51
|
Ladyman SR, Grattan DR. Central Effects of Leptin on Glucose Homeostasis are Modified during Pregnancy in the Rat. J Neuroendocrinol 2016; 28. [PMID: 27623562 DOI: 10.1111/jne.12431] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 08/03/2016] [Accepted: 09/10/2016] [Indexed: 01/03/2023]
Abstract
Despite increased leptin concentrations during pregnancy, fat mass and food intake are increased. The satiety response to central leptin is suppressed, indicating a state of leptin insensitivity in the hypothalamus. Although the regulation of food intake is a major function of leptin, this hormone also influences a wide range of functions within the body. These actions include the regulation of glucose homeostasis, which undergoes major adaptation in the maternal body to generate optimal conditions for foetal development and growth. The present study aimed to investigate the effects of central leptin treatment on glucose homeostasis in pregnant rats to determine whether pregnancy-induced leptin insensitivity is functionally specific, and to further investigate changes in glucose homeostasis during pregnancy. After an overnight fast, nonpregnant and day 14 pregnant rats received an i.c.v. injection of leptin (100 ng or 4 μg) or vehicle then underwent a glucose tolerance test (GTT). Further groups of nonpregnant and day 14 pregnant rats were killed 30 min after leptin (doses ranging from 40 ng-4 μg) or vehicle i.c.v. injections for western blot analysis of phospho-signal transducer and activator of transcription 3 (STAT3) and phospho-Akt in various hypothalamic nuclei. Central leptin injection prior to a GTT lead to lowered basal insulin concentrations and impaired glucose tolerance in nonpregnant female rats, whereas the same doses of leptin had no significant effect on glucose tolerance in day 14 pregnant rats, indicating that, similar to the satiety actions of leptin, the effects of leptin on glucose homeostasis are suppressed during pregnancy. Furthermore, in the arcuate nucleus and ventromedial and dorsomedial nuclei of the hypothalamus, comprising three leptin-sensitive areas, there was no evidence that leptin induced Akt phosphorylation despite significant increases in phospho-STAT3, suggesting that leptin does not act through phospho-Akt in these areas in female rats.
Collapse
Affiliation(s)
- S R Ladyman
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago, Dunedin, New Zealand.
| | - D R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
52
|
Enriori PJ, Chen W, Garcia-Rudaz MC, Grayson BE, Evans AE, Comstock SM, Gebhardt U, Müller HL, Reinehr T, Henry BA, Brown RD, Bruce CR, Simonds SE, Litwak SA, McGee SL, Luquet S, Martinez S, Jastroch M, Tschöp MH, Watt MJ, Clarke IJ, Roth CL, Grove KL, Cowley MA. α-Melanocyte stimulating hormone promotes muscle glucose uptake via melanocortin 5 receptors. Mol Metab 2016; 5:807-822. [PMID: 27688995 PMCID: PMC5034615 DOI: 10.1016/j.molmet.2016.07.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 01/21/2023] Open
Abstract
Objective Central melanocortin pathways are well-established regulators of energy balance. However, scant data exist about the role of systemic melanocortin peptides. We set out to determine if peripheral α-melanocyte stimulating hormone (α-MSH) plays a role in glucose homeostasis and tested the hypothesis that the pituitary is able to sense a physiological increase in circulating glucose and responds by secreting α-MSH. Methods We established glucose-stimulated α-MSH secretion using humans, non-human primates, and mouse models. Continuous α-MSH infusions were performed during glucose tolerance tests and hyperinsulinemic-euglycemic clamps to evaluate the systemic effect of α-MSH in glucose regulation. Complementary ex vivo and in vitro techniques were employed to delineate the direct action of α-MSH via the melanocortin 5 receptor (MC5R)–PKA axis in skeletal muscles. Combined treatment of non-selective/selective phosphodiesterase inhibitor and α-MSH was adopted to restore glucose tolerance in obese mice. Results Here we demonstrate that pituitary secretion of α-MSH is increased by glucose. Peripheral α-MSH increases temperature in skeletal muscles, acts directly on soleus and gastrocnemius muscles to significantly increase glucose uptake, and enhances whole-body glucose clearance via the activation of muscle MC5R and protein kinase A. These actions are absent in obese mice, accompanied by a blunting of α-MSH-induced cAMP levels in skeletal muscles of obese mice. Both selective and non-selective phosphodiesterase inhibition restores α-MSH induced skeletal muscle glucose uptake and improves glucose disposal in obese mice. Conclusion These data describe a novel endocrine circuit that modulates glucose homeostasis by pituitary α-MSH, which increases muscle glucose uptake and thermogenesis through the activation of a MC5R-PKA-pathway, which is disrupted in obesity. Glucose stimulates α-MSH release from the pituitary. Systemic α-MSH drives glucose disposal and thermogenesis in skeletal muscles. α-MSH acts on MC5R expressed on skeletal muscles and activate cAMP-PKA pathway. The combined treatment of nonselective or selective PDE 4 inhibitor and α-MSH ameliorates glucose intolerance in obese mice.
Collapse
Affiliation(s)
- Pablo J Enriori
- Biomedical Discovery Institute/Department of Physiology, Monash University, Vic, Australia
| | - Weiyi Chen
- Biomedical Discovery Institute/Department of Physiology, Monash University, Vic, Australia
| | - Maria C Garcia-Rudaz
- Biomedical Discovery Institute/Department of Physiology, Monash University, Vic, Australia
| | | | - Anne E Evans
- Division Neuroscience, Oregon Health and Science University, Oregon, USA
| | - Sarah M Comstock
- Division Neuroscience, Oregon Health and Science University, Oregon, USA
| | - Ursel Gebhardt
- Department of Pediatrics, Vestische Children Hospital Datteln, University of Witten/Herdecke, Germany
| | - Hermann L Müller
- Department of Pediatrics, Vestische Children Hospital Datteln, University of Witten/Herdecke, Germany
| | - Thomas Reinehr
- Department of Pediatrics, Klinikum Oldenburg GmbH, Germany
| | - Belinda A Henry
- Biomedical Discovery Institute/Department of Physiology, Monash University, Vic, Australia
| | - Russell D Brown
- Biomedical Discovery Institute/Department of Physiology, Monash University, Vic, Australia
| | - Clinton R Bruce
- Biomedical Discovery Institute/Department of Physiology, Monash University, Vic, Australia
| | - Stephanie E Simonds
- Biomedical Discovery Institute/Department of Physiology, Monash University, Vic, Australia
| | - Sara A Litwak
- Biomedical Discovery Institute/Department of Physiology, Monash University, Vic, Australia
| | - Sean L McGee
- Metabolic Research Unit, School of Medicine, Deakin University, Vic, Australia
| | - Serge Luquet
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75205 Paris, France
| | - Sarah Martinez
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75205 Paris, France
| | - Martin Jastroch
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg & Division of Metabolic Diseases, Technische Universität, München, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg & Division of Metabolic Diseases, Technische Universität, München, Germany
| | - Matthew J Watt
- Biomedical Discovery Institute/Department of Physiology, Monash University, Vic, Australia
| | - Iain J Clarke
- Biomedical Discovery Institute/Department of Physiology, Monash University, Vic, Australia
| | - Christian L Roth
- Division of Endocrinology, Seattle Children's Hospital Research Institute, WA, USA
| | - Kevin L Grove
- Division Neuroscience, Oregon Health and Science University, Oregon, USA
| | - Michael A Cowley
- Biomedical Discovery Institute/Department of Physiology, Monash University, Vic, Australia.
| |
Collapse
|
53
|
Pi-Sunyer X, Shanahan W, Fain R, Ma T, Garvey WT. Impact of lorcaserin on glycemic control in overweight and obese patients with type 2 diabetes: analysis of week 52 responders and nonresponders. Postgrad Med 2016; 128:591-7. [DOI: 10.1080/00325481.2016.1208618] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
54
|
do Carmo JM, da Silva AA, Moak SP, Houghton HJ, Smith A, Hall JE. Regulation of Blood Pressure, Appetite, and Glucose by CNS Melanocortin System in Hyperandrogenemic Female SHR. Am J Hypertens 2016; 29:832-40. [PMID: 26584577 DOI: 10.1093/ajh/hpv182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/20/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Hyperandrogenemia in females may be associated with sympathetic nervous system (SNS) activation and increased blood pressure (BP). However the importance of hyperandrogenemia in causing hypertension in females and the mechanisms involved are still unclear. We tested whether chronic hyperandrogenemia exacerbates hypertension in young female spontaneously hypertensive rats (SHR) and whether endogenous melanocortin-3/4 receptor (MC3/4R) activation contributes to the elevated BP. METHODS Cardiovascular and metabolic effects of chronic MC3/4R antagonism were assessed in female SHR treated with dihydrotestosterone (DHT, beginning at 5 weeks of age) and placebo-treated female SHR. BP and heart rate (HR) were measured by telemetry and an intracerebroventricular (ICV) cannula was placed in the lateral ventricle for infusions. After control measurements, the MC3/4R antagonist (SHU-9119) was infused for 10 days (1 nmol/hour, ICV, at 15 weeks of age) followed by a 5-day recovery period. RESULTS MC3/4R antagonism increased food intake and body weight in DHT-treated SHR (14±1 to 35±1g/day and 244±3 to 298±8g) and controls (14±1 to 34±2g/day and 207±4 to 269±8g). Compared to untreated SHR, DHT-treated SHR had similar BP but lower HR (146±3 vs. 142±4mm Hg and 316±2 vs. 363±4 bpm). Chronic SHU-9119 infusion reduced BP and HR in DHT-treated SHR (-12±2mm Hg and -14±4 bpm) and control female SHR (-19±2mm Hg and -21±6 bpm). CONCLUSION These results indicate that hyperandrogenemia does not exacerbate hypertension in female SHR. MC3/4R antagonism reduces BP and HR despite marked increases in food intake and body weight in hyperandrogenemic and control female SHR.
Collapse
Affiliation(s)
- Jussara M do Carmo
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA;
| | - Alexandre A da Silva
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA; Barão de Mauá University Center, Ribeirão Preto, São Paulo, Brazil
| | - Sydney P Moak
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Haley J Houghton
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Andrew Smith
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA; Department of Radiology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - John E Hall
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
55
|
Melanocortin-4 receptor-regulated energy homeostasis. Nat Neurosci 2016; 19:206-19. [PMID: 26814590 DOI: 10.1038/nn.4202] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/13/2015] [Indexed: 12/11/2022]
Abstract
The melanocortin system provides a conceptual blueprint for the central control of energetic state. Defined by four principal molecular components--two antagonistically acting ligands and two cognate receptors--this phylogenetically conserved system serves as a prototype for hierarchical energy balance regulation. Over the last decade the application of conditional genetic techniques has facilitated the neuroanatomical dissection of the melanocortinergic network and identified the specific neural substrates and circuits that underscore the regulation of feeding behavior, energy expenditure, glucose homeostasis and autonomic outflow. In this regard, the melanocortin-4 receptor is a critical coordinator of mammalian energy homeostasis and body weight. Drawing on recent advances in neuroscience and genetic technologies, we consider the structure and function of the melanocortin-4 receptor circuitry and its role in energy homeostasis.
Collapse
|
56
|
Abstract
Obesity is a disorder that develops from the interaction between genotype and environment involving social, behavioral, cultural, and physiological factors. Obesity increases the risk for type 2 diabetes mellitus, hypertension, cardiovascular disease, cancer, musculoskeletal disorders, chronic kidney and pulmonary disease. Although obesity is clearly associated with an increased prevalence of hypertension, many obese individuals may not develop hypertension. Protecting factors may exist and it is important to understand why obesity is not always related to hypertension. The aim of this review is to highlight the knowledge gap for the association between obesity, hypertension, and potential genetic and racial differences or environmental factors that may protect obese patients against the development of hypertension and other co-morbidities. Specific mutations in the leptin and the melaninocortin receptor genes in animal models of obesity without hypertension, the actions of α-melanocyte stimulating hormone, and SNS activity in obesity-related hypertension may promote recognition of protective and promoting factors for hypertension in obesity. Furthermore, gene-environment interactions may have the potential to modify gene expression and epigenetic mechanisms could also contribute to the heritability of obesity-induced hypertension. Finally, differences in nutrition, gut microbiota, exposure to sun light and exercise may play an important role in the presence or absence of hypertension in obesity.
Collapse
|
57
|
Röder PV, Wu B, Liu Y, Han W. Pancreatic regulation of glucose homeostasis. Exp Mol Med 2016; 48:e219. [PMID: 26964835 PMCID: PMC4892884 DOI: 10.1038/emm.2016.6] [Citation(s) in RCA: 544] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 12/03/2015] [Accepted: 12/06/2015] [Indexed: 12/11/2022] Open
Abstract
In order to ensure normal body function, the human body is dependent on a tight control of its blood glucose levels. This is accomplished by a highly sophisticated network of various hormones and neuropeptides released mainly from the brain, pancreas, liver, intestine as well as adipose and muscle tissue. Within this network, the pancreas represents a key player by secreting the blood sugar-lowering hormone insulin and its opponent glucagon. However, disturbances in the interplay of the hormones and peptides involved may lead to metabolic disorders such as type 2 diabetes mellitus (T2DM) whose prevalence, comorbidities and medical costs take on a dramatic scale. Therefore, it is of utmost importance to uncover and understand the mechanisms underlying the various interactions to improve existing anti-diabetic therapies and drugs on the one hand and to develop new therapeutic approaches on the other. This review summarizes the interplay of the pancreas with various other organs and tissues that maintain glucose homeostasis. Furthermore, anti-diabetic drugs and their impact on signaling pathways underlying the network will be discussed.
Collapse
Affiliation(s)
- Pia V Röder
- Metabolism in Human Diseases Unit, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Metabolism in Human Diseases Unit, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore. E-mail: or
| | - Bingbing Wu
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A*STAR, Singapore, Singapore
| | - Yixian Liu
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A*STAR, Singapore, Singapore
| | - Weiping Han
- Metabolism in Human Diseases Unit, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A*STAR, Singapore, Singapore
- Metabolism in Human Diseases Unit, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore. E-mail: or
| |
Collapse
|
58
|
Role of hindbrain melanocortin-4 receptor activity in controlling cardiovascular and metabolic functions in spontaneously hypertensive rats. J Hypertens 2016; 33:1201-6. [PMID: 25668357 DOI: 10.1097/hjh.0000000000000530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Although we previously demonstrated that activation of central nervous system (CNS) melanocortin3/4 receptors (MC3/4R) play a key role in blood pressure (BP) regulation, especially in spontaneously hypertensive rats (SHRs), the importance of hindbrain MC4R is still unclear. METHOD In the present study, we examined the cardiovascular and metabolic effects of chronic inhibition of MC3/4R in the hindbrain of SHRs and normotensive Wistar-Kyoto (WKY) rats. Male WKY rats (n = 6) and SHRs (n = 7) were implanted with telemetry probes to measure BP and heart rate (HR) 24 h/day, and an intracerebroventricular cannula was placed into the fourth ventricle. After 10 days of recovery and 5 days of control measurements, the MC3/4R antagonist (SHU-9119) was infused into the fourth ventricle (1 nmol/h) to antagonize hindbrain MC4R for 10 days, followed by a 5-day recovery period. RESULTS Chronic hindbrain MC3/4R antagonism significantly increased food intake and body weight in WKY rats (17 ± 1 to 35 ± 2 g/day and 280 ± 8 to 353 ± 8 g) and SHRs (19 ± 2 to 35 ± 2 g/day and 323 ± 7 to 371 ± 11 g), and markedly increased fasting insulin and leptin levels while causing no changes in blood glucose levels (99 ± 4 to 87 ± 4 and 89 ± 5 to 89 ± 4 mg/dl, respectively, for WKY rats and SHRs). Chronic SHU-9119 infusion reduced mean arterial pressure and HR similarly in WKY rats (-8 ± 1 mmHg and -47 ± 3 b.p.m.) and SHRs (-11 ± 3 mmHg and -44 ± 3 b.p.m.). CONCLUSION These results suggest that although hindbrain MC4R activity contributes to appetite and HR regulation, it does not play a major role in mediating the elevated BP in SHRs.
Collapse
|
59
|
Chhabra KH, Adams JM, Fagel B, Lam DD, Qi N, Rubinstein M, Low MJ. Hypothalamic POMC Deficiency Improves Glucose Tolerance Despite Insulin Resistance by Increasing Glycosuria. Diabetes 2016; 65:660-72. [PMID: 26467632 PMCID: PMC4764146 DOI: 10.2337/db15-0804] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/07/2015] [Indexed: 12/18/2022]
Abstract
Hypothalamic proopiomelanocortin (POMC) is essential for the physiological regulation of energy balance; however, its role in glucose homeostasis remains less clear. We show that hypothalamic arcuate nucleus (Arc)POMC-deficient mice, which develop severe obesity and insulin resistance, unexpectedly exhibit improved glucose tolerance and remain protected from hyperglycemia. To explain these paradoxical phenotypes, we hypothesized that an insulin-independent pathway is responsible for the enhanced glucose tolerance. Indeed, the mutant mice demonstrated increased glucose effectiveness and exaggerated glycosuria relative to wild-type littermate controls at comparable blood glucose concentrations. Central administration of the melanocortin receptor agonist melanotan II in mutant mice reversed alterations in glucose tolerance and glycosuria, whereas, conversely, administration of the antagonist Agouti-related peptide (Agrp) to wild-type mice enhanced glucose tolerance. The glycosuria of ArcPOMC-deficient mice was due to decreased levels of renal GLUT 2 (rGLUT2) but not sodium-glucose cotransporter 2 and was associated with reduced renal catecholamine content. Epinephrine treatment abolished the genotype differences in glucose tolerance and rGLUT2 levels, suggesting that reduced renal sympathetic nervous system (SNS) activity is the underlying mechanism for the observed glycosuria and improved glucose tolerance in ArcPOMC-deficient mice. Therefore, the ArcPOMC-SNS-rGLUT2 axis is potentially an insulin-independent therapeutic target to control diabetes.
Collapse
Affiliation(s)
- Kavaljit H Chhabra
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Jessica M Adams
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI
| | - Brian Fagel
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Daniel D Lam
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Nathan Qi
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, MI
| | - Marcelo Rubinstein
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Malcolm J Low
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
60
|
Foglesong GD, Huang W, Liu X, Slater AM, Siu J, Yildiz V, Salton SRJ, Cao L. Role of Hypothalamic VGF in Energy Balance and Metabolic Adaption to Environmental Enrichment in Mice. Endocrinology 2016; 157:983-96. [PMID: 26730934 PMCID: PMC4769365 DOI: 10.1210/en.2015-1627] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Environmental enrichment (EE), a housing condition providing complex physical, social, and cognitive stimulation, leads to improved metabolic health and resistance to diet-induced obesity and cancer. One underlying mechanism is the activation of the hypothalamic-sympathoneural-adipocyte axis with hypothalamic brain-derived neurotrophic factor (BDNF) as the key mediator. VGF, a peptide precursor particularly abundant in the hypothalamus, was up-regulated by EE. Overexpressing BDNF or acute injection of BDNF protein to the hypothalamus up-regulated VGF, whereas suppressing BDNF signaling down-regulated VGF expression. Moreover, hypothalamic VGF expression was regulated by leptin, melanocortin receptor agonist, and food deprivation mostly paralleled to BDNF expression. Recombinant adeno-associated virus-mediated gene transfer of Cre recombinase to floxed VGF mice specifically decreased VGF expression in the hypothalamus. In contrast to the lean and hypermetabolic phenotype of homozygous germline VGF knockout mice, specific knockdown of hypothalamic VGF in male adult mice led to increased adiposity, decreased core body temperature, reduced energy expenditure, and impaired glucose tolerance, as well as disturbance of molecular features of brown and white adipose tissues without effects on food intake. However, VGF knockdown failed to block the EE-induced BDNF up-regulation or decrease of adiposity indicating a minor role of VGF in the hypothalamic-sympathoneural-adipocyte axis. Taken together, our results suggest hypothalamic VGF responds to environmental demands and plays an important role in energy balance and glycemic control likely acting in the melanocortin pathway downstream of BDNF.
Collapse
Affiliation(s)
- Grant D Foglesong
- Department of Molecular Virology, Immunology, and Medical Genetics (G.D.F., W.H., X.L., A.M.S., J.S., L.C.), The Ohio State University, Columbus, Ohio; The Comprehensive Cancer Center (G.D.F., W.H., X.L., A.M.S., J.S., L.C.), The Ohio State University, Columbus, Ohio; and The Center for Biostatistics (V.Y.), The Ohio State University, Columbus, Ohio 43210; and Department of Neuroscience (S.R.J.S.), Icahn School of Medicine at Mount Sinai, New York, New York 10461
| | - Wei Huang
- Department of Molecular Virology, Immunology, and Medical Genetics (G.D.F., W.H., X.L., A.M.S., J.S., L.C.), The Ohio State University, Columbus, Ohio; The Comprehensive Cancer Center (G.D.F., W.H., X.L., A.M.S., J.S., L.C.), The Ohio State University, Columbus, Ohio; and The Center for Biostatistics (V.Y.), The Ohio State University, Columbus, Ohio 43210; and Department of Neuroscience (S.R.J.S.), Icahn School of Medicine at Mount Sinai, New York, New York 10461
| | - Xianglan Liu
- Department of Molecular Virology, Immunology, and Medical Genetics (G.D.F., W.H., X.L., A.M.S., J.S., L.C.), The Ohio State University, Columbus, Ohio; The Comprehensive Cancer Center (G.D.F., W.H., X.L., A.M.S., J.S., L.C.), The Ohio State University, Columbus, Ohio; and The Center for Biostatistics (V.Y.), The Ohio State University, Columbus, Ohio 43210; and Department of Neuroscience (S.R.J.S.), Icahn School of Medicine at Mount Sinai, New York, New York 10461
| | - Andrew M Slater
- Department of Molecular Virology, Immunology, and Medical Genetics (G.D.F., W.H., X.L., A.M.S., J.S., L.C.), The Ohio State University, Columbus, Ohio; The Comprehensive Cancer Center (G.D.F., W.H., X.L., A.M.S., J.S., L.C.), The Ohio State University, Columbus, Ohio; and The Center for Biostatistics (V.Y.), The Ohio State University, Columbus, Ohio 43210; and Department of Neuroscience (S.R.J.S.), Icahn School of Medicine at Mount Sinai, New York, New York 10461
| | - Jason Siu
- Department of Molecular Virology, Immunology, and Medical Genetics (G.D.F., W.H., X.L., A.M.S., J.S., L.C.), The Ohio State University, Columbus, Ohio; The Comprehensive Cancer Center (G.D.F., W.H., X.L., A.M.S., J.S., L.C.), The Ohio State University, Columbus, Ohio; and The Center for Biostatistics (V.Y.), The Ohio State University, Columbus, Ohio 43210; and Department of Neuroscience (S.R.J.S.), Icahn School of Medicine at Mount Sinai, New York, New York 10461
| | - Vedat Yildiz
- Department of Molecular Virology, Immunology, and Medical Genetics (G.D.F., W.H., X.L., A.M.S., J.S., L.C.), The Ohio State University, Columbus, Ohio; The Comprehensive Cancer Center (G.D.F., W.H., X.L., A.M.S., J.S., L.C.), The Ohio State University, Columbus, Ohio; and The Center for Biostatistics (V.Y.), The Ohio State University, Columbus, Ohio 43210; and Department of Neuroscience (S.R.J.S.), Icahn School of Medicine at Mount Sinai, New York, New York 10461
| | - Stephen R J Salton
- Department of Molecular Virology, Immunology, and Medical Genetics (G.D.F., W.H., X.L., A.M.S., J.S., L.C.), The Ohio State University, Columbus, Ohio; The Comprehensive Cancer Center (G.D.F., W.H., X.L., A.M.S., J.S., L.C.), The Ohio State University, Columbus, Ohio; and The Center for Biostatistics (V.Y.), The Ohio State University, Columbus, Ohio 43210; and Department of Neuroscience (S.R.J.S.), Icahn School of Medicine at Mount Sinai, New York, New York 10461
| | - Lei Cao
- Department of Molecular Virology, Immunology, and Medical Genetics (G.D.F., W.H., X.L., A.M.S., J.S., L.C.), The Ohio State University, Columbus, Ohio; The Comprehensive Cancer Center (G.D.F., W.H., X.L., A.M.S., J.S., L.C.), The Ohio State University, Columbus, Ohio; and The Center for Biostatistics (V.Y.), The Ohio State University, Columbus, Ohio 43210; and Department of Neuroscience (S.R.J.S.), Icahn School of Medicine at Mount Sinai, New York, New York 10461
| |
Collapse
|
61
|
Li YQ, Shrestha Y, Pandey M, Chen M, Kablan A, Gavrilova O, Offermanns S, Weinstein LS. G(q/11)α and G(s)α mediate distinct physiological responses to central melanocortins. J Clin Invest 2015; 126:40-9. [PMID: 26595811 DOI: 10.1172/jci76348] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/15/2015] [Indexed: 11/17/2022] Open
Abstract
Activation of brain melanocortin 4 receptors (MC4Rs) leads to reduced food intake, increased energy expenditure, increased insulin sensitivity, and reduced linear growth. MC4R effects on energy expenditure and glucose metabolism are primarily mediated by the G protein G(s)α in brain regions outside of the paraventricular nucleus of the hypothalamus (PVN). However, the G protein(s) that is involved in MC4R-mediated suppression of food intake and linear growth, which are believed to be regulated primarily though action in the PVN, is unknown. Here, we show that PVN-specific loss of G(q)α and G11α, which stimulate PLC, leads to severe hyperphagic obesity, increased linear growth, and inactivation of the hypothalamic-pituitary-adrenal axis, without affecting energy expenditure or glucose metabolism. Moreover, we demonstrate that the ability of an MC4R agonist delivered to PVN to inhibit food intake is lost in mice lacking G(q/11)α in the PVN but not in animals deficient for G(s)α. The blood pressure response to the same MC4R agonist was only lost in animals lacking G(s)α specifically in the PVN. Together, our results exemplify how different physiological effects of GPCRs may be mediated by different G proteins and identify a pathway for appetite regulation that could be selectively targeted by G(q/11)α-biased MC4R agonists as a potential treatment for obesity.
Collapse
|
62
|
Brain signaling systems in the Type 2 diabetes and metabolic syndrome: promising target to treat and prevent these diseases. Future Sci OA 2015; 1:FSO25. [PMID: 28031898 PMCID: PMC5137856 DOI: 10.4155/fso.15.23] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The changes in the brain signaling systems play an important role in etiology and pathogenesis of Type 2 diabetes mellitus (T2DM) and metabolic syndrome (MS), being a possible cause of these diseases. Therefore, their restoration at the early stages of T2DM and MS can be regarded as a promising way to treat and prevent these diseases and their complications. The data on the functional state of the brain signaling systems regulated by insulin, IGF-1, leptin, dopamine, serotonin, melanocortins and glucagon-like peptide-1, in T2DM and MS, are analyzed. The pharmacological approaches to restoration of these systems and improvement of insulin sensitivity, energy expenditure, lipid metabolism, and to prevent diabetic complications are discussed.
Collapse
|
63
|
Derkach KV, Kuznetsova LA, Sharova TS, Ignat’eva PA, Bondareva VM, Shpakov AO. The effect of prolonged metformin treatment on the activity of the adenylyl cyclase system and NO-synthase in the brain and myocardium of obese rats. ACTA ACUST UNITED AC 2015. [DOI: 10.1134/s1990519x1505003x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
64
|
Kurhe Y, Mahesh R. Mechanisms linking depression co-morbid with obesity: An approach for serotonergic type 3 receptor antagonist as novel therapeutic intervention. Asian J Psychiatr 2015; 17:3-9. [PMID: 26243683 DOI: 10.1016/j.ajp.2015.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 05/23/2015] [Accepted: 07/11/2015] [Indexed: 01/30/2023]
Abstract
Despite of the enormous research, therapeutic treatment for depression has always been a serious issue. Even though depression and obesity are individual abnormal health conditions, each act as a triggering factor for the other. Obese individuals are twice prone to develop depression than that of non-obese persons. The exact mechanism how obesity increases the risk for depression still remains an area of interest for research in neuropsychopharmacology. Depression and obesity share some common pathological pathways such as hyperactivity of hypothalamic-pituitary-adrenal (HPA) axis, dysregulation of oxidant/antioxidant system balance, higher level of inflammatory cytokines, leptin resistance, altered plasma glucose, insulin resistance, reduced neuronal brain derived neurotrophic factor (BDNF) and decreased serotonergic neurotransmission in various regions of brain. The antidepressant-like effect of 5-HT3 receptor antagonists through allosteric modulation of serotonergic pathways is well evident from several research investigations belonging to our and some in other laboratories. Furthermore, serotonin regulates diet intake, leptin, corticosterone, inflammatory mechanisms, altered plasma glucose, insulin resistance and BDNF concentration in brain. The present review deals with various biological mechanisms involved in depression co-morbid with obesity and 5-HT3 receptor antagonists by modulation of serotonergic system as a therapeutic target for such co-morbid disorder.
Collapse
Affiliation(s)
- Yeshwant Kurhe
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Rajasthan 333031, India.
| | - Radhakrishnan Mahesh
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Rajasthan 333031, India
| |
Collapse
|
65
|
Burke LK, Heisler LK. 5-hydroxytryptamine medications for the treatment of obesity. J Neuroendocrinol 2015; 27:389-98. [PMID: 25925636 DOI: 10.1111/jne.12287] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/23/2015] [Accepted: 04/23/2015] [Indexed: 12/11/2022]
Abstract
The central 5-hydroxytryptamine (5-HT; serotonin) system represents a fundamental component of the brain's control of energy homeostasis. Medications targeting the 5-HT pathway have been at the forefront of obesity treatment for the past 15 years. Pharmacological agents targeting 5-HT receptors (5-HTR), in combination with genetic models of 5-HTR manipulation, have uncovered a role for specific 5-HTRs in energy balance and reveal the 5-HT2 C R as the principal 5-HTR mediating this homeostatic process. Capitalising on this neurophysiological machinery, 5-HT2 C R agonists improve obesity and glycaemic control in patient populations. The underlying therapeutic mechanism has been probed using model systems and appears to be achieved primarily through 5-HT2 C R modulation of the brain melanocortin circuit via activation of pro-opiomelanocortin neurones signalling at melanocortin4 receptors. Thus, 5-HT2 C R agonists offer a means to improve obesity and type 2 diabetes, which are conditions that now represent global challenges to human health.
Collapse
Affiliation(s)
- L K Burke
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, UK
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - L K Heisler
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
66
|
Chen KY, Muniyappa R, Abel BS, Mullins KP, Staker P, Brychta RJ, Zhao X, Ring M, Psota TL, Cone RD, Panaro BL, Gottesdiener KM, Van der Ploeg LHT, Reitman ML, Skarulis MC. RM-493, a melanocortin-4 receptor (MC4R) agonist, increases resting energy expenditure in obese individuals. J Clin Endocrinol Metab 2015; 100:1639-45. [PMID: 25675384 PMCID: PMC4399297 DOI: 10.1210/jc.2014-4024] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
CONTEXT Activation of the melanocortin-4 receptor (MC4R) with the synthetic agonist RM-493 decreases body weight and increases energy expenditure (EE) in nonhuman primates. The effects of MC4R agonists on EE in humans have not been examined to date. OBJECTIVE, DESIGN, AND SETTING In a randomized, double-blind, placebo-controlled, crossover study, we examined the effects of the MC4R agonist RM-493 on resting energy expenditure (REE) in obese subjects in an inpatient setting. STUDY PARTICIPANTS AND METHODS Twelve healthy adults (6 men and 6 women) with body mass index of 35.7 ± 2.9 kg/m(2) (mean ± SD) received RM-493 (1 mg/24 h) or placebo by continuous subcutaneous infusion over 72 hours, followed immediately by crossover to the alternate treatment. All subjects received a weight-maintenance diet (50% carbohydrate, 30% fat, and 20% protein) and performed 30 minutes of standardized exercise daily. Continuous EE was measured on the third treatment day in a room calorimeter, and REE in the fasting state was defined as the mean of 2 30-minute resting periods. RESULTS RM-493 increased REE vs placebo by 6.4% (95% confidence interval, 0.68-13.02%), on average by 111 kcal/24 h (95% confidence interval, 15-207 kcal, P = .03). Total daily EE trended higher, whereas the thermic effect of a test meal and exercise EE did not differ significantly. The 23-hour nonexercise respiratory quotient was lower during RM-493 treatment (0.833 ± 0.021 vs 0.848 ± 0.022, P = .02). No adverse effect on heart rate or blood pressure was observed. CONCLUSIONS Short-term administration of the MC4R agonist RM-493 increases REE and shifts substrate oxidation to fat in obese individuals.
Collapse
Affiliation(s)
- Kong Y Chen
- Diabetes, Endocrinology, and Obesity Branch (K.Y.C., R.M., B.S.A., K.P.M., P.S., R.J.B., X.Z., M.R., T.L.P., M.L.R., M.C.S.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; Department of Molecular Physiology and Biophysics (R.D.C., B.L.P.), Vanderbilt University School of Medicine, Nashville, Tennessee 37232; and Rhythm Pharmaceuticals (K.M.G., L.H.T.V.d.P.), Boston, Massachusetts 02116
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Shpakov AO, Derkach KV, Zharova OA, Shpakova EA. The functional activity of the adenylate cyclase system in the brains of rats with metabolic syndrome induced by immunization with peptide 11–25 of the type 4 melanocortin receptor. NEUROCHEM J+ 2015. [DOI: 10.1134/s1819712415010092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
68
|
Mimee A, Ferguson AV. Glycemic state regulates melanocortin, but not nesfatin-1, responsiveness of glucose-sensing neurons in the nucleus of the solitary tract. Am J Physiol Regul Integr Comp Physiol 2015; 308:R690-9. [PMID: 25695291 DOI: 10.1152/ajpregu.00477.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 02/02/2015] [Indexed: 01/30/2023]
Abstract
The nucleus of the solitary tract (NTS) is a medullary integrative center with critical roles in the coordinated control of energy homeostasis. Here, we used whole cell current-clamp recordings on rat NTS neurons in slice preparation to identify the presence of physiologically relevant glucose-sensing neurons. The majority of NTS neurons (n = 81) were found to be glucose-responsive, with 35% exhibiting a glucose-excited (GE) phenotype (mean absolute change in membrane potential: 9.5 ± 1.1 mV), and 21% exhibiting a glucose-inhibited (GI) response (mean: 6.3 ± 0.7 mV). Furthermore, we found glucose-responsive cells are preferentially influenced by the anorexigenic peptide α-melanocyte-stimulating hormone (α-MSH), but not nesfatin-1. Accordingly, alterations in glycemic state have profound effects on the responsiveness of NTS neurons to α-MSH, but not to nesfatin-1. Indeed, NTS neurons showed increasing responsiveness to α-MSH as extracellular glucose concentrations were decreased, and in hypoglycemic conditions, all NTS neurons were depolarized by α-MSH (mean 10.6 ± 3.2 mV; n = 8). Finally, decreasing levels of extracellular glucose correlated with a significant hyperpolarization of the baseline membrane potential of NTS neurons, highlighting the modulatory effect of glucose on the baseline excitability of cells in this region. Our findings reveal individual NTS cells are capable of integrating multiple sources of metabolically relevant inputs, highlight the rapid capacity for plasticity in medullary melanocortin circuits, and emphasize the critical importance of physiological recording conditions for electrophysiological studies pertaining to the central control of energy homeostasis.
Collapse
Affiliation(s)
- Andrea Mimee
- Queen's University, Department of Physiology, Kingston, Ontario, Canada
| | | |
Collapse
|
69
|
Doulla M, McIntyre AD, Hegele RA, Gallego PH. A novel MC4R mutation associated with childhood-onset obesity: A case report. Paediatr Child Health 2015; 19:515-8. [PMID: 25587224 DOI: 10.1093/pch/19.10.515] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2014] [Indexed: 11/12/2022] Open
Abstract
The melanocortin-4-receptor gene (MC4R) is a key regulator of energy homeostasis, food intake and body weight. MC4R gene mutations are associated with early-onset severe obesity. Most patients are heterozygotes, with some reports of homozygotes and compound heterozygotes. The authors report a case involving an eight-year-old girl with progressive weight gain from infancy, body mass index 44 kg/m(2) (>97th percentile), hyperphagia, hyperinsulinemia and increased linear growth. There was no phenotype of morbid obesity in the parents or sibling. Coding regions and intron-exon boundaries of the genes encoding leptin, leptin receptor, pro-opiomelanocortin and MC4R were analyzed. Two heterozygous coding mutations in the MCR4 gene (S94N and C293R) were detected, of which the second has not been previously reported. The mutations were on opposite chromosomes, confirming compound heterozygosity. The molecular findings and clinical features associated with this novel MC4R mutation are described. The authors emphasize that rare mutations can be found in some patients with severe childhood-onset obesity.
Collapse
Affiliation(s)
- Manpreet Doulla
- Department of Pediatrics, Schulich School of Medicine and Dentistry, Western University
| | - Adam D McIntyre
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University
| | - Robert A Hegele
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University
| | - Patricia H Gallego
- Department of Pediatrics, Pediatric Endocrinology Section, London Health Sciences Centre, Children's Hospital, London, Ontario
| |
Collapse
|
70
|
Chu SC, Chen PN, Ho YJ, Yu CH, Hsieh YS, Kuo DY. Both neuropeptide Y knockdown and Y1 receptor inhibition modulate CART-mediated appetite control. Horm Behav 2015; 67:38-47. [PMID: 25461972 DOI: 10.1016/j.yhbeh.2014.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/10/2014] [Accepted: 11/13/2014] [Indexed: 01/18/2023]
Abstract
Amphetamine (AMPH)-induced appetite suppression has been attributed to its inhibition of neuropeptide Y (NPY)-containing neurons in the hypothalamus. This study examined whether hypothalamic cocaine- and amphetamine-regulated transcript (CART)-containing neurons and NPY Y1 receptor (Y1R) were involved in the action of AMPH. Rats were treated daily with AMPH for four days, and changes in feeding behavior and expression levels of NPY, CART, and POMC were assessed and compared. The results showed that both feeding behavior and NPY expression decreased during AMPH treatment, with the biggest reduction occurring on Day 2. By contrast, the expression of CART and melanocortin 3 receptor (MC3R), a member of the POMC neurotransmission, increased with the maximum response on Day 2, directly opposite to the NPY expression results. The intracerebroventricular infusion of NPY antisense or Y1R inhibitor both modulated AMPH-induced anorexia and the expression levels of MC3R and CART. The results suggest that in the hypothalamus both POMC- and CART-containing neurons participate in regulating NPY-mediated appetite control during AMPH treatment. These results may advance the knowledge of molecular mechanism of anorectic drugs.
Collapse
Affiliation(s)
- Shu-Chen Chu
- Department of Food Science, Central Taiwan University of Science and Technology, Taichung City 406, Taiwan, ROC
| | - Pei-Ni Chen
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung City 40201, Taiwan, ROC
| | - Ying-Jui Ho
- School of Psychology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung City 40201, Taiwan, ROC
| | - Ching-Han Yu
- Department of Physiology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung City 40201, Taiwan, ROC
| | - Yih-Shou Hsieh
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung City 40201, Taiwan, ROC
| | - Dong-Yih Kuo
- Department of Physiology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung City 40201, Taiwan, ROC.
| |
Collapse
|
71
|
Liu TT, He ZG, Tian XB, Liu C, Xiang HB, Zhang JG. Hypothesis: Astrocytes in the central medial amygdala may be implicated in sudden unexpected death in epilepsy by melanocortinergic signaling. Epilepsy Behav 2015; 42:41-3. [PMID: 25499161 DOI: 10.1016/j.yebeh.2014.10.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 10/24/2014] [Indexed: 01/06/2023]
Affiliation(s)
- Tao-Tao Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, People's Republic of China
| | - Zhi-Gang He
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, People's Republic of China
| | - Xue-Bi Tian
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, People's Republic of China
| | - Cheng Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, People's Republic of China
| | - Hong-Bing Xiang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, People's Republic of China.
| | - Jian-Guo Zhang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, People's Republic of China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, People's Republic of China; Beijing Key Laboratory of Neurostimulation, Beijing 100050, China.
| |
Collapse
|
72
|
Hao Y, Guan XH, Liu TT, He ZG, Xiang HB. Hypothesis: the central medial amygdala may be implicated in sudden unexpected death in epilepsy by melanocortinergic-sympathetic signaling. Epilepsy Behav 2014; 41:30-2. [PMID: 25269692 DOI: 10.1016/j.yebeh.2014.09.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 09/05/2014] [Indexed: 11/18/2022]
Affiliation(s)
- Yan Hao
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Xue-Hai Guan
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Tao-Tao Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Zhi-Gang He
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Hong-Bing Xiang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China.
| |
Collapse
|
73
|
Abstract
Type 2 diabetes (T2D) represents a significant global epidemic with more than 285 million people affected worldwide. Regulating glycemia in T2D patients can be partially achieved with currently available treatment, but intensive research during the last decades have led to the discovery of modified compounds or new targets that could represent great hope for safe and effective treatment in the future. Among them, targets in the CNS that are known to control feeding and body weight have been also shown to exert glucoregulatory actions, and could be a key in the development of a new generation of drugs in the field of T2D. Such drugs would be of great interest since they can be used both in the treatment of diabetes and obesity. This patent review aims to establish an overview of recent patents disclosing new therapeutic opportunities targeting peripheral, as well as central targets for the treatment of T2D.
Collapse
|
74
|
Peters J. The role of genomic imprinting in biology and disease: an expanding view. Nat Rev Genet 2014; 15:517-30. [PMID: 24958438 DOI: 10.1038/nrg3766] [Citation(s) in RCA: 304] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Genomic imprinting is an epigenetic phenomenon that results in monoallelic gene expression according to parental origin. It has long been established that imprinted genes have major effects on development and placental biology before birth. More recently, it has become evident that imprinted genes also have important roles after birth. In this Review, I bring together studies of the effects of imprinted genes from the prenatal period onwards. Recent work on postnatal stages shows that imprinted genes influence an extraordinarily wide-ranging array of biological processes, the effects of which extend into adulthood, and play important parts in common diseases that range from obesity to psychiatric disorders.
Collapse
Affiliation(s)
- Jo Peters
- Medical Research Council Mammalian Genetics Unit, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| |
Collapse
|
75
|
Rinne P, Silvola JMU, Hellberg S, Stahle M, Liljenback H, Salomaki H, Koskinen E, Nuutinen S, Saukko P, Knuuti J, Saraste A, Roivainen A, Savontaus E. Pharmacological Activation of the Melanocortin System Limits Plaque Inflammation and Ameliorates Vascular Dysfunction in Atherosclerotic Mice. Arterioscler Thromb Vasc Biol 2014; 34:1346-54. [DOI: 10.1161/atvbaha.113.302963] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
76
|
Fosgerau K, Raun K, Nilsson C, Dahl K, Wulff BS. Novel α-MSH analog causes weight loss in obese rats and minipigs and improves insulin sensitivity. J Endocrinol 2014; 220:97-107. [PMID: 24204009 PMCID: PMC3888513 DOI: 10.1530/joe-13-0284] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Obesity is a major burden to people and to health care systems around the world. The aim of the study was to characterize the effect of a novel selective α-MSH analog on obesity and insulin sensitivity. The subchronic effects of the selective MC4-R peptide agonist MC4-NN1-0182 were investigated in diet-induced obese (DIO) rats and DIO minipigs by assessing the effects on food intake, energy consumption, and body weight. The acute effect of MC4-NN1-0182 on insulin sensitivity was assessed by a euglycemic-hyperinsulinemic clamp study in normal rats. Three weeks of treatment of DIO rats with MC4-NN1-0182 caused a decrease in food intake and a significant decrease in body weight 7±1%, P<0.05 compared with 3±1% increase with the vehicle control. In DIO minipigs, 8 weeks of treatment with MC4-NN1-0182 resulted in a body weight loss of 13.3±2.5 kg (13±3%), whereas the vehicle control group had gained 3.7±1.4 kg (4±1%). Finally, clamp studies in normal rats showed that acute treatment with MC4-NN1-0182 caused a significant increase in glucose disposal (Rd) compared with vehicle control (Rd, mg/kg per min, 17.0±0.7 vs 13.9±0.6, P<0.01). We demonstrate that treatment of DIO rats or minipigs with a selective MC4-R peptide agonist causes weight loss. Moreover, we have demonstrated weight-independent effects on insulin sensitivity. Our observations identify MC4 agonism as a viable target for the treatment of obesity and insulin resistance.
Collapse
Affiliation(s)
- Keld Fosgerau
- Novo Nordisk Diabetes Research Unit, Novo Nordisk A/S, Novo Nordisk Park, DK-2760 Maaloev, Denmark
| | | | | | | | | |
Collapse
|
77
|
Tian XB, Li RC, Bu HL, Liu C, Liu TT, Xiang HB, Lu CJ. The mechanism of electroacupuncture for predicting the efficacy of deep brain stimulation in pharmacoresistant epilepsy may be involved in the melanocortinergic signal. Epilepsy Behav 2013; 29:594-6. [PMID: 24113566 DOI: 10.1016/j.yebeh.2013.08.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 08/28/2013] [Indexed: 12/30/2022]
Affiliation(s)
- Xue-Bi Tian
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | | | | | | | | | | | | |
Collapse
|
78
|
Berglund ED, Liu C, Sohn JW, Liu T, Kim MH, Lee CE, Vianna CR, Williams KW, Xu Y, Elmquist JK. Serotonin 2C receptors in pro-opiomelanocortin neurons regulate energy and glucose homeostasis. J Clin Invest 2013; 123:5061-70. [PMID: 24177424 DOI: 10.1172/jci70338] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 08/22/2013] [Indexed: 12/25/2022] Open
Abstract
Energy and glucose homeostasis are regulated by central serotonin 2C receptors. These receptors are attractive pharmacological targets for the treatment of obesity; however, the identity of the serotonin 2C receptor-expressing neurons that mediate the effects of serotonin and serotonin 2C receptor agonists on energy and glucose homeostasis are unknown. Here, we show that mice lacking serotonin 2C receptors (Htr2c) specifically in pro-opiomelanocortin (POMC) neurons had normal body weight but developed glucoregulatory defects including hyperinsulinemia, hyperglucagonemia, hyperglycemia, and insulin resistance. Moreover, these mice did not show anorectic responses to serotonergic agents that suppress appetite and developed hyperphagia and obesity when they were fed a high-fat/high-sugar diet. A requirement of serotonin 2C receptors in POMC neurons for the maintenance of normal energy and glucose homeostasis was further demonstrated when Htr2c loss was induced in POMC neurons in adult mice using a tamoxifen-inducible POMC-cre system. These data demonstrate that serotonin 2C receptor-expressing POMC neurons are required to control energy and glucose homeostasis and implicate POMC neurons as the target for the effect of serotonin 2C receptor agonists on weight-loss induction and improved glycemic control.
Collapse
|
79
|
The functional state of hormone-sensitive adenylyl cyclase signaling system in diabetes mellitus. JOURNAL OF SIGNAL TRANSDUCTION 2013; 2013:594213. [PMID: 24191197 PMCID: PMC3804439 DOI: 10.1155/2013/594213] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 09/05/2013] [Indexed: 12/18/2022]
Abstract
Diabetes mellitus (DM) induces a large number of diseases of the nervous, cardiovascular, and some other systems of the organism. One of the main causes of the diseases is the changes in the functional activity of hormonal signaling systems which lead to the alterations and abnormalities of the cellular processes and contribute to triggering and developing many DM complications. The key role in the control of physiological and biochemical processes belongs to the adenylyl cyclase (AC) signaling system, sensitive to biogenic amines and polypeptide hormones. The review is devoted to the changes in the GPCR-G protein-AC system in the brain, heart, skeletal muscles, liver, and the adipose tissue in experimental and human DM of the types 1 and 2 and also to the role of the changes in AC signaling in the pathogenesis and etiology of DM and its complications. It is shown that the changes of the functional state of hormone-sensitive AC system are dependent to a large extent on the type and duration of DM and in experimental DM on the model of the disease. The degree of alterations and abnormalities of AC signaling pathways correlates very well with the severity of DM and its complications.
Collapse
|
80
|
Tsumori T, Oka T, Yokota S, Niu JG, Yasui Y. Intrapancreatic ganglia neurons receive projection fibers from melanocortin-4 receptor-expressing neurons in the dorsal motor nucleus of the vagus nerve of the mouse. Brain Res 2013; 1537:132-42. [PMID: 24028856 DOI: 10.1016/j.brainres.2013.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 08/26/2013] [Accepted: 09/04/2013] [Indexed: 11/19/2022]
Abstract
Melanocortin-4 receptor (MC4R)-expressing neurons are widely distributed in the central nervous system and play a crucial role in a variety of physiological functions including energy and glucose/insulin homeostasis. However, their neural pathways remain to be elucidated. In the present study, we examined a possible pathway from MC4R-expressing neurons in the dorsal motor nucleus of the vagus nerve (DMV) to the intrapancreatic ganglia using transgenic mice that express green fluorescent protein (GFP) under the control of the MC4R-promoter. Using immunofluorescence labeling, we demonstrated that GFP-immunoreactive (ir) nerve fibers were distributed in the intrapancreatic ganglia closely associated with the islets as well as among the acini. These GFP-ir fibers with bouton-like varicosities were frequently observed to surround ganglion cells immunoreactive for vasoactive intestinal polypeptide, a marker for postganglionic parasympathetic neurons. Using the pre-embedding immunoperoxidase method, we clearly showed that GFP-ir terminals formed synapses predominantly with dendrites and additionally with somata of the ganglion cells. Moreover, bilateral subdiaphragmatic vagotomy caused a marked loss of GFP immunoreactivity in the pancreas. Using a combination of retrograde tracing and immunohistochemistry, we finally demonstrated that nearly half of the pancreas-projecting DMV neurons were immunoreactive for GFP. These results suggest that MC4R-expressing DMV neurons may participate in the regulation of glucose/insulin homeostasis through their projections to the intrapancreatic ganglia.
Collapse
Affiliation(s)
- Toshiko Tsumori
- Department of Anatomy and Morphological Neuroscience, Shimane University School of Medicine, Izumo 693-8501, Japan
| | | | | | | | | |
Collapse
|
81
|
Fuqua JS, Rogol AD. Neuroendocrine alterations in the exercising human: implications for energy homeostasis. Metabolism 2013; 62:911-21. [PMID: 23415825 DOI: 10.1016/j.metabol.2013.01.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/02/2013] [Accepted: 01/15/2013] [Indexed: 01/26/2023]
Abstract
Complex mechanisms exist in the human to defend against adverse effects of negative energy balance. These include alterations of hormone secretion affecting the growth hormone/insulin-like growth factor system, the adrenal axis, and the reproductive system, particularly in females. Energy deficits are least partially offset by neuroendocrine mechanisms regulating appetite and satiety. The complex feedback mechanisms reporting peripheral fat and energy stores to the central nervous system involve secretion of the peptide hormones leptin and ghrelin, which act centrally on neurons in the arcuate nucleus and anteroventral periventricular area. In addition to appetite regulation, these hormones exert influences on spatially and functionally-related mechanisms regulating reproductive function, such as the kisspeptin-gonadotropin releasing hormone system. Negative energy balance often occurs partially as a result of strenuous and repetitive physical exercise. Exercise stress leads to increased cortisol secretion, but this action is mediated through the induced negative energy balance. In healthy adults with energy deficits, this exercise-induced stress appears to be more important than pure psychological stress in impairing reproductive function. Estrogen deficiency resulting from negative energy balance has important adverse effects on bone density as well as bone microarchitecture, and it may also adversely affect markers of cardiovascular disease.
Collapse
Affiliation(s)
- John S Fuqua
- Section of Pediatric Endocrinology, Indiana University School of Medicine, Riley Hospital for Children, Indianapolis, IN 46202, USA.
| | | |
Collapse
|
82
|
Hsieh YS, Chen PN, Yu CH, Liao JM, Kuo DY. Inhibiting neuropeptide Y Y1 receptor modulates melanocortin receptor- and NF-κB-mediated feeding behavior in phenylpropanolamine-treated rats. Horm Behav 2013; 64:95-102. [PMID: 23707533 DOI: 10.1016/j.yhbeh.2013.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 05/07/2013] [Accepted: 05/14/2013] [Indexed: 12/21/2022]
Abstract
Neuropeptide Y (NPY) and nuclear factor-kappa B (NF-κB) are involved in regulating anorexia elicited by phenylpropanolamine (PPA), a sympathomimetic drug. This study explored whether NPY Y1 receptor (Y1R) is involved in this process, and a potential role for the proopiomelanocortin system was identified. Rats were given PPA once a day for 4days. Changes in the hypothalamic expression of the NPY, Y1R, NF-κB, and melanocortin receptor 4 (MC4R) levels were assessed and compared. The results indicated that food intake and NPY expression decreased, with the largest reductions observed on Day 2 (approximately 50% and 45%, respectively), whereas NF-κB, MC4R, and Y1R increased, achieving maximums on Day 2 (160%, 200%, and 280%, respectively). To determine the role of Y1R, rats were pretreated with Y1R antisense or a Y1R antagonist via intracerebroventricular injection 1h before the daily PPA dose. Y1R knockdown and inhibition reduced PPA anorexia and partially restored the normal expression of NPY, MC4R, and NF-κB. The data suggest that hypothalamic Y1R participates in the appetite-suppression from PPA by regulating MC4R and NF-κB. The results of this study increase our understanding of the molecular mechanisms in PPA-induced anorexia.
Collapse
Affiliation(s)
- Yih-Shou Hsieh
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung City 40201, Taiwan, ROC
| | | | | | | | | |
Collapse
|
83
|
Girardet C, Butler AA. Neural melanocortin receptors in obesity and related metabolic disorders. Biochim Biophys Acta Mol Basis Dis 2013; 1842:482-94. [PMID: 23680515 DOI: 10.1016/j.bbadis.2013.05.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/16/2013] [Accepted: 05/03/2013] [Indexed: 12/11/2022]
Abstract
Obesity is a global health issue, as it is associated with increased risk of developing chronic conditions associated with disorders of metabolism such as type 2 diabetes and cardiovascular disease. A better understanding of how excessive fat accumulation develops and causes diseases of the metabolic syndrome is urgently needed. The hypothalamic melanocortin system is an important point of convergence connecting signals of metabolic status with the neural circuitry that governs appetite and the autonomic and neuroendocrine system controling metabolism. This system has a critical role in the defense of body weight and maintenance of homeostasis. Two neural melanocortin receptors, melanocortin 3 and 4 receptors (MC3R and MC4R), play crucial roles in the regulation of energy balance. Mutations in the MC4R gene are the most common cause of monogenic obesity in humans, and a large literature indicates a role in regulating both energy intake through the control of satiety and energy expenditure. In contrast, MC3Rs have a more subtle role in energy homeostasis. Results from our lab indicate an important role for MC3Rs in synchronizing rhythms in foraging behavior with caloric cues and maintaining metabolic homeostasis during periods of nutrient scarcity. However, while deletion of the Mc3r gene in mice alters nutrient partitioning to favor accumulation of fat mass no obvious role for MC3R haploinsufficiency in human obesity has been reported. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.
Collapse
MESH Headings
- Animals
- Body Weight/genetics
- Cardiovascular Diseases/complications
- Cardiovascular Diseases/metabolism
- Cardiovascular Diseases/pathology
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Humans
- Metabolic Diseases/genetics
- Metabolic Diseases/metabolism
- Metabolic Diseases/pathology
- Mice
- Obesity/complications
- Obesity/genetics
- Obesity/metabolism
- Obesity/pathology
- Receptor, Melanocortin, Type 3/genetics
- Receptor, Melanocortin, Type 3/metabolism
- Receptor, Melanocortin, Type 4/genetics
- Receptor, Melanocortin, Type 4/metabolism
Collapse
Affiliation(s)
- Clemence Girardet
- Department of Metabolism and Aging, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Andrew A Butler
- Department of Metabolism and Aging, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|
84
|
Sohn JW, Harris LE, Berglund ED, Liu T, Vong L, Lowell BB, Balthasar N, Williams KW, Elmquist JK. Melanocortin 4 receptors reciprocally regulate sympathetic and parasympathetic preganglionic neurons. Cell 2013; 152:612-9. [PMID: 23374353 DOI: 10.1016/j.cell.2012.12.022] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 11/20/2012] [Accepted: 12/18/2012] [Indexed: 10/27/2022]
Abstract
Melanocortin 4 receptors (MC4Rs) in the central nervous system are key regulators of energy and glucose homeostasis. Notably, obese patients with MC4R mutations are hyperinsulinemic and resistant to obesity-induced hypertension. Although these effects are probably dependent upon the activity of the autonomic nervous system, the cellular effects of MC4Rs on parasympathetic and sympathetic neurons remain undefined. Here, we show that MC4R agonists inhibit parasympathetic preganglionic neurons in the brainstem. In contrast, MC4R agonists activate sympathetic preganglionic neurons in the spinal cord. Deletion of MC4Rs in cholinergic neurons resulted in elevated levels of insulin. Furthermore, re-expression of MC4Rs specifically in cholinergic neurons (including sympathetic preganglionic neurons) restores obesity-associated hypertension in MC4R null mice. These findings provide a cellular correlate of the autonomic side effects associated with MC4R agonists and demonstrate a role for MC4Rs expressed in cholinergic neurons in the regulation of insulin levels and in the development of obesity-induced hypertension.
Collapse
Affiliation(s)
- Jong-Woo Sohn
- Department of Internal Medicine, Division of Hypothalamic Research, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Energy expenditure in obese children with pseudohypoparathyroidism type 1a. Int J Obes (Lond) 2012; 37:1147-53. [PMID: 23229731 PMCID: PMC3610772 DOI: 10.1038/ijo.2012.200] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 10/05/2012] [Accepted: 11/08/2012] [Indexed: 12/11/2022]
Abstract
CONTEXT Patients with pseudohypoparathyroidism type 1a (PHP-1a) develop early-onset obesity. The abnormality in energy expenditure and/or energy intake responsible for this weight gain is unknown. OBJECTIVE The aim of this study was to evaluate energy expenditure in children with PHP-1a compared with obese controls. PATIENTS We studied 6 obese females with PHP-1a and 17 obese female controls. Patients were recruited from a single academic center. MEASUREMENTS Resting energy expenditure (REE) and thermogenic effect of a high fat meal were measured using whole room indirect calorimetry. Body composition was assessed using whole body dual energy x-ray absorptiometry. Fasting glucose, insulin, and hemoglobin A1C were measured. RESULTS Children with PHP-1a had decreased REE compared with obese controls (P<0.01). After adjustment for fat-free mass, the PHP-1a group's REE was 346.4 kcals day(-1) less than obese controls (95% CI (-585.5--106.9), P<0.01). The thermogenic effect of food (TEF), expressed as percent increase in postprandial energy expenditure over REE, was lower in PHP-1a patients than obese controls, but did not reach statistical significance (absolute reduction of 5.9%, 95% CI (-12.2-0.3%), P=0.06). CONCLUSIONS Our data indicate that children with PHP-1a have decreased REE compared with the obese controls, and that may contribute to the development of obesity in these children. These patients may also have abnormal diet-induced thermogenesis in response to a high-fat meal. Understanding the causes of obesity in PHP-1a may allow for targeted nutritional or pharmacologic treatments in the future.
Collapse
|
86
|
Fargali S, Scherer T, Shin AC, Sadahiro M, Buettner C, Salton SR. Germline ablation of VGF increases lipolysis in white adipose tissue. J Endocrinol 2012; 215:313-22. [PMID: 22942234 PMCID: PMC3488863 DOI: 10.1530/joe-12-0172] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Targeted deletion of VGF, a neuronal and endocrine secreted protein and neuropeptide precursor, produces a lean, hypermetabolic mouse that is resistant to diet-, lesion-, and genetically induced obesity and diabetes. We hypothesized that increased sympathetic nervous system activity in Vgf-/Vgf- knockout mice is responsible for increased energy expenditure and decreased fat storage and that increased β-adrenergic receptor stimulation induces lipolysis in white adipose tissue (WAT) of Vgf-/Vgf- mice. We found that fat mass was markedly reduced in Vgf-/Vgf- mice. Within knockout WAT, phosphorylation of protein kinase A substrate increased in males and females, phosphorylation of hormone-sensitive lipase (HSL) (ser563) increased in females, and levels of adipose triglyceride lipase, comparative gene identification-58, and phospho-perilipin were higher in male Vgf-/Vgf- WAT compared with wild-type, consistent with increased lipolysis. The phosphorylation of AMP-activated protein kinase (AMPK) (Thr172) and levels of the AMPK kinase, transforming growth factor β-activated kinase 1, were decreased. This was associated with a decrease in HSL ser565 phosphorylation, the site phosphorylated by AMPK, in both male and female Vgf-/Vgf- WAT. No significant differences in phosphorylation of CREB or the p42/44 MAPK were noted. Despite this evidence supporting increased cAMP signaling and lipolysis, lipogenesis as assessed by fatty acid synthase protein expression and phosphorylated acetyl-CoA carboxylase was not decreased. Our data suggest that the VGF precursor or selected VGF-derived peptides dampen sympathetic outflow pathway activity to WAT to regulate fat storage and lipolysis.
Collapse
Affiliation(s)
- Samira Fargali
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY, USA
| | - Thomas Scherer
- Department of Medicine, Mount Sinai School of Medicine, New York, NY, USA
| | - Andrew C. Shin
- Department of Medicine, Mount Sinai School of Medicine, New York, NY, USA
| | - Masato Sadahiro
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY, USA
| | - Christoph Buettner
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY, USA
- Department of Medicine, Mount Sinai School of Medicine, New York, NY, USA
| | - Stephen R. Salton
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY, USA
- Department of Geriatrics, Mount Sinai School of Medicine, New York, NY, USA
- Corresponding author: Dr. Stephen R. Salton, Department of Neuroscience, Box 1065, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York NY 10029 USA, Tel: 1-212-659-5901, Fax: 1-212-996-9785,
| |
Collapse
|
87
|
Abstract
The incidence of disorders related to the control of energy homeostasis, such as hypertension, diabetes, obesity, and dyslipidemia, has dramatically increased worldwide in the last decades. The central nervous system (CNS) plays a critical role regulating the energy balance, therefore there has been increasing interest in understanding the mechanisms whereby the brain controls peripheral metabolism, in order to develop new potential therapies to treat those disorders. While the involvement of the CNS in development of hypertension, obesity, and diabetes has been thoroughly investigated, less is known about the specific role of the brain in the control of circulating lipids. Here we summarize the evidence linking CNS disorders with dyslipidemia, as well as the central mechanisms that directly influence plasma cholesterol.
Collapse
Affiliation(s)
- Diego Perez-Tilve
- Department of Internal Medicine, Metabolic Diseases Institute & Cincinnati Diabetes and Obesity Centre, Cincinnati, OH 45237, USA
| | | | | | | |
Collapse
|
88
|
Chen M, Berger A, Kablan A, Zhang J, Gavrilova O, Weinstein LS. Gsα deficiency in the paraventricular nucleus of the hypothalamus partially contributes to obesity associated with Gsα mutations. Endocrinology 2012; 153:4256-65. [PMID: 22733970 PMCID: PMC3423628 DOI: 10.1210/en.2012-1113] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The G protein α-subunit G(s)α mediates receptor-stimulated cAMP generation. Heterozygous inactivating G(s)α mutations on the maternal allele result in obesity primarily due to reduced energy expenditure in Albright hereditary osteodystrophy patients and in mice. We previously showed that mice with central nervous system (CNS)-specific G(s)α deletion on the maternal allele (mBrGs KO) also develop severe obesity with reduced energy expenditure and that G(s)α is primarily expressed from the maternal allele in the paraventricular nucleus (PVN) of the hypothalamus, an important site of energy balance regulation. We now generated mice with PVN-specific G(s)α deficiency by mating Single-minded 1-cre and G(s)α-floxed mice. Homozygous G(s)α deletion produced early lethality. Heterozygotes with maternal G(s)α deletion (mPVNGsKO) also developed obesity and had small reductions in energy expenditure. However, this effect was much milder than that found in mBrGsKO mice and was more prominent in males. We previously showed mBrGsKO mice to have significant reductions in melanocortin receptor agonist-stimulated energy expenditure and now show that mBrGsKO mice have impaired cold-induced brown adipose tissue stimulation. In contrast, these effects were absent in mPVNGsKO mice. mPVNGsKO mice also had minimal effects on glucose metabolism as compared with mBrGsKO mice. Consistent with the presence of G(s)α imprinting, paternal heterozygotes showed no changes in energy or glucose metabolism. These results indicate that although G(s)α deficiency in PVN partially contributes to the metabolic phenotype resulting from maternal G(s)α mutations, G(s)α imprinting in other CNS regions is also important in mediating the CNS effects of G(s)α mutations on energy and glucose metabolism.
Collapse
Affiliation(s)
- Min Chen
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases/National Institutes of Health, Bethesda, Maryland 20892-1752, USA.
| | | | | | | | | | | |
Collapse
|
89
|
Dietrich MO, Horvath TL. Limitations in anti-obesity drug development: the critical role of hunger-promoting neurons. Nat Rev Drug Discov 2012; 11:675-91. [DOI: 10.1038/nrd3739] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
90
|
Kuo DY, Chen PN, Yu CH, Kuo MH, Hsieh YS, Chu SC. Involvement of neuropeptide Y Y1 receptor in the regulation of amphetamine-mediated appetite suppression. Neuropharmacology 2012; 63:842-50. [PMID: 22732442 DOI: 10.1016/j.neuropharm.2012.06.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 05/14/2012] [Accepted: 06/09/2012] [Indexed: 12/21/2022]
Abstract
Recently, we reported that an initial decrease followed by recovery of food intake was observed during four days of amphetamine (AMPH) treatment and suggested that these changes in response were mediated by changes in neuropeptide Y (NPY) and proopiomelanocortin (POMC). Here we investigated if Y1 receptor (Y1R) and/or Y5 receptor (Y5R) might be involved in this regulation. Rats were treated daily with AMPH for four days. Changes in the expression levels of Y1R, Y5R, melanocortin receptor 3 (MC3R), and NPY were assessed and compared. Results showed that Y1R and MC3R increased, with a maximal increase of about 210% on Day 2 but with a restoration to the normal level on Day 4. In contrast, NPY decreased with a biggest reduction of about 45% on Day 2 and the pattern of expression during AMPH treatment was opposite to those of Y1R and MC3R, while the expression of Y5R was not changed. Central inhibitions of NPY formation or Y1R activity modulated the anorectic response of AMPH and the reciprocal regulation of NPY and MC3R, revealing a crucial role of Y1R in this action. It is suggested that Y1R participates in the reciprocal regulation of NPY- and MC3R-containing neurons in the hypothalamus during the anorectic effect of AMPH. These results may further the understanding of Y1R in the control of eating.
Collapse
Affiliation(s)
- Dong-Yih Kuo
- Department of Physiology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung City 40201, Taiwan, ROC.
| | | | | | | | | | | |
Collapse
|
91
|
Alkemade A, Yi CX, Pei L, Harakalova M, Swaab DF, la Fleur SE, Fliers E, Kalsbeek A. AgRP and NPY expression in the human hypothalamic infundibular nucleus correlate with body mass index, whereas changes in αMSH are related to type 2 diabetes. J Clin Endocrinol Metab 2012; 97:E925-33. [PMID: 22492775 DOI: 10.1210/jc.2011-3259] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Rodent data show that altered hypothalamic signaling contributes to the development of obesity and insulin resistance. OBJECTIVE To determine differences in hypothalamic expression levels of neuropeptide Y (NPY), agouti-related peptide (AgRP), and αMSH in the infundibular nucleus, the human equivalent of the arcuate nucleus, in relation to body mass index (BMI). In addition, the expression in the infundibular nucleus of eight subjects diagnosed with type 2 diabetes was measured to determine possible interference of type 2 diabetes with the association observed between neuropeptides and BMI. DESIGN We studied AgRP, NPY, and αMSH expression by means of quantitative immunocytochemistry in postmortem hypothalami of 30 subjects with known BMI. In separate experiments, we compared neuropeptide expression in eight subjects with type 2 diabetes with eight matched controls. RESULTS We found that AgRP immunoreactivity showed a U-shaped correlation with BMI. No evidence was found for possible influences of corticosteroid treatment. NPY immunoreactivity was significantly lower in overweight and obese subjects. αMSH did not correlate with BMI but was significantly lower in subjects with type 2 diabetes compared with controls. By contrast, NPY and AgRP expression was not affected in type 2 diabetes. CONCLUSION Our results indicate that the expression of AgRP and NPY are correlated with body weight changes, rather than the presence of type 2 diabetes, whereas changes in αMSH immunoreactivity are related to the presence of type 2 diabetes, indicating separate hypothalamic mechanisms.
Collapse
Affiliation(s)
- Anneke Alkemade
- Alan Turing Institute Almere, Louis Armstrongweg 84, 1311 RL Almere, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Mencarelli M, Zulian A, Cancello R, Alberti L, Gilardini L, Di Blasio AM, Invitti C. A novel missense mutation in the signal peptide of the human POMC gene: a possible additional link between early-onset type 2 diabetes and obesity. Eur J Hum Genet 2012; 20:1290-4. [PMID: 22643178 DOI: 10.1038/ejhg.2012.103] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Rare mutations in several genes have a critical role in the control of homeostatic mechanisms such as food-intake, energy balance and glucose metabolism. In this study, we performed a mutational screening in a 58-year-old woman presenting early-onset type 2 diabetes and central obesity. The entire coding regions of MC4R, MC3R, HNF1A, GCK and POMC (pro-opiomelanocortin) genes were analyzed by direct sequencing. A new missense mutation was identified within the POMC gene signal peptide sequence, resulting in a heterozygous substitution of an arginine for a glycine at codon 15 (p.A15G) that was excluded in 300 healthy normal weight controls. The mutation segregated in the family and was associated with overweight, type 2 diabetes, hypertension and coronary heart disease in the carriers. Functional studies demonstrated that POMC protein was not detectable in β-TC3 cells transfected with A15G-POMC vector as well as in their culture media, despite POMC mRNA levels were comparable for amount and stability to those of wild-type-transfected cells. In silico RNA folding prediction indicated that the mutation gives rise to a different RNA secondary structure, suggesting that it might affect translation and protein synthesis. To the best of our knowledge, this is the first report addressing the functional consequences of a mutation in the signal peptide of POMC. These findings further support the hypothesis that POMC-derived peptides might have a role in the control of peripheral glucose metabolism and suggest that disruption of central POMC secretion might represent an additional link between type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Monica Mencarelli
- Laboratory of Molecular Biology, Istituto Auxologico Italiano, Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
93
|
McDaniel FK, Molden BM, Mohammad S, Baldini G, McPike L, Narducci P, Granell S, Baldini G. Constitutive cholesterol-dependent endocytosis of melanocortin-4 receptor (MC4R) is essential to maintain receptor responsiveness to α-melanocyte-stimulating hormone (α-MSH). J Biol Chem 2012; 287:21873-90. [PMID: 22544740 DOI: 10.1074/jbc.m112.346890] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Melanocortin-4 receptor (MC4R) is a G-protein-coupled receptor expressed in the hypothalamus where it controls feeding behavior. MC4R cycles constitutively and is internalized at the same rate in the presence or absence of stimulation by the agonist, melanocyte-stimulating hormone (α-MSH). This is different from other G-protein-coupled receptors, such as β(2)-adrenergic receptor (β(2)AR), which internalizes more rapidly in response to agonist stimulation. Here, it is found that in immortalized neuronal Neuro2A cells expressing exogenous receptors, constitutive endocytosis of MC4R and agonist-dependent internalization of β(2)AR were equally sensitive to clathrin depletion. Inhibition of MC4R endocytosis by clathrin depletion decreased the number of receptors at the cell surface that were responsive to the agonist, α-MSH, by 75%. Mild membrane cholesterol depletion also inhibited constitutive endocytosis of MC4R by ∼5-fold, while not affecting recycling of MC4R or agonist-dependent internalization of β(2)AR. Reduced cholesterol did not change the MC4R dose-response curve to α-MSH, but it decreased the amount of cAMP generated per receptor number indicating that a population of MC4R at the cell surface becomes nonfunctional. The loss of MC4R function increased over time (25-50%) and was partially reversed by mutations at putative phosphorylation sites (T312A and S329A). This was reproduced in hypothalamic GT1-7 cells expressing endogenous MC4R. The data indicate that constitutive endocytosis of MC4R is clathrin- and cholesterol-dependent. MC4R endocytosis is required to maintain MC4R responsiveness to α-MSH by constantly eliminating from the plasma membrane a pool of receptors modified at Thr-312 and Ser-329 that have to be cycled to the endosomal compartment to regain function.
Collapse
Affiliation(s)
- Faith K McDaniel
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Laterodorsal tegmentum and pedunculopontine tegmental nucleus circuits regulate renal functions: Neuroanatomical evidence in mice models. ACTA ACUST UNITED AC 2012; 32:216-220. [PMID: 22528223 DOI: 10.1007/s11596-012-0038-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Indexed: 01/07/2023]
Abstract
Neurons in the laterodorsal tegmentum (LDTg) and pedunculopontine tegmental nucleus (PPTg) play important roles in central autonomic circuits of the kidney. In this study, we used a combination of retrograde tracers pseudorabies virus (PRV)-614 and fluorescence immunohistochemistry to characterize the neuroanatomic substrate of PPTg and LDTg innervating the kidney in the mouse. PRV-614-infected neurons were retrogradely labeled in the rostral and middle parts of LDTg, and the middle and caudal parts of PPTg after tracer injection in the kidney. PRV-614/TPH double-labeled neurons were mainly localized in the rostral of LDTg, whereas PRV-614/TH neurons were scattered within the three parts of LDTg. PRV-614/TPH and PRV-614/TH neurons were located predominantly in the caudal of PPTg (cPPTg). These data provided direct neuroanatomical foundation for the identification of serotonergic and catecholaminergic projections from the mid-brain tegmentum to the kidney.
Collapse
|
95
|
Sohn JW, Williams KW. Functional heterogeneity of arcuate nucleus pro-opiomelanocortin neurons: implications for diverging melanocortin pathways. Mol Neurobiol 2012; 45:225-33. [PMID: 22328135 DOI: 10.1007/s12035-012-8240-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 01/26/2012] [Indexed: 01/04/2023]
Abstract
Arcuate nucleus (ARC) pro-opiomelanocortin (POMC) neurons are essential regulators of food intake, energy expenditure, and glucose homeostasis. POMC neurons integrate several key metabolic signals that include neurotransmitters and hormones. The change in activity of POMC neurons is relayed to melanocortin receptors in distinct regions of the central nervous system. This review will summarize the role of leptin and serotonin receptors in regulating the activity of POMC neurons and provide a model in which different melanocortin pathways regulate energy and glucose homeostasis.
Collapse
Affiliation(s)
- Jong-Woo Sohn
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390-9077, USA
| | | |
Collapse
|
96
|
Loss of autophagy in pro-opiomelanocortin neurons perturbs axon growth and causes metabolic dysregulation. Cell Metab 2012; 15:247-55. [PMID: 22285542 PMCID: PMC3278575 DOI: 10.1016/j.cmet.2011.12.016] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 10/24/2011] [Accepted: 12/06/2011] [Indexed: 12/17/2022]
Abstract
The hypothalamic melanocortin system, which includes neurons that produce pro-opiomelanocortin (POMC)-derived peptides, is a major negative regulator of energy balance. POMC neurons begin to acquire their unique properties during neonatal life. The formation of functional neural systems requires massive cytoplasmic remodeling that may involve autophagy, an important intracellular mechanism for the degradation of damaged proteins and organelles. Here we investigated the functional and structural effects of the deletion of an essential autophagy gene, Atg7, in POMC neurons. Lack of Atg7 in POMC neurons caused higher postweaning body weight, increased adiposity, and glucose intolerance. These metabolic impairments were associated with an age-dependent accumulation of ubiquitin/p62-positive aggregates in the hypothalamus and a disruption in the maturation of POMC-containing axonal projections. Together, these data provide direct genetic evidence that Atg7 in POMC neurons is required for normal metabolic regulation and neural development, and they implicate hypothalamic autophagy deficiency in the pathogenesis of obesity.
Collapse
|
97
|
Osundiji MA, Lam DD, Shaw J, Yueh CY, Markkula SP, Hurst P, Colliva C, Roda A, Heisler LK, Evans ML. Brain glucose sensors play a significant role in the regulation of pancreatic glucose-stimulated insulin secretion. Diabetes 2012; 61:321-8. [PMID: 22210318 PMCID: PMC3266403 DOI: 10.2337/db11-1050] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 11/10/2011] [Indexed: 11/13/2022]
Abstract
As patients decline from health to type 2 diabetes, glucose-stimulated insulin secretion (GSIS) typically becomes impaired. Although GSIS is driven predominantly by direct sensing of a rise in blood glucose by pancreatic β-cells, there is growing evidence that hypothalamic neurons control other aspects of peripheral glucose metabolism. Here we investigated the role of the brain in the modulation of GSIS. To examine the effects of increasing or decreasing hypothalamic glucose sensing on glucose tolerance and insulin secretion, glucose or inhibitors of glucokinase, respectively, were infused into the third ventricle during intravenous glucose tolerance tests (IVGTTs). Glucose-infused rats displayed improved glucose handling, particularly within the first few minutes of the IVGTT, with a significantly lower area under the excursion curve within the first 10 min (AUC0-10). This was explained by increased insulin secretion. In contrast, infusion of the glucokinase inhibitors glucosamine or mannoheptulose worsened glucose tolerance and decreased GSIS in the first few minutes of IVGTT. Our data suggest a role for brain glucose sensors in the regulation of GSIS, particularly during the early phase. We propose that pharmacological agents targeting hypothalamic glucose-sensing pathways may represent novel therapeutic strategies for enhancing early phase insulin secretion in type 2 diabetes.
Collapse
Affiliation(s)
- Mayowa A. Osundiji
- Department of Medicine, University of Cambridge Metabolic Research Laboratories, and National Institute for Health Research, Cambridge Biomedical Research Centre, Cambridge, U.K
| | - Daniel D. Lam
- Department of Pharmacology, University of Cambridge, Cambridge, U.K
| | - Jill Shaw
- Department of Medicine, University of Cambridge Metabolic Research Laboratories, and National Institute for Health Research, Cambridge Biomedical Research Centre, Cambridge, U.K
- Department of Pharmacology, University of Cambridge, Cambridge, U.K
| | - Chen-Yu Yueh
- Department of Medicine, University of Cambridge Metabolic Research Laboratories, and National Institute for Health Research, Cambridge Biomedical Research Centre, Cambridge, U.K
- Department of Family Medicine, Chang Gung Memorial Hospital at Chiayi, Chang Gung Institute of Technology, Chiayi, Taiwan
| | - S. Pauliina Markkula
- Department of Medicine, University of Cambridge Metabolic Research Laboratories, and National Institute for Health Research, Cambridge Biomedical Research Centre, Cambridge, U.K
| | - Paul Hurst
- Department of Medicine, University of Cambridge Metabolic Research Laboratories, and National Institute for Health Research, Cambridge Biomedical Research Centre, Cambridge, U.K
| | - Carolina Colliva
- Department of Pharmaceutical Sciences, University of Bologna, Bologna, Italy
| | - Aldo Roda
- Department of Pharmaceutical Sciences, University of Bologna, Bologna, Italy
| | - Lora K. Heisler
- Department of Pharmacology, University of Cambridge, Cambridge, U.K
| | - Mark L. Evans
- Department of Medicine, University of Cambridge Metabolic Research Laboratories, and National Institute for Health Research, Cambridge Biomedical Research Centre, Cambridge, U.K
| |
Collapse
|
98
|
do Carmo JM, da Silva AA, Rushing JS, Hall JE. Activation of the central melanocortin system contributes to the increased arterial pressure in obese Zucker rats. Am J Physiol Regul Integr Comp Physiol 2011; 302:R561-7. [PMID: 22204957 DOI: 10.1152/ajpregu.00392.2011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously demonstrated that leptin-mediated activation of the central nervous system (CNS) melanocortin system reduces appetite and increases sympathetic activity and blood pressure (BP). In the present study we examined whether endogenous melanocortin system activation, independent of leptin's actions, contributes to the regulation of BP and metabolic functions in obese Zucker rats, which have mutated leptin receptors. The long-term cardiovascular and metabolic effects of central melanocortin-3/4 receptor (MC3/4R) antagonism with SHU-9119 were assessed in lean (n = 6) and obese (n = 8) Zucker rats. BP and heart rate (HR) were measured 24-h/day by telemetry and an intracerebroventricular cannula was placed in the brain lateral ventricle. After stable control measurements, SHU-9119 was infused intracerebroventricularlly (1 nmol/h) for 10 days followed by a 10-day recovery period. Chronic CNS MC3/4R antagonism significantly increased food intake and body weight in lean (20 ± 1 to 45 ± 2 g and 373 ± 11 to 432 ± 14 g) and obese (25 ± 2 to 35 ± 2 g and 547 ± 10 to 604 ± 11 g) rats. No significant changes were observed in plasma glucose levels in lean or obese rats, whereas plasma leptin and insulin levels markedly increased in lean Zucker rats during CNS MC3/4R antagonism. Chronic SHU-9119 infusion in obese Zucker rats reduced mean arterial pressure (MAP) and HR by 6 ± 1 mmHg and 24 ± 5 beats/min, whereas in lean rats SHU-9119 infusion reduced HR by 31 ± 9 beats/min while causing only a transient decrease in MAP. These results suggest that in obese Zucker rats the CNS melanocortin system contributes to elevated BP independent of leptin receptor activation.
Collapse
Affiliation(s)
- Jussara M do Carmo
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216-4505, USA.
| | | | | | | |
Collapse
|
99
|
Kuo DY, Chen PN, Kuo MH, Chen CH, Hsieh YS, Chu SC. NF-κB knockdown can modulate amphetamine-mediated feeding response. Neuropharmacology 2011; 62:1684-94. [PMID: 22182781 DOI: 10.1016/j.neuropharm.2011.11.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 11/22/2011] [Accepted: 11/23/2011] [Indexed: 12/15/2022]
Abstract
This study determined if transcription factor NF-κB is involved in the effect of amphetamine (AMPH)-mediated feeding response. Moreover, possible roles of hypothalamic neuropeptide Y (NPY) and proopiomelanocortin (POMC) were also investigated. AMPH was administered daily to rats for four days. Changes in NF-κB, NPY and POMC expression were assessed and compared. The NPY gene was down-regulated with maximal response on Day 2 during AMPH treatment, which was consistent with the response to feeding behavior. In contrast, NF-κB and POMC genes were up-regulated, and their expression was increased by about 200% and 450%, respectively, with maximal response on Day 2. Moreover, NF-κB DNA binding ability and expression were increased similar to that of POMC. To examine further if NF-κB was involved, intracerebroventricular infusion of NF-κB antisense oligonucleotide was performed 1 h before the daily AMPH dosing in freely moving rats. Results showed that NF-κB knockdown could modify AMPH anorexia as well as NPY and POMC expression. The present findings prove that cerebral NF-κB participates in AMPH-mediated appetite suppression, possibly by modulating NPY and POMC expression. These results may aid in therapeutic research on AMPH and AMPH-like anti-obesity drugs.
Collapse
Affiliation(s)
- Dong-Yih Kuo
- Department of Physiology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung City 40201, Taiwan, ROC.
| | | | | | | | | | | |
Collapse
|
100
|
Mirshahi UL, Still CD, Masker KK, Gerhard GS, Carey DJ, Mirshahi T. The MC4R(I251L) allele is associated with better metabolic status and more weight loss after gastric bypass surgery. J Clin Endocrinol Metab 2011; 96:E2088-96. [PMID: 21976721 PMCID: PMC3232628 DOI: 10.1210/jc.2011-1549] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Factors that influence long-term weight loss after Roux-en Y gastric bypass (RYGB) surgeries are poorly defined. The melanocortin system plays an important role in regulating energy homeostasis, satiety, and glucose metabolism. Variations of the MC4R comprise the most prevalent monogenetic obesity disorder. OBJECTIVE The objective of the study was to examine the role of MC4R variants and diabetic status in long-term weight loss after RYGB. PARTICIPANTS AND METHODS In 1433 extremely obese patients who underwent RYGB, we sequenced for genetic variants of MC4R. We examined the MC4R genotype and its relationship with weight loss profile, and clinical phenotypes accumulated during a 48-month period before and after surgery. RESULTS We found 80 subjects with rare and common variants of MC4R in the RYGB cohort. Among these, 26 and 36 patients carry the I251L and V103I variants, respectively. These common alleles are negatively associated with obesity. Remarkably, after the 12-month presurgery caloric restriction and RYGB, I251L allele carriers lost 9% more weight (∼9 kg) compared with the noncarriers, continued rapid weight loss longer, regained less weight, and had lower presurgery homeostatic model assessment for insulin resistance values. Normoglycemic, I251L allele carriers lost more weight compared with their diabetic and prediabetic counterparts and maintained their weight loss. Among noncarriers, normoglycemic individuals initially lost more weight compared with dysglycemics, but this difference was not maintained in the long term. CONCLUSIONS Individuals carrying the I251L common allele are predisposed to better clinical outcome, reduced risk of type 2 diabetes, and better weight loss during diet and surgical interventions. Diabetic status has only a small, short-term effect on weight loss after RYGB.
Collapse
Affiliation(s)
- Uyenlinh L Mirshahi
- Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania 17822, USA
| | | | | | | | | | | |
Collapse
|