51
|
Rocha PRS, Oliveira VD, Vasques CI, Dos Reis PED, Amato AA. Exposure to endocrine disruptors and risk of breast cancer: A systematic review. Crit Rev Oncol Hematol 2021; 161:103330. [PMID: 33862246 DOI: 10.1016/j.critrevonc.2021.103330] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 03/16/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
AIM The aim of this study was to investigate the association between human exposure to endocrine disruptors (EDs) and the risk of breast cancer. METHODS This was a systematic review conducted by searching Cochrane Library, LILACS, Livivo, PubMed, and Science Direct. Observational studies addressing the association between exposure to EDs and breast cancer risk in adults were included. Risk of bias was assessed using the National Toxicology Program's Office of Health Assessment Translation tool. RESULTS a total of 37 studies were included. Most studies reported that exposure to organochlorine pesticides, phthalates, heavy metals, and polycyclic aromatic hydrocarbons was associated with increased breast cancer risk. CONCLUSION qualitative analysis of observational studies indicates that human exposure to EDs is associated with increased breast cancer risk. Additional studies are needed to determine whether this association is causal.
Collapse
Affiliation(s)
- Priscilla Roberta Silva Rocha
- Faculty of Ceilândia, University of Brasília, Campus Universitário s/n, Metropolitan Center, Brasília, DF, 72220-275, Brazil.
| | | | - Christiane Inocêncio Vasques
- Nursing Department, School of Health Sciences, University of Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília, DF, 70910-900, Brazil
| | - Paula Elaine Diniz Dos Reis
- Nursing Department, School of Health Sciences, University of Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília, DF, 70910-900, Brazil
| | - Angélica Amorim Amato
- Department of Pharmaceutical Sciences, School of Health Sciences, University of Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília, DF, 70910-900, Brazil
| |
Collapse
|
52
|
Mesnage R, Teixeira M, Mandrioli D, Falcioni L, Ibragim M, Ducarmon QR, Zwittink RD, Amiel C, Panoff JM, Bourne E, Savage E, Mein CA, Belpoggi F, Antoniou MN. Multi-omics phenotyping of the gut-liver axis reveals metabolic perturbations from a low-dose pesticide mixture in rats. Commun Biol 2021; 4:471. [PMID: 33854195 PMCID: PMC8046807 DOI: 10.1038/s42003-021-01990-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/15/2021] [Indexed: 12/24/2022] Open
Abstract
Health effects of pesticides are not always accurately detected using the current battery of regulatory toxicity tests. We compared standard histopathology and serum biochemistry measures and multi-omics analyses in a subchronic toxicity test of a mixture of six pesticides frequently detected in foodstuffs (azoxystrobin, boscalid, chlorpyrifos, glyphosate, imidacloprid and thiabendazole) in Sprague-Dawley rats. Analysis of water and feed consumption, body weight, histopathology and serum biochemistry showed little effect. Contrastingly, serum and caecum metabolomics revealed that nicotinamide and tryptophan metabolism were affected, which suggested activation of an oxidative stress response. This was not reflected by gut microbial community composition changes evaluated by shotgun metagenomics. Transcriptomics of the liver showed that 257 genes had their expression changed. Gene functions affected included the regulation of response to steroid hormones and the activation of stress response pathways. Genome-wide DNA methylation analysis of the same liver samples showed that 4,255 CpG sites were differentially methylated. Overall, we demonstrated that in-depth molecular profiling in laboratory animals exposed to low concentrations of pesticides allows the detection of metabolic perturbations that would remain undetected by standard regulatory biochemical measures and which could thus improve the predictability of health risks from exposure to chemical pollutants.
Collapse
Affiliation(s)
- Robin Mesnage
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, Guy's Hospital, London, UK
| | - Maxime Teixeira
- UR Aliments Bioprocédés Toxicologie Environnements, EA 4651, University of Caen Normandy (UCN), Caen, France
| | | | | | - Mariam Ibragim
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, Guy's Hospital, London, UK
| | - Quinten Raymond Ducarmon
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
| | - Romy Daniëlle Zwittink
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
| | - Caroline Amiel
- UR Aliments Bioprocédés Toxicologie Environnements, EA 4651, University of Caen Normandy (UCN), Caen, France
| | - Jean-Michel Panoff
- UR Aliments Bioprocédés Toxicologie Environnements, EA 4651, University of Caen Normandy (UCN), Caen, France
| | - Emma Bourne
- Genome Centre, Barts and the London School of Medicine and Dentistry, Blizard Institute, London, UK
| | - Emanuel Savage
- Genome Centre, Barts and the London School of Medicine and Dentistry, Blizard Institute, London, UK
| | - Charles A Mein
- Genome Centre, Barts and the London School of Medicine and Dentistry, Blizard Institute, London, UK
| | | | - Michael N Antoniou
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, Guy's Hospital, London, UK.
| |
Collapse
|
53
|
Cirillo PM, La Merrill MA, Krigbaum NY, Cohn BA. Grandmaternal Perinatal Serum DDT in Relation to Granddaughter Early Menarche and Adult Obesity: Three Generations in the Child Health and Development Studies Cohort. Cancer Epidemiol Biomarkers Prev 2021; 30:1480-1488. [PMID: 33853850 DOI: 10.1158/1055-9965.epi-20-1456] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/08/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Serum DDTs during or just after pregnancy were associated with breast cancer in mothers (F0), and with breast cancer, mammographic density, and obesity in adult daughters (F1) in the Child Health and Development Studies multi-generational cohort in prior publications. Here, we investigate F0 perinatal serum DDT associations with granddaughters'(F2) measured obesity at a median age of 26 and self-reported age at menarche. METHODS F2 weight, height and waist circumference were measured by trained examiners. o,p'-DDT, p,p'-DDT and p,p'-DDE were measured in archived F0 perinatal serum. F0 DDT associations with F2 outcomes, accounting for F1 characteristics, were estimated in log-linear models adjusted for F0 and F1 body mass index (BMI), race, and menarche timing (N = 258 triads for obesity; N = 235 triads for early menarche). Interactions between F0 BMI and DDTs were estimated. RESULTS F0 o,p'-DDT was associated with F2 obesity [Odds ratio (OR), 2.6; 95% confidence interval (CI), 1.3-6.7; tertile 3 vs. 1), among normal weight F0 (70%), but not among overweight and obese F0 (P interaction = 0.03), independent of other DDTs. F0 o,p'-DDT was also associated with F2 early menarche (OR, 2.1; 95% CI, 1.1-3.9, tertile 3 vs. 1) and this association was not modified by F0 BMI. CONCLUSIONS Ancestral exposure to environmental chemicals, banned decades ago, may influence the development of earlier menarche and obesity, which are established risk factors for breast cancer and cardiometabolic diseases. IMPACT Discovery of actionable biomarkers of response to ancestral environmental exposures in young women may provide opportunities for breast cancer prevention.See related commentary by Fenton and Boyles, p. 1459.
Collapse
Affiliation(s)
- Piera M Cirillo
- Child Health and Development Studies of the Public Health Institute, Berkeley, California
| | - Michele A La Merrill
- Department of Environmental Toxicology, University of California, Davis, Davis California
| | - Nickilou Y Krigbaum
- Child Health and Development Studies of the Public Health Institute, Berkeley, California
| | - Barbara A Cohn
- Child Health and Development Studies of the Public Health Institute, Berkeley, California.
| |
Collapse
|
54
|
Wan MLY, Co VA, El-Nezami H. Endocrine disrupting chemicals and breast cancer: a systematic review of epidemiological studies. Crit Rev Food Sci Nutr 2021; 62:6549-6576. [PMID: 33819127 DOI: 10.1080/10408398.2021.1903382] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Endocrine-disrupting compounds (EDCs) are ubiquitous substances that are found in our everyday lives, including pesticides, plasticizers, pharmaceutical agents, personal care products, and also in food products and food packaging. Increasing epidemiological evidence suggest that EDCs may affect the development or progression of breast cancer and consequently lead to lifelong harmful health consequences, especially when exposure occurs during early life in humans. Yet so far no appraisal of the available evidence has been conducted on this topic. OBJECTIVE To systematically review all the available epidemiological studies about the association of the levels of environmental exposures of EDCs with breast cancer risk. METHODS The search was performed in accordance with the PRISMA guidelines. We retrieved articles from PubMed (MEDLINE) until 10 March 2021. The key words used in this research were: "Endocrine disruptor(s)" OR "Endocrine disrupting chemical(s)" OR any of the EDCs mentioned below AND "Breast cancer" to locate all relevant articles published. We included only cohort studies and case-control studies. All relevant articles were accessed in full text and were evaluated and summarized in tables. RESULTS We identified 131 studies that met the search criteria and were included in this systematic review. EDCs reviewed herein included pesticides (e.g. p,p'-dichlorodiphenyltrichloroethane (DDT), p,p'-dichlorodiphenyldichloroethylene (DDE), atrazine, 2,3,7,8-tetrachloridibenzo-p-dioxin (TCDD or dioxin)), synthetic chemicals (e.g. bisphenol A (BPA), phthalates, per- and polyfluoroalkyl substances (PFAS), parabens, polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), contraceptive pills), phytoestrogens (e.g. genistein, resveratrol), and certain mycotoxins (e.g. zearalenone). Most studies assessed environmental EDCs exposure via biomarker measurements. CONCLUSION We identified certain EDC exposures could potentially elevate the risk of breast cancer. As majority of EDCs are highly persistent in the environment and bio-accumulative, it is essential to assess the long-term impacts of EDC exposures, especially multi-generational and transgenerational. Also, since food is often a major route of exposure to EDCs, well-designed exposure assessments of potential EDCs in food and food packing are necessary and their potential link to breast cancer development need to be carefully evaluated for subsequent EDC policy making and regulations.
Collapse
Affiliation(s)
- Murphy Lam Yim Wan
- Faculty of Science, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong S.A.R.,Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Vanessa Anna Co
- Faculty of Science, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong S.A.R
| | - Hani El-Nezami
- Faculty of Science, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong S.A.R.,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
55
|
Systemic alterations play a dominant role in epigenetic predisposition to breast cancer in offspring of obese fathers and is transmitted to a second generation. Sci Rep 2021; 11:7317. [PMID: 33795711 PMCID: PMC8016877 DOI: 10.1038/s41598-021-86548-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
We previously showed that environmentally-induced epigenetic inheritance of cancer occurs in rodent models. For instance, we reported that paternal consumption of an obesity-inducing diet (OID) increased breast cancer susceptibility in the offspring (F1). Nevertheless, it is still unclear whether programming of breast cancer in daughters is due to systemic alterations or mammary epithelium-specific factors and whether the breast cancer predisposition in F1 progeny can be transmitted to subsequent generations. In this study, we show that mammary glands from F1 control (CO) female offspring exhibit enhanced growth when transplanted into OID females compared to CO mammary glands transplanted into CO females. Similarly, carcinogen-induced mammary tumors from F1 CO female offspring transplanted into OID females has a higher proliferation/apoptosis rate. Further, we show that granddaughters (F2) from the OID grand-paternal germline have accelerated tumor growth compared to CO granddaughters. This between-generation transmission of cancer predisposition is associated with changes in sperm tRNA fragments in OID males. Our findings indicate that systemic and mammary stromal alterations are significant contributors to programming of mammary development and likely cancer predisposition in OID daughters. Our data also show that breast cancer predisposition is transmitted to subsequent generations and may explain some familial cancers, if confirmed in humans.
Collapse
|
56
|
Bleak TC, Calaf GM. Breast and prostate glands affected by environmental substances (Review). Oncol Rep 2021; 45:20. [PMID: 33649835 PMCID: PMC7879422 DOI: 10.3892/or.2021.7971] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/08/2021] [Indexed: 12/17/2022] Open
Abstract
Environmental endocrine disruptor chemicals are substances that can alter the homeostasis of the endocrine system in living organisms. They can be released from several products used in daily activities. Once in the organism, they can disrupt the endocrine function by mimicking or blocking naturally occurring hormones due to their similar chemical structure. This endocrine disruption is the most important cause of the well‑known hormone‑associate types of cancer. Additionally, it is decisive to determine the susceptibility of each organ to these compounds. Therefore, the present review aimed to summarize the effect of different environmental substances such as bisphenol A, dichlorodiphenyltrichloroethane and polychlorinated biphenyls in both the mammary and the prostate tissues. These organs were chosen due to their association with the hormonal system and their common features in carcinogenic mechanisms. Outcomes derived from the present review may provide evidence that should be considered in future debates regarding the effects of endocrine disruptors on carcinogenesis.
Collapse
Affiliation(s)
- Tammy C. Bleak
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Arica 1000000, Chile
| | - Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Arica 1000000, Chile
- Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
57
|
Aitken MJL, Benton CB, Issa GC, Sasaki K, Yilmaz M, Short NJ. Two Cases of Possible Familial Chronic Myeloid Leukemia in a Family with Extensive History of Cancer. Acta Haematol 2021; 144:585-590. [PMID: 33735874 DOI: 10.1159/000513925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/18/2020] [Indexed: 11/19/2022]
Abstract
CML is defined by the presence of an oncogenic fusion protein caused by a reciprocal translocation between chromosomes 9q and 22q. While our molecular understanding of CML pathogenesis has revolutionized drug development for this disease, we have yet to identify many predisposing factors for CML. Familial occurrence of CML has been rarely reported. Here, we describe 2 cases of CML in a 24-year-old woman and in her 73-year-old maternal great aunt. We describe genetic variants in these patients and report on their environmental exposures that may have contributed to CML pathogenesis. The possible familial association of these 2 cases of CML warrants further investigation into more definitive etiologies of this disease.
Collapse
Affiliation(s)
- Marisa J L Aitken
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- McGovern Medical School, Houston, Texas, USA
| | - Christopher B Benton
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Rocky Mountain Cancer Center, Denver, Colorado, USA
| | - Ghayas C Issa
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Koji Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Musa Yilmaz
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,
| |
Collapse
|
58
|
Liu Y, Li Y, Dong S, Han L, Guo R, Fu Y, Zhang S, Chen J. The risk and impact of organophosphate esters on the development of female-specific cancers: Comparative analysis of patients with benign and malignant tumors. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124020. [PMID: 33049558 DOI: 10.1016/j.jhazmat.2020.124020] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Environmental pollution has become a concern for public health. As endocrine disruptors, organophosphate esters (OPEs) causes many diseases via human exposure. However, there is limited research on the risk of OPE exposure to female-specific cancers. Blood measurements are biomarkers for chemical exposures by their definition. Thus, in the present study, 11 OPEs were analyzed in the plasma of patients with 4 female-specific tumors. 2-Ethylhexyl diphenyl phosphate (EHDPP) was detected at the highest levels in all groups. The Spearman correlation test results showed significantly positive correlations between some OPEs in each group, which indicated that those OPEs had similar sources and/or behaved similarly in the patients of each group. However, compared with different patient groups, obvious differences in the correlation results were noted, implying the differences in the metabolism of OPEs between different groups. The results of the correlation analysis showed that EHDPP concentration was associated with the risk of breast cancer (p < 0.05), while tri-n-butyl phosphate (TNBP), tris (methylphenyl) phosphate (TMPP), triphenyl phosphate (TPHP), and EHDPP concentrations were associated with the risk of cervical cancer (p < 0.05 or p < 0.01). These findings indicated that OPEs were associated with the risk of breast and cervical cancer.
Collapse
Affiliation(s)
- Yanhua Liu
- Department of Environmental Science, China Pharmaceutical University, Nanjing 211198, China
| | - Yang Li
- Department of Environmental Science, China Pharmaceutical University, Nanjing 211198, China; Blood Transfusion Department, Wuhan University Zhongnan Hospital, Wuhan 430071, China
| | - Shanshan Dong
- Department of Environmental Science, China Pharmaceutical University, Nanjing 211198, China
| | - Lu Han
- Department of Environmental Science, China Pharmaceutical University, Nanjing 211198, China
| | - Ruixin Guo
- Department of Environmental Science, China Pharmaceutical University, Nanjing 211198, China; Jiangsu Provincial Key Laboratory of Environmental Engineering, Nanjing 210036, China
| | - Yourong Fu
- Blood Transfusion Department, Wuhan University Zhongnan Hospital, Wuhan 430071, China
| | - Shenghu Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Jianqiu Chen
- Department of Environmental Science, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
59
|
Vandenberg LN, Bugos J. Assessing the Public Health Implications of the Food Preservative Propylparaben: Has This Chemical Been Safely Used for Decades. Curr Environ Health Rep 2021; 8:54-70. [PMID: 33415721 DOI: 10.1007/s40572-020-00300-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE Parabens are chemicals containing alkyl-esters of p-hydroxybenzoic acid, which give them antimicrobial, antifungal, and preservative properties. Propylparaben (PP) is one paraben that has been widely used in personal care products, cosmetics, pharmaceuticals, and food. In this review, we address the ongoing controversy over the safety of parabens, and PP specifically. These chemicals have received significant public attention after studies published almost 20 years ago suggested plausible associations between PP exposures and breast cancer. RECENT FINDINGS Here, we use key characteristics, a systematic approach to evaluate the endocrine disrupting properties of PP based on features of "known" endocrine disruptors, and consider whether its classification as a "weak" estrogen should alleviate public health concerns over human exposures. We also review the available evidence from rodent and human studies to illustrate how the large data gaps that exist in hazard assessments raise concerns about current evaluations by regulatory agencies that PP use is safe. Finally, we address the circular logic that is used to suggest that because PP has been used for several decades, it must be safe. We conclude that inadequate evidence has been provided for the safe use of PP in food, cosmetics, and consumer products.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, 171C Goessmann, 686 N. Pleasant Street, Amherst, MA, 01003, USA.
| | - Jennifer Bugos
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, 171C Goessmann, 686 N. Pleasant Street, Amherst, MA, 01003, USA
| |
Collapse
|
60
|
Demeneix BA. Environmental influences on brain aging. AGING BRAIN 2021; 1:100003. [PMID: 36911505 PMCID: PMC9997147 DOI: 10.1016/j.nbas.2020.100003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 10/22/2022] Open
Affiliation(s)
- Barbara A Demeneix
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, F-75005 Paris, France
| |
Collapse
|
61
|
Pizent A. Developmental toxicity of endocrine-disrupting chemicals: Challenges and future directions. ARHIV ZA FARMACIJU 2021. [DOI: 10.5937/arhfarm71-34457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Maternal exposure to a mixture of various endocrine disruptors (EDCs) may have a substantial impact on postnatal health of her offspring(s) and increase the risk for health disorders and diseases in adulthood. Research efforts to better understand the health risk associated with endocrine disruptor exposures in early life have increased in recent decades. This paper provides a short overview of the current challenges that researchers continue to face in selecting appropriate epidemiologic methods and study designs to identify endocrine disruptors and evaluate their adverse health effects during this critical developmental window. Major challenges involve the selection of a representative biomarker that reflects the foetal internal dose of the biologically active chemical or its metabolite(s) that may be associated with adverse health effects with regard to variable level and duration of exposure and the latency between exposure and disorder/disease manifestation. Future studies should pay more attention to identifying factors that contribute to interindividual variability in susceptibility to various EDCs and other toxicants.
Collapse
|
62
|
Erkekoglu P, Özyurt A, Yirün A, Çakır D. Testicular dysgenesis syndrome and phthalate exposure: A review of literature. ARHIV ZA FARMACIJU 2021. [DOI: 10.5937/arhfarm71-34438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Endocrine disruptors are chemicals that interfere with the body's endocrine system and cause adverse effects in biological systems. Phthalates are a group of man-made chemicals which are mainly used as plasticizers and classified as endocrine disruptors. They are also used in cosmetic and personal care products as color or smell fixators. Moreover, phthalates are present in inks, adhesives, sealants, automobile parts, tools, toys, carpets, medical tubing and blood storage bags, and food packages. Pathological condition known as "testicular dysgenesis syndrome" (TDS) or "phthalate syndrome" is usually linked to phthalate exposure and is coined to describe the rise in alterations in reproductive health in men, such as reduced semen quality (decrease in sperm counts, sperm motility and increase in abnormal sperms), hypospadias, cryptorchidism, reduced anogenital distance and early-life testicular cancer. Phthalates are suggested to cause direct effect on gonadal and non-gonadal tissues, impair the differentiation and morphogenesis of seminiferous tubules and accessory sex organs and testicular cells (both Sertoli and Leydig cells), alter estradiol and/or testosterone levels, decrease insulin-like 3 (INSL3) peptide production, impair spermatogenesis and lead to epigenetic alterations, all of which may lead to TDS. This review will mainly focus on phthalates as causes of TDS and their mechanisms of action.
Collapse
|
63
|
Sosan MB, Adeleye AO, Oyekunle JAO, Udah O, Oloruntunbi PM, Daramola MO, Saka WT. Dietary risk assessment of organochlorine pesticide residues in maize-based complementary breakfast food products in Nigeria. Heliyon 2020; 6:e05803. [PMID: 33385092 PMCID: PMC7770536 DOI: 10.1016/j.heliyon.2020.e05803] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/20/2020] [Accepted: 12/17/2020] [Indexed: 11/30/2022] Open
Abstract
The study assessed the levels of organochlorine pesticides (OCPs) in eight brands (A-H) of regularly consumed maize-based complementary/breakfast foods in Nigeria. We also evaluated the dietary exposure of infants and young children to the detected OCPs. The OCP residues were quantified using GC-ECD. A total of 10 OCPs residues (β-HCH, δ- HCH, heptachlor, endosulfan sulfate, aldrin, endrin, dieldrin, p,p’-DDE, p,p’-DDT and methoxychlor) were detected. Total OCPs burden was highest in brands F, D, and G with mean concentrations of 45.98 mg kg−1, 28.54 mg kg−1 and 21.87 mg kg−1, respectively and the lowest burdens in brands H (1.72 mg kg−1) and A (6.61 mg kg−1). Hazard index (HI) for all the age categories were >1 and all the 6 carcinogens (β-HCH, heptachlor, aldrin, dieldrin, p,p’-DDE, and p,p’-DDT) identified had cancer risk index range of 5.43 × 10−4 to 2.05 × 10−6 which were above acceptable risk. These results indicated the possibility of both systemic and cancer risks to infants and children consumers of the foods. Food brands manufacturers need to carry out regular pesticide residues analysis of raw materials especially maize prior to the production in order to ensure food safety and quality.
Collapse
Affiliation(s)
- Mosudi B Sosan
- Department of Crop Production and Protection, Obafemi Awolowo University, Ile-Ife, 220005, Nigeria
| | - Adeoluwa O Adeleye
- Department of Crop Production and Protection, Obafemi Awolowo University, Ile-Ife, 220005, Nigeria
| | | | - Onehireba Udah
- Department of Crop Production and Protection, Obafemi Awolowo University, Ile-Ife, 220005, Nigeria
| | - Philemon M Oloruntunbi
- Department of Crop Production and Protection, Obafemi Awolowo University, Ile-Ife, 220005, Nigeria
| | - Miracle O Daramola
- Department of Crop Production and Protection, Obafemi Awolowo University, Ile-Ife, 220005, Nigeria
| | - Waidi T Saka
- Department of Crop Production and Protection, Obafemi Awolowo University, Ile-Ife, 220005, Nigeria
| |
Collapse
|
64
|
Buoso E, Masi M, Racchi M, Corsini E. Endocrine-Disrupting Chemicals' (EDCs) Effects on Tumour Microenvironment and Cancer Progression: Emerging Contribution of RACK1. Int J Mol Sci 2020; 21:E9229. [PMID: 33287384 PMCID: PMC7729595 DOI: 10.3390/ijms21239229] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023] Open
Abstract
Endocrine disruptors (EDCs) can display estrogenic and androgenic effects, and their exposure has been linked to increased cancer risk. EDCs have been shown to directly affect cancer cell regulation and progression, but their influence on tumour microenvironment is still not completely elucidated. In this context, the signalling hub protein RACK1 (Receptor for Activated C Kinase 1) could represent a nexus between cancer and the immune system due to its roles in cancer progression and innate immune activation. Since RACK1 is a relevant EDCs target that responds to steroid-active compounds, it could be considered a molecular bridge between the endocrine-regulated tumour microenvironment and the innate immune system. We provide an analysis of immunomodulatory and cancer-promoting effects of different EDCs in shaping tumour microenvironment, with a final focus on the scaffold protein RACK1 as a pivotal molecular player due to its dual role in immune and cancer contexts.
Collapse
Affiliation(s)
- Erica Buoso
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy; (M.M.); (M.R.)
| | - Mirco Masi
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy; (M.M.); (M.R.)
- Classe di Scienze Umane e della Vita (SUV), Scuola Universitaria Superiore IUSS, Piazza della Vittoria 15, 27100 Pavia, Italy
| | - Marco Racchi
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy; (M.M.); (M.R.)
| | - Emanuela Corsini
- Laboratory of Toxicology, Dipartimento di Scienze Politiche ed Ambientali, Università Degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy;
| |
Collapse
|
65
|
Vandenberg LN, Najmi A, Mogus JP. Agrochemicals with estrogenic endocrine disrupting properties: Lessons Learned? Mol Cell Endocrinol 2020; 518:110860. [PMID: 32407980 PMCID: PMC9448509 DOI: 10.1016/j.mce.2020.110860] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/16/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023]
Abstract
Many agrochemicals have endocrine disrupting properties. A subset of these chemicals is characterized as "estrogenic". In this review, we describe several distinct ways that chemicals used in crop production can affect estrogen signaling. Using three agrochemicals as examples (DDT, endosulfan, and atrazine), we illustrate how screening tests such as the US EPA's EDSP Tier 1 assays can be used as a first-pass approach to evaluate agrochemicals for endocrine activity. We then apply the "Key Characteristics" approach to illustrate how chemicals like DDT can be evaluated, together with the World Health Organization's definition of an endocrine disruptor, to identify data gaps. We conclude by describing important issues that must be addressed in the evaluation and regulation of hormonally active agrochemicals including mixture effects, efforts to reduce vertebrate animal use, chemical prioritization, and improvements in hazard, exposure, and risk assessments.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, USA.
| | - Aimal Najmi
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, USA
| | - Joshua P Mogus
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, USA
| |
Collapse
|
66
|
Santillán-Sidón P, Pérez-Morales R, Anguiano G, Ruiz-Baca E, Osten JRV, Olivas-Calderón E, Vazquez-Boucard C. Glutathione S-transferase activity and genetic polymorphisms associated with exposure to organochloride pesticides in Todos Santos, BCS, Mexico: a preliminary study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:43223-43232. [PMID: 32734539 DOI: 10.1007/s11356-020-10206-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
The objective of this study was to identify and evaluate the impact of exposure to mixtures of organochloride pesticides (OCPs) in agricultural workers by detecting their effects on the activity of the enzyme glutathione S-transferase (GST) and the presence of polymorphisms of the GSTT1 and GSTM1 genes. The presence of OCPs was identified and quantified by gas chromatography, while spectrophotometry was used to measure enzymatic GST activity. The frequencies of the GSTM1 genotypes were analyzed by multiplex PCR. A total of 18 metabolites of OCPs were identified in the workers' blood, most of which are either prohibited (DDT and its metabolites p, p'DDD and p, p'DDE, dieldrin, endrin, aldrin) and/or restricted (δ hexachlorocyclohexane, cis chlordane, methoxychlor, and endosulfan). The results obtained indicate lower levels of GST activity at higher OCPs concentrations detected in blood from exposed workers, together with an increase in OCP levels in individuals who presented the GSTT1*0 and GSTM1*0 genotypes. These conditions place the detoxification process in agricultural workers with null polymorphisms in the GST genes and high concentrations of OCPs in the blood (especially DDT and its metabolites, DDD and DDE) at risk, and increase their susceptibility to develop serious diseases.
Collapse
Affiliation(s)
- Patricia Santillán-Sidón
- Molecular Biomedicine Laboratory, Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Veterinarias s/n, Circuito Universitario, 34120, Durango, Mexico
| | - Rebeca Pérez-Morales
- Molecular Cell Biology Laboratory, Universidad Juárez del Estado de Durango, Av. Articulo #123 Filadelfia, CP 35010, Gómez Palacio, Durango, Mexico
| | - Gerardo Anguiano
- Molecular Biomedicine Laboratory, Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Veterinarias s/n, Circuito Universitario, 34120, Durango, Mexico
| | - Estela Ruiz-Baca
- Genoproteomic Laboratory, Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Veterinarias s/n, Circuito Universitario, 34120, Durango, Mexico
| | - Jaime Rendón-Von Osten
- Laboratory of Identification of Persistent Organic Pollutants. EPOMEX, Universidad Autónoma de Campeche, Agustín de Melgar y Juan de la Barrera s/n, 24039, Campeche, Mexico
| | - Edgar Olivas-Calderón
- Molecular Cell Biology Laboratory, Universidad Juárez del Estado de Durango, Av. Articulo #123 Filadelfia, CP 35010, Gómez Palacio, Durango, Mexico
| | - Celia Vazquez-Boucard
- Proteomic and Genetic Toxicology Laboratory, Centro de Investigaciones Biológicas del Noroeste, Instituto Politécnico Nacional, Calle IPN, #195 Playa Palo de Santa Rita Sur, 23096, La Paz, Baja California Sur, Mexico.
| |
Collapse
|
67
|
Eve L, Fervers B, Le Romancer M, Etienne-Selloum N. Exposure to Endocrine Disrupting Chemicals and Risk of Breast Cancer. Int J Mol Sci 2020; 21:E9139. [PMID: 33266302 PMCID: PMC7731339 DOI: 10.3390/ijms21239139] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer (BC) is the second most common cancer and the fifth deadliest in the world. Exposure to endocrine disrupting pollutants has been suggested to contribute to the increase in disease incidence. Indeed, a growing number of researchershave investigated the effects of widely used environmental chemicals with endocrine disrupting properties on BC development in experimental (in vitro and animal models) and epidemiological studies. The complex effects of endocrine disrupting chemicals (EDCs) on hormonal pathways, involving carcinogenic effects and an increase in mammary gland susceptibility to carcinogenesis-together with the specific characteristics of the mammary gland evolving over the course of life and the multifactorial etiology of BC-make the evaluation of these compounds a complex issue. Among the many EDCs suspected of increasing the risk of BC, strong evidence has only been provided for few EDCs including diethylstilbestrol, dichlorodiphenyltrichloroethane, dioxins and bisphenol A. However, given the ubiquitous nature and massive use of EDCs, it is essential to continue to assess their long-term health effects, particularly on carcinogenesis, to eradicate the worst of them and to sensitize the population to minimize their use.
Collapse
Affiliation(s)
- Louisane Eve
- Faculté de Pharmacie, Université de Strasbourg, F-67000 Strasbourg, France;
- Université Claude Bernard Lyon 1, F-69000 Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Béatrice Fervers
- Centre de Lutte Contre le Cancer Léon-Bérard, F-69000 Lyon, France;
- Inserm UA08, Radiations, Défense, Santé, Environnement, Center Léon Bérard, F-69000 Lyon, France
| | - Muriel Le Romancer
- Université Claude Bernard Lyon 1, F-69000 Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Nelly Etienne-Selloum
- Faculté de Pharmacie, Université de Strasbourg, F-67000 Strasbourg, France;
- Service de Pharmacie, Institut de Cancérologie Strasbourg Europe, F-67000 Strasbourg, France
- CNRS UMR7021/Unistra, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, F-67000 Strasbourg, France
| |
Collapse
|
68
|
Goodson WH, Lowe L, Gilbertson M, Carpenter DO. Testing the low dose mixtures hypothesis from the Halifax project. REVIEWS ON ENVIRONMENTAL HEALTH 2020; 35:333-357. [PMID: 32833669 DOI: 10.1515/reveh-2020-0033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/02/2020] [Indexed: 05/24/2023]
Abstract
In 2013, 60 scientists, representing a larger group of 174 scientists from 26 nations, met in Halifax, Nova Scotia to consider whether - using published research - it was logical to anticipate that a mixture of chemicals, each thought to be non-carcinogenic, might act together in that mixture as a virtual carcinogen. The group identified 89 such chemicals, each one affecting one or more Hallmark(s) - collectively covering all Hallmarks of Cancer - confirming the possibility that a chemical mixture could induce all the Hallmarks and function as a virtual carcinogen, thereby supporting the concern that chemical safety research that does not evaluate mixtures, is incomplete. Based on these observations, the Halifax Project developed the Low-Dose Carcinogenesis Hypothesis which posits "…that low-dose exposures to [mixtures of] disruptive chemicals that are not individually carcinogenic may be capable of instigating and/or enabling carcinogenesis." Although testing all possible combinations of over 80,000 chemicals of commerce would be impractical, prudence requires designing a methodology to test whether low-dose chemical mixtures might be carcinogenic. As an initial step toward testing this hypothesis, we conducted a mini review of published empirical observations of biological exposures to chemical mixtures to assess what empirical data exists on which to base future research. We reviewed studies on chemical mixtures with the criteria that the studies reported both different concentrations of chemicals and mixtures composed of different chemicals. We found a paucity of research on this important question. The majority of studies reported hormone related processes and used chemical concentrations selected to facilitate studying how mixtures behave in experiments that were often removed from clinical relevance, i.e., chemicals were not studied at human-relevant concentrations. New research programs must be envisioned to enable study of how mixtures of small doses of chemicals affect human health, starting, when at all possible, from non-malignant specimens when studies are done in vitro. This research should use human relevant concentrations of chemicals, expand research beyond the historic focus on endocrine endpoints and endocrine related cancers, and specifically seek effects that arise uniquely from exposure to chemical mixtures at human-relevant concentrations.
Collapse
Affiliation(s)
- William H Goodson
- Department of Surgery, California Pacific Medical Center Research Institute, San Francisco, CA, 94115, USA
| | - Leroy Lowe
- Getting to Know Cancer (NGO), Truro, NS, B2N 1X5, Canada
| | - Michael Gilbertson
- Occupational and Environmental Health Research Group, University of Stirling, Stirling, Scotland
| | - David O Carpenter
- Institute for Health and the Environment, University at Albany, Rensselaer, NY, 12144, USA
| |
Collapse
|
69
|
Gautam S, Sood NK, Gupta K, Joshi C, Gill KK, Kaur R, Chauhan I. Bioaccumulation of pesticide contaminants in tissue matrices of dogs suffering from malignant canine mammary tumors in Punjab, India. Heliyon 2020; 6:e05274. [PMID: 33163644 PMCID: PMC7610237 DOI: 10.1016/j.heliyon.2020.e05274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/15/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022] Open
Abstract
The unprecedented application of pesticides in Punjab, India during green revolution has lead to an environmental crisis due to the accumulation of persistent organic and pesticide pollutants in the environment and biota of this region. The present study aimed at estimating the abundance of pesticide contaminants in three biological matrices of 36 dogs suffering from malignant canine mammary tumor (mCMT) and 6 tumor free control dogs from Punjab, India. Presence of individual and total pesticides in canine biological samples, age and bodyweight of canine patients was assessed as a potential risk factor for mCMT using logistic regression analysis. Chi-square test was employed to determine tissue-specific accumulations of individual pesticides. Spearman's correlation coefficient was estimated to determine the association between the levels of total pesticides in different tissue matrices and with age and bodyweight of mCMT cases. Gas chromatography-ECD analysis of serum, mammary tissue and adjoining mammary adipose tissue revealed fourteen different pesticides including γ-HCH, α-HCH, dieldrin, aldrin, heptachlor, butachlor, p,p-DDT, o,p-DDT, p,p-DDD, p,p-DDE, L-cyhalothrin, permethrin, fipronil, and fenitrothion. Heptachlor, γ-HCH, aldrin and p,p-DDT were more frequently detected, whereas, p,p-DDE and o,p-DDT were the least common. Differential accumulation of pesticides in tissue matrices, particularly between serum and mammary tissue/adipose tissue was observed. We could not find any association between the total pesticide concentrations among serum, mammary tissue and mammary adipose tissue in mCMT cases. We found that the odds for individual pesticide for serum, mammary tissue and adipose tissue were associated with high uncertainties; however, the total pesticide concentration in mammary tissue was near non-significantly associated with higher risk of mCMT with low uncertainty. Statistically non-significant higher odds of CMT occurrence with increase in age was noticed No association between the concentration of total pesticides in different matrices and age and bodyweight of canine subjects was found.
Collapse
Affiliation(s)
- Siddharth Gautam
- Division of Temperate Animal Husbandry, Indian Veterinary Research Institute, Mukteshwar 263138, Nainital, Uttarakhand, India
| | - Naresh Kumar Sood
- Department of Teaching Veterinary Clinical Complex, GADVASU 141004, Ludhiana, Punjab, India
| | - Kuldip Gupta
- Department of Veterinary Pathology, GADVASU 141004, Ludhiana, Punjab, India
| | - Chitra Joshi
- Department of Animal Husbandry, Almora 263601, Uttarakhand, India
| | - Kamalpreet Kaur Gill
- Department of Veterinary Pharmacology & Toxicology, GADVASU 141004, Ludhiana, Punjab, India
| | - Rajdeep Kaur
- Department of Veterinary Pharmacology & Toxicology, GADVASU 141004, Ludhiana, Punjab, India
| | - Indrasen Chauhan
- Division of Temperate Animal Husbandry, Indian Veterinary Research Institute, Mukteshwar 263138, Nainital, Uttarakhand, India
| |
Collapse
|
70
|
Kripke M, Brody JG, Hawk E, Hernandez AB, Hoppin PJ, Jacobs MM, Rudel RA, Rebbeck TR. Rethinking Environmental Carcinogenesis. Cancer Epidemiol Biomarkers Prev 2020; 29:1870-1875. [PMID: 33004408 DOI: 10.1158/1055-9965.epi-20-0541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/07/2020] [Accepted: 06/11/2020] [Indexed: 11/16/2022] Open
Abstract
The 2010 report of the President's Cancer Panel concluded that the burden of cancer from chemical exposures is substantial, while the programs for testing and regulation of carcinogens remain inadequate. New research on the role of early life exposures and the ability of chemicals to act via multiple biological pathways, including immunosuppression, inflammation, and endocrine disruption as well as mutagenesis, further supports the potential for chemicals and chemical mixtures to influence disease. Epidemiologic observations, such as higher leukemia incidence in children living near roadways and industrial sources of air pollution, and new in vitro technologies that decode carcinogenesis at the molecular level, illustrate the diverse evidence that primary prevention of some cancers may be achieved by reducing harmful chemical exposures. The path forward requires cross-disciplinary approaches, increased environmental research investment, system-wide collaboration to develop safer economic alternatives, and community engagement to support evidence-informed action. Engagement by cancer researchers to integrate environmental risk factors into prevention initiatives holds tremendous promise for reducing the rates of disease.See all articles in this CEBP Focus section, "Environmental Carcinogenesis: Pathways to Prevention."
Collapse
Affiliation(s)
- Margaret Kripke
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Ernest Hawk
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Polly J Hoppin
- University of Massachusetts Lowell and Lowell Center for Sustainable Production, Lowell, Massachusetts
| | - Molly M Jacobs
- University of Massachusetts Lowell and Lowell Center for Sustainable Production, Lowell, Massachusetts
| | | | - Timothy R Rebbeck
- Dana-Farber Cancer Institute and Harvard TH Chan School of Public Health, Boston, Massachusetts.
| |
Collapse
|
71
|
Sharma A, Shukla A, Attri K, Kumar M, Kumar P, Suttee A, Singh G, Barnwal RP, Singla N. Global trends in pesticides: A looming threat and viable alternatives. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110812. [PMID: 32512419 DOI: 10.1016/j.ecoenv.2020.110812] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
Pesticides are widely used chemical compounds in agriculture to destroy insects, pests and weeds. In modern era, they form an indispensable part of agricultural and health practices. Globally, nearly 3 billion kg of pesticides are used every year with a budget of ~40 billion USD. This extensive usage has increased the crop yield as well as led to significant reduction in harvest losses and thereby, enhanced food availability. On the other hand, indiscriminate usage of these chemicals has led to several environmental implications and caused adverse effects on human health. Epidemiological evidences have revealed the harmful effects of pesticides exposure on various organs including liver, brain, lungs and colon. Recent investigations have shown that pesticides can also lead to fatal consequences such as cancer among individuals. These chemicals enter ecosystem, thus hampering the sensitive environmental equilibrium through bio-accumulation. Due to their non-biodegradable nature, they can persist in nature for years and are regarded as potent biohazard. Worldwide, very few surveillance methods have been considered, which can bring awareness among the individuals, therefore the present review is an attempt to delineate consequences induced by various types of pesticide exposure on the environment. Further, the prospective of biopesticides use could facilitate the increase of crop production without compromising human health.
Collapse
Affiliation(s)
- Akanksha Sharma
- Department of Biophysics, Panjab University, Chandigarh, 160014, India; UIPS, Panjab University, Chandigarh, 160014, India
| | - Ananya Shukla
- Department of Biophysics, Panjab University, Chandigarh, 160014, India; Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Kriti Attri
- Department of Biophysics, Panjab University, Chandigarh, 160014, India; Biological Sciences, Indian Institute of Science Education and Research, Mohali, 140306, India
| | - Megha Kumar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, 151001, India
| | - Ashish Suttee
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Gurpal Singh
- UIPS, Panjab University, Chandigarh, 160014, India
| | | | - Neha Singla
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
72
|
Zeinomar N, Oskar S, Kehm RD, Sahebzeda S, Terry MB. Environmental exposures and breast cancer risk in the context of underlying susceptibility: A systematic review of the epidemiological literature. ENVIRONMENTAL RESEARCH 2020; 187:109346. [PMID: 32445942 PMCID: PMC7314105 DOI: 10.1016/j.envres.2020.109346] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 05/07/2023]
Abstract
BACKGROUND The evidence evaluating environmental chemical exposures (ECE) and breast cancer (BC) risk is heterogeneous which may stem in part as few studies measure ECE during key BC windows of susceptibility (WOS). Another possibility may be that most BC studies are skewed towards individuals at average risk, which may limit the ability to detect signals from ECE. OBJECTIVES We reviewed the literature on ECE and BC focusing on three types of studies or subgroup analyses based on higher absolute BC risk: BC family history (Type 1); early onset BC (Type 2); and/or genetic susceptibility (Type 3). METHODS We systematically searched the PubMed database to identify epidemiologic studies examining ECE and BC risk published through June 1, 2019. RESULTS We identified 100 publications in 56 unique epidemiologic studies. Of these 56 studies, only 2 (3.6%) were enriched with BC family history and only 11% of studies (6/56) were specifically enriched with early onset cases. 80% of the publications from these 8 enriched studies (Type 1: 8/10 publications; Type 2: 8/10 publications) supported a statistically significant association between ECE and BC risk including studies of PAH, indoor cooking, NO2, DDT; PCBs, PFOSA; metals; personal care products; and occupational exposure to industrial dyes. 74% of Type 3 publications (20/27) supported statistically significant associations for PAHs, traffic-related air pollution, PCBs, phthalates, and PFOSAs in subgroups of women with greater genetic susceptibility due to variants in carcinogen metabolism, DNA repair, oxidative stress, cellular apoptosis and tumor suppressor genes. DISCUSSION Studies enriched for women at higher BC risk through family history, younger age of onset and/or genetic susceptibility consistently support an association between an ECE and BC risk. In addition to measuring exposures during WOS, designing studies that are enriched with women at higher absolute risk are necessary to robustly measure the role of ECE on BC risk.
Collapse
Affiliation(s)
- Nur Zeinomar
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Sabine Oskar
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Rebecca D Kehm
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Shamin Sahebzeda
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
73
|
da Cruz RS, Chen E, Smith M, Bates J, de Assis S. Diet and Transgenerational Epigenetic Inheritance of Breast Cancer: The Role of the Paternal Germline. Front Nutr 2020; 7:93. [PMID: 32760734 PMCID: PMC7373741 DOI: 10.3389/fnut.2020.00093] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
The past decade has made evident that in addition to passing their genetic material at conception, parents also transmit a molecular memory of past environmental experiences, including nutritional status, to their progeny through epigenetic mechanisms. In the 1990s, it was proposed that breast cancer originates in utero. Since then, an overwhelming number of studies in human cohorts and animal models have provided support for that hypothesis. It is becoming clear, however, that exposure in the parent generation can lead to multigenerational and transgenerational inheritance of breast cancer. Importantly, recent data from our lab and others show that pre-conception paternal diets reprogram the male germline and modulate breast cancer development in offspring. This review explores the emerging evidence for transgenerational epigenetic inheritance of breast cancer focusing on studies associated with ancestral nutritional factors or related markers such as birth weight. We also explore paternal factors and the epigenetic mechanisms of inheritance through the male germline while also reviewing the existing literature on maternal exposures in pregnancy and its effects on subsequent generations. Finally, we discuss the importance of this mode of inheritance in the context of breast cancer prevention, the challenges, and outstanding research questions in the field.
Collapse
Affiliation(s)
- Raquel Santana da Cruz
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Elaine Chen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Megan Smith
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Jaedus Bates
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Sonia de Assis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| |
Collapse
|
74
|
|
75
|
de O Gomes H, Menezes JMC, da Costa JGM, Coutinho HDM, Teixeira RNP, do Nascimento RF. A socio-environmental perspective on pesticide use and food production. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 197:110627. [PMID: 32302856 DOI: 10.1016/j.ecoenv.2020.110627] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/03/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Pesticides are part of a large group of organic compounds with different physicochemical characteristics, designed to control and prevent pests in various crops and plantations, improving productivity. This works provides a perspective on pesticide use in current agriculture with the aim of identifying the influence of pesticides on food production and their impact on the environment. Therefore, it is necessary to highlight the importance of determining pesticide residues in food, aiming to ensure food safety, since these compounds can represent risks to human health and the environment. The effects of pesticides on humans range from headaches, nausea and skin and eye irritation to chronic problems such as cancer and neurological disorders, and extend to other non-target organisms such as birds, fish and bees, contaminating water, soil, and plants, as opposed to the benefits of increased production, consequently other measures for pesticide consumption need to be evaluate to ensure human health, food safety and environmental protection. It is important to note that chromatographic techniques and mass spectrometry assist in the determination of pesticide residues and evaluate the quality of the food that reaches the consumer, and together with the Maximum Residue Limits (MRLs), established by the legislation of each country, these instrumentation act to control the exposure of population to pesticides. Although the MRL is used as a parameter for food quality, the global differences in pesticide legislation do not guarantee the consumer safety. In this sense, a brief analysis of MRL inefficiency is also present in this paper.
Collapse
Affiliation(s)
- Hiago de O Gomes
- Department of Biological Chemistry, Regional University of Cariri, R. Cel. Antonio Luis 1161, 63105000, Crato, CE, Brazil
| | - Jorge Marcell C Menezes
- Department of Biological Chemistry, Regional University of Cariri, R. Cel. Antonio Luis 1161, 63105000, Crato, CE, Brazil; Science and Technology Center, Federal University of Cariri, Av. Ten Raimundo Rocha 1639, 63048080, Juazeiro Do Norte, CE, Brazil
| | - José Galberto M da Costa
- Department of Biological Chemistry, Regional University of Cariri, R. Cel. Antonio Luis 1161, 63105000, Crato, CE, Brazil
| | - Henrique Douglas M Coutinho
- Department of Biological Chemistry, Regional University of Cariri, R. Cel. Antonio Luis 1161, 63105000, Crato, CE, Brazil.
| | - Raimundo Nonato P Teixeira
- Department of Biological Chemistry, Regional University of Cariri, R. Cel. Antonio Luis 1161, 63105000, Crato, CE, Brazil
| | - Ronaldo F do Nascimento
- Department of Physical Chemistry and Analytical Chemistry, Federal University of Ceará, R. Humberto Monte S/N, 60455700, Fortaleza, CE, Brazil
| |
Collapse
|
76
|
Li Y, Fu Y, Hu K, Zhang Y, Chen J, Zhang S, Zhang B, Liu Y. Positive correlation between human exposure to organophosphate esters and gastrointestinal cancer in patients from Wuhan, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 196:110548. [PMID: 32278140 DOI: 10.1016/j.ecoenv.2020.110548] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
As kinds of endocrine disruptors, organophosphate esters (OPEs) pollution in the environment had received increasing attention recently. Food and water intake were two important exposure pathways for OPEs. However, the studies about the potential association between OPEs and gastrointestinal cancer were limited. This study investigated the possible association between OPEs and gastrointestinal cancer. All cancer patients were diagnosed with gastrointestinal cancer from a Grade 3 A hospital in Wuhan, China, while the control group was non-cancer healthy persons. The results showed that 6 OPEs were found in the control samples, while 8 in the samples from patients with gastrointestinal cancer. The detection frequencies of OPEs in gastrointestinal cancer patients were significantly higher than those in the control group (p < 0.05 or p < 0.01), except for triethyl phosphate (TEP) and tris (methylphenyl) phosphate (TMPP) in the gastric cancer group. The concentrations of OPEs in the control group were significantly lower than those in the gastric cancer group and colorectal cancer group (p < 0.01). In the control group and gastrointestinal cancer group, TEP was the dominant pollutant. Correlation analysis found that concentrations of TEP, tris(2-chloroisopropyl) phosphate (TCIPP), triphenyl phosphate (TPHP), TMPP, tris(2-ethylhexyl) phosphate (TEHP), and 2-ethylhexyl diphenyl phosphate (EHDPP) were associated with gastric cancer (p < 0.01), and concentrations of TEP, TCIPP, TPHP, TMPP and TEHP were associated with colorectal cancer (p < 0.01). A cluster analysis divided the 34 patients with gastric cancer and 40 patients with colorectal cancer in four groups. The results showed that the elderly male patients with gastric cancer were more sensitive to the exposure of EHDPP, while the TEP exposure was more sensitive to the relatively young gastrointestinal cancer patients. These findings indicated that OPEs might play a role in developing gastrointestinal cancer.
Collapse
Affiliation(s)
- Yang Li
- Blood Transfusion Department, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; School of Engineering, China Pharmaceutical University, Nanjing, 211198, China; Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yourong Fu
- Blood Transfusion Department, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Kaiqi Hu
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuanlu Zhang
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Jianqiu Chen
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Shenghu Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Bin Zhang
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yanhua Liu
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
77
|
Cohn BA, Cirillo PM, Terry MB. DDT and Breast Cancer: Prospective Study of Induction Time and Susceptibility Windows. J Natl Cancer Inst 2020; 111:803-810. [PMID: 30759253 PMCID: PMC6695310 DOI: 10.1093/jnci/djy198] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 09/06/2018] [Accepted: 10/04/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In a previous Child Health and Development Studies report, p, p'-DDT was associated with a fivefold increased risk of premenopausal (before age 50 years) breast cancer for women first exposed before puberty. Here we extend our observation to breast cancer diagnosed during early postmenopause (ages 50-54 years) to determine whether age at diagnosis modifies the interaction of DDT with age at exposure. METHODS We conducted a second prospective, nested case-control study in the Child Health and Development Studies (153 incident breast cancer cases diagnosed at ages 50-54 years and 432 controls matched to cases on birth year). These were analyzed separately and pooled with our previous study (129 breast cancer cases diagnosed at ages 31-49 years and 129 controls matched on birth year). Blood samples were obtained during pregnancy (median age, 26 years), 1-3 days after delivery from 1959 to 1967 in Oakland, California. Serum was assayed for p, p'-DDT, o, p'-DDT, and p, p'-DDE. Odds ratios (ORs) below are given for doubling of serum p, p'-DDT. All statistical tests were two-sided. RESULTS For early postmenopausal breast cancer, p, p'-DDT was associated with risk for all women (ORDDT 50-54 = 1.99, 95% CI = 1.48 to 2.67). This association was accounted for by women first exposed to DDT after infancy (ORDDT 50-54 for first exposure after infancy = 2.83, 95% CI = 1.96 to 4.10 vs ORDDT 50-54 for first exposure during infancy = 0.56, 95% CI = 0.26 to 1.19; Pinteraction DDT x age at first exposure = .01). In contrast, for premenopausal breast cancer, p, p'-DDT was associated with risk among women first exposed during infancy through puberty, but not after (ORDDT<50 for first exposure during infancy = 3.70, 95% CI = 1.22 to 11.26, Pinteraction DDT x age at first exposure x age at diagnosis = .03). CONCLUSIONS p, p'-DDT was associated with breast cancer through age 54 years. Risk depended on timing of first exposure and diagnosis age, suggesting susceptibility windows and an induction period beginning in early life. DDT appears to be an endocrine disruptor with responsive breast targets from in utero to menopause.
Collapse
Affiliation(s)
- Barbara A Cohn
- See the Notes section for the full list of authors' affiliations
| | - Piera M Cirillo
- See the Notes section for the full list of authors' affiliations
| | - Mary Beth Terry
- See the Notes section for the full list of authors' affiliations
| |
Collapse
|
78
|
Qiu Z, Xiao J, Zheng S, Huang W, Du T, Au WW, Wu K. Associations between functional polychlorinated biphenyls in adipose tissues and prognostic biomarkers of breast cancer patients. ENVIRONMENTAL RESEARCH 2020; 185:109441. [PMID: 32247153 DOI: 10.1016/j.envres.2020.109441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Exposure to polychlorinated biphenyls (PCBs) has been shown to influence expression of some biomarkers that are predictive/prognostic for breast cancer. Therefore, our study was conducted to further investigating associations of different functional PCBs in adipose tissue with breast cancer prognostic biomarkers. METHODS Two hundred and five breast cancer patients were recruited in Shantou, China. Breast adipose tissues were collected during their resection surgery and levels of 7 PCB congeners were analyzed by gas chromatography-mass spectrometry (GC-MS). The PCB congeners were divided into 4 groups according to structure-activity. Socio-demographic, clinical and pathological information were obtained from questionnaire and digital medical records. Odds ratios (ORs) for associations between prognostic biomarkers and PCB levels (tertile 3 [T3], tertile 2 [T2] vs. tertile 1) were estimated from logistic regression models. RESULTS Most PCB congeners were detectable, with a highest level (22.06 ng/g lipid) of PCB153. As for estrogenic PCBs, increased PCB52 exposure was positively associated with PR expression (ORT2 = 2.36, Ptrend = 0.054), but higher PCB101 level was negatively associated with HER-2 (ORT3 = 0.24, Ptrend = 0.029) and tumor size (OR = 0.43). Limited dioxin-like PCB138 exposure was positively associated with ER (ORT2 = 3.23, ORT3 = 3.77, Ptrend = 0.047) but negatively with Top-IIα expression (ORT2 = 0.35, ORT3 = 0.28, Ptrend = 0.080). Higher PCB153 (CYP inducer) level was negatively associated with ER (ORT2 = 0.32, ORT3 = 0.19, Ptrend = 0.038) but positively with Ki-67 expression (ORT2 = 1.43, ORT3 = 3.60, Ptrend = 0.055). Higher neurotoxic PCB28 was positively associated with HER-2 (ORT3 = 5.43, Ptrend = 0.006) and tumor size (OR = 2.37). Moreover, total PCBs exposure was positively associated with VEGF-C (ORT2 = 76.91, ORT3 = 97.96, Ptrend = 0.041) and tumor metastasis (OR = 2.25). CONCLUSIONS Different functional PCB congeners have different associations (both positive and negative) with breast cancer prognostic biomarkers, as well as tumor classification stage. Therefore, the development and aggressiveness of breast cancer may depend upon exposure to specific structure-activity of PCBs.
Collapse
Affiliation(s)
- Zhaolong Qiu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong Province, China
| | - Jiefeng Xiao
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong Province, China
| | - Shukai Zheng
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong Province, China
| | - Wenlong Huang
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong Province, China
| | - Taifeng Du
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong Province, China
| | - William W Au
- University of Medicine, Pharmacy, Science and Technology, Targu Mures, Romania
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong Province, China.
| |
Collapse
|
79
|
Kass L, Gomez AL, Altamirano GA. Relationship between agrochemical compounds and mammary gland development and breast cancer. Mol Cell Endocrinol 2020; 508:110789. [PMID: 32165172 DOI: 10.1016/j.mce.2020.110789] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 12/14/2022]
Abstract
The exposure to agrochemical pesticides has been associated with several chronic diseases, including different types of cancer and reproductive disorders. In addition, because agrochemical pesticides may act as endocrine disrupting chemicals (EDCs) during different windows of susceptibility, they can increase the risk of impairing the normal development of the mammary gland and/or of developing mammary lesions. Therefore, the aim of this review is to summarize how exposure to different agrochemical pesticides suspected of being EDCs can interfere with the normal development of the mammary gland and the possible association with breast cancer. It has been shown that the mammary glands of male and female rats and mice are susceptible to exposure to non-organochlorine (vinclozolin, atrazine, glyphosate, chlorpyrifos) and organochlorine (endosulfan, methoxychlor, hexachlorobenzene) pesticides. Some of the effects of these compounds in experimental models include increased or decreased mammary development, impaired cell proliferation and steroid receptor expression and signaling, increased malignant cellular transformation and tumor development and angiogenesis. Contradictory findings have been found as to whether there is a causal link between the exposure or the pesticide body burden and breast cancer in humans. However, an association has been observed between pesticides (especially organochlorine compounds) and specific subtypes of breast cancer. Further studies are needed in both humans and experimental models to understand how agrochemical pesticides can induce or promote changes in the development, differentiation and/or malignant transformation of the mammary gland.
Collapse
Affiliation(s)
- Laura Kass
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, 3000, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| | - Ayelen L Gomez
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, 3000, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Gabriela A Altamirano
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, 3000, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
80
|
Montévil M, Acevedo N, Schaeberle CM, Bharadwaj M, Fenton SE, Soto AM. A Combined Morphometric and Statistical Approach to Assess Nonmonotonicity in the Developing Mammary Gland of Rats in the CLARITY-BPA Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:57001. [PMID: 32438830 PMCID: PMC7263454 DOI: 10.1289/ehp6301] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
BACKGROUND The Consortium Linking Academic and Regulatory Insights on Bisphenol-A (CLARITY-BPA) is a rare collaboration of guideline-compliant (core) studies and academic hypothesis-based studies to assess the effects of bisphenol A (BPA). OBJECTIVES We aimed to a) determine whether BPA showed effects on the developing rat mammary gland using new quantitative and established semiquantitative methods in two laboratories, b) develop a software tool for automatic evaluation of quantifiable aspects of the mammary ductal tree, and c) compare those methods. METHODS Sprague-Dawley rats were exposed to BPA, vehicle, or positive control [ethinyl estradiol (EE2)] by oral gavage beginning on gestational day (GD)6 and continuing with direct dosing of the pups after birth. There were two studies: subchronic and chronic. The latter used two exposure regimes, one stopping at postnatal day (PND)21 (stop-dose) the other continuing until tissue harvest (continuous). Glands were harvested at multiple time points; whole mounts and histological specimens were analyzed blinded to treatment. RESULTS The subchronic study's semiquantitative analysis revealed no significant differences between control and BPA dose groups at PND21, whereas at PND90 there were significant differences between control and the lowest BPA dose and between control and the lowest EE2 dose in animals in estrus. Quantitative, automatized analysis of the chronic PND21 specimens displayed nonmonotonic BPA effects, with a breaking point between the 25 and 250μg/kg body weight (BW) per day doses. This breaking point was confirmed by a global statistical analysis of chronic study animals at PND90 and 6 months analyzed by the quantitative method. The BPA response was different from the EE2 effect for many features. CONCLUSIONS Both the semiquantitative and the quantitative methods revealed nonmonotonic effects of BPA. The quantitative unsupervised analysis used 91 measurements and produced the most striking nonmonotonic dose-response curves. At all time points, lower doses resulted in larger effects, consistent with the core study, which revealed a significant increase of mammary adenocarcinoma incidence in the stop-dose animals at the lowest BPA dose tested. https://doi.org/10.1289/EHP6301.
Collapse
Affiliation(s)
- Maël Montévil
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston Massachusetts, USA
| | - Nicole Acevedo
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston Massachusetts, USA
| | - Cheryl M. Schaeberle
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston Massachusetts, USA
| | - Manushree Bharadwaj
- National Toxicology Program (NTP) Laboratory, Division of the NTP, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Suzanne E. Fenton
- National Toxicology Program (NTP) Laboratory, Division of the NTP, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Ana M. Soto
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston Massachusetts, USA
| |
Collapse
|
81
|
Nguyen VK, Kahana A, Heidt J, Polemi K, Kvasnicka J, Jolliet O, Colacino JA. A comprehensive analysis of racial disparities in chemical biomarker concentrations in United States women, 1999-2014. ENVIRONMENT INTERNATIONAL 2020; 137:105496. [PMID: 32113086 PMCID: PMC7137529 DOI: 10.1016/j.envint.2020.105496] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/09/2020] [Accepted: 01/14/2020] [Indexed: 05/11/2023]
Abstract
BACKGROUND Stark racial disparities in disease incidence among American women remain a persistent public health challenge. These disparities likely result from complex interactions between genetic, social, lifestyle, and environmental risk factors. The influence of environmental risk factors, such as chemical exposure, however, may be substantial and is poorly understood. OBJECTIVES We quantitatively evaluated chemical-exposure disparities by race/ethnicity, life stage, and time in United States (US) women (n = 38,080) by using biomarker data for 143 chemicals from the National Health and Nutrition Examination Survey (NHANES) 1999-2014. METHODS We applied a series of survey-weighted, generalized linear models using data from the entire NHANES women population along with cycle and age-group stratified subpopulations. The outcome was chemical biomarker concentration, and the main predictor was race/ethnicity with adjustment for age, socioeconomic status, smoking habits, and NHANES cycle. RESULTS Compared to non-Hispanic White women, the highest disparities were observed for non-Hispanic Black, Mexican American, Other Hispanic, and Other Race/Multi-Racial women with higher levels of pesticides and their metabolites, including 2,5-dichlorophenol, o,p'-DDE, beta-hexachlorocyclohexane, and 2,4-dichlorophenol, along with personal care and consumer product compounds, including parabens and monoethyl phthalate, as well as several metals, such as mercury and arsenic. Moreover, for Mexican American, Other Hispanic, and non-Hispanic black women, there were several exposure disparities that persisted across age groups, such as higher 2,4- and 2,5-dichlorophenol concentrations. Exposure levels for methyl and propyl parabens, however, were the highest in non-Hispanic black compared to non-Hispanic white children with average differences exceeding 4-fold. Exposure disparities for methyl and propyl parabens are increasing over time in Other Race/Multi-Racial women while fluctuating for non-Hispanic Black, Mexican American, and Other Hispanic. Cotinine levels are among the highest in Non-Hispanic White women compared to Mexican American and Other Hispanic women with disparities plateauing and increasing, respectively. DISCUSSION We systematically evaluated differences in chemical exposures across women of various race/ethnic groups and across age groups and time. Our findings could help inform chemical prioritization in designing epidemiological and toxicological studies. In addition, they could help guide public health interventions to reduce environmental and health disparities across populations.
Collapse
Affiliation(s)
- Vy Kim Nguyen
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Adam Kahana
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Julien Heidt
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Katelyn Polemi
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jacob Kvasnicka
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Olivier Jolliet
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA; Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Justin A Colacino
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA; Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA; Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
82
|
Rouillon S, El Ouazzani H, Hardouin JB, Enjalbert L, Rabouan S, Migeot V, Albouy-Llaty M. How to Educate Pregnant Women about Endocrine Disruptors? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17062156. [PMID: 32213890 PMCID: PMC7143617 DOI: 10.3390/ijerph17062156] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023]
Abstract
Background: Despite mediatization, only half of pregnant women are informed about endocrine disruptors (EDs). We wished to inquire about appropriate environmental health education procedures during pregnancy: Who, when, and how? Methods: The question stems from a comprehensive population health intervention research project. It includes qualitative studies aimed at constructing an educational program in environmental health and an accompanying assessment tool. The validation of a customized questionnaire (PREVED© for Pregnancy Prevention Endocrine Disruptors) about the knowledge, attitudes, and practices (KAP) of pregnant women regarding exposure to EDs was carried out in a quantitative study. Results: Health education by a prenatal professional with communication skills should take place as early as possible, during the preconception period or early pregnancy, as part of individual consultation or group workshops. In order to customize the discourse and to develop women’s empowerment, concomitant presentation of the risks by the products used in each room and of previous solutions is recommended. Conclusion: Appropriate health education procedures on EDs should be done at every contact but taking the KAP of pregnant women into account first. We propose all educational actions should be accompanied by questioning of the KAP of pregnant women; for example, with questions from the PREVED© questionnaire.
Collapse
Affiliation(s)
- Steeve Rouillon
- Health-Endocrine Disruptors-EXposome (HEDEX), INSERM-CIC1402, University Hospital of Poitiers, 86000 Poitiers, France; (S.R.); (H.E.O.); (S.R.); (V.M.)
- Department of Public Health, BioSPharm Pole, University Hospital of Poitiers, 86000 Poitiers, France
- UMR CNRS 7285, IC2MP, 86000 Poitiers, France
| | - Houria El Ouazzani
- Health-Endocrine Disruptors-EXposome (HEDEX), INSERM-CIC1402, University Hospital of Poitiers, 86000 Poitiers, France; (S.R.); (H.E.O.); (S.R.); (V.M.)
- Department of Public Health, BioSPharm Pole, University Hospital of Poitiers, 86000 Poitiers, France
- Faculty of Medicine and Pharmacy, University of Poitiers, 86000 Poitiers, France
| | | | - Line Enjalbert
- UMR SPHERE, Nantes, 86000 Poitiers, France; (J.-B.H.); (L.E.)
| | - Sylvie Rabouan
- Health-Endocrine Disruptors-EXposome (HEDEX), INSERM-CIC1402, University Hospital of Poitiers, 86000 Poitiers, France; (S.R.); (H.E.O.); (S.R.); (V.M.)
- Faculty of Medicine and Pharmacy, University of Poitiers, 86000 Poitiers, France
| | - Virginie Migeot
- Health-Endocrine Disruptors-EXposome (HEDEX), INSERM-CIC1402, University Hospital of Poitiers, 86000 Poitiers, France; (S.R.); (H.E.O.); (S.R.); (V.M.)
- Department of Public Health, BioSPharm Pole, University Hospital of Poitiers, 86000 Poitiers, France
- Faculty of Medicine and Pharmacy, University of Poitiers, 86000 Poitiers, France
| | - Marion Albouy-Llaty
- Health-Endocrine Disruptors-EXposome (HEDEX), INSERM-CIC1402, University Hospital of Poitiers, 86000 Poitiers, France; (S.R.); (H.E.O.); (S.R.); (V.M.)
- Department of Public Health, BioSPharm Pole, University Hospital of Poitiers, 86000 Poitiers, France
- Faculty of Medicine and Pharmacy, University of Poitiers, 86000 Poitiers, France
- Correspondence:
| |
Collapse
|
83
|
Wu HC, Cohn BA, Cirillo PM, Santella RM, Terry MB. DDT exposure during pregnancy and DNA methylation alterations in female offspring in the Child Health and Development Study. Reprod Toxicol 2020; 92:138-147. [PMID: 30822522 PMCID: PMC6710160 DOI: 10.1016/j.reprotox.2019.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/07/2019] [Accepted: 02/25/2019] [Indexed: 12/14/2022]
Abstract
Studies measuring dichlorodiphenyltrichloroethane (DDT) exposure during key windows of susceptibility including the intrauterine period suggest that DDT exposure is associated with breast cancer risk. We hypothesized that prenatal DDT exposure is associated with DNA methylation. Using prospective data from 316 daughters in the Child Health and Development Study, we examined the association between prenatal exposure to DDTs and DNA methylation in blood collected in midlife (mean age: 49 years). To identify differentially methylated regions (DMRs) associated with markers of DDTs (p,p'-DDT and the primary metabolite of p,p'-DDT, p,p'-DDE, and o,p'-DDT, the primary constituents of technical DDT), we measured methylation in 30 genes important to breast cancer. We observed DDT DMRs in three genes, CCDC85A, CYP1A1 and ZFPM2, each of which has been previously implicated in pubertal development and breast cancer susceptibility. These findings suggest prenatal DDT exposure may have life-long consequence through alteration in genes relevant to breast cancer.
Collapse
Affiliation(s)
- Hui-Chen Wu
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY
- Department of Environmental Health Sciences, Mailman School of Public Health of Columbia University, New York, NY
| | - Barbara A. Cohn
- Child Health and Development Studies, Public Health Institute, Berkeley, California
| | - Piera M. Cirillo
- Child Health and Development Studies, Public Health Institute, Berkeley, California
| | - Regina M. Santella
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY
- Department of Environmental Health Sciences, Mailman School of Public Health of Columbia University, New York, NY
| | - Mary Beth Terry
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY
- Department of Environmental Health Sciences, Mailman School of Public Health of Columbia University, New York, NY
- Imprints Center, Columbia University Medical Center, New York, NY
- Department of Epidemiology, Mailman School of Public Health of Columbia University, New York, NY
| |
Collapse
|
84
|
Hu X, Li S, Cirillo P, Krigbaum N, Tran V, Ishikawa T, La Merrill MA, Jones DP, Cohn B. Metabolome Wide Association Study of serum DDT and DDE in Pregnancy and Early Postpartum. Reprod Toxicol 2020; 92:129-137. [PMID: 31102720 PMCID: PMC7055929 DOI: 10.1016/j.reprotox.2019.05.059] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 02/06/2023]
Abstract
The advancement of high-resolution metabolomics (HRM) and metabolome-wide-association study (MWAS) enables the readout of environmental effects in human specimens. We used HRM to understand DDT-induced alterations of in utero environment and potential health effects. Endogenous metabolites were measured in 397 maternal perinatal serum samples collected during 1959-1967 in the Child Health and Development Studies (CHDS) and in 16 maternal postnatal serum samples of mice treated with or without DDT. MWAS was performed to assess associations between metabolites and p,p'-DDT, o,p'-DDT and p,p'-DDE levels, followed by pathway analysis. Distinct metabolic profiles were found with p,p'-DDT and p,p'-DDE. Amino acids such arginine had a strong association with p,p'-DDT and o,p'-DDT in both women and mice, whereas lipids and acyl-carnitine intermediates were found exclusively associated with p,p'-DDE in CHDS women indicating mitochondrial impairment. It suggests that the role of serine and fatty acid metabolism on the causal disease pathway should be examined.
Collapse
Affiliation(s)
- Xin Hu
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30303, USA
| | - Shuzhao Li
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30303, USA
| | - Piera Cirillo
- The Center for Research on Women and Children's Health, Child Health and Development Studies, Public Health Institute, 1683 Shattuck Avenue, Suite B, Berkeley, CA 94709, USA
| | - Nickilou Krigbaum
- The Center for Research on Women and Children's Health, Child Health and Development Studies, Public Health Institute, 1683 Shattuck Avenue, Suite B, Berkeley, CA 94709, USA
| | - ViLinh Tran
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30303, USA
| | - Tomoko Ishikawa
- Department of Environmental Toxicology, University of California, Davis, CA 95616, USA
| | - Michele A La Merrill
- Department of Environmental Toxicology, University of California, Davis, CA 95616, USA
| | - Dean P Jones
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30303, USA.
| | - Barbara Cohn
- The Center for Research on Women and Children's Health, Child Health and Development Studies, Public Health Institute, 1683 Shattuck Avenue, Suite B, Berkeley, CA 94709, USA.
| |
Collapse
|
85
|
Jones DP, Cohn BA. A vision for exposome epidemiology: The pregnancy exposome in relation to breast cancer in the Child Health and Development Studies. Reprod Toxicol 2020; 92:4-10. [PMID: 32197999 PMCID: PMC7306421 DOI: 10.1016/j.reprotox.2020.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Etiology of complex diseases, such as breast cancer, involves multiple genetic, behavioral and environmental factors. Gene sequencing enabled detection of genetic risks with relatively small effect size, and high-resolution metabolomics (HRM) to provide omics level data for exposures is poised to do the same for environmental epidemiology. Coupling HRM to the Child Health and Development Studies (CHDS) cohort combines two unique resources to create a prototype for exposome epidemiology, in which omics scale measures of exposure are used for study of distribution and determinants of health and disease. Using this approach, exposures and biologic responses during pregnancy have been linked to breast cancer in the CHDS. With improved chemical coverage and extension to larger populations and other disease processes, development of exposome epidemiology portends discovery of new disease-associated environment factors with small effect size as well as new capabilities to disentangle these from behavioral and other risk factors.
Collapse
Affiliation(s)
- Dean P Jones
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA.
| | - Barbara A Cohn
- Child Health and Development Studies, Public Health Institute, 1683 Shattuck Avenue, Suite B, Berkeley, CA 94709, USA
| |
Collapse
|
86
|
Li S, Cirillo P, Hu X, Tran V, Krigbaum N, Yu S, Jones DP, Cohn B. Understanding mixed environmental exposures using metabolomics via a hierarchical community network model in a cohort of California women in 1960's. Reprod Toxicol 2020; 92:57-65. [PMID: 31299210 PMCID: PMC6949431 DOI: 10.1016/j.reprotox.2019.06.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 06/20/2019] [Accepted: 06/28/2019] [Indexed: 02/07/2023]
Abstract
Even though the majority of population studies in environmental health focus on a single factor, environmental exposure in the real world is a mixture of many chemicals. The concept of "exposome" leads to an intellectual framework of measuring many exposures in humans, and the emerging metabolomics technology offers a means to read out both the biological activity and environmental impact in the same dataset. How to integrate exposome and metabolome in data analysis is still challenging. Here, we employ a hierarchical community network to investigate the global associations between the metabolome and mixed exposures including DDTs, PFASs and PCBs, in a women cohort with sera collected in California in the 1960s. Strikingly, this analysis revealed that the metabolite communities associated with the exposures were non-specific and shared among exposures. This suggests that a small number of metabolic phenotypes may account for the response to a large class of environmental chemicals.
Collapse
Affiliation(s)
- Shuzhao Li
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, 30303, USA.
| | - Piera Cirillo
- The Center for Research on Women and Children's Health, Child Health and Development Studies, Public Health Institute, 1683 Shattuck Avenue, Suite B, Berkeley, CA, 94709, USA
| | - Xin Hu
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, 30303, USA
| | - ViLinh Tran
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, 30303, USA
| | - Nickilou Krigbaum
- The Center for Research on Women and Children's Health, Child Health and Development Studies, Public Health Institute, 1683 Shattuck Avenue, Suite B, Berkeley, CA, 94709, USA
| | - Shaojun Yu
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, 30303, USA
| | - Dean P Jones
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, 30303, USA
| | - Barbara Cohn
- The Center for Research on Women and Children's Health, Child Health and Development Studies, Public Health Institute, 1683 Shattuck Avenue, Suite B, Berkeley, CA, 94709, USA.
| |
Collapse
|
87
|
Fenton SE, Birnbaum LS. CHDS: A national treasure that keeps on giving. Reprod Toxicol 2020; 92:11-13. [PMID: 32097706 PMCID: PMC7864627 DOI: 10.1016/j.reprotox.2020.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Suzanne E Fenton
- National Toxicology Program Laboratory, Division of the National Toxicology Program (DNTP), National Institute for Environmental Health Sciences (NIEHS), Research Triangle Park, NC, United States.
| | - Linda S Birnbaum
- National Toxicology Program Laboratory, Division of the National Toxicology Program (DNTP), National Institute for Environmental Health Sciences (NIEHS), Research Triangle Park, NC, United States
| |
Collapse
|
88
|
Epigenetic Biomarkers for Environmental Exposures and Personalized Breast Cancer Prevention. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17041181. [PMID: 32069786 PMCID: PMC7068429 DOI: 10.3390/ijerph17041181] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/11/2022]
Abstract
Environmental and lifestyle factors are believed to account for >80% of breast cancers; however, it is not well understood how and when these factors affect risk and which exposed individuals will actually develop the disease. While alcohol consumption, obesity, and hormone therapy are some known risk factors for breast cancer, other exposures associated with breast cancer risk have not yet been identified or well characterized. In this paper, it is proposed that the identification of blood epigenetic markers for personal, in utero, and ancestral environmental exposures can help researchers better understand known and potential relationships between exposures and breast cancer risk and may enable personalized prevention strategies.
Collapse
|
89
|
An association between air pollution and daily most frequently visits of eighteen outpatient diseases in an industrial city. Sci Rep 2020; 10:2321. [PMID: 32047168 PMCID: PMC7012860 DOI: 10.1038/s41598-020-58721-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 01/19/2020] [Indexed: 12/12/2022] Open
Abstract
Toxic effects of air pollutants were individually identified in various organs of the body. However, the concurrent occurrences and the connection of diseases in multiple organs arise from air pollution has not been concurrently studied before. Here we hypothesize that there exist connected health effects arise from air pollution when diseases in various organs were considered together. We used medical data from hospital outpatient visits for various organs in the body with a disease-air pollution model that represents each of the diseases as a function of the environmental factors. Our results show that elevated air pollution risks (above 40%) concurrently occurred in diseases of spondylosis, cerebrovascular, pneumonia, accidents, chronic obstructive pulmonary disease (COPD), influenza, osteoarthritis (OA), asthma, peptic ulcer disease (PUD), cancer, heart, hypertensive, diabetes, kidney, and rheumatism. Air pollutants that were associated with elevated health risks are particular matters with diameters equal or less than 2.5 μm (PM2.5), nitrogen dioxide (NO2), ozone (O3), particular matters with diameters equal or less than 10 μm (PM10), carbon monoxide (CO), and nitrogen oxide (NO). Concurrent occurrences of diseases in various organs indicate that the immune system tries to connectively defend the body from persistent and rising air pollution.
Collapse
|
90
|
Ohayon JL, Nost E, Silk K, Rakoff M, Brody JG. Barriers and opportunities for breast cancer organizations to focus on environmental health and disease prevention: a mixed-methods approach using website analyses, interviews, and focus groups. Environ Health 2020; 19:15. [PMID: 32041648 PMCID: PMC7011560 DOI: 10.1186/s12940-020-0570-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/03/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Breast cancer is the most commonly diagnosed cancer among women worldwide and most cases are not due to high risk inherited genes. In response, breast cancer activists successfully advocated for innovative research on environmental chemical exposures as a possible cause. Since then, new evidence supports hypotheses that common industrial and consumer chemicals are linked to the disease, and expert panels recommend reducing exposures. We evaluated whether these research results and recommendations are translated back into the work of breast cancer organizations and what barriers and opportunities influence their ability to focus on environmental factors. METHODS We used a Python script to evaluate the frequency of environmental terms on the websites of 81 breast cancer organizations (> 14,000 associated URLs) and conducted two focus groups and 20 interviews with leaders of breast cancer organizations. We also analyzed the frequency of terms on two trusted, national cancer websites. RESULTS 40% of organizations include information on environmental chemicals on their websites, but references are infrequent and rarely cite specific chemicals of concern. Most organizations (82%) discuss other risk factors such as exercise, diet, family history, or genetics. From interviews and focus groups, we identified four types of barriers to addressing environmental chemicals: 1) time and resource constraints, 2) limited knowledge of the state of the research and lack of access to experts, 3) difficulties with messaging, including concern that cultural and economic factors make it difficult for individuals to reduce their exposures, and 4) institutional obstacles, such as the downplaying of environmental risks by industry interests. Participants expressed the desire for easy-to-adopt educational programs and increased federal funding for scientist-advocate research partnerships. CONCLUSION Our research underscores the need for environmental breast cancer experts and trusted cancer organizations to increase research translation activities so that breast cancer organizations can communicate new science on environmental factors in their online and in-person work. Moreover, our research highlights how most groups are focusing on providing resources to diagnosed women, including addressing problems with healthcare access, which displaces their ability to work on breast cancer prevention.
Collapse
Affiliation(s)
| | - Eric Nost
- University of Guelph, Guelph, Canada
| | | | | | - Julia Green Brody
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA
| |
Collapse
|
91
|
Kavanaugh-Lynch MHE. The environment, windows of susceptibility, and breast cancer. Reprod Toxicol 2020; 92:1-3. [PMID: 32035112 DOI: 10.1016/j.reprotox.2020.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
92
|
Girard L, Reix N, Mathelin C. [Impact of endocrine disrupting pesticides on breast cancer]. GYNECOLOGIE, OBSTETRIQUE, FERTILITE & SENOLOGIE 2020; 48:187-195. [PMID: 31634589 DOI: 10.1016/j.gofs.2019.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 06/10/2023]
Abstract
Of the 800 pesticides used worldwide, about 650 can affect the functioning of the endocrine system: endocrine disrupting pesticides (EDPs). Dietary or environmental exposure to EDPs is a concern, as their presence is currently demonstrated in most biological fluids. Some EDPs are prohibited, classified as carcinogenic, others are "probable" or "possible" carcinogens when there is limited evidence of their tumor effect. The impact of EDPs on breasts is not well known to date. However, since most EDPs have a long half-life and are lipophilic, breasts, composed mainly of adipose tissue, are a suitable site for their concentration. The objective of our review was to analyze the impact of EDPs related to our environmental exposure on breast cancer risk, through an analysis of recent literature, including epidemiological and biological data. Our review showed a positive association between the presence of EDPs and breast cancer, especially among women farmers or EDPs users but also in the general population. Studies on breast tumors have found a higher concentration of EDPs in estrogen-sensitive tumors. As for mortality, studies are contradictory, but confirm the dangerousness of some EDPs. The different series analyzed have several limitations, such as the low number of EDPs evaluated, small numbers and insufficient follow up. The potentiating effect of different EDPs used concomitantly and the window of exposure to these substances are parameters to be assessed.
Collapse
Affiliation(s)
- L Girard
- Unité de sénologie, pôle de gynécologie-obstétrique, hôpitaux universitaires de Strasbourg, hôpital de Hautepierre, avenue Molière, 67200 Strasbourg cedex, France
| | - N Reix
- Laboratoire de biochimie et biologie moléculaire, hôpitaux universitaires de Strasbourg, 1, place de l'Hôpital, 67091 Strasbourg, France; ICube UMR 7357, université de Strasbourg/CNRS, fédération de médecine translationnelle de Strasbourg (FMTS), Strasbourg, France.
| | - C Mathelin
- Unité de sénologie, pôle de gynécologie-obstétrique, hôpitaux universitaires de Strasbourg, hôpital de Hautepierre, avenue Molière, 67200 Strasbourg cedex, France; Institut de génétique et de biologie moléculaire et cellulaire, biologie du cancer (IGBMC), 1, rue Laurent-Fries, 67400 Illkirch-Graffenstaden, France
| |
Collapse
|
93
|
Ganmaa D, Enkhmaa D, Baatar T, Uyanga B, Gantsetseg G, Helde TT, McElrath TF, Cantonwine DE, Bradwin G, Falk RT, Hoover RN, Troisi R. Maternal Pregnancy Hormone Concentrations in Countries with Very Low and High Breast Cancer Risk. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E823. [PMID: 32012981 PMCID: PMC7037832 DOI: 10.3390/ijerph17030823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/07/2020] [Accepted: 01/20/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Breast cancer rates in Asia are much lower than in Europe and North America. Within Asia, rates are lower in Mongolia than in neighboring countries. Variation in pregnancy exposure to endogenous hormone concentrations may explain the differences, but data are lacking. METHODS We measured maternal serum progesterone, prolactin, estradiol and estrone concentrations in the second half of pregnancy in a cross-sectional study of urban (n = 143-194 depending on the analyte) and rural (n = 150-193) Mongolian women, and U.S. women from Boston (n = 66-204). Medical records provided information on maternal and perinatal factors. Geometric mean hormones were estimated from standard linear models with the log-hormone as the dependent variable and country as the independent variable adjusted for maternal and gestational age at blood draw. RESULTS Mean concentrations of prolactin (5722 vs. 4648 uIU/mL; p < 0.0001) and estradiol (17.7 vs. 13.6 ng/mL; p < 0.0001) were greater in Mongolian than U.S. women, while progesterone (147 vs. 201 ng/mL; p < 0.0001) was lower. Mean hormone concentrations were similar in rural and urban Mongolian women. Results were generally similar, with additional adjustment for gravidity, parity, height, body mass index at blood draw, education and alcohol use during pregnancy, and when stratified by offspring sex or parity. CONCLUSIONS Mongolian women had greater concentrations of prolactin and estrogen and lower concentrations of progesterone than U.S. women, while hormone concentrations were similar in rural and urban Mongolian pregnancies. IMPACT These data do not support the hypothesis that estrogen concentrations in pregnant women are lower in Mongolian compared with Caucasian women.
Collapse
Affiliation(s)
- Davaasambuu Ganmaa
- Channing Division Network of Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School and Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
- Mongolian Health Initiative, Ulaanbaatar 13312, Mongolia; (B.U.); (G.G.)
| | - Davaasambuu Enkhmaa
- Maternal and Child Health Research Center, Ulaanbaatar 16060, Mongolia; (D.E.); (T.B.)
| | - Tsedmaa Baatar
- Maternal and Child Health Research Center, Ulaanbaatar 16060, Mongolia; (D.E.); (T.B.)
| | - Buyanjargal Uyanga
- Mongolian Health Initiative, Ulaanbaatar 13312, Mongolia; (B.U.); (G.G.)
| | - Garmaa Gantsetseg
- Mongolian Health Initiative, Ulaanbaatar 13312, Mongolia; (B.U.); (G.G.)
| | - Thomas T. Helde
- Information Management Services, Inc., Rockville, MD 20850, USA;
| | - Thomas F. McElrath
- Harvard Medical School, Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Boston, MA 02115, USA; (T.F.M.); (D.E.C.)
| | - David E. Cantonwine
- Harvard Medical School, Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Boston, MA 02115, USA; (T.F.M.); (D.E.C.)
| | - Gary Bradwin
- Clinical and Epidemiologic Research Laboratory, Boston Children’s Hospital, Boston, MA 02115, USA;
| | - Roni T. Falk
- Epidemiology and Biostatistics Program, Division of Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20850, USA; (R.T.F.); (R.N.H.)
| | - Robert N. Hoover
- Epidemiology and Biostatistics Program, Division of Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20850, USA; (R.T.F.); (R.N.H.)
| | - Rebecca Troisi
- Epidemiology and Biostatistics Program, Division of Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20850, USA; (R.T.F.); (R.N.H.)
| |
Collapse
|
94
|
Hu X, Li S, Cirillo PM, Krigbaum NY, Tran V, Jones DP, Cohn BA. Reprint of "Metabolome Wide Association Study of Serum Poly and Perfluoroalkyl Substances (PFASs) in Pregnancy and Early Postpartum". Reprod Toxicol 2020; 92:120-128. [PMID: 31923462 DOI: 10.1016/j.reprotox.2020.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 12/29/2022]
Abstract
High-resolution metabolomics (HRM) profiling of metabolic fingerprints can improve understanding of how poly and perfluoroalkyl substances (PFASs) induce metabolic alterations of in utero environment and impact fetal health. HRM profiling and quantification of PFASs were performed for 397 maternal perinatal serum samples collected from 1959-1967 in the Child Health and Development Studies (CHDS). We used Metabolome-Wide Association Studies (MWAS) and pathway enrichment analysis for metabolic associations with PFOS, its precursor EtFOSAA, and EtFOSAA-to-PFOS ratio. Distinct metabolic profiles were found with EtFOSAA and PFOS. Urea cycle metabolites such as arginine, lysine and creatine had opposite associations with EtFOSAA (negative) and PFOS (positive); whereas, carnitine shuttle metabolites were found to be exclusively and positively associated with PFOS indicating perturbation in fatty acid metabolism. These differential metabolic associations for precursor and end-product represent an important first step in identifying how PFASs alter the in utero environment and potentially leads to disease risk.
Collapse
Affiliation(s)
- Xin Hu
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30303, USA
| | - Shuzhao Li
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30303, USA
| | - Piera M Cirillo
- The Center for Research on Women and Children's Health, Child Health and Development Studies, Public Health Institute, 1683 Shattuck Avenue, Suite B, Berkeley, CA 94709, USA
| | - Nickilou Y Krigbaum
- The Center for Research on Women and Children's Health, Child Health and Development Studies, Public Health Institute, 1683 Shattuck Avenue, Suite B, Berkeley, CA 94709, USA
| | - ViLinh Tran
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30303, USA
| | - Dean P Jones
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30303, USA.
| | - Barbara A Cohn
- The Center for Research on Women and Children's Health, Child Health and Development Studies, Public Health Institute, 1683 Shattuck Avenue, Suite B, Berkeley, CA 94709, USA.
| |
Collapse
|
95
|
Andrade FDO, Nguyen NM, Warri A, Hilakivi-Clarke L. Reversal of increased mammary tumorigenesis by valproic acid and hydralazine in offspring of dams fed high fat diet during pregnancy. Sci Rep 2019; 9:20271. [PMID: 31889127 PMCID: PMC6937280 DOI: 10.1038/s41598-019-56854-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022] Open
Abstract
Maternal or paternal high fat (HF) diet can modify the epigenome in germ cells and fetal somatic cells leading to an increased susceptibility among female offspring of multiple generations to develop breast cancer. We determined if combined treatment with broad spectrum DNA methyltransferase (DNMT) inhibitor hydralazine and histone deacetylase (HDAC) inhibitor valproic acid (VPA) will reverse this increased risk. C57BL/6 mouse dams were fed either a corn oil-based HF or control diet during pregnancy. Starting at age 7 weeks, female offspring were administered 3 doses of 7,12-dimethylbenz[a]anthracene (DMBA) to initiate mammary cancer. After last dose, offspring started receiving VPA/hydralazine administered via drinking water: no adverse health effects were detected. VPA/hydralazine reduced mammary tumor multiplicity and lengthened tumor latency in HF offspring when compared with non-treated HF offspring. The drug combination inhibited DNMT3a protein levels and increased expression of the tumor suppressor gene Cdkn2a/p16 in mammary tumors of HF offspring. In control mice not exposed to HF diet in utero, VPA/hydralazine increased mammary tumor incidence and burden, and elevated expression of the unfolded protein response and autophagy genes, including HIF-1α, NFkB, PERK, and SQSTM1/p62. Expression of these genes was already upregulated in HF offspring prior to VPA/hydralazine treatment. These findings suggest that breast cancer prevention strategies with HDAC/DNMT inhibitors need to be individually tailored.
Collapse
Affiliation(s)
| | - N M Nguyen
- Department of Oncology, Georgetown University, Washington, DC, USA
| | - A Warri
- Department of Oncology, Georgetown University, Washington, DC, USA.,Institute of Biomedicine, University of Turku Medical Faculty, FI-20014, Turku, Finland
| | | |
Collapse
|
96
|
Hall JM, Greco CW. Perturbation of Nuclear Hormone Receptors by Endocrine Disrupting Chemicals: Mechanisms and Pathological Consequences of Exposure. Cells 2019; 9:cells9010013. [PMID: 31861598 PMCID: PMC7016921 DOI: 10.3390/cells9010013] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 01/09/2023] Open
Abstract
Much of the early work on Nuclear Hormone Receptors (NHRs) focused on their essential roles as mediators of sex steroid hormone signaling in reproductive development and function, and thyroid hormone-dependent formation of the central nervous system. However, as NHRs display tissue-specific distributions and activities, it is not surprising that they are involved and vital in numerous aspects of human development and essential for homeostasis of all organ systems. Much attention has recently been focused on the role of NHRs in energy balance, metabolism, and lipid homeostasis. Dysregulation of NHR function has been implicated in numerous pathologies including cancers, metabolic obesity and syndrome, Type II diabetes mellitus, cardiovascular disease, hyperlipidemia, male and female infertility and other reproductive disorders. This review will discuss the dysregulation of NHR function by environmental endocrine disrupting chemicals (EDCs), and the associated pathological consequences of exposure in numerous tissues and organ systems, as revealed by experimental, clinical, and epidemiological studies.
Collapse
|
97
|
Thong T, Forté CA, Hill EM, Colacino JA. Environmental exposures, stem cells, and cancer. Pharmacol Ther 2019; 204:107398. [PMID: 31376432 PMCID: PMC6881547 DOI: 10.1016/j.pharmthera.2019.107398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/29/2019] [Indexed: 12/19/2022]
Abstract
An estimated 70-90% of all cancers are linked to exposure to environmental risk factors. In parallel, the number of stem cells in a tissue has been shown to be a strong predictor of risk of developing cancer in that tissue. Tumors themselves are characterized by an acquisition of "stem cell" characteristics, and a growing body of evidence points to tumors themselves being sustained and propagated by a stem cell-like population. Here, we review our understanding of the interplay between environmental exposures, stem cell biology, and cancer. We provide an overview of the role of stem cells in development, tissue homeostasis, and wound repair. We discuss the pathways and mechanisms governing stem cell plasticity and regulation of the stem cell state, and describe experimental methods for assessment of stem cells. We then review the current understanding of how environmental exposures impact stem cell function relevant to carcinogenesis and cancer prevention, with a focus on environmental and occupational exposures to chemical, physical, and biological hazards. We also highlight key areas for future research in this area, including defining whether the biological basis for cancer disparities is related to effects of complex exposure mixtures on stem cell biology.
Collapse
Affiliation(s)
- Tasha Thong
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Chanese A Forté
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; Michigan Institute for Computational Discovery and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Evan M Hill
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Justin A Colacino
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
98
|
Demeneix BA. Evidence for Prenatal Exposure to Thyroid Disruptors and Adverse Effects on Brain Development. Eur Thyroid J 2019; 8:283-292. [PMID: 31934553 PMCID: PMC6944944 DOI: 10.1159/000504668] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022] Open
Abstract
Thyroid hormone regulates vital processes in early brain development such as neuronal stem cell proliferation, migration, and myelination. The fetal thyroid is not fully functional until mid-pregnancy (18-20 weeks), so placental transfer of maternal thyroid hormones during early pregnancy is crucial, as is the maternal iodine status. The volume of chemical production has increased 300-fold since the 1970s. Thus, chemical exposure is ubiquitous; every child born today has dozens of man-made xenobiotic compounds in its blood. Increasing evidence from both epidemiological and animal or in vitro studies demonstrates that many of these chemicals have the potential to interfere with thyroid hormone availability and action at different physiological levels. These chemicals are found in numerous consumer products and include certain plastics, pesticides, perfluorinated compounds, and flame retardants. The last decades have seen exponential increases in neurodevelopmental disease including autism spectrum disorder and attention deficit/hyperactivity disorder. We hypothesize that prenatal exposure to mixtures of thyroid hormone-disrupting chemicals, with iodine deficiency potentially exacerbating the situation, has a strong probability of contributing to this increased incidence of neurodevelopmental disease, but could also entail a surreptitious, but socio-economically consequential, loss of IQ. Thyroid hormone receptor actions can modulate gene transcription, most often through epigenetic mechanisms. Thus, interference with epigenetic regulations is increasingly thought to link neurodevelopmental disease and IQ loss to thyroid hormone disruption.
Collapse
Affiliation(s)
- Barbara A. Demeneix
- CNRS/UMR7221, Muséum National d'Histoire Naturelle/Université Paris-Sorbonne, Paris, France
| |
Collapse
|
99
|
In utero DDT exposure and breast density before age 50. Reprod Toxicol 2019; 92:85-90. [PMID: 31711904 DOI: 10.1016/j.reprotox.2019.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023]
Abstract
Prior studies in the Child Health and Development Studies (CHDS) found in utero exposure to the pesticide, dichlorodiphenyltrichloroethane (DDT), increased breast cancer risk by age 52. Mammographic density is considered a primary risk factor for breast cancer. We conducted a study of 309 daughters from the CHDS to examine in utero DDT exposure and mammographic density in midlife. Among daughters with high (>75th percentile) exposure to p,p'-Dichlorodiphenyldichloroethylene (DDE), p,p'-DDT was significantly correlated with increased dense area and percent density regardless of her body mass in midlife. In the subset of women with lower (<75th percentile) p,p-DDE, p,p'-DDT was associated with increased non-dense breast area. This was explained by adjustment for midlife BMI suggesting that p,p'-DDT may be obesogenic. In aggregate our findings indicate that early life p,p'-DDT exposure impacts breast density in a complex way that depends on the hosts biological ability to sequester and process DDT and levels of exposure.
Collapse
|
100
|
Huang W, He Y, Xiao J, Huang Y, Li A, He M, Wu K. Risk of breast cancer and adipose tissue concentrations of polychlorinated biphenyls and organochlorine pesticides: a hospital-based case-control study in Chinese women. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:32128-32136. [PMID: 31494853 DOI: 10.1007/s11356-019-06404-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 09/03/2019] [Indexed: 02/05/2023]
Abstract
Polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDT), and dichlorodiphenyldichloroethylene (DDE) are suspected to be associated with breast cancer risk, but the results are controversial. This study was performed to evaluate the associations between adipose tissue PCB, DDT, and DDE concentrations and breast cancer risk. Two hundred and nine pathologically diagnosed breast cancer cases and 165 controls were recruited from three local hospitals in Shantou city, China, from 2014 to 2016. Concentrations of 7 PCB congeners, p,p'-DDT, and p,p'-DDE were measured in adipose tissues obtained from the breast for cases and the breast/abdomen for controls during surgery. Clinicopathologic information and demographic characteristics were collected from medical records. PCBs, p,p'-DDT, and p,p'-DDE concentrations in adipose tissues were compared between cases and controls. Multivariate logistic regression model was used to analyze the risk of breast cancer by PCBs, p,p'-DDT, and p,p'-DDE concentrations in adipose tissues. Breast cancer cases have relatively higher menarche age, higher breastfeeding and postmenopausal proportion than controls. Levels of PCB-52, PCB-101, PCB-118, PCB-138, PCB-153, PCB-180, total PCBs (∑PCBs), and p,p'-DDE were relatively higher in breast cancer cases than controls. Breast cancer risk was increased in the third tertile of PCB-101, PCB-118, PCB-138, PCB-153, PCB-180, ∑PCBs, and p,p'-DDE as compared with the first tertile in both adjusted and unadjusted logistic regression models (odds ratios [ORs] were from 1.58 to 7.88); and increased linearly across categories of PCB-118 and p,p'-DDE in unadjusted model, and PCB-118 and PCB-153 in the adjusted model with trend (all P < 0.01). While breast cancer risk was declined in the second tertile of PCB-28, PCB-52, and PCB-101 in both unadjusted and adjusted models, also second tertile of p,p'-DDT and third tertile of PCB-28 in the adjusted models. This study suggests associations between the exposure of PCBs, p,p'-DDT, and p,p'-DDE and breast cancer risk. Based on adjusted models, PCB-118, PCB-138, PCB-153, PCB-180, ∑PCBs, and p,p'-DDE exposures increase breast cancer risk at current exposure levels, despite existing inconsistent even inverse results in PCB-28, PCB-52, PCB-101, and p,p'-DDT. More epidemiological studies are still needed to verify these findings in different populations.
Collapse
Affiliation(s)
- Wenlong Huang
- Department of Preventive Medicine, Shantou University Medical College, No.22, Xinling Rd., Shantou, 515041, Guangdong, China
| | - Yuanfang He
- Department of Preventive Medicine, Shantou University Medical College, No.22, Xinling Rd., Shantou, 515041, Guangdong, China
| | - Jiefeng Xiao
- Department of Preventive Medicine, Shantou University Medical College, No.22, Xinling Rd., Shantou, 515041, Guangdong, China
| | - Yuanni Huang
- Department of Preventive Medicine, Shantou University Medical College, No.22, Xinling Rd., Shantou, 515041, Guangdong, China
| | - Anna Li
- Department of Preventive Medicine, Shantou University Medical College, No.22, Xinling Rd., Shantou, 515041, Guangdong, China
| | - Meirong He
- Department of Preventive Medicine, Shantou University Medical College, No.22, Xinling Rd., Shantou, 515041, Guangdong, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, No.22, Xinling Rd., Shantou, 515041, Guangdong, China.
| |
Collapse
|