51
|
Jiang T, Zhang J, Rong L, Feng Y, Wang Q, Song Q, Zhang L, Ouyang M. ECD1 functions as an RNA-editing trans-factor of rps14-149 in plastids and is required for early chloroplast development in seedlings. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3037-3051. [PMID: 29648606 PMCID: PMC5972661 DOI: 10.1093/jxb/ery139] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/29/2018] [Indexed: 05/18/2023]
Abstract
Chloroplast development is a highly complex process and the regulatory mechanisms have not yet been fully characterized. In this study, we identified Early Chloroplast Development 1 (ECD1), a chloroplast-localized pentatricopeptide repeat protein (PPR) belonging to the PLS subfamily. Inactivation of ECD1 in Arabidopsis led to embryo lethality, and abnormal embryogenesis occurred in ecd1/+ heterozygous plants. A decrease in ECD1 expression induced by RNAi resulted in seedlings with albino cotyledons but normal true leaves. The aberrant morphology and under-developed thylakoid membrane system in cotyledons of RNAi seedlings suggests a role of ECD1 specifically in chloroplast development in seedlings. In cotyledons of ECD1-RNAi plants, RNA-editing of rps14-149 (encoding ribosomal protein S14) was seriously impaired. In addition, dramatically decreased plastid-encoded RNA polymerase-dependent gene expression and abnormal chloroplast rRNA processing were also observed. Taken together, our results indicate that ECD1 is indispensable for chloroplast development at the seedling stage in Arabidopsis.
Collapse
Affiliation(s)
- Tian Jiang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liwei Rong
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanjiang Feng
- Cultivation and Crop Tillage Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Qi Wang
- Cultivation and Crop Tillage Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Qiulai Song
- Cultivation and Crop Tillage Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Lixin Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Ouyang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Correspondence:
| |
Collapse
|
52
|
Sandhu D, Coleman Z, Atkinson T, Rai KM, Mendu V. Genetics and Physiology of the Nuclearly Inherited Yellow Foliar Mutants in Soybean. FRONTIERS IN PLANT SCIENCE 2018; 9:471. [PMID: 29696030 PMCID: PMC5904354 DOI: 10.3389/fpls.2018.00471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 03/26/2018] [Indexed: 05/27/2023]
Abstract
Plant photosynthetic pigments are important in harvesting the light energy and transfer of energy during photosynthesis. There are several yellow foliar mutants discovered in soybean and chromosomal locations for about half of them have been deduced. Viable-yellow mutants are capable of surviving with decreased photosynthesis, while lethal-yellow mutants die shortly after germination. In addition to the decreased chlorophyll content, other features associated with yellow mutants include altered Chl a and Chl b ratio, reduction in chloroplast size and number, lower levels of other photosynthetic pigments, inability of thylakoids to stack into granum, lack of lamellae to interconnect granum and reduced size of the light harvesting complex. For some yellow mutants, temperature and/or light play a critical role in the manifestation of phenotype. Although yellow foliar mutants are viewed as undesirable for crop production, there is the possibility of these mutants to create a positive impact by reducing the total amount of chlorophyll and diverting resources toward increased biochemical photosynthetic capacity leading to increased yield. Recent advances in model plants led to the isolation and characterization of various genes associated with yellow foliar phenotype. Knowledge gained from the model plants can be applied using homology based cloning approach to isolate genes in soybean and understanding the modes of actions of the involved proteins. Identifying and characterizing yellow foliar mutants will not only aid in understanding the biosynthetic pathways involved in the photosynthetic machinery, but may also provide ways to increase soybean productivity.
Collapse
Affiliation(s)
| | - Zachary Coleman
- Department of Biology, University of Wisconsin-Stevens Point, Stevens Point, WI, United States
| | - Taylor Atkinson
- Department of Biology, University of Wisconsin-Stevens Point, Stevens Point, WI, United States
| | - Krishan M. Rai
- Fiber and Biopolymer Research Institute, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Venugopal Mendu
- Fiber and Biopolymer Research Institute, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
53
|
Non-photosynthetic plastids as hosts for metabolic engineering. Essays Biochem 2018; 62:41-50. [DOI: 10.1042/ebc20170047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/13/2018] [Accepted: 01/22/2018] [Indexed: 01/11/2023]
Abstract
Using plants as hosts for production of complex, high-value compounds and therapeutic proteins has gained increasing momentum over the past decade. Recent advances in metabolic engineering techniques using synthetic biology have set the stage for production yields to become economically attractive, but more refined design strategies are required to increase product yields without compromising development and growth of the host system. The ability of plant cells to differentiate into various tissues in combination with a high level of cellular compartmentalization represents so far the most unexploited plant-specific resource. Plant cells contain organelles called plastids that retain their own genome, harbour unique biosynthetic pathways and differentiate into distinct plastid types upon environmental and developmental cues. Chloroplasts, the plastid type hosting the photosynthetic processes in green tissues, have proven to be suitable for high yield protein and bio-compound production. Unfortunately, chloroplast manipulation often affects photosynthetic efficiency and therefore plant fitness. In this respect, plastids of non-photosynthetic tissues, which have focused metabolisms for synthesis and storage of particular classes of compounds, might prove more suitable for engineering the production and storage of non-native metabolites without affecting plant fitness. This review provides the current state of knowledge on the molecular mechanisms involved in plastid differentiation and focuses on non-photosynthetic plastids as alternative biotechnological platforms for metabolic engineering.
Collapse
|
54
|
Chen H, Li S, Li L, Hu H, Zhao J. Arabidopsis EMB1990 Encoding a Plastid-Targeted YlmG Protein Is Required for Chloroplast Biogenesis and Embryo Development. FRONTIERS IN PLANT SCIENCE 2018; 9:181. [PMID: 29503657 PMCID: PMC5820536 DOI: 10.3389/fpls.2018.00181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 01/31/2018] [Indexed: 05/24/2023]
Abstract
In higher plants, embryo development originated from fertilized egg cell is the first step of the life cycle. The chloroplast participates in many essential metabolic pathways, and its function is highly associated with embryo development. However, the mechanisms and relevant genetic components by which the chloroplast functions in embryogenesis are largely uncharacterized. In this paper, we describe the Arabidopsis EMB1990 gene, encoding a plastid-targeted YlmG protein which is required for chloroplast biogenesis and embryo development. Loss of the EMB1990/YLMG1-1 resulted in albino seeds containing abortive embryos, and the morphological development of homozygous emb1990 embryos was disrupted after the globular stage. Our results showed that EMB1990/YLMG1-1 was expressed in the primordia and adaxial region of cotyledon during embryogenesis, and the encoded protein was targeted to the chloroplast. TEM observation of cellular ultrastructure showed that chloroplast biogenesis was impaired in emb1990 embryo cells. Expression of certain plastid genes was also affected in the loss-of-function mutants, including genes encoding core protein complex subunits located in the thylakoid membrane. Moreover, the tissue-specific genes of embryo development were misexpressed in emb1990 mutant, including genes known to delineate cell fate decisions in the SAM (shoot apical meristem), cotyledon and hypophysis. Taken together, we propose that the nuclear-encoded YLMG1-1 is targeted to the chloroplast and required for normal plastid gene expression. Hence, YLMG1-1 plays a critical role in Arabidopsis embryogenesis through participating in chloroplast biogenesis.
Collapse
|
55
|
Delfosse K, Wozny MR, Barton KA, Mathur N, Griffiths N, Mathur J. Plastid Envelope-Localized Proteins Exhibit a Stochastic Spatiotemporal Relationship to Stromules. FRONTIERS IN PLANT SCIENCE 2018; 9:754. [PMID: 29915611 PMCID: PMC5995270 DOI: 10.3389/fpls.2018.00754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/16/2018] [Indexed: 05/13/2023]
Abstract
UNLABELLED Plastids in the viridiplantae sporadically form thin tubules called stromules that increase the interactive surface between the plastid and the surrounding cytoplasm. Several recent publications that report observations of certain proteins localizing to the extensions have then used the observations to suggest stromule-specific functions. The mechanisms by which specific localizations on these transient and sporadically formed extensions might occur remain unclear. Previous studies have yet to address the spatiotemporal relationship between a particular protein localization pattern and its distribution on an extended stromules and/or the plastid body. Here, we have used discrete protein patches found in several transgenic plants as fiducial markers to investigate this relationship. While we consider the inner plastid envelope-membrane localized protein patches of the GLUCOSE 6-PHOSPHATE/PHOSPHATE TRANSLOCATOR1 and the TRIOSE-PHOSPHATE/ PHOSPHATE TRANSLOCATOR 1 as artifacts of fluorescent fusion protein over-expression, stromule formation is not compromised in the respective stable transgenic lines that maintain normal growth and development. Our analysis of chloroplasts in the transgenic lines in the Arabidopsis Columbia background, and in the arc6 mutant, under stromule-inducing conditions shows that the possibility of finding a particular protein-enriched domain on an extended stromule or on a region of the main plastid body is stochastic. Our observations provide insights on the behavior of chloroplasts, the relationship between stromules and the plastid-body and strongly challenge claims of stromule-specific functions based solely upon protein localization to plastid extensions. ONE SENTENCE SUMMARY Observations of the spatiotemporal relationship between plastid envelope localized fluorescent protein fusions of two sugar-phosphate transporters and stromules suggest a stochastic rather than specific localization pattern that questions the idea of independent functions for stromules.
Collapse
|
56
|
Arimura SI. Fission and Fusion of Plant Mitochondria, and Genome Maintenance. PLANT PHYSIOLOGY 2018; 176:152-161. [PMID: 29138352 PMCID: PMC5761811 DOI: 10.1104/pp.17.01025] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/07/2017] [Indexed: 05/18/2023]
Abstract
Dynamic changes maintain a multipartite mitochondrial genome meets the changing needs of plant cells.
Collapse
Affiliation(s)
- Shin-Ichi Arimura
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
57
|
Sato R, Kono M, Harada K, Ohta H, Takaichi S, Masuda S. FLUCTUATING-LIGHT-ACCLIMATION PROTEIN1, Conserved in Oxygenic Phototrophs, Regulates H+ Homeostasis and Non-Photochemical Quenching in Chloroplasts. PLANT & CELL PHYSIOLOGY 2017; 58:1622-1630. [PMID: 29016945 DOI: 10.1093/pcp/pcx110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/31/2017] [Indexed: 05/21/2023]
Abstract
Plants have mechanisms allowing them to acclimate to intense light conditions, which involves the dissipation of excess light energy. These mechanisms allow plants to perform photosynthesis efficiently and, therefore, must be accurately and precisely controlled. However, how plants dissipate excess light energy has yet to be fully elucidated. Herein we report the identification of a gene, which we named Fluctuating-Light-Acclimation Protein1 (FLAP1), that is conserved in oxygenic phototrophs. We show that Arabidopsis FLAP1 is associated with chloroplast thylakoid and envelope membranes and that the flap1 mutant shows delayed non-photochemical quenching (NPQ) relaxation during induction of photosynthesis at moderate light intensity. Under fluctuating light conditions, NPQ levels in the flap1 mutant were higher than those in the wild type during the high light period, and the mutant exhibited a pale-green phenotype. These findings suggest that FLAP1 is involved in NPQ control, which is important for an acclimation response to fluctuating light.
Collapse
Affiliation(s)
- Ryoichi Sato
- Graduate School of Bioscience & Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Masaru Kono
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kyohei Harada
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Hiroyuki Ohta
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8551, Japan
| | | | - Shinji Masuda
- Center for Biological Resources & Informatics, Tokyo Institute of Technology, Yokohama 226-8501, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8551, Japan
| |
Collapse
|
58
|
Zhou K, Xia J, Wang Y, Ma T, Li Z. A Young Seedling Stripe2 phenotype in rice is caused by mutation of a chloroplast-localized nucleoside diphosphate kinase 2 required for chloroplast biogenesis. Genet Mol Biol 2017; 40:630-642. [PMID: 28863212 PMCID: PMC5596372 DOI: 10.1590/1678-4685-gmb-2016-0267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/30/2017] [Indexed: 01/08/2023] Open
Abstract
Chloroplast development and chlorophyll (Chl) biosynthesis in plants are regulated by many genes, but the underlying molecular mechanisms remain largely elusive. We isolated a rice mutant named yss2 (young seedling stripe2) with a striated seedling phenotype beginning from leaf 2 of delayed plant growth. The mutant developed normal green leaves from leaf 5, but reduced tillering and chlorotic leaves and panicles appeared later. Chlorotic yss2 seedlings have decreased pigment contents and impaired chloroplast development. Genetic analysis showed that the mutant phenotype was due to a single recessive gene. Positional cloning and sequence analysis identified a single nucleotide substitution in YSS2 gene causing an amino acid change from Gly to Asp. The YSS2 allele encodes a NDPK2 (nucleoside diphosphate kinase 2) protein showing high similarity to other types of NDPKs. Real-time RT-PCR analysis demonstrated that YSS2 transcripts accumulated highly in L4 sections at the early leaf development stage. Expression levels of genes associated with Chl biosynthesis and photosynthesis in yss2 were mostly decreased, but genes involved in chloroplast biogenesis were up-regulated compared to the wild type. The YSS2 protein was associated with punctate structures in the chloroplasts of rice protoplasts. Our overall data suggest that YSS2 has important roles in chloroplast biogenesis.
Collapse
Affiliation(s)
- Kunneng Zhou
- Key laboratory of Rice Genetics and Breeding, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, P.R. China
| | - Jiafa Xia
- Key laboratory of Rice Genetics and Breeding, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, P.R. China
| | - Yuanlei Wang
- Key laboratory of Rice Genetics and Breeding, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, P.R. China
| | - Tingchen Ma
- Key laboratory of Rice Genetics and Breeding, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, P.R. China
| | - Zefu Li
- Key laboratory of Rice Genetics and Breeding, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, P.R. China
| |
Collapse
|
59
|
Machado RAR, Baldwin IT, Erb M. Herbivory-induced jasmonates constrain plant sugar accumulation and growth by antagonizing gibberellin signaling and not by promoting secondary metabolite production. THE NEW PHYTOLOGIST 2017; 215:803-812. [PMID: 28631319 DOI: 10.1111/nph.14597] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/03/2017] [Indexed: 05/27/2023]
Abstract
Plants respond to herbivory by reconfiguring hormonal networks, increasing secondary metabolite production and decreasing growth. Furthermore, some plants display a decrease in leaf energy reserves in the form of soluble sugars and starch, leading to the hypothesis that herbivory-induced secondary metabolite production and growth reduction may be linked through a carbohydrate-based resource trade-off. In order to test the above hypothesis, we measured leaf carbohydrates and plant growth in seven genetically engineered Nicotiana attenuata genotypes that are deficient in one or several major herbivore-induced, jasmonate-dependent defensive secondary metabolites and proteins. Furthermore, we manipulated gibberellin and jasmonate signaling, and quantified the impact of these phytohormones on secondary metabolite production, sugar accumulation and growth. Simulated herbivore attack by Manduca sexta specifically reduced leaf sugar concentrations and growth in a jasmonate-dependent manner. These effects were similar or even stronger in defenseless genotypes with intact jasmonate signaling. Gibberellin complementation rescued carbohydrate accumulation and growth in induced plants without impairing the induction of defensive secondary metabolites. These results are consistent with a hormonal antagonism model rather than a resource-cost model to explain the negative relationship between herbivory-induced defenses, leaf energy reserves and growth.
Collapse
Affiliation(s)
- Ricardo A R Machado
- Root-Herbivore Interactions Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013, Bern, Switzerland
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Matthias Erb
- Root-Herbivore Interactions Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013, Bern, Switzerland
| |
Collapse
|
60
|
Pan R, Hu J. Sequence and biochemical analysis of Arabidopsis SP1 protein, a regulator of organelle biogenesis. Commun Integr Biol 2017; 10:e1338991. [PMID: 28919939 PMCID: PMC5595426 DOI: 10.1080/19420889.2017.1338991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 11/16/2022] Open
Abstract
Peroxisomes, chloroplasts, and mitochondria are essential eukaryotic organelles that host a suite of metabolic processes crucial to energy metabolism and development. Regulatory mechanisms of the dynamics and biogenesis of these important organelles have begun to be discovered in plants. We recently showed that, aside from its previously reported role in targeting chloroplast protein import proteins, the Arabidopsis ubiquitin E3 ligase SP1 (suppressor of ppi1 locus1) negatively regulates peroxisome matrix protein import by promoting the ubiquitination and destabilization of PEX13 and possibly PEX14 and other components of the peroxisome protein import apparatus. Here, we compared protein sequence and domain structure of SP1-like proteins in Arabidopsis and their human homolog, Mitochondrial-Anchored Protein Ligase (MAPL). We further characterized SP1 protein in respect to its membrane topology and ubiquitin E3 ligase activity.
Collapse
Affiliation(s)
- Ronghui Pan
- MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Jianping Hu
- MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA.,Plant Biology Department, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
61
|
Zeng X, Tang R, Guo H, Ke S, Teng B, Hung YH, Xu Z, Xie XM, Hsieh TF, Zhang XQ. A naturally occurring conditional albino mutant in rice caused by defects in the plastid-localized OsABCI8 transporter. PLANT MOLECULAR BIOLOGY 2017; 94:137-148. [PMID: 28285416 DOI: 10.1007/s11103-017-0598-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/23/2017] [Indexed: 05/03/2023]
Abstract
A wide range of molecules are transported across membranes by the ATP binding cassette (ABC) transporters. Plants possess a collection of ABC proteins bearing similarities to the components of prokaryotic multi subunit ABC transporters, designed as ABC group I. However the functions of most of them are not well understood. Here, we characterized a naturally occurring rice mutant that exhibited albino phenotype under continuous rainy days in the field, but gradually recovered to normal green after the rainy season. Molecular and genetic analyses revealed that the phenotypes were caused by a mutation in the OsABCI8 that encoded a member of the ABCI family. Subcellular localization demonstrated that OsABCI8 is a chloroplast ABC transporter. Expression of OsABCI8 is significantly enhanced in rainy days compared to sunny days. Besides defects in chloroplast development and chlorophyll biosynthesis, the mutant phenotype is accompanied by a higher accumulation of iron, suggesting that OsABCI8 is involved in iron transportation and/or homeostasis in rice. Our results demonstrate that OsABCI8 represents a conserved ABCI protein involved in transition metals transportation and/or homeostasis and suggest an important role of the plastid-localized OsABCI8 for chloroplast development.
Collapse
Affiliation(s)
- Xiuyu Zeng
- Guangdong Engineering Research Center of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Ran Tang
- Guangdong Engineering Research Center of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Herong Guo
- Guangdong Engineering Research Center of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Shanwen Ke
- Guangdong Engineering Research Center of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Bin Teng
- Anhui Provincial Key Laboratory of Rice Genetics and Breeding, Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Yu-Hung Hung
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, 28081, USA
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Zhenjiang Xu
- Guangdong Engineering Research Center of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xin-Ming Xie
- Guangdong Engineering Research Center of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Tzung-Fu Hsieh
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, 28081, USA.
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Xiang-Qian Zhang
- Guangdong Engineering Research Center of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
62
|
Zagari N, Sandoval-Ibañez O, Sandal N, Su J, Rodriguez-Concepcion M, Stougaard J, Pribil M, Leister D, Pulido P. SNOWY COTYLEDON 2 Promotes Chloroplast Development and Has a Role in Leaf Variegation in Both Lotus japonicus and Arabidopsis thaliana. MOLECULAR PLANT 2017; 10:721-734. [PMID: 28286296 DOI: 10.1016/j.molp.2017.02.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 02/17/2017] [Accepted: 02/26/2017] [Indexed: 05/20/2023]
Abstract
Plants contain various factors that transiently interact with subunits or intermediates of the thylakoid multiprotein complexes, promoting their stable association and integration. Hence, assembly factors are essential for chloroplast development and the transition from heterotrophic to phototrophic growth. Snowy cotyledon 2 (SCO2) is a DNAJ-like protein involved in thylakoid membrane biogenesis and interacts with the light-harvesting chlorophyll-binding protein LHCB1. In Arabidopsis thaliana, SCO2 function was previously reported to be restricted to cotyledons. Here we show that disruption of SCO2 in Lotus japonicus results not only in paler cotyledons but also in variegated true leaves. Furthermore, smaller and pale-green true leaves can also be observed in A. thaliana sco2 (atsco2) mutants under short-day conditions. In both species, SCO2 is required for proper accumulation of PSII-LHCII complexes. In contrast to other variegated mutants, inhibition of chloroplastic translation strongly affects L. japonicus sco2 mutant development and fails to suppress their variegated phenotype. Moreover, inactivation of the suppressor of variegation AtClpR1 in the atsco2 background results in an additive double-mutant phenotype with variegated true leaves. Taken together, our results indicate that SCO2 plays a distinct role in PSII assembly or repair and constitutes a novel factor involved in leaf variegation.
Collapse
Affiliation(s)
- Nicola Zagari
- Plant Molecular Biology, Department of Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany; Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark; Research and Innovation Center, Fondazione Edmund Mach, via E. Mach 1, 38010 San Michele all'Adige, Italy
| | - Omar Sandoval-Ibañez
- Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Niels Sandal
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Junyi Su
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Manuel Rodriguez-Concepcion
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193 Barcelona, Spain
| | - Jens Stougaard
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Mathias Pribil
- Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Dario Leister
- Plant Molecular Biology, Department of Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany; Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark.
| | - Pablo Pulido
- Plant Molecular Biology, Department of Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany; Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark
| |
Collapse
|
63
|
Hackett JB, Shi X, Kobylarz AT, Lucas MK, Wessendorf RL, Hines KM, Bentolila S, Hanson MR, Lu Y. An Organelle RNA Recognition Motif Protein Is Required for Photosystem II Subunit psbF Transcript Editing. PLANT PHYSIOLOGY 2017; 173:2278-2293. [PMID: 28213559 PMCID: PMC5373051 DOI: 10.1104/pp.16.01623] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/13/2017] [Indexed: 05/02/2023]
Abstract
Loss-of-function mutations in ORGANELLE RNA RECOGNITION MOTIF PROTEIN6 (ORRM6) result in the near absence of RNA editing of psbF-C77 and the reduction in accD-C794 editing in Arabidopsis (Arabidopsis thaliana). The orrm6 mutants have decreased levels of photosystem II (PSII) proteins, especially PsbF, lower PSII activity, pale green pigmentation, smaller leaf and plant sizes, and retarded growth. Stable expression of ORRM6 rescues the orrm6 editing defects and mutant phenotype. Unlike ORRM1, the other known ORRM plastid editing factor, ORRM6, does not contain RNA editing interacting protein/multiple organellar RNA editing factor (RIP/MORF) boxes, which are required for ORRM1 to interact with site-specific pentatricopeptide repeat protein editing factors. ORRM6 interacts with RIP1/MORF8, RIP2/MORF2, and RIP9/MORF9, known components of RNA editosomes. While some plastid RRM proteins are involved in other forms of RNA processing and translation, the primary function of ORRM6 is evidently to mediate psbF-C77 editing, like the essential site-specific pentatricopeptide repeat protein LOW PSII ACCUMULATION66. Stable expression in the orrm6 mutants of a nucleus-encoded, plastid-targeted PsbF protein from a psbF gene carrying a T at nucleotide 77 significantly increases leaf and plant sizes, chlorophyll content, and PSII activity. These transformants demonstrate that plastid RNA editing can be bypassed through the expression of nucleus-encoded, edited forms of plastid genes.
Collapse
Affiliation(s)
- Justin B Hackett
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008-5410 (J.B.H., A.T.K., M.K.L., R.L.W., Y.L.); and
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703 (X.S., K.M.H., S.B., M.R.H.)
| | - Xiaowen Shi
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008-5410 (J.B.H., A.T.K., M.K.L., R.L.W., Y.L.); and
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703 (X.S., K.M.H., S.B., M.R.H.)
| | - Amy T Kobylarz
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008-5410 (J.B.H., A.T.K., M.K.L., R.L.W., Y.L.); and
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703 (X.S., K.M.H., S.B., M.R.H.)
| | - Meriah K Lucas
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008-5410 (J.B.H., A.T.K., M.K.L., R.L.W., Y.L.); and
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703 (X.S., K.M.H., S.B., M.R.H.)
| | - Ryan L Wessendorf
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008-5410 (J.B.H., A.T.K., M.K.L., R.L.W., Y.L.); and
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703 (X.S., K.M.H., S.B., M.R.H.)
| | - Kevin M Hines
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008-5410 (J.B.H., A.T.K., M.K.L., R.L.W., Y.L.); and
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703 (X.S., K.M.H., S.B., M.R.H.)
| | - Stephane Bentolila
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008-5410 (J.B.H., A.T.K., M.K.L., R.L.W., Y.L.); and
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703 (X.S., K.M.H., S.B., M.R.H.)
| | - Maureen R Hanson
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008-5410 (J.B.H., A.T.K., M.K.L., R.L.W., Y.L.); and
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703 (X.S., K.M.H., S.B., M.R.H.)
| | - Yan Lu
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008-5410 (J.B.H., A.T.K., M.K.L., R.L.W., Y.L.); and
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703 (X.S., K.M.H., S.B., M.R.H.)
| |
Collapse
|
64
|
Li S, Wei X, Ren Y, Qiu J, Jiao G, Guo X, Tang S, Wan J, Hu P. OsBT1 encodes an ADP-glucose transporter involved in starch synthesis and compound granule formation in rice endosperm. Sci Rep 2017; 7:40124. [PMID: 28054650 PMCID: PMC5215005 DOI: 10.1038/srep40124] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 12/02/2016] [Indexed: 01/18/2023] Open
Abstract
Starch is the main storage carbohydrate in higher plants. Although several enzymes and regulators for starch biosynthesis have been characterized, a complete regulatory network for starch synthesis in cereal seeds remains elusive. Here, we report the identification and characterization of the rice Brittle1 (OsBT1) gene, which is expressed specifically in the developing endosperm. The osbt1 mutant showed a white-core endosperm and a significantly lower grain weight than the wild-type. The formation and development of compound starch granules in osbt1 was obviously defective: the amyloplast was disintegrated at early developmental stages and the starch granules were disperse and not compound in the endosperm cells in the centre region of osbt1 seeds. The total starch content and amylose content was decreased and the physicochemical properties of starch were altered. Moreover, the degree of polymerization (DP) of amylopectin in osbt1 was remarkably different from that of wild-type. Map-based cloning of OsBT1 indicated that it encodes a putatively ADP-glucose transporter. OsBT1 coded protein localizes in the amyloplast envelope membrane. Furthermore, the expression of starch synthesis related genes was also altered in the osbt1 mutant. These findings indicate that OsBT1 plays an important role in starch synthesis and the formation of compound starch granules.
Collapse
Affiliation(s)
- Sanfeng Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Xiangjin Wei
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Yulong Ren
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Jiehua Qiu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Guiai Jiao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Xiuping Guo
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Jianmin Wan
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Peisong Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| |
Collapse
|
65
|
Zhou K, Ren Y, Zhou F, Wang Y, Zhang L, Lyu J, Wang Y, Zhao S, Ma W, Zhang H, Wang L, Wang C, Wu F, Zhang X, Guo X, Cheng Z, Wang J, Lei C, Jiang L, Li Z, Wan J. Young Seedling Stripe1 encodes a chloroplast nucleoid-associated protein required for chloroplast development in rice seedlings. PLANTA 2017; 245:45-60. [PMID: 27578095 DOI: 10.1007/s00425-016-2590-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/18/2016] [Indexed: 06/06/2023]
Abstract
Young Seedling Stripe1 (YSS1) was characterized as an important regulator of plastid-encoded plastid RNA polymerase (PEP) activity essential for chloroplast development at rice seedling stage. Chloroplast development is coordinately regulated by plastid- and nuclear-encoding genes. Although a few regulators have been reported to be involved in chloroplast development, new factors remain to be identified, given the complexity of this process. Here, we report the characterization of a temperature-sensitive young seedling stripe1 (yss1) rice mutant, which develops striated leaves at the seedling stage, particularly in leaf 3, but produces wild-type leaves in leaf 5 and onwards. The chlorotic leaves have decreased chlorophyll (Chls) accumulation and impaired chloroplast structure. Positional cloning combined with sequencing demonstrated that aberrant splicing of the 8th intron in YSS1 gene, due to a single nucleotide deletion around splicing donor site, leads to decreased expression of YSS1 and accumulation of an 8th intron-retained yss1 transcript. Furthermore, complementation test revealed that downregulation of YSS1 but not accumulation of yss1 transcript confers yss1 mutant phenotype. YSS1 encodes a chloroplast nucleoid-localized protein belonging to the DUF3727 superfamily. Expression analysis showed that YSS1 gene is more expressed in newly expanded leaves, and distinctly up-regulated as temperatures increase and by light stimulus. PEP- and nuclear-encoded phage-type RNA polymerase (NEP)-dependent genes are separately down-regulated and up-regulated in yss1 mutant, indicating that PEP activity may be impaired. Furthermore, levels of chloroplast proteins are mostly reduced in yss1 seedlings. Together, our findings identify YSS1 as a novel regulator of PEP activity essential for chloroplast development at rice seedling stage.
Collapse
Affiliation(s)
- Kunneng Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Feng Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Ying Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Long Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jia Lyu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yihua Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Shaolu Zhao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Weiwei Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Huan Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Liwei Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Chunming Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Fuqing Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Xiupin Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Jiulin Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Ling Jiang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zefu Li
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, People's Republic of China
| | - Jianmin Wan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
66
|
Van Dingenen J, Blomme J, Gonzalez N, Inzé D. Plants grow with a little help from their organelle friends. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:6267-6281. [PMID: 27815330 DOI: 10.1093/jxb/erw399] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Chloroplasts and mitochondria are indispensable for plant development. They not only provide energy and carbon sources to cells, but also have evolved to become major players in a variety of processes such as amino acid metabolism, hormone biosynthesis and cellular signalling. As semi-autonomous organelles, they contain a small genome that relies largely on nuclear factors for its maintenance and expression. An intensive crosstalk between the nucleus and the organelles is therefore essential to ensure proper functioning, and the nuclear genes encoding organellar proteins involved in photosynthesis and oxidative phosphorylation are obviously crucial for plant growth. Organ growth is determined by two main cellular processes: cell proliferation and cell expansion. Here, we review how plant growth is affected in mutants of organellar proteins that are differentially expressed during leaf and root development. Our findings indicate a clear role for organellar proteins in plant organ growth, primarily during cell proliferation. However, to date, the role of the nuclear-encoded organellar proteins in the cellular processes driving organ growth has not been investigated in much detail. We therefore encourage researchers to extend their phenotypic characterization beyond macroscopic features in order to get a better view on how chloroplasts and mitochondria regulate the basic processes of cell proliferation and cell expansion, essential to driving growth.
Collapse
Affiliation(s)
- Judith Van Dingenen
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Jonas Blomme
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Nathalie Gonzalez
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
67
|
Liu C, Zhu H, Xing Y, Tan J, Chen X, Zhang J, Peng H, Xie Q, Zhang Z. Albino Leaf 2 is involved in the splicing of chloroplast group I and II introns in rice. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5339-5347. [PMID: 27543605 PMCID: PMC5049385 DOI: 10.1093/jxb/erw296] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Chloroplasts play an essential role in plant growth and development through manipulating photosynthesis and the production of hormones and metabolites. Although many genes or regulators involved in chloroplast biogenesis and development have been isolated and characterized, identification of novel components is still lacking. We isolated a rice (Oryza sativa) mutant, termed albino leaf 2 (al2), using genetic screening. Phenotypic analysis revealed that the al2 mutation caused obvious albino leaves at the early developmental stage, eventually leading to al2 seedling death. Electron microscopy investigations indicated that the chloroplast structure was disrupted in the al2 mutants at an early developmental stage and subsequently resulted in the breakdown of the entire chloroplast. Molecular cloning illustrated that AL2 encodes a chloroplast group IIA intron splicing facilitator (CRS1) in rice, which was confirmed by a genetic complementation experiment. Moreover, our results demonstrated that AL2 was constitutively expressed in various tissues, including green and non-green tissues. Interestingly, we found that the expression levels of a subset of chloroplast genes that contain group IIA and IIB introns were significantly reduced in the al2 mutant compared to that in the wild type, suggesting that AL2 is a functional CRS1 in rice. Differing from the orthologous CRS1 in maize and Arabidopsis that only regulates splicing of the chloroplast group II intron, our results demonstrated that the AL2 gene is also likely to be involved in the splicing of the chloroplast group I intron. They also showed that disruption of AL2 results in the altered expression of chloroplast-associated genes, including chlorophyll biosynthetic genes, plastid-encoded polymerases and nuclear-encoded chloroplast genes. Taken together, these findings shed new light on the function of nuclear-encoded chloroplast group I and II intron splicing factors in rice.
Collapse
Affiliation(s)
- Changhong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Haitao Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yi Xing
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jianjie Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xionghui Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jianjun Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Haifeng Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Qingjun Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zemin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
68
|
A Nucleus-Encoded Chloroplast Protein YL1 Is Involved in Chloroplast Development and Efficient Biogenesis of Chloroplast ATP Synthase in Rice. Sci Rep 2016; 6:32295. [PMID: 27585744 PMCID: PMC5009372 DOI: 10.1038/srep32295] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/04/2016] [Indexed: 11/16/2022] Open
Abstract
Chloroplast ATP synthase (cpATPase) is an importance thylakoid membrane-associated photosynthetic complex involved in the light-dependent reactions of photosynthesis. In this study, we isolated and characterized a rice (Oryza sativa) mutant yellow leaf 1 (yl1), which exhibits chlorotic leaves throughout developmental stages. The YL1 mutation showed reduced chlorophyll contents, abnormal chloroplast morphology, and decreased photochemical efficiency. Moreover, YL1 deficiency disrupts the expression of genes associated with chloroplast development and photosynthesis. Molecular and genetic analyses revealed that YL1 is a nucleus-encoded protein with a predicted transmembrane domain in its carboxyl-terminus that is conserved in the higher plant kingdom. YL1 localizes to chloroplasts and is preferentially expressed in green tissues containing chloroplasts. Immunoblot analyses showed that inactivation of YL1 leads to drastically reduced accumulation of AtpA (α) and AtpB (β), two core subunits of CF1αβ subcomplex of cpATPase, meanwhile, a severe decrease (ca. 41.7%) in cpATPase activity was observed in the yl1-1 mutant compared with the wild type. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation assays revealed a specific interaction between YL1 and AtpB subunit of cpATPase. Taken together, our results suggest that YL1 is a plant lineage-specific auxiliary factor involved in the biogenesis of the cpATPase complex, possibly via interacting with the β-subunit.
Collapse
|
69
|
Bell KL, de Vere N, Keller A, Richardson RT, Gous A, Burgess KS, Brosi BJ. Pollen DNA barcoding: current applications and future prospects. Genome 2016; 59:629-40. [DOI: 10.1139/gen-2015-0200] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Identification of the species origin of pollen has many applications, including assessment of plant–pollinator networks, reconstruction of ancient plant communities, product authentication, allergen monitoring, and forensics. Such applications, however, have previously been limited by microscopy-based identification of pollen, which is slow, has low taxonomic resolution, and has few expert practitioners. One alternative is pollen DNA barcoding, which could overcome these issues. Recent studies demonstrate that both chloroplast and nuclear barcoding markers can be amplified from pollen. These recent validations of pollen metabarcoding indicate that now is the time for researchers in various fields to consider applying these methods to their research programs. In this paper, we review the nascent field of pollen DNA barcoding and discuss potential new applications of this technology, highlighting existing limitations and future research developments that will improve its utility in a wide range of applications.
Collapse
Affiliation(s)
- Karen L. Bell
- Emory University, School of Environmental Sciences, Atlanta, GA, USA
| | - Natasha de Vere
- National Botanic Garden of Wales, Llanarthne, United Kingdom
| | - Alexander Keller
- Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg, Germany
| | | | - Annemarie Gous
- Biotechnology Platform, Agricultural Research Council, Pretoria, South Africa
- School of Life Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | | | - Berry J. Brosi
- Emory University, School of Environmental Sciences, Atlanta, GA, USA
| |
Collapse
|
70
|
Aranda-Sicilia MN, Aboukila A, Armbruster U, Cagnac O, Schumann T, Kunz HH, Jahns P, Rodríguez-Rosales MP, Sze H, Venema K. Envelope K+/H+ Antiporters AtKEA1 and AtKEA2 Function in Plastid Development. PLANT PHYSIOLOGY 2016; 172:441-9. [PMID: 27443603 PMCID: PMC5074627 DOI: 10.1104/pp.16.00995] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 07/19/2016] [Indexed: 05/04/2023]
Abstract
It is well established that thylakoid membranes of chloroplasts convert light energy into chemical energy, yet the development of chloroplast and thylakoid membranes is poorly understood. Loss of function of the two envelope K(+)/H(+) antiporters AtKEA1 and AtKEA2 was shown previously to have negative effects on the efficiency of photosynthesis and plant growth; however, the molecular basis remained unclear. Here, we tested whether the previously described phenotypes of double mutant kea1kea2 plants are due in part to defects during early chloroplast development in Arabidopsis (Arabidopsis thaliana). We show that impaired growth and pigmentation is particularly evident in young expanding leaves of kea1kea2 mutants. In proliferating leaf zones, chloroplasts contain much lower amounts of photosynthetic complexes and chlorophyll. Strikingly, AtKEA1 and AtKEA2 proteins accumulate to high amounts in small and dividing plastids, where they are specifically localized to the two caps of the organelle separated by the fission plane. The unusually long amino-terminal domain of 550 residues that precedes the antiport domain appears to tether the full-length AtKEA2 protein to the two caps. Finally, we show that the double mutant contains 30% fewer chloroplasts per cell. Together, these results show that AtKEA1 and AtKEA2 transporters in specific microdomains of the inner envelope link local osmotic, ionic, and pH homeostasis to plastid division and thylakoid membrane formation.
Collapse
Affiliation(s)
- María Nieves Aranda-Sicilia
- Departimento de Bioquímica, Biología Celular, y Molecular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain (M.N.A.-S., A.A., O.C., M.P.R.-R., K.V.);Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (U.A.);Institute of Plant Biochemistry, Heinrich-Heine-University Düsseldorf, D-40225 Duesseldorf, Germany (T.S., P.J.);School of Biological Sciences, Washington State University, Pullman, Washington 99164-4236 (H.-H.K.); andDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742 (H.S.)
| | - Ali Aboukila
- Departimento de Bioquímica, Biología Celular, y Molecular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain (M.N.A.-S., A.A., O.C., M.P.R.-R., K.V.);Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (U.A.);Institute of Plant Biochemistry, Heinrich-Heine-University Düsseldorf, D-40225 Duesseldorf, Germany (T.S., P.J.);School of Biological Sciences, Washington State University, Pullman, Washington 99164-4236 (H.-H.K.); andDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742 (H.S.)
| | - Ute Armbruster
- Departimento de Bioquímica, Biología Celular, y Molecular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain (M.N.A.-S., A.A., O.C., M.P.R.-R., K.V.);Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (U.A.);Institute of Plant Biochemistry, Heinrich-Heine-University Düsseldorf, D-40225 Duesseldorf, Germany (T.S., P.J.);School of Biological Sciences, Washington State University, Pullman, Washington 99164-4236 (H.-H.K.); andDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742 (H.S.)
| | - Olivier Cagnac
- Departimento de Bioquímica, Biología Celular, y Molecular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain (M.N.A.-S., A.A., O.C., M.P.R.-R., K.V.);Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (U.A.);Institute of Plant Biochemistry, Heinrich-Heine-University Düsseldorf, D-40225 Duesseldorf, Germany (T.S., P.J.);School of Biological Sciences, Washington State University, Pullman, Washington 99164-4236 (H.-H.K.); andDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742 (H.S.)
| | - Tobias Schumann
- Departimento de Bioquímica, Biología Celular, y Molecular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain (M.N.A.-S., A.A., O.C., M.P.R.-R., K.V.);Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (U.A.);Institute of Plant Biochemistry, Heinrich-Heine-University Düsseldorf, D-40225 Duesseldorf, Germany (T.S., P.J.);School of Biological Sciences, Washington State University, Pullman, Washington 99164-4236 (H.-H.K.); andDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742 (H.S.)
| | - Hans-Henning Kunz
- Departimento de Bioquímica, Biología Celular, y Molecular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain (M.N.A.-S., A.A., O.C., M.P.R.-R., K.V.);Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (U.A.);Institute of Plant Biochemistry, Heinrich-Heine-University Düsseldorf, D-40225 Duesseldorf, Germany (T.S., P.J.);School of Biological Sciences, Washington State University, Pullman, Washington 99164-4236 (H.-H.K.); andDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742 (H.S.)
| | - Peter Jahns
- Departimento de Bioquímica, Biología Celular, y Molecular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain (M.N.A.-S., A.A., O.C., M.P.R.-R., K.V.);Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (U.A.);Institute of Plant Biochemistry, Heinrich-Heine-University Düsseldorf, D-40225 Duesseldorf, Germany (T.S., P.J.);School of Biological Sciences, Washington State University, Pullman, Washington 99164-4236 (H.-H.K.); andDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742 (H.S.)
| | - María Pilar Rodríguez-Rosales
- Departimento de Bioquímica, Biología Celular, y Molecular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain (M.N.A.-S., A.A., O.C., M.P.R.-R., K.V.);Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (U.A.);Institute of Plant Biochemistry, Heinrich-Heine-University Düsseldorf, D-40225 Duesseldorf, Germany (T.S., P.J.);School of Biological Sciences, Washington State University, Pullman, Washington 99164-4236 (H.-H.K.); andDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742 (H.S.)
| | - Heven Sze
- Departimento de Bioquímica, Biología Celular, y Molecular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain (M.N.A.-S., A.A., O.C., M.P.R.-R., K.V.);Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (U.A.);Institute of Plant Biochemistry, Heinrich-Heine-University Düsseldorf, D-40225 Duesseldorf, Germany (T.S., P.J.);School of Biological Sciences, Washington State University, Pullman, Washington 99164-4236 (H.-H.K.); andDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742 (H.S.)
| | - Kees Venema
- Departimento de Bioquímica, Biología Celular, y Molecular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain (M.N.A.-S., A.A., O.C., M.P.R.-R., K.V.);Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (U.A.);Institute of Plant Biochemistry, Heinrich-Heine-University Düsseldorf, D-40225 Duesseldorf, Germany (T.S., P.J.);School of Biological Sciences, Washington State University, Pullman, Washington 99164-4236 (H.-H.K.); andDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742 (H.S.)
| |
Collapse
|
71
|
Zhang Z, Tan J, Shi Z, Xie Q, Xing Y, Liu C, Chen Q, Zhu H, Wang J, Zhang J, Zhang G. Albino Leaf1 That Encodes the Sole Octotricopeptide Repeat Protein Is Responsible for Chloroplast Development. PLANT PHYSIOLOGY 2016; 171:1182-91. [PMID: 27208287 PMCID: PMC4902615 DOI: 10.1104/pp.16.00325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/21/2016] [Indexed: 05/05/2023]
Abstract
Chloroplast, the photosynthetic organelle in plants, plays a crucial role in plant development and growth through manipulating the capacity of photosynthesis. However, the regulatory mechanism of chloroplast development still remains elusive. Here, we characterized a mutant with defective chloroplasts in rice (Oryza sativa), termed albino leaf1 (al1), which exhibits a distinct albino phenotype in leaves, eventually leading to al1 seedling lethality. Electronic microscopy observation demonstrated that the number of thylakoids was reduced and the structure of thylakoids was disrupted in the al1 mutant during rice development, which eventually led to the breakdown of chloroplast. Molecular cloning revealed that AL1 encodes the sole octotricopeptide repeat protein (RAP) in rice. Genetic complementation of Arabidopsis (Arabidopsis thaliana) rap mutants indicated that the AL1 protein is a functional RAP. Further analysis illustrated that three transcript variants were present in the AL1 gene, and the altered splices occurred at the 3' untranslated region of the AL1 transcript. In addition, our results also indicate that disruption of the AL1 gene results in an altered expression of chloroplast-associated genes. Consistently, proteomic analysis demonstrated that the abundance of photosynthesis-associated proteins is altered significantly, as is that of a group of metabolism-associated proteins. More specifically, we found that the loss of AL1 resulted in altered abundances of ribosomal proteins, suggesting that RAP likely also regulates the homeostasis of ribosomal proteins in rice in addition to the ribosomal RNA. Taken together, we propose that AL1, particularly the AL1a and AL1c isoforms, plays an essential role in chloroplast development in rice.
Collapse
Affiliation(s)
- Zemin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China (Z.Z., J.T., Q.X., Y.X., C.L., Q.C., H.Z., G.Z.); andShanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 20032, China (Z.S., J.W., J.Z.)
| | - Jianjie Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China (Z.Z., J.T., Q.X., Y.X., C.L., Q.C., H.Z., G.Z.); andShanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 20032, China (Z.S., J.W., J.Z.)
| | - Zhenying Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China (Z.Z., J.T., Q.X., Y.X., C.L., Q.C., H.Z., G.Z.); andShanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 20032, China (Z.S., J.W., J.Z.)
| | - Qingjun Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China (Z.Z., J.T., Q.X., Y.X., C.L., Q.C., H.Z., G.Z.); andShanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 20032, China (Z.S., J.W., J.Z.)
| | - Yi Xing
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China (Z.Z., J.T., Q.X., Y.X., C.L., Q.C., H.Z., G.Z.); andShanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 20032, China (Z.S., J.W., J.Z.)
| | - Changhong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China (Z.Z., J.T., Q.X., Y.X., C.L., Q.C., H.Z., G.Z.); andShanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 20032, China (Z.S., J.W., J.Z.)
| | - Qiaoling Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China (Z.Z., J.T., Q.X., Y.X., C.L., Q.C., H.Z., G.Z.); andShanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 20032, China (Z.S., J.W., J.Z.)
| | - Haitao Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China (Z.Z., J.T., Q.X., Y.X., C.L., Q.C., H.Z., G.Z.); andShanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 20032, China (Z.S., J.W., J.Z.)
| | - Jiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China (Z.Z., J.T., Q.X., Y.X., C.L., Q.C., H.Z., G.Z.); andShanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 20032, China (Z.S., J.W., J.Z.)
| | - Jingliu Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China (Z.Z., J.T., Q.X., Y.X., C.L., Q.C., H.Z., G.Z.); andShanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 20032, China (Z.S., J.W., J.Z.)
| | - Guiquan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China (Z.Z., J.T., Q.X., Y.X., C.L., Q.C., H.Z., G.Z.); andShanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 20032, China (Z.S., J.W., J.Z.)
| |
Collapse
|
72
|
Wang YW, Chen SM, Wang WJ, Huang XQ, Zhou CF, Zhuang Z, Lu S. The DnaJ-Like Zinc Finger Domain Protein PSA2 Affects Light Acclimation and Chloroplast Development in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2016; 7:360. [PMID: 27047527 PMCID: PMC4806229 DOI: 10.3389/fpls.2016.00360] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/08/2016] [Indexed: 05/20/2023]
Abstract
The biosynthesis of chlorophylls and carotenoids and the assembly of thylakoid membranes are critical for the photoautotrophic growth of plants. Different factors are involved in these two processes. In recent years, members of the DnaJ-like zinc finger domain proteins have been found to take part in the biogenesis and/or the maintenance of plastids. One member of this family of proteins, PSA2, was recently found to localize to the thylakoid lumen and regulate the accumulation of photosystem I. In this study, we report that the silencing of PSA2 in Arabidopsis thaliana resulted in variegated leaves and retarded growth. Although both chlorophylls and total carotenoids decreased in the psa2 mutant, violaxanthin, and zeaxanthin accumulated in the mutant seedlings grown under growth condition. Lower levels of non-photochemical quenching and electron transport rate were also found in the psa2 mutant seedlings under growth condition compared with those of the wild-type plants, indicating an impaired capability to acclimate to normal light irradiance when PSA2 was silenced. Moreover, we also observed an abnormal assembly of grana thylakoids and poorly developed stroma thylakoids in psa2 chloroplasts. Taken together, our results demonstrate that PSA2 is a member of the DnaJ-like zinc finger domain protein family that affects light acclimation and chloroplast development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shan Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing UniversityNanjing, China
| |
Collapse
|
73
|
Qi Y, Zhao J, An R, Zhang J, Liang S, Shao J, Liu X, An L, Yu F. Mutations in circularly permuted GTPase family genes AtNOA1/RIF1/SVR10 and BPG2 suppress var2-mediated leaf variegation in Arabidopsis thaliana. PHOTOSYNTHESIS RESEARCH 2016; 127:355-67. [PMID: 26435530 DOI: 10.1007/s11120-015-0195-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 09/24/2015] [Indexed: 05/18/2023]
Abstract
Leaf variegation mutants constitute a unique group of chloroplast development mutants and are ideal genetic materials to dissect the regulation of chloroplast development. We have utilized the Arabidopsis yellow variegated (var2) mutant and genetic suppressor analysis to probe the mechanisms of chloroplast development. Here we report the isolation of a new var2 suppressor locus SUPPRESSOR OF VARIEGATION (SVR10). Genetic mapping and molecular complementation indicated that SVR10 encodes a circularly permuted GTPase that has been reported as Arabidopsis thaliana NITRIC OXIDE ASSOCIATED 1 (AtNOA1) and RESISTANT TO INHIBITION BY FOSMIDOMYCIN 1 (RIF1). Biochemical evidence showed that SVR10/AtNOA1/RIF1 likely localizes to the chloroplast stroma. We further demonstrate that the mutant of a close homologue of SVR10/AtNOA1/RIF1, BRASSINAZOLE INSENSITIVE PALE GREEN 2 (BPG2), can also suppress var2 leaf variegation. Mutants of SVR10 and BPG2 are impaired in photosynthesis and the accumulation of chloroplast proteins. Interestingly, two-dimensional blue native gel analysis showed that mutants of SVR10 and BPG2 display defects in the assembly of thylakoid membrane complexes including reduced levels of major photosynthetic complexes and the abnormal accumulation of a chlorophyll-protein supercomplex containing photosystem I. Taken together, our findings suggest that SVR10 and BPG2 are functionally related with VAR2, likely through their potential roles in regulating chloroplast protein homeostasis, and both SVR10 and BPG2 are required for efficient thylakoid protein complex assembly and photosynthesis.
Collapse
Affiliation(s)
- Yafei Qi
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Jun Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Rui An
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Juan Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shuang Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Jingxia Shao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Xiayan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Lijun An
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Fei Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
74
|
Review and future prospects for DNA barcoding methods in forensic palynology. Forensic Sci Int Genet 2016; 21:110-6. [DOI: 10.1016/j.fsigen.2015.12.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/19/2015] [Accepted: 12/15/2015] [Indexed: 11/18/2022]
|
75
|
Matsushima R, Maekawa M, Kusano M, Tomita K, Kondo H, Nishimura H, Crofts N, Fujita N, Sakamoto W. Amyloplast Membrane Protein SUBSTANDARD STARCH GRAIN6 Controls Starch Grain Size in Rice Endosperm. PLANT PHYSIOLOGY 2016; 170:1445-59. [PMID: 26792122 PMCID: PMC4775137 DOI: 10.1104/pp.15.01811] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/18/2016] [Indexed: 05/18/2023]
Abstract
Starch is a biologically and commercially important polymer of glucose. Starch is organized into starch grains (SGs) inside amyloplasts. The SG size differs depending on the plant species and is one of the most important factors for industrial applications of starch. There is limited information on genetic factors regulating SG sizes. In this study, we report the rice (Oryza sativa) mutant substandard starch grain6 (ssg6), which develops enlarged SGs in endosperm. Enlarged SGs are observed starting at 3 d after flowering. During endosperm development, a number of smaller SGs appear and coexist with enlarged SGs in the same cells. The ssg6 mutation also affects SG morphologies in pollen. The SSG6 gene was identified by map-based cloning and microarray analysis. SSG6 encodes a protein homologous to aminotransferase. SSG6 differs from other rice homologs in that it has a transmembrane domain. SSG6-green fluorescent protein is localized in the amyloplast membrane surrounding SGs in rice endosperm, pollen, and pericarp. The results of this study suggest that SSG6 is a novel protein that controls SG size. SSG6 will be a useful molecular tool for future starch breeding and applications.
Collapse
Affiliation(s)
- Ryo Matsushima
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan (R.M., M.M., H.K., H.N., W.S.);Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan (M.K.);RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan (M.K.);Fukui Agricultural Experiment Station, Fukui 918-8215, Japan (K.T.); andDepartment of Biological Production, Akita Prefectural University, Akita 010-0195, Japan (N.C., N.F.)
| | - Masahiko Maekawa
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan (R.M., M.M., H.K., H.N., W.S.);Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan (M.K.);RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan (M.K.);Fukui Agricultural Experiment Station, Fukui 918-8215, Japan (K.T.); andDepartment of Biological Production, Akita Prefectural University, Akita 010-0195, Japan (N.C., N.F.)
| | - Miyako Kusano
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan (R.M., M.M., H.K., H.N., W.S.);Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan (M.K.);RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan (M.K.);Fukui Agricultural Experiment Station, Fukui 918-8215, Japan (K.T.); andDepartment of Biological Production, Akita Prefectural University, Akita 010-0195, Japan (N.C., N.F.)
| | - Katsura Tomita
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan (R.M., M.M., H.K., H.N., W.S.);Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan (M.K.);RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan (M.K.);Fukui Agricultural Experiment Station, Fukui 918-8215, Japan (K.T.); andDepartment of Biological Production, Akita Prefectural University, Akita 010-0195, Japan (N.C., N.F.)
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan (R.M., M.M., H.K., H.N., W.S.);Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan (M.K.);RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan (M.K.);Fukui Agricultural Experiment Station, Fukui 918-8215, Japan (K.T.); andDepartment of Biological Production, Akita Prefectural University, Akita 010-0195, Japan (N.C., N.F.)
| | - Hideki Nishimura
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan (R.M., M.M., H.K., H.N., W.S.);Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan (M.K.);RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan (M.K.);Fukui Agricultural Experiment Station, Fukui 918-8215, Japan (K.T.); andDepartment of Biological Production, Akita Prefectural University, Akita 010-0195, Japan (N.C., N.F.)
| | - Naoko Crofts
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan (R.M., M.M., H.K., H.N., W.S.);Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan (M.K.);RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan (M.K.);Fukui Agricultural Experiment Station, Fukui 918-8215, Japan (K.T.); andDepartment of Biological Production, Akita Prefectural University, Akita 010-0195, Japan (N.C., N.F.)
| | - Naoko Fujita
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan (R.M., M.M., H.K., H.N., W.S.);Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan (M.K.);RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan (M.K.);Fukui Agricultural Experiment Station, Fukui 918-8215, Japan (K.T.); andDepartment of Biological Production, Akita Prefectural University, Akita 010-0195, Japan (N.C., N.F.)
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan (R.M., M.M., H.K., H.N., W.S.);Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan (M.K.);RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan (M.K.);Fukui Agricultural Experiment Station, Fukui 918-8215, Japan (K.T.); andDepartment of Biological Production, Akita Prefectural University, Akita 010-0195, Japan (N.C., N.F.)
| |
Collapse
|
76
|
Zhang L, Ren Y, Lu B, Yang C, Feng Z, Liu Z, Chen J, Ma W, Wang Y, Yu X, Wang Y, Zhang W, Wang Y, Liu S, Wu F, Zhang X, Guo X, Bao Y, Jiang L, Wan J. FLOURY ENDOSPERM7 encodes a regulator of starch synthesis and amyloplast development essential for peripheral endosperm development in rice. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:633-47. [PMID: 26608643 PMCID: PMC4737065 DOI: 10.1093/jxb/erv469] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In cereal crops, starch synthesis and storage depend mainly on a specialized class of plastids, termed amyloplasts. Despite the importance of starch, the molecular machinery regulating starch synthesis and amyloplast development remains largely unknown. Here, we report the characterization of the rice (Oryza sativa) floury endosperm7 (flo7) mutant, which develops a floury-white endosperm only in the periphery and not in the inner portion. Consistent with the phenotypic alternation in flo7 endosperm, the flo7 mutant had reduced amylose content and seriously disrupted amylopectin structure only in the peripheral endosperm. Notably, flo7 peripheral endosperm cells showed obvious defects in compound starch grain development. Map-based cloning of FLO7 revealed that it encodes a protein of unknown function. FLO7 harbors an N-terminal transit peptide capable of targeting functional FLO7 fused to green fluorescent protein to amyloplast stroma in developing endosperm cells, and a domain of unknown function 1338 (DUF1338) that is highly conserved in green plants. Furthermore, our combined β-glucuronidase activity and RNA in situ hybridization assays showed that the FLO7 gene was expressed ubiquitously but exhibited a specific expression in the endosperm periphery. Moreover, a set of in vivo experiments demonstrated that the missing 32 aa in the flo7 mutant protein are essential for the stable accumulation of FLO7 in the endosperm. Together, our findings identify FLO7 as a unique plant regulator required for starch synthesis and amyloplast development within the peripheral endosperm and provide new insights into the spatial regulation of endosperm development in rice.
Collapse
Affiliation(s)
- Long Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yulong Ren
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Bingyue Lu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chunyan Yang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhiming Feng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhou Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jun Chen
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Weiwei Ma
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Ying Wang
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Xiaowen Yu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yunlong Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wenwei Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yihua Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Shijia Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Fuqing Wu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Xin Zhang
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Xiuping Guo
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Yiqun Bao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| |
Collapse
|
77
|
Cornman RS, Otto CRV, Iwanowicz D, Pettis JS. Taxonomic Characterization of Honey Bee (Apis mellifera) Pollen Foraging Based on Non-Overlapping Paired-End Sequencing of Nuclear Ribosomal Loci. PLoS One 2015; 10:e0145365. [PMID: 26700168 PMCID: PMC4689544 DOI: 10.1371/journal.pone.0145365] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/01/2015] [Indexed: 01/31/2023] Open
Abstract
Identifying plant taxa that honey bees (Apis mellifera) forage upon is of great apicultural interest, but traditional methods are labor intensive and may lack resolution. Here we evaluate a high-throughput genetic barcoding approach to characterize trap-collected pollen from multiple North Dakota apiaries across multiple years. We used the Illumina MiSeq platform to generate sequence scaffolds from non-overlapping 300-bp paired-end sequencing reads of the ribosomal internal transcribed spacers (ITS). Full-length sequence scaffolds represented ~530 bp of ITS sequence after adapter trimming, drawn from the 5’ of ITS1 and the 3’ of ITS2, while skipping the uninformative 5.8S region. Operational taxonomic units (OTUs) were picked from scaffolds clustered at 97% identity, searched by BLAST against the nt database, and given taxonomic assignments using the paired-read lowest common ancestor approach. Taxonomic assignments and quantitative patterns were consistent with known plant distributions, phenology, and observational reports of pollen foraging, but revealed an unexpected contribution from non-crop graminoids and wetland plants. The mean number of plant species assignments per sample was 23.0 (+/- 5.5) and the mean species diversity (effective number of equally abundant species) was 3.3 (+/- 1.2). Bray-Curtis similarities showed good agreement among samples from the same apiary and sampling date. Rarefaction plots indicated that fewer than 50,000 reads are typically needed to characterize pollen samples of this complexity. Our results show that a pre-compiled, curated reference database is not essential for genus-level assignments, but species-level assignments are hindered by database gaps, reference length variation, and probable errors in the taxonomic assignment, requiring post-hoc evaluation. Although the effective per-sample yield achieved using custom MiSeq amplicon primers was less than the machine maximum, primarily due to lower “read2” quality, further protocol optimization and/or a modest reduction in multiplex scale should offset this difficulty. As small quantities of pollen are sufficient for amplification, our approach might be extendable to other questions or species for which large pollen samples are not available.
Collapse
Affiliation(s)
- R Scott Cornman
- U.S. Geological Survey, Fort Collins Science Center, 2150 Centre Avenue, Fort Collins, CO, 80526, United States of America
| | - Clint R V Otto
- U.S. Geological Survey, Northern Prairie Wildlife Research Center, 8711 37th Street Southeast, Jamestown, ND, 58401, United States of America
| | - Deborah Iwanowicz
- U.S. Geological Survey, Leetown Science Center, 11649 Leetown Road, Kearneysville, WV, 25430, United States of America
| | - Jeffery S Pettis
- U.S. Department of Agriculture-Agriculture Research Service, Beltsville Agricultural Research Center, Bee Research Laboratory, 10300 Baltimore Avenue, Beltsville, MD, 20705, United States of America
| |
Collapse
|
78
|
Ganguly D, Crisp P, Harter K, Pogson BJ, Albrecht-Borth V. Genetic suppression of plant development and chloroplast biogenesis via the Snowy Cotyledon 3 and Phytochrome B pathways. FUNCTIONAL PLANT BIOLOGY : FPB 2015; 42:676-686. [PMID: 32480711 DOI: 10.1071/fp15026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/02/2015] [Indexed: 06/11/2023]
Abstract
Plant development is regulated by external and internal factors such as light and chloroplast development. A revertant of the Arabidopsis thaliana (L.) Heyhn. chloroplast biogenesis mutant snowy cotyledon 3 (sco3-1) was isolated partially recovering the impaired chloroplast phenotype. The mutation was identified in the Phytochrome B (PhyB) gene and is a result of an amino acid change within the PAS repeat domain required for light-induced nuclear localisation. An independent phyB-9 mutation was crossed into sco3-1 mutants, resulting in the same partial reversion of sco3-1. Further analysis demonstrated that SCO3 and PhyB influence the greening process of seedlings and rosette leaves, embryogenesis, rosette formation and flowering. Interestingly, the functions of these proteins are interwoven in various ways, suggesting a complex genetic interaction. Whole-transcriptome profiling of sco3-1phyB-9 indicated that a completely distinct set of genes was differentially regulated in the double mutant compared with the single sco3-1 or phyB-9 mutants. Thus, we hypothesise that PhyB and SCO3 genetically suppress each other in plant and chloroplast development.
Collapse
Affiliation(s)
- Diep Ganguly
- ARC (Australian Research Council) Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton, ACT 0200, Australia
| | - Peter Crisp
- ARC (Australian Research Council) Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton, ACT 0200, Australia
| | - Klaus Harter
- Zentrum für Molekularbiologie der Pflanzen, Plant Physiology, University of Tübingen, 72076 Tübingen, Germany
| | - Barry J Pogson
- ARC (Australian Research Council) Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton, ACT 0200, Australia
| | - Verónica Albrecht-Borth
- ARC (Australian Research Council) Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton, ACT 0200, Australia
| |
Collapse
|
79
|
Chen H, Zou W, Zhao J. Ribonuclease J is required for chloroplast and embryo development in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2079-91. [PMID: 25871650 PMCID: PMC4378637 DOI: 10.1093/jxb/erv010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/18/2014] [Accepted: 12/19/2014] [Indexed: 05/20/2023]
Abstract
Chloroplasts perform many essential metabolic functions and their proper development is critically important in embryogenesis. However, little is known about how chloroplasts function in embryogenesis and more relevant components need to be characterized. In this study, we show that Arabidopsis Ribonuclease J (RNase J) is required for chloroplast and embryo development. Mutation of AtRNJ led to albino ovules containing aborted embryos; the morphological development of rnj embryos was disturbed after the globular stage. Observation of ultrastructures indicated that these aborted embryos may result from impaired chloroplast development. Furthermore, by analyzing the molecular markers of cell fate decisions (STM, FIL, ML1, SCR, and WOX5) in rnj embryos, we found that this impairment of chloroplast development may lead to aberrant embryo patterning along the apical-basal axis, indicating that AtRNJ is important in initiating and maintaining the organization of shoot apical meristems (SAMs), cotyledons, and hypocotyls. Moreover, the transport and response of auxin in rnj embryos was found to be disrupted, suggesting that AtRNJ may be involved in auxin-mediated pathways during embryogenesis. Therefore, we speculate that RNJ plays a vital role in embryo morphogenesis and apical-basal pattern formation by regulating chloroplast development.
Collapse
Affiliation(s)
- Hongyu Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wenxuan Zou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jie Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
80
|
Vercruyssen L, Tognetti VB, Gonzalez N, Van Dingenen J, De Milde L, Bielach A, De Rycke R, Van Breusegem F, Inzé D. GROWTH REGULATING FACTOR5 stimulates Arabidopsis chloroplast division, photosynthesis, and leaf longevity. PLANT PHYSIOLOGY 2015; 167:817-32. [PMID: 25604530 PMCID: PMC4348790 DOI: 10.1104/pp.114.256180] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 01/16/2015] [Indexed: 05/18/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) leaf development relies on subsequent phases of cell proliferation and cell expansion. During the proliferation phase, chloroplasts need to divide extensively, and during the transition from cell proliferation to expansion, they differentiate into photosynthetically active chloroplasts, providing the plant with energy. The transcription factor GROWTH REGULATING FACTOR5 (GRF5) promotes the duration of the cell proliferation period during leaf development. Here, it is shown that GRF5 also stimulates chloroplast division, resulting in a higher chloroplast number per cell with a concomitant increase in chlorophyll levels in 35S:GRF5 leaves, which can sustain higher rates of photosynthesis. Moreover, 35S:GRF5 plants show delayed leaf senescence and are more tolerant for growth on nitrogen-depleted medium. Cytokinins also stimulate leaf growth in part by extending the cell proliferation phase, simultaneously delaying the onset of the cell expansion phase. In addition, cytokinins are known to be involved in chloroplast development, nitrogen signaling, and senescence. Evidence is provided that GRF5 and cytokinins synergistically enhance cell division and chlorophyll retention after dark-induced senescence, which suggests that they also cooperate to stimulate chloroplast division and nitrogen assimilation. Taken together with the increased leaf size, ectopic expression of GRF5 has great potential to improve plant productivity.
Collapse
Affiliation(s)
- Liesbeth Vercruyssen
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (L.V., V.B.T., N.G., J.V.D., L.D.M., A.B., R.D.R., F.V.B., D.I.); Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (L.V., V.B.T., N.G., J.V.D., L.D.M., A.B., R.D.R., F.V.B., D.I.); and Central European Institute of Technology, 60177 Brno, Czech Republic (V.B.T., A.B.)
| | - Vanesa B Tognetti
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (L.V., V.B.T., N.G., J.V.D., L.D.M., A.B., R.D.R., F.V.B., D.I.); Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (L.V., V.B.T., N.G., J.V.D., L.D.M., A.B., R.D.R., F.V.B., D.I.); and Central European Institute of Technology, 60177 Brno, Czech Republic (V.B.T., A.B.)
| | - Nathalie Gonzalez
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (L.V., V.B.T., N.G., J.V.D., L.D.M., A.B., R.D.R., F.V.B., D.I.); Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (L.V., V.B.T., N.G., J.V.D., L.D.M., A.B., R.D.R., F.V.B., D.I.); and Central European Institute of Technology, 60177 Brno, Czech Republic (V.B.T., A.B.)
| | - Judith Van Dingenen
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (L.V., V.B.T., N.G., J.V.D., L.D.M., A.B., R.D.R., F.V.B., D.I.); Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (L.V., V.B.T., N.G., J.V.D., L.D.M., A.B., R.D.R., F.V.B., D.I.); and Central European Institute of Technology, 60177 Brno, Czech Republic (V.B.T., A.B.)
| | - Liesbeth De Milde
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (L.V., V.B.T., N.G., J.V.D., L.D.M., A.B., R.D.R., F.V.B., D.I.); Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (L.V., V.B.T., N.G., J.V.D., L.D.M., A.B., R.D.R., F.V.B., D.I.); and Central European Institute of Technology, 60177 Brno, Czech Republic (V.B.T., A.B.)
| | - Agnieszka Bielach
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (L.V., V.B.T., N.G., J.V.D., L.D.M., A.B., R.D.R., F.V.B., D.I.); Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (L.V., V.B.T., N.G., J.V.D., L.D.M., A.B., R.D.R., F.V.B., D.I.); and Central European Institute of Technology, 60177 Brno, Czech Republic (V.B.T., A.B.)
| | - Riet De Rycke
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (L.V., V.B.T., N.G., J.V.D., L.D.M., A.B., R.D.R., F.V.B., D.I.); Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (L.V., V.B.T., N.G., J.V.D., L.D.M., A.B., R.D.R., F.V.B., D.I.); and Central European Institute of Technology, 60177 Brno, Czech Republic (V.B.T., A.B.)
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (L.V., V.B.T., N.G., J.V.D., L.D.M., A.B., R.D.R., F.V.B., D.I.); Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (L.V., V.B.T., N.G., J.V.D., L.D.M., A.B., R.D.R., F.V.B., D.I.); and Central European Institute of Technology, 60177 Brno, Czech Republic (V.B.T., A.B.)
| | - Dirk Inzé
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (L.V., V.B.T., N.G., J.V.D., L.D.M., A.B., R.D.R., F.V.B., D.I.); Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (L.V., V.B.T., N.G., J.V.D., L.D.M., A.B., R.D.R., F.V.B., D.I.); and Central European Institute of Technology, 60177 Brno, Czech Republic (V.B.T., A.B.)
| |
Collapse
|
81
|
Pogson BJ, Ganguly D, Albrecht-Borth V. Insights into chloroplast biogenesis and development. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1017-24. [PMID: 25667967 DOI: 10.1016/j.bbabio.2015.02.003] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/29/2014] [Accepted: 02/03/2015] [Indexed: 12/16/2022]
Abstract
In recent years many advances have been made to obtain insight into chloroplast biogenesis and development. In plants several plastids types exist such as the proplastid (which is the progenitor of all plastids), leucoplasts (group of colourless plastids important for storage including elaioplasts (lipids), amyloplasts (starch) or proteinoplasts (proteins)), chromoplasts (yellow to orange-coloured due to carotenoids, in flowers or in old leaves as gerontoplasts), and the green chloroplasts. Chloroplasts are indispensable for plant development; not only by performing photosynthesis and thus rendering the plant photoautotrophic, but also for biochemical processes (which in some instances can also take place in other plastids types), such as the synthesis of pigments, lipids, and plant hormones and sensing environmental stimuli. Although we understand many aspects of these processes there are gaps in our understanding of the establishment of functional chloroplasts and their regulation. Why is that so? Even though chloroplast function is comparable in all plants and most of the algae, ferns and moss, detailed analyses have revealed many differences, specifically with respect to its biogenesis. As an update to our prior review on the genetic analysis of chloroplast biogenesis and development [1] herein we will focus on recent advances in Angiosperms (monocotyledonous and dicotyledonous plants) that provide novel insights and highlight the challenges and prospects for unravelling the regulation of chloroplast biogenesis specifically during the establishment of the young plants. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
Affiliation(s)
| | - Diep Ganguly
- Australian National University, Canberra, Australia
| | | |
Collapse
|
82
|
Kamau PK, Sano S, Takami T, Matsushima R, Maekawa M, Sakamoto W. A Mutation in GIANT CHLOROPLAST Encoding a PARC6 Homolog Affects Spikelet Fertility in Rice. ACTA ACUST UNITED AC 2015; 56:977-91. [DOI: 10.1093/pcp/pcv024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/04/2015] [Indexed: 01/07/2023]
|
83
|
Shen Z, Liu YC, Bibeau JP, Lemoi KP, Tüzel E, Vidali L. The kinesin-like proteins, KAC1/2, regulate actin dynamics underlying chloroplast light-avoidance in Physcomitrella patens. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:106-19. [PMID: 25351786 DOI: 10.1111/jipb.12303] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/23/2014] [Indexed: 05/15/2023]
Abstract
In plants, light determines chloroplast position; these organelles show avoidance and accumulation responses in high and low fluence-rate light, respectively. Chloroplast motility in response to light is driven by cytoskeletal elements. The actin cytoskeleton mediates chloroplast photorelocation responses in Arabidopsis thaliana. In contrast, in the moss Physcomitrella patens, both, actin filaments and microtubules can transport chloroplasts. Because of the surprising evidence that two kinesin-like proteins (called KACs) are important for actin-dependent chloroplast photorelocation in vascular plants, we wanted to determine the cytoskeletal system responsible for the function of these proteins in moss. We performed gene-specific silencing using RNA interference in P. patens. We confirmed existing reports using gene knockouts, that PpKAC1 and PpKAC2 are required for chloroplast dispersion under uniform white light conditions, and that the two proteins are functionally equivalent. To address the specific cytoskeletal elements responsible for motility, this loss-of-function approach was combined with cytoskeleton-targeted drug studies. We found that, in P. patens, these KACs mediate the chloroplast light-avoidance response in an actin filament-dependent, rather than a microtubule-dependent manner. Using correlation-decay analysis of cytoskeletal dynamics, we found that PpKAC stabilizes cortical actin filaments, but has no effect on microtubule dynamics.
Collapse
Affiliation(s)
- Zhiyuan Shen
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, 01609, USA
| | | | | | | | | | | |
Collapse
|
84
|
Chu CC, Li HM. Protein import into isolated pea root leucoplasts. FRONTIERS IN PLANT SCIENCE 2015; 6:690. [PMID: 26388889 PMCID: PMC4560022 DOI: 10.3389/fpls.2015.00690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/20/2015] [Indexed: 05/06/2023]
Abstract
Leucoplasts are important organelles for the synthesis and storage of starch, lipids and proteins. However, molecular mechanism of protein import into leucoplasts and how it differs from that of import into chloroplasts remain unknown. We used pea seedlings for both chloroplast and leucoplast isolations to compare within the same species. We further optimized the isolation and import conditions to improve import efficiency and to permit a quantitative comparison between the two plastid types. The authenticity of the import was verified using a mitochondrial precursor protein. Our results show that, when normalized to Toc75, most translocon proteins are less abundant in leucoplasts than in chloroplasts. A precursor shown to prefer the receptor Toc132 indeed had relatively more similar import efficiencies between chloroplasts and leucoplasts compared to precursors that prefer Toc159. Furthermore we found two precursors that exhibited very high import efficiency into leucoplasts. Their transit peptides may be candidates for delivering transgenic proteins into leucoplasts and for analyzing motifs important for leucoplast import.
Collapse
Affiliation(s)
| | - Hsou-min Li
- *Correspondence: Hsou-min Li, Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan,
| |
Collapse
|
85
|
Li Y, Xu J, Haq NU, Zhang H, Zhu XG. Was low CO2 a driving force of C4 evolution: Arabidopsis responses to long-term low CO2 stress. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3657-67. [PMID: 24855683 PMCID: PMC4085967 DOI: 10.1093/jxb/eru193] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The responses of long-term growth of plants under elevated CO2 have been studied extensively. Comparatively, the responses of plants to subambient CO2 concentrations have not been well studied. This study aims to investigate the responses of the model C3 plant, Arabidopsis thaliana, to low CO2 at the molecular level. Results showed that low CO2 dramatically decreased biomass productivity, together with delayed flowering and increased stomatal density. Furthermore, alteration of thylakoid stacking in both bundle sheath and mesophyll cells, upregulation of PEPC and PEPC-K together with altered expression of a number of regulators known involved in photosynthesis development were observed. These responses to low CO2 are discussed with regard to the fitness of C3 plants under low CO2. This work also briefly discusses the relevance of the data to C4 photosynthesis evolution.
Collapse
Affiliation(s)
- Yuanyuan Li
- State Key Laboratory of Hybrid Rice Research, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China Key Laboratory of Computational Biology and Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiajia Xu
- State Key Laboratory of Hybrid Rice Research, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China Key Laboratory of Computational Biology and Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Noor Ul Haq
- Key Laboratory of Computational Biology and Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Zhang
- Key Laboratory of Computational Biology and Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai 200031, China Shandong Normal University, Jinan, Shandong 250014, China
| | - Xin-Guang Zhu
- State Key Laboratory of Hybrid Rice Research, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China Key Laboratory of Computational Biology and Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
86
|
Xu J, Deng Y, Li Q, Zhu X, He Z. STRIPE2 encodes a putative dCMP deaminase that plays an important role in chloroplast development in rice. J Genet Genomics 2014; 41:539-48. [PMID: 25438698 DOI: 10.1016/j.jgg.2014.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/08/2014] [Accepted: 05/09/2014] [Indexed: 12/20/2022]
Abstract
Mutants with abnormal leaf coloration are good genetic materials for understanding the mechanism of chloroplast development and chlorophyll biosynthesis. In this study, a rice mutant st2 (stripe2) with stripe leaves was identified from the γ-ray irradiated mutant pool. The st2 mutant exhibited decreased accumulation of chlorophyll and aberrant chloroplasts. Genetic analysis indicated that the st2 mutant was controlled by a single recessive locus. The ST2 gene was finely confined to a 27-kb region on chromosome 1 by the map-based cloning strategy and a 5-bp deletion in Os01g0765000 was identified by sequence analysis. The deletion happened in the joint of exon 3 and intron 3 and led to new spliced products of mRNA. Genetic complementation confirmed that Os01g0765000 is the ST2 gene. We found that the ST2 gene was expressed ubiquitously. Subcellular localization assay showed that the ST2 protein was located in mitochondria. ST2 belongs to the cytidine deaminase-like family and possibly functions as the dCMP deaminase, which catalyzes the formation of dUMP from dCMP by deamination. Additionally, exogenous application of dUMP could partially rescue the st2 phenotype. Therefore, our study identified a putative dCMP deaminase as a novel regulator in chloroplast development for the first time.
Collapse
Affiliation(s)
- Jing Xu
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yiwen Deng
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qun Li
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xudong Zhu
- China National Rice Research Institute, Hangzhou 31006, China.
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
87
|
Hüner NPA, Dahal K, Kurepin LV, Savitch L, Singh J, Ivanov AG, Kane K, Sarhan F. Potential for increased photosynthetic performance and crop productivity in response to climate change: role of CBFs and gibberellic acid. Front Chem 2014; 2:18. [PMID: 24860799 PMCID: PMC4029004 DOI: 10.3389/fchem.2014.00018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/25/2014] [Indexed: 01/07/2023] Open
Abstract
We propose that targeting the enhanced photosynthetic performance associated with the cold acclimation of winter cultivars of rye (Secale cereale L.), wheat (Triticum aestivum L.), and Brassica napus L. may provide a novel approach to improve crop productivity under abiotic as well as biotic stress conditions. In support of this hypothesis, we provide the physiological, biochemical, and molecular evidence that the dwarf phenotype induced by cold acclimation is coupled to significant enhancement in photosynthetic performance, resistance to photoinhibition, and a decreased dependence on photoprotection through non-photochemical quenching which result in enhanced biomass production and ultimately increased seed yield. These system-wide changes at the levels of phenotype, physiology, and biochemistry appear to be governed by the family of C-repeat/dehydration-responsive family of transcription factors (CBF/DREB1). We relate this phenomenon to the semi-dwarf, gibberellic acid insensitive (GAI), cereal varieties developed during the "green revolution" of the early 1960s and 1970s. We suggest that genetic manipulation of the family of C-repeat/dehydration-responsive element binding transcription factors (CBF/DREB1) may provide a novel approach for the maintenance and perhaps even the enhancement of plant productivity under conditions of sub-optimal growth conditions predicted for our future climate.
Collapse
Affiliation(s)
- Norman P. A. Hüner
- Biology Department and the Biotron Centre for Experimental Climate Change Research, University of Western OntarioLondon, ON, Canada
| | - Keshav Dahal
- Department of Biological Sciences, University of Toronto at ScarboroughScarborough, ON, Canada
| | - Leonid V. Kurepin
- Biology Department and the Biotron Centre for Experimental Climate Change Research, University of Western OntarioLondon, ON, Canada
| | - Leonid Savitch
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food CanadaOttawa, ON, Canada
| | - Jas Singh
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food CanadaOttawa, ON, Canada
| | - Alexander G. Ivanov
- Biology Department and the Biotron Centre for Experimental Climate Change Research, University of Western OntarioLondon, ON, Canada
| | - Khalil Kane
- Départment des Sciences biologiques, Université du Québec à MontréalMontréal, QC, Canada
| | - Fathey Sarhan
- Départment des Sciences biologiques, Université du Québec à MontréalMontréal, QC, Canada
| |
Collapse
|
88
|
Alsharafa K, Vogel MO, Oelze ML, Moore M, Stingl N, König K, Friedman H, Mueller MJ, Dietz KJ. Kinetics of retrograde signalling initiation in the high light response of Arabidopsis thaliana. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130424. [PMID: 24591725 DOI: 10.1098/rstb.2013.0424] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
High light acclimation depends on retrograde control of nuclear gene expression. Retrograde regulation uses multiple signalling pathways and thus exploits signal patterns. To maximally challenge the acclimation system, Arabidopsis thaliana plants were either adapted to 8 (low light (L-light)) or 80 µmol quanta m(-2) s(-1) (normal light (N-light)) and subsequently exposed to a 100- and 10-fold light intensity increase, respectively, to high light (H-light, 800 µmol quanta m(-2) s(-1)), for up to 6 h. Both L → H- and N → H-light plants efficiently regulated CO2 assimilation to a constant level without apparent damage and inhibition. This experimental set-up was scrutinized for time-dependent regulation and efficiency of adjustment. Transcriptome profiles revealed that N-light and L-light plants differentially accumulated 2119 transcripts. After 6 h in H-light, only 205 remained differently regulated between the L → H- and N → H-light plants, indicating efficient regulation allowing the plants to reach a similar transcriptome state. Time-dependent analysis of transcripts as markers for signalling pathways, and of metabolites and hormones as possibly involved transmitters, suggests that oxylipins such as oxophytodienoic acid and jasmonic acid, metabolites and redox cues predominantly control the acclimation response, whereas abscisic acid, salicylic acid and auxins play an insignificant or minor role.
Collapse
Affiliation(s)
- Khalid Alsharafa
- Biochemistry and Physiology of Plants, Bielefeld University, , Bielefeld 33501, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Vogel MO, Moore M, König K, Pecher P, Alsharafa K, Lee J, Dietz KJ. Fast retrograde signaling in response to high light involves metabolite export, MITOGEN-ACTIVATED PROTEIN KINASE6, and AP2/ERF transcription factors in Arabidopsis. THE PLANT CELL 2014; 26:1151-65. [PMID: 24668746 PMCID: PMC4001375 DOI: 10.1105/tpc.113.121061] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/31/2014] [Accepted: 02/28/2014] [Indexed: 05/18/2023]
Abstract
Regulation of the expression of nuclear genes encoding chloroplast proteins allows for metabolic adjustment in response to changing environmental conditions. This regulation is linked to retrograde signals that transmit information on the metabolic state of the chloroplast to the nucleus. Transcripts of several APETALA2/ETHYLENE RESPONSE FACTOR transcription factors (AP2/ERF-TFs) were found to respond within 10 min after transfer of low-light-acclimated Arabidopsis thaliana plants to high light. Initiation of this transcriptional response was completed within 1 min after transfer to high light. The fast responses of four AP2/ERF genes, ERF6, RRTF1, ERF104, and ERF105, were entirely deregulated in triose phosphate/phosphate translocator (tpt) mutants. Similarly, activation of MITOGEN-ACTIVATED PROTEIN KINASE6 (MPK6) was upregulated after 1 min in the wild type but not in the tpt mutant. Based on this, together with altered transcript regulation in mpk6 and erf6 mutants, a retrograde signal transmission model is proposed starting with metabolite export through the triose phosphate/phosphate translocator with subsequent MPK6 activation leading to initiation of AP2/ERF-TF gene expression and other downstream gene targets. The results show that operational retrograde signaling in response to high light involves a metabolite-linked pathway in addition to previously described redox and hormonal pathways.
Collapse
Affiliation(s)
- Marc Oliver Vogel
- Biochemistry and Physiology of Plants, Bielefeld University, 33501 Bielefeld, Germany
| | - Marten Moore
- Biochemistry and Physiology of Plants, Bielefeld University, 33501 Bielefeld, Germany
| | - Katharina König
- Biochemistry and Physiology of Plants, Bielefeld University, 33501 Bielefeld, Germany
| | - Pascal Pecher
- Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Khalid Alsharafa
- Biochemistry and Physiology of Plants, Bielefeld University, 33501 Bielefeld, Germany
| | - Justin Lee
- Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Bielefeld University, 33501 Bielefeld, Germany
- Address correspondence to
| |
Collapse
|
90
|
Matsushima R, Maekawa M, Kusano M, Kondo H, Fujita N, Kawagoe Y, Sakamoto W. Amyloplast-localized SUBSTANDARD STARCH GRAIN4 protein influences the size of starch grains in rice endosperm. PLANT PHYSIOLOGY 2014; 164:623-36. [PMID: 24335509 PMCID: PMC3912094 DOI: 10.1104/pp.113.229591] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/13/2013] [Indexed: 05/18/2023]
Abstract
Starch is a biologically and commercially important polymer of glucose and is synthesized to form starch grains (SGs) inside amyloplasts. Cereal endosperm accumulates starch to levels that are more than 90% of the total weight, and most of the intracellular space is occupied by SGs. The size of SGs differs depending on the plant species and is one of the most important factors for industrial applications of starch. However, the molecular machinery that regulates the size of SGs is unknown. In this study, we report a novel rice (Oryza sativa) mutant called substandard starch grain4 (ssg4) that develops enlarged SGs in the endosperm. Enlargement of SGs in ssg4 was also observed in other starch-accumulating tissues such as pollen grains, root caps, and young pericarps. The SSG4 gene was identified by map-based cloning. SSG4 encodes a protein that contains 2,135 amino acid residues and an amino-terminal amyloplast-targeted sequence. SSG4 contains a domain of unknown function490 that is conserved from bacteria to higher plants. Domain of unknown function490-containing proteins with lengths greater than 2,000 amino acid residues are predominant in photosynthetic organisms such as cyanobacteria and higher plants but are minor in proteobacteria. The results of this study suggest that SSG4 is a novel protein that influences the size of SGs. SSG4 will be a useful molecular tool for future starch breeding and biotechnology.
Collapse
|
91
|
Jarvis P, López-Juez E. Biogenesis and homeostasis of chloroplasts and other plastids. Nat Rev Mol Cell Biol 2014; 14:787-802. [PMID: 24263360 DOI: 10.1038/nrm3702] [Citation(s) in RCA: 423] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chloroplasts are the organelles that define plants, and they are responsible for photosynthesis as well as numerous other functions. They are the ancestral members of a family of organelles known as plastids. Plastids are remarkably dynamic, existing in strikingly different forms that interconvert in response to developmental or environmental cues. The genetic system of this organelle and its coordination with the nucleocytosolic system, the import and routing of nucleus-encoded proteins, as well as organellar division all contribute to the biogenesis and homeostasis of plastids. They are controlled by the ubiquitin-proteasome system, which is part of a network of regulatory mechanisms that integrate plastid development into broader programmes of cellular and organismal development.
Collapse
Affiliation(s)
- Paul Jarvis
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | | |
Collapse
|
92
|
Peharec Štefanić P, Koffler T, Adler G, Bar-Zvi D. Chloroplasts of salt-grown Arabidopsis seedlings are impaired in structure, genome copy number and transcript levels. PLoS One 2013; 8:e82548. [PMID: 24340039 PMCID: PMC3855474 DOI: 10.1371/journal.pone.0082548] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 10/26/2013] [Indexed: 11/19/2022] Open
Abstract
The chloroplast is the most prominent and metabolically active plastid in photosynthetic plants. Chloroplasts differentiate from proplastids in the plant meristem. Plant plastids contain multiple copies of a small circular genome. The numbers of chloroplasts per mesophyll cell and of plastid genome copies are affected by developmental stage and environmental signals. We compared chloroplast structure, gene expression and genome copy number in Arabidopsis seedlings germinated and grown under optimal conditions to those in seedlings germinated and grown in the presence of NaCl. Chloroplasts of the NaCl-grown seedlings were impaired, with less developed thylakoid and granum membranes than control seedlings. In addition, chloroplasts of salt-grown Arabidopsis seedlings accumulated more starch grains than those in the respective control plants. Steady-state transcript levels of chloroplast-encoded genes and of nuclear genes encoding chloroplast proteins were reduced in salt-grown seedlings. This reduction did not result from a global decrease in gene expression, since the expression of other nuclear genes was induced or not affected. Average cellular chloroplast genome copy number was reduced in salt-grown seedlings, suggesting that the reduction in steady-state transcript levels of chloroplast-encoded genes might result from a decrease in template DNA.
Collapse
Affiliation(s)
- Petra Peharec Štefanić
- Department of Life Sciences and Doris and Bertie Black Center for Bioenergetics in Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Molecular Biology, Division of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| | - Tal Koffler
- Department of Life Sciences and Doris and Bertie Black Center for Bioenergetics in Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Guy Adler
- Department of Life Sciences and Doris and Bertie Black Center for Bioenergetics in Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Dudy Bar-Zvi
- Department of Life Sciences and Doris and Bertie Black Center for Bioenergetics in Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- * E-mail:
| |
Collapse
|
93
|
Dong H, Fei GL, Wu CY, Wu FQ, Sun YY, Chen MJ, Ren YL, Zhou KN, Cheng ZJ, Wang JL, Jiang L, Zhang X, Guo XP, Lei CL, Su N, Wang H, Wan JM. A rice virescent-yellow leaf mutant reveals new insights into the role and assembly of plastid caseinolytic protease in higher plants. PLANT PHYSIOLOGY 2013; 162:1867-80. [PMID: 23803583 PMCID: PMC3729767 DOI: 10.1104/pp.113.217604] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 06/24/2013] [Indexed: 05/20/2023]
Abstract
The plastidic caseinolytic protease (Clp) of higher plants is an evolutionarily conserved protein degradation apparatus composed of a proteolytic core complex (the P and R rings) and a set of accessory proteins (ClpT, ClpC, and ClpS). The role and molecular composition of Clps in higher plants has just begun to be unraveled, mostly from studies with the model dicotyledonous plant Arabidopsis (Arabidopsis thaliana). In this work, we isolated a virescent yellow leaf (vyl) mutant in rice (Oryza sativa), which produces chlorotic leaves throughout the entire growth period. The young chlorotic leaves turn green in later developmental stages, accompanied by alterations in chlorophyll accumulation, chloroplast ultrastructure, and the expression of chloroplast development- and photosynthesis-related genes. Positional cloning revealed that the VYL gene encodes a protein homologous to the Arabidopsis ClpP6 subunit and that it is targeted to the chloroplast. VYL expression is constitutive in most tissues examined but most abundant in leaf sections containing chloroplasts in early stages of development. The mutation in vyl causes premature termination of the predicted gene product and loss of the conserved catalytic triad (serine-histidine-aspartate) and the polypeptide-binding site of VYL. Using a tandem affinity purification approach and mass spectrometry analysis, we identified OsClpP4 as a VYL-associated protein in vivo. In addition, yeast two-hybrid assays demonstrated that VYL directly interacts with OsClpP3 and OsClpP4. Furthermore, we found that OsClpP3 directly interacts with OsClpT, that OsClpP4 directly interacts with OsClpP5 and OsClpT, and that both OsClpP4 and OsClpT can homodimerize. Together, our data provide new insights into the function, assembly, and regulation of Clps in higher plants.
Collapse
|
94
|
Shapiro JA. How life changes itself: the Read-Write (RW) genome. Phys Life Rev 2013; 10:287-323. [PMID: 23876611 DOI: 10.1016/j.plrev.2013.07.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 07/02/2013] [Indexed: 01/06/2023]
Abstract
The genome has traditionally been treated as a Read-Only Memory (ROM) subject to change by copying errors and accidents. In this review, I propose that we need to change that perspective and understand the genome as an intricately formatted Read-Write (RW) data storage system constantly subject to cellular modifications and inscriptions. Cells operate under changing conditions and are continually modifying themselves by genome inscriptions. These inscriptions occur over three distinct time-scales (cell reproduction, multicellular development and evolutionary change) and involve a variety of different processes at each time scale (forming nucleoprotein complexes, epigenetic formatting and changes in DNA sequence structure). Research dating back to the 1930s has shown that genetic change is the result of cell-mediated processes, not simply accidents or damage to the DNA. This cell-active view of genome change applies to all scales of DNA sequence variation, from point mutations to large-scale genome rearrangements and whole genome duplications (WGDs). This conceptual change to active cell inscriptions controlling RW genome functions has profound implications for all areas of the life sciences.
Collapse
Affiliation(s)
- James A Shapiro
- Dept. of Biochemistry and Molecular Biology, University of Chicago, GCIS W123B, 979 E. 57th Street, Chicago, IL 60637, USA. http://www.huffingtonpost.com/james-a-shapiro
| |
Collapse
|
95
|
Lee KH, Park J, Williams DS, Xiong Y, Hwang I, Kang BH. Defective chloroplast development inhibits maintenance of normal levels of abscisic acid in a mutant of the Arabidopsis RH3 DEAD-box protein during early post-germination growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:720-32. [PMID: 23227895 DOI: 10.1111/tpj.12055] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/11/2012] [Accepted: 10/16/2012] [Indexed: 05/19/2023]
Abstract
The plastid has its own translation system, and its ribosomes are assembled through a complex process in which rRNA precursors are processed and ribosomal proteins are inserted into the rRNA backbone. DEAD-box proteins have been shown to play roles in multiple steps in ribosome biogenesis. To investigate the cellular and physiological roles of an Arabidopsis DEAD-box protein, RH3, we examined its expression and localization and the phenotypes of rh3-4, a T-DNA insertion mutant allele of RH3. The promoter activity of RH3 is strongest in the greening tissues of 3-day and 1-week-old seedlings but reduced afterwards. Cotyledons were pale and seedling growth was retarded in the mutant. The most obvious abnormality in the mutant chloroplasts was their lack of normal ribosomes. Electron tomography analysis indicated that ribosome density in the 3-day-old mutant chloroplasts is only 20% that of wild-type chloroplasts, and the ribosomes in the mutant are smaller. These chloroplast defects in rh3-4 were alleviated in 2-week-old cotyledons and true leaves. Interestingly, rh3-4 seedlings have lower amounts of abscisic acid prior to recovery of their chloroplasts, and were more sensitive to abiotic stresses. Transcriptomic analysis indicated that nuclear genes for chloroplast proteins are down-regulated, and proteins mediating chloroplast-localized steps of abscisic acid biosynthesis are expressed to a lower extent in 1-week-old rh3-4 seedlings. Taken together, these results suggest that conversion of eoplasts into chloroplasts in young seedlings is critical for the seedlings to start carbon fixation as well as for maintenance of abscisic acid levels for responding to environmental challenges.
Collapse
Affiliation(s)
- Kwang-Hee Lee
- Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | | | | | | | | | | |
Collapse
|
96
|
Oldenburg DJ, Kumar RA, Bendich AJ. The amount and integrity of mtDNA in maize decline with development. PLANTA 2013; 237:603-17. [PMID: 23229060 DOI: 10.1007/s00425-012-1802-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 10/26/2012] [Indexed: 05/10/2023]
Abstract
In maize and other grasses there is a developmental gradient from the meristematic cells at the base of the stalk to the differentiated cells at the leaf tip. This gradient presents an opportunity to investigate changes in mitochondrial DNA (mtDNA) that accompany growth under light and dark conditions, as done previously for plastid DNA. Maize mtDNA was analyzed by DAPI-DNA staining of individual mitochondria, gel electrophoresis/blot hybridization, and real-time qPCR. Both the amount and integrity of the mtDNA were found to decline with development. There was a 20-fold decline in mtDNA copy number per cell from the embryo to the light-grown leaf blade. The amount of DNA per mitochondrial particle was greater in dark-grown leaf blade (24 copies, on average) than in the light (2 copies), with some mitochondria lacking any detectable DNA. Three factors that influence the demise of mtDNA during development are considered: (1) the decision to either repair or degrade mtDNA molecules that are damaged by the reactive oxygen species produced as byproducts of respiration; (2) the generation of ATP by photophosphorylation in chloroplasts, reducing the need for respiratory-competent mitochondria; and (3) the shift in mitochondrial function from energy-generating respiration to photorespiration during the transition from non-green to green tissue.
Collapse
Affiliation(s)
- Delene J Oldenburg
- Department of Biology, University of Washington, Seattle, WA 98195-5325, USA.
| | | | | |
Collapse
|
97
|
Otters S, Braun P, Hubner J, Wanner G, Vothknecht UC, Chigri F. The first α-helical domain of the vesicle-inducing protein in plastids 1 promotes oligomerization and lipid binding. PLANTA 2013; 237:529-40. [PMID: 23053543 DOI: 10.1007/s00425-012-1772-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 09/14/2012] [Indexed: 05/20/2023]
Abstract
The vesicle-inducing protein in plastids 1 (Vipp1) is an essential component for thylakoid biogenesis in cyanobacteria and chloroplasts. Vipp1 proteins share significant structural similarity with their evolutionary ancestor PspA (bacterial phage shock protein A), namely a predominantly α-helical structure, the formation of oligomeric high molecular weight complexes (HMW-Cs) and a tight association with membranes. Here, we elucidated domains of Vipp1 from Arabidopsis thaliana involved in homo-oligomerization as well as association with chloroplast inner envelope membranes. We could show that the 21 N-terminal amino acids of Vipp1, which form the first α-helix of the protein, are essential for assembly of the 2 MDa HMW-C but are not needed for formation of smaller subcomplexes. Interestingly, removal of this domain also interferes with association of the Vipp1 protein to the inner envelope. Fourier transform infrared spectroscopy of recombinant Vipp1 further indicates that Escherichia coli lipids bind tightly enough that they can be co-purified with the protein. This feature also depends on the presence of the first helix, which strongly supports an interaction of lipids with the Vipp1 HMW-C but not with smaller subcomplexes. Therefore, Vipp1 oligomerization appears to be a prerequisite for its membrane association. Our results further highlight structural differences between Vipp1 and PspA, which might be important in regard to their different function in thylakoid biogenesis and bacterial stress response, respectively.
Collapse
Affiliation(s)
- Stephanie Otters
- Department of Biology I, Botany, LMU Munich, Großhaderner Strasse 2-4, Planegg-Martinsried, Munich, Germany
| | | | | | | | | | | |
Collapse
|
98
|
Response of Mature, Developing and Senescing Chloroplasts to Environmental Stress. PLASTID DEVELOPMENT IN LEAVES DURING GROWTH AND SENESCENCE 2013. [DOI: 10.1007/978-94-007-5724-0_28] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
99
|
Hüner NPA, Bode R, Dahal K, Hollis L, Rosso D, Krol M, Ivanov AG. Chloroplast redox imbalance governs phenotypic plasticity: the "grand design of photosynthesis" revisited. FRONTIERS IN PLANT SCIENCE 2012; 3:255. [PMID: 23230444 PMCID: PMC3515967 DOI: 10.3389/fpls.2012.00255] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 10/30/2012] [Indexed: 05/03/2023]
Abstract
Sunlight, the ultimate energy source for life on our planet, enters the biosphere as a direct consequence of the evolution of photoautotrophy. Photoautotrophs must balance the light energy absorbed and trapped through extremely fast, temperature-insensitive photochemistry with energy consumed through much slower, temperature-dependent biochemistry and metabolism. The attainment of such a balance in cellular energy flow between chloroplasts, mitochondria and the cytosol is called photostasis. Photoautotrophs sense cellular energy imbalances through modulation of excitation pressure which is a measure of the relative redox state of Q(A), the first stable quinone electron acceptor of photosystem II reaction centers. High excitation pressure constitutes a potential stress condition that can be caused either by exposure to an irradiance that exceeds the capacity of C, N, and S assimilation to utilize the electrons generated from the absorbed energy or by low temperature or any stress that decreases the capacity of the metabolic pathways downstream of photochemistry to utilize photosynthetically generated reductants. The similarities and differences in the phenotypic responses between cyanobacteria, green algae, crop plants, and variegation mutants of Arabidopsis thaliana as a function of cold acclimation and photoacclimation are reconciled in terms of differential responses to excitation pressure and the predisposition of photoautotrophs to maintain photostasis. The various acclimation strategies associated with green algae and cyanobacteria versus winter cereals and A. thaliana are discussed in terms of retrograde regulation and the "grand design of photosynthesis" originally proposed by Arnon (1982).
Collapse
Affiliation(s)
- Norman P. A. Hüner
- Department of Biology, Western UniversityLondon, ON, Canada
- The Biotron Centre for Experimental Climate Change Research, Western UniversityLondon, ON, Canada
| | - Rainer Bode
- Department of Biology, Western UniversityLondon, ON, Canada
- The Biotron Centre for Experimental Climate Change Research, Western UniversityLondon, ON, Canada
| | - Keshav Dahal
- Department of Biology, Western UniversityLondon, ON, Canada
- The Biotron Centre for Experimental Climate Change Research, Western UniversityLondon, ON, Canada
| | - Lauren Hollis
- Department of Biology, Western UniversityLondon, ON, Canada
- The Biotron Centre for Experimental Climate Change Research, Western UniversityLondon, ON, Canada
| | - Dominic Rosso
- Department of Biology, Western UniversityLondon, ON, Canada
- The Biotron Centre for Experimental Climate Change Research, Western UniversityLondon, ON, Canada
| | - Marianna Krol
- Department of Biology, Western UniversityLondon, ON, Canada
- The Biotron Centre for Experimental Climate Change Research, Western UniversityLondon, ON, Canada
| | - Alexander G. Ivanov
- Department of Biology, Western UniversityLondon, ON, Canada
- The Biotron Centre for Experimental Climate Change Research, Western UniversityLondon, ON, Canada
| |
Collapse
|
100
|
Charuvi D, Kiss V, Nevo R, Shimoni E, Adam Z, Reich Z. Gain and loss of photosynthetic membranes during plastid differentiation in the shoot apex of Arabidopsis. THE PLANT CELL 2012; 24:1143-57. [PMID: 22438022 PMCID: PMC3336127 DOI: 10.1105/tpc.111.094458] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 02/06/2012] [Accepted: 03/02/2012] [Indexed: 05/17/2023]
Abstract
Chloroplasts of higher plants develop from proplastids, which are undifferentiated plastids that lack photosynthetic (thylakoid) membranes. In flowering plants, the proplastid-chloroplast transition takes place at the shoot apex, which consists of the shoot apical meristem (SAM) and the flanking leaf primordia. It has been believed that the SAM contains only proplastids and that these become chloroplasts only in the primordial leaves. Here, we show that plastids of the SAM are neither homogeneous nor necessarily null. Rather, their developmental state varies with the specific region and/or layer of the SAM in which they are found. Plastids throughout the L1 and L3 layers of the SAM possess fairly developed thylakoid networks. However, many of these plastids eventually lose their thylakoids during leaf maturation. By contrast, plastids at the central, stem cell-harboring region of the L2 layer of the SAM lack thylakoid membranes; these appear only at the periphery, near the leaf primordia. Thus, plastids in the SAM undergo distinct differentiation processes that, depending on their lineage and position, lead to either development or loss of thylakoid membranes. These processes continue along the course of leaf maturation.
Collapse
Affiliation(s)
- Dana Charuvi
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Vladimir Kiss
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Reinat Nevo
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eyal Shimoni
- Electron Microscopy Unit, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Zach Adam
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Ziv Reich
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
- Address correspondence to
| |
Collapse
|