cardiomyopathy, Hypertrophic/complications
- Cardiomyopathy, Hypertrophic/metabolism
- Cell Nucleus/metabolism
- Ceramides/analysis
- Citric Acid Cycle
- Dietary Fats/pharmacokinetics
- Dietary Fats/pharmacology
- Disease Models, Animal
- Gene Expression Profiling
- Gene Expression Regulation/drug effects
- Heart Failure/diet therapy
- Heart Failure/etiology
- Heart Failure/metabolism
- Hypertrophy, Left Ventricular/complications
- Hypertrophy, Left Ventricular/metabolism
- Lipolysis
- Male
- Mitochondria, Heart/metabolism
- Myocardial Contraction/drug effects
- Myocardium/metabolism
- Myocytes, Cardiac/metabolism
- Nuclear Magnetic Resonance, Biomolecular
- Oleic Acid/administration & dosage
- Oleic Acid/pharmacokinetics
- Oleic Acid/pharmacology
- Oxidation-Reduction
- PPAR alpha/physiology
- Palmitates/administration & dosage
- Palmitates/pharmacokinetics
- Palmitates/pharmacology
- Rats
- Rats, Sprague-Dawley
- Signal Transduction/drug effects
- Transcription, Genetic
- Triglycerides/metabolism
Collapse
Affiliation(s)
- Ryan Lahey
- From the Center for Cardiovascular Research, University of Illinois at Chicago College of Medicine, Chicago, IL
| | - Xuerong Wang
- From the Center for Cardiovascular Research, University of Illinois at Chicago College of Medicine, Chicago, IL
| | - Andrew N Carley
- From the Center for Cardiovascular Research, University of Illinois at Chicago College of Medicine, Chicago, IL
| | - E Douglas Lewandowski
- From the Center for Cardiovascular Research, University of Illinois at Chicago College of Medicine, Chicago, IL.
| |
Collapse
|
87
|
Mason RR, Mokhtar R, Matzaris M, Selathurai A, Kowalski GM, Mokbel N, Meikle PJ, Bruce CR, Watt MJ. PLIN5 deletion remodels intracellular lipid composition and causes insulin resistance in muscle. Mol Metab 2014; 3:652-63. [PMID: 25161888 PMCID: PMC4142393 DOI: 10.1016/j.molmet.2014.06.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 05/30/2014] [Accepted: 06/05/2014] [Indexed: 01/28/2023] Open
Abstract
Defective control of lipid metabolism leading to lipotoxicity causes insulin resistance in skeletal muscle, a major factor leading to diabetes. Here, we demonstrate that perilipin (PLIN) 5 is required to couple intramyocellular triacylglycerol lipolysis with the metabolic demand for fatty acids. PLIN5 ablation depleted triacylglycerol stores but increased sphingolipids including ceramide, hydroxylceramides and sphingomyelin. We generated perilipin 5 (Plin5)(-/-) mice to determine the functional significance of PLIN5 in metabolic control and insulin action. Loss of PLIN5 had no effect on body weight, feeding or adiposity but increased whole-body carbohydrate oxidation. Plin5 (-/-) mice developed skeletal muscle insulin resistance, which was associated with ceramide accumulation. Liver insulin sensitivity was improved in Plin5 (-/-) mice, indicating tissue-specific effects of PLIN5 on insulin action. We conclude that PLIN5 plays a critical role in coordinating skeletal muscle triacylglycerol metabolism, which impacts sphingolipid metabolism, and is requisite for the maintenance of skeletal muscle insulin action.
Collapse
Affiliation(s)
- Rachael R. Mason
- Biology of Lipid Metabolism Laboratory, Department of Physiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Ruzaidi Mokhtar
- Biology of Lipid Metabolism Laboratory, Department of Physiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Maria Matzaris
- Biology of Lipid Metabolism Laboratory, Department of Physiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Ahrathy Selathurai
- Biology of Lipid Metabolism Laboratory, Department of Physiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Greg M. Kowalski
- Biology of Lipid Metabolism Laboratory, Department of Physiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Nancy Mokbel
- Garvan Institute of Medical Research, Darlinghurst., New South Wales, 2006, Australia
| | - Peter J. Meikle
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, 3004, Australia
| | - Clinton R. Bruce
- Biology of Lipid Metabolism Laboratory, Department of Physiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Matthew J. Watt
- Biology of Lipid Metabolism Laboratory, Department of Physiology, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
88
|
Brahma MK, Adam RC, Pollak NM, Jaeger D, Zierler KA, Pöcher N, Schreiber R, Romauch M, Moustafa T, Eder S, Ruelicke T, Preiss-Landl K, Lass A, Zechner R, Haemmerle G. Fibroblast growth factor 21 is induced upon cardiac stress and alters cardiac lipid homeostasis. J Lipid Res 2014; 55:2229-41. [PMID: 25176985 DOI: 10.1194/jlr.m044784] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) is a PPARα-regulated gene elucidated in the liver of PPARα-deficient mice or PPARα agonist-treated mice. Mice globally lacking adipose triglyceride lipase (ATGL) exhibit a marked defect in TG catabolism associated with impaired PPARα-activated gene expression in the heart and liver, including a drastic reduction in hepatic FGF21 mRNA expression. Here we show that FGF21 mRNA expression is markedly increased in the heart of ATGL-deficient mice accompanied by elevated expression of endoplasmic reticulum (ER) stress markers, which can be reversed by reconstitution of ATGL expression in cardiac muscle. In line with this assumption, the induction of ER stress increases FGF21 mRNA expression in H9C2 cardiomyotubes. Cardiac FGF21 expression was also induced upon fasting of healthy mice, implicating a role of FGF21 in cardiac energy metabolism. To address this question, we generated and characterized mice with cardiac-specific overexpression of FGF21 (CM-Fgf21). FGF21 was efficiently secreted from cardiomyocytes of CM-Fgf21 mice, which moderately affected cardiac TG homeostasis, indicating a role for FGF21 in cardiac energy metabolism. Together, our results show that FGF21 expression is activated upon cardiac ER stress linked to defective lipolysis and that a persistent increase in circulating FGF21 levels interferes with cardiac and whole body energy homeostasis.
Collapse
Affiliation(s)
- Manoja K Brahma
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Rene C Adam
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Nina M Pollak
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Doris Jaeger
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Kathrin A Zierler
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Nadja Pöcher
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Renate Schreiber
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Matthias Romauch
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Tarek Moustafa
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Sandra Eder
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Thomas Ruelicke
- Biomodels Austria University of Veterinary Medicine, 1210 Vienna, Austria and Institute of Laboratory Animal Science, University of Veterinary Medicine, 1210 Vienna, Austria
| | | | - Achim Lass
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Guenter Haemmerle
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| |
Collapse
|
89
|
Broberg K, Ahmed S, Engström K, Hossain MB, Jurkovic Mlakar S, Bottai M, Grandér M, Raqib R, Vahter M. Arsenic exposure in early pregnancy alters genome-wide DNA methylation in cord blood, particularly in boys. J Dev Orig Health Dis 2014; 5:288-98. [PMID: 24965135 PMCID: PMC4283288 DOI: 10.1017/s2040174414000221] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/03/2014] [Accepted: 03/17/2014] [Indexed: 12/31/2022]
Abstract
Early-life inorganic arsenic exposure influences not only child health and development but also health in later life. The adverse effects of arsenic may be mediated by epigenetic mechanisms, as there are indications that arsenic causes altered DNA methylation of cancer-related genes. The objective was to assess effects of arsenic on genome-wide DNA methylation in newborns. We studied 127 mothers and cord blood of their infants. Arsenic exposure in early and late pregnancy was assessed by concentrations of arsenic metabolites in maternal urine, measured by high performance liquid chromatography-inductively coupled plasma mass spectrometry. Genome-wide 5-methylcytosine methylation in mononuclear cells from cord blood was analyzed by Infinium HumanMethylation450K BeadChip. Urinary arsenic in early gestation was associated with cord blood DNA methylation (Kolmogorov-Smirnov test, P-value<10-15), with more pronounced effects in boys than in girls. In boys, 372 (74%) of the 500 top CpG sites showed lower methylation with increasing arsenic exposure (r S -values>-0.62), but in girls only 207 (41%) showed inverse correlation (r S -values>-0.54). Three CpG sites in boys (cg15255455, cg13659051 and cg17646418), but none in girls, were significantly correlated with arsenic after adjustment for multiple comparisons. The associations between arsenic and DNA methylation were robust in multivariable-adjusted linear regression models. Much weaker associations were observed with arsenic exposure in late compared with early gestation. Pathway analysis showed overrepresentation of affected cancer-related genes in boys, but not in girls. In conclusion, early prenatal arsenic exposure appears to decrease DNA methylation in boys. Associations between early exposure and DNA methylation might reflect interference with de novo DNA methylation.
Collapse
Affiliation(s)
- K. Broberg
- Institute of Environmental Medicine, Unit of Metals and Health, Karolinska Institutet, Stockholm, Sweden
- Department of Laboratory Medicine, Section of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - S. Ahmed
- Institute of Environmental Medicine, Unit of Metals and Health, Karolinska Institutet, Stockholm, Sweden
- International Centre for Diarrhoeal Disease Research Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - K. Engström
- Department of Laboratory Medicine, Section of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - M. B. Hossain
- Institute of Environmental Medicine, Unit of Metals and Health, Karolinska Institutet, Stockholm, Sweden
- Department of Laboratory Medicine, Section of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - S. Jurkovic Mlakar
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - M. Bottai
- Unit of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - M. Grandér
- Institute of Environmental Medicine, Unit of Metals and Health, Karolinska Institutet, Stockholm, Sweden
| | - R. Raqib
- International Centre for Diarrhoeal Disease Research Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - M. Vahter
- Institute of Environmental Medicine, Unit of Metals and Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
90
|
Perilipin-5 is regulated by statins and controls triglyceride contents in the hepatocyte. J Hepatol 2014; 61:358-65. [PMID: 24768901 PMCID: PMC4104237 DOI: 10.1016/j.jhep.2014.04.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/26/2014] [Accepted: 04/07/2014] [Indexed: 01/28/2023]
Abstract
BACKGROUND & AIMS Perilipin-5 (PLIN5) is a member of the perilipin family of lipid droplet (LD)-associated proteins. PLIN5 is expressed in oxidative tissues including the liver, and is critical during LD biogenesis. Studies showed that statins reduce hepatic triglyceride contents in some patients with non-alcoholic fatty liver disease and in rodent models of diet-induced hepatosteatosis. Whether statins alter triglyceride synthesis, storage, and/or utilization within the hepatocyte is unknown, though. Here we tested the hypothesis that statins alter the metabolism of LD in the hepatocyte during physiological conditions, such as fasting-induced steatosis. METHODS Mice were gavaged with saline or atorvastatin, and the expression of LD-associated genes was determined in fed and fasted animals. The accumulation of triglycerides and LD was studied in mouse or human primary hepatocytes in response to statins, and following knock-down of SREBP2 or PLIN5. RESULTS We show that statins decrease the levels of PLIN5, but not other LD-associated genes, in both mouse liver and mouse/human primary hepatocytes, which is paralleled by a significant reduction in both intracellular triglycerides and the number of LD. We identify an atypical negative sterol regulatory sequence in the proximal promoter of mouse/human PLIN5 that recruits the transcription factor SREBP2 and confers response to statins. Finally, we show that the statin-dependent reduction of hepatocyte triglyceride contents is mimicked by partial knock-down of PLIN5; conversely, ectopic overexpression of PLIN5 reverts the statin effect. CONCLUSIONS PLIN5 is a physiological regulator of triglyceride metabolism in the liver, and likely contributes to the pleiotropic effects of statins.
Collapse
|
91
|
Aon MA, Bhatt N, Cortassa SC. Mitochondrial and cellular mechanisms for managing lipid excess. Front Physiol 2014; 5:282. [PMID: 25132820 PMCID: PMC4116787 DOI: 10.3389/fphys.2014.00282] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 07/10/2014] [Indexed: 12/16/2022] Open
Abstract
Current scientific debates center on the impact of lipids and mitochondrial function on diverse aspects of human health, nutrition and disease, among them the association of lipotoxicity with the onset of insulin resistance in skeletal muscle, and with heart dysfunction in obesity and diabetes. Mitochondria play a fundamental role in aging and in prevalent acute or chronic diseases. Lipids are main mitochondrial fuels however these molecules can also behave as uncouplers and inhibitors of oxidative phosphorylation. Knowledge about the functional composition of these contradictory effects and their impact on mitochondrial-cellular energetics/redox status is incomplete. Cells store fatty acids (FAs) as triacylglycerol and package them into cytoplasmic lipid droplets (LDs). New emerging data shows the LD as a highly dynamic storage pool of FAs that can be used for energy reserve. Lipid excess packaging into LDs can be seen as an adaptive response to fulfilling energy supply without hindering mitochondrial or cellular redox status and keeping low concentration of lipotoxic intermediates. Herein we review the mechanisms of action and utilization of lipids by mitochondria reported in liver, heart and skeletal muscle under relevant physiological situations, e.g., exercise. We report on perilipins, a family of proteins that associate with LDs in response to loading of cells with lipids. Evidence showing that in addition to physical contact, mitochondria and LDs exhibit metabolic interactions is presented and discussed. A hypothetical model of channeled lipid utilization by mitochondria is proposed. Direct delivery and channeled processing of lipids in mitochondria could represent a reliable and efficient way to maintain reactive oxygen species (ROS) within levels compatible with signaling while ensuring robust and reliable energy supply.
Collapse
Affiliation(s)
- Miguel A Aon
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Niraj Bhatt
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Sonia C Cortassa
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine Baltimore, MD, USA
| |
Collapse
|
92
|
Mason RR, Meex RCR, Russell AP, Canny BJ, Watt MJ. Cellular localization and associations of the major lipolytic proteins in human skeletal muscle at rest and during exercise. PLoS One 2014; 9:e103062. [PMID: 25054327 PMCID: PMC4108417 DOI: 10.1371/journal.pone.0103062] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 06/27/2014] [Indexed: 11/18/2022] Open
Abstract
Lipolysis involves the sequential breakdown of fatty acids from triacylglycerol and is increased during energy stress such as exercise. Adipose triglyceride lipase (ATGL) is a key regulator of skeletal muscle lipolysis and perilipin (PLIN) 5 is postulated to be an important regulator of ATGL action of muscle lipolysis. Hence, we hypothesized that non-genomic regulation such as cellular localization and the interaction of these key proteins modulate muscle lipolysis during exercise. PLIN5, ATGL and CGI-58 were highly (>60%) colocated with Oil Red O (ORO) stained lipid droplets. PLIN5 was significantly colocated with ATGL, mitochondria and CGI-58, indicating a close association between the key lipolytic effectors in resting skeletal muscle. The colocation of the lipolytic proteins, their independent association with ORO and the PLIN5/ORO colocation were not altered after 60 min of moderate intensity exercise. Further experiments in cultured human myocytes showed that PLIN5 colocation with ORO or mitochondria is unaffected by pharmacological activation of lipolytic pathways. Together, these data suggest that the major lipolytic proteins are highly expressed at the lipid droplet and colocate in resting skeletal muscle, that their localization and interactions appear to remain unchanged during prolonged exercise, and, accordingly, that other post-translational mechanisms are likely regulators of skeletal muscle lipolysis.
Collapse
Affiliation(s)
- Rachael R. Mason
- Biology of Lipid Metabolism Laboratory, Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Ruth C. R. Meex
- Biology of Lipid Metabolism Laboratory, Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Aaron P. Russell
- Centre of Physical Activity and Nutrition (C-PAN) Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
| | - Benedict J. Canny
- Biology of Lipid Metabolism Laboratory, Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Matthew J. Watt
- Biology of Lipid Metabolism Laboratory, Department of Physiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
93
|
Zierler KA, Zechner R, Haemmerle G. Comparative gene identification-58/α/β hydrolase domain 5: more than just an adipose triglyceride lipase activator? Curr Opin Lipidol 2014; 25:102-9. [PMID: 24565921 PMCID: PMC4170181 DOI: 10.1097/mol.0000000000000058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Comparative gene identification-58 (CGI-58) is a lipid droplet-associated protein that controls intracellular triglyceride levels by its ability to activate adipose triglyceride lipase (ATGL). Additionally, CGI-58 was described to exhibit lysophosphatidic acid acyl transferase (LPAAT) activity. This review focuses on the significance of CGI-58 in energy metabolism in adipose and nonadipose tissue. RECENT FINDINGS Recent studies with transgenic and CGI-58-deficient mouse strains underscored the importance of CGI-58 as a regulator of intracellular energy homeostasis by modulating ATGL-driven triglyceride hydrolysis. In accordance with this function, mice and humans that lack CGI-58 accumulate triglyceride in multiple tissues. Additionally, CGI-58-deficient mice develop an ATGL-independent severe skin barrier defect and die soon after birth. Although the premature death prevented a phenotypical characterization of adult global CGI-58 knockout mice, the characterization of mice with tissue-specific CGI-58 deficiency revealed new insights into its role in neutral lipid and energy metabolism. Concerning the ATGL-independent function of CGI-58, a recently identified LPAAT activity for CGI-58 was shown to be involved in the generation of signaling molecules regulating inflammatory processes and insulin action. SUMMARY Although the function of CGI-58 in the catabolism of cellular triglyceride depots via ATGL is well established, further studies are required to consolidate the function of CGI-58 as LPAAT and to clarify the involvement of CGI-58 in the metabolism of skin lipids.
Collapse
Affiliation(s)
- Kathrin A Zierler
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | | |
Collapse
|
94
|
Abstract
PURPOSE OF REVIEW We summarize recent mechanistic and physiological studies related to the role of perilipin 5 (Plin5) in regulating lipid droplet accumulation and protection to fatty acids in tissues with high lipid oxidative metabolism. RECENT FINDINGS Plin5 is a lipid droplet targeting protein that promotes association of lipid droplets with mitochondria and is most highly expressed in oxidative tissues, including cardiac and skeletal muscle. Recent in-vivo and in-vitro data indicate an important role for Plin5 in the regulation of cardiac lipid storage and function. Targeted overexpression of Plin5 in heart causes steatosis, mild mitochondria dysfunction, and hypertrophy in cardiac tissue, but without affecting cardiac function. In contrast, whole body ablation of Plin5 (Plin5 mice) reduces cardiac lipid droplet formation, increases cardiac fatty acid oxidation, and promotes cardiac dysfunction; cardiac defects can be prevented with antioxidative therapy. These data suggest a cytoprotective role for Plin5 to promote lipid storage but to limit fatty acid toxicity, parameters critical for tissues with high lipid oxidative metabolism. SUMMARY In-vivo and in-vitro data suggest that Plin5 is part of a cell-adaptive response to high lipid oxidative metabolism to protect lipid droplet storage against neutral lipases and, so, limit fatty acid accumulation. Although the specific mechanisms that underlie Plin5 lipid droplet storage protection in oxidative tissues remain to be fully elucidated, Plin5 provides a basis for the novel cytoprotective nature of lipid droplets.
Collapse
Affiliation(s)
- Alan R. Kimmel
- Laboratory of Cellular and Developmental Biology (50/3351), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, United States. ; Tel: 301-496-3016
| | - Carole Sztalryd
- Division of Endocrinology, Department of Medicine, School of Medicine, University of Maryland, Baltimore, Maryland 21201, United States
- The Geriatric Research, Education and Clinical Center, Baltimore Veterans Affairs Health Care Center, Division of Endocrinology, Department of Medicine, School of Medicine, University of Maryland, Baltimore, Maryland 21201, United States. ; Tel: 410-706-4047
| |
Collapse
|
95
|
Trent CM, Yu S, Hu Y, Skoller N, Huggins LA, Homma S, Goldberg IJ. Lipoprotein lipase activity is required for cardiac lipid droplet production. J Lipid Res 2014; 55:645-58. [PMID: 24493834 PMCID: PMC3966699 DOI: 10.1194/jlr.m043471] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rodent heart accumulates TGs and lipid droplets during fasting. The sources of heart lipids could be either FFAs liberated from adipose tissue or FAs from lipoprotein-associated TGs via the action of lipoprotein lipase (LpL). Because circulating levels of FFAs increase during fasting, it has been assumed that albumin transported FFAs are the source of lipids within heart lipid droplets. We studied mice with three genetic mutations: peroxisomal proliferator-activated receptor α deficiency, cluster of differentiation 36 (CD36) deficiency, and heart-specific LpL deletion. All three genetically altered groups of mice had defective accumulation of lipid droplet TGs. Moreover, hearts from mice treated with poloxamer 407, an inhibitor of lipoprotein TG lipolysis, also failed to accumulate TGs, despite increased uptake of FFAs. TG storage did not impair maximal cardiac function as measured by stress echocardiography. Thus, LpL hydrolysis of circulating lipoproteins is required for the accumulation of lipids in the heart of fasting mice.
Collapse
Affiliation(s)
- Chad M Trent
- Division of Preventive Medicine and Nutrition, Columbia University College of Physicians and Surgeons, New York, NY 10032
| | | | | | | | | | | | | |
Collapse
|
96
|
Nagy HM, Paar M, Heier C, Moustafa T, Hofer P, Haemmerle G, Lass A, Zechner R, Oberer M, Zimmermann R. Adipose triglyceride lipase activity is inhibited by long-chain acyl-coenzyme A. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:588-94. [PMID: 24440819 PMCID: PMC3988850 DOI: 10.1016/j.bbalip.2014.01.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/20/2013] [Accepted: 01/06/2014] [Indexed: 12/28/2022]
Abstract
Adipose triglyceride lipase (ATGL) is required for efficient mobilization of triglyceride (TG) stores in adipose tissue and non-adipose tissues. Therefore, ATGL strongly determines the availability of fatty acids for metabolic reactions. ATGL activity is regulated by a complex network of lipolytic and anti-lipolytic hormones. These signals control enzyme expression and the interaction of ATGL with the regulatory proteins CGI-58 and G0S2. Up to date, it was unknown whether ATGL activity is also controlled by lipid intermediates generated during lipolysis. Here we show that ATGL activity is inhibited by long-chain acyl-CoAs in a non-competitive manner, similar as previously shown for hormone-sensitive lipase (HSL), the rate-limiting enzyme for diglyceride breakdown in adipose tissue. ATGL activity is only marginally inhibited by medium-chain acyl-CoAs, diglycerides, monoglycerides, and free fatty acids. Immunoprecipitation assays revealed that acyl-CoAs do not disrupt the protein–protein interaction of ATGL and its co-activator CGI-58. Furthermore, inhibition of ATGL is independent of the presence of CGI-58 and occurs directly at the N-terminal patatin-like phospholipase domain of the enzyme. In conclusion, our results suggest that inhibition of the major lipolytic enzymes ATGL and HSL by long-chain acyl-CoAs could represent an effective feedback mechanism controlling lipolysis and protecting cells from lipotoxic concentrations of fatty acids and fatty acid-derived lipid metabolites. Long-chain acyl-CoAs inhibit ATGL in a non-competitive manner. Inhibition occurs at the N-terminal region of ATGL and independent of CGI-58, the co-activator of ATGL. Acyl-CoA mediated inhibition of lipolysis could represent a general feedback mechanism protecting cells from fatty acid overload.
Collapse
Affiliation(s)
- Harald M Nagy
- Institute of Molecular Biosciences, University of Graz, Austria
| | - Margret Paar
- Institute of Molecular Biosciences, University of Graz, Austria
| | - Christoph Heier
- Institute of Molecular Biosciences, University of Graz, Austria
| | - Tarek Moustafa
- Institute of Molecular Biosciences, University of Graz, Austria
| | - Peter Hofer
- Institute of Molecular Biosciences, University of Graz, Austria
| | | | - Achim Lass
- Institute of Molecular Biosciences, University of Graz, Austria
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Austria
| | - Monika Oberer
- Institute of Molecular Biosciences, University of Graz, Austria
| | | |
Collapse
|
97
|
Badin PM, Langin D, Moro C. Dynamics of skeletal muscle lipid pools. Trends Endocrinol Metab 2013; 24:607-15. [PMID: 23988586 DOI: 10.1016/j.tem.2013.08.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/22/2013] [Accepted: 08/03/2013] [Indexed: 11/20/2022]
Abstract
Intramyocellular triacylglycerol (IMTG) is emerging as an important energy fuel source during muscle contraction and are adaptively increased in response to exercise, without adverse physiological effects. Paradoxically, elevated IMTG content in obese and type 2 diabetics has been linked to insulin resistance, highlighting the importance of IMTG pools in physiology and pathology. Two separate views suggest that IMTG dynamics are determinant for skeletal muscle fat oxidation, and that disruption of IMTG dynamics facilitates the accumulation of lipotoxic intermediates such as diacylglycerols and ceramides that interfere with insulin signaling. Thus, understanding the factors that control IMTG dynamics is crucial. Here we discuss recent literature describing the regulation of IMTG pools with a particular emphasis on lipases and lipid droplet (LD)-associated proteins.
Collapse
Affiliation(s)
- Pierre-Marie Badin
- Obesity Research Laboratory, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1048, Institute of Metabolic and Cardiovascular Diseases (I2MC), Toulouse, France; University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | | | | |
Collapse
|
98
|
Perilipins: lipid droplet coat proteins adapted for tissue-specific energy storage and utilization, and lipid cytoprotection. Biochimie 2013; 96:96-101. [PMID: 24036367 DOI: 10.1016/j.biochi.2013.08.026] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 08/28/2013] [Indexed: 12/18/2022]
Abstract
Cytosolic lipid storage droplets are primary functional organelles that regulate cellular lipid metabolism and homeostasis. Paradoxically, excess lipid stores are linked to both adaptive (fasting and chronic exercise) and mal-adaptive (obesity and related health complications) conditions. Thus, collective metabolic and physiological processes must balance lipid storage and utilization with prevention of lipocytotoxicity and compounding tissue dysfunctions, urging the need to further define the connection of mammalian lipid droplet function and lipid homeostasis. The perilipins are a multi-protein family that targets lipid droplet surfaces and regulates lipid storage and hydrolysis. Study of perilipin functions has provided insight into the physiological roles of cytosolic lipid droplets and their relationship with obesity-related pathologies. Here, we review the current knowledge of the multiple perilipin proteins in regulating tissue-specific lipid droplets and associations with tissue and systemic energetics.
Collapse
|
99
|
Bindesbøll C, Berg O, Arntsen B, Nebb HI, Dalen KT. Fatty acids regulate perilipin5 in muscle by activating PPARδ. J Lipid Res 2013; 54:1949-63. [PMID: 23606724 DOI: 10.1194/jlr.m038992] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The surface of lipid droplets (LDs) in various cell types is coated with perilipin proteins encoded by the Plin genes. Perilipins regulate LD metabolism by selectively recruiting lipases and other proteins to LDs. We have studied the expression of perilipins in mouse muscle. The glycolytic fiber-enriched gastrocnemius muscle expresses predominantly Plin2-4. The oxidative fiber-enriched soleus muscle expresses Plin2-5. Expression of Plin2 and Plin4-5 is elevated in gastrocnemius and soleus muscles from mice fed a high-fat diet. This effect is preserved in peroxisome proliferator-activated receptor (PPAR)α-deficient mice. Mouse muscle derived C2C12 cells differentiated into glycolytic fibers increase transcription of these Plins when exposed to various long chain fatty acids (FAs). To understand how FAs regulate Plin genes, we used specific activators and antagonists against PPARs, Plin promoter reporter assays, chromatin immunoprecipitation, siRNA, and animal models. Our analyses demonstrate that FAs require PPARδ to induce transcription of Plin4 and Plin5. We further identify a functional PPAR binding site in the Plin5 gene and establish Plin5 as a novel direct PPARδ target in muscle. Our study reveals that muscle cells respond to elevated FAs by increasing transcription of several perilipin LD-coating proteins. This induction renders the muscle better equipped to sequester incoming FAs into cytosolic LDs.
Collapse
Affiliation(s)
- Christian Bindesbøll
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | | | | | | |
Collapse
|
100
|
Affiliation(s)
- Dawn L Brasaemle
- Rutgers Center for Lipid Research and Department of Nutritional Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|