51
|
Chakraborty P, Merickel J, Shah V, Sharma A, Hegde C, Desouza C, Drincic A, Gunaratne P, Rizzo M. Quantifying vehicle control from physiology in type 1 diabetes. TRAFFIC INJURY PREVENTION 2019; 20:S26-S31. [PMID: 31617757 DOI: 10.1080/15389588.2019.1665176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/28/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Objective: Our goal is to measure real-world effects of at-risk driver physiology on safety-critical tasks like driving by monitoring driver behavior and physiology in real-time. Drivers with type 1 diabetes (T1D) have an elevated crash risk that is linked to abnormal blood glucose, particularly hypoglycemia. We tested the hypotheses that (1) T1D drivers would have overall impaired vehicle control behavior relative to control drivers without diabetes, (2) At-risk patterns of vehicle control in T1D drivers would be linked to at-risk, in-vehicle physiology, and (3) T1D drivers would show impaired vehicle control with more recent hypoglycemia prior to driving.Methods: Drivers (18 T1D, 14 control) were monitored continuously (4 weeks) using in-vehicle sensors (e.g., video, accelerometer, speed) and wearable continuous glucose monitors (CGMs) that measured each T1D driver's real-time blood glucose. Driver vehicle control was measured by vehicle acceleration variability (AV) across lateral (AVY, steering) and longitudinal (AVX, braking/accelerating) axes in 45-second segments (N = 61,635). Average vehicle speed for each segment was modeled as a covariate of AV and mixed-effects linear regression models were used.Results: We analyzed 3,687 drives (21,231 miles). T1D drivers had significantly higher overall AVX, Y compared to control drivers (BX = 2.5 × 10-2BY = 1.6 × 10-2, p < 0.01)-which is linked to erratic steering or swerving and harsh braking/accelerating. At-risk vehicle control patterns were particularly associated with at-risk physiology, namely hypo- and hyperglycemia (higher overall AVX,Y). Impairments from hypoglycemia persisted for hours after hypoglycemia resolved, with drivers who had hypoglycemia within 2-3 h of driving showing higher AVX and AVY. State Department of Motor Vehicle records for the 3 years preceding the study showed that at-risk T1D drivers accounted for all crashes (N = 3) and 85% of citations (N = 13) observed.Conclusions: Our results show that T1D driver risk can be linked to real-time patterns of at-risk driver physiology, particularly hypoglycemia, and driver risk can be detected during and prior to driving. Such naturalistic studies monitoring driver vehicle controls can inform methods for early detection of hypoglycemia-related driving risks, fitness to drive assessments, thereby helping to preserve safety in at-risk drivers with diabetes.
Collapse
Affiliation(s)
- Pranamesh Chakraborty
- Department of Civil, Construction, and Environmental Engineering, Iowa State University, Ames, Iowa
| | - Jennifer Merickel
- Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Viraj Shah
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa
| | - Anuj Sharma
- Department of Civil, Construction, and Environmental Engineering, Iowa State University, Ames, Iowa
| | - Chinmay Hegde
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa
| | - Cyrus Desouza
- Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Andjela Drincic
- Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | | | - Matthew Rizzo
- Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
52
|
Salem RM, Todd JN, Sandholm N, Cole JB, Chen WM, Andrews D, Pezzolesi MG, McKeigue PM, Hiraki LT, Qiu C, Nair V, Di Liao C, Cao JJ, Valo E, Onengut-Gumuscu S, Smiles AM, McGurnaghan SJ, Haukka JK, Harjutsalo V, Brennan EP, van Zuydam N, Ahlqvist E, Doyle R, Ahluwalia TS, Lajer M, Hughes MF, Park J, Skupien J, Spiliopoulou A, Liu A, Menon R, Boustany-Kari CM, Kang HM, Nelson RG, Klein R, Klein BE, Lee KE, Gao X, Mauer M, Maestroni S, Caramori ML, de Boer IH, Miller RG, Guo J, Boright AP, Tregouet D, Gyorgy B, Snell-Bergeon JK, Maahs DM, Bull SB, Canty AJ, Palmer CNA, Stechemesser L, Paulweber B, Weitgasser R, Sokolovska J, Rovīte V, Pīrāgs V, Prakapiene E, Radzeviciene L, Verkauskiene R, Panduru NM, Groop LC, McCarthy MI, Gu HF, Möllsten A, Falhammar H, Brismar K, Martin F, Rossing P, Costacou T, Zerbini G, Marre M, Hadjadj S, McKnight AJ, Forsblom C, McKay G, Godson C, Maxwell AP, Kretzler M, Susztak K, Colhoun HM, Krolewski A, Paterson AD, Groop PH, Rich SS, Hirschhorn JN, Florez JC. Genome-Wide Association Study of Diabetic Kidney Disease Highlights Biology Involved in Glomerular Basement Membrane Collagen. J Am Soc Nephrol 2019; 30:2000-2016. [PMID: 31537649 PMCID: PMC6779358 DOI: 10.1681/asn.2019030218] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/08/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Although diabetic kidney disease demonstrates both familial clustering and single nucleotide polymorphism heritability, the specific genetic factors influencing risk remain largely unknown. METHODS To identify genetic variants predisposing to diabetic kidney disease, we performed genome-wide association study (GWAS) analyses. Through collaboration with the Diabetes Nephropathy Collaborative Research Initiative, we assembled a large collection of type 1 diabetes cohorts with harmonized diabetic kidney disease phenotypes. We used a spectrum of ten diabetic kidney disease definitions based on albuminuria and renal function. RESULTS Our GWAS meta-analysis included association results for up to 19,406 individuals of European descent with type 1 diabetes. We identified 16 genome-wide significant risk loci. The variant with the strongest association (rs55703767) is a common missense mutation in the collagen type IV alpha 3 chain (COL4A3) gene, which encodes a major structural component of the glomerular basement membrane (GBM). Mutations in COL4A3 are implicated in heritable nephropathies, including the progressive inherited nephropathy Alport syndrome. The rs55703767 minor allele (Asp326Tyr) is protective against several definitions of diabetic kidney disease, including albuminuria and ESKD, and demonstrated a significant association with GBM width; protective allele carriers had thinner GBM before any signs of kidney disease, and its effect was dependent on glycemia. Three other loci are in or near genes with known or suggestive involvement in this condition (BMP7) or renal biology (COLEC11 and DDR1). CONCLUSIONS The 16 diabetic kidney disease-associated loci may provide novel insights into the pathogenesis of this condition and help identify potential biologic targets for prevention and treatment.
Collapse
Affiliation(s)
- Rany M Salem
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, California
| | - Jennifer N Todd
- Division of Endocrinology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts
- Programs in Metabolism and Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
- Center for Genomic Medicine and
| | - Niina Sandholm
- Folkhälsan Research Center, Folkhälsan Institute of Genetics, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine and
| | - Joanne B Cole
- Division of Endocrinology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts
- Programs in Metabolism and Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
- Center for Genomic Medicine and
| | - Wei-Min Chen
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, Virginia
| | - Darrell Andrews
- Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - Marcus G Pezzolesi
- Division of Nephrology and Hypertension, Diabetes and Metabolism Center, University of Utah, Salt Lake City, Utah
| | - Paul M McKeigue
- Usher Institute of Population Health Sciences and Informatics and
| | - Linda T Hiraki
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Chengxiang Qiu
- Departments of Medicine and Genetics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Viji Nair
- Division of Nephrology, Department of Internal Medicine and
| | - Chen Di Liao
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jing Jing Cao
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Erkka Valo
- Folkhälsan Research Center, Folkhälsan Institute of Genetics, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine and
| | - Suna Onengut-Gumuscu
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, Virginia
| | | | - Stuart J McGurnaghan
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Jani K Haukka
- Folkhälsan Research Center, Folkhälsan Institute of Genetics, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine and
| | - Valma Harjutsalo
- Folkhälsan Research Center, Folkhälsan Institute of Genetics, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine and
- The Chronic Disease Prevention Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Eoin P Brennan
- Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - Natalie van Zuydam
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Emma Ahlqvist
- Department of Genomics, Diabetes and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden
| | - Ross Doyle
- Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | | | - Maria Lajer
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Maria F Hughes
- Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - Jihwan Park
- Departments of Medicine and Genetics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jan Skupien
- Joslin Diabetes Center, Boston, Massachusetts
| | | | | | - Rajasree Menon
- Division of Nephrology, Department of Internal Medicine and
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | | | - Hyun M Kang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Robert G Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona
| | - Ronald Klein
- University of Wisconsin-Madison, Madison, Wisconsin
| | | | | | - Xiaoyu Gao
- The George Washington University, Washington, DC
| | | | - Silvia Maestroni
- Complications of Diabetes Unit, Division of Immunology, Transplantation and Infectious Diseases, Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | | | | | - Rachel G Miller
- University of Pittsburgh Public Health, Pittsburgh, Pennsylvania
| | - Jingchuan Guo
- University of Pittsburgh Public Health, Pittsburgh, Pennsylvania
| | | | - David Tregouet
- INSERM UMR_S 1166, Sorbonne Université, UPMC Univ Paris 06, Paris, France
- ICAN Institute for Cardiometabolism and Nutrition, Paris, France
| | - Beata Gyorgy
- INSERM UMR_S 1166, Sorbonne Université, UPMC Univ Paris 06, Paris, France
- ICAN Institute for Cardiometabolism and Nutrition, Paris, France
| | | | - David M Maahs
- Department of Pediatrics-Endocrinology, Stanford University, Stanford, California
| | - Shelley B Bull
- The Lunenfeld-Tanenbaum Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Angelo J Canty
- Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada
| | - Colin N A Palmer
- Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Lars Stechemesser
- First Department of Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Bernhard Paulweber
- First Department of Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Raimund Weitgasser
- First Department of Medicine, Paracelsus Medical University, Salzburg, Austria
- Department of Medicine, Diakonissen-Wehrle Hospital, Salzburg, Austria
| | | | - Vita Rovīte
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Valdis Pīrāgs
- University of Latvia, Riga, Latvia
- Pauls Stradins University Hospital, Riga, Latvia
| | | | - Lina Radzeviciene
- Institute of Endocrinology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rasa Verkauskiene
- Institute of Endocrinology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Nicolae Mircea Panduru
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- 2nd Clinical Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Leif C Groop
- Department of Genomics, Diabetes and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Mark I McCarthy
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
- Genentech, 1 DNA Way, South San Francisco, California
| | - Harvest F Gu
- Department of Clinical Science, Intervention and Technology and
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Anna Möllsten
- Division of Pediatrics, Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | - Henrik Falhammar
- Department of Molecular Medicine and Surgery, Rolf Luft Center for Diabetes Research and Endocrinology, Karolinska Institutet, Stockholm, Sweden
- Department of Endocrinology, Diabetes and Metabolism, Karolinska University Hospital, Stockholm, Sweden
| | - Kerstin Brismar
- Department of Molecular Medicine and Surgery, Rolf Luft Center for Diabetes Research and Endocrinology, Karolinska Institutet, Stockholm, Sweden
- Department of Endocrinology, Diabetes and Metabolism, Karolinska University Hospital, Stockholm, Sweden
| | - Finian Martin
- Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- University of Copenhagen, Copenhagen, Denmark
| | - Tina Costacou
- University of Pittsburgh Public Health, Pittsburgh, Pennsylvania
| | - Gianpaolo Zerbini
- Complications of Diabetes Unit, Division of Immunology, Transplantation and Infectious Diseases, Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Michel Marre
- Department of Diabetology, Endocrinology and Nutrition, Bichat Hospital, DHU FIRE, Assistance Publique-Hôpitaux de Paris, Paris, France
- UFR de Médecine, Paris Diderot University, Sorbonne Paris Cité, Paris, France
- INSERM UMRS 1138, Cordeliers Research Center, Paris, France
- Fondation Ophtalmologique Adolphe de Rothschild, Paris, France
| | - Samy Hadjadj
- Department of Endocrinology and Diabetology, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
- INSERM CIC 1402, Poitiers, France
- L'institut du thorax, INSERM, CNRS, CHU Nantes, Nantes, France
| | - Amy J McKnight
- Centre for Public Health, Queens University of Belfast, Northern Ireland, UK
| | - Carol Forsblom
- Folkhälsan Research Center, Folkhälsan Institute of Genetics, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine and
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine and
| | - Gareth McKay
- Centre for Public Health, Queens University of Belfast, Northern Ireland, UK
| | - Catherine Godson
- Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - A Peter Maxwell
- Centre for Public Health, Queens University of Belfast, Northern Ireland, UK
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine and
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Katalin Susztak
- Departments of Medicine and Genetics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Helen M Colhoun
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | - Per-Henrik Groop
- Folkhälsan Research Center, Folkhälsan Institute of Genetics, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine and
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia; and
| | - Stephen S Rich
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, Virginia
| | - Joel N Hirschhorn
- Division of Endocrinology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts
- Programs in Metabolism and Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
| | - Jose C Florez
- Programs in Metabolism and Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts;
- Center for Genomic Medicine and
- Diabetes Unit, Massachusetts General Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
53
|
De Keulenaer GW, Feyen E, Dugaucquier L, Shakeri H, Shchendrygina A, Belenkov YN, Brink M, Vermeulen Z, Segers VFM. Mechanisms of the Multitasking Endothelial Protein NRG-1 as a Compensatory Factor During Chronic Heart Failure. Circ Heart Fail 2019; 12:e006288. [DOI: 10.1161/circheartfailure.119.006288] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Heart failure is a complex syndrome whose phenotypic presentation and disease progression depends on a complex network of adaptive and maladaptive responses. One of these responses is the endothelial release of NRG (neuregulin)-1—a paracrine growth factor activating ErbB2 (erythroblastic leukemia viral oncogene homolog B2), ErbB3, and ErbB4 receptor tyrosine kinases on various targets cells. NRG-1 features a multitasking profile tuning regenerative, inflammatory, fibrotic, and metabolic processes. Here, we review the activities of NRG-1 on different cell types and organs and their implication for heart failure progression and its comorbidities. Although, in general, effects of NRG-1 in heart failure are compensatory and beneficial, translation into therapies remains unaccomplished both because of the complexity of the underlying pathways and because of the challenges in the development of therapeutics (proteins, peptides, small molecules, and RNA-based therapies) for tyrosine kinase receptors. Here, we give an overview of the complexity to be faced and how it may be tackled.
Collapse
Affiliation(s)
- Gilles W. De Keulenaer
- Laboratory of Physiopharmacology, University of Antwerp, Belgium (G.W.D.K., E.F., L.D., H.S., Z.V., V.F.M.S.)
- Department of Cardiology, ZNA Hospital, Antwerp, Belgium (G.W.D.K.)
| | - Eline Feyen
- Laboratory of Physiopharmacology, University of Antwerp, Belgium (G.W.D.K., E.F., L.D., H.S., Z.V., V.F.M.S.)
| | - Lindsey Dugaucquier
- Laboratory of Physiopharmacology, University of Antwerp, Belgium (G.W.D.K., E.F., L.D., H.S., Z.V., V.F.M.S.)
| | - Hadis Shakeri
- Laboratory of Physiopharmacology, University of Antwerp, Belgium (G.W.D.K., E.F., L.D., H.S., Z.V., V.F.M.S.)
| | - Anastasia Shchendrygina
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation (A.S., Y.N.B.)
| | - Yury N. Belenkov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation (A.S., Y.N.B.)
| | - Marijke Brink
- Department of Biomedicine, University Hospital Basel, University of Basel, Switzerland (M.B.)
| | - Zarha Vermeulen
- Laboratory of Physiopharmacology, University of Antwerp, Belgium (G.W.D.K., E.F., L.D., H.S., Z.V., V.F.M.S.)
| | - Vincent F. M. Segers
- Laboratory of Physiopharmacology, University of Antwerp, Belgium (G.W.D.K., E.F., L.D., H.S., Z.V., V.F.M.S.)
- Department of Cardiology, University Hospital Antwerp, Edegem, Belgium (V.F.M.S.)
| |
Collapse
|
54
|
Zhou Y. Set-based differential covariance testing for genomics. Stat (Int Stat Inst) 2019; 8:e235. [PMID: 31763041 PMCID: PMC6853199 DOI: 10.1002/sta4.235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 04/25/2019] [Indexed: 01/08/2023]
Abstract
The problem of detecting the changes in covariance for a single pair of genomic features has been studied in some detail but may be limited in importance or general applicability. For testing equality of covariance matrices of a set of features, many methods have been limited to the two-sample problem and involve varying assumptions on the number of features p versus the sample size n. More general covariance regression approaches are appealing but have been insufficiently structured to provide interpretable testing. To address these deficiencies, we propose a simple uniform framework to test association of covariance matrices with an experimental variable, whether discrete or continuous. We describe four different summary statistics, to ensure power and flexibility under various alternatives, including a new "connectivity" statistic that is sensitive to the changes in overall covariance magnitude. For continuous experimental variables, a natural individual "risk score" is associated with several of the statistics. We establish asymptotic results applicable to both continuous and discrete responses, with relatively mild conditions and allowing for situations where p>n. We also show that the proposed statistics are permutationally equivalent to some existing methods in the two-sample special case. We demonstrate the power and utility of our approaches via simulation and analysis of real data. The R package CorDiff is published on R CRAN.
Collapse
Affiliation(s)
- Yi‐Hui Zhou
- Department of Biological Sciences and Bioinformatics Research CenterNorth Carolina State UniversityRaleigh27695North CarolinaUSA
| |
Collapse
|
55
|
Liu N, Wang Y. Association between angiotensinogen T174M polymorphism and the risk of diabetic nephropathy: A meta-analysis. J Renin Angiotensin Aldosterone Syst 2019; 20:1470320318823927. [PMID: 30798724 PMCID: PMC6350140 DOI: 10.1177/1470320318823927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objective: Although the angiotensinogen (AGT) gene T174M polymorphism
has been implicated in the pathogenesis of diabetic nephropathy (DN), study
results have been inconsistent. The present meta-analysis was conducted to
determine the correlation of AGT T174M polymorphism with
DN. Methods: We retrospectively extracted relevant studies from Embase as well as PubMed
databases. Additionally, a fixed- or random-effects model was employed for
calculation of pooled odds ratio (OR) along with 95% confidence interval
(CI). Results: In total, we identified six studies (1179 cases and 927 controls) regarding
the AGT gene T174M polymorphism. The pooled ORs for the
association between the AGT T174M polymorphism and DN risk
were not statistically significant under all genetic models (M vs T: OR =
1.22, 95% CI = 0.84–1.75; MM vs TT: OR = 1.94, 95% CI = 0.93–4.04; MT vs TT:
OR = 1.11, 95% CI = 0.76–1.63; the dominant model: OR =1.19, 95% CI =
0.80–1.77; the recessive model: OR = 1.94, 95% CI = 0.93–4.03). Subgroup
analyses based on the type of race showed the M allele of the
AGT T174M polymorphism increased DN risk in Asians, but
not in Caucasians. Conclusions: Our study indicated that the T174M polymorphism in the AGT
gene was associated with DN in Asians.
Collapse
Affiliation(s)
- Nina Liu
- 1 Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, China.,2 Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, China
| | - Youmin Wang
- 1 Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, China
| |
Collapse
|
56
|
Gu HF. Genetic and Epigenetic Studies in Diabetic Kidney Disease. Front Genet 2019; 10:507. [PMID: 31231424 PMCID: PMC6566106 DOI: 10.3389/fgene.2019.00507] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/08/2019] [Indexed: 01/19/2023] Open
Abstract
Chronic kidney disease is a worldwide health crisis, while diabetic kidney disease (DKD) has become the leading cause of end-stage renal disease (ESRD). DKD is a microvascular complication and occurs in 30–40% of diabetes patients. Epidemiological investigations and clinical observations on the familial clustering and heritability in DKD have highlighted an underlying genetic susceptibility. Furthermore, DKD is a progressive and long-term diabetic complication, in which epigenetic effects and environmental factors interact with an individual’s genetic background. In recent years, researchers have undertaken genetic and epigenetic studies of DKD in order to better understand its molecular mechanisms. In this review, clinical material, research approaches and experimental designs that have been used for genetic and epigenetic studies of DKD are described. Current information from genetic and epigenetic studies of DKD and ESRD in patients with diabetes, including the approaches of genome-wide association study (GWAS) or epigenome-wide association study (EWAS) and candidate gene association analyses, are summarized. Further investigation of molecular defects in DKD with new approaches such as next generation sequencing analysis and phenome-wide association study (PheWAS) is also discussed.
Collapse
Affiliation(s)
- Harvest F Gu
- Center for Pathophysiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
57
|
Kidney cytosine methylation changes improve renal function decline estimation in patients with diabetic kidney disease. Nat Commun 2019; 10:2461. [PMID: 31165727 PMCID: PMC6549146 DOI: 10.1038/s41467-019-10378-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 05/07/2019] [Indexed: 02/07/2023] Open
Abstract
Epigenetic changes might provide the biological explanation for the long-lasting impact of metabolic alterations of diabetic kidney disease development. Here we examined cytosine methylation of human kidney tubules using Illumina Infinium 450 K arrays from 91 subjects with and without diabetes and varying degrees of kidney disease using a cross-sectional design. We identify cytosine methylation changes associated with kidney structural damage and build a model for kidney function decline. We find that the methylation levels of 65 probes are associated with the degree of kidney fibrosis at genome wide significance. In total 471 probes improve the model for kidney function decline. Methylation probes associated with kidney damage and functional decline enrich on kidney regulatory regions and associate with gene expression changes, including epidermal growth factor (EGF). Altogether, our work shows that kidney methylation differences can be detected in patients with diabetic kidney disease and improve kidney function decline models indicating that they are potentially functionally important. Patients with diabetes commonly develop diabetic kidney disease (DKD). Here Gluck et al. identify a set of probes differentially methylated in renal samples from patients with DKD, and find that inclusion of these methylation probes improves current prediction models of renal function decline.
Collapse
|
58
|
Guan M, Keaton JM, Dimitrov L, Hicks PJ, Xu J, Palmer ND, Ma L, Das SK, Chen YDI, Coresh J, Fornage M, Franceschini N, Kramer H, Langefeld CD, Mychaleckyj JC, Parekh RS, Post WS, Rasmussen-Torvik LJ, Rich SS, Rotter JI, Sedor JR, Thornley-Brown D, Tin A, Wilson JG, Freedman BI, Bowden DW, Ng MCY. Genome-wide association study identifies novel loci for type 2 diabetes-attributed end-stage kidney disease in African Americans. Hum Genomics 2019; 13:21. [PMID: 31092297 PMCID: PMC6521376 DOI: 10.1186/s40246-019-0205-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/11/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND End-stage kidney disease (ESKD) is a significant public health concern disproportionately affecting African Americans (AAs). Type 2 diabetes (T2D) is the leading cause of ESKD in the USA, and efforts to uncover genetic susceptibility to diabetic kidney disease (DKD) have had limited success. A prior genome-wide association study (GWAS) in AAs with T2D-ESKD was expanded with additional AA cases and controls and genotypes imputed to the higher density 1000 Genomes reference panel. The discovery analysis included 3432 T2D-ESKD cases and 6977 non-diabetic non-nephropathy controls (N = 10,409), followed by a discrimination analysis in 2756 T2D non-nephropathy controls to exclude T2D-associated variants. RESULTS Six independent variants located in or near RND3/RBM43, SLITRK3, ENPP7, GNG7, and APOL1 achieved genome-wide significant association (P < 5 × 10-8) with T2D-ESKD. Following extension analyses in 1910 non-diabetic ESKD cases and 908 non-diabetic non-nephropathy controls, a meta-analysis of 5342 AA all-cause ESKD cases and 6977 AA non-diabetic non-nephropathy controls revealed an additional novel all-cause ESKD locus at EFNB2 (rs77113398; P = 9.84 × 10-9; OR = 1.94). Exclusion of APOL1 renal-risk genotype carriers identified two additional genome-wide significant T2D-ESKD-associated loci at GRAMD3 and MGAT4C. A second variant at GNG7 (rs373971520; P = 2.17 × 10-8, OR = 1.46) remained associated with all-cause ESKD in the APOL1-negative analysis. CONCLUSIONS Findings provide further evidence for genetic factors associated with advanced kidney disease in AAs with T2D.
Collapse
Grants
- HHSN268201300026C NHLBI NIH HHS
- N01HC95160 NHLBI NIH HHS
- U01 DK057300 NIDDK NIH HHS
- N01HC95169 NHLBI NIH HHS
- R01 DK117445 NIDDK NIH HHS
- HHSN268201700001I NHLBI NIH HHS
- N01HC95159 NHLBI NIH HHS
- N01HC95167 NHLBI NIH HHS
- HHSC268200782096C, DK081350, DK066358, DK053591, DK087914, DK105556, HL56266, DK070941 NIH HHS
- UL1 TR001881 NCATS NIH HHS
- HHSN268201700003I NHLBI NIH HHS
- U01 DK070657 NIDDK NIH HHS
- HHSN268201500003C NHLBI NIH HHS
- U01 DK057304 NIDDK NIH HHS
- R01 DK070941 NIDDK NIH HHS
- UL1 TR002548 NCATS NIH HHS
- U01 DK057298 NIDDK NIH HHS
- UL1 RR025005 NCRR NIH HHS
- N01HC95163 NHLBI NIH HHS
- HHSN268201300025C, HHSN268201300026C, HHSN268201300027C, HHSN268201300028C, HHSN268201300029C, HHSN268200900041C, AG0005, N01-HC-65226 NIH HHS
- UL1 TR001079 NCATS NIH HHS
- U01 DK057295 NIDDK NIH HHS
- U01 DK105556 NIDDK NIH HHS
- R01 HL086694 NHLBI NIH HHS
- U01 DK057303 NIDDK NIH HHS
- P30 DK079626 NIDDK NIH HHS
- HHSN268201300048C NHLBI NIH HHS
- U01 HG004402 NHGRI NIH HHS
- N01HC95164 NHLBI NIH HHS
- HHSN268201300025C NHLBI NIH HHS
- N02HL64278 NHLBI NIH HHS
- N01HC95162 NHLBI NIH HHS
- N01HC95168 NHLBI NIH HHS
- R01 DK087914 NIDDK NIH HHS
- U01 DK057249 NIDDK NIH HHS
- P30 DK063491 NIDDK NIH HHS
- HHSN268201300027C NHLBI NIH HHS
- K99 DK081350 NIDDK NIH HHS
- HHSN268201300049C NHLBI NIH HHS
- R01 DK066358 NIDDK NIH HHS
- HHSN268200900041C NHLBI NIH HHS
- HHSN268201300028C NHLBI NIH HHS
- U01DK57292, U01DK57329, U01DK057300, U01DK057298, U01DK057249, U01DK57295, U01DK070657, U01DK057303, U01DK070657, U01DK57304, DK07024 NIH HHS
- HHSN268201700004I NHLBI NIH HHS
- N01HC95165 NHLBI NIH HHS
- N01HC95161 NHLBI NIH HHS
- HHSN268201300047C NHLBI NIH HHS
- UL1 TR001420 NCATS NIH HHS
- HHSN268201300050C NHLBI NIH HHS
- N01HC65226 NHLBI NIH HHS
- U01 DK057329 NIDDK NIH HHS
- M01 RR007122 NCRR NIH HHS
- R01 DK053591 NIDDK NIH HHS
- R01 MD012765 NIMHD NIH HHS
- UL1 TR000040 NCATS NIH HHS
- HHSN268201300046C NHLBI NIH HHS
- HHSN268201500003I, N01-HC-95159, N01-HC-95160, N01-HC-95161, N01-HC-95162, N01-HC-95163, N01-HC-95164, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168, N01-HC-95169, UL1-TR-000040, UL1-TR-001079, UL1-TR-001420, UL1-TR-001881, DK063491, N02-HL-64278, UL1TR001881, DK063491 NIH HHS
- HHSN268201300049C, HHSN268201300050C, HHSN268201300048C, HHSN268201300046C, HHSN268201300047C NIH HHS
- HHSN268201700002I NHLBI NIH HHS
- HHSN268201700005I NHLBI NIH HHS
- U01 DK057292 NIDDK NIH HHS
- N01HC95166 NHLBI NIH HHS
- HHSN268201700001I, HHSN268201700002I, HHSN268201700003I, HHSN268201700004I, HHSN268201700005I, R01HL087641, R01HL086694, U01HG004402, HHSN268200625226C, UL1RR025005 NIH HHS
- HHSN268201300029C NHLBI NIH HHS
- R01 HL087641 NHLBI NIH HHS
- National Institutes of Health
- Wake Forest School of Medicine
Collapse
Affiliation(s)
- Meijian Guan
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jacob M Keaton
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Latchezar Dimitrov
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Pamela J Hicks
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jianzhao Xu
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Nicholette D Palmer
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Lijun Ma
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Swapan K Das
- Department of Internal Medicine, Section on Endocrinology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Yii-Der I Chen
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Myriam Fornage
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Nora Franceschini
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Holly Kramer
- Departments of Public Health Sciences and Medicine, Division of Nephrology and Hypertension, Loyola University Chicago, Maywood, IL, USA
- Department of Medicine, Hines Veteran's Affairs Medical Center, Hines, IL, USA
| | - Carl D Langefeld
- Center for Public Health Genomics, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Josyf C Mychaleckyj
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Rulan S Parekh
- Departments of Paediatrics and Medicine, Hospital for Sick Children, University Health Network and the University of Toronto, Toronto, ON, Canada
| | - Wendy S Post
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Laura J Rasmussen-Torvik
- Department of Preventive Medicine, Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
- Division of Genomic Outcomes, Departments of Pediatrics and Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - John R Sedor
- Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA
- Glickman Urology and Kidney Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Adrienne Tin
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Barry I Freedman
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Donald W Bowden
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Maggie C Y Ng
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA.
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA.
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
59
|
Jeong KH, Kim JS, Woo JT, Rhee SY, Lee YH, Kim YG, Moon JY, Kim SK, Kang SW, Lee SH, Kim YH. Genome-wide association study identifies new susceptibility loci for diabetic nephropathy in Korean patients with type 2 diabetes mellitus. Clin Genet 2019; 96:35-42. [PMID: 30883692 DOI: 10.1111/cge.13538] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/26/2019] [Accepted: 03/14/2019] [Indexed: 12/11/2022]
Abstract
Genetic factors are considered to be important in the pathogenesis of diabetic nephropathy (DN). Despite several genome-wide association studies (GWASs) demonstrating that specific polymorphisms of candidate genes were associated with DN, there were some limitations in previous studies. We conducted a GWAS using customized DNA chips to identify novel susceptibility loci for DN in Korean. We analyzed a total of 414 DN cases and 474 normoalbuminuric diabetic hyper-controls across two stages using customized DNA chips containing 98 667 single nucleotide polymorphisms (SNPs). We explored the associations between SNPs and DN in samples from 87 DN cases, mostly confirmed by renal biopsy, and 104 diabetic hyper-controls, and replicated these associations in independent cohort samples with 327 DN cases and 370 diabetic hyper-controls. The top significant SNPs from the discovery samples were selected for replication in the independent cohort. rs3765156 in PIK3C2B was significantly associated with DN in the replication cohort after multiple test. The SNPs identified in our study provide new insights into the pathogenesis of DN in the Korean population. Additional studies are needed to determine biological effects and clinical utility of our findings.
Collapse
Affiliation(s)
- Kyung H Jeong
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Jin S Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Jeong-Taek Woo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Sang Y Rhee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Yu H Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Yang G Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Ju-Young Moon
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Su K Kim
- Department of Biomedical Laboratory Science, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Sun W Kang
- Division of Nephrology, School of Medicine, Inje University, Busan, Republic of Korea
| | - Sang H Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Yeong H Kim
- Division of Nephrology, School of Medicine, Inje University, Busan, Republic of Korea
| | | |
Collapse
|
60
|
Frodsham SG, Yu Z, Lyons AM, Agarwal A, Pezzolesi MH, Dong L, Srinivas TR, Ying J, Greene T, Raphael KL, Smith KR, Pezzolesi MG. The Familiality of Rapid Renal Decline in Diabetes. Diabetes 2019; 68:420-429. [PMID: 30425064 PMCID: PMC6341306 DOI: 10.2337/db18-0838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/05/2018] [Indexed: 12/15/2022]
Abstract
Sustained and rapid loss of glomerular filtration rate (GFR) is the predominant clinical feature of diabetic kidney disease and a requisite for the development of end-stage renal disease. Although GFR trajectories have been studied in several cohorts with diabetes and without diabetes, whether rapid renal decline clusters in families with diabetes has not been examined. To determine this, we estimated GFR (eGFR) from serum creatinine measurements obtained from 15,612 patients with diabetes at the University of Utah Health Sciences Center and established their renal function trajectories. Patients with rapid renal decline (eGFR slope < -5 mL/min/1.73 m2/year) were then mapped to pedigrees using extensive genealogical records from the Utah Population Database to identify high-risk rapid renal decline pedigrees. We identified 2,127 (13.6%) rapid decliners with a median eGFR slope of -8.0 mL/min/1.73 m2/year and 51 high-risk pedigrees (ranging in size from 1,450 to 24,501 members) with excess clustering of rapid renal decline. Familial analysis showed that rapid renal decline aggregates in these families and is associated with its increased risk among first-degree relatives. Further study of these families is necessary to understand the magnitude of the influence of shared familial factors, including environmental and genetic factors, on rapid renal decline in diabetes.
Collapse
Affiliation(s)
- Scott G Frodsham
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT
| | - Zhe Yu
- Population Science, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
| | - Ann M Lyons
- Hospital Information Technology Services, Enterprise Data Warehouse, University of Utah Hospital and Clinics, Salt Lake City, UT
| | - Adhish Agarwal
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT
| | - Melissa H Pezzolesi
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT
| | - Li Dong
- Division of Nephrology, Intermountain Healthcare, Salt Lake City, UT
| | - Titte R Srinivas
- Division of Nephrology, Intermountain Healthcare, Salt Lake City, UT
| | - Jian Ying
- Department of Population Health Sciences, University of Utah School of Medicine, Salt Lake City, UT
| | - Tom Greene
- Department of Population Health Sciences, University of Utah School of Medicine, Salt Lake City, UT
| | - Kalani L Raphael
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT
- Medicine Section and Research Section, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT
| | - Ken R Smith
- Population Science, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
| | - Marcus G Pezzolesi
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT
- Diabetes and Metabolism Center, University of Utah School of Medicine, Salt Lake City, UT
| |
Collapse
|
61
|
Taira M, Imamura M, Takahashi A, Kamatani Y, Yamauchi T, Araki SI, Tanaka N, van Zuydam NR, Ahlqvist E, Toyoda M, Umezono T, Kawai K, Imanishi M, Watada H, Suzuki D, Maegawa H, Babazono T, Kaku K, Kawamori R, Groop LC, McCarthy MI, Kadowaki T, Maeda S. A variant within the FTO confers susceptibility to diabetic nephropathy in Japanese patients with type 2 diabetes. PLoS One 2018; 13:e0208654. [PMID: 30566433 PMCID: PMC6300288 DOI: 10.1371/journal.pone.0208654] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/20/2018] [Indexed: 11/18/2022] Open
Abstract
To explore novel genetic loci for diabetic nephropathy, we performed genome-wide association studies (GWAS) for diabetic nephropathy in Japanese patients with type 2 diabetes. We analyzed the association of 5,768,242 single nucleotide polymorphisms (SNPs) in Japanese patients with type 2 diabetes, 2,380 nephropathy cases and 5,234 controls. We further performed GWAS for diabetic nephropathy using independent Japanese patients with type 2 diabetes, 429 cases and 358 controls and the results of these two GWAS were combined with an inverse variance meta-analysis (stage-1), followed by a de novo genotyping for the candidate SNP loci (p < 1.0 × 10−4) in an independent case-control study (Stage-2; 1,213 cases and 1,298 controls). After integrating stage-1 and stage-2 data, we identified one SNP locus, significantly associated with diabetic nephropathy; rs56094641 in FTO, P = 7.74 × 10−10. We further examined the association of rs56094641 with diabetic nephropathy in independent Japanese patients with type 2 diabetes (902 cases and 1,221 controls), and found that the association of this locus with diabetic nephropathy remained significant after integrating all association data (P = 7.62 × 10−10). We have identified FTO locus as a novel locus for conferring susceptibility to diabetic nephropathy in Japanese patients with type 2 diabetes.
Collapse
Affiliation(s)
- Makiko Taira
- Laboratory for Endocrinology, Metabolism and Kidney Diseases, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Minako Imamura
- Laboratory for Endocrinology, Metabolism and Kidney Diseases, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Okinawa, Japan
| | - Atsushi Takahashi
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Department of Genomic Medicine, Research Institute, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Kyoto-McGill International Collaborative School in Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shin-ichi Araki
- Department of Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Nobue Tanaka
- Diabetes Center, Tokyo Women’s Medical University School of Medicine, Tokyo, Japan
| | - Natalie R. van Zuydam
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford Center for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Emma Ahlqvist
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Masao Toyoda
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Tomoya Umezono
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | | | - Masahito Imanishi
- Division of Nephrology and Hypertension, Department of Internal Medicine, Osaka City General Hospital, Osaka, Japan
- Department of Nephrology, and Hemodialysis Unit, Ishikiriseiki Hospital, Higashi-Osaka, Japan
| | - Hirotaka Watada
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | | | - Hiroshi Maegawa
- Department of Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Tetsuya Babazono
- Diabetes Center, Tokyo Women’s Medical University School of Medicine, Tokyo, Japan
| | - Kohei Kaku
- Department of Internal Medicine, Kawasaki Medical School, Okayama, Japan
| | - Ryuzo Kawamori
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | | | - Leif C. Groop
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Mark I. McCarthy
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford Center for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford NIHR BIOMEDICAL Research Centre, Oxford University Hospitals Trust, Oxford, United Kingdom
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Prevention of Diabetes and Lifestyle-Related Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Metabolism and Nutrition, Mizonokuchi Hospital, Faculty of Medicine, Teikyo University, Kanagawa, Japan
| | - Shiro Maeda
- Laboratory for Endocrinology, Metabolism and Kidney Diseases, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Okinawa, Japan
- * E-mail:
| |
Collapse
|
62
|
Glomerular and tubulointerstitial eQTLs for genomic discovery. Nat Rev Nephrol 2018; 15:3-4. [PMID: 30514972 DOI: 10.1038/s41581-018-0089-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
63
|
Li M, Pezzolesi MG. Advances in understanding the genetic basis of diabetic kidney disease. Acta Diabetol 2018; 55:1093-1104. [PMID: 30083980 DOI: 10.1007/s00592-018-1193-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/16/2018] [Indexed: 02/08/2023]
Abstract
Diabetic kidney disease (DKD) is a devastating complication of Type 1 and Type 2 diabetes and leads to increased morbidity and mortality. Earlier work in families has provided strong evidence that heredity is a major determinant of DKD. Previous linkage analyses and candidate gene studies have identified potential DKD genes; however, such approaches have largely been unsuccessful. Genome-wide association studies (GWAS) have made significant contribution in identifying SNPs associated with common complex diseases. Thanks to advanced technology, new analytical approaches, and international research collaborations, many DKD GWASs have reported unique genes, highlighted novel biological pathways and suggested new disease mechanisms. This review summarizes the current state of GWAS technology; findings from GWASs of DKD and its related traits conducted over the past 15 years and discuss the future of this field.
Collapse
Affiliation(s)
- Man Li
- Division of Nephrology and Hypertension, Department of Internal Medicine,, University of Utah School of Medicine, Salt Lake City, UT, 84105, USA
- VA Boston Healthcare System, VA Cooperative Studies Program, Boston, MA, USA
| | - Marcus G Pezzolesi
- Division of Nephrology and Hypertension, Department of Internal Medicine,, University of Utah School of Medicine, Salt Lake City, UT, 84105, USA.
- Diabetes and Metabolism Center, University of Utah School of Medicine, Salt Lake City, UT, USA.
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
64
|
Smyth LJ, Maxwell AP, Benson KA, Kilner J, McKay GJ, McKnight AJ. Validation of differentially methylated microRNAs identified from an epigenome-wide association study; Sanger and next generation sequencing approaches. BMC Res Notes 2018; 11:767. [PMID: 30373632 PMCID: PMC6206874 DOI: 10.1186/s13104-018-3872-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/22/2018] [Indexed: 12/21/2022] Open
Abstract
Objectives Altered DNA methylation and microRNA profiles are associated with diabetic kidney disease. This study compared different sequencing approaches to define the genetic and epigenetic architecture of sequences surrounding microRNAs associated with diabetic kidney disease. Results We compared Sanger and next generation sequencing to validate microRNAs associated with diabetic kidney disease identified from an epigenome-wide association study (EWAS). These microRNAs demonstrated differential methylation levels in cases with diabetic kidney disease compared to controls with long duration of type 1 diabetes and no evidence of kidney disease (Padjusted < 10−5). Targeted next generation sequencing analysis of genomic DNA and matched cell-line transformed DNA samples identified four genomic variants within the microRNAs, two within miR-329-2 and two within miR-429. Sanger sequencing of genomic DNA replicated these findings and confirmed the altered methylation status of the CpG sites identified by the EWAS in bisulphite-treated DNA. This investigation successfully fine-mapped the genetic sequence around key microRNAs. Variants have been detected which may affect their methylation status and methylated CpG sites have been confirmed. Additionally, we explored both the fidelity of next generation sequencing analysis and the potential efficacy of cell-line transformed DNA samples in place of finite patient samples in discovery genetic and epigenetic research. Electronic supplementary material The online version of this article (10.1186/s13104-018-3872-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laura J Smyth
- Genetic Epidemiology Research Group, Centre for Public Health, Queen's University of Belfast, Belfast, UK.
| | - Alexander P Maxwell
- Genetic Epidemiology Research Group, Centre for Public Health, Queen's University of Belfast, Belfast, UK
| | - Katherine A Benson
- Genetic Epidemiology Research Group, Centre for Public Health, Queen's University of Belfast, Belfast, UK
| | - Jill Kilner
- Genetic Epidemiology Research Group, Centre for Public Health, Queen's University of Belfast, Belfast, UK
| | - Gareth J McKay
- Genetic Epidemiology Research Group, Centre for Public Health, Queen's University of Belfast, Belfast, UK
| | - Amy Jayne McKnight
- Genetic Epidemiology Research Group, Centre for Public Health, Queen's University of Belfast, Belfast, UK
| |
Collapse
|
65
|
Zeng F, Wang Y, Kloepfer LA, Wang S, Harris RC. ErbB4 deletion predisposes to development of metabolic syndrome in mice. Am J Physiol Endocrinol Metab 2018; 315:E583-E593. [PMID: 29944391 PMCID: PMC6230712 DOI: 10.1152/ajpendo.00166.2018] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/25/2018] [Accepted: 06/25/2018] [Indexed: 01/13/2023]
Abstract
ErbB4, a member of the EGF receptor family, plays a variety of roles in physiological and pathological states. Genetic studies have indicated a link between ErbB4 and type 2 diabetes and obesity, but its role in metabolic syndrome (MetS) has not been reported. In the current study we found that mice with ErbB4 deletion developed MetS after 24 wk on a medium-fat diet (MFD), as indicated by development of obesity, dyslipidemia, hepatic steatosis, hyperglycemia, hyperinsulinemia, and insulin resistance, compared with wild-type mice. ErbB4 deletion mice also exhibited increased amounts of subcutaneous and visceral fat, with increased serum leptin levels, compared with wild-type mice, whereas levels of adiponectin were not significantly different. Histologically, severe inflammation, indicated by F4/80 immunostaining and M1 macrophage polarization, was detected in inguinal and epididymal white adipose tissue in ErbB4 deletion mice. ErbB4 expression decreased during 3T3-L1 preadipocyte differentiation. Administration of neuroregulin 4, a specific ligand for ErbB4, to 3T3-L1 adipocytes had no effect on adipogenesis and lipolysis but significantly inhibited lipogenesis, promoted browning, induced GLUT4 redistribution to the cell membrane, and increased glucose uptake. Neuroregulin 4 also significantly increased glucose uptake in adipocytes isolated from wild-type mice, while these effects were significantly decreased in adipocytes isolated from ErbB4 deletion mice. In conclusion, our results indicate that ErbB4 may play an important role in glucose homeostasis and lipogenesis. ErbB4 deficiency-related obesity and adipose tissue inflammation may contribute to the development of MetS.
Collapse
Affiliation(s)
- Fenghua Zeng
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center , Nashville, Tennessee
| | - Yinqiu Wang
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center , Nashville, Tennessee
| | - Lance A Kloepfer
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center , Nashville, Tennessee
| | - Suwan Wang
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center , Nashville, Tennessee
| | - Raymond C Harris
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center , Nashville, Tennessee
- Department of Veterans Affairs , Nashville, Tennessee
| |
Collapse
|
66
|
Gurley SB, Ghosh S, Johnson SA, Azushima K, Sakban RB, George SE, Maeda M, Meyer TW, Coffman TM. Inflammation and Immunity Pathways Regulate Genetic Susceptibility to Diabetic Nephropathy. Diabetes 2018; 67:2096-2106. [PMID: 30065034 PMCID: PMC6152345 DOI: 10.2337/db17-1323] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 07/20/2018] [Indexed: 01/06/2023]
Abstract
Diabetic nephropathy (DN) is a leading cause of end-stage renal disease worldwide, but its molecular pathogenesis is not well defined, and there are no specific treatments. In humans, there is a strong genetic component determining susceptibility to DN. However, specific genes controlling DN susceptibility in humans have not been identified. In this study, we describe a mouse model combining type 1 diabetes with activation of the renin-angiotensin system (RAS), which develops robust kidney disease with features resembling human DN: heavy albuminuria, hypertension, and glomerulosclerosis. Additionally, there is a powerful effect of genetic background regulating susceptibility to nephropathy; the 129 strain is susceptible to kidney disease, whereas the C57BL/6 strain is resistant. To examine the molecular basis of this differential susceptibility, we analyzed the glomerular transcriptome of young mice early in the course of their disease. We find dramatic differences in regulation of immune and inflammatory pathways, with upregulation of proinflammatory pathways in the susceptible (129) strain and coordinate downregulation in the resistant (C57BL/6) strain. Many of these pathways are also upregulated in rat models and in humans with DN. Our studies suggest that genes controlling inflammatory responses, triggered by hyperglycemia and RAS activation, may be critical early determinants of susceptibility to DN.
Collapse
Affiliation(s)
- Susan B Gurley
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, NC
| | - Sujoy Ghosh
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore
| | - Stacy A Johnson
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, NC
| | - Kengo Azushima
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore
| | - Rashidah Binte Sakban
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore
| | - Simi E George
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore
| | - Momoe Maeda
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore
| | - Timothy W Meyer
- Division of Nephrology, Department of Medicine, Stanford University, Palo Alto, CA
| | - Thomas M Coffman
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, NC
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore
| |
Collapse
|
67
|
Sandholm N, Haukka JK, Toppila I, Valo E, Harjutsalo V, Forsblom C, Groop PH. Confirmation of GLRA3 as a susceptibility locus for albuminuria in Finnish patients with type 1 diabetes. Sci Rep 2018; 8:12408. [PMID: 30120300 PMCID: PMC6098108 DOI: 10.1038/s41598-018-29211-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 06/12/2018] [Indexed: 02/06/2023] Open
Abstract
Urinary albumin excretion is an early sign of diabetic kidney disease, affecting every third individual with diabetes. Despite substantial estimated heritability, only variants in the GLRA3 gene have been genome-wide significantly associated (p-value < 5 × 10−8) with diabetic albuminuria, in Finnish individuals with type 1 diabetes; However, replication attempt in non-Finnish Europeans with type 1 diabetes showed nominally significant association in the opposite direction, suggesting a population-specific effect, but simultaneously leaving the finding controversial. In this study, the association between the common rs10011025 variant in the GLRA3 locus, and albuminuria, was confirmed in 1259 independent Finnish individuals with type 1 diabetes (p = 0.0013), and meta-analysis of all Finnish individuals yielded a genome-wide significant association. The association was particularly pronounced in subjects not reaching the treatment target for blood glucose levels (HbA1c > 7%; N = 2560, p = 1.7 × 10−9). Even though further studies are needed to pinpoint the causal variants, dissecting the association at the GLRA3 locus may uncover novel molecular mechanisms for diabetic albuminuria irrespective of population background.
Collapse
Affiliation(s)
- Niina Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, FI-00290, Helsinki, Finland.,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, FI-00290, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, FI-00290, Helsinki, Finland
| | - Jani K Haukka
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, FI-00290, Helsinki, Finland.,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, FI-00290, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, FI-00290, Helsinki, Finland
| | - Iiro Toppila
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, FI-00290, Helsinki, Finland.,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, FI-00290, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, FI-00290, Helsinki, Finland
| | - Erkka Valo
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, FI-00290, Helsinki, Finland.,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, FI-00290, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, FI-00290, Helsinki, Finland
| | - Valma Harjutsalo
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, FI-00290, Helsinki, Finland.,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, FI-00290, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, FI-00290, Helsinki, Finland.,The Chronic Disease Prevention Unit, National Institute for Health and Welfare, FI-00271, Helsinki, Finland
| | - Carol Forsblom
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, FI-00290, Helsinki, Finland.,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, FI-00290, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, FI-00290, Helsinki, Finland
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, FI-00290, Helsinki, Finland. .,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, FI-00290, Helsinki, Finland. .,Research Programs Unit, Diabetes and Obesity, University of Helsinki, FI-00290, Helsinki, Finland. .,Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
68
|
Gillies CE, Putler R, Menon R, Otto E, Yasutake K, Nair V, Hoover P, Lieb D, Li S, Eddy S, Fermin D, McNulty MT, Hacohen N, Kiryluk K, Kretzler M, Wen X, Sampson MG. An eQTL Landscape of Kidney Tissue in Human Nephrotic Syndrome. Am J Hum Genet 2018; 103:232-244. [PMID: 30057032 PMCID: PMC6081280 DOI: 10.1016/j.ajhg.2018.07.004] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/29/2018] [Indexed: 01/14/2023] Open
Abstract
Expression quantitative trait loci (eQTL) studies illuminate the genetics of gene expression and, in disease research, can be particularly illuminating when using the tissues directly impacted by the condition. In nephrology, there is a paucity of eQTL studies of human kidney. Here, we used whole-genome sequencing (WGS) and microdissected glomerular (GLOM) and tubulointerstitial (TI) transcriptomes from 187 individuals with nephrotic syndrome (NS) to describe the eQTL landscape in these functionally distinct kidney structures. Using MatrixEQTL, we performed cis-eQTL analysis on GLOM (n = 136) and TI (n = 166). We used the Bayesian "Deterministic Approximation of Posteriors" (DAP) to fine-map these signals, eQTLBMA to discover GLOM- or TI-specific eQTLs, and single-cell RNA-seq data of control kidney tissue to identify the cell type specificity of significant eQTLs. We integrated eQTL data with an IgA Nephropathy (IgAN) GWAS to perform a transcriptome-wide association study (TWAS). We discovered 894 GLOM eQTLs and 1,767 TI eQTLs at FDR < 0.05. 14% and 19% of GLOM and TI eQTLs, respectively, had >1 independent signal associated with its expression. 12% and 26% of eQTLs were GLOM specific and TI specific, respectively. GLOM eQTLs were most significantly enriched in podocyte transcripts and TI eQTLs in proximal tubules. The IgAN TWAS identified significant GLOM and TI genes, primarily at the HLA region. In this study, we discovered GLOM and TI eQTLs, identified those that were tissue specific, deconvoluted them into cell-specific signals, and used them to characterize known GWAS alleles. These data are available for browsing and download via our eQTL browser, "nephQTL."
Collapse
Affiliation(s)
- Christopher E Gillies
- Department of Pediatrics-Nephrology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Rosemary Putler
- Department of Pediatrics-Nephrology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Rajasree Menon
- Department of Computational Medicine and Bioinformatics, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Edgar Otto
- Department of Medicine-Nephrology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Kalyn Yasutake
- Department of Pediatrics-Nephrology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Viji Nair
- Department of Medicine-Nephrology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Paul Hoover
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA; Broad Institute of the Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA
| | - David Lieb
- Broad Institute of the Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA
| | - Shuqiang Li
- Broad Institute of the Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA
| | - Sean Eddy
- Department of Medicine-Nephrology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Damian Fermin
- Department of Pediatrics-Nephrology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Michelle T McNulty
- Department of Pediatrics-Nephrology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Nir Hacohen
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA; Broad Institute of the Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA
| | - Krzysztof Kiryluk
- Department of Medicine, Division of Nephrology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Matthias Kretzler
- Department of Computational Medicine and Bioinformatics, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Department of Medicine-Nephrology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Xiaoquan Wen
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Matthew G Sampson
- Department of Pediatrics-Nephrology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA.
| |
Collapse
|
69
|
Abstract
Diabetic nephropathy (DN) is currently the leading cause of end-stage renal disease globally. Given the increasing incidence of diabetes, many experts hold the view that DN will eventually progress toward pandemic proportions. Whilst hyperglycaemia-induced vascular dysfunction is the primary initiating mechanism in DN, its progression is also driven by a heterogeneous set of pathological mechanisms, including oxidative stress, inflammation and fibrosis. Current treatment strategies for DN are targeted against the fundamental dysregulation of glycaemia and hypertension. Unfortunately, these standards of care can delay but do not prevent disease progression or the significant emotional, physical and financial costs associated with this disease. As such, there is a pressing need to develop novel therapeutics that are both effective and safe. Set against the genomic era, numerous potential target pathways in DN have been identified. However, the clinical translation of basic DN research has been met with a number of challenges. Moreover, the notion of DN as a purely vascular disease is outdated and it has become clear that DN is a multi-dimensional, multi-cellular condition. The review will highlight the current therapeutic approaches for DN and provide an insight into how the inherent complexity of DN is shaping the research pathways toward the development and clinical translation of novel therapeutic strategies.
Collapse
|
70
|
van Zuydam NR, Ahlqvist E, Sandholm N, Deshmukh H, Rayner NW, Abdalla M, Ladenvall C, Ziemek D, Fauman E, Robertson NR, McKeigue PM, Valo E, Forsblom C, Harjutsalo V, Perna A, Rurali E, Marcovecchio ML, Igo RP, Salem RM, Perico N, Lajer M, Käräjämäki A, Imamura M, Kubo M, Takahashi A, Sim X, Liu J, van Dam RM, Jiang G, Tam CHT, Luk AOY, Lee HM, Lim CKP, Szeto CC, So WY, Chan JCN, Ang SF, Dorajoo R, Wang L, Clara TSH, McKnight AJ, Duffy S, Pezzolesi MG, Marre M, Gyorgy B, Hadjadj S, Hiraki LT, Ahluwalia TS, Almgren P, Schulz CA, Orho-Melander M, Linneberg A, Christensen C, Witte DR, Grarup N, Brandslund I, Melander O, Paterson AD, Tregouet D, Maxwell AP, Lim SC, Ma RCW, Tai ES, Maeda S, Lyssenko V, Tuomi T, Krolewski AS, Rich SS, Hirschhorn JN, Florez JC, Dunger D, Pedersen O, Hansen T, Rossing P, Remuzzi G, Brosnan MJ, Palmer CNA, Groop PH, Colhoun HM, Groop LC, McCarthy MI. A Genome-Wide Association Study of Diabetic Kidney Disease in Subjects With Type 2 Diabetes. Diabetes 2018; 67:1414-1427. [PMID: 29703844 PMCID: PMC6014557 DOI: 10.2337/db17-0914] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 03/30/2018] [Indexed: 01/10/2023]
Abstract
Identification of sequence variants robustly associated with predisposition to diabetic kidney disease (DKD) has the potential to provide insights into the pathophysiological mechanisms responsible. We conducted a genome-wide association study (GWAS) of DKD in type 2 diabetes (T2D) using eight complementary dichotomous and quantitative DKD phenotypes: the principal dichotomous analysis involved 5,717 T2D subjects, 3,345 with DKD. Promising association signals were evaluated in up to 26,827 subjects with T2D (12,710 with DKD). A combined T1D+T2D GWAS was performed using complementary data available for subjects with T1D, which, with replication samples, involved up to 40,340 subjects with diabetes (18,582 with DKD). Analysis of specific DKD phenotypes identified a novel signal near GABRR1 (rs9942471, P = 4.5 × 10-8) associated with microalbuminuria in European T2D case subjects. However, no replication of this signal was observed in Asian subjects with T2D or in the equivalent T1D analysis. There was only limited support, in this substantially enlarged analysis, for association at previously reported DKD signals, except for those at UMOD and PRKAG2, both associated with estimated glomerular filtration rate. We conclude that, despite challenges in addressing phenotypic heterogeneity, access to increased sample sizes will continue to provide more robust inference regarding risk variant discovery for DKD.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Case-Control Studies
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/epidemiology
- Diabetes Mellitus, Type 2/genetics
- Diabetic Nephropathies/epidemiology
- Diabetic Nephropathies/genetics
- Female
- Genetic Predisposition to Disease
- Genome-Wide Association Study
- Humans
- Kidney Failure, Chronic/complications
- Kidney Failure, Chronic/epidemiology
- Kidney Failure, Chronic/genetics
- Male
- Middle Aged
- Polymorphism, Single Nucleotide
- Renal Insufficiency, Chronic/complications
- Renal Insufficiency, Chronic/epidemiology
- Renal Insufficiency, Chronic/genetics
Collapse
Affiliation(s)
- Natalie R van Zuydam
- Wellcome Centre Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, U.K.
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, U.K
| | - Emma Ahlqvist
- Diabetes and Endocrinology, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Niina Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Diabetes and Obesity Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | | | - N William Rayner
- Wellcome Centre Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, U.K
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, U.K
- Human Genetics Programme, Wellcome Sanger Institute, University of Cambridge, Cambridge, U.K
| | - Moustafa Abdalla
- Wellcome Centre Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, U.K
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, U.K
- Department of Statistics, University of Oxford, Oxford, U.K
| | - Claes Ladenvall
- Diabetes and Endocrinology, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Daniel Ziemek
- Inflammation and Immunology Research Unit, Pfizer, Berlin, Germany
| | - Eric Fauman
- Computational Target Validation, Pfizer, Cambridge, MA
| | - Neil R Robertson
- Wellcome Centre Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, U.K
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, U.K
| | - Paul M McKeigue
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, U.K
| | - Erkka Valo
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Diabetes and Obesity Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Carol Forsblom
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Diabetes and Obesity Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Valma Harjutsalo
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Diabetes and Obesity Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Chronic Disease Prevention Unit, National Institute for Health and Welfare, Helsinki, Finland
| | | | - Annalisa Perna
- Clinical Research Center for Rare Diseases "Aldo e Cele Daccò," Istituto di Ricerche Farmacologiche "Mario Negri," Bergamo, Italy
| | - Erica Rurali
- Clinical Research Center for Rare Diseases "Aldo e Cele Daccò," Istituto di Ricerche Farmacologiche "Mario Negri," Bergamo, Italy
| | | | - Robert P Igo
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH
| | - Rany M Salem
- Department of Family Medicine and Public Health, University of California, San Diego, San Diego, CA
| | - Norberto Perico
- Clinical Research Center for Rare Diseases "Aldo e Cele Daccò," Istituto di Ricerche Farmacologiche "Mario Negri," Bergamo, Italy
| | - Maria Lajer
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Annemari Käräjämäki
- Department of Primary Health Care, Vaasa Central Hospital, Vaasa, Finland
- Diabetes Center, Vaasa Health Care Center, Vaasa, Finland
| | - Minako Imamura
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Nishihara, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Atsushi Takahashi
- Department of Genomic Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Jianjun Liu
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
- Division of Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Guozhi Jiang
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Claudia H T Tam
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Andrea O Y Luk
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China
| | - Heung Man Lee
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China
- Integrated Bioinformatics Laboratory for Cancer and Metabolic Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Cadmon K P Lim
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Cheuk Chun Szeto
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing Yee So
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Juliana C N Chan
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Su Fen Ang
- Clinical Research Unit, Khoo Teck Puat Hospital, National Healthcare Group, Singapore
| | - Rajkumar Dorajoo
- Division of Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Ling Wang
- Division of Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Tan Si Hua Clara
- Clinical Research Unit, Khoo Teck Puat Hospital, National Healthcare Group, Singapore
| | | | - Seamus Duffy
- Centre for Public Health, Queen's University Belfast, Belfast, U.K
| | | | - Marcus G Pezzolesi
- Division of Nephrology and Hypertension and Diabetes & Metabolism Research Center, University of Utah Health, Salt Lake City, UT
| | | | - Michel Marre
- Sorbonnes Université, University Pierre and Marie Curie, INSERM UMRS 1166, Institute for Cardiometabolism and Nutrition, Department of Genomics and Pathophysiology of Cardiovascular Diseases, Paris, France
| | - Beata Gyorgy
- Sorbonnes Université, University Pierre and Marie Curie, INSERM UMRS 1166, Institute for Cardiometabolism and Nutrition, Department of Genomics and Pathophysiology of Cardiovascular Diseases, Paris, France
| | - Samy Hadjadj
- Endocrinology-Diabetology, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
- Clinical Investigation Center 1402 and U1082, INSERM, University of Poitiers, Poitiers, France
- Faculté de Médecine et de Pharmacie, University of Poitiers, Poitiers, France
| | - Linda T Hiraki
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | | | - Tarunveer S Ahluwalia
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Almgren
- Diabetes and Cardiovascular Disease-Genetic Epidemiology, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Christina-Alexandra Schulz
- Diabetes and Cardiovascular Disease-Genetic Epidemiology, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Marju Orho-Melander
- Diabetes and Cardiovascular Disease-Genetic Epidemiology, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Allan Linneberg
- Research Centre for Prevention and Health, Capital Region of Denmark, Glostrup, Denmark
- Department of Clinical Experimental Research, Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cramer Christensen
- Department of Internal Medicine and Endocrinology, Vejle Hospital, Vejle, Denmark
| | - Daniel R Witte
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Danish Diabetes Academy, Odense, Denmark
| | - Niels Grarup
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ivan Brandslund
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Department of Clinical Biochemistry, Vejle Hospital, Vejle, Denmark
| | - Olle Melander
- Hypertension and Cardiovascular Disease, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Andrew D Paterson
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - David Tregouet
- Sorbonnes Université, University Pierre and Marie Curie, INSERM UMRS 1166, Institute for Cardiometabolism and Nutrition, Department of Genomics and Pathophysiology of Cardiovascular Diseases, Paris, France
| | | | - Su Chi Lim
- Diabetes Centre, Clinical Research Unit, Department of Medicine, Khoo Teck Puat Hospital, National Healthcare Group, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Ronald C W Ma
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China
- Integrated Bioinformatics Laboratory for Cancer and Metabolic Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - E Shyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
| | - Shiro Maeda
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Nishihara, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Valeriya Lyssenko
- Diabetes and Endocrinology, Department of Clinical Sciences, Lund University, Malmö, Sweden
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Norway
| | - Tiinamaija Tuomi
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Diabetes and Obesity Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Abdominal Center Endocrinology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | | | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA
| | - Joel N Hirschhorn
- Center for Basic and Translational Obesity Research and Division of Endocrinology, Boston Children's Hospital, Boston, MA
- Programs in Medical and Population Genetics and Metabolism, Broad Institute, Cambridge, MA
- Department of Genetics, Harvard Medical School, Boston, MA
| | - Jose C Florez
- Programs in Medical and Population Genetics and Metabolism, Broad Institute, Cambridge, MA
- Diabetes Clinical Research Center, Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - David Dunger
- Department of Paediatrics, University of Cambridge, Cambridge, U.K
- Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, U.K
| | - Oluf Pedersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Giuseppe Remuzzi
- Clinical Research Center for Rare Diseases "Aldo e Cele Daccò," Istituto di Ricerche Farmacologiche "Mario Negri," Bergamo, Italy
- Unit of Nephrology and Dialysis, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | | | - Mary Julia Brosnan
- Cardiovascular, Metabolic and Endocrine Diseases Research Unit, Pfizer, Cambridge, MA
| | - Colin N A Palmer
- Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, U.K
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Diabetes and Obesity Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Helen M Colhoun
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, U.K
| | - Leif C Groop
- Diabetes and Endocrinology, Department of Clinical Sciences, Lund University, Malmö, Sweden
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Mark I McCarthy
- Wellcome Centre Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, U.K
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, U.K
- National Institute for Health Research, Oxford Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, U.K
| |
Collapse
|
71
|
Nicolas A, Mohammedi K, Bastard JP, Fellahi S, Bellili-Muñoz N, Roussel R, Hadjadj S, Marre M, Velho G, Fumeron F. T-cadherin gene variants are associated with nephropathy in subjects with type 1 diabetes. Nephrol Dial Transplant 2018; 32:1987-1993. [PMID: 28499019 DOI: 10.1093/ndt/gfx071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/16/2017] [Indexed: 01/08/2023] Open
Abstract
Background High plasma adiponectin levels are associated with diabetic nephropathy (DN). T-cadherin gene (CDH13) variants have been shown to be associated with adiponectin levels. We investigated associations between allelic variations of CDH13 and DN in subjects with type 1 diabetes. Methods Two CDH13 polymorphisms were analysed in 1297 Caucasian subjects with type 1 diabetes from the 'Survival Genetic Nephropathy' (SURGENE) (n = 340, 10-year follow-up), 'Genesis France-Belgium' (GENESIS) (n = 501, 5-year follow-up for n = 462) and 'Génétique de la Néphropathie Diabétique' (GENEDIAB) (n = 456, 9-year follow-up for n = 283) cohorts. Adiponectin levels were measured in plasma samples from GENESIS and GENEDIAB cohorts. Results Pooled analysis of GENEDIAB and GENESIS studies showed that baseline plasma adiponectin levels were higher in subjects with established/advanced DN at inclusion (P < 0.0001) and in subjects who developed end-stage renal disease (ESRD) at follow-up (P < 0.0001). The minor allele of rs3865188 was associated with lower adiponectin levels (P = 0.006). rs11646213 [odds ratio (OR) 1.47; 95% confidence interval (CI) 1.18-1.85; P = 0.0009] and rs3865188 (OR 0.71; 95% CI 0.57-0.90; P = 0.004) were associated with baseline prevalence of established/advanced DN. These polymorphisms were also associated with the risk of ESRD (0.006 < P < 0.03). The association between rs11646213 (but not rs3865188) and renal function remained significant after adjustment for plasma adiponectin. In SURGENE, rs11646213 [hazard ratio (HR) 1.69; 95% CI 1.01-2.71; P = 0.04] and rs3865188 (HR 0.74; 95% CI 0.55-0.99; P = 0.04) were associated with risk of renal events (defined as progression to more severe DN stages). Conclusions Plasma adiponectin levels are associated with the prevalence of DN and the incidence of ESRD in patients with type 1 diabetes. CDH13 polymorphisms are also associated with the prevalence and incidence of DN, and with the incidence of ESRD in these patients. The association between CDH13 and DN may be due to pleiotropic effects, both dependent and independent of plasma adiponectin levels.
Collapse
Affiliation(s)
- Anthony Nicolas
- INSERM, UMR-S 1138, Centre de Recherches des Cordeliers, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, UMR-S 1138, Centre de Recherche des Cordeliers, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Kamel Mohammedi
- INSERM, UMR-S 1138, Centre de Recherches des Cordeliers, Paris, France.,Univ Paris Diderot, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Department of Diabetology, Endocrinology and Nutrition, Bichat Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jean-Philippe Bastard
- Biochemistry and Hormonology Department, Tenon Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Soraya Fellahi
- Biochemistry and Hormonology Department, Tenon Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | | - Ronan Roussel
- INSERM, UMR-S 1138, Centre de Recherches des Cordeliers, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, UMR-S 1138, Centre de Recherche des Cordeliers, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Univ Paris Diderot, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Department of Diabetology, Endocrinology and Nutrition, Bichat Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Samy Hadjadj
- Université de Poitiers, UFR Médecine Pharmacie, CIC1402, Poitiers, France.,Department of Diabetology and Endocrinology, Pole DUNE & Centre d'investigation clinique, University Hospital, Poitiers, France.,INSERM, CIC1402, Poitiers, France
| | - Michel Marre
- INSERM, UMR-S 1138, Centre de Recherches des Cordeliers, Paris, France.,Univ Paris Diderot, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Department of Diabetology, Endocrinology and Nutrition, Bichat Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Gilberto Velho
- INSERM, UMR-S 1138, Centre de Recherches des Cordeliers, Paris, France
| | - Frédéric Fumeron
- INSERM, UMR-S 1138, Centre de Recherches des Cordeliers, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, UMR-S 1138, Centre de Recherche des Cordeliers, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Univ Paris Diderot, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| |
Collapse
|
72
|
Qiu C, Hanson RL, Fufaa G, Kobes S, Gluck C, Huang J, Chen Y, Raj D, Nelson RG, Knowler WC, Susztak K. Cytosine methylation predicts renal function decline in American Indians. Kidney Int 2018; 93:1417-1431. [PMID: 29709239 PMCID: PMC5973533 DOI: 10.1016/j.kint.2018.01.036] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/07/2018] [Accepted: 01/25/2018] [Indexed: 12/18/2022]
Abstract
Diabetic nephropathy accounts for most of the excess mortality in individuals with diabetes, but the molecular mechanisms by which nephropathy develops are largely unknown. Here we tested cytosine methylation levels at 397,063 genomic CpG sites for association with decline in the estimated glomerular filtration rate (eGFR) over a six year period in 181 diabetic Pima Indians. Methylation levels at 77 sites showed significant association with eGFR decline after correction for multiple comparisons. A model including methylation level at two probes (cg25799291 and cg22253401) improved prediction of eGFR decline in addition to baseline eGFR and the albumin to creatinine ratio with the percent of variance explained significantly improving from 23.1% to 42.2%. Cg22253401 was also significantly associated with eGFR decline in a case-control study derived from the Chronic Renal Insufficiency Cohort. Probes at which methylation significantly associated with eGFR decline were localized to gene regulatory regions and enriched for genes with metabolic functions and apoptosis. Three of the 77 probes that were associated with eGFR decline in blood samples showed directionally consistent and significant association with fibrosis in microdissected human kidney tissue, after correction for multiple comparisons. Thus, cytosine methylation levels may provide biomarkers of disease progression in diabetic nephropathy and epigenetic variations contribute to the development of diabetic kidney disease.
Collapse
MESH Headings
- Adult
- Aged
- Albuminuria/ethnology
- Albuminuria/genetics
- Albuminuria/physiopathology
- Apoptosis/genetics
- Case-Control Studies
- Cell Cycle/genetics
- CpG Islands
- Cytosine
- DNA Methylation
- Diabetic Nephropathies/diagnosis
- Diabetic Nephropathies/ethnology
- Diabetic Nephropathies/genetics
- Diabetic Nephropathies/physiopathology
- Disease Progression
- Energy Metabolism/genetics
- Epigenesis, Genetic
- Female
- Fibrosis
- Genetic Predisposition to Disease
- Glomerular Filtration Rate/genetics
- Humans
- Indians, North American/genetics
- Kidney/pathology
- Kidney/physiopathology
- Kidney Failure, Chronic/diagnosis
- Kidney Failure, Chronic/ethnology
- Kidney Failure, Chronic/genetics
- Kidney Failure, Chronic/physiopathology
- Male
- Middle Aged
- Phenotype
- Prognosis
- Renal Insufficiency, Chronic/diagnosis
- Renal Insufficiency, Chronic/ethnology
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/physiopathology
- Risk Factors
Collapse
Affiliation(s)
- Chengxiang Qiu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Robert L Hanson
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona, USA.
| | - Gudeta Fufaa
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona, USA
| | - Sayuko Kobes
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona, USA
| | - Caroline Gluck
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jing Huang
- Department of Biostatistics, Epidemiology and Informatics, Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Yong Chen
- Department of Biostatistics, Epidemiology and Informatics, Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Dominic Raj
- Division of Renal Diseases and Hypertension, The George Washington School of Medicine, Washington, DC, USA
| | - Robert G Nelson
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona, USA
| | - William C Knowler
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona, USA
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
73
|
Thippakorn C, Schaduangrat N, Nantasenamat C. Proteomic and bioinformatic discovery of biomarkers for diabetic nephropathy. EXCLI JOURNAL 2018; 17:312-330. [PMID: 29805343 PMCID: PMC5962897 DOI: 10.17179/excli2018-1150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 03/12/2018] [Indexed: 11/13/2022]
Abstract
Diabetes is associated with numerous metabolic and vascular risk factors that contribute to a high rate of micro-vascular and macro-vascular disorders leading to mortality and morbidity from diabetic complications. In this case, the major cause of death in overall diabetic patients results from diabetic nephropathy (DN) or renal failure. The risk factors and mechanisms that correspond to the development of DN are not fully understood and so far, no specific and sufficient diagnostic biomarkers are currently available other than micro- or macroalbuminuria. Therefore, this review describes current and novel protein biomarkers in the context of DN as well as probable proteins biomarkers associated with pathological processes for the early stage of DN via proteomics data together with bioinformatics. In addition, the mechanisms involved in early development of diabetic vascular disorders and complications resulting from glucose induced oxidative stress will also be explored.
Collapse
Affiliation(s)
- Chadinee Thippakorn
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Nalini Schaduangrat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
74
|
Abstract
Diabetic kidney disease (DKD) remains one of the leading causes of reduced lifespan in diabetes. The quest for both prognostic and surrogate endpoint biomarkers for advanced DKD and end-stage renal disease has received major investment and interest in recent years. However, at present no novel biomarkers are in routine use in the clinic or in trials. This review focuses on the current status of prognostic biomarkers. First, we emphasise that albuminuria and eGFR, with other routine clinical data, show at least modest prediction of future renal status if properly used. Indeed, a major limitation of many current biomarker studies is that they do not properly evaluate the marginal increase in prediction on top of these routinely available clinical data. Second, we emphasise that many of the candidate biomarkers for which there are numerous sporadic reports in the literature are tightly correlated with each other. Despite this, few studies have attempted to evaluate a wide range of biomarkers simultaneously to define the most useful among these correlated biomarkers. We also review the potential of high-dimensional panels of lipids, metabolites and proteins to advance the field, and point to some of the analytical and post-analytical challenges of taking initial studies using these and candidate approaches through to actual clinical biomarker use.
Collapse
Affiliation(s)
- Helen M Colhoun
- MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK.
| | | |
Collapse
|
75
|
Charmet R, Duffy S, Keshavarzi S, Gyorgy B, Marre M, Rossing P, McKnight AJ, Maxwell AP, Ahluwalia TVS, Paterson AD, Trégouët DA, Hadjadj S. Novel risk genes identified in a genome-wide association study for coronary artery disease in patients with type 1 diabetes. Cardiovasc Diabetol 2018; 17:61. [PMID: 29695241 PMCID: PMC5916834 DOI: 10.1186/s12933-018-0705-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/16/2018] [Indexed: 12/15/2022] Open
Abstract
Background Patients with type 1 diabetes are more at risk of coronary artery disease than the general population. Although evidence points to a genetic risk there have been no study investigating genetic risk factors of coronary artery disease specific to individuals with type 1 diabetes. To identify low frequency and common genetic variations associated with coronary artery disease in populations of individuals with type 1 diabetes. Methods A two-stage genome wide association study was conducted. The discovery phase involved the meta-analysis of three genome-wide association cohorts totaling 434 patients with type 1 diabetes and coronary artery disease (cases) and 3123 T1D individuals with no evidence of coronary artery disease (controls). Replication of the top association signals (p < 10−5) was performed in five additional independent cohorts totaling 585 cases and 2612 controls. Results One locus (rs115829748, located upstream of the MAP1B gene) reached the statistical threshold of 5 × 10−8 for genome-wide significance but did not replicate. Nevertheless, three single nucleotide polymorphisms provided suggestive evidence for association with coronary artery disease in the combined studies: CDK18 rs138760780 (OR = 2.60 95% confidence interval [1.75–3.85], p = 2.02 × 10−6), FAM189A2 rs12344245 (OR = 1.85 [1.41–2.43], p = 8.52 × 10−6) and PKD1 rs116092985 (OR = 1.53 [1.27–1.85], p = 1.01 × 10−5). In addition, our analyses suggested that genetic variations at the ANKS1A, COL4A2 and APOE loci previously found associated with coronary artery disease in the general population could have stronger effects in patients with type 1 diabetes. Conclusions This study suggests three novel candidate genes for coronary artery disease in the subgroup of patients affected with type 1 diabetes. The detected associations deserve to be definitively validated in additional epidemiological studies. Electronic supplementary material The online version of this article (10.1186/s12933-018-0705-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Romain Charmet
- Institut National pour la Santé et la Recherche Médicale (INSERM), Unité Mixte de Recherche en Santé (UMR_S) 1166, Team Genomics & Pathophysiology of Cardiovascular Diseases, Sorbonne Universités, UPMC Univ. Paris 06, Paris, France.,ICAN Institute for Cardiometabolism and Nutrition, Paris, France
| | - Seamus Duffy
- Centre for Public Health, Queen's University of Belfast, Belfast, Northern Ireland, UK
| | - Sareh Keshavarzi
- Genetics & Genome Biology Program, Hospital for Sick Children, Toronto, Canada
| | - Beata Gyorgy
- Institut National pour la Santé et la Recherche Médicale (INSERM), Unité Mixte de Recherche en Santé (UMR_S) 1166, Team Genomics & Pathophysiology of Cardiovascular Diseases, Sorbonne Universités, UPMC Univ. Paris 06, Paris, France.,ICAN Institute for Cardiometabolism and Nutrition, Paris, France
| | - Michel Marre
- Départment de Diabétologie, Endocrinologie et Nutrition, Assistance Publique Hôpitaux de Paris, Hôpital Bichat, DHU FIRE, Paris, France.,UFR de Médecine, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, Gentofte, Denmark.,University of Copenhagen, Copenhagen, Denmark
| | - Amy Jayne McKnight
- Centre for Public Health, Queen's University of Belfast, Belfast, Northern Ireland, UK
| | - Alexander P Maxwell
- Centre for Public Health, Queen's University of Belfast, Belfast, Northern Ireland, UK
| | | | - Andrew D Paterson
- Genetics & Genome Biology Program, Hospital for Sick Children, Toronto, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - David-Alexandre Trégouët
- Institut National pour la Santé et la Recherche Médicale (INSERM), Unité Mixte de Recherche en Santé (UMR_S) 1166, Team Genomics & Pathophysiology of Cardiovascular Diseases, Sorbonne Universités, UPMC Univ. Paris 06, Paris, France. .,ICAN Institute for Cardiometabolism and Nutrition, Paris, France.
| | - Samy Hadjadj
- UFR de Médecine et Pharmacie, Université de Poitiers, Poitiers, France. .,INSERM, CIC 1402 & U1082, Poitiers, France. .,Service d'Endocrinologie-Diabétologie and Centre d'Investigation Clinique, CHU de Poitiers, BP 577, 86021, Poitiers Cedex, France.
| |
Collapse
|
76
|
Guan M, Keaton JM, Dimitrov L, Hicks PJ, Xu J, Palmer ND, Wilson JG, Freedman BI, Bowden DW, Ng MC. An Exome-wide Association Study for Type 2 Diabetes-Attributed End-Stage Kidney Disease in African Americans. Kidney Int Rep 2018; 3:867-878. [PMID: 29989002 PMCID: PMC6035163 DOI: 10.1016/j.ekir.2018.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/20/2018] [Accepted: 03/05/2018] [Indexed: 12/12/2022] Open
Abstract
Introduction Compared with European Americans, African Americans (AAs) are at higher risk for developing end-stage kidney disease (ESKD). Genome-wide association studies (GWAS) have identified >70 genetic variants associated with kidney function and chronic kidney disease (CKD) in patients with and without diabetes. However, these variants explain a small proportion of disease liability. This study examined the contribution of coding genetic variants for risk of type 2 diabetes (T2D)-attributed ESKD and advanced CKD in AAs. Methods Exome sequencing was performed in 456 AA T2D-ESKD cases, and 936 AA nondiabetic, non-nephropathy control individuals at the discovery stage. A mixed logistic regression model was used for association analysis. Nominal associations (P < 0.05) were replicated in an additional 2020 T2D-ESKD cases and 1121 nondiabetic, non-nephropathy control individuals. A meta-analysis combining 4533 discovery and replication samples was performed. Putative T2D-ESKD associations were tested in additional 1910 nondiabetic ESKD and 219 T2D-ESKD cases, as well as 912 AA nondiabetic non-nephropathy control individuals. Results A total of 11 suggestive T2D-ESKD associations (P < 1 x 10−4) from 8 loci (PLEKHN1, NADK, RAD51AP2, RREB1, PEX6, GRM8, PRX, APOL1) were apparent in the meta-analysis. Exclusion of APOL1 renal-risk genotype carriers identified 3 additional suggestive loci (OTUD7B, IFITM3, DLGAP5). Rs41302867 in RREB1 displayed consistent association with T2D-ESKD and nondiabetic ESKD (odds ratio: 0.47; P = 1.2 x 10−6 in 4605 all-cause ESKD and 2969 nondiabetic non-nephropathy control individuals). Conclusion Our findings suggest that coding genetic variants are implicated in predisposition to T2D-ESKD in AAs.
Collapse
Affiliation(s)
- Meijian Guan
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jacob M. Keaton
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Latchezar Dimitrov
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Pamela J. Hicks
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jianzhao Xu
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Nicholette D. Palmer
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - James G. Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Barry I. Freedman
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Donald W. Bowden
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Maggie C.Y. Ng
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Correspondence: Maggie C. Y. Ng, Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| |
Collapse
|
77
|
Affiliation(s)
- Jose C Florez
- Center for Human Genetic Research and Diabetes Research Center, Diabetes Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA; The Broad Institute of Massachusetts Institute of Technology, Harvard, Cambridge, MA.
| |
Collapse
|
78
|
Sato Y, Tajima A, Sato T, Nozawa S, Yoshiike M, Imoto I, Yamauchi A, Iwamoto T. Genome-wide association study identifies ERBB4 on 2q34 as a novel locus associated with sperm motility in Japanese men. J Med Genet 2018; 55:415-421. [PMID: 29453196 PMCID: PMC5992371 DOI: 10.1136/jmedgenet-2017-104991] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 12/29/2017] [Accepted: 01/21/2018] [Indexed: 11/19/2022]
Abstract
Background The decrease in sperm motility has a potent influence on fertilisation. Sperm motility, represented as the percentage of motile sperm in ejaculated sperms, is influenced by lifestyle habits or environmental factors and by inherited factors. However, genetic factors contributing to individual differences in sperm motility remain unclear. To identify genetic factors that influence human sperm motility, we performed a genome-wide association study (GWAS) of sperm motility. Methods A two-stage GWAS was conducted using 811 Japanese men in a discovery stage, followed by a replication study using an additional 779 Japanese men. Results In the two-staged GWAS, a single nucleotide polymorphism rs3791686 in the intron of gene for erb-b2 receptor tyrosine kinase 4 (ERBB4) on chromosome 2q34 was identified as a novel locus for sperm motility, as evident from the discovery and replication results using meta-analysis (β=−4.01, combined P=5.40×10−9). Conclusions Together with the previous evidence that Sertoli cell-specific Erbb4-knockout mice display an impaired ability to produce motile sperm, this finding provides the first genetic evidence for further investigation of the genome-wide significant association at the ERBB4 locus in larger studies across diverse human populations.
Collapse
Affiliation(s)
- Youichi Sato
- Department of Pharmaceutical Information Science, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Atsushi Tajima
- Department of Human Genetics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan.,Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Takehiro Sato
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Shiari Nozawa
- Department of Urology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Miki Yoshiike
- Department of Urology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Issei Imoto
- Department of Human Genetics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Aiko Yamauchi
- Department of Pharmaceutical Information Science, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Teruaki Iwamoto
- Department of Urology, St. Marianna University School of Medicine, Kawasaki, Japan.,Center for Infertility and IVF, International University of Health and Welfare Hospital, Nasushiobara, Japan
| |
Collapse
|
79
|
Sandholm N, Groop PH. Genetic basis of diabetic kidney disease and other diabetic complications. Curr Opin Genet Dev 2018; 50:17-24. [PMID: 29453109 DOI: 10.1016/j.gde.2018.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/19/2018] [Accepted: 01/24/2018] [Indexed: 12/21/2022]
Abstract
Diabetic kidney disease and other long-term complications are common in diabetes, and comprise the main cause of co-morbidity and premature mortality in individuals with diabetes. While familial clustering and heritability have been reported for all diabetic complications, the genetic background and the molecular mechanisms remain poorly understood. In recent years, genome-wide association studies have identified a few susceptibility loci for the renal complications as well as for diabetic retinopathy, diabetic cardiovascular disease and mortality. As for many complex diseases, the genetic factors increase the risk of complications in concert with the environment, and certain associations seem specific for particular conditions, for example, SP3-CDCA7 associated with end-stage renal disease only in women, or MGMT and variants on chromosome 5q13 associated with cardiovascular mortality only under tight glycaemic control. The characterization of the phenotypes is one of the main challenges for genetic research on diabetic complications, in addition to an urgent need to increase the number of individuals with diabetes with high quality phenotypic data to be included in future genetic studies.
Collapse
Affiliation(s)
- Niina Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, 00290 Helsinki, Finland; Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland; Research Programs Unit, Diabetes and Obesity, University of Helsinki, 00290 Helsinki, Finland.
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, 00290 Helsinki, Finland; Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland; Research Programs Unit, Diabetes and Obesity, University of Helsinki, 00290 Helsinki, Finland; Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
80
|
Limou S, Vince N, Parsa A. Lessons from CKD-Related Genetic Association Studies-Moving Forward. Clin J Am Soc Nephrol 2018; 13:140-152. [PMID: 29242368 PMCID: PMC5753320 DOI: 10.2215/cjn.09030817] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Over the past decade, genetic association studies have uncovered numerous determinants of kidney function in the general, diabetic, hypertensive, CKD, ESRD, and GN-based study populations (e.g., IgA nephropathy, membranous nephropathy, FSGS). These studies have led to numerous novel and unanticipated findings, which are helping improve our understanding of factors and pathways affecting both normal and pathologic kidney function. In this review, we report on major discoveries and advances resulting from this rapidly progressing research domain. We also predict some of the next steps the nephrology community should embrace to accelerate the identification of genetic and molecular processes leading to kidney dysfunction, pathophysiologically based disease subgroups, and specific therapeutic targets, as we attempt to transition toward a more precision-based medicine approach.
Collapse
Affiliation(s)
- Sophie Limou
- Centre de Recherche en Transplantation et Immunologie Unité Mixte de Recherche 1064, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Nantes, Nantes, France
- Institut de Transplantation Urologie et Néphrologie, Centre Hospitalier Universitaire Nantes, Nantes, France
- Ecole Centrale de Nantes, Nantes, France
- Basic Science Program, Basic Research Laboratory, National Cancer Institute/National Institutes of Health, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, Maryland
| | - Nicolas Vince
- Centre de Recherche en Transplantation et Immunologie Unité Mixte de Recherche 1064, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Nantes, Nantes, France
- Institut de Transplantation Urologie et Néphrologie, Centre Hospitalier Universitaire Nantes, Nantes, France
| | - Afshin Parsa
- Division of Nephrology, University of Maryland School of Medicine, Baltimore, Maryland; and
- Department of Medicine, Baltimore VA Medical Center, Baltimore, Maryland
| |
Collapse
|
81
|
Genome-wide association analysis reveals genomic regions on Chromosome 13 affecting litter size and candidate genes for uterine horn length in Erhualian pigs. Animal 2018. [DOI: 10.1017/s1751731118000332] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
82
|
Abstract
Approximately 20% to 40% of patients with type 1 or type 2 diabetes mellitus develop diabetic kidney disease. This is a clinical syndrome characterized by persistent albuminuria (> 300 mg/24 h, or > 300 mg/g creatinine), a relentless decline in glomerular filtration rate (GFR), raised arterial blood pressure, and enhanced cardiovascular morbidity and mortality. There is a characteristic histopathology. In classical diabetic nephropathy, the first clinical sign is moderately increased urine albumin excretion (microalbuminuria: 30-300 mg/24 h, or 30-300 mg/g creatinine; albuminuria grade A2). Untreated microalbuminuria will gradually worsen, reaching clinical proteinuria or severely increased albuminuria (albuminuria grade A3) over 5 to 15 years. The GFR then begins to decline, and without treatment, end-stage renal failure is likely to result in 5 to 7 years. Although albuminuria is the first sign of diabetic nephropathy, the first symptom is usually peripheral edema, which occurs at a very late stage. Regular, systematic screening for diabetic kidney disease is needed in order to identify patients at risk of or with presymptomatic diabetic kidney disease. Annual monitoring of urinary albumin-to-creatinine ratio, estimated GFR, and blood pressure is recommended. Several new biomarkers or profiles of biomarkers have been investigated to improve prognostic and diagnostic precision, but none have yet been implemented in routine clinical care. In the future such techniques may pave the way for personalized treatment.
Collapse
|
83
|
Barrett EJ, Liu Z, Khamaisi M, King GL, Klein R, Klein BEK, Hughes TM, Craft S, Freedman BI, Bowden DW, Vinik AI, Casellini CM. Diabetic Microvascular Disease: An Endocrine Society Scientific Statement. J Clin Endocrinol Metab 2017; 102:4343-4410. [PMID: 29126250 PMCID: PMC5718697 DOI: 10.1210/jc.2017-01922] [Citation(s) in RCA: 300] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 08/29/2017] [Indexed: 01/18/2023]
Abstract
Both type 1 and type 2 diabetes adversely affect the microvasculature in multiple organs. Our understanding of the genesis of this injury and of potential interventions to prevent, limit, or reverse injury/dysfunction is continuously evolving. This statement reviews biochemical/cellular pathways involved in facilitating and abrogating microvascular injury. The statement summarizes the types of injury/dysfunction that occur in the three classical diabetes microvascular target tissues, the eye, the kidney, and the peripheral nervous system; the statement also reviews information on the effects of diabetes and insulin resistance on the microvasculature of skin, brain, adipose tissue, and cardiac and skeletal muscle. Despite extensive and intensive research, it is disappointing that microvascular complications of diabetes continue to compromise the quantity and quality of life for patients with diabetes. Hopefully, by understanding and building on current research findings, we will discover new approaches for prevention and treatment that will be effective for future generations.
Collapse
Affiliation(s)
- Eugene J. Barrett
- Division of Endocrinology, Department of Medicine, University of Virginia, Charlottesville, Virginia 22908
| | - Zhenqi Liu
- Division of Endocrinology, Department of Medicine, University of Virginia, Charlottesville, Virginia 22908
| | - Mogher Khamaisi
- Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215
| | - George L. King
- Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Ronald Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705
| | - Barbara E. K. Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705
| | - Timothy M. Hughes
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Suzanne Craft
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Barry I. Freedman
- Divisions of Nephrology and Endocrinology, Department of Internal Medicine, Centers for Diabetes Research, and Center for Human Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Donald W. Bowden
- Divisions of Nephrology and Endocrinology, Department of Internal Medicine, Centers for Diabetes Research, and Center for Human Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Aaron I. Vinik
- EVMS Strelitz Diabetes Center, Eastern Virginia Medical Center, Norfolk, Virginia 23510
| | - Carolina M. Casellini
- EVMS Strelitz Diabetes Center, Eastern Virginia Medical Center, Norfolk, Virginia 23510
| |
Collapse
|
84
|
Guo L, Zhang P, Chen Z, Xia H, Li S, Zhang Y, Kobberup S, Zou W, Lin JD. Hepatic neuregulin 4 signaling defines an endocrine checkpoint for steatosis-to-NASH progression. J Clin Invest 2017; 127:4449-4461. [PMID: 29106384 DOI: 10.1172/jci96324] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/26/2017] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is characterized by progressive liver injury, inflammation, and fibrosis; however, the mechanisms that govern the transition from hepatic steatosis, which is relatively benign, to NASH remain poorly defined. Neuregulin 4 (Nrg4) is an adipose tissue-enriched endocrine factor that elicits beneficial metabolic effects in obesity. Here, we show that Nrg4 is a key component of an endocrine checkpoint that preserves hepatocyte health and counters diet-induced NASH in mice. Nrg4 deficiency accelerated liver injury, fibrosis, inflammation, and cell death in a mouse model of NASH. In contrast, transgenic expression of Nrg4 in adipose tissue alleviated diet-induced NASH. Nrg4 attenuated hepatocyte death in a cell-autonomous manner by blocking ubiquitination and proteasomal degradation of c-FLIPL, a negative regulator of cell death. Adeno-associated virus-mediated (AAV-mediated) rescue of hepatic c-FLIPL expression in Nrg4-deficent mice functionally restored the brake for steatosis to NASH transition. Thus, hepatic Nrg4 signaling serves as an endocrine checkpoint for steatosis-to-NASH progression by activating a cytoprotective pathway to counter stress-induced liver injury.
Collapse
Affiliation(s)
- Liang Guo
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, Michigan, USA.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, China
| | - Peng Zhang
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Zhimin Chen
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Houjun Xia
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Siming Li
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Yanqiao Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Sune Kobberup
- Metabolic Disease Research, Novo Nordisk, Maaloev, Denmark
| | - Weiping Zou
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Jiandie D Lin
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| |
Collapse
|
85
|
Pattaro C. Genome-wide association studies of albuminuria: towards genetic stratification in diabetes? J Nephrol 2017; 31:475-487. [PMID: 28918587 DOI: 10.1007/s40620-017-0437-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 09/02/2017] [Indexed: 12/16/2022]
Abstract
Genome-wide association studies (GWAS) have been very successful in unraveling the polygenic structure of several complex diseases and traits. In the case of albuminuria, despite the large sample size achieved by some studies, results look sparse with a limited number of loci reported so far. This review searched for GWAS studies of albumin excretion, albuminuria, and proteinuria. The resulting picture sets elements of uniqueness for albuminuria GWAS with respect to other complex traits. So far, very few loci associated with albuminuria have been validated by means of genome-wide significant evidence or formal replication. With rare exceptions, the validated loci are ethnicity specific. Within a given ethnicity, variants are common and have relatively large effects, especially in the presence of diabetes. In most cases, the identified variants were functional and a biological involvement of the target genes in renal damage was established. Recently reported variants associated with albuminuria in diabetes may be potentially combined into a genetic risk score, making it possible to rank diabetic patients by increasing risk of albuminuria. Validation of this model is required. To expand the understanding of the biological basis of albumin excretion regulation, future initiatives should achieve larger sample sizes and favor a transethnic study design.
Collapse
Affiliation(s)
- Cristian Pattaro
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Galvani 31, 39100, Bolzano, Italy.
| |
Collapse
|
86
|
Abstract
PURPOSE OF REVIEW Diabetic complications affecting the kidneys, retina, nerves, and the cardiovasculature are the major causes of morbidity and mortality in diabetes. This paper aims to review the current understanding of the genetic basis of these complications, based on recent findings especially from genome-wide association studies. RECENT FINDINGS Variants in or near AFF3, RGMA-MCTP2, SP3-CDCA7, GLRA3, CNKSR3, and UMOD have reached genome-wide significance (p value <5 × 10-8) for association with diabetic kidney disease, and recently, GRB2 was reported to be associated at genome-wide significance with diabetic retinopathy. While some loci affecting cardiovascular disease in the general population have been replicated in diabetes, GLUL affects the risk of cardiovascular disease specifically in diabetic subjects. Genetic findings are emerging for diabetic complications, although the studies remain relatively small compared to those for type 1 and type 2 diabetes. In addition to pinpointing specific loci, the studies also reveal biological information on correlated traits and pathways.
Collapse
Affiliation(s)
- Emma Dahlström
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Haartmaninkatu 8, 00290, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Niina Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Haartmaninkatu 8, 00290, Helsinki, Finland.
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
- Research Program Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
87
|
Bailie C, Kilner J, Maxwell AP, McKnight AJ. Development of next generation sequencing panel for UMOD and association with kidney disease. PLoS One 2017; 12:e0178321. [PMID: 28609449 PMCID: PMC5469457 DOI: 10.1371/journal.pone.0178321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 05/11/2017] [Indexed: 11/19/2022] Open
Abstract
Chronic kidney disease (CKD) has a prevalence of approximately 10% in adult populations. CKD can progress to end-stage renal disease (ESRD) and this is usually fatal unless some form of renal replacement therapy (chronic dialysis or renal transplantation) is provided. There is an inherited predisposition to CKD with several genetic risk markers now identified. The UMOD gene has been associated with CKD of varying aetiologies. An AmpliSeq next generation sequencing panel was developed to facilitate comprehensive sequencing of the UMOD gene, covering exonic and regulatory regions. SNPs and CpG sites in the genomic region encompassing UMOD were evaluated for association with CKD in two studies; the UK Wellcome Trust Case-Control 3 Renal Transplant Dysfunction Study (n = 1088) and UK-ROI GENIE GWAS (n = 1726). A technological comparison of two Ion Torrent machines revealed 100% allele call concordance between S5 XL™ and PGM™ machines. One SNP (rs183962941), located in a non-coding region of UMOD, was nominally associated with ESRD (p = 0.008). No association was identified between UMOD variants and estimated glomerular filtration rate. Analysis of methylation data for over 480,000 CpG sites revealed differential methylation patterns within UMOD, the most significant of these was cg03140788 p = 3.7 x 10-10.
Collapse
Affiliation(s)
- Caitlin Bailie
- Nephrology Research, Centre for Public Health, Queen’s University of Belfast, Belfast City Hospital, Belfast, Northern Ireland
| | - Jill Kilner
- Nephrology Research, Centre for Public Health, Queen’s University of Belfast, Belfast City Hospital, Belfast, Northern Ireland
| | - Alexander P. Maxwell
- Nephrology Research, Centre for Public Health, Queen’s University of Belfast, Belfast City Hospital, Belfast, Northern Ireland
| | - Amy Jayne McKnight
- Nephrology Research, Centre for Public Health, Queen’s University of Belfast, Belfast City Hospital, Belfast, Northern Ireland
| |
Collapse
|
88
|
Ko YA, Yi H, Qiu C, Huang S, Park J, Ledo N, Köttgen A, Li H, Rader DJ, Pack MA, Brown CD, Susztak K. Genetic-Variation-Driven Gene-Expression Changes Highlight Genes with Important Functions for Kidney Disease. Am J Hum Genet 2017; 100:940-953. [PMID: 28575649 DOI: 10.1016/j.ajhg.2017.05.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 05/05/2017] [Indexed: 01/22/2023] Open
Abstract
Chronic kidney disease (CKD) is a complex gene-environmental disease affecting close to 10% of the US population. Genome-wide association studies (GWASs) have identified sequence variants, localized to non-coding genomic regions, associated with kidney function. Despite these robust observations, the mechanism by which variants lead to CKD remains a critical unanswered question. Expression quantitative trait loci (eQTL) analysis is a method to identify genetic variation associated with gene expression changes in specific tissue types. We hypothesized that an integrative analysis combining CKD GWAS and kidney eQTL results can identify candidate genes for CKD. We performed eQTL analysis by correlating genotype with RNA-seq-based gene expression levels in 96 human kidney samples. Applying stringent statistical criteria, we detected 1,886 genes whose expression differs with the sequence variants. Using direct overlap and Bayesian methods, we identified new potential target genes for CKD. With respect to one of the target genes, lysosomal beta A mannosidase (MANBA), we observed that genetic variants associated with MANBA expression in the kidney showed statistically significant colocalization with variants identified in CKD GWASs, indicating that MANBA is a potential target gene for CKD. The expression of MANBA was significantly lower in kidneys of subjects with risk alleles. Suppressing manba expression in zebrafish resulted in renal tubule defects and pericardial edema, phenotypes typically induced by kidney dysfunction. Our analysis shows that gene-expression changes driven by genetic variation in the kidney can highlight potential new target genes for CKD development.
Collapse
|
89
|
Brennan EP, Cacace A, Godson C. Specialized pro-resolving mediators in renal fibrosis. Mol Aspects Med 2017; 58:102-113. [PMID: 28479307 DOI: 10.1016/j.mam.2017.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/28/2017] [Accepted: 05/01/2017] [Indexed: 12/31/2022]
Abstract
Inflammation and its timely resolution play a critical role in effective host defence and wound healing. Unresolved inflammatory responses underlie the pathology of many prevalent diseases resulting in tissue fibrosis and eventual organ failure as typified by kidney, lung and liver fibrosis. The role of autocrine and paracrine mediators including cytokines, prostaglandins and leukotrienes in initiating and sustaining inflammation is well established. More recently a physiological role for specialized pro-resolving lipid mediators [SPMs] in modulating inflammatory responses and promoting the resolution of inflammation has been appreciated. As will be discussed in this review, SPMs not only attenuate the development of fibrosis through promoting the resolution of inflammation but may also directly suppress fibrotic responses. These findings suggest novel therapeutic paradigms to treat intractable life-limiting diseases such as renal fibrosis.
Collapse
Affiliation(s)
- Eoin P Brennan
- UCD Diabetes Complications Research Centre, UCD Conway Institute & UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Antonino Cacace
- UCD Diabetes Complications Research Centre, UCD Conway Institute & UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Catherine Godson
- UCD Diabetes Complications Research Centre, UCD Conway Institute & UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
90
|
Zhang J, Chen JH, Liu XD, Wang HY, Liu XL, Li XY, Wu ZF, Zhu MJ, Zhao SH. Genomewide association studies for hematological traits and T lymphocyte subpopulations in a Duroc × Erhualian F resource population. J Anim Sci 2017; 94:5028-5041. [PMID: 28046140 DOI: 10.2527/jas.2016-0924] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
It has been shown that hematological traits can act as important indicators of immune function in both humans and livestock. T lymphocytes are key components of the adaptive immune system, playing a critical role in immune response. To identify genomic regions affecting hematological traits and T lymphocyte subpopulations, we performed both a SNP-based genomewide association study (GWAS) and a haplotype analysis for 20 hematological traits and 8 T cell subpopulations at 3 different time points (d 20, 33, and 35) in a Duroc × Erhualian F intercross population. Bonferroni correction was used to calculate the threshold -values for suggestive and 5% genomewide significance levels. In total, for SNP-based GWAS, we detected 96 significant SNP, including 15 genomewide-significant SNP, associated with 23 hematological traits and 234 significant SNP, including 27 genomewide-significant SNP, associated with 8 T cell subpopulations. Meanwhile, we identified 563 significant SNP, including 7 genomewide-significant SNP, associated with 5 hematological traits and 2,407 significant SNP, including 1,261 genomewide-significant SNP, associated with 8 T cell subpopulations by haplotype analysis. Among the significant regions detected, we propose both the () gene and the () gene on SSC3 as plausible candidate genes associated with CD/CD T lymphocytes at d 20. The findings provide insights into the basis of molecular mechanisms that are involved with immune response in the domestic pig and would aid further identification of causative mutations.
Collapse
|
91
|
Parsa A, Kanetsky PA, Xiao R, Gupta J, Mitra N, Limou S, Xie D, Xu H, Anderson AH, Ojo A, Kusek JW, Lora CM, Hamm LL, He J, Sandholm N, Jeff J, Raj DE, Böger CA, Bottinger E, Salimi S, Parekh RS, Adler SG, Langefeld CD, Bowden DW, Groop PH, Forsblom C, Freedman BI, Lipkowitz M, Fox CS, Winkler CA, Feldman HI. Genome-Wide Association of CKD Progression: The Chronic Renal Insufficiency Cohort Study. J Am Soc Nephrol 2017; 28:923-934. [PMID: 27729571 PMCID: PMC5328149 DOI: 10.1681/asn.2015101152] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 08/25/2016] [Indexed: 11/03/2022] Open
Abstract
The rate of decline of renal function varies significantly among individuals with CKD. To understand better the contribution of genetics to CKD progression, we performed a genome-wide association study among participants in the Chronic Renal Insufficiency Cohort Study. Our outcome of interest was CKD progression measured as change in eGFR over time among 1331 blacks and 1476 whites with CKD. We stratified all analyses by race and subsequently, diabetes status. Single-nucleotide polymorphisms (SNPs) that surpassed a significance threshold of P<1×10-6 for association with eGFR slope were selected as candidates for follow-up and secondarily tested for association with proteinuria and time to ESRD. We identified 12 such SNPs among black patients and six such SNPs among white patients. We were able to conduct follow-up analyses of three candidate SNPs in similar (replication) cohorts and eight candidate SNPs in phenotype-related (validation) cohorts. Among blacks without diabetes, rs653747 in LINC00923 replicated in the African American Study of Kidney Disease and Hypertension cohort (discovery P=5.42×10-7; replication P=0.039; combined P=7.42×10-9). This SNP also associated with ESRD (hazard ratio, 2.0 (95% confidence interval, 1.5 to 2.7); P=4.90×10-6). Similarly, rs931891 in LINC00923 associated with eGFR decline (P=1.44×10-4) in white patients without diabetes. In summary, SNPs in LINC00923, an RNA gene expressed in the kidney, significantly associated with CKD progression in individuals with nondiabetic CKD. However, the lack of equivalent cohorts hampered replication for most discovery loci. Further replication of our findings in comparable study populations is warranted.
Collapse
Affiliation(s)
- Afshin Parsa
- Division of Nephrology and
- Department of Medicine, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Peter A Kanetsky
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Rui Xiao
- Department of Biostatistics and Epidemiology and
| | - Jayanta Gupta
- Department of Health Sciences, College of Health Professions and Social Work, Florida Gulf Coast University, Fort Myers, FL
| | | | - Sophie Limou
- Molecular Genetic Epidemiology Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute and Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland
| | - Dawei Xie
- Department of Biostatistics and Epidemiology and
| | | | - Amanda Hyre Anderson
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Akinlolu Ojo
- Division of Nephrology, University of Michigan, Ann Arbor, Michigan
| | - John W Kusek
- Division of Kidney, Urologic and Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Claudia M Lora
- Department of Medicine, Division of Nephrology, University of Illinois at Chicago, Chicago, Illinois
| | - L Lee Hamm
- Department of Medicine, Section of Nephrology, Tulane University, New Orleans, Louisiana
| | - Jiang He
- Department of Medicine, Section of Nephrology, Tulane University, New Orleans, Louisiana
| | - Niina Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Janina Jeff
- Department of Medicine, The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine Mount Sinai, New York, New York
| | - Dominic E Raj
- Department of Medicine, The George Washington University School of Medicine, Washington, DC
| | - Carsten A Böger
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Erwin Bottinger
- Department of Medicine, The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine Mount Sinai, New York, New York
| | - Shabnam Salimi
- Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Rulan S Parekh
- Division of Nephrology, Department of Pediatrics and Medicine, Hospital for Sick Children, University Health Network and the University of Toronto, Toronto, Ontario, Canada
| | - Sharon G Adler
- Department of Medicine, Division of Nephrology and Hypertension, Harbor-University of California, Los Angeles Medical Center, Los Angeles, California
| | | | | | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Carol Forsblom
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Barry I Freedman
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Michael Lipkowitz
- Department of Medicine, Georgetown University Medical Center, Washington, DC; and
| | - Caroline S Fox
- Division of Intramural Research, National Heart, Lung and Blood Institute's Framingham Heart Study, National Heart, Lung and Blood Institute, Framingham, Massachusetts
| | | | - Harold I Feldman
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
92
|
Ahola AJ, Sandholm N, Forsblom C, Harjutsalo V, Dahlström E, Groop PH. The serum uric acid concentration is not causally linked to diabetic nephropathy in type 1 diabetes. Kidney Int 2017; 91:1178-1185. [PMID: 28238338 DOI: 10.1016/j.kint.2016.11.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
Abstract
Previous studies have shown a relationship between uric acid concentration and progression of renal disease. Here we studied causality between the serum uric acid concentration and progression of diabetic nephropathy in 3895 individuals with type 1 diabetes in the FinnDiane Study. The renal status was assessed with the urinary albumin excretion rate and estimated glomerular filtration rate (eGFR) at baseline and at the end of the follow-up. Based on previous genomewide association studies on serum uric acid concentration, 23 single nucleotide polymorphisms (SNPs) with good imputation quality were selected for the SNP score. This score was used to assess the causality between serum uric acid and renal complications using a Mendelian randomization approach. At baseline, the serum uric acid concentration was higher with worsening renal status. In multivariable Cox regression analyses, baseline serum uric acid concentration was not independently associated with progression of diabetic nephropathy over a mean follow-up of 7 years. However, over the same period, baseline serum uric acid was independently associated with the decline in eGFR. In the cross-sectional logistic regression analyses, the SNP score was associated with the serum uric acid concentration. Nevertheless, the Mendelian randomization showed no causality between uric acid and diabetic nephropathy, eGFR categories, or eGFR as a continuous variable. Thus, our results suggest that the serum uric acid concentration is not causally related to diabetic nephropathy but is a downstream marker of kidney damage.
Collapse
Affiliation(s)
- Aila J Ahola
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland; Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Program Unit, Diabetes and Obesity, University of Helsinki, Finland
| | - Niina Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland; Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Program Unit, Diabetes and Obesity, University of Helsinki, Finland
| | - Carol Forsblom
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland; Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Program Unit, Diabetes and Obesity, University of Helsinki, Finland
| | - Valma Harjutsalo
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland; Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Program Unit, Diabetes and Obesity, University of Helsinki, Finland; Chronic Disease Prevention Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Emma Dahlström
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland; Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Program Unit, Diabetes and Obesity, University of Helsinki, Finland
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland; Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Program Unit, Diabetes and Obesity, University of Helsinki, Finland; Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia.
| | | |
Collapse
|
93
|
Ma RCW, Cooper ME. Genetics of Diabetic Kidney Disease-From the Worst of Nightmares to the Light of Dawn? J Am Soc Nephrol 2017; 28:389-393. [PMID: 27881608 PMCID: PMC5280033 DOI: 10.1681/asn.2016091028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Ronald C W Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong;
- Li Ka Shing Institute of Health Sciences and
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong; and
| | - Mark E Cooper
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| |
Collapse
|
94
|
Buzzetti R, Prudente S, Copetti M, Dauriz M, Zampetti S, Garofolo M, Penno G, Trischitta V. Clinical worthlessness of genetic prediction of common forms of diabetes mellitus and related chronic complications: A position statement of the Italian Society of Diabetology. Nutr Metab Cardiovasc Dis 2017; 27:99-114. [PMID: 28063875 DOI: 10.1016/j.numecd.2016.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/01/2016] [Accepted: 08/13/2016] [Indexed: 02/08/2023]
Abstract
AIM We are currently facing several attempts aimed at marketing genetic data for predicting multifactorial diseases, among which diabetes mellitus is one of the more prevalent. The present document primarily aims at providing to practicing physicians a summary of available data regarding the role of genetic information in predicting diabetes and its chronic complications. DATA SYNTHESIS Firstly, general information about characteristics and performance of risk prediction tools will be presented in order to help clinicians to get acquainted with basic methodological information related to the subject at issue. Then, as far as type 1 diabetes is concerned, available data indicate that genetic information and counseling may be useful only in families with many affected individuals. However, since no disease prevention is possible, the utility of predicting this form of diabetes is at question. In the case of type 2 diabetes, available data really question the utility of adding genetic information on top of well performing, easy available and inexpensive non-genetic markers. Finally, the possibility of using the few available genetic data on diabetic complications for improving our ability to predict them will also be presented and discussed. For cardiovascular complication, the addition of genetic information to models based on clinical features does not translate in a substantial improvement in risk discrimination. For all other diabetic complications genetic information are currently very poor and cannot, therefore, be used for improving risk stratification. CONCLUSIONS In all, nowadays the use of genetic testing for predicting diabetes and its chronic complications is definitively of little value in clinical practice.
Collapse
Affiliation(s)
- R Buzzetti
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy; UOC Diabetology, Polo Pontino, "Sapienza" University of Rome, Rome, Italy
| | - S Prudente
- Mendel Laboratory, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - M Copetti
- Unit of Biostatistics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - M Dauriz
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Verona School of Medicine and Hospital Trust of Verona, Verona, Italy
| | - S Zampetti
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy; UOC Diabetology, Polo Pontino, "Sapienza" University of Rome, Rome, Italy
| | - M Garofolo
- Section of Diabetes and Metabolic Disease, Department of Clinical and Experimental Medicine, University of Pisa and Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - G Penno
- Section of Diabetes and Metabolic Disease, Department of Clinical and Experimental Medicine, University of Pisa and Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - V Trischitta
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy; Mendel Laboratory, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy; Research Unit of Diabetes and Endocrine Diseases, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.
| |
Collapse
|
95
|
Papadopoulou-Marketou N, Chrousos GP, Kanaka-Gantenbein C. Diabetic nephropathy in type 1 diabetes: a review of early natural history, pathogenesis, and diagnosis. Diabetes Metab Res Rev 2017; 33. [PMID: 27457509 DOI: 10.1002/dmrr.2841] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 06/20/2016] [Accepted: 07/15/2016] [Indexed: 12/16/2022]
Abstract
Diabetic nephropathy constitutes a devastating complication in patients with type 1 diabetes mellitus, and its diagnosis is traditionally based on microalbuminuria. The aim of this review is to update through the medical literature the suggested early natural course of diabetic nephropathy, the theories behind the pathways of its pathogenesis, and its diagnosis. Poor glycemic control, dyslipidemia, smoking, advanced glycation end products, and environmental and genetic clues play an important role in the development of diabetic nephropathy. Microalbuminuria has been traditionally considered as a primary early marker of microvascular complication unraveling the risk for progress to the advanced stages of chronic kidney disease, but because of our inability to make an early diagnosis of diabetic nephropathy in young patients as well as nonalbuminuric diabetic nephropathy, recently, other additional markers of renal injury like serum and urinary neutrophil gelatinase-associated lipocalin, chitinase-3-like protein 1, cystatin C, and plasma growth differentiation factor 15 have been proposed to unmask early renal dysfunction, even before microalbuminuria supervenes. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Nektaria Papadopoulou-Marketou
- Diabetes Centre of the Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
- Department of Endocrinology, Department of Medical and Health Sciences, Linkoping University, Linkoping, Sweden
| | - George P Chrousos
- Diabetes Centre of the Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | - Christina Kanaka-Gantenbein
- Diabetes Centre of the Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| |
Collapse
|
96
|
Abstract
Kidney disease is a serious development in diabetes mellitus and poses an increasing clinical problem. Despite increasing incidence and prevalence of diabetic kidney disease, there have been no new therapies for this condition in the last 20 years. Mounting evidence supports a biological role for C-peptide, and findings from multiple studies now suggest that C-peptide may beneficially affect the disturbed metabolic and pathophysiological pathways leading to the development of diabetic nephropathy. Studies of C-peptide in animal models and in humans with type 1 diabetes all suggest a renoprotective effect for this peptide. In diabetic rodents, C-peptide reduces glomerular hyperfiltration and albuminuria. Cohort studies of diabetic patients with combined islet and kidney transplants suggest that maintained C-peptide secretion is protective of renal graft function. Further, in short-term studies of patients with type 1 diabetes, administration of C-peptide is also associated with a lowered hyperfiltration rate and reduced microalbuminuria. Thus, the available information suggests that type 1 diabetes should be regarded as a dual hormone deficiency disease and that clinical trials of C-peptide in diabetic nephropathy are both justified and urgently required.
Collapse
Affiliation(s)
- N J Brunskill
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| |
Collapse
|
97
|
Lee HW, Khan SQ, Khaliqdina S, Altintas MM, Grahammer F, Zhao JL, Koh KH, Tardi NJ, Faridi MH, Geraghty T, Cimbaluk DJ, Susztak K, Moita LF, Baltimore D, Tharaux PL, Huber TB, Kretzler M, Bitzer M, Reiser J, Gupta V. Absence of miR-146a in Podocytes Increases Risk of Diabetic Glomerulopathy via Up-regulation of ErbB4 and Notch-1. J Biol Chem 2016; 292:732-747. [PMID: 27913625 DOI: 10.1074/jbc.m116.753822] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 12/01/2016] [Indexed: 12/31/2022] Open
Abstract
Podocyte injury is an early event in diabetic kidney disease and is a hallmark of glomerulopathy. MicroRNA-146a (miR-146a) is highly expressed in many cell types under homeostatic conditions, and plays an important anti-inflammatory role in myeloid cells. However, its role in podocytes is unclear. Here, we show that miR-146a expression levels decrease in the glomeruli of patients with type 2 diabetes (T2D), which correlates with increased albuminuria and glomerular damage. miR-146a levels are also significantly reduced in the glomeruli of albuminuric BTBR ob/ob mice, indicating its significant role in maintaining podocyte health. miR-146a-deficient mice (miR-146a-/-) showed accelerated development of glomerulopathy and albuminuria upon streptozotocin (STZ)-induced hyperglycemia. The miR-146a targets, Notch-1 and ErbB4, were also significantly up-regulated in the glomeruli of diabetic patients and mice, suggesting induction of the downstream TGFβ signaling. Treatment with a pan-ErbB kinase inhibitor erlotinib with nanomolar activity against ErbB4 significantly suppressed diabetic glomerular injury and albuminuria in both WT and miR-146a-/- animals. Treatment of podocytes in vitro with TGF-β1 resulted in increased expression of Notch-1, ErbB4, pErbB4, and pEGFR, the heterodimerization partner of ErbB4, suggesting increased ErbB4/EGFR signaling. TGF-β1 also increased levels of inflammatory cytokine monocyte chemoattractant protein-1 (MCP-1) and MCP-1 induced protein-1 (MCPIP1), a suppressor of miR-146a, suggesting an autocrine loop. Inhibition of ErbB4/EGFR with erlotinib co-treatment of podocytes suppressed this signaling. Our findings suggest a novel role for miR-146a in protecting against diabetic glomerulopathy and podocyte injury. They also point to ErbB4/EGFR as a novel, druggable target for therapeutic intervention, especially because several pan-ErbB inhibitors are clinically available.
Collapse
Affiliation(s)
- Ha Won Lee
- From the Departments of Internal Medicine and
| | | | | | | | - Florian Grahammer
- the Department of Medicine IV, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Jimmy L Zhao
- the Department of Medicine, New York Presbyterian/Weill Cornell Medical Center, New York, New York 10065.,the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Kwi Hye Koh
- From the Departments of Internal Medicine and
| | | | | | | | - David J Cimbaluk
- Pathology, Rush University Medical Center, Chicago, Illinois 60612
| | - Katalin Susztak
- the Department of Medicine, Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Luis F Moita
- the Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - David Baltimore
- the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Pierre-Louis Tharaux
- the Paris Cardiovascular Centre (PARCC), Institut National de la Santé et de la Recherche Médicale (INSERM), 75015 Paris, France and the Université Paris Descartes, Sorbonne Paris Cité, 75270 Paris, France
| | - Tobias B Huber
- the Department of Medicine IV, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.,the BIOSS Center for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.,the FRIAS, Freiburg Institute for Advanced Studies and ZBSA-Center for Systems Biology, Albert-Ludwigs-University, 79104 Freiburg, Germany, and
| | - Matthias Kretzler
- the Division of Nephrology, University of Michigan, Ann Arbor, Michigan 48109
| | - Markus Bitzer
- the Division of Nephrology, University of Michigan, Ann Arbor, Michigan 48109
| | | | | |
Collapse
|
98
|
Abstract
Chronic kidney disease (CKD) is a lethal and rapidly increasing burden on society. Despite this, there are relatively few therapies in development for the treatment of CKD. Several recent costly phase 3 trials have failed to provide improved renal outcomes, diminishing interest in pharmaceutical investment. Furthermore, poor patient, physician, and payer awareness of CKD as a diagnosis has contributed to slow trial enrollment and successful implementation of these trials. Nevertheless, several therapeutics remain in development for the treatment of CKD, including mineralocorticoid-receptor antagonists, sodium/glucose cotransporter 2 inhibitors, anti-inflammatory drugs, and drugs that mitigate oxidative injury. Success of future CKD therapeutic trials will depend not only on improved understanding of disease pathogenesis, but also on improved trial enrollment rates, through increasing awareness of this disease by the public, policy makers, and the greater medical community.
Collapse
Affiliation(s)
- Matthew D Breyer
- Biotechnology Discovery Research, Eli Lilly and Company, Indianapolis, IN.
| | - Katalin Susztak
- Renal Electrolyte and Hypertension Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
99
|
Sandholm N, Van Zuydam N, Ahlqvist E, Juliusdottir T, Deshmukh HA, Rayner NW, Di Camillo B, Forsblom C, Fadista J, Ziemek D, Salem RM, Hiraki LT, Pezzolesi M, Trégouët D, Dahlström E, Valo E, Oskolkov N, Ladenvall C, Marcovecchio ML, Cooper J, Sambo F, Malovini A, Manfrini M, McKnight AJ, Lajer M, Harjutsalo V, Gordin D, Parkkonen M, Tuomilehto J, Lyssenko V, McKeigue PM, Rich SS, Brosnan MJ, Fauman E, Bellazzi R, Rossing P, Hadjadj S, Krolewski A, Paterson AD, Florez JC, Hirschhorn JN, Maxwell AP, Dunger D, Cobelli C, Colhoun HM, Groop L, McCarthy MI, Groop PH. The Genetic Landscape of Renal Complications in Type 1 Diabetes. J Am Soc Nephrol 2016; 28:557-574. [PMID: 27647854 DOI: 10.1681/asn.2016020231] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 07/17/2016] [Indexed: 12/14/2022] Open
Abstract
Diabetes is the leading cause of ESRD. Despite evidence for a substantial heritability of diabetic kidney disease, efforts to identify genetic susceptibility variants have had limited success. We extended previous efforts in three dimensions, examining a more comprehensive set of genetic variants in larger numbers of subjects with type 1 diabetes characterized for a wider range of cross-sectional diabetic kidney disease phenotypes. In 2843 subjects, we estimated that the heritability of diabetic kidney disease was 35% (P=6.4×10-3). Genome-wide association analysis and replication in 12,540 individuals identified no single variants reaching stringent levels of significance and, despite excellent power, provided little independent confirmation of previously published associated variants. Whole-exome sequencing in 997 subjects failed to identify any large-effect coding alleles of lower frequency influencing the risk of diabetic kidney disease. However, sets of alleles increasing body mass index (P=2.2×10-5) and the risk of type 2 diabetes (P=6.1×10-4) associated with the risk of diabetic kidney disease. We also found genome-wide genetic correlation between diabetic kidney disease and failure at smoking cessation (P=1.1×10-4). Pathway analysis implicated ascorbate and aldarate metabolism (P=9.0×10-6), and pentose and glucuronate interconversions (P=3.0×10-6) in pathogenesis of diabetic kidney disease. These data provide further evidence for the role of genetic factors influencing diabetic kidney disease in those with type 1 diabetes and highlight some key pathways that may be responsible. Altogether these results reveal important biology behind the major cause of kidney disease.
Collapse
Affiliation(s)
- Niina Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Natalie Van Zuydam
- Wellcome Trust Centre for Human Genetics,Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom.,Medical Research Institute
| | - Emma Ahlqvist
- Department of Clinical Sciences, Diabetes and Endocrinology, Skåne University Hospital, Lund University, Malmö, Sweden
| | | | - Harshal A Deshmukh
- Division of Population Health Sciences, University of Dundee, Dundee, United Kingdom
| | - N William Rayner
- Wellcome Trust Centre for Human Genetics,Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom.,Human Genetics, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Barbara Di Camillo
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Carol Forsblom
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Joao Fadista
- Department of Clinical Sciences, Diabetes and Endocrinology, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Daniel Ziemek
- Computational Sciences, Pfizer Worldwide Research and Development, Berlin, Germany
| | - Rany M Salem
- Departments of Genetics,Programs in Metabolism and Medical and Population Genetics, Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts.,Divisions of Endocrinology and Genetics, Boston Children's Hospital, Boston, Massachusetts
| | - Linda T Hiraki
- Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Marcus Pezzolesi
- Section on Genetics and Epidemiology, Joslin Diabetes Center, Boston, Massachusetts
| | - David Trégouët
- Sorbonne Universities, Pierre et Marie Curie University (UPMC) and National Institute for Health and Medical Research, Mixed Research Unit in Health (UMR_S) 1166, Paris, France.,Institute for Cardiometabolism and Nutrition, Genomics and pathophysiology of Cardiovascular diseases, Paris, France
| | - Emma Dahlström
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Erkka Valo
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Nikolay Oskolkov
- Department of Clinical Sciences, Diabetes and Endocrinology, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Claes Ladenvall
- Department of Clinical Sciences, Diabetes and Endocrinology, Skåne University Hospital, Lund University, Malmö, Sweden
| | | | - Jason Cooper
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Francesco Sambo
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Alberto Malovini
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy.,Laboratory of Informatics and Systems Engineering for Clinical Research, Scientific Institute for Research, Hospitalization and Health Care, IRCCS (Instituto di Ricovero e Cura a Carattere Scientifico); Salvatore Maugeri Foundation, Pavia, Italy
| | - Marco Manfrini
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Amy Jayne McKnight
- Nephrology Research, Centre for Public Health, Queen's University of Belfast, Belfast, United Kingdom
| | - Maria Lajer
- Diabetic Complications, Steno Diabetes Center, Gentofte, Denmark
| | - Valma Harjutsalo
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland.,The Chronic Disease Prevention Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Daniel Gordin
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Maija Parkkonen
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | | | - Jaakko Tuomilehto
- The Chronic Disease Prevention Unit, National Institute for Health and Welfare, Helsinki, Finland.,Centre for Vascular Prevention, Danube University Krems, Krems, Austria
| | - Valeriya Lyssenko
- Department of Clinical Sciences, Diabetes and Endocrinology, Skåne University Hospital, Lund University, Malmö, Sweden.,Diabetic Complications, Steno Diabetes Center, Gentofte, Denmark
| | - Paul M McKeigue
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | | | - Eric Fauman
- Computational Sciences, Pfizer Worldwide Research and Development, Cambridge, Massachusetts
| | - Riccardo Bellazzi
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Peter Rossing
- Diabetic Complications, Steno Diabetes Center, Gentofte, Denmark.,Department of Health, Aarhus University, Aarhus, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Samy Hadjadj
- Functional Research Unit of Medicine and Pharmacy, University of Poitiers, Poitiers, France.,Department of Endocrinology-Diabetology and Center of Clinical Investigation, Poitiers University Hospital, Poitiers, France.,Institute National pour la Santé et la Recherche Médicale, National Institute for Health and Medical Research, Center of Clinical Investigation 1402 and Unit 1082, Poitiers, France
| | - Andrzej Krolewski
- Section on Genetics and Epidemiology, Joslin Diabetes Center, Boston, Massachusetts
| | - Andrew D Paterson
- Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Jose C Florez
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts.,Diabetes Unit and Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts
| | - Joel N Hirschhorn
- Departments of Genetics,Programs in Metabolism and Medical and Population Genetics, Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts.,Divisions of Endocrinology and Genetics, Boston Children's Hospital, Boston, Massachusetts
| | - Alexander P Maxwell
- Nephrology Research, Centre for Public Health, Queen's University of Belfast, Belfast, United Kingdom.,Regional Nephrology Unit, Belfast City Hospital, Belfast, United Kingdom; and
| | | | - David Dunger
- Department of Paediatrics, Institute of Metabolic Science, and
| | - Claudio Cobelli
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Helen M Colhoun
- Division of Population Health Sciences, University of Dundee, Dundee, United Kingdom
| | - Leif Groop
- Department of Clinical Sciences, Diabetes and Endocrinology, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Mark I McCarthy
- Wellcome Trust Centre for Human Genetics,Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom.,Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, United Kingdom
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland.,Baker IDI (International Diabetes Institute) Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | | |
Collapse
|
100
|
Feodoroff M, Harjutsalo V, Forsblom C, Sandholm N, Groop PH. The impact of smoking on the effect of the rs4972593 genetic variant on end-stage renal disease. Diabet Med 2016; 33:1301-3. [PMID: 26535560 DOI: 10.1111/dme.13027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 09/14/2015] [Accepted: 10/29/2015] [Indexed: 11/30/2022]
Affiliation(s)
- M Feodoroff
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - V Harjutsalo
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
- National Institute for Health and Welfare, The Chronic Disease Prevention Unit, Helsinki, Finland
| | - C Forsblom
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - N Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - P-H Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
- The Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| |
Collapse
|