51
|
Dissanayake HA, Somasundaram NP. Polyagonists in Type 2 Diabetes Management. Curr Diab Rep 2024; 24:1-12. [PMID: 38150106 DOI: 10.1007/s11892-023-01530-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/19/2023] [Indexed: 12/28/2023]
Abstract
PURPOSE OF THE REVIEW This review summarizes the new developments in polyagonist pharmacotherapy for type 2 diabetes. RECENT FINDINGS Several dual- and triple-agonists targeting different pathogenic pathways of type 2 diabetes have entered clinical trials and have led to significant improvements in glycaemia, body weight, fatty liver, and cardio-renal risk factors, with variable adverse event profiles but no new serious safety concerns. Combining agents with complementary and synergistic mechanisms of action have enhanced efficacy and safety. Targeting multiple pathogenic pathways simultaneously has led to enhanced benefits which potentially match those of bariatric surgery. Tirzepatide, cotadutide, BI456906, ritatrutide, and CagriSema have entered phase 3 clinical trials. Outcomes from published clinical studies are reviewed. Efficacy-safety profiles are heterogeneous between agents, suggesting the potential application of precision medicine and need for personalized approach in pharmacological management of type 2 diabetes and obesity. Polyagonism has become a key strategy to address the complex pathogenesis of type 2 diabetes and co-morbidities and increasing number of agents are moving through clinical trials. Heterogeneity in efficacy-safety profiles calls for application of precision medicine and need for judicious personalization of care.
Collapse
Affiliation(s)
- H A Dissanayake
- Department of Clinical Medicine, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | | |
Collapse
|
52
|
Prajapati S. Advances in the Management of Diabetes and Overweight using Incretin-based Pharmacotherapies. Curr Diabetes Rev 2024; 20:e131123223544. [PMID: 37962047 DOI: 10.2174/0115733998256797231009062744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/20/2023] [Accepted: 08/30/2023] [Indexed: 11/15/2023]
Abstract
Throughout the previous three decades, the secretion of glucagon-like peptide-1 hormone has attracted much attention to attain possible therapy goals for the treatment of both hypoglycaemic along type II diabetes militates and overweight. The pharmaceutical generation of peptides similar to hypoglycaemia-based medicines is exemplified by agonists of the GLP- 1R (Glucagon-like peptide-1 receptors). Pharmacokinetic profiles are continuously being improved, beginning with the native hormone with a two- to three-minute quarter and progressing through growth every day with once-drug combinations. Due to contradictory data that indicate stimulation or inhibition of the Glucagon-like peptide receptor, the Glucose-dependent insulin tropic peptide receptor offers favorable effects on systemic metabolism. The recent Glp-1R (Glucagon-like peptide-1 receptor-) targeting monomolecular drugs has demonstrated therapeutic effectiveness and has stoked interest in Glucose-dependent insulin tropic polypeptide antagonism as a treatment for overweight and diabetes mellitus. These drugs have been shown to dramatically improve carbohydrates with body weight management in sick people who have obesity and type II diabetes mellitus. In this study, recent breakthroughs in compelling therapeutic interventions are discussed, and the biology and pharmacology of the glucose-like peptide are reviewed.
Collapse
Affiliation(s)
- Shatrudhan Prajapati
- Department of Pharmacy, Golgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
53
|
Bany Bakar R, Reimann F, Gribble FM. The intestine as an endocrine organ and the role of gut hormones in metabolic regulation. Nat Rev Gastroenterol Hepatol 2023; 20:784-796. [PMID: 37626258 DOI: 10.1038/s41575-023-00830-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2023] [Indexed: 08/27/2023]
Abstract
Gut hormones orchestrate pivotal physiological processes in multiple metabolically active tissues, including the pancreas, liver, adipose tissue, gut and central nervous system, making them attractive therapeutic targets in the treatment of obesity and type 2 diabetes mellitus. Most gut hormones are derived from enteroendocrine cells, but bioactive peptides that are derived from other intestinal epithelial cell types have also been implicated in metabolic regulation and can be considered gut hormones. A deeper understanding of the complex inter-organ crosstalk mediated by the intestinal endocrine system is a prerequisite for designing more effective drugs that are based on or target gut hormones and their receptors, and extending their therapeutic potential beyond obesity and diabetes mellitus. In this Review, we present an overview of gut hormones that are involved in the regulation of metabolism and discuss their action in the gastrointestinal system and beyond.
Collapse
Affiliation(s)
- Rula Bany Bakar
- Wellcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Frank Reimann
- Wellcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Fiona M Gribble
- Wellcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, University of Cambridge, Cambridge, UK.
| |
Collapse
|
54
|
Sharma A, De Blasio M, Ritchie R. Current challenges in the treatment of cardiac fibrosis: Recent insights into the sex-specific differences of glucose-lowering therapies on the diabetic heart: IUPHAR Review 33. Br J Pharmacol 2023; 180:2916-2933. [PMID: 35174479 PMCID: PMC10952904 DOI: 10.1111/bph.15820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 11/28/2022] Open
Abstract
A significant cardiac complication of diabetes is cardiomyopathy, a form of ventricular dysfunction that develops independently of coronary artery disease, hypertension and valvular diseases, which may subsequently lead to heart failure. Several structural features underlie the development of diabetic cardiomyopathy and eventual diabetes-induced heart failure. Pathological cardiac fibrosis (interstitial and perivascular), in addition to capillary rarefaction and myocardial apoptosis, are particularly noteworthy. Sex differences in the incidence, development and presentation of diabetes, heart failure and interstitial myocardial fibrosis have been identified. Nevertheless, therapeutics specifically targeting diabetes-associated cardiac fibrosis remain lacking and treatment approaches remain the same regardless of patient sex or the co-morbidities that patients may present. This review addresses the observed anti-fibrotic effects of newer glucose-lowering therapies and traditional cardiovascular disease treatments, in the diabetic myocardium (from both preclinical and clinical contexts). Furthermore, any known sex differences in these treatment effects are also explored. LINKED ARTICLES: This article is part of a themed issue on Translational Advances in Fibrosis as a Therapeutic Target. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.22/issuetoc.
Collapse
Affiliation(s)
- Abhipree Sharma
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences (MIPS)Monash UniversityParkvilleVictoriaAustralia
| | - Miles De Blasio
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences (MIPS)Monash UniversityParkvilleVictoriaAustralia
- Department of PharmacologyMonash UniversityClaytonVictoriaAustralia
| | - Rebecca Ritchie
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences (MIPS)Monash UniversityParkvilleVictoriaAustralia
- Department of PharmacologyMonash UniversityClaytonVictoriaAustralia
- Department of MedicineMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
55
|
Zhou Q, Lei X, Fu S, Liu P, Long C, Wang Y, Li Z, Xie Q, Chen Q. Efficacy and safety of tirzepatide, dual GLP-1/GIP receptor agonists, in the management of type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Diabetol Metab Syndr 2023; 15:222. [PMID: 37904255 PMCID: PMC10614386 DOI: 10.1186/s13098-023-01198-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/23/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Glucose-dependent insulinotropic polypeptide (GIP) and GLP-1 are the main incretin hormones, and be responsible for the insulinotropic incretin effect. The addition of a GIP agonist to a GLP-1agonist has been hypothesized to significantly potentiate the weight-losing and glycemia control effect, which might offer a new therapeutic option in the treatment of type 2 diabetes. The current meta-analysis aims to synthesize evidence of primary efficacy and safety outcomes through clinically randomized controlled trials to evaluate integrated potency and signaling properties. METHOD We conducted comprehensive literature searches in Cochrane Library, Web of Science, Embase and PubMed for relevant literatures investigating the efficacy and/or safety of Tirzepatide published in the English as of May 30, 2023 was retrieved. We synthesized results using standardized mean differences (SMDs) and 95% confidence intervals (95 CIs) for continuous outcomes, and odds ratios (ORs) along with 95 Cis for dichotomous outcomes. All analyses were done using Revman version 5.3, STATA version 15.1 and the statistical package 'meta'. RESULTS Participants treated with weekly Tirzepatide achieved HbA1c and body weight target values significantly lower than any other comparator without clinically significant increase in the incidence of hypoglycemic events, serious and all-cause fatal adverse events. However, gastrointestinal adverse events and decreased appetite events were reported more frequently with Tirzepatide treatment than with placebo/controls. CONCLUSION The Tirzepatide, a dual GIP/GLP-1 receptor co-agonist, for diabetes therapy has opened a new era on personalized glycemia control and weight loss in a safe manner with broad and promising clinical implications.
Collapse
Affiliation(s)
- Qian Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
- , Chengdu, China
| | - Xingxing Lei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
- , Chengdu, China
| | - Shunlian Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
| | - Pan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
| | - Cong Long
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
| | - Yanmei Wang
- Ya'an Polytechnic College Affiliated Hospital, Ya'an, China
| | - Zinan Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
- Sichuan Integrative Medicine Hospital, chengdu, China
| | - Qian Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
| | - Qiu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39, Shi-er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China.
| |
Collapse
|
56
|
Zeng Q, Xu J, Mu X, Shi Y, Fan H, Li S. Safety issues of tirzepatide (pancreatitis and gallbladder or biliary disease) in type 2 diabetes and obesity: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2023; 14:1214334. [PMID: 37908750 PMCID: PMC10613702 DOI: 10.3389/fendo.2023.1214334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Abstract
Purpose A systematic review and meta-analysis was conducted to synthesize the available data from clinical trials and assess the safety issues of tirzepatide (pancreatitis and gallbladder or biliary disease) in type 2 diabetes (T2D) and obesity. Methods A systematic search was conducted in three electronic databases, namely Embase, PubMed, and the Cochrane Library, up until March 1, 2023, to identify randomized controlled trials (RCTs) comparing tirzepatide to either placebo or active hypoglycemic drugs in individuals with T2D and obesity. Heterogeneity was assessed using the I2 value and Cochran's Q test, and a fixed effects model was employed to estimate the safety profile of tirzepatide. The safety outcomes of interest, including pancreatitis, the composite of gallbladder or biliary diseases, cholecystitis, and cholelithiasis and biliary diseases, were evaluated. (The composite of gallbladder or biliary diseases incorporated cholelithiasis, cholecystitis, other gallbladder disorders, and biliary diseases.). Results A total of nine trials with 9871 participants (6828 in the tirzepatide group and 3043 in the control group) that met the pre-specified criteria were included. When compared to all control groups consisting of basal insulin (glargine or degludec), selective GLP1-RA (dulaglutide or semaglutide once weekly), and placebo, an increased risk of pancreatitis was not found to be significantly associated with tirzepatide (RR 1.46, [95% CI] 0.59 to 3.61; I2 = 0.0%, p = 0.436). For gallbladder or biliary disease, the composite of gallbladder or biliary disease was significantly associated with tirzepatide compared with placebo or basal insulin (RR 1.97, [95% CI] 1.14 to 3.42; I2 = 0.0%, p = 0.558), but not with the risk of cholelithiasis, cholecystitis or biliary diseases. Conclusion Based on the currently available data, tirzepatide appears to be safe regarding the risk of pancreatitis. However, the increased risk of the composite outcome of gallbladder or biliary diseases observed in RCTs warrants further attention from physicians in clinical practice. Systematic review registration https://www.crd.york.ac.uk/PROSPERO, identifier CRD42023412400.
Collapse
Affiliation(s)
- Qingyue Zeng
- Department of General Practice Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Xu
- Department of General Practice Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xingyu Mu
- Department of General Practice Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Shi
- Department of General Practice Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Fan
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Shuangqing Li
- Department of General Practice Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
57
|
Abstract
Incretin hormones (glucose-dependent insulinotropic polypeptide [GIP] and glucagon-like peptide-1 [GLP-1]) play a role in the pathophysiology of type 2 diabetes. Along with their derivatives they have shown therapeutic success in type 2 diabetes, with the potential for further improvements in glycaemic, cardiorenal and body weight-related outcomes. In type 2 diabetes, the incretin effect (greater insulin secretory response after oral glucose than with 'isoglycaemic' i.v. glucose, i.e. with an identical glycaemic stimulus) is markedly reduced or absent. This appears to be because of a reduced ability of GIP to stimulate insulin secretion, related either to an overall impairment of beta cell function or to specific defects in the GIP signalling pathway. It is likely that a reduced incretin effect impacts on postprandial glycaemic excursions and, thus, may play a role in the deterioration of glycaemic control. In contrast, the insulinotropic potency of GLP-1 appears to be much less impaired, such that exogenous GLP-1 can stimulate insulin secretion, suppress glucagon secretion and reduce plasma glucose concentrations in the fasting and postprandial states. This has led to the development of incretin-based glucose-lowering medications (selective GLP-1 receptor agonists or, more recently, co-agonists, e.g. that stimulate GIP and GLP-1 receptors). Tirzepatide (a GIP/GLP-1 receptor co-agonist), for example, reduces HbA1c and body weight in individuals with type 2 diabetes more effectively than selective GLP-1 receptor agonists (e.g. semaglutide). The mechanisms by which GIP receptor agonism may contribute to better glycaemic control and weight loss after long-term exposure to tirzepatide are a matter of active research and may change the pessimistic view that developed after the disappointing lack of insulinotropic activity in people with type 2 diabetes when exposed to GIP in short-term experiments. Future medications that stimulate incretin hormone and other receptors simultaneously may have the potential to further increase the ability to control plasma glucose concentrations and induce weight loss.
Collapse
Affiliation(s)
- Michael A Nauck
- Diabetes, Endocrinology, Metabolism Section, Medical Department I, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany.
- Institute for Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany.
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), München Neuherberg, Germany
| |
Collapse
|
58
|
Christiansen CB, Jeppesen PB, Hermansen K, Gregersen S. Aronia in the Type 2 Diabetes Treatment Regimen. Nutrients 2023; 15:4188. [PMID: 37836472 PMCID: PMC10574687 DOI: 10.3390/nu15194188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
Aronia melanocarpa berries are rich in antioxidants and possess a high antioxidant capacity. Aronia berries have shown potential in type 2 diabetes mellitus (T2DM) treatment, and previous studies indicate improvements in glycemia after supplementation. Unfortunately, the effectiveness of aronia berries is limited by the low bioavailability of aronia, which fermentation could potentially overcome. The objective of this study was to compare the effects of fermented or non-fermented aronia pulp with placebo in subjects with T2DM. This study was a triple-blinded, triple-crossover study with eight-week intervention periods with fermented aronia extract (FAE), non-fermented aronia extract (AE), and placebo. Extracts were incorporated in snack bars with 37% aronia (FAE or AE) or wheat bran (placebo) and 63% raisins and coconut oil. Pre- and post-treatment period, we did fasting blood samples, including hemoglobin A1c, fructosamine, insulin, glucose, glucagon-like peptide-1, glucose-dependent insulinotropic peptide (GIP) and glucagon, oral glucose tolerance tests, and anthropometric measurements. Of 36 randomized participants, 23 completed the trial. Aside from a higher increase in GIP after FAE supplementation compared to after placebo supplementation, aronia extracts had no effect. The increase in GIP levels after FAE supplementation may hold potential benefits, but the overall clinical impact remains unclear.
Collapse
Affiliation(s)
- Christine B. Christiansen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, 8200 Aarhus N, Denmark; (P.B.J.); (K.H.); (S.G.)
| | - Per B. Jeppesen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, 8200 Aarhus N, Denmark; (P.B.J.); (K.H.); (S.G.)
| | - Kjeld Hermansen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, 8200 Aarhus N, Denmark; (P.B.J.); (K.H.); (S.G.)
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Søren Gregersen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, 8200 Aarhus N, Denmark; (P.B.J.); (K.H.); (S.G.)
- Steno Diabetes Center Aarhus, Palle Juul-Jensens Boulevard 11, 8200 Aarhus N, Denmark
| |
Collapse
|
59
|
Su J, Luo Y, Hu S, Tang L, Ouyang S. Advances in Research on Type 2 Diabetes Mellitus Targets and Therapeutic Agents. Int J Mol Sci 2023; 24:13381. [PMID: 37686185 PMCID: PMC10487533 DOI: 10.3390/ijms241713381] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Diabetes mellitus is a chronic multifaceted disease with multiple potential complications, the treatment of which can only delay and prolong the terminal stage of the disease, i.e., type 2 diabetes mellitus (T2DM). The World Health Organization predicts that diabetes will be the seventh leading cause of death by 2030. Although many antidiabetic medicines have been successfully developed in recent years, such as GLP-1 receptor agonists and SGLT-2 inhibitors, single-target drugs are gradually failing to meet the therapeutic requirements owing to the individual variability, diversity of pathogenesis, and organismal resistance. Therefore, there remains a need to investigate the pathogenesis of T2DM in more depth, identify multiple therapeutic targets, and provide improved glycemic control solutions. This review presents an overview of the mechanisms of action and the development of the latest therapeutic agents targeting T2DM in recent years. It also discusses emerging target-based therapies and new potential therapeutic targets that have emerged within the last three years. The aim of our review is to provide a theoretical basis for further advancement in targeted therapies for T2DM.
Collapse
Affiliation(s)
- Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China; (J.S.); (Y.L.); (S.H.); (L.T.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, Fujian Normal University, Fuzhou 350117, China
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Fujian Normal University, Fuzhou 350117, China
| | - Yingsheng Luo
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China; (J.S.); (Y.L.); (S.H.); (L.T.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, Fujian Normal University, Fuzhou 350117, China
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Fujian Normal University, Fuzhou 350117, China
| | - Shan Hu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China; (J.S.); (Y.L.); (S.H.); (L.T.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, Fujian Normal University, Fuzhou 350117, China
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Fujian Normal University, Fuzhou 350117, China
| | - Lu Tang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China; (J.S.); (Y.L.); (S.H.); (L.T.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, Fujian Normal University, Fuzhou 350117, China
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Fujian Normal University, Fuzhou 350117, China
| | - Songying Ouyang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China; (J.S.); (Y.L.); (S.H.); (L.T.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, Fujian Normal University, Fuzhou 350117, China
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Fujian Normal University, Fuzhou 350117, China
- Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
60
|
Cantacorps L, Coull BM, Falck J, Ritter K, Lippert RN. Gut-derived peptide hormone receptor expression in the developing mouse hypothalamus. PLoS One 2023; 18:e0290043. [PMID: 37590249 PMCID: PMC10434938 DOI: 10.1371/journal.pone.0290043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
OBJECTIVE In adult organisms, a number of receptors have been identified which modulate metabolic processes related to peptides derived from the intestinal tract. These receptors play significant roles in glucose homeostasis, food intake and energy balance. Here we assess these classical metabolic receptors and their expression as well as their potential role in early development of hypothalamic neuronal circuits. METHODS Chow-fed C57BL6/N female mice were mated and hypothalamic tissue was collected from offspring across postnatal development (postnatal day 7-21). Subsequent qPCR and Western Blot analyses were used to determine mRNA and protein changes in gut-derived peptide hormone receptors. Correlations to body weight, blood glucose and circulating leptin levels were analyzed. RESULTS We describe the gene expression and dynamic protein regulation of key gut-derived peptide hormone receptors in the early postnatal period of the mouse brain. Specifically, we show changes to Gastric inhibitory polypeptide receptor (GIPR), glucagon-like peptide 1 receptor (GLP1R), and cholecystokinin receptor 2 (CCK2R) in the developing hypothalamus. The changes to GIPR and InsR seem to be strongly negatively correlated with body weight. CONCLUSIONS This comprehensive analysis underscores the need to understand the roles of maternal-derived circulating gut hormones and their direct effect on offspring brain development.
Collapse
Affiliation(s)
- Lídia Cantacorps
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Bethany M. Coull
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Joanne Falck
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Katrin Ritter
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Rachel N. Lippert
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
61
|
Pati B, Sendh S, Sahu B, Pani S, Jena N, Bal NC. Recent advancements in pharmacological strategies to modulate energy balance for combating obesity. RSC Med Chem 2023; 14:1429-1445. [PMID: 37593583 PMCID: PMC10429841 DOI: 10.1039/d3md00107e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/06/2023] [Indexed: 08/19/2023] Open
Abstract
The prevalence of obesity along with its related metabolic diseases has increased globally in recent decades. Obesity originates from a heterogeneous physiological state, which is further complicated by the influence of factors such as genetic, behavioural, and environmental. Lifestyle interventions including exercise and diet have limited success, necessitating the development of pharmacological approaches. Mechanistically, strategies target either reducing energy intake or increasing consumption through metabolism boosting. Current drugs lower energy intake via inducing satiety or inhibiting substrate absorption, while targeting mitochondria or cytosolic energy sensors has shown limited success due to toxicity. Nonshivering thermogenesis (NST) has provided hope for activating these processes selectively without significant side effects. The internet-based marketing of plant-based formulations for enhancing metabolism has surged. This review compiles scientific articles, magazines, newspapers, and online resources on anti-obesity drug development. Combination therapy of metabolic boosters and established anti-obesity compounds appears to be a promising future approach that requires further research.
Collapse
Affiliation(s)
- Benudhara Pati
- School of Biotechnology, KIIT University Bhubaneswar Odisha 751024 India
| | - Satyabrata Sendh
- School of Biotechnology, KIIT University Bhubaneswar Odisha 751024 India
| | - Bijayashree Sahu
- School of Biotechnology, KIIT University Bhubaneswar Odisha 751024 India
| | - Sunil Pani
- School of Biotechnology, KIIT University Bhubaneswar Odisha 751024 India
| | - Nivedita Jena
- Institute of Life Science, DBT ILS Bioincubator Bhubaneswar Odisha 751021-India
| | - Naresh Chandra Bal
- School of Biotechnology, KIIT University Bhubaneswar Odisha 751024 India
| |
Collapse
|
62
|
Cuciureanu M, Caratașu CC, Gabrielian L, Frăsinariu OE, Checheriță LE, Trandafir LM, Stanciu GD, Szilagyi A, Pogonea I, Bordeianu G, Soroceanu RP, Andrițoiu CV, Anghel MM, Munteanu D, Cernescu IT, Tamba BI. 360-Degree Perspectives on Obesity. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1119. [PMID: 37374323 PMCID: PMC10304508 DOI: 10.3390/medicina59061119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
Alarming statistics show that the number of people affected by excessive weight has surpassed 2 billion, representing approximately 30% of the world's population. The aim of this review is to provide a comprehensive overview of one of the most serious public health problems, considering that obesity requires an integrative approach that takes into account its complex etiology, including genetic, environmental, and lifestyle factors. Only an understanding of the connections between the many contributors to obesity and the synergy between treatment interventions can ensure satisfactory outcomes in reducing obesity. Mechanisms such as oxidative stress, chronic inflammation, and dysbiosis play a crucial role in the pathogenesis of obesity and its associated complications. Compounding factors such as the deleterious effects of stress, the novel challenge posed by the obesogenic digital (food) environment, and the stigma associated with obesity should not be overlooked. Preclinical research in animal models has been instrumental in elucidating these mechanisms, and translation into clinical practice has provided promising therapeutic options, including epigenetic approaches, pharmacotherapy, and bariatric surgery. However, more studies are necessary to discover new compounds that target key metabolic pathways, innovative ways to deliver the drugs, the optimal combinations of lifestyle interventions with allopathic treatments, and, last but not least, emerging biological markers for effective monitoring. With each passing day, the obesity crisis tightens its grip, threatening not only individual lives but also burdening healthcare systems and societies at large. It is high time we took action as we confront the urgent imperative to address this escalating global health challenge head-on.
Collapse
Affiliation(s)
- Magdalena Cuciureanu
- Department of Pharmacology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.C.); (C.-C.C.); (I.T.C.); (B.I.T.)
| | - Cătălin-Cezar Caratașu
- Department of Pharmacology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.C.); (C.-C.C.); (I.T.C.); (B.I.T.)
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (G.D.S.); (A.S.)
| | - Levon Gabrielian
- Department of Anatomy and Pathology, The University of Adelaide, Adelaide 5000, Australia;
| | - Otilia Elena Frăsinariu
- Department of Mother and Child, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Laura Elisabeta Checheriță
- 2nd Dental Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Laura Mihaela Trandafir
- Department of Mother and Child, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Gabriela Dumitrița Stanciu
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (G.D.S.); (A.S.)
| | - Andrei Szilagyi
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (G.D.S.); (A.S.)
| | - Ina Pogonea
- Department of Pharmacology and Clinical Pharmacology, “Nicolae Testemiţanu” State University of Medicine and Pharmacy, 2004 Chisinau, Moldova; (I.P.); (M.M.A.)
| | - Gabriela Bordeianu
- Department of Biochemistry, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Radu Petru Soroceanu
- Department of Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Călin Vasile Andrițoiu
- Specialization of Nutrition and Dietetics, “Vasile Goldis” Western University of Arad, 310025 Arad, Romania
| | - Maria Mihalache Anghel
- Department of Pharmacology and Clinical Pharmacology, “Nicolae Testemiţanu” State University of Medicine and Pharmacy, 2004 Chisinau, Moldova; (I.P.); (M.M.A.)
| | - Diana Munteanu
- Institute of Mother and Child, “Nicolae Testemiţanu” State University of Medicine and Pharmacy, 2062 Chisinau, Moldova;
| | - Irina Teodora Cernescu
- Department of Pharmacology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.C.); (C.-C.C.); (I.T.C.); (B.I.T.)
| | - Bogdan Ionel Tamba
- Department of Pharmacology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.C.); (C.-C.C.); (I.T.C.); (B.I.T.)
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (G.D.S.); (A.S.)
| |
Collapse
|
63
|
Abdel-Malek M, Yang L, Miras AD. Pharmacotherapy for chronic obesity management: a look into the future. Intern Emerg Med 2023; 18:1019-1030. [PMID: 37249754 PMCID: PMC10326094 DOI: 10.1007/s11739-023-03237-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/17/2023] [Indexed: 05/31/2023]
Abstract
Substantial leaps have been made in the drug discovery front in tackling the growing pandemic of obesity and its metabolic co-morbidities. Greater mechanistic insight and understanding of the gut-brain molecular pathways at play have enabled the pursuit of novel therapeutic agents that possess increasingly efficacious weight-lowering potential whilst remaining safe and tolerable for clinical use. In the wake of glucagon-like peptide 1 (GLP-1) based therapy, we look at recent advances in gut hormone biology that have fermented the development of next generation pharmacotherapy in diabesity that harness synergistic potential. In this paper, we review the latest data from the SURPASS and SURMOUNT clinical trials for the novel 'twincretin', known as Tirzepatide, which has demonstrated sizeable body weight reduction as well as glycaemic efficacy. We also provide an overview of amylin-based combination strategies and other emerging therapies in the pipeline that are similarly providing great promise for the future of chronic management of obesity.
Collapse
Affiliation(s)
| | - Lisa Yang
- Imperial College Healthcare NHS Trust, London, UK
| | - Alexander Dimitri Miras
- School of Medicine, Ulster University, Derry~Londonderry, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| |
Collapse
|
64
|
Lister NB, Baur LA, Felix JF, Hill AJ, Marcus C, Reinehr T, Summerbell C, Wabitsch M. Child and adolescent obesity. Nat Rev Dis Primers 2023; 9:24. [PMID: 37202378 DOI: 10.1038/s41572-023-00435-4] [Citation(s) in RCA: 141] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 05/20/2023]
Abstract
The prevalence of child and adolescent obesity has plateaued at high levels in most high-income countries and is increasing in many low-income and middle-income countries. Obesity arises when a mix of genetic and epigenetic factors, behavioural risk patterns and broader environmental and sociocultural influences affect the two body weight regulation systems: energy homeostasis, including leptin and gastrointestinal tract signals, operating predominantly at an unconscious level, and cognitive-emotional control that is regulated by higher brain centres, operating at a conscious level. Health-related quality of life is reduced in those with obesity. Comorbidities of obesity, including type 2 diabetes mellitus, fatty liver disease and depression, are more likely in adolescents and in those with severe obesity. Treatment incorporates a respectful, stigma-free and family-based approach involving multiple components, and addresses dietary, physical activity, sedentary and sleep behaviours. In adolescents in particular, adjunctive therapies can be valuable, such as more intensive dietary therapies, pharmacotherapy and bariatric surgery. Prevention of obesity requires a whole-system approach and joined-up policy initiatives across government departments. Development and implementation of interventions to prevent paediatric obesity in children should focus on interventions that are feasible, effective and likely to reduce gaps in health inequalities.
Collapse
Affiliation(s)
- Natalie B Lister
- Children's Hospital Westmead Clinical School, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Louise A Baur
- Children's Hospital Westmead Clinical School, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.
- Sydney School of Public Health, The University of Sydney, Sydney, New South Wales, Australia.
- Weight Management Services, The Children's Hospital at Westmead, Sydney, New South Wales, Australia.
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Paediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Andrew J Hill
- Institute of Health Sciences, School of Medicine, University of Leeds, Leeds, UK
| | - Claude Marcus
- Division of Paediatrics, Department of Clinical Science Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Thomas Reinehr
- Vestische Hospital for Children and Adolescents Datteln, University of Witten/Herdecke, Datteln, Germany
| | - Carolyn Summerbell
- Department of Sport and Exercise Sciences, Durham University, Durham, UK
| | - Martin Wabitsch
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, Ulm University Medical Centre, Ulm, Germany
| |
Collapse
|
65
|
Wong TS, Li G, Li S, Gao W, Chen G, Gan S, Zhang M, Li H, Wu S, Du Y. G protein-coupled receptors in neurodegenerative diseases and psychiatric disorders. Signal Transduct Target Ther 2023; 8:177. [PMID: 37137892 PMCID: PMC10154768 DOI: 10.1038/s41392-023-01427-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/17/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Neuropsychiatric disorders are multifactorial disorders with diverse aetiological factors. Identifying treatment targets is challenging because the diseases are resulting from heterogeneous biological, genetic, and environmental factors. Nevertheless, the increasing understanding of G protein-coupled receptor (GPCR) opens a new possibility in drug discovery. Harnessing our knowledge of molecular mechanisms and structural information of GPCRs will be advantageous for developing effective drugs. This review provides an overview of the role of GPCRs in various neurodegenerative and psychiatric diseases. Besides, we highlight the emerging opportunities of novel GPCR targets and address recent progress in GPCR drug development.
Collapse
Affiliation(s)
- Thian-Sze Wong
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Guangzhi Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Wei Gao
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Geng Chen
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Shiyi Gan
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Manzhan Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China.
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China.
| | - Song Wu
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China.
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, 518116, Shenzhen, Guangdong, China.
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China.
| |
Collapse
|
66
|
Gadgaard S, Windeløv JA, Schiellerup SP, Holst JJ, Hartmann B, Rosenkilde MM. Long-acting agonists of human and rodent GLP-2 receptors for studies of the physiology and pharmacological potential of the GLP-2 system. Biomed Pharmacother 2023; 160:114383. [PMID: 36780786 DOI: 10.1016/j.biopha.2023.114383] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Glucagon-like peptide-2 (GLP-2) is secreted postprandially from enteroendocrine Lcells and has anabolic action on gut and bone. Short-acting teduglutide is the only approved GLP-2 analog for the treatment of short-bowel syndrome (SBS). To improve the therapeutic effect, we created a series of lipidated GLP-2R agonists. EXPERIMENTAL APPROACH Six GLP-2 analogs were studied in vitro for cAMP accumulation, β-arrestin 1 and 2 recruitment, affinity, and internalization. The trophic actions on intestine and bone were examined in vivo in rodents. KEY RESULTS Lipidations at lysines introduced at position 12, 16, and 20 of hGLP-2(1-33) were well-tolerated with less than 2.2-fold impaired potency and full efficacy at the hGLP-2R in cAMP accumulation. In contrast, N- and C-terminal (His1 and Lys30) lipidations impaired potency by 4.2- and 45-fold and lowered efficacy to 77% and 85% of hGLP-2, respectively. All variants were similarly active on the rat and mouse GLP-2Rs and the three most active variants displayed increased selectivity for hGLP-2R over hGLP-1R activation, compared to native hGLP-2. Impact on arrestin recruitment and receptor internalization followed that of Gαs-coupling, except for lipidation in position 20, where internalization was more impaired, suggesting desensitization protection. A highly active variant (C16 at position 20) with low internalization and a half-life of 9.5 h in rats showed improved gut and bone tropism with increased weight of small intestine in mice and decreased CTX levels in rats. CONCLUSION AND IMPLICATION We present novel hGLP-2 agonists suitable for in vivo studies of the GLP-2 system to uncover its pharmacological potential.
Collapse
Affiliation(s)
- Sarina Gadgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Bainan Biotech, Copenhagen, Denmark
| | | | - Sine P Schiellerup
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
67
|
Bailey CJ, Flatt PR, Conlon JM. An update on peptide-based therapies for type 2 diabetes and obesity. Peptides 2023; 161:170939. [PMID: 36608818 DOI: 10.1016/j.peptides.2023.170939] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 01/09/2023]
Abstract
Long-acting analogues of the naturally occurring incretin, glucagon-like peptide-1 (GLP-1) and those modified to interact also with receptors for glucose-dependent insulinotropic polypeptide (GIP) have shown high glucose-lowering and weight-lowering efficacy when administered by once-weekly subcutaneous injection. These analogues herald an exciting new era in peptide-based therapy for type 2 diabetes (T2D) and obesity. Of note is the GLP-1R agonist semaglutide, available in oral and injectable formulations and in clinical trials combined with the long-acting amylin analogue, cagrilintide. Particularly high efficacy in both glucose- and weight lowering capacities has also been observed with the GLP-1R/GIP-R unimolecular dual agonist, tirzepatide. In addition, a number of long-acting unimolecular GLP-1R/GCGR dual agonist peptides and GLP-1R/GCGR/GIPR triagonist peptides have entered clinical trials. Other pharmacological approaches to chronic weight management include the human monoclonal antibody, bimagrumab which blocks activin type II receptors and is associated with growth of skeletal muscle, an antibody blocking activation of GIPR to which are conjugated GLP-1R peptide agonists (AMG-133), and the melanocortin-4 receptor agonist, setmelanotide for use in certain inherited obesity conditions. The high global demand for the GLP-1R agonists liraglutide and semaglutide as anti-obesity agents has led to shortage so that their use in T2D therapy is currently being prioritized.
Collapse
Affiliation(s)
| | - Peter R Flatt
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine BT52 1SA, UK
| | - J Michael Conlon
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine BT52 1SA, UK.
| |
Collapse
|
68
|
Jastreboff AM, Kushner RF. New Frontiers in Obesity Treatment: GLP-1 and Nascent Nutrient-Stimulated Hormone-Based Therapeutics. Annu Rev Med 2023; 74:125-139. [PMID: 36706749 DOI: 10.1146/annurev-med-043021-014919] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Nearly half of Americans are projected to have obesity by 2030, underscoring the pressing need for effective treatments. Glucagon-like peptide 1 receptor agonists (GLP-1 RAs) represent the first agents in a rapidly evolving, highly promising landscape of nascent hormone-based obesity therapeutics. With the understanding of the neurobiology of obesity rapidly expanding, these emerging entero-endocrine and endo-pancreatic agents combined or coformulated with GLP-1 RAs herald a new era of targeted, mechanism-based treatment of obesity. This article reviews GLP-1 RAs in the treatment of obesity and previews the imminent future of nutrient-stimulated hormone-based anti-obesity therapeutics.
Collapse
Affiliation(s)
- Ania M Jastreboff
- Departments of Medicine (Endocrinology & Metabolism) and Pediatrics (Pediatric Endocrinology), Yale University School of Medicine, New Haven, Connecticut, USA;
| | - Robert F Kushner
- Departments of Medicine (Endocrinology) and Medical Education, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA;
| |
Collapse
|
69
|
Venneti NM, Samala G, Morsy RMI, Mendoza LG, Isidro-Llobet A, Tom JK, Mukherjee S, Kopach ME, Stockdill JL. Phosphine-Dependent Photoinitiation of Alkyl Thiols under Near-UV Light Facilitates User-Friendly Peptide Desulfurization. J Am Chem Soc 2023; 145:1053-1061. [PMID: 36602440 DOI: 10.1021/jacs.2c10625] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Peptides are steadily gaining importance as pharmaceutical targets, and efficient, green methods for their preparation are critically needed. A key deficiency in the synthetic toolbox is the lack of an industrially viable peptide desulfurization method. Without this tool, the powerful native chemical ligation reaction typically used to assemble polypeptides and proteins remains out of reach for industrial preparation of drug targets. Current desulfurization methods require very large excesses of phosphine reagents and thiol additives or low-abundance metal catalysts. Here, we report a phosphine-only photodesulfurization (POP) using near-UV light that is clean, high-yielding, and requires as little as 1.2 equiv phosphine. The user-friendly reaction gives complete control to the chemist, allowing solvent and reagent selection based on starting material and phosphine solubility. It can be conducted in a range of solvents, including water or buffers, on protected or unprotected peptides, in low or high dilution and on gram scale. Oxidation-prone amino acids, π-bonds, aromatic rings, thio-aminal linkages, thioesters, and glycans are all stable to the POP reaction. We highlight the utility of this approach for desulfurization of industrially relevant targets including cyclic peptides and glucagon-like peptide 1 (GLP-1(7-36)). The method is also compatible with NCL buffer, and we highlight the robustness of the approach through the one-pot disulfide reduction/multidesulfurization of linaclotide, aprotinin, and wheat protein.
Collapse
Affiliation(s)
- Naresh M Venneti
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Ganesh Samala
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Rana M I Morsy
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Lawrence G Mendoza
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | | | - Janine K Tom
- Amgen, Inc., Pivotal Drug Substance Process Development, Thousand Oaks, California 91320, United States
| | - Subha Mukherjee
- Bristol-Myers Squibb, Chemical and Synthetic Development, New Brunswick, New Jersey 08903, United States
| | - Michael E Kopach
- Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Jennifer L Stockdill
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
70
|
Scheen AJ. Dual GIP/GLP-1 receptor agonists: New advances for treating type-2 diabetes. ANNALES D'ENDOCRINOLOGIE 2023; 84:316-321. [PMID: 36639119 DOI: 10.1016/j.ando.2022.12.423] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/02/2022] [Indexed: 01/12/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists currently occupy a privileged place in the management of type-2 diabetes (T2D). Dual glucose-dependent insulinotropic polypeptides (GIP/GLP-1) have been recently developed. Tirzepatide is the most advanced unimolecular dual GIP/GLP-1 receptor agonist to be used as once weekly subcutaneous injection in T2D and recently received approval by the European Medicines Agency. Because of the complementarity of action of the two incretins, tirzepatide showed better dose-dependent (5, 10 and 15mg) efficacy (greater reduction in HbA1c and body weight) than placebo, basal insulin or two GLP-1 analogues (dulaglutide and semaglutide) in the SURPASS program. Its cardiovascular protective effect is currently being assessed versus dulaglutide in the SURPASS-CVOT study. Finally, studies for the treatment of obesity (SURMOUNT program) and metabolic-associated fatty liver disease (MAFLD) are also ongoing. Gastrointestinal tolerance of tirzepatide appears comparable to that of GLP-1 analogues, except for higher incidence of diarrhea. Other original molecules have been built, including triple GIP/GLP-1/glucagon receptor agonists. The risk/benefit ratio will decide whether dual (or triple) receptor agonists should replace pure GLP-1 receptor agonists for the management of T2D in the near future, with a significant role in the pharmacotherapy of obesity.
Collapse
Affiliation(s)
- André J Scheen
- Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, CHU de Liège, Liège, Belgium; Division of Clinical Pharmacology, Centre for Interdisciplinary Research on Medicines (CIRM), University of Liège, Liège, Belgium.
| |
Collapse
|
71
|
Bulushova NV, Zalunin IA, Asrarkulova AS, Kozlov DG. Incretin Analogues in the Therapy of Type 2 Diabetes and Obesity. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822070031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
72
|
Giannini C, Mastromauro C, Scapaticci S, Gentile C, Chiarelli F. Role of bile acids in overweight and obese children and adolescents. Front Endocrinol (Lausanne) 2022; 13:1011994. [PMID: 36531484 PMCID: PMC9747777 DOI: 10.3389/fendo.2022.1011994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022] Open
Abstract
Bile acids (BAs) are amphipathic molecules synthetized in the liver. They are primarily involved in the digestion of nutrients. Apart from their role in dietary lipid absorption, BAs have progressively emerged as key regulators of systemic metabolism and inflammation. In the last decade, it became evident that BAs are particularly important for the regulation of glucose, lipid, and energy metabolism. Indeed, the interest in role of BA in metabolism homeostasis is further increased due to the global public health increase in obesity and related complications and a large number of research postulating that there is a close mutual relationship between BA and metabolic disorders. This strong relationship seems to derive from the role of BAs as signaling molecules involved in the regulation of a wide spectrum of metabolic pathways. These actions are mediated by different receptors, particularly nuclear farnesoid X receptor (FXR) and Takeda G protein coupled receptor 5 (TGR5), which are probably the major effectors of BA actions. These receptors activate transcriptional networks and signaling cascades controlling the expression and activity of genes involved in BA, lipid and carbohydrate metabolism, energy expenditure, and inflammation. The large correlation between BAs and metabolic disorders offers the possibility that modulation of BAs could be used as a therapeutic approach for the treatment of metabolic diseases, including obesity itself. The aim of this review is to describe the main physiological and metabolic actions of BA, focusing on its signaling pathways, which are important in the regulation of metabolism and might provide new BA -based treatments for metabolic diseases.
Collapse
Affiliation(s)
- Cosimo Giannini
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | | | | | | | | |
Collapse
|
73
|
Heimbürger SMN, Hoe B, Nielsen CN, Bergman NC, Skov-Jeppesen K, Hartmann B, Holst JJ, Dela F, Overgaard J, Størling J, Vilsbøll T, Dejgaard TF, Havelund JF, Gorshkov V, Kjeldsen F, Færgeman NJ, Madsen MR, Christensen MB, Knop FK. GIP Affects Hepatic Fat and Brown Adipose Tissue Thermogenesis but Not White Adipose Tissue Transcriptome in Type 1 Diabetes. J Clin Endocrinol Metab 2022; 107:3261-3274. [PMID: 36111559 DOI: 10.1210/clinem/dgac542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Indexed: 02/13/2023]
Abstract
CONTEXT Glucose-dependent insulinotropic polypeptide (GIP) has been proposed to exert insulin-independent effects on lipid and bone metabolism. OBJECTIVE We investigated the effects of a 6-day subcutaneous GIP infusion on circulating lipids, white adipose tissue (WAT), brown adipose tissue (BAT), hepatic fat content, inflammatory markers, respiratory exchange ratio (RER), and bone homeostasis in patients with type 1 diabetes. METHODS In a randomized, placebo-controlled, double-blind, crossover study, 20 men with type 1 diabetes underwent a 6-day continuous subcutaneous infusion with GIP (6 pmol/kg/min) and placebo (saline), with an interposed 7-day washout period. RESULTS During GIP infusion, participants (26 ± 8 years [mean ± SD]; BMI 23.8 ± 1.8 kg/m2; glycated hemoglobin A1c 51 ± 10 mmol/mol [6.8 ± 3.1%]) experienced transiently increased circulating concentrations of nonesterified fatty acid (NEFA) (P = 0.0005), decreased RER (P = 0.009), indication of increased fatty acid β-oxidation, and decreased levels of the bone resorption marker C-terminal telopeptide (P = 0.000072) compared with placebo. After 6 days of GIP infusion, hepatic fat content was increased by 12.6% (P = 0.007) and supraclavicular skin temperature, a surrogate indicator of BAT activity, was increased by 0.29 °C (P < 0.000001) compared with placebo infusion. WAT transcriptomic profile as well as circulating lipid species, proteome, markers of inflammation, and bone homeostasis were unaffected. CONCLUSION Six days of subcutaneous GIP infusion in men with type 1 diabetes transiently decreased bone resorption and increased NEFA and β-oxidation. Further, hepatic fat content, and supraclavicular skin temperature were increased without affecting WAT transcriptomics, the circulating proteome, lipids, or inflammatory markers.
Collapse
Affiliation(s)
- Sebastian Møller Nguyen Heimbürger
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
- Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Translational Pharmacology, Zealand Pharma A/S, 2860 Søborg, Denmark
| | - Bjørn Hoe
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Chris Neumann Nielsen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
| | - Natasha Chidekel Bergman
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
| | - Kirsa Skov-Jeppesen
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Bolette Hartmann
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens Juul Holst
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Flemming Dela
- Xlab, Center for Healthy Ageing, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Geriatrics, Bispebjerg Hospital, University of Copenhagen, 2400 Copenhagen, Denmark
| | - Julie Overgaard
- Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
| | - Joachim Størling
- Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
- Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Thomas Fremming Dejgaard
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
- Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
| | - Jesper Foged Havelund
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Vladimir Gorshkov
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Frank Kjeldsen
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Nils Joakim Færgeman
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | | | - Mikkel B Christensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Clinical Pharmacology, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, 2400 Copenhagen, Denmark
- Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, 2400 Copenhagen, Denmark
| | - Filip Krag Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
- Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
74
|
Tang Y, Zhang L, Zeng Y, Wang X, Zhang M. Efficacy and safety of tirzepatide in patients with type 2 diabetes: A systematic review and meta-analysis. Front Pharmacol 2022; 13:1016639. [PMID: 36569320 PMCID: PMC9774036 DOI: 10.3389/fphar.2022.1016639] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/14/2022] [Indexed: 12/13/2022] Open
Abstract
Purpose: A systematic review and meta-analysis was conducted to combine the data available from clinical trials and evaluate the clinical efficacy and safety of tirzepatide in people with type 2 diabetes (T2D). Methods: We systematically searched the MEDLINE, Embase, Cochrane Library, and clinical trials registries (https://clinicaltrials.gov) up to 25 March 2022 for randomized controlled trials (RCTs) that compared tirzepatide with placebo or active hypoglycemic drugs in subjects with T2D. Heterogeneity was judged by the I 2 value and Cochran's Q test. The randomized effects model was adopted to calculate risk ratios and weighted mean differences (WMDs). The primary outcome was the change from baseline in HbA1c levels. Secondary efficacy endpoints were fasting serum glucose (FSG), change of body weight, blood pressure, fasting lipid profiles, and safety indexes. Results: Six trials comprising 6,579 subjects (4,410 in the tirzepatide group and 2,054 in the control group) fulfilled the pre-specified criteria and were included in the study. Tirzepatide treatment resulted in reducing HbA1c (WMD: -1.07%; 95% confidence intervals [CIs]: -1.44, -0.56), FSG (WMD, -21.50 mg/dl; 95% CI: -34.44, -8.56), body weight (WMD: -7.99 kg; 95% CI -11.36, -4.62), and blood pressure and ameliorated fasting lipid profiles, without increasing hypoglycemia, either as monotherapy or an add-on therapy. Tirzepatide increased the risk of gastrointestinal adverse events mainly in add-on therapy but not in terms of pancreatitis or cholelithiasis. Furthermore, tirzepatide presented a dose-response effect on the reduction in HbA1c and body weight and increase in nausea and vomiting. Conclusion: In patients with type 2 diabetes, tirzepatide shows superior blood glucose control and weight loss performance, without an increased risk of hypoglycemia. Systematic Review Registration: (https://www.crd.york.ac.uk/PROSPERO), identifier (CRD42022319442).
Collapse
Affiliation(s)
- Yan Tang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Zhang
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuping Zeng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xia Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Mei Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Mei Zhang,
| |
Collapse
|
75
|
Guan R, Yang Q, Yang X, Du W, Li X, Ma G. Efficacy and safety of tirzepatide in patients with type 2 diabetes mellitus: A bayesian network meta-analysis. Front Pharmacol 2022; 13:998816. [PMID: 36313305 PMCID: PMC9613929 DOI: 10.3389/fphar.2022.998816] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/28/2022] [Indexed: 11/29/2022] Open
Abstract
Background: In light of clinical trials comparing different doses of tirzepatide with selective glucagon-like peptide-1 receptor agonist (GLP1-RA) or insulin analogue, a bayesian network meta-analysis was conducted to investigate the efficacy and safety of tirzepatide in patients with type 2 diabetes mellitus (T2DM). Methods: We systematically searched PubMed, Embase, Web of science, Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov from their inception to 2 May 2022. Final included studies met the eligibility criteria and methodological quality recommendations. Data analysis was performed using Stata 15.1 software. Each outcome was presented as a mean difference or an odds ratio, and the surface under the cumulative ranking curve value (SCURA). Results: Ultimately, eight eligible RCTs involving 7245 patients were included. Generally speaking, compared with basal insulin (glargine or degludec); selective GLP1-RA (dulaglutide or semaglutide once weekly), 10 and 15 mg of tirzepatide exhibited better antidiabetic and weight-loss effect, especially, 15 mg of tirzepatide was dominant on reducing glycated hemoglobin (SCURA probability: 93.5%), body weight (99.7%), and fasting serum glucose (86.6%). As for safety, insulin caused less gastrointestinal events (93.5%), and there was no statistical difference between GLP1-RA and tirzepatide. Conclusion: Compare with insulin and GLP1-RA, tirzepatide display favorable efficacy and acceptable safety for T2DM patients. More well-designed RCTs are needed to evaluate its clinical performance with higher doses of GLP1-RA and determine its potential cardiovascular benefits.
Collapse
Affiliation(s)
- Ruifang Guan
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai, China
- Department of Clinical Pharmacology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qing Yang
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiaolei Yang
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai, China
| | - Wandi Du
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai, China
| | - Xuening Li
- Department of Clinical Pharmacology, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Xuening Li, ; Guo Ma,
| | - Guo Ma
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai, China
- *Correspondence: Xuening Li, ; Guo Ma,
| |
Collapse
|
76
|
Al‐Zaid B, Chacko S, Ezeamuzie CI, Bünemann M, Krasel C, Karimian T, Lanzerstorfer P, Al‐Sabah S. Differential effects of glucose-dependent insulinotropic polypeptide receptor/glucagon-like peptide-1 receptor heteromerization on cell signaling when expressed in HEK-293 cells. Pharmacol Res Perspect 2022; 10:e01013. [PMID: 36177761 PMCID: PMC9523454 DOI: 10.1002/prp2.1013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/12/2022] [Indexed: 12/15/2022] Open
Abstract
The incretin hormones: glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are important regulators of many aspects of metabolism including insulin secretion. Their receptors (GIPR and GLP-1R) are closely related members of the secretin class of G-protein-coupled receptors. As both receptors are expressed on pancreatic β-cells there is at least the hypothetical possibility that they may form heteromers. In the present study, we investigated GIPR/GLP-1R heteromerization and the impact of GIPR on GLP-1R-mediated signaling and vice versa in HEK-293 cells. Real-time fluorescence resonance energy transfer (FRET) and bioluminescence resonance energy transfer (BRET) saturation experiments confirm that GLP-1R and GIPR form heteromers. Stimulation with 1 μM GLP-1 caused an increase in both FRET and BRET ratio, whereas stimulation with 1 μM GIP caused a decrease. The only other ligand tested to cause a significant change in BRET signal was the GLP-1 metabolite, GLP-1 (9-36). GIPR expression had no significant effect on mini-Gs recruitment to GLP-1R but significantly inhibited GLP-1 stimulated mini-Gq and arrestin recruitment. In contrast, the presence of GLP-1R improved GIP stimulated mini-Gs and mini-Gq recruitment to GIPR. These data support the hypothesis that GIPR and GLP-1R form heteromers with differential consequences on cell signaling.
Collapse
Affiliation(s)
- Bashaier Al‐Zaid
- Department of Pharmacology and Toxicology, Faculty of MedicineKuwait UniversityKuwait CityKuwait
| | - Siby Chacko
- Department of Pharmacology and Toxicology, Faculty of MedicineKuwait UniversityKuwait CityKuwait
| | | | - Moritz Bünemann
- School of Pharmacy, Institute for Pharmacology and ToxicologyThe Philipps University of MarburgMarburgGermany
| | - Cornelius Krasel
- School of Pharmacy, Institute for Pharmacology and ToxicologyThe Philipps University of MarburgMarburgGermany
| | - Tina Karimian
- University of Applied Sciences Upper Austria, School of EngineeringWelsAustria
| | - Peter Lanzerstorfer
- University of Applied Sciences Upper Austria, School of EngineeringWelsAustria
| | - Suleiman Al‐Sabah
- Department of Pharmacology and Toxicology, Faculty of MedicineKuwait UniversityKuwait CityKuwait
| |
Collapse
|
77
|
Chu L, Terasaki M, Mattsson CL, Teinturier R, Charbord J, Dirice E, Liu KC, Miskelly MG, Zhou Q, Wierup N, Kulkarni RN, Andersson O. In vivo drug discovery for increasing incretin-expressing cells identifies DYRK inhibitors that reinforce the enteroendocrine system. Cell Chem Biol 2022; 29:1368-1380.e5. [PMID: 35998625 PMCID: PMC9557248 DOI: 10.1016/j.chembiol.2022.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/27/2022] [Accepted: 07/27/2022] [Indexed: 02/02/2023]
Abstract
Analogs of the incretin hormones Gip and Glp-1 are used to treat type 2 diabetes and obesity. Findings in experimental models suggest that manipulating several hormones simultaneously may be more effective. To identify small molecules that increase the number of incretin-expressing cells, we established a high-throughput in vivo chemical screen by using the gip promoter to drive the expression of luciferase in zebrafish. All hits increased the numbers of neurogenin 3-expressing enteroendocrine progenitors, Gip-expressing K-cells, and Glp-1-expressing L-cells. One of the hits, a dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) inhibitor, additionally decreased glucose levels in both larval and juvenile fish. Knock-down experiments indicated that nfatc4, a downstream mediator of DYRKs, regulates incretin+ cell number in zebrafish, and that Dyrk1b regulates Glp-1 expression in an enteroendocrine cell line. DYRK inhibition also increased the number of incretin-expressing cells in diabetic mice, suggesting a conserved reinforcement of the enteroendocrine system, with possible implications for diabetes.
Collapse
Affiliation(s)
- Lianhe Chu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Michishige Terasaki
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Charlotte L Mattsson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Romain Teinturier
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jérémie Charbord
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ercument Dirice
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Ka-Cheuk Liu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Michael G Miskelly
- Department of Clinical Sciences, Lund University Diabetes Centre, Malmö 20502, Sweden
| | - Qiao Zhou
- Division of Regenerative Medicine & Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Nils Wierup
- Department of Clinical Sciences, Lund University Diabetes Centre, Malmö 20502, Sweden
| | - Rohit N Kulkarni
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Olov Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
78
|
Posch MG, Walther N, Ferrannini E, Powell DR, Banks P, Wason S, Dahmen R. Metabolic, Intestinal, and Cardiovascular Effects of Sotagliflozin Compared With Empagliflozin in Patients With Type 2 Diabetes: A Randomized, Double-Blind Study. Diabetes Care 2022; 45:2118-2126. [PMID: 35817022 PMCID: PMC9472498 DOI: 10.2337/dc21-2166] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/21/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Inhibiting sodium-glucose cotransporters (SGLTs) improves glycemic and cardiovascular outcomes in patients with type 2 diabetes (T2D). We investigated the differential impact of selective SGLT2 inhibition and dual inhibition of SGLT1 and SGLT2 on multiple parameters. RESEARCH DESIGN AND METHODS Using a double-blind, parallel-group design, we randomized 40 patients with T2D and hypertension to receive the dual SGLT1 and SGLT2 inhibitor sotagliflozin 400 mg or the selective SGLT2 inhibitor empagliflozin 25 mg, with preexisting antihypertensive treatment, for 8 weeks. In an in-house testing site, mixed-meal tolerance tests (MMTTs) and other laboratory and clinical evaluations were used to study metabolic, intestinal, cardiovascular, and urinary parameters over 24 h. RESULTS Changes from baseline in glycemic and blood pressure control; intestinal, urine, and metabolic parameters; and cardiovascular biomarkers were generally similar with sotagliflozin and empagliflozin. During the breakfast MMTT, sotagliflozin significantly reduced incremental area under the curve (AUC) values for postprandial glucose, insulin, and glucose-dependent insulinotropic polypeptide (GIP) and significantly increased incremental AUCs for postprandial glucagon-like peptide 1 (GLP-1) relative to empagliflozin, consistent with sotagliflozin-mediated inhibition of intestinal SGLT1. These changes waned during lunch and dinner MMTTs. Both treatments significantly lowered GIP incremental AUCs relative to baseline over the 14 h MMTT interval; the most vigorous effect was seen with sotagliflozin soon after start of the first meal of the day. No serious or severe adverse events were observed. CONCLUSIONS Changes from baseline in glycemic and blood pressure control, cardiovascular biomarkers, and other parameters were comparable between sotagliflozin and empagliflozin. However, sotagliflozin but not empagliflozin inhibited intestinal SGLT1 after breakfast as shown by larger changes in postprandial glucose, insulin, GIP, and GLP-1 AUCs, particularly after breakfast. Additional study is warranted to assess the clinical relevance of transient SGLT1 inhibition and differences in incretin responses (NCT03462069).
Collapse
Affiliation(s)
| | | | - Ele Ferrannini
- National Research Council Institute of Clinical Physiology, Pisa, Italy
| | | | | | - Suman Wason
- Lexicon Pharmaceuticals, Inc., The Woodlands, TX
| | | |
Collapse
|
79
|
Nguyen A, Khafagy R, Meerasa A, Roshandel D, Paterson AD, Dash S. Insulin Response to Oral Glucose and Cardiometabolic Disease: A Mendelian Randomization Study to Assess Potential Causality. Diabetes 2022; 71:1880-1890. [PMID: 35748295 DOI: 10.2337/db22-0138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022]
Abstract
Mendelian randomization (MR) suggests that postprandial hyperinsulinemia (unadjusted for plasma glucose) increases BMI, but its impact on cardiometabolic disease, a leading cause for mortality and morbidity in people with obesity, is not established. Fat distribution i.e., increased centripetal and/or reduced femoro-gluteal adiposity, is causally associated with and better predicts cardiometabolic disease than BMI. We therefore undertook bidirectional MR to assess the effect of corrected insulin response (CIR) (insulin 30 min after a glucose challenge adjusted for plasma glucose) on BMI, waist-to-hip ratio (WHR), leg fat, type 2 diabetes (T2D), triglyceride (TG), HDL, liver fat, hypertension (HTN), and coronary artery disease (CAD) in people of European descent. Inverse variance-weighted MR suggests a potential causal association between increased CIR and increased BMI (b = 0.048 ± 0.02, P = 0.03), increased leg fat (b = 0.029 ± 0.012, P = 0.01), reduced T2D (b = -0.73 ± 0.15, P = 6 × 10-7, odds ratio [OR] 0.48 [95% CI 0.36-0.64]), reduced TG (b = -0.07 ± 0.02, P = 0.003), and increased HDL (b = 0.04 ± 0.01, P = 0.006) with some evidence of horizontal pleiotropy. CIR had neutral effects on WHR (b = 0.009 ± 0.02, P = 0.69), liver fat (b = -0.08 ± 0.04, P = 0.06), HTN (b = -0.001 ± 0.004, P = 0.7, OR 1.00 [95% CI 0.99-1.01]), and CAD (b = -0.002 ± 0.002, P = 0.48, OR 0.99 [95% CI 0.81-1.21]). T2D decreased CIR (b -0.22 ± 0.04, P = 1.3 × 10-7), with no evidence that BMI, TG, HDL, liver fat, HTN, and CAD modulate CIR. In conclusion, we did not find evidence that increased CIR increases cardiometabolic disease. It might increase BMI with favorable fat distribution, reduce T2D, and improve lipids.
Collapse
Affiliation(s)
- Anthony Nguyen
- Department of Medicine, University Health Network, and University of Toronto, Toronto, Canada
| | - Rana Khafagy
- Department of Medicine, University Health Network, and University of Toronto, Toronto, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
- Divisions of Epidemiology and Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Ameena Meerasa
- Department of Medicine, University Health Network, and University of Toronto, Toronto, Canada
| | - Delnaz Roshandel
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Andrew D Paterson
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
- Divisions of Epidemiology and Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Satya Dash
- Department of Medicine, University Health Network, and University of Toronto, Toronto, Canada
| |
Collapse
|
80
|
Holst JJ. Glucagon and other proglucagon-derived peptides in the pathogenesis of obesity. Front Nutr 2022; 9:964406. [PMID: 35990325 PMCID: PMC9386348 DOI: 10.3389/fnut.2022.964406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Because of differential processing of the hormone precursor, proglucagon, numerous peptide products are released from the pancreatic alpha cells and the intestinal L-cells in which the (pro)glucagon gene is expressed. Of particular interest in relation to obesity are glucagon from the pancreas and oxyntomodulin and GLP-1 from the gut, all of which inhibit food intake, but the other products are also briefly discussed, because knowledge about these is required for selection and evaluation of the methods for measurement of the hormones. The distal intestinal L-cells also secrete the appetite-inhibiting hormone PYY. Characteristics of the secretion of the pancreatic and intestinal products are described, and causes of the hypersecretion of glucagon in obesity and type 2 diabetes are discussed. In contrast, the secretion of the products of the L-cells is generally impaired in obesity, raising questions about their role in the development of obesity. It is concluded that the impairment probably is secondary to obesity, but the lower plasma levels may contribute to the development.
Collapse
Affiliation(s)
- Jens Juul Holst
- The NovoNordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
81
|
Effect of Laparoscopic Sleeve Gastrectomy on HbA1C Level in Children with Type 2 Diabetes Mellitus. Medicina (B Aires) 2022; 58:medicina58070959. [PMID: 35888681 PMCID: PMC9318732 DOI: 10.3390/medicina58070959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Objectives: A third of the American adult population is currently pre-diabetic/morbidly obese and is, therefore, at an elevated risk for developing type 2 diabetes. Unfortunately, such a condition does not spare children from also developing morbid obesity, where incidence rates of childhood obesity—coupled with type 2 diabetes—are markedly elevated. Laparoscopic sleeve gastrectomy (LSG) is gradually becoming the novel benchmark in bariatric surgery for the treatment of morbid obesity and associated co-morbidities, also within pediatric cases. However, no comprehensive study has been conducted in children that emphasizes the effect of LSG on HbA1C levels within such a patient population suffering from type 2 diabetes. Aim: Since HbA1C is a major biomarker for type 2 diabetes progression, this study aimed to identify any dysregulated serum levels for this key molecular player (together with other parameters), for post-surgical monitoring of the beneficial metabolic effects of LSG surgery on type 2 diabetes amelioration/remission within pediatric patients. Materials and Methods: A total of 64 pediatric patients, ranging in age from 5 to 14 years old, were enrolled in this retrospective study. Multiple laboratory-based analyses datasets were also collected from individual study participants, including HbA1C and random blood sugar (RBS). All participating patients were designated for undergoing laparoscopic sleeve gastrectomy, as per standardized surgical protocols and each participant was followed-up for two years post-surgery. Laboratory investigations were re-performed in order to identify any major variations in clinical parameters. Results: HbA1c was significantly reduced among children, from 6.0 ± 0.8 (pre-LSG) to 5.4 ± 0.4 post-surgery, with a reduction rate of 10.9% (p = 0.001). Furthermore, RBS significantly decreased from 102.9 ± 34.0 (pre-LSG) to 87.1 ± 17.3 post- surgery, with a reduction rate of 15.4% (p = 0.036). Conclusions: This study provides further concrete evidence for the beneficial metabolic influence provided by LSG surgery on morbidly obese, childhood-aged patient populations, with effectiveness in reducing co-morbidity progress, in the form of type 2 diabetes, through the reduction in HbA1c levels within such patients post-surgery.
Collapse
|
82
|
Knerr PJ, Mowery SA, Douros JD, Premdjee B, Hjøllund KR, He Y, Kruse Hansen AM, Olsen AK, Perez-Tilve D, DiMarchi RD, Finan B. Next generation GLP-1/GIP/glucagon triple agonists normalize body weight in obese mice. Mol Metab 2022; 63:101533. [PMID: 35809773 PMCID: PMC9305623 DOI: 10.1016/j.molmet.2022.101533] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/18/2022] [Accepted: 06/18/2022] [Indexed: 12/19/2022] Open
Abstract
Objective Pharmacological strategies that engage multiple mechanisms-of-action have demonstrated synergistic benefits for metabolic disease in preclinical models. One approach, concurrent activation of the glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic peptide (GIP), and glucagon (Gcg) receptors (i.e. triagonism), combines the anorectic and insulinotropic activities of GLP-1 and GIP with the energy expenditure effect of glucagon. While the efficacy of triagonism in preclinical models is known, the relative contribution of GcgR activation remains unassessed. This work aims to addresses that central question. Methods Herein, we detail the design of unimolecular peptide triagonists with an empirically optimized receptor potency ratio. These optimized peptide triagonists employ a protraction strategy permitting once-weekly human dosing. Additionally, we assess the effects of these peptides on weight-reduction, food intake, glucose control, and energy expenditure in an established DIO mouse model compared to clinically relevant GLP-1R agonists (e.g. semaglutide) and dual GLP-1R/GIPR agonists (e.g. tirzepatide). Results Optimized triagonists normalize body weight in DIO mice and enhance energy expenditure in a manner superior to that of GLP-1R mono-agonists and GLP-1R/GIPR co-agonists. Conclusions These pre-clinical data suggest unimolecular poly-pharmacology as an effective means to target multiple mechanisms contributing to obesity and further implicate GcgR activation as the differentiating factor between incretin receptor mono- or dual-agonists and triagonists. Details the design of unimolecular peptide triagonists for GLP-1R/GIPR/GCGR. Optimal weight-loss is achieved when receptor potency ratio is weighted toward GCGR vs GLP-1R or GIPR. These agonists are protracted for once-weekly human dosing. Optimized triagonists normalizes body weight & enhance energy expenditure in mice. Efficacy of optimized triagonists is superior to GLP-1R & GLP-1R/GIPR agonists.
Collapse
Affiliation(s)
- Patrick J Knerr
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | | | | | | | | | - Yantao He
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | | | | | - Diego Perez-Tilve
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Brian Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA.
| |
Collapse
|
83
|
Wang L. Designing a Dual GLP-1R/GIPR Agonist from Tirzepatide: Comparing Residues Between Tirzepatide, GLP-1, and GIP. Drug Des Devel Ther 2022; 16:1547-1559. [PMID: 35651477 PMCID: PMC9149770 DOI: 10.2147/dddt.s358989] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/18/2022] [Indexed: 12/13/2022] Open
Abstract
Improving type 2 diabetes using incretin analogues is becoming increasingly plausible. Currently, tirzepatide is the most promising listed incretin analogue. Here, I briefly explain the evolution of drugs of this kind, analyze the residue discrepancies between tirzepatide and endogenous incretins, summarize some existing strategies for prolonging half-life, and present suggestions for future research, mainly involving biased functions. This review aims to present some useful information for designing a dual glucagon like peptide-1 receptor/glucose-dependent insulinotropic polypeptide receptor agonist. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/yo_lgebnhRo
Collapse
Affiliation(s)
- Lijing Wang
- College of Life Sciences and Technology, China Pharmaceutical University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
84
|
Lok KH, Wareham NJ, Nair RS, How CW, Chuah LH. Revisiting the concept of incretin and enteroendocrine L-cells as type 2 diabetes mellitus treatment. Pharmacol Res 2022; 180:106237. [PMID: 35487405 PMCID: PMC7614293 DOI: 10.1016/j.phrs.2022.106237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/08/2022] [Accepted: 04/22/2022] [Indexed: 12/19/2022]
Abstract
The significant growth in type 2 diabetes mellitus (T2DM) prevalence strikes a common threat to the healthcare and economic systems globally. Despite the availability of several anti-hyperglycaemic agents in the market, none can offer T2DM remission. These agents include the prominent incretin-based therapy such as glucagon-like peptide-1 receptor (GLP-1R) agonists and dipeptidyl peptidase-4 inhibitors that are designed primarily to promote GLP-1R activation. Recent interest in various therapeutically useful gastrointestinal hormones in T2DM and obesity has surged with the realisation that enteroendocrine L-cells modulate the different incretins secretion and glucose homeostasis, reflecting the original incretin definition. Targeting L-cells offers promising opportunities to mimic the benefits of bariatric surgery on glucose homeostasis, bodyweight management, and T2DM remission. Revising the fundamental incretin theory is an essential step for therapeutic development in this area. Therefore, the present review explores enteroendocrine L-cell hormone expression, the associated nutrient-sensing mechanisms, and other physiological characteristics. Subsequently, enteroendocrine L-cell line models and the latest L-cell targeted therapies are reviewed critically in this paper. Bariatric surgery, pharmacotherapy and new paradigm of L-cell targeted pharmaceutical formulation are discussed here, offering both clinician and scientist communities a new common interest to push the scientific boundary in T2DM therapy.
Collapse
Affiliation(s)
- Kok-Hou Lok
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| | - Nicholas J Wareham
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; MRC Epidemiology Unit, University of Cambridge, Institute of Metabolic Science, Cambridge, UK.
| | - Rajesh Sreedharan Nair
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| | - Lay-Hong Chuah
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
85
|
Ferrulli A, Terruzzi I, Senesi P, Succi M, Cannavaro D, Luzi L. Turning the clock forward: New pharmacological and non pharmacological targets for the treatment of obesity. Nutr Metab Cardiovasc Dis 2022; 32:1320-1334. [PMID: 35354547 DOI: 10.1016/j.numecd.2022.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 11/26/2022]
Abstract
AIMS Obesity and its main metabolic complication, type 2 diabetes, have attained the status of a global pandemic; there is need for novel strategies aimed at treating obesity and preventing the development of diabetes. A healthy diet and exercise are basic for treatment of obesity but often not enough. Pharmacotherapy can be helpful in maintaining compliance, ameliorating obesity-related health risks, and improving quality of life. In the last two decades, the knowledge of central and peripheral mechanisms underlying homeostatic and hedonic aspects of food intake has significantly increased. Dysregulation of one or more of these components could lead to obesity. DATA SYNTHESIS In order to better understand how potential innovative treatment options can affect obesity, homeostatic and reward mechanisms that regulate energy balance has been firstly illustrated. Then, an overview of potential therapeutic targets for obesity, distinguished according to the level of regulation of feeding behavior, has been provided. Moreover, several non-drug therapies have been recently tested in obesity, such as non-invasive neurostimulation: Transcranial Magnetic Stimulation or Transcranial Direct Current Stimulation. All of them are promising for obesity treatment and are almost devoid of side effects, constituting a potential resource for the prevention of metabolic diseases. CONCLUSIONS The plethora of current anti-obesity therapies creates the unique challenge for physicians to customize the intervention, according to the specific obesity characteristics and the intervention side effect profiles; moreover, it allows multimodal approaches addressed to treat obesity and metabolic adaptation with complementary mechanisms.
Collapse
Affiliation(s)
- Anna Ferrulli
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Sesto San Giovanni, MI, Italy; Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Ileana Terruzzi
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Sesto San Giovanni, MI, Italy; Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Pamela Senesi
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Sesto San Giovanni, MI, Italy; Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Massimiliano Succi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Daniele Cannavaro
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Livio Luzi
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Sesto San Giovanni, MI, Italy; Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.
| |
Collapse
|
86
|
Bays HE, Fitch A, Christensen S, Burridge K, Tondt J. Anti-Obesity Medications and Investigational Agents: An Obesity Medicine Association (OMA) Clinical Practice Statement (CPS) 2022. OBESITY PILLARS 2022; 2:100018. [PMID: 37990711 PMCID: PMC10662004 DOI: 10.1016/j.obpill.2022.100018] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2023]
Abstract
Background This "Anti-Obesity Medications and Investigational Agents: An Obesity Medicine Association Clinical Practice Statement 2022" is intended to provide clinicians an overview of Food and Drug Administration (FDA) approved anti-obesity medications and investigational anti-obesity agents in development. Methods The scientific information for this Clinical Practice Statement (CPS) is based upon published scientific citations, clinical perspectives of OMA authors, and peer review by the Obesity Medicine Association leadership. Results This CPS describes pharmacokinetic principles applicable to those with obesity, and discusses the efficacy and safety of anti-obesity medications [e.g., phentermine, semaglutide, liraglutide, phentermine/topiramate, naltrexone/bupropion, and orlistat, as well as non-systemic superabsorbent oral hydrogel particles (which is technically classified as a medical device)]. Other medications discussed include setmelanotide, metreleptin, and lisdexamfetamine dimesylate. Data regarding the use of combination anti-obesity pharmacotherapy, as well as use of anti-obesity pharmacotherapy after bariatric surgery are limited; however, published data support such approaches. Finally, this CPS discusses investigational anti-obesity medications, with an emphasis on the mechanisms of action and summary of available clinical trial data regarding tirzepatide. Conclusion This "Anti-Obesity Medications and Investigational Agents: An Obesity Medicine Association Clinical Practice Statement 2022" is one of a series of OMA CPSs designed to assist clinicians in the care of patients with pre-obesity/obesity.
Collapse
Affiliation(s)
- Harold E. Bays
- Louisville Metabolic and Atherosclerosis Research Center, University of Louisville School of Medicine, 3288 Illinois Avenue, Louisville, KY, 40213, USA
| | - Angela Fitch
- Assistant Professor of Medicine Harvard Medical School, Co-Director Massachusetts General Hospital Weight Center, Boston, MA, USA
| | - Sandra Christensen
- Integrative Medical Weight Management, 2611 NE 125th St, Suite 100B, Seattle, WA, 98125, USA
| | - Karli Burridge
- Enara Health, 16501 106th Court, Orland Park, IL, 60467, USA
- Gaining Health, 528 Pennsylvania Ave #708, Glen Ellyn, IL, 60137, USA
| | - Justin Tondt
- Department of Family and Community Medicine, Eastern Virginia Medical School, P.O. Box 1980, Norfolk, VA, 23501, USA
| |
Collapse
|
87
|
He Q, Chen B, Wang G, Zhou D, Zeng H, Li X, Song Y, Yu X, Liang W, Chen H, Liu X, Wu Q, Wu L, Zhang L, Li H, Hu X, Zhou W. Co-Crystal of Rosiglitazone With Berberine Ameliorates Hyperglycemia and Insulin Resistance Through the PI3K/AKT/TXNIP Pathway In Vivo and In Vitro. Front Pharmacol 2022; 13:842879. [PMID: 35571083 PMCID: PMC9096649 DOI: 10.3389/fphar.2022.842879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease characterized by insulin resistance and hyperglycemia. This study examined the effect and elucidated the mechanism of improvement of hyperglycemia and insulin resistance by a co-crystal of rosiglitazone with berberine (RB) in high-sugar high-fat diet (HSHFD)-induced diabetic KKAy mice. Methods: Diabetic KKAy mice were randomly divided into seven groups: KKAy model control group (DM control) treated with 3% sodium carboxymethyl cellulose; RB groups, administered daily with RB 0.7 mg/kg (RB-L), 2.11 mg/kg (RB-M), or 6.33 mg/kg (RB-H); positive control groups, administered daily with rosiglitazone 1.04 mg/kg (RSG), berberine 195 mg/kg (BBR), or combination of 1.04 mg/kg RSG and 1.08 mg/kg BBR (MIX). Test compounds were administered orally for 8 weeks. Non-diabetic C57BL/6J mice were used as normal control (NC). Blood glucose, food intake, body weight, glucose-lipid metabolism, and pathological changes in the pancreas and liver were examined. We further evaluated the mechanism of action of RB in C2C12 and HepG2 cells stimulated with high glucose and palmitate. Results: RB treatment improved glucolipid metabolism and insulin resistance in diabetic KKAy mice. RB reduced blood glucose levels, white fat index, plasma triglyceride (TG), low-density lipoprotein (LDL), gastric inhibitory peptide (GIP), and insulin levels, increased the levels of plasma glucagon-like peptide-1 (GLP-1), high-density lipoprotein (HDL), and glycogen content in the liver and muscle; and improved oral glucose tolerance test (OGTT), insulin tolerance test (ITT), and pathological changes in the pancreas and liver of KKAy mice. Moreover, RB upregulated p-PI3K and p-AKT levels and reduced TXNIP expression in KKAy mice and in HepG2 and C2C12 cells. Conclusion: These data indicate that RB ameliorates insulin resistance and metabolic disorders, and the mechanism might be through regulating the PI3K/AKT/TXNIP signaling pathway . Thus, the co-crystal drug RB may be considered as a potential antidiabetic agent for future clinical therapy.
Collapse
Affiliation(s)
- Qichen He
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China.,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Bo Chen
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China.,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Gang Wang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China.,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Duanfang Zhou
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China.,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Hongfang Zeng
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China.,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Xiaoli Li
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China.,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Yi Song
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China.,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Xiaoping Yu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China.,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Wenxin Liang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China.,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Huiling Chen
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China.,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Xu Liu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China.,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Qiuya Wu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China.,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Lihong Wu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China.,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Limei Zhang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China.,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Huizhen Li
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Xiangnan Hu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.,Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Weiying Zhou
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China.,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| |
Collapse
|
88
|
Mayendraraj A, Rosenkilde MM, Gasbjerg LS. GLP-1 and GIP receptor signaling in beta cells - A review of receptor interactions and co-stimulation. Peptides 2022; 151:170749. [PMID: 35065096 DOI: 10.1016/j.peptides.2022.170749] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/07/2023]
Abstract
Glucagon-like peptide 1 receptor (GLP-1R) and glucose-dependent insulinotropic polypeptide receptor (GIPR) are two class B1 G protein-coupled receptors, which are stimulated by the gastrointestinal hormones GLP-1 and GIP, respectively. In the pancreatic beta cells, activation of both receptors lead to increased cyclic adenosine monophosphate (cAMP) and glucose-dependent insulin secretion. Marketed GLP-1R agonists such as dulaglutide, liraglutide, exenatide and semaglutide constitute an expanding drug class with beneficial effects for persons suffering from type 2 diabetes and/or obesity. In recent years another drug class, the GLP-1R-GIPR co-agonists, has emerged. Especially the peptide-based, co-agonist tirzepatide is a promising candidate for a better treatment of type 2 diabetes by improving glycemic control and weight reduction. The mechanism of action for tirzepatide include biased signaling of the GLP-1R as well as potent GIPR signaling. Since the implications of co-targeting these closely related receptors concomitantly are challenging to study in vivo, the pharmacodynamic mechanisms and downstream signaling pathways of the GLP-1R-GIPR co-agonists in general, are not fully elucidated. In this review, we present the individual signaling pathways for GLP-1R and GIPR in the pancreatic beta cell with a focus on the shared signaling pathways of the two receptors and interpret the implications of GLP-1R-GIPR co-activation in the light of recent co-activating therapeutic compounds.
Collapse
Affiliation(s)
- Ashok Mayendraraj
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lærke S Gasbjerg
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
89
|
Franklin ZJ, Lafferty RA, Flatt PR, McShane LM, O'Harte FP, Irwin N. Metabolic effects of combined glucagon receptor antagonism and glucagon-like peptide-1 receptor agonism in high fat fed mice. Biochimie 2022; 199:60-67. [DOI: 10.1016/j.biochi.2022.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 01/19/2023]
|
90
|
Wachsmuth HR, Weninger SN, Duca FA. Role of the gut-brain axis in energy and glucose metabolism. Exp Mol Med 2022; 54:377-392. [PMID: 35474341 PMCID: PMC9076644 DOI: 10.1038/s12276-021-00677-w] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal tract plays a role in the development and treatment of metabolic diseases. During a meal, the gut provides crucial information to the brain regarding incoming nutrients to allow proper maintenance of energy and glucose homeostasis. This gut-brain communication is regulated by various peptides or hormones that are secreted from the gut in response to nutrients; these signaling molecules can enter the circulation and act directly on the brain, or they can act indirectly via paracrine action on local vagal and spinal afferent neurons that innervate the gut. In addition, the enteric nervous system can act as a relay from the gut to the brain. The current review will outline the different gut-brain signaling mechanisms that contribute to metabolic homeostasis, highlighting the recent advances in understanding these complex hormonal and neural pathways. Furthermore, the impact of the gut microbiota on various components of the gut-brain axis that regulates energy and glucose homeostasis will be discussed. A better understanding of the gut-brain axis and its complex relationship with the gut microbiome is crucial for the development of successful pharmacological therapies to combat obesity and diabetes.
Collapse
Affiliation(s)
| | | | - Frank A Duca
- School of Animal and Comparative Biomedical Sciences, College of Agricultural and Life Sciences, University of Arizona, Tucson, AZ, USA. .,BIO5, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
91
|
Fecal Microbiota Transplant in a Pre-Clinical Model of Type 2 Diabetes Mellitus, Obesity and Diabetic Kidney Disease. Int J Mol Sci 2022; 23:ijms23073842. [PMID: 35409202 PMCID: PMC8998923 DOI: 10.3390/ijms23073842] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 01/27/2023] Open
Abstract
Diabetes mellitus (DM) burden encompasses diabetic kidney disease (DKD), the leading cause of end-stage renal disease worldwide. Despite compelling evidence indicating that pharmacological intervention curtails DKD progression, the search for non-pharmacological strategies can identify novel targets for drug development against metabolic diseases. One of those emergent strategies comprises the modulation of the intestinal microbiota through fecal transplant from healthy donors. This study sought to investigate the benefits of fecal microbiota transplant (FMT) on functional and morphological parameters in a preclinical model of type 2 DM, obesity, and DKD using BTBRob/ob mice. These animals develop hyperglycemia and albuminuria in a time-dependent manner, mimicking DKD in humans. Our main findings unveiled that FMT prevented body weight gain, reduced albuminuria and tumor necrosis factor-α (TNF-α) levels within the ileum and ascending colon, and potentially ameliorated insulin resistance in BTBRob/ob mice. Intestinal structural integrity was maintained. Notably, FMT was associated with the abundance of the succinate-consuming Odoribacteraceae bacteria family throughout the intestine. Collectively, our data pointed out the safety and efficacy of FMT in a preclinical model of type 2 DM, obesity, and DKD. These findings provide a basis for translational research on intestinal microbiota modulation and testing its therapeutic potential combined with current treatment for DM.
Collapse
|
92
|
Bhushan B, Granata D, Kaas CS, Kasimova MA, Ren Q, Cramer CN, White MD, Hansen AMK, Fledelius C, Invernizzi G, Deibler K, Coleman OD, Zhao X, Qu X, Liu H, Zurmühl SS, Kodra JT, Kawamura A, Münzel M. An integrated platform approach enables discovery of potent, selective and ligand-competitive cyclic peptides targeting the GIP receptor. Chem Sci 2022; 13:3256-3262. [PMID: 35414877 PMCID: PMC8926291 DOI: 10.1039/d1sc06844j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/23/2022] [Indexed: 01/02/2023] Open
Abstract
In any drug discovery effort, the identification of hits for further optimisation is of crucial importance. For peptide therapeutics, display technologies such as mRNA display have emerged as powerful methodologies to identify these desired de novo hit ligands against targets of interest. The diverse peptide libraries are genetically encoded in these technologies, allowing for next-generation sequencing to be used to efficiently identify the binding ligands. Despite the vast datasets that can be generated, current downstream methodologies, however, are limited by low throughput validation processes, including hit prioritisation, peptide synthesis, biochemical and biophysical assays. In this work we report a highly efficient strategy that combines bioinformatic analysis with state-of-the-art high throughput peptide synthesis to identify nanomolar cyclic peptide (CP) ligands of the human glucose-dependent insulinotropic peptide receptor (hGIP-R). Furthermore, our workflow is able to discriminate between functional and remote binding non-functional ligands. Efficient structure-activity relationship analysis (SAR) combined with advanced in silico structural studies allow deduction of a thorough and holistic binding model which informs further chemical optimisation, including efficient half-life extension. We report the identification and design of the first de novo, GIP-competitive, incretin receptor family-selective CPs, which exhibit an in vivo half-life up to 10.7 h in rats. The workflow should be generally applicable to any selection target, improving and accelerating hit identification, validation, characterisation, and prioritisation for therapeutic development.
Collapse
Affiliation(s)
- Bhaskar Bhushan
- Department of Chemistry, Oxford University, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Daniele Granata
- Global Research Technologies Novo Nordisk A/S, Novo Nordisk Park 2760 Måløv Denmark
| | - Christian S Kaas
- Global Research Technologies Novo Nordisk A/S, Novo Nordisk Park 2760 Måløv Denmark
| | - Marina A Kasimova
- Global Research Technologies Novo Nordisk A/S, Novo Nordisk Park 2760 Måløv Denmark
| | - Qiansheng Ren
- Novo Nordisk Research Center China Novo Nordisk A/S, Shengmingyuan West Ring Rd Changping District Beijing China
| | - Christian N Cramer
- Global Research Technologies Novo Nordisk A/S, Novo Nordisk Park 2760 Måløv Denmark
| | - Mark D White
- Department of Chemistry, Oxford University, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Ann Maria K Hansen
- Global Drug Discovery Novo Nordisk A/S, Novo Nordisk Park 2760 Måløv Denmark
| | - Christian Fledelius
- Global Drug Discovery Novo Nordisk A/S, Novo Nordisk Park 2760 Måløv Denmark
| | - Gaetano Invernizzi
- Global Research Technologies Novo Nordisk A/S, Novo Nordisk Park 2760 Måløv Denmark
| | - Kristine Deibler
- Novo Nordisk Research Center Seattle Novo Nordisk A/S, 530 Fairview Ave N # 5000 Seattle WA 98109 USA
| | - Oliver D Coleman
- School of Natural and Environmental Sciences, Chemistry, Newcastle University Bedson Building, Kings Road Newcastle University Newcastle Upon Tyne NE1 7RU UK
| | - Xin Zhao
- Novo Nordisk Research Center China Novo Nordisk A/S, Shengmingyuan West Ring Rd Changping District Beijing China
| | - Xinping Qu
- Novo Nordisk Research Center China Novo Nordisk A/S, Shengmingyuan West Ring Rd Changping District Beijing China
| | - Haimo Liu
- Novo Nordisk Research Center China Novo Nordisk A/S, Shengmingyuan West Ring Rd Changping District Beijing China
| | - Silvana S Zurmühl
- Global Research Technologies Novo Nordisk A/S, Novo Nordisk Park 2760 Måløv Denmark
| | - Janos T Kodra
- Global Research Technologies Novo Nordisk A/S, Novo Nordisk Park 2760 Måløv Denmark
| | - Akane Kawamura
- Department of Chemistry, Oxford University, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
- School of Natural and Environmental Sciences, Chemistry, Newcastle University Bedson Building, Kings Road Newcastle University Newcastle Upon Tyne NE1 7RU UK
| | - Martin Münzel
- Global Research Technologies Novo Nordisk A/S, Novo Nordisk Park 2760 Måløv Denmark
| |
Collapse
|
93
|
Woodward ORM, Gribble FM, Reimann F, Lewis JE. Gut peptide regulation of food intake - evidence for the modulation of hedonic feeding. J Physiol 2022; 600:1053-1078. [PMID: 34152020 DOI: 10.1113/jp280581] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
The number of people living with obesity has tripled worldwide since 1975 with serious implications for public health, as obesity is linked to a significantly higher chance of early death from associated comorbidities (metabolic syndrome, type 2 diabetes, cardiovascular disease and cancer). As obesity is a consequence of food intake exceeding the demands of energy expenditure, efforts are being made to better understand the homeostatic and hedonic mechanisms governing food intake. Gastrointestinal peptides are secreted from enteroendocrine cells in response to nutrient and energy intake, and modulate food intake either via afferent nerves, including the vagus nerve, or directly within the central nervous system, predominantly gaining access at circumventricular organs. Enteroendocrine hormones modulate homeostatic control centres at hypothalamic nuclei and the dorso-vagal complex. Additional roles of these peptides in modulating hedonic food intake and/or preference via the neural systems of reward are starting to be elucidated, with both peripheral and central peptide sources potentially contributing to central receptor activation. Pharmacological interventions and gastric bypass surgery for the treatment of type 2 diabetes and obesity elevate enteroendocrine hormone levels and also alter food preference. Hence, understanding of the hedonic mechanisms mediated by gut peptide action could advance development of potential therapeutic strategies for the treatment of obesity and its comorbidities.
Collapse
Affiliation(s)
- Orla R M Woodward
- Wellcome Trust - MRC Institute of Metabolic Science Metabolic Research Laboratories, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Fiona M Gribble
- Wellcome Trust - MRC Institute of Metabolic Science Metabolic Research Laboratories, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Frank Reimann
- Wellcome Trust - MRC Institute of Metabolic Science Metabolic Research Laboratories, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Jo E Lewis
- Wellcome Trust - MRC Institute of Metabolic Science Metabolic Research Laboratories, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| |
Collapse
|
94
|
Tirzepatide cardiovascular event risk assessment: a pre-specified meta-analysis. Nat Med 2022; 28:591-598. [PMID: 35210595 PMCID: PMC8938269 DOI: 10.1038/s41591-022-01707-4] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/19/2022] [Indexed: 01/14/2023]
Abstract
Tirzepatide is a novel, once weekly, dual GIP/GLP-1 receptor agonist and is under development for the treatment of type 2 diabetes (T2D) and obesity. Its association with cardiovascular outcomes requires evaluation. This pre-specified cardiovascular meta-analysis included all seven randomized controlled trials with a duration of at least 26 weeks from the tirzepatide T2D clinical development program, SURPASS. The pre-specified primary objective of this meta-analysis was the comparison of the time to first occurrence of confirmed four-component major adverse cardiovascular events (MACE-4; cardiovascular death, myocardial infarction, stroke and hospitalized unstable angina) between pooled tirzepatide groups and control groups. A stratified Cox proportional hazards model, with treatment as a fixed effect and trial-level cardiovascular risk as the stratification factor, was used for the estimation of hazard ratios (HRs) and confidence intervals (CIs) comparing tirzepatide to control. Data from 4,887 participants treated with tirzepatide and 2,328 control participants were analyzed. Overall, 142 participants, 109 from the trial with high cardiovascular risk and 33 from the six trials with lower cardiovascular risk, had at least one MACE-4 event. The HRs comparing tirzepatide versus controls were 0.80 (95% CI, 0.57-1.11) for MACE-4; 0.90 (95% CI, 0.50-1.61) for cardiovascular death; and 0.80 (95% CI, 0.51-1.25) for all-cause death. No evidence of effect modifications was observed for any subgroups, although the evidence was stronger for participants with high cardiovascular risk. Tirzepatide did not increase the risk of major cardiovascular events in participants with T2D versus controls.
Collapse
|
95
|
Del Prato S, Gallwitz B, Holst JJ, Meier JJ. The incretin/glucagon system as a target for pharmacotherapy of obesity. Obes Rev 2022; 23:e13372. [PMID: 34713962 PMCID: PMC9286339 DOI: 10.1111/obr.13372] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 12/14/2022]
Abstract
Obesity is a chronic, multifactorial, relapsing disease. Despite multicomponent lifestyle interventions, including pharmacotherapy, maintaining bodyweight loss is challenging for many people. The pathophysiology of obesity is complex, and currently approved pharmacotherapies only target a few of the many pathways involved; thus, single-targeting agents have limited efficacy. Proglucagon-derived peptides, glucagon, and the incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), represent attractive targets for managing obesity and metabolic disorders because they may have direct roles in multiple mechanisms including satiety, energy homeostasis, and lipolytic activity. Unimolecular dual and triple agonists targeting glucagon and incretin hormone receptors have been shown to promote bodyweight loss, lower glucose levels, and reduce food intake in animal models of obesity. Multiple dual receptor agonists are in clinical development for the treatment of obesity, including GLP-1/GIP and GLP-1/glucagon receptor agonists. The extent to which glucagon contributes to treatment effects remains to be understood, but it may promote bodyweight loss by reducing food intake, while concomitant GLP-1 receptor agonism ensures normal glucose control. Further research is required to fully understand the molecular mechanisms of action and metabolic effects of both dual and triple receptor agonists.
Collapse
Affiliation(s)
- Stefano Del Prato
- Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Baptist Gallwitz
- Department of Internal Medicine IVEberhard Karls UniversityTübingenGermany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center MunichUniversity of TübingenTübingenGermany
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Juris J. Meier
- Division of Diabetology, Katholisches Klinikum Bochum, St. Josef HospitalRuhr UniversityBochumGermany
| |
Collapse
|
96
|
Glial Modulation of Energy Balance: The Dorsal Vagal Complex Is No Exception. Int J Mol Sci 2022; 23:ijms23020960. [PMID: 35055143 PMCID: PMC8779587 DOI: 10.3390/ijms23020960] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
The avoidance of being overweight or obese is a daily challenge for a growing number of people. The growing proportion of people suffering from a nutritional imbalance in many parts of the world exemplifies this challenge and emphasizes the need for a better understanding of the mechanisms that regulate nutritional balance. Until recently, research on the central regulation of food intake primarily focused on neuronal signaling, with little attention paid to the role of glial cells. Over the last few decades, our understanding of glial cells has changed dramatically. These cells are increasingly regarded as important neuronal partners, contributing not just to cerebral homeostasis, but also to cerebral signaling. Our understanding of the central regulation of energy balance is part of this (r)evolution. Evidence is accumulating that glial cells play a dynamic role in the modulation of energy balance. In the present review, we summarize recent data indicating that the multifaceted glial compartment of the brainstem dorsal vagal complex (DVC) should be considered in research aimed at identifying feeding-related processes operating at this level.
Collapse
|
97
|
Newsholme P, Rowlands J, Rose’Meyer R, Cruzat V. Metabolic Adaptions/Reprogramming in Islet Beta-Cells in Response to Physiological Stimulators—What Are the Consequences. Antioxidants (Basel) 2022; 11:antiox11010108. [PMID: 35052612 PMCID: PMC8773416 DOI: 10.3390/antiox11010108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/25/2022] Open
Abstract
Irreversible pancreatic β-cell damage may be a result of chronic exposure to supraphysiological glucose or lipid concentrations or chronic exposure to therapeutic anti-diabetic drugs. The β-cells are able to respond to blood glucose in a narrow concentration range and release insulin in response, following activation of metabolic pathways such as glycolysis and the TCA cycle. The β-cell cannot protect itself from glucose toxicity by blocking glucose uptake, but indeed relies on alternative metabolic protection mechanisms to avoid dysfunction and death. Alteration of normal metabolic pathway function occurs as a counter regulatory response to high nutrient, inflammatory factor, hormone or therapeutic drug concentrations. Metabolic reprogramming is a term widely used to describe a change in regulation of various metabolic enzymes and transporters, usually associated with cell growth and proliferation and may involve reshaping epigenetic responses, in particular the acetylation and methylation of histone proteins and DNA. Other metabolic modifications such as Malonylation, Succinylation, Hydroxybutyrylation, ADP-ribosylation, and Lactylation, may impact regulatory processes, many of which need to be investigated in detail to contribute to current advances in metabolism. By describing multiple mechanisms of metabolic adaption that are available to the β-cell across its lifespan, we hope to identify sites for metabolic reprogramming mechanisms, most of which are incompletely described or understood. Many of these mechanisms are related to prominent antioxidant responses. Here, we have attempted to describe the key β-cell metabolic adaptions and changes which are required for survival and function in various physiological, pathological and pharmacological conditions.
Collapse
Affiliation(s)
- Philip Newsholme
- Curtin Medical School and CHIRI, Curtin University, Perth, WA 6845, Australia
- Correspondence: (P.N.); (J.R.)
| | - Jordan Rowlands
- Curtin Medical School and CHIRI, Curtin University, Perth, WA 6845, Australia
- Correspondence: (P.N.); (J.R.)
| | - Roselyn Rose’Meyer
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia;
| | - Vinicius Cruzat
- Faculty of Health, Torrens University Australia, Brisbane, QLD 4006, Australia;
| |
Collapse
|
98
|
Kaneko S. Tirzepatide: A Novel, Once-weekly Dual GIP and GLP-1 Receptor Agonist for the Treatment of Type 2 Diabetes. Endocrinology 2022; 18:10-19. [PMID: 35949358 PMCID: PMC9354517 DOI: 10.17925/ee.2022.18.1.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/11/2022] [Indexed: 11/24/2022]
Abstract
Gastrointestinal hormones are currently used to treat type 2 diabetes mellitus (T2D). Incretin preparations with gastric inhibitory polypeptide (GIP) activity or glucagon-like peptide-1 (GLP-1) provide new means for controlling blood glucose levels, body weight, and lipid metabolism. GIP, an incretin, has not been used due to lack of promising action against diabetes. However, recent studies have shown that GIP has an important effect on glucagon and insulin secretion under normoglycaemic conditions. Co-existence of GIP with GLP-1 and glucagon signalling leads to a stronger effect than that of GLP-1 stimulation alone. The development of a GIP/GLP-1R unimolecular dual agonist with affinity for both GIP and GLP-1 receptors is under investigation, and the drug is expected to be clinically available in the near future. Tirzepatide, a GIP/GLP-1R unimolecular dual agonist, regulates metabolism via both peripheral organs and the central nervous system. The SURPASS phase III clinical trials conducted for tirzepatide comprise 10 clinical trials, including five global trials and the global SURPASS-CVOT trial, with >13,000 patients with T2D (ClinicalTrials.gov Identifier: NCT04255433). The clinical application of tirzepatide as a therapy for T2D may provide new insights into diabetic conditions and help clarify the role of GIP in its pathogenesis.
Collapse
Affiliation(s)
- Shizuka Kaneko
- Division of Diabetes/Endocrinology/Lifestyle-Related Disease, Takatsuki Red Cross Hospital, Takatsuki, Japan
| |
Collapse
|
99
|
Tan Q, Akindehin SE, Orsso CE, Waldner RC, DiMarchi RD, Müller TD, Haqq AM. Recent Advances in Incretin-Based Pharmacotherapies for the Treatment of Obesity and Diabetes. Front Endocrinol (Lausanne) 2022; 13:838410. [PMID: 35299971 PMCID: PMC8921987 DOI: 10.3389/fendo.2022.838410] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/07/2022] [Indexed: 01/01/2023] Open
Abstract
The incretin hormone glucagon-like peptide-1 (GLP-1) has received enormous attention during the past three decades as a therapeutic target for the treatment of obesity and type 2 diabetes. Continuous improvement of the pharmacokinetic profile of GLP-1R agonists, starting from native hormone with a half-life of ~2-3 min to the development of twice daily, daily and even once-weekly drugs highlight the pharmaceutical evolution of GLP-1-based medicines. In contrast to GLP-1, the incretin hormone glucose-dependent insulinotropic polypeptide (GIP) received little attention as a pharmacological target, because of conflicting observations that argue activation or inhibition of the GIP receptor (GIPR) provides beneficial effects on systemic metabolism. Interest in GIPR agonism for the treatment of obesity and diabetes was recently propelled by the clinical success of unimolecular dual-agonists targeting the receptors for GIP and GLP-1, with reported significantly improved body weight and glucose control in patients with obesity and type II diabetes. Here we review the biology and pharmacology of GLP-1 and GIP and discuss recent advances in incretin-based pharmacotherapies.
Collapse
Affiliation(s)
- Qiming Tan
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Seun E. Akindehin
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Germany and German Center for Diabetes Research (DZD), Munich, Germany
| | - Camila E. Orsso
- Department of Agricultural Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | | | | | - Timo D. Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Germany and German Center for Diabetes Research (DZD), Munich, Germany
- *Correspondence: Timo D. Müller, ; Andrea M. Haqq,
| | - Andrea M. Haqq
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
- Department of Agricultural Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Timo D. Müller, ; Andrea M. Haqq,
| |
Collapse
|
100
|
Miranda C, Begum M, Vergari E, Briant LJB. Gap junction coupling and islet delta-cell function in health and disease. Peptides 2022; 147:170704. [PMID: 34826505 DOI: 10.1016/j.peptides.2021.170704] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022]
Abstract
The pancreatic islets contain beta-cells and alpha-cells, which are responsible for secreting two principal gluco-regulatory hormones; insulin and glucagon, respectively. However, they also contain delta-cells, a relatively sparse cell type that secretes somatostatin (SST). These cells have a complex morphology allowing them to establish an extensive communication network throughout the islet, despite their scarcity. Delta-cells are electrically excitable cells, and SST secretion is released in a glucose- and KATP-dependent manner. SST hyperpolarises the alpha-cell membrane and suppresses exocytosis. In this way, islet SST potently inhibits glucagon release. Recent studies investigating the activity of delta-cells have revealed they are electrically coupled to beta-cells via gap junctions, suggesting the delta-cell is more than just a paracrine inhibitor. In this Review, we summarize delta-cell morphology, function, and the role of SST signalling for regulating islet hormonal output. A distinguishing feature of this Review is that we attempt to use the discovery of this gap junction pathway, together with what is already known about delta-cells, to reframe the role of these cells in both health and disease. In particular, we argue that the discovery of gap junction communication between delta-cells and beta-cells provides new insights into the contribution of delta-cells to the islet hormonal defects observed in both type 1 and type 2 diabetes. This reappraisal of the delta-cell is important as it may offer novel insights into how the physiology of this cell can be utilised to restore islet function in diabetes.
Collapse
Affiliation(s)
- Caroline Miranda
- Institute of Neuroscience and Physiology, Metabolic Research Unit, University of Göteborg, 405 30, Göteborg, Sweden
| | - Manisha Begum
- Institute of Neuroscience and Physiology, Metabolic Research Unit, University of Göteborg, 405 30, Göteborg, Sweden; University of Skӧvde, Department of Infection Biology, Högskolevägen 1, 541 28, Skövde, Sweden
| | - Elisa Vergari
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, OX4 7LE, Oxford, UK
| | - Linford J B Briant
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, OX4 7LE, Oxford, UK; Department of Computer Science, University of Oxford, OX1 3QD, Oxford, UK.
| |
Collapse
|