51
|
Genetic insights into the social organisation of the Avar period elite in the 7th century AD Carpathian Basin. Sci Rep 2020; 10:948. [PMID: 31969576 PMCID: PMC6976699 DOI: 10.1038/s41598-019-57378-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 12/20/2019] [Indexed: 01/13/2023] Open
Abstract
After 568 AD the Avars settled in the Carpathian Basin and founded the Avar Qaganate that was an important power in Central Europe until the 9th century. Part of the Avar society was probably of Asian origin; however, the localisation of their homeland is hampered by the scarcity of historical and archaeological data. Here, we study mitogenome and Y chromosomal variability of twenty-six individuals, a number of them representing a well-characterised elite group buried at the centre of the Carpathian Basin more than a century after the Avar conquest. The studied group has maternal and paternal genetic affinities to several ancient and modern East-Central Asian populations. The majority of the mitochondrial DNA variability represents Asian haplogroups (C, D, F, M, R, Y and Z). The Y-STR variability of the analysed elite males belongs only to five lineages, three N-Tat with mostly Asian parallels and two Q haplotypes. The homogeneity of the Y chromosomes reveals paternal kinship as a cohesive force in the organisation of the Avar elite strata on both social and territorial level. Our results indicate that the Avar elite arrived in the Carpathian Basin as a group of families, and remained mostly endogamous for several generations after the conquest.
Collapse
|
52
|
Deniskova T, Dotsev A, Lushihina E, Shakhin A, Kunz E, Medugorac I, Reyer H, Wimmers K, Khayatzadeh N, Sölkner J, Sermyagin A, Zhunushev A, Brem G, Zinovieva N. Population Structure and Genetic Diversity of Sheep Breeds in the Kyrgyzstan. Front Genet 2019; 10:1311. [PMID: 31921318 PMCID: PMC6922024 DOI: 10.3389/fgene.2019.01311] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 11/28/2019] [Indexed: 11/29/2022] Open
Abstract
Sheep are a main livestock species of Kyrgyzstan, a Central Asian country with predominating mountain terrain. The current gene pool of local sheep resources has been forming under diverse climate conditions from the era of the trading caravans of the Great Silk Road, through the Soviet period of large-scale livestock improvements, which was followed by the deep crisis at the end of the 20th century, up to now. However, not much is known about the genetic background and variability of the local sheep populations. Therefore, our aims were to provide a characterization of the population structure and genetic relations within the Kyrgyz sheep breeds and to study their genetic connections with the global sheep breeds using SNP analysis. Samples of the Alai (n = 31), Gissar (n = 30), Kyrgyz coarse wool (n = 13), Aykol (n = 31), and Tien-Shan (n = 24) breeds were genotyped with the OvineSNP50 BeadChip or the Ovine Infinium HD BeadChip (Illumina Inc., USA). The measure of inbreeding based on runs of homozygosity showed a minimum value in the Aykol breed (FROH = 0.034), while the maximum was found in the Alai breed (FROH = 0.071). Short ROH segments (ROH ≤ 4 Mb) were predominant in all breeds. Long ROH segments (ROH > 16 Mb) were absent in the Gissar breed. The Gissar and Aykol breeds had the highest values of the effective population sizes estimated for five generations ago (Ne5 = 660 and 563), whereas the Alai and Kyrgyz coarse wool displayed lower values (Ne5 = 176 and 128, respectively). The synthetic origin of the Aykol breed was clearly evidenced by all analyses applied. Based on the network and admixture analyses of the Kyrgyz and global sheep breeds, the Tien-Shan and the Russian semi-fine wool breeds demonstrated a common ancestry that most likely is due to a contribution of the Lincoln breed. The Gissar, Aykol, and Kyrgyz coarse wool breeds showed a genetic background predominating in sheep populations from Iran and China whereas the Alai demonstrated the different ancestry type. The revealed admixture patterns probably resulted from the exchange and trade during the era of the Great Silk Road, which partly overlapped with historical and archeological findings.
Collapse
Affiliation(s)
- Tatiana Deniskova
- L.K. Ernst Federal Science Center for Animal Husbandry, Podolsk, Russia
| | - Arsen Dotsev
- L.K. Ernst Federal Science Center for Animal Husbandry, Podolsk, Russia
| | - Eugenia Lushihina
- Institute of Biotechnology, National Academy of Science of Kyrgyz Republic, Bishkek, Kyrgyzstan
| | - Alexey Shakhin
- L.K. Ernst Federal Science Center for Animal Husbandry, Podolsk, Russia
| | - Elisabeth Kunz
- Population Genomics Group, Department of Veterinary Sciences, Ludwig Maximilians University of Munich, Munich, Germany
| | - Ivica Medugorac
- Population Genomics Group, Department of Veterinary Sciences, Ludwig Maximilians University of Munich, Munich, Germany
| | - Henry Reyer
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Klaus Wimmers
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Negar Khayatzadeh
- Division of Livestock Sciences, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Johann Sölkner
- Division of Livestock Sciences, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | | | - Asankadyr Zhunushev
- Institute of Biotechnology, National Academy of Science of Kyrgyz Republic, Bishkek, Kyrgyzstan
| | - Gottfried Brem
- L.K. Ernst Federal Science Center for Animal Husbandry, Podolsk, Russia.,Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
| | - Natalia Zinovieva
- L.K. Ernst Federal Science Center for Animal Husbandry, Podolsk, Russia
| |
Collapse
|
53
|
Ongaro L, Scliar MO, Flores R, Raveane A, Marnetto D, Sarno S, Gnecchi-Ruscone GA, Alarcón-Riquelme ME, Patin E, Wangkumhang P, Hellenthal G, Gonzalez-Santos M, King RJ, Kouvatsi A, Balanovsky O, Balanovska E, Atramentova L, Turdikulova S, Mastana S, Marjanovic D, Mulahasanovic L, Leskovac A, Lima-Costa MF, Pereira AC, Barreto ML, Horta BL, Mabunda N, May CA, Moreno-Estrada A, Achilli A, Olivieri A, Semino O, Tambets K, Kivisild T, Luiselli D, Torroni A, Capelli C, Tarazona-Santos E, Metspalu M, Pagani L, Montinaro F. The Genomic Impact of European Colonization of the Americas. Curr Biol 2019; 29:3974-3986.e4. [PMID: 31735679 DOI: 10.1016/j.cub.2019.09.076] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/06/2019] [Accepted: 09/30/2019] [Indexed: 12/30/2022]
Abstract
The human genetic diversity of the Americas has been affected by several events of gene flow that have continued since the colonial era and the Atlantic slave trade. Moreover, multiple waves of migration followed by local admixture occurred in the last two centuries, the impact of which has been largely unexplored. Here, we compiled a genome-wide dataset of ∼12,000 individuals from twelve American countries and ∼6,000 individuals from worldwide populations and applied haplotype-based methods to investigate how historical movements from outside the New World affected (1) the genetic structure, (2) the admixture profile, (3) the demographic history, and (4) sex-biased gene-flow dynamics of the Americas. We revealed a high degree of complexity underlying the genetic contribution of European and African populations in North and South America, from both geographic and temporal perspectives, identifying previously unreported sources related to Italy, the Middle East, and to specific regions of Africa.
Collapse
Affiliation(s)
- Linda Ongaro
- Estonian Biocentre, Institute of Genomics, Riia 23, Tartu 51010, Estonia; Department of Evolutionary Biology, Institute of Molecular and Cell Biology, Riia 23, Tartu 51010, Estonia.
| | - Marilia O Scliar
- Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, SP 05508-090, Brazil; Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Rodrigo Flores
- Estonian Biocentre, Institute of Genomics, Riia 23, Tartu 51010, Estonia
| | - Alessandro Raveane
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Davide Marnetto
- Estonian Biocentre, Institute of Genomics, Riia 23, Tartu 51010, Estonia
| | - Stefania Sarno
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna 40100, Italy
| | - Guido A Gnecchi-Ruscone
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna 40100, Italy; Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany
| | - Marta E Alarcón-Riquelme
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada 18016, Spain
| | - Etienne Patin
- Human Evolutionary Genetics Unit, Pasteur Institute, UMR2000, CNRS, Paris 75015, France
| | - Pongsakorn Wangkumhang
- Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Garrett Hellenthal
- Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | | | - Roy J King
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
| | - Anastasia Kouvatsi
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Oleg Balanovsky
- Vavilov Institute of General Genetics, Ulitsa Gubkina, 3, Moscow 117971, Russia; Research Centre for Medical Genetics, Moskvorech'ye Ulitsa, 1, Moscow 115478, Russia; Biobank of North Eurasia, Kotlyakovskaya Ulitsa, 3 строение 12, Moscow 115201, Russia
| | - Elena Balanovska
- Vavilov Institute of General Genetics, Ulitsa Gubkina, 3, Moscow 117971, Russia; Research Centre for Medical Genetics, Moskvorech'ye Ulitsa, 1, Moscow 115478, Russia; Biobank of North Eurasia, Kotlyakovskaya Ulitsa, 3 строение 12, Moscow 115201, Russia
| | - Lubov Atramentova
- Department of Genetics and Cytology, V.N. Karazin Kharkiv National University, Kharkiv 61022, Ukraine
| | - Shahlo Turdikulova
- Laboratory of Genomics, Institute of Bioorganic Chemistry, Academy of Sciences Republic of Uzbekistan, Tashkent 100047, Uzbekistan
| | - Sarabjit Mastana
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - Damir Marjanovic
- Department of Genetics and Bioengineering, Faculty of Engineering and Information Technologies, International Burch University, Sarajevo 71000, Bosnia and Herzegovina; Institute for Anthropological Researches, Zagreb, Croatia
| | | | - Andreja Leskovac
- Vinca Institute of Nuclear Sciences, University of Belgrade, M. Petrovica Alasa 12-14, Belgrade 11001, Serbia
| | - Maria F Lima-Costa
- Instituto de Pesquisa Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG 30190-002, Brazil
| | - Alexandre C Pereira
- Instituto do Coração, Universidade de São Paulo, São Paulo, SP 05403-900, Brazil
| | - Mauricio L Barreto
- Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, BA 0110-040, Brazil; Center of Data and Knowledge Integration for Health (CIDACS), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, BA 41745-715, Brazil
| | - Bernardo L Horta
- Programa de Pós-Graduação em Epidemiologia, Universidade Federal de Pelotas, 464, Pelotas, RS 96001-970, Brazil
| | - Nédio Mabunda
- Instituto Nacional de Saúde, Distrito de Marracuene, Estrada Nacional N 1, Província de Maputo, Maputo 1120, Mozambique
| | - Celia A May
- Department of Genetics & Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Andrés Moreno-Estrada
- National Laboratory of Genomics for Biodiversity (LANGEBIO), CINVESTAV, Irapuato, Guanajuato 36821, Mexico
| | - Alessandro Achilli
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Anna Olivieri
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Ornella Semino
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Kristiina Tambets
- Estonian Biocentre, Institute of Genomics, Riia 23, Tartu 51010, Estonia
| | - Toomas Kivisild
- Department of Human Genetics, KU Leuven, Herestraat 49 - box 602, Leuven 3000, Belgium
| | - Donata Luiselli
- Department of Cultural Heritage, University of Bologna, Ravenna Campus, Ravenna 48100, Italy
| | - Antonio Torroni
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia 27100, Italy
| | | | - Eduardo Tarazona-Santos
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Mait Metspalu
- Estonian Biocentre, Institute of Genomics, Riia 23, Tartu 51010, Estonia
| | - Luca Pagani
- Estonian Biocentre, Institute of Genomics, Riia 23, Tartu 51010, Estonia; Department of Biology, University of Padua, Via Ugo Bassi 58B, Padua 35100, Italy
| | - Francesco Montinaro
- Estonian Biocentre, Institute of Genomics, Riia 23, Tartu 51010, Estonia; Department of Zoology, University of Oxford, Oxford OX1 3SZ, UK.
| |
Collapse
|
54
|
Zhang C, Gao Y, Ning Z, Lu Y, Zhang X, Liu J, Xie B, Xue Z, Wang X, Yuan K, Ge X, Pan Y, Liu C, Tian L, Wang Y, Lu D, Hoh BP, Xu S. PGG.SNV: understanding the evolutionary and medical implications of human single nucleotide variations in diverse populations. Genome Biol 2019; 20:215. [PMID: 31640808 PMCID: PMC6805450 DOI: 10.1186/s13059-019-1838-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/26/2019] [Indexed: 12/23/2022] Open
Abstract
Despite the tremendous growth of the DNA sequencing data in the last decade, our understanding of the human genome is still in its infancy. To understand the implications of genetic variants in the light of population genetics and molecular evolution, we developed a database, PGG.SNV ( https://www.pggsnv.org ), which gives much higher weight to previously under-investigated indigenous populations in Asia. PGG.SNV archives 265 million SNVs across 220,147 present-day genomes and 1018 ancient genomes, including 1009 newly sequenced genomes, representing 977 global populations. Moreover, estimation of population genetic diversity and evolutionary parameters is available in PGG.SNV, a unique feature compared with other databases.
Collapse
Affiliation(s)
- Chao Zhang
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai, 200031, China
- Present Address: Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yang Gao
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai, 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Zhilin Ning
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai, 200031, China
| | - Yan Lu
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai, 200031, China
| | - Xiaoxi Zhang
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai, 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jiaojiao Liu
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai, 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Bo Xie
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai, 200031, China
| | - Zhe Xue
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai, 200031, China
| | - Xiaoji Wang
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai, 200031, China
| | - Kai Yuan
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai, 200031, China
| | - Xueling Ge
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai, 200031, China
| | - Yuwen Pan
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai, 200031, China
| | - Chang Liu
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai, 200031, China
| | - Lei Tian
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai, 200031, China
| | - Yuchen Wang
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai, 200031, China
| | - Dongsheng Lu
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai, 200031, China
| | - Boon-Peng Hoh
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai, 200031, China
- Faculty of Medicine and Health Sciences, UCSI University, Jalan Menara Gading, Taman Connaught, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Shuhua Xu
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS, Shanghai, 200031, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- Collaborative Innovation Center of Genetics and Development, Shanghai, 200438, China.
| |
Collapse
|
55
|
Distinct genetic variation and heterogeneity of the Iranian population. PLoS Genet 2019; 15:e1008385. [PMID: 31550250 PMCID: PMC6759149 DOI: 10.1371/journal.pgen.1008385] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 08/27/2019] [Indexed: 02/07/2023] Open
Abstract
Iran, despite its size, geographic location and past cultural influence, has largely been a blind spot for human population genetic studies. With only sparse genetic information on the Iranian population available, we pursued its genome-wide and geographic characterization based on 1021 samples from eleven ethnic groups. We show that Iranians, while close to neighboring populations, present distinct genetic variation consistent with long-standing genetic continuity, harbor high heterogeneity and different levels of consanguinity, fall apart into a cluster of similar groups and several admixed ones and have experienced numerous language adoption events in the past. Our findings render Iran an important source for human genetic variation in Western and Central Asia, will guide adequate study sampling and assist the interpretation of putative disease-implicated genetic variation. Given Iran's internal genetic heterogeneity, future studies will have to consider ethnic affiliations and possible admixture.
Collapse
|
56
|
Tamm E, Di Cristofaro J, Mazières S, Pennarun E, Kushniarevich A, Raveane A, Semino O, Chiaroni J, Pereira L, Metspalu M, Montinaro F. Genome-wide analysis of Corsican population reveals a close affinity with Northern and Central Italy. Sci Rep 2019; 9:13581. [PMID: 31537848 PMCID: PMC6753063 DOI: 10.1038/s41598-019-49901-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/31/2019] [Indexed: 01/13/2023] Open
Abstract
Despite being the fourth largest island in the Mediterranean basin, the genetic variation of Corsica has not been explored as exhaustively as Sardinia, which is situated only 11 km South. However, it is likely that the populations of the two islands shared, at least in part, similar demographic histories. Moreover, the relative small size of the Corsica may have caused genetic isolation, which, in turn, might be relevant under medical and translational perspectives. Here we analysed genome wide data of 16 Corsicans, and integrated with newly (33 individuals) and previously generated samples from West Eurasia and North Africa. Allele frequency, haplotype-based, and ancient genome analyses suggest that although Sardinia and Corsica may have witnessed similar isolation and migration events, the latter is genetically closer to populations from continental Europe, such as Northern and Central Italians.
Collapse
Affiliation(s)
- Erika Tamm
- Institute of Genomics, University of Tartu, Tartu, Estonia.
| | - Julie Di Cristofaro
- Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France.,Etablissement Français du Sang PACA Corse, Biologie des Groupes Sanguins, Marseille, France
| | | | - Erwan Pennarun
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Alena Kushniarevich
- Institute of Genomics, University of Tartu, Tartu, Estonia.,Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, 220072, Belarus
| | - Alessandro Raveane
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani" Università di Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Ornella Semino
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani" Università di Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Jacques Chiaroni
- Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France.,Etablissement Français du Sang PACA Corse, Biologie des Groupes Sanguins, Marseille, France
| | - Luisa Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135, Porto, Portugal
| | - Mait Metspalu
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Francesco Montinaro
- Institute of Genomics, University of Tartu, Tartu, Estonia. .,Department of Zoology, University of Oxford, Oxford, UK.
| |
Collapse
|
57
|
Raveane A, Aneli S, Montinaro F, Athanasiadis G, Barlera S, Birolo G, Boncoraglio G, Di Blasio AM, Di Gaetano C, Pagani L, Parolo S, Paschou P, Piazza A, Stamatoyannopoulos G, Angius A, Brucato N, Cucca F, Hellenthal G, Mulas A, Peyret-Guzzon M, Zoledziewska M, Baali A, Bycroft C, Cherkaoui M, Chiaroni J, Di Cristofaro J, Dina C, Dugoujon JM, Galan P, Giemza J, Kivisild T, Mazieres S, Melhaoui M, Metspalu M, Myers S, Pereira L, Ricaut FX, Brisighelli F, Cardinali I, Grugni V, Lancioni H, Pascali VL, Torroni A, Semino O, Matullo G, Achilli A, Olivieri A, Capelli C. Population structure of modern-day Italians reveals patterns of ancient and archaic ancestries in Southern Europe. SCIENCE ADVANCES 2019; 5:eaaw3492. [PMID: 31517044 PMCID: PMC6726452 DOI: 10.1126/sciadv.aaw3492] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/10/2019] [Accepted: 08/06/2019] [Indexed: 05/10/2023]
Abstract
European populations display low genetic differentiation as the result of long-term blending of their ancient founding ancestries. However, it is unclear how the combination of ancient ancestries related to early foragers, Neolithic farmers, and Bronze Age nomadic pastoralists can explain the distribution of genetic variation across Europe. Populations in natural crossroads like the Italian peninsula are expected to recapitulate the continental diversity, but have been systematically understudied. Here, we characterize the ancestry profiles of Italian populations using a genome-wide dataset representative of modern and ancient samples from across Italy, Europe, and the rest of the world. Italian genomes capture several ancient signatures, including a non-steppe contribution derived ultimately from the Caucasus. Differences in ancestry composition, as the result of migration and admixture, have generated in Italy the largest degree of population structure detected so far in the continent, as well as shaping the amount of Neanderthal DNA in modern-day populations.
Collapse
Affiliation(s)
- A. Raveane
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
- Department of Zoology, University of Oxford, Oxford, UK
| | - S. Aneli
- Department of Zoology, University of Oxford, Oxford, UK
- Department of Medical Sciences, University of Turin, Turin, Italy
- IIGM (Italian Institute for Genomic Medicine), Turin, Italy
| | - F. Montinaro
- Department of Zoology, University of Oxford, Oxford, UK
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - G. Athanasiadis
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - S. Barlera
- Department of Cardiovascular Research, Istituto di Ricovero e Cura a Carattere Scientifico–Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - G. Birolo
- Department of Medical Sciences, University of Turin, Turin, Italy
- IIGM (Italian Institute for Genomic Medicine), Turin, Italy
| | - G. Boncoraglio
- Department of Cerebrovascular Diseases, IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- PhD Program in Neuroscience, University Milano-Bicocca, Monza, Italy
| | - A. M. Di Blasio
- Istituto Auxologico Italiano, IRCCS, Centro di Ricerche e Tecnologie Biomediche, Milano, Italy
| | - C. Di Gaetano
- Department of Medical Sciences, University of Turin, Turin, Italy
- IIGM (Italian Institute for Genomic Medicine), Turin, Italy
| | - L. Pagani
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
- APE lab, Department of Biology, University of Padua, Padua, Italy
| | - S. Parolo
- Computational Biology Unit, Institute of Molecular Genetics, National Research Council, Pavia, Italy
| | - P. Paschou
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - A. Piazza
- Department of Medical Sciences, University of Turin, Turin, Italy
- Academy of Sciences, Turin, Italy
| | - G. Stamatoyannopoulos
- Department of Medicine and Genome Sciences, University of Washington, Seattle, WA, USA
| | - A. Angius
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| | - N. Brucato
- Evolutionary Medicine Group, Laboratoire d’Anthropologie Moléculaire et Imagerie de Synthèse, Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, Toulouse, France
| | - F. Cucca
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| | - G. Hellenthal
- University College London Genetics Institute (UGI), University College London, London, UK
| | - A. Mulas
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Lanusei, Italy
| | - M. Peyret-Guzzon
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - M. Zoledziewska
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| | - A. Baali
- Faculté des Sciences Semlalia de Marrakech (FSSM), Université Cadi Ayyad, Marrakech, Morocco
| | - C. Bycroft
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - M. Cherkaoui
- Faculté des Sciences Semlalia de Marrakech (FSSM), Université Cadi Ayyad, Marrakech, Morocco
| | - J. Chiaroni
- Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France
- Etablissement Français du Sang PACA Corse, Biologie des Groupes Sanguins, Marseille, France
| | - J. Di Cristofaro
- Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France
- Etablissement Français du Sang PACA Corse, Biologie des Groupes Sanguins, Marseille, France
| | - C. Dina
- l’institut du thorax, INSERM, CNRS, University of Nantes, Nantes, France
| | - J. M. Dugoujon
- Evolutionary Medicine Group, Laboratoire d’Anthropologie Moléculaire et Imagerie de Synthèse, Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, Toulouse, France
| | - P. Galan
- Equipe de Recherche en Epidémiologie Nutritionnelle (EREN), Centre de Recherche en Epidémiologie et Statistiques, Université Paris 13/Inserm U1153/Inra U1125/ Cnam, COMUE Sorbonne Paris Cité, F-93017 Bobigny, France
| | - J. Giemza
- l’institut du thorax, INSERM, CNRS, University of Nantes, Nantes, France
| | - T. Kivisild
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Human Genetics, KU Leuven, Herestraat 49, box 604, Leuven 3000, Belgium
| | - S. Mazieres
- Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France
| | - M. Melhaoui
- Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - M. Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - S. Myers
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - L. Pereira
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP–Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Porto, Portugal
| | - F. X. Ricaut
- Evolutionary Medicine Group, Laboratoire d’Anthropologie Moléculaire et Imagerie de Synthèse, Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, Toulouse, France
| | - F. Brisighelli
- Section of Legal Medicine, Institute of Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - I. Cardinali
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - V. Grugni
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - H. Lancioni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - V. L. Pascali
- Section of Legal Medicine, Institute of Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - A. Torroni
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - O. Semino
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - G. Matullo
- Department of Medical Sciences, University of Turin, Turin, Italy
- IIGM (Italian Institute for Genomic Medicine), Turin, Italy
| | - A. Achilli
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - A. Olivieri
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - C. Capelli
- Department of Zoology, University of Oxford, Oxford, UK
| |
Collapse
|
58
|
Zhang C, Gao Y, Liu J, Xue Z, Lu Y, Deng L, Tian L, Feng Q, Xu S. PGG.Population: a database for understanding the genomic diversity and genetic ancestry of human populations. Nucleic Acids Res 2019; 46:D984-D993. [PMID: 29112749 PMCID: PMC5753384 DOI: 10.1093/nar/gkx1032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/17/2017] [Indexed: 12/16/2022] Open
Abstract
There are a growing number of studies focusing on delineating genetic variations that are associated with complex human traits and diseases due to recent advances in next-generation sequencing technologies. However, identifying and prioritizing disease-associated causal variants relies on understanding the distribution of genetic variations within and among populations. The PGG.Population database documents 7122 genomes representing 356 global populations from 107 countries and provides essential information for researchers to understand human genomic diversity and genetic ancestry. These data and information can facilitate the design of research studies and the interpretation of results of both evolutionary and medical studies involving human populations. The database is carefully maintained and constantly updated when new data are available. We included miscellaneous functions and a user-friendly graphical interface for visualization of genomic diversity, population relationships (genetic affinity), ancestral makeup, footprints of natural selection, and population history etc. Moreover, PGG.Population provides a useful feature for users to analyze data and visualize results in a dynamic style via online illustration. The long-term ambition of the PGG.Population, together with the joint efforts from other researchers who contribute their data to our database, is to create a comprehensive depository of geographic and ethnic variation of human genome, as well as a platform bringing influence on future practitioners of medicine and clinical investigators. PGG.Population is available at https://www.pggpopulation.org.
Collapse
Affiliation(s)
- Chao Zhang
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Gao
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jiaojiao Liu
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhe Xue
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai 200031, China
| | - Yan Lu
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai 200031, China
| | - Lian Deng
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Tian
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qidi Feng
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuhua Xu
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.,Collaborative Innovation Center of Genetics and Development, Shanghai 200438, China
| |
Collapse
|
59
|
Timasheva YR, Balkhiyarova ZR, Nasibullin TR, Avzaletdinova DS, Morugova TV, Mustafina OE, Prokopenko I. Multilocus associations of inflammatory genes with the risk of type 1 diabetes. Gene 2019; 707:1-8. [PMID: 31054364 DOI: 10.1016/j.gene.2019.04.085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/10/2019] [Accepted: 04/30/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Genome-wide association studies have captured a large proportion of genetic variation related to type 1 diabetes mellitus (T1D). However, most of these studies are performed in populations of European ancestry and therefore the disease risk estimations can be inaccurate when extrapolated to other world populations. METHODS We conducted a case-control study in 1866 individuals from the three major populations of the Republic of Bashkortostan (Russians, Tatars, and Bashkirs) in Russian Federation, using single-locus and multilocus approach to identify genetic predictors of T1D. RESULTS We found that LTA rs909253 and TNF rs1800629 polymorphisms were associated with T1D in the group of Tatars. Meta-analysis of the association study results in the three ethnic groups has confirmed the association between the T1D risk and LTA rs909253 genetic variant. LTA rs909253 and TNF rs1800629 loci were also featured in combinations most significantly associated with T1D. CONCLUSION Our findings suggest that LTA rs909253 and TNF rs1800629 polymorphisms are associated with the risk of T1D both independently and in combination with polymorphic markers in other inflammatory genes, and the analysis of multi-allelic combinations provides valuable insight in the study of polygenic traits.
Collapse
Affiliation(s)
- Yanina R Timasheva
- Institute of Biochemistry and Genetics of Ufa Federal Research Centre of Russian Academy of Sciences, 71 October Avenue, 450054 Ufa, Russian Federation; Section of Genomics of Common Disease, Department of Medicine, Imperial College London, Hammersmith Hospital Campus, Burlington Danes Building, Du Cane Road, London W12 0NN, United Kingdom; Bashkir State Medical University, 3 Lenin street, 450000 Ufa, Russian Federation.
| | - Zhanna R Balkhiyarova
- Section of Genomics of Common Disease, Department of Medicine, Imperial College London, Hammersmith Hospital Campus, Burlington Danes Building, Du Cane Road, London W12 0NN, United Kingdom; Bashkir State Medical University, 3 Lenin street, 450000 Ufa, Russian Federation
| | - Timur R Nasibullin
- Institute of Biochemistry and Genetics of Ufa Federal Research Centre of Russian Academy of Sciences, 71 October Avenue, 450054 Ufa, Russian Federation
| | | | - Tatiana V Morugova
- Bashkir State Medical University, 3 Lenin street, 450000 Ufa, Russian Federation
| | - Olga E Mustafina
- Institute of Biochemistry and Genetics of Ufa Federal Research Centre of Russian Academy of Sciences, 71 October Avenue, 450054 Ufa, Russian Federation
| | - Inga Prokopenko
- Section of Genomics of Common Disease, Department of Medicine, Imperial College London, Hammersmith Hospital Campus, Burlington Danes Building, Du Cane Road, London W12 0NN, United Kingdom
| |
Collapse
|
60
|
Järve M, Saag L, Scheib CL, Pathak AK, Montinaro F, Pagani L, Flores R, Guellil M, Saag L, Tambets K, Kushniarevich A, Solnik A, Varul L, Zadnikov S, Petrauskas O, Avramenko M, Magomedov B, Didenko S, Toshev G, Bruyako I, Grechko D, Okatenko V, Gorbenko K, Smyrnov O, Heiko A, Reida R, Sapiehin S, Sirotin S, Tairov A, Beisenov A, Starodubtsev M, Vasilev V, Nechvaloda A, Atabiev B, Litvinov S, Ekomasova N, Dzhaubermezov M, Voroniatov S, Utevska O, Shramko I, Khusnutdinova E, Metspalu M, Savelev N, Kriiska A, Kivisild T, Villems R. Shifts in the Genetic Landscape of the Western Eurasian Steppe Associated with the Beginning and End of the Scythian Dominance. Curr Biol 2019; 29:2430-2441.e10. [PMID: 31303491 DOI: 10.1016/j.cub.2019.06.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/03/2019] [Accepted: 06/07/2019] [Indexed: 01/08/2023]
Abstract
The Early Iron Age nomadic Scythians have been described as a confederation of tribes of different origins, based on ancient DNA evidence [1-3]. It is still unclear how much of the Scythian dominance in the Eurasian Steppe was due to movements of people and how much reflected cultural diffusion and elite dominance. We present new whole-genome sequences of 31 ancient Western and Eastern Steppe individuals, including Scythians as well as samples pre- and postdating them, allowing us to set the Scythians in a temporal context (in the Western, i.e., Ponto-Caspian Steppe). We detect an increase of eastern (Altaian) affinity along with a decrease in eastern hunter-gatherer (EHG) ancestry in the Early Iron Age Ponto-Caspian gene pool at the start of the Scythian dominance. On the other hand, samples of the Chernyakhiv culture postdating the Scythians in Ukraine have a significantly higher proportion of Near Eastern ancestry than other samples of this study. Our results agree with the Gothic source of the Chernyakhiv culture and support the hypothesis that the Scythian dominance did involve a demic component.
Collapse
Affiliation(s)
- Mari Järve
- Estonian Biocentre, Institute of Genomics, University of Tartu, 23b Riia Street, Tartu 51010, Estonia.
| | - Lehti Saag
- Estonian Biocentre, Institute of Genomics, University of Tartu, 23b Riia Street, Tartu 51010, Estonia; Department of Evolutionary Biology, Institute of Molecular and Cell Biology, University of Tartu, 23b Riia Street, Tartu 51010, Estonia
| | - Christiana Lyn Scheib
- Estonian Biocentre, Institute of Genomics, University of Tartu, 23b Riia Street, Tartu 51010, Estonia
| | - Ajai K Pathak
- Estonian Biocentre, Institute of Genomics, University of Tartu, 23b Riia Street, Tartu 51010, Estonia; Department of Evolutionary Biology, Institute of Molecular and Cell Biology, University of Tartu, 23b Riia Street, Tartu 51010, Estonia
| | - Francesco Montinaro
- Estonian Biocentre, Institute of Genomics, University of Tartu, 23b Riia Street, Tartu 51010, Estonia
| | - Luca Pagani
- Estonian Biocentre, Institute of Genomics, University of Tartu, 23b Riia Street, Tartu 51010, Estonia; Department of Biology, University of Padova, Via U. Bassi 58/B, Padova 35121, Italy
| | - Rodrigo Flores
- Estonian Biocentre, Institute of Genomics, University of Tartu, 23b Riia Street, Tartu 51010, Estonia
| | - Meriam Guellil
- Estonian Biocentre, Institute of Genomics, University of Tartu, 23b Riia Street, Tartu 51010, Estonia
| | - Lauri Saag
- Estonian Biocentre, Institute of Genomics, University of Tartu, 23b Riia Street, Tartu 51010, Estonia
| | - Kristiina Tambets
- Estonian Biocentre, Institute of Genomics, University of Tartu, 23b Riia Street, Tartu 51010, Estonia
| | - Alena Kushniarevich
- Estonian Biocentre, Institute of Genomics, University of Tartu, 23b Riia Street, Tartu 51010, Estonia
| | - Anu Solnik
- Estonian Biocentre, Institute of Genomics, University of Tartu, 23b Riia Street, Tartu 51010, Estonia
| | - Liivi Varul
- School of Humanities, Tallinn University, 29 Narva Street, Tallinn 10120, Estonia
| | - Stanislav Zadnikov
- Museum of Archaeology, V.N. Karazin Kharkiv National University, 4 Svobody Square, Kharkiv 61022, Ukraine
| | - Oleg Petrauskas
- Institute of Archaeology, National Academy of Sciences of Ukraine, 12 Heroyiv Stalinhradu Avenue, Kyiv 04210, Ukraine
| | - Maryana Avramenko
- Institute of Archaeology, National Academy of Sciences of Ukraine, 12 Heroyiv Stalinhradu Avenue, Kyiv 04210, Ukraine
| | - Boris Magomedov
- Institute of Archaeology, National Academy of Sciences of Ukraine, 12 Heroyiv Stalinhradu Avenue, Kyiv 04210, Ukraine
| | - Serghii Didenko
- National Museum of History of Ukraine, 2 Volodymyrs'ka Street, Kyiv 02000, Ukraine
| | - Gennadi Toshev
- Zaporizhzhya National University, 33A Dniprovska Street, Zaporizhzhya 69061, Ukraine
| | - Igor Bruyako
- Odessa Archaeological Museum, 4 Lanzheronivs'ka Street, Odessa 65000, Ukraine
| | - Denys Grechko
- Institute of Archaeology, National Academy of Sciences of Ukraine, 12 Heroyiv Stalinhradu Avenue, Kyiv 04210, Ukraine
| | - Vitalii Okatenko
- SC SRC "Protective Archeological Service of Ukraine," Institute of Archaeology, National Academy of Sciences of Ukraine, 12 Heroyiv Stalinhradu Avenue, Kyiv 04210, Ukraine
| | - Kyrylo Gorbenko
- Mykolaiv V.O. Sukhomlynskyi National University, 24 Nikolska Street, Mykolaiv 54030, Ukraine
| | - Oleksandr Smyrnov
- Mykolaiv V.O. Sukhomlynskyi National University, 24 Nikolska Street, Mykolaiv 54030, Ukraine
| | - Anatolii Heiko
- National Museum of Ukrainian Pottery in Opishne, 102 Partyzanska Street, Opishne 38164, Ukraine
| | - Roman Reida
- Institute of Archaeology, National Academy of Sciences of Ukraine, 12 Heroyiv Stalinhradu Avenue, Kyiv 04210, Ukraine
| | - Serheii Sapiehin
- Anton Makarenko Museum, Poltava Regional Makarenko Scientific Lyceum, 1-2 Makarenko Lane, Kovalivka 38701, Ukraine
| | - Sergey Sirotin
- Institute of Archaeology, Russian Academy of Sciences, 19 Dmitri Ulyanov Street, Moscow 117292, Russia
| | - Aleksandr Tairov
- South Ural State University, 76 Lenin Avenue, Chelyabinsk 454080, Russia
| | - Arman Beisenov
- A. Kh. Margulan Institute of Archaeology, 44 Dostyk Avenue, Almaty 480100, Kazakhstan
| | - Maksim Starodubtsev
- Sterlitamak Museum of Local History, 100 Karl Marx Street, Sterlitamak 453124, Russia
| | - Vitali Vasilev
- LoCom Medien Akademie Europäisches Bildungsinstitut, Bachstraße 4, Bonn 53115, Germany
| | - Alexei Nechvaloda
- Institute of History, Language and Literature, Ufa Federal Research Centre of the Russian Academy of Sciences, 71 October Avenue, Ufa 450054, Russia
| | - Biyaslan Atabiev
- Institute for Caucasus Archaeology, 30 Katkhanova Street, Nalchik 361401, Russia
| | - Sergey Litvinov
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, 71 October Avenue, Ufa 450054, Russia
| | - Natalia Ekomasova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, 71 October Avenue, Ufa 450054, Russia; Department of Genetics and Fundamental Medicine, Bashkir State University, 32 Zaki Validi Street, Ufa 450076, Russia
| | - Murat Dzhaubermezov
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, 71 October Avenue, Ufa 450054, Russia; Department of Genetics and Fundamental Medicine, Bashkir State University, 32 Zaki Validi Street, Ufa 450076, Russia
| | - Sergey Voroniatov
- Department of Archaeology of Eastern Europe and Siberia, State Hermitage Museum, 34 Dvortsovaya Embankment, St. Petersburg 190000, Russia
| | - Olga Utevska
- Department of Genetics and Cytology, V.N. Karazin Kharkiv National University, 4 Svobody Square, Kharkiv 61022, Ukraine
| | - Irina Shramko
- Museum of Archaeology, V.N. Karazin Kharkiv National University, 4 Svobody Square, Kharkiv 61022, Ukraine
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, 71 October Avenue, Ufa 450054, Russia; Department of Genetics and Fundamental Medicine, Bashkir State University, 32 Zaki Validi Street, Ufa 450076, Russia
| | - Mait Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu, 23b Riia Street, Tartu 51010, Estonia
| | - Nikita Savelev
- Institute of History, Language and Literature, Ufa Federal Research Centre of the Russian Academy of Sciences, 71 October Avenue, Ufa 450054, Russia
| | - Aivar Kriiska
- Department of Archaeology, Institute of History and Archaeology, University of Tartu, 2 Jakobi Street, Tartu 51014, Estonia
| | - Toomas Kivisild
- Estonian Biocentre, Institute of Genomics, University of Tartu, 23b Riia Street, Tartu 51010, Estonia; Department of Human Genetics, KU Leuven, O&N IV Herestraat 49, Leuven 3000, Belgium
| | - Richard Villems
- Estonian Biocentre, Institute of Genomics, University of Tartu, 23b Riia Street, Tartu 51010, Estonia; Department of Evolutionary Biology, Institute of Molecular and Cell Biology, University of Tartu, 23b Riia Street, Tartu 51010, Estonia
| |
Collapse
|
61
|
Population genetics, diversity and forensic characteristics of Tai–Kadai-speaking Bouyei revealed by insertion/deletions markers. Mol Genet Genomics 2019; 294:1343-1357. [DOI: 10.1007/s00438-019-01584-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 05/30/2019] [Indexed: 12/13/2022]
|
62
|
Y-chromosomal connection between Hungarians and geographically distant populations of the Ural Mountain region and West Siberia. Sci Rep 2019; 9:7786. [PMID: 31127140 PMCID: PMC6534673 DOI: 10.1038/s41598-019-44272-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 05/09/2019] [Indexed: 02/06/2023] Open
Abstract
Hungarians who live in Central Europe today are one of the westernmost Uralic speakers. Despite of the proposed Volga-Ural/West Siberian roots of the Hungarian language, the present-day Hungarian gene pool is highly similar to that of the surrounding Indo-European speaking populations. However, a limited portion of specific Y-chromosomal lineages from haplogroup N, sometimes associated with the spread of Uralic languages, link modern Hungarians with populations living close to the Ural Mountain range on the border of Europe and Asia. Here we investigate the paternal genetic connection between these spatially separated populations. We reconstruct the phylogeny of N3a4-Z1936 clade by using 33 high-coverage Y-chromosomal sequences and estimate the coalescent times of its sub-clades. We genotype close to 5000 samples from 46 Eurasian populations to show the presence of N3a4-B539 lineages among Hungarians and in the populations from Ural Mountain region, including Ob-Ugric-speakers from West Siberia who are geographically distant but linguistically closest to Hungarians. This sub-clade splits from its sister-branch N3a4-B535, frequent today among Northeast European Uralic speakers, 4000-5000 ya, which is in the time-frame of the proposed divergence of Ugric languages.
Collapse
|
63
|
Saag L, Laneman M, Varul L, Malve M, Valk H, Razzak MA, Shirobokov IG, Khartanovich VI, Mikhaylova ER, Kushniarevich A, Scheib CL, Solnik A, Reisberg T, Parik J, Saag L, Metspalu E, Rootsi S, Montinaro F, Remm M, Mägi R, D'Atanasio E, Crema ER, Díez-Del-Molino D, Thomas MG, Kriiska A, Kivisild T, Villems R, Lang V, Metspalu M, Tambets K. The Arrival of Siberian Ancestry Connecting the Eastern Baltic to Uralic Speakers further East. Curr Biol 2019; 29:1701-1711.e16. [PMID: 31080083 PMCID: PMC6544527 DOI: 10.1016/j.cub.2019.04.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/18/2019] [Accepted: 04/09/2019] [Indexed: 01/08/2023]
Abstract
In this study, we compare the genetic ancestry of individuals from two as yet genetically unstudied cultural traditions in Estonia in the context of available modern and ancient datasets: 15 from the Late Bronze Age stone-cist graves (1200-400 BC) (EstBA) and 6 from the Pre-Roman Iron Age tarand cemeteries (800/500 BC-50 AD) (EstIA). We also included 5 Pre-Roman to Roman Iron Age Ingrian (500 BC-450 AD) (IngIA) and 7 Middle Age Estonian (1200-1600 AD) (EstMA) individuals to build a dataset for studying the demographic history of the northern parts of the Eastern Baltic from the earliest layer of Mesolithic to modern times. Our findings are consistent with EstBA receiving gene flow from regions with strong Western hunter-gatherer (WHG) affinities and EstIA from populations related to modern Siberians. The latter inference is in accordance with Y chromosome (chrY) distributions in present day populations of the Eastern Baltic, as well as patterns of autosomal variation in the majority of the westernmost Uralic speakers [1-5]. This ancestry reached the coasts of the Baltic Sea no later than the mid-first millennium BC; i.e., in the same time window as the diversification of west Uralic (Finnic) languages [6]. Furthermore, phenotypic traits often associated with modern Northern Europeans, like light eyes, hair, and skin, as well as lactose tolerance, can be traced back to the Bronze Age in the Eastern Baltic. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Lehti Saag
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia; Department of Evolutionary Biology, Institute of Cell and Molecular Biology, University of Tartu, Tartu 51010, Estonia.
| | - Margot Laneman
- Department of Archaeology, Institute of History and Archaeology, University of Tartu, Tartu 51014, Estonia
| | - Liivi Varul
- School of Humanities, Tallinn University, Tallinn 10120, Estonia
| | - Martin Malve
- Department of Archaeology, Institute of History and Archaeology, University of Tartu, Tartu 51014, Estonia
| | - Heiki Valk
- Department of Archaeology, Institute of History and Archaeology, University of Tartu, Tartu 51014, Estonia
| | - Maria A Razzak
- Department of Slavic and Finnic Archaeology, Institute for the History of Material Culture, Russian Academy of Sciences, St. Petersburg 191186, Russia
| | - Ivan G Shirobokov
- Museum of Anthropology and Ethnography (Kunstkamera), Russian Academy of Sciences, St. Petersburg 199034, Russia
| | - Valeri I Khartanovich
- Museum of Anthropology and Ethnography (Kunstkamera), Russian Academy of Sciences, St. Petersburg 199034, Russia
| | | | - Alena Kushniarevich
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Christiana Lyn Scheib
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Anu Solnik
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Tuuli Reisberg
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Jüri Parik
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia; Department of Evolutionary Biology, Institute of Cell and Molecular Biology, University of Tartu, Tartu 51010, Estonia
| | - Lauri Saag
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Ene Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Siiri Rootsi
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Francesco Montinaro
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Maido Remm
- Department of Bioinformatics, Institute of Cell and Molecular Biology, University of Tartu, Tartu 51010, Estonia
| | - Reedik Mägi
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | | | | | - David Díez-Del-Molino
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm 104 05, Sweden; Department of Archaeology and Classical Studies, Stockholm University, Stockholm 106 91, Sweden
| | - Mark G Thomas
- Research Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK; UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Aivar Kriiska
- Department of Archaeology, Institute of History and Archaeology, University of Tartu, Tartu 51014, Estonia
| | - Toomas Kivisild
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia; Department of Evolutionary Biology, Institute of Cell and Molecular Biology, University of Tartu, Tartu 51010, Estonia; Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Richard Villems
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia; Department of Evolutionary Biology, Institute of Cell and Molecular Biology, University of Tartu, Tartu 51010, Estonia
| | - Valter Lang
- Department of Archaeology, Institute of History and Archaeology, University of Tartu, Tartu 51014, Estonia
| | - Mait Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Kristiina Tambets
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia.
| |
Collapse
|
64
|
Abstract
The indigenous populations of inner Eurasia, a huge geographic region covering the central Eurasian steppe and the northern Eurasian taiga and tundra, harbor tremendous diversity in their genes, cultures and languages. In this study, we report novel genome-wide data for 763 individuals from Armenia, Georgia, Kazakhstan, Moldova, Mongolia, Russia, Tajikistan, Ukraine, and Uzbekistan. We furthermore report additional damage-reduced genome-wide data of two previously published individuals from the Eneolithic Botai culture in Kazakhstan (~5,400 BP). We find that present-day inner Eurasian populations are structured into three distinct admixture clines stretching between various western and eastern Eurasian ancestries, mirroring geography. The Botai and more recent ancient genomes from Siberia show a decrease in contribution from so-called “ancient North Eurasian” ancestry over time, detectable only in the northern-most “forest-tundra” cline. The intermediate “steppe-forest” cline descends from the Late Bronze Age steppe ancestries, while the “southern steppe” cline further to the South shows a strong West/South Asian influence. Ancient genomes suggest a northward spread of the southern steppe cline in Central Asia during the first millennium BC. Finally, the genetic structure of Caucasus populations highlights a role of the Caucasus Mountains as a barrier to gene flow and suggests a post-Neolithic gene flow into North Caucasus populations from the steppe.
Collapse
|
65
|
Reconstructing recent population history while mapping rare variants using haplotypes. Sci Rep 2019; 9:5849. [PMID: 30971755 PMCID: PMC6458133 DOI: 10.1038/s41598-019-42385-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 03/28/2019] [Indexed: 12/11/2022] Open
Abstract
Haplotype-based methods are a cost-effective alternative to characterize unobserved rare variants and map disease-associated alleles. Moreover, they can be used to reconstruct recent population history, which shaped distribution of rare variants and thus can be used to guide gene mapping studies. In this study, we analysed Illumina 650 k genotyped dataset on three underrepresented populations from Eastern Europe, where ancestors of Russians came into contact with two indigenous ethnic groups, Bashkirs and Tatars. Using the IBD mapping approach, we identified two rare IBD haplotypes strongly enriched in asthma patients of distinct ethnic background. We reconstructed recent population history using haplotype-based methods to reconcile this contradictory finding. Our ChromoPainter analysis showed that these haplotypes each descend from a single ancestor coming from one of the ethnic groups studied. Next, we used DoRIS approach and showed that source populations for patients exchanged recent (<60 generations) asymmetric gene flow, which supported the ChromoPainter-based scenario that patients share haplotypes through inter-ethnic admixture. Finally, we show that these IBD haplotypes overlap with asthma-associated genomic regions ascertained in European population. This finding is consistent with the fact that the two donor populations for the rare IBD haplotypes: Russians and Tatars have European ancestry.
Collapse
|
66
|
Dudás E, Vágó-Zalán A, Vándor A, Saypasheva A, Pomozi P, Pamjav H. Genetic history of Bashkirian Mari and Southern Mansi ethnic groups in the Ural region. Mol Genet Genomics 2019; 294:919-930. [PMID: 30929049 DOI: 10.1007/s00438-019-01555-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 03/26/2019] [Indexed: 12/01/2022]
Abstract
According to genetic studies, the Hungarian Y-chromosomal gene pool significantly differs from other Uralic-speaking populations. Hungarians possess a significant frequency of haplogroup R1a-Z280 and a low frequency of haplogroup N-Tat, which is common among other Uralic-speaking populations. Based on this evidence, we further worked to define the links between the linguistically related Hungarian, Mansi and Bashkirian Mari populations. Samples were collected from 45 Bashkirian Mari and 36 Southern Mansi males in the Ural region. We analyzed male-specific markers including 23 STRs and 36 SNPs, which reflect past and recent paternal genetic history. We found that the haplogroup distribution of the two population samples showed high genetic similarity to each other except for the N-Tat* and R1a-Z93 haplogroups in the Bashkirian Mari males. On the MDS plots constructed from Fst- and Rst-genetic distances, the Bashkirian Mari and Southern Mansi population groups showed close genetic affinities with the Khanty, Northern Mansi, Mari, and Estonian populations. For phylogenetic studies, networks were constructed for the most frequent haplogroups in both populations together with other Eurasian populations. Both populations shared common haplotypes within haplogroups R1a-Z280 or N-L1034 with Hungarian speakers, suggesting a common paternal genetic footprint that arose in prehistoric or historic times. Overall, the Hungarian, Mansi, and Bashkirian Mari populations have a much more complex genetic history than the traditional linguistic model or history would suggest. Further studies are needed to clarify the common genetic profiles may have been acquired directly or indirectly during the more or less known their history.
Collapse
Affiliation(s)
- Eszter Dudás
- Hungarian Institute for Forensic Sciences, Institute of Forensic Genetics, PO Box 314/4, 1903, Budapest, Hungary
| | - Andrea Vágó-Zalán
- Hungarian Institute for Forensic Sciences, Institute of Forensic Genetics, PO Box 314/4, 1903, Budapest, Hungary
| | - Anna Vándor
- Hungarian National Organization of World Congress of Finno-Ugric Peoples, Budapest, Hungary
| | | | - Péter Pomozi
- Department of Finno-Ugric Studies, Eötvös Loránd University, Budapest, Hungary
| | - Horolma Pamjav
- Hungarian Institute for Forensic Sciences, Institute of Forensic Genetics, PO Box 314/4, 1903, Budapest, Hungary.
| |
Collapse
|
67
|
Korytina GF, Akhmadishina LZ, Aznabaeva YG, Kochetova OV, Zagidullin NS, Kzhyshkowska JG, Zagidullin SZ, Viktorova TV. Associations of the NRF2/KEAP1 pathway and antioxidant defense gene polymorphisms with chronic obstructive pulmonary disease. Gene 2019; 692:102-112. [DOI: 10.1016/j.gene.2018.12.061] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/05/2018] [Accepted: 12/30/2018] [Indexed: 02/07/2023]
|
68
|
Petrova NV, Kashirskaya NY, Saydaeva DK, Polyakov AV, Adyan TA, Simonova OI, Gorinova YV, Kondratyeva EI, Sherman VD, Novoselova OG, Vasilyeva TA, Marakhonov AV, Macek M, Ginter EK, Zinchenko RA. Spectrum of CFTR mutations in Chechen cystic fibrosis patients: high frequency of c.1545_1546delTA (p.Tyr515X; 1677delTA) and c.274G>A (p.Glu92Lys, E92K) mutations in North Caucasus. BMC MEDICAL GENETICS 2019; 20:44. [PMID: 30898088 PMCID: PMC6429818 DOI: 10.1186/s12881-019-0785-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/13/2019] [Indexed: 11/21/2022]
Abstract
Background Cystic fibrosis (CF; OMIM #219700) is a common autosomal recessive disease caused by pathogenic variants (henceforward mutations) in the cystic fibrosis transmembrane conductance regulator gene (CFTR). The spectrum and frequencies of CFTR mutations vary among different populations. Characterization of the specific distribution of CFTR mutations can be used to optimize genetic counseling, foster reproductive choices, and facilitate the introduction of mutation-specific therapies. Chechens are a distinct Caucasian ethnic group of the Nakh peoples that originated from the North Caucasus. Chechens are one of the oldest ethnic groups in the Caucasus, the sixth largest ethnic group in the Russian Federation (RF), and constitute the majority population of the Chechen Republic (Chechnya). The spectrum of CFTR mutations in a representative cohort of Chechen CF patients and healthy individuals was analyzed. Methods Molecular genetic analysis of 34 CFTR mutations (representing approx. 80–85% of mutations in multiethnic CF populations of the RF) was performed in 32 CF patients from 31 unrelated Chechen families living in Chechnya. One hundred randomly chosen healthy Chechens were analyzed for the 15 most common “Russian” mutations. The clinical symptoms in Chechen CF patients with different CFTR genotypes were investigated. Results High frequencies of c.1545_1546delTA (p.Tyr515X; 1677delTA) (52 out of 64 CFTR alleles tested; 81.3%) and c.274G > A (p.Glu92Lys, E92K) (8/64, 12.5%) mutations were found. Twenty patients were homozygous for the c.1545_1546delTA mutation, and eight were compound heterozygous for the c.1545_1546delTA and c.274G > A mutations. Three carriers of the c.1545_1546delTA mutation were also found in the cohort of 100 apparently healthy Chechens (frequency – 0.015). The c.1545_1546delTA and c.274G > A mutations are linked to the same haplotype (22–7–16–13) of intragenic Short Tandem Repeat markers, i.e., IVS1CA, IVS6aGATT, IVS8CA, and IVS17bCA. Conclusions The distribution of CFTR mutations in the Chechen CF population is unique regarding the high frequency of mutations c.1545_1546delTA and c.274G > A (more than 90% of the mutant alleles). The c.274G > A mutation is associated with a less severe course of CF than that observed in c.1545_1546delTA homozygotes. Testing for these two variants can be proposed as the first step of CF DNA diagnosis in the Chechen population.
Collapse
Affiliation(s)
- N V Petrova
- Federal State Scientific Budgetary Institution "Research Centre for Medical Genetics", Moscow, Russia
| | - N Y Kashirskaya
- Federal State Scientific Budgetary Institution "Research Centre for Medical Genetics", Moscow, Russia.
| | - D K Saydaeva
- State Budgetary Institution "Maternity Hospital" of the Ministry of Healthcare of the Chechen Republic, Grozny, Chechen Republic, Russia
| | - A V Polyakov
- Federal State Scientific Budgetary Institution "Research Centre for Medical Genetics", Moscow, Russia
| | - T A Adyan
- Federal State Scientific Budgetary Institution "Research Centre for Medical Genetics", Moscow, Russia
| | - O I Simonova
- National Medical Research Center of Children's Health, Federal State Autonomous Institution of the Russian Federation Ministry of Health, Moscow, Russia
| | - Y V Gorinova
- National Medical Research Center of Children's Health, Federal State Autonomous Institution of the Russian Federation Ministry of Health, Moscow, Russia
| | - E I Kondratyeva
- Federal State Scientific Budgetary Institution "Research Centre for Medical Genetics", Moscow, Russia
| | - V D Sherman
- Federal State Scientific Budgetary Institution "Research Centre for Medical Genetics", Moscow, Russia
| | - O G Novoselova
- Federal State Scientific Budgetary Institution "Research Centre for Medical Genetics", Moscow, Russia
| | - T A Vasilyeva
- Federal State Scientific Budgetary Institution "Research Centre for Medical Genetics", Moscow, Russia
| | - A V Marakhonov
- Federal State Scientific Budgetary Institution "Research Centre for Medical Genetics", Moscow, Russia
| | - M Macek
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine of Charles University Prague and Motol University Hospital, Prague, Czech Republic
| | - E K Ginter
- Federal State Scientific Budgetary Institution "Research Centre for Medical Genetics", Moscow, Russia
| | - R A Zinchenko
- Federal State Scientific Budgetary Institution "Research Centre for Medical Genetics", Moscow, Russia.,Federal State Budgetary Educational Institution of Higher Education "N.I. Pirogov Russian National Research Medical University" of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| |
Collapse
|
69
|
Zhernakova DV, Brukhin V, Malov S, Oleksyk TK, Koepfli KP, Zhuk A, Dobrynin P, Kliver S, Cherkasov N, Tamazian G, Rotkevich M, Krasheninnikova K, Evsyukov I, Sidorov S, Gorbunova A, Chernyaeva E, Shevchenko A, Kolchanova S, Komissarov A, Simonov S, Antonik A, Logachev A, Polev DE, Pavlova OA, Glotov AS, Ulantsev V, Noskova E, Davydova TK, Sivtseva TM, Limborska S, Balanovsky O, Osakovsky V, Novozhilov A, Puzyrev V, O'Brien SJ. Genome-wide sequence analyses of ethnic populations across Russia. Genomics 2019; 112:442-458. [PMID: 30902755 DOI: 10.1016/j.ygeno.2019.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 03/15/2019] [Indexed: 12/22/2022]
Abstract
The Russian Federation is the largest and one of the most ethnically diverse countries in the world, however no centralized reference database of genetic variation exists to date. Such data are crucial for medical genetics and essential for studying population history. The Genome Russia Project aims at filling this gap by performing whole genome sequencing and analysis of peoples of the Russian Federation. Here we report the characterization of genome-wide variation of 264 healthy adults, including 60 newly sequenced samples. People of Russia carry known and novel genetic variants of adaptive, clinical and functional consequence that in many cases show allele frequency divergence from neighboring populations. Population genetics analyses revealed six phylogeographic partitions among indigenous ethnicities corresponding to their geographic locales. This study presents a characterization of population-specific genomic variation in Russia with results important for medical genetics and for understanding the dynamic population history of the world's largest country.
Collapse
Affiliation(s)
- Daria V Zhernakova
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russian Federation; Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Vladimir Brukhin
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russian Federation
| | - Sergey Malov
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russian Federation; Department of Mathematics, St. Petersburg Electrotechnical University, St. Petersburg, Russian Federation
| | - Taras K Oleksyk
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russian Federation; Biology Department, University of Puerto Rico at Mayaguez, Mayaguez, Puerto Rico; Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Klaus Peter Koepfli
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russian Federation; National Zoological Park, Smithsonian Conservation Biology Institute, Washington, DC, USA
| | - Anna Zhuk
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russian Federation; Vavilov Institute of General Genetics, Russian Academy of Sciences, St. Petersburg Branch, St. Petersburg, Russian Federation
| | - Pavel Dobrynin
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russian Federation; National Zoological Park, Smithsonian Conservation Biology Institute, Washington, DC, USA
| | - Sergei Kliver
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russian Federation
| | - Nikolay Cherkasov
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russian Federation
| | - Gaik Tamazian
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russian Federation
| | - Mikhail Rotkevich
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russian Federation
| | - Ksenia Krasheninnikova
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russian Federation
| | - Igor Evsyukov
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russian Federation
| | - Sviatoslav Sidorov
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russian Federation
| | - Anna Gorbunova
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russian Federation; I.I. Mechnikov North-Western State Medical University, St. Petersburg, Russian Federation
| | - Ekaterina Chernyaeva
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russian Federation
| | - Andrey Shevchenko
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russian Federation
| | - Sofia Kolchanova
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russian Federation; Biology Department, University of Puerto Rico at Mayaguez, Mayaguez, Puerto Rico
| | - Alexei Komissarov
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russian Federation
| | - Serguei Simonov
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russian Federation
| | - Alexey Antonik
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russian Federation
| | - Anton Logachev
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russian Federation
| | - Dmitrii E Polev
- Centre Biobank, Research Park, St. Petersburg State University, St. Petersburg, Russian Federation
| | - Olga A Pavlova
- Centre Biobank, Research Park, St. Petersburg State University, St. Petersburg, Russian Federation
| | - Andrey S Glotov
- Laboratory of biobanking and genomic medicine of Institute of translation biomedicine, St. Petersburg State University, St. Petersburg, Russian Federation
| | - Vladimir Ulantsev
- Computer Technologies Laboratory, ITMO University, St. Petersburg, Russian Federation
| | - Ekaterina Noskova
- Computer Technologies Laboratory, ITMO University, St. Petersburg, Russian Federation; JetBrains Research, St. Petersburg, Russian Federation
| | - Tatyana K Davydova
- Federal State Budgetary Scietific Institution, "Yakut science center of complex medical problems", Yakutsk, Russian Federation
| | - Tatyana M Sivtseva
- Institute of Health, North-Eastern Federal University, Yakutsk, Russian Federation
| | - Svetlana Limborska
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russian Federation
| | - Oleg Balanovsky
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russian Federation; Research Centre for Medical Genetics, Moscow, Russian Federation; Biobank of North Eurasia, Moscow, Russian Federation
| | - Vladimir Osakovsky
- Institute of Health, North-Eastern Federal University, Yakutsk, Russian Federation
| | - Alexey Novozhilov
- Department of Ethnography and Anthropology, St. Petersburg State University, St. Petersburg, Russian Federation
| | - Valery Puzyrev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk, Russian Federation
| | - Stephen J O'Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russian Federation; Guy Harvey Oceanographic Center, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, 8000 North Ocean Drive, Ft Lauderdale, Florida 33004, USA.
| |
Collapse
|
70
|
Tätte K, Pagani L, Pathak AK, Kõks S, Ho Duy B, Ho XD, Sultana GNN, Sharif MI, Asaduzzaman M, Behar DM, Hadid Y, Villems R, Chaubey G, Kivisild T, Metspalu M. The genetic legacy of continental scale admixture in Indian Austroasiatic speakers. Sci Rep 2019; 9:3818. [PMID: 30846778 PMCID: PMC6405872 DOI: 10.1038/s41598-019-40399-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 02/13/2019] [Indexed: 11/21/2022] Open
Abstract
Surrounded by speakers of Indo-European, Dravidian and Tibeto-Burman languages, around 11 million Munda (a branch of Austroasiatic language family) speakers live in the densely populated and genetically diverse South Asia. Their genetic makeup holds components characteristic of South Asians as well as Southeast Asians. The admixture time between these components has been previously estimated on the basis of archaeology, linguistics and uniparental markers. Using genome-wide genotype data of 102 Munda speakers and contextual data from South and Southeast Asia, we retrieved admixture dates between 2000–3800 years ago for different populations of Munda. The best modern proxies for the source populations for the admixture with proportions 0.29/0.71 are Lao people from Laos and Dravidian speakers from Kerala in India. The South Asian population(s), with whom the incoming Southeast Asians intermixed, had a smaller proportion of West Eurasian genetic component than contemporary proxies. Somewhat surprisingly Malaysian Peninsular tribes rather than the geographically closer Austroasiatic languages speakers like Vietnamese and Cambodians show highest sharing of IBD segments with the Munda. In addition, we affirmed that the grouping of the Munda speakers into North and South Munda based on linguistics is in concordance with genome-wide data.
Collapse
Affiliation(s)
- Kai Tätte
- Department of Evolutionary Biology, Institute of Cell and Molecular Biology, University of Tartu, Tartu, 51010, Estonia. .,Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, 51010, Estonia.
| | - Luca Pagani
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, 51010, Estonia.,APE Lab, Department of Biology, University of Padova, Padova, 35121, Italy
| | - Ajai K Pathak
- Department of Evolutionary Biology, Institute of Cell and Molecular Biology, University of Tartu, Tartu, 51010, Estonia.,Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, 51010, Estonia
| | - Sulev Kõks
- Centre for Comparative Genomics, Murdoch University, Murdoch, 6150, Australia.,The Perron Institute for Neurological and Translational Science, Sarich Neuroscience Research Institute, Nedlands, 6009, Australia
| | - Binh Ho Duy
- Department of Orthopedic and Traumatology, Hue University of Medicine and Pharmacy, Hue University, 06 Ngo Quyen street, Vinh Ninh ward, Hue, Vietnam
| | - Xuan Dung Ho
- Department of Oncology, Hue University of Medicine and Pharmacy, Hue University, 06 Ngo Quyen street, Vinh Ninh ward, Hue, Vietnam
| | - Gazi Nurun Nahar Sultana
- Centre for Advanced Research in Sciences (CARS), DNA Sequencing Research Laboratory, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Mohd Istiaq Sharif
- Centre for Advanced Research in Sciences (CARS), DNA Sequencing Research Laboratory, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md Asaduzzaman
- Centre for Advanced Research in Sciences (CARS), DNA Sequencing Research Laboratory, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Doron M Behar
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, 51010, Estonia
| | - Yarin Hadid
- The Genomic Laboratory, The Simon Winter Institute for Human Genetics, The Bnai-Zion Medical Center, 7 Golomb St., Haifa, 31048, Israel
| | - Richard Villems
- Department of Evolutionary Biology, Institute of Cell and Molecular Biology, University of Tartu, Tartu, 51010, Estonia.,Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, 51010, Estonia
| | - Gyaneshwer Chaubey
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, 51010, Estonia.,Cytogenetics laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | - Toomas Kivisild
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, 51010, Estonia.,Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, 3000, Belgium
| | - Mait Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, 51010, Estonia.
| |
Collapse
|
71
|
Cilli E, Sarno S, Gnecchi Ruscone GA, Serventi P, De Fanti S, Delaini P, Ognibene P, Basello GP, Ravegnini G, Angelini S, Ferri G, Gentilini D, Di Blasio AM, Pelotti S, Pettener D, Sazzini M, Panaino A, Luiselli D, Gruppioni G. The genetic legacy of the Yaghnobis: A witness of an ancient Eurasian ancestry in the historically reshuffled central Asian gene pool. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 168:717-728. [PMID: 30693949 DOI: 10.1002/ajpa.23789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 11/11/2022]
Abstract
OBJECTIVES The Yaghnobis are an ethno-linguistic minority historically settled along the Yaghnob River in the Upper-Zarafshan Valley in Tajikistan. They speak a language of Old Sogdian origin, which is the only present-day witness of the Lingua Franca used along the Silk Road in Late Antiquity. The aim of this study was to reconstruct the genetic history of this community in order to shed light on its isolation and genetic ancestry within the Euro-Asiatic context. MATERIALS AND METHODS A total of 100 DNA samples were collected in the Yaghnob and Matcha Valleys during several expeditions and their mitochondrial, Y-chromosome and autosomal genome-wide variation were compared with that from a large set of modern and ancient Euro-Asiatic samples. RESULTS Findings from uniparental markers highlighted the long-term isolation of the Yaghnobis. Mitochondrial DNA ancestry traced an ancient link with Middle Eastern populations, whereas Y-chromosome legacy showed more tight relationships with Central Asians. Admixture, outgroup-f3, and D-statistics computed on autosomal variation corroborated Y-chromosome evidence, pointing respectively to low Anatolian Neolithic and high Steppe ancestry proportions in Yaghnobis, and to their closer affinity with Tajiks than to Iranians. DISCUSSION Although the Yaghnobis do not show evident signs of recent admixture, they could be considered a modern proxy for the source of gene flow for many Central Asian and Middle Eastern groups. Accordingly, they seem to retain a peculiar genomic ancestry probably ascribable to an ancient gene pool originally wide spread across a vast area and subsequently reshuffled by distinct demographic events occurred in Middle East and Central Asia.
Collapse
Affiliation(s)
- Elisabetta Cilli
- Laboratories of Physical Anthropology and Ancient DNA, Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Stefania Sarno
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Guido Alberto Gnecchi Ruscone
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Patrizia Serventi
- Laboratories of Physical Anthropology and Ancient DNA, Department of Cultural Heritage, University of Bologna, Ravenna, Italy.,Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Sara De Fanti
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Paolo Delaini
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Paolo Ognibene
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Gian Pietro Basello
- Department of Asian, African and Mediterranean Studies, University of Naples "L'Orientale", Naples, Italy
| | - Gloria Ravegnini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Sabrina Angelini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Gianmarco Ferri
- Department of Diagnostic and Clinical Medicine and Public Health, University of Modena and Reggio Emilia, Modena, Italy
| | - Davide Gentilini
- Centre for Biomedical Research and Technologies, Italian Auxologic Institute, IRCCS, Milan, Italy
| | - Anna Maria Di Blasio
- Centre for Biomedical Research and Technologies, Italian Auxologic Institute, IRCCS, Milan, Italy
| | - Susi Pelotti
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Davide Pettener
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Marco Sazzini
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Antonio Panaino
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Donata Luiselli
- Laboratories of Physical Anthropology and Ancient DNA, Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Giorgio Gruppioni
- Laboratories of Physical Anthropology and Ancient DNA, Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| |
Collapse
|
72
|
Khaibullin TN, Kirillova EV, Bikbaev RM, Boyko AN. Clinical-epidemiological characteristics of multiple sclerosis and neuroopticomyelitis in the Central Asia. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:12-17. [DOI: 10.17116/jnevro20191192212] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
73
|
Dzhaubermezov MA, Ekomasova NV, Reidla M, Litvinov SS, Gabidullina LR, Villems R, Khusnutdinova EK. Genetic Characterization of Balkars and Karachays Using mtDNA Data. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419010058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
74
|
Pathak AK, Kadian A, Kushniarevich A, Montinaro F, Mondal M, Ongaro L, Singh M, Kumar P, Rai N, Parik J, Metspalu E, Rootsi S, Pagani L, Kivisild T, Metspalu M, Chaubey G, Villems R. The Genetic Ancestry of Modern Indus Valley Populations from Northwest India. Am J Hum Genet 2018; 103:918-929. [PMID: 30526867 DOI: 10.1016/j.ajhg.2018.10.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/25/2018] [Indexed: 11/26/2022] Open
Abstract
The Indus Valley has been the backdrop for several historic and prehistoric population movements between South Asia and West Eurasia. However, the genetic structure of present-day populations from Northwest India is poorly characterized. Here we report new genome-wide genotype data for 45 modern individuals from four Northwest Indian populations, including the Ror, whose long-term occupation of the region can be traced back to the early Vedic scriptures. Our results suggest that although the genetic architecture of most Northwest Indian populations fits well on the broader North-South Indian genetic cline, culturally distinct groups such as the Ror stand out by being genetically more akin to populations living west of India; such populations include prehistorical and early historical ancient individuals from the Swat Valley near the Indus Valley. We argue that this affinity is more likely a result of genetic continuity since the Bronze Age migrations from the Steppe Belt than a result of recent admixture. The observed patterns of genetic relationships both with modern and ancient West Eurasians suggest that the Ror can be used as a proxy for a population descended from the Ancestral North Indian (ANI) population. Collectively, our results show that the Indus Valley populations are characterized by considerable genetic heterogeneity that has persisted over thousands of years.
Collapse
|
75
|
Taskent RO, Alioglu ND, Fer E, Melike Donertas H, Somel M, Gokcumen O. Variation and Functional Impact of Neanderthal Ancestry in Western Asia. Genome Biol Evol 2018; 9:3516-3524. [PMID: 29040546 PMCID: PMC5751057 DOI: 10.1093/gbe/evx216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2017] [Indexed: 12/14/2022] Open
Abstract
Neanderthals contributed genetic material to modern humans via multiple admixture events. Initial admixture events presumably occurred in Western Asia shortly after humans migrated out of Africa. Despite being a focal point of admixture, earlier studies indicate lower Neanderthal introgression rates in some Western Asian populations as compared with other Eurasian populations. To better understand the genome-wide and phenotypic impact of Neanderthal introgression in the region, we sequenced whole genomes of nine present-day Europeans, Africans, and the Western Asian Druze at high depth, and analyzed available whole genome data from various other populations, including 16 genomes from present-day Turkey. Our results confirmed previous observations that contemporary Western Asian populations, on an average, have lower levels of Neanderthal-introgressed DNA relative to other Eurasian populations. Modern Western Asians also show comparatively high variability in Neanderthal ancestry, which may be attributed to the complex demographic history of the region. We further replicated the previously described depletion of putatively functional sequences among Neanderthal-introgressed haplotypes. Still, we find dozens of common Neanderthal-introgressed haplotypes in the Turkish sample associated with human phenotypes, including anthropometric and metabolic traits, as well as the immune response. One of these haplotypes is unusually long and harbors variants that affect the expression of members of the CCR gene family and are associated with celiac disease. Overall, our results paint a complex first picture of the genomic impact of Neanderthal introgression in the Western Asian populations.
Collapse
Affiliation(s)
| | | | - Evrim Fer
- Department of Biology, Middle East Technical University, Ankara, Turkey
| | - Handan Melike Donertas
- Department of Biology, Middle East Technical University, Ankara, Turkey.,European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Mehmet Somel
- Department of Biology, Middle East Technical University, Ankara, Turkey
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo
| |
Collapse
|
76
|
Kobayashi H. Recent trends in mucopolysaccharidosis research. J Hum Genet 2018; 64:127-137. [PMID: 30451936 DOI: 10.1038/s10038-018-0534-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 02/07/2023]
Abstract
Mucopolysaccharidosis (MPS) is a group of inherited conditions involving metabolic dysfunction. Lysosomal enzyme deficiency leads to the accumulation of glycosaminoglycan (GAG) resulting in systemic symptoms, and is categorized into seven types caused by deficiency in one of eleven different enzymes. The pathophysiological mechanism of these diseases has been investigated, indicating impaired autophagy in neuronal damage initiation, association of activated microglia and astrocytes with the neuroinflammatory processes, and involvement of tauopathy. A new inherited error of metabolism resulting in a multisystem disorder with features of the MPS was also identified. Additionally, new therapeutic methods are being developed that could improve conventional therapies, such as new recombinant enzymes that can penetrate the blood brain barrier, hematopoietic stem cell transplantation with reduced intensity conditioning, gene therapy using a viral vector system or gene editing, and substrate reduction therapy. In this review, we discuss the recent developments in MPS research and provide a framework for developing strategies.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Division of Gene Therapy, Research Center for Medical Sciences, Department of Pediatrics, The Jikei University School of Medicine, Tokyo, 105-8461, Japan.
| |
Collapse
|
77
|
Chimusa ER, Defo J, Thami PK, Awany D, Mulisa DD, Allali I, Ghazal H, Moussa A, Mazandu GK. Dating admixture events is unsolved problem in multi-way admixed populations. Brief Bioinform 2018; 21:144-155. [PMID: 30462157 DOI: 10.1093/bib/bby112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022] Open
Abstract
Advances in human sequencing technologies, coupled with statistical and computational tools, have fostered the development of methods for dating admixture events. These methods have merits and drawbacks in estimating admixture events in multi-way admixed populations. Here, we first provide a comprehensive review and comparison of current methods pertinent to dating admixture events. Second, we assess various admixture dating tools. We do so by performing various simulations. Third, we apply the top two assessed methods to real data of a uniquely admixed population from South Africa. Results reveal that current dating admixture models are not sufficiently equipped to estimate ancient admixtures events and to identify multi-faceted admixture events in complex multi-way admixed populations. We conclude with a discussion of research areas where further work on dating admixture-based methods is needed.
Collapse
Affiliation(s)
- Emile R Chimusa
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine,Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, South Africa
| | - Joel Defo
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine,Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, South Africa
| | - Prisca K Thami
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine,Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, South Africa.,Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana.,Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Denis Awany
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine,Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, South Africa
| | - Delesa D Mulisa
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine,Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, South Africa
| | - Imane Allali
- Division of Computational Biology, Department of Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine,Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, South Africa
| | | | - Ahmed Moussa
- Abdelmalek Essaadi University ENSA, Tangier, Morocco
| | - Gaston K Mazandu
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine,Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, South Africa.,Division of Computational Biology, Department of Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine,Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, South Africa.,African Institute for Mathematical Sciences (AIMS),Muizenberg, Cape Town, South Africa
| |
Collapse
|
78
|
Karafet TM, Osipova LP, Savina OV, Hallmark B, Hammer MF. Siberian genetic diversity reveals complex origins of the Samoyedic-speaking populations. Am J Hum Biol 2018; 30:e23194. [PMID: 30408262 DOI: 10.1002/ajhb.23194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/26/2018] [Accepted: 09/23/2018] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES We examined autosomal genome-wide SNPs and Y-chromosome data from 15 Siberian and 12 reference populations to study the affinities of Siberian populations, and to address hypotheses about the origin of the Samoyed peoples. METHODS Samples were genotyped for 567 096 autosomal SNPs and 147 Y-chromosome polymorphic sites. For several analyses, we used 281 093 SNPs from the intersection of our data with publicly available ancient Siberian samples. To examine genetic relatedness among populations, we applied PCA, FST , TreeMix, and ADMIXTURE analyses. To explore the potential effect of demography and evolutionary processes, the distribution of ROH and IBD sharing within population were studied. RESULTS Analyses of autosomal and Y-chromosome data reveal high differentiation of the Siberian groups. The Siberian populations have a large proportion of their genome in ROH and IBD segments. Several populations (ie, Nganasans, Evenks, Yukagirs, and Koryaks) do not appear to have experienced admixture with other Siberian populations (ie, producing only positive f3), while for the other tested populations the composition of mixing sources always included Nganasans or Evenks. The Nganasans from the Taymyr Peninsula demonstrate the greatest level of shared shorter ROH and IBD with nearly all other Siberian populations. CONCLUSIONS Autosomal SNP and Y-chromosome data demonstrate that Samoyedic populations differ significantly in their genetic composition. Genetic relationship is observed only between Forest and Tundra Nentsi. Selkups are affiliated with the Kets from the Yenisey River, while the Nganasans are separated from their linguistic neighbors, showing closer affinities with the Evenks and Yukagirs.
Collapse
Affiliation(s)
- Tatiana M Karafet
- ARL Division of Biotechnology, University of Arizona, Tucson, Arizona
| | - Ludmila P Osipova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Olga V Savina
- ARL Division of Biotechnology, University of Arizona, Tucson, Arizona
| | - Brian Hallmark
- Interdisciplinary Program in Statistics, University of Arizona, Tucson, Arizona
| | - Michael F Hammer
- ARL Division of Biotechnology, University of Arizona, Tucson, Arizona.,Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona
| |
Collapse
|
79
|
Tambets K, Yunusbayev B, Hudjashov G, Ilumäe AM, Rootsi S, Honkola T, Vesakoski O, Atkinson Q, Skoglund P, Kushniarevich A, Litvinov S, Reidla M, Metspalu E, Saag L, Rantanen T, Karmin M, Parik J, Zhadanov SI, Gubina M, Damba LD, Bermisheva M, Reisberg T, Dibirova K, Evseeva I, Nelis M, Klovins J, Metspalu A, Esko T, Balanovsky O, Balanovska E, Khusnutdinova EK, Osipova LP, Voevoda M, Villems R, Kivisild T, Metspalu M. Genes reveal traces of common recent demographic history for most of the Uralic-speaking populations. Genome Biol 2018; 19:139. [PMID: 30241495 PMCID: PMC6151024 DOI: 10.1186/s13059-018-1522-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 09/03/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The genetic origins of Uralic speakers from across a vast territory in the temperate zone of North Eurasia have remained elusive. Previous studies have shown contrasting proportions of Eastern and Western Eurasian ancestry in their mitochondrial and Y chromosomal gene pools. While the maternal lineages reflect by and large the geographic background of a given Uralic-speaking population, the frequency of Y chromosomes of Eastern Eurasian origin is distinctively high among European Uralic speakers. The autosomal variation of Uralic speakers, however, has not yet been studied comprehensively. RESULTS Here, we present a genome-wide analysis of 15 Uralic-speaking populations which cover all main groups of the linguistic family. We show that contemporary Uralic speakers are genetically very similar to their local geographical neighbours. However, when studying relationships among geographically distant populations, we find that most of the Uralic speakers and some of their neighbours share a genetic component of possibly Siberian origin. Additionally, we show that most Uralic speakers share significantly more genomic segments identity-by-descent with each other than with geographically equidistant speakers of other languages. We find that correlated genome-wide genetic and lexical distances among Uralic speakers suggest co-dispersion of genes and languages. Yet, we do not find long-range genetic ties between Estonians and Hungarians with their linguistic sisters that would distinguish them from their non-Uralic-speaking neighbours. CONCLUSIONS We show that most Uralic speakers share a distinct ancestry component of likely Siberian origin, which suggests that the spread of Uralic languages involved at least some demic component.
Collapse
Affiliation(s)
- Kristiina Tambets
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Estonia.
| | - Bayazit Yunusbayev
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Estonia
- Ufa Scientific Center of RAS, Ufa, 450054, Russia
| | - Georgi Hudjashov
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Estonia
- Statistics and Bioinformatics Group, Institute of Fundamental Sciences, Massey University, Palmerston North, 4442, New Zealand
| | - Anne-Mai Ilumäe
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Estonia
| | - Siiri Rootsi
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Estonia
| | - Terhi Honkola
- Department of Biology, University of Turku, 20014, Turku, Finland
- Institute of Estonian and General Linguistics, University of Tartu, 51014, Tartu, Estonia
| | - Outi Vesakoski
- Department of Biology, University of Turku, 20014, Turku, Finland
| | - Quentin Atkinson
- School of Psychology, University of Auckland, Auckland, 1142, New Zealand
- Department of Linguistic and Cultural Evolution, Max Planck Institute for the Science of Human History, D-07745, Jena, Germany
| | - Pontus Skoglund
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Alena Kushniarevich
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Estonia
- Institute of Genetics and Cytology of the National Academy of Sciences of Belarus, Minsk, 220072, Republic of Belarus
| | - Sergey Litvinov
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Estonia
- Institute of Biochemistry and Genetics, Ufa Scientific Center of RAS, Ufa, 450054, Russia
| | - Maere Reidla
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Estonia
- Department of Evolutionary Biology, Institute of Molecular and Cell Biology, University of Tartu, 51010, Tartu, Estonia
| | - Ene Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Estonia
| | - Lehti Saag
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Estonia
- Department of Evolutionary Biology, Institute of Molecular and Cell Biology, University of Tartu, 51010, Tartu, Estonia
| | - Timo Rantanen
- Department of Geography and Geology, University of Turku, 20014, Turku, Finland
| | - Monika Karmin
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Estonia
| | - Jüri Parik
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Estonia
- Department of Evolutionary Biology, Institute of Molecular and Cell Biology, University of Tartu, 51010, Tartu, Estonia
| | - Sergey I Zhadanov
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Estonia
- Department of Radiology, The Mount Sinai Medical Center, New York, NY, 10029, USA
| | - Marina Gubina
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Estonia
- Institute of Cytology and Genetics, Siberian Branch of RAS, Novosibirsk, 630090, Russia
| | - Larisa D Damba
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Estonia
- Research Institute of Medical and Social Problems and Control of the Healthcare Department of Tuva Republic, Kyzyl, 667003, Russia
| | - Marina Bermisheva
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Estonia
- Institute of Biochemistry and Genetics, Ufa Scientific Center of RAS, Ufa, 450054, Russia
| | - Tuuli Reisberg
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Estonia
| | - Khadizhat Dibirova
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Estonia
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow, 115478, Russia
| | - Irina Evseeva
- Northern State Medical University, Arkhangelsk, 163000, Russia
- Anthony Nolan, London, NW3 2NU, UK
| | - Mari Nelis
- Research Centre of Estonian Genome Center, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
| | - Janis Klovins
- Latvian Biomedical Research and Study Centre, Riga, LV-1067, Latvia
| | - Andres Metspalu
- Research Centre of Estonian Genome Center, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
| | - Tõnu Esko
- Research Centre of Estonian Genome Center, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
| | - Oleg Balanovsky
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow, 115478, Russia
- Vavilov Institute for General Genetics, RAS, Moscow, 119991, Russia
| | - Elena Balanovska
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow, 115478, Russia
| | - Elza K Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Scientific Center of RAS, Ufa, 450054, Russia
- Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa, 450054, Russia
| | - Ludmila P Osipova
- Institute of Cytology and Genetics, Siberian Branch of RAS, Novosibirsk, 630090, Russia
- Novosibirsk State University, 2 Pirogova Str, Novosibirsk, 630090, Russia
| | - Mikhail Voevoda
- Institute of Cytology and Genetics, Siberian Branch of RAS, Novosibirsk, 630090, Russia
- Novosibirsk State University, 2 Pirogova Str, Novosibirsk, 630090, Russia
- Institute of Internal Medicine, Siberian Branch of Russian Academy of Medical Sciences, Novosibirsk, 630090, Russia
| | - Richard Villems
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Estonia
- Department of Evolutionary Biology, Institute of Molecular and Cell Biology, University of Tartu, 51010, Tartu, Estonia
| | - Toomas Kivisild
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Estonia
- Department of Evolutionary Biology, Institute of Molecular and Cell Biology, University of Tartu, 51010, Tartu, Estonia
- Department of Archaeology, University of Cambridge, Cambridge, CB2 1QH, UK
- Department of Human Genetics, KU Leuven, Leuven, 3000, Belgium
| | - Mait Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Estonia
| |
Collapse
|
80
|
The radial expansion of the Diego blood group system polymorphisms in Asia: mark of co-migration with the Mongol conquests. Eur J Hum Genet 2018; 27:125-132. [PMID: 30143806 PMCID: PMC6303257 DOI: 10.1038/s41431-018-0245-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 06/09/2018] [Accepted: 07/18/2018] [Indexed: 01/07/2023] Open
Abstract
Red cell polymorphisms can provide evidence of human migration and adaptation patterns. In Eurasia, the distribution of Diego blood group system polymorphisms remains unaddressed. To shed light on the dispersal of the Dia antigen, we performed analyses of correlations between the frequencies of DI*01 allele, C2-M217 and C2-M401 Y-chromosome haplotypes ascribed as being of Mongolian-origin and language affiliations, in 75 Eurasian populations including DI*01 frequency data from the HGDP-CEPH panel. We revealed that DI*01 reaches its highest frequency in Mongolia, Turkmenistan and Kyrgyzstan, expanding southward and westward across Asia with Altaic-speaking nomadic carriers of C2-M217, and even more precisely C2-M401, from their homeland presumably in Mongolia, between the third century BCE and the thirteenth century CE. The present study has highlighted the gene-culture co-migration with the demographic movements that occurred during the past two millennia in Central and East Asia. Additionally, this work contributes to a better understanding of the distribution of immunogenic erythrocyte polymorphisms with a view to improve transfusion safety.
Collapse
|
81
|
Scheib CL, Li H, Desai T, Link V, Kendall C, Dewar G, Griffith PW, Mörseburg A, Johnson JR, Potter A, Kerr SL, Endicott P, Lindo J, Haber M, Xue Y, Tyler-Smith C, Sandhu MS, Lorenz JG, Randall TD, Faltyskova Z, Pagani L, Danecek P, O'Connell TC, Martz P, Boraas AS, Byrd BF, Leventhal A, Cambra R, Williamson R, Lesage L, Holguin B, Ygnacio-De Soto E, Rosas J, Metspalu M, Stock JT, Manica A, Scally A, Wegmann D, Malhi RS, Kivisild T. Ancient human parallel lineages within North America contributed to a coastal expansion. Science 2018; 360:1024-1027. [PMID: 29853687 DOI: 10.1126/science.aar6851] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 04/20/2018] [Indexed: 12/12/2022]
Abstract
Little is known regarding the first people to enter the Americas and their genetic legacy. Genomic analysis of the oldest human remains from the Americas showed a direct relationship between a Clovis-related ancestral population and all modern Central and South Americans as well as a deep split separating them from North Americans in Canada. We present 91 ancient human genomes from California and Southwestern Ontario and demonstrate the existence of two distinct ancestries in North America, which possibly split south of the ice sheets. A contribution from both of these ancestral populations is found in all modern Central and South Americans. The proportions of these two ancestries in ancient and modern populations are consistent with a coastal dispersal and multiple admixture events.
Collapse
Affiliation(s)
- C L Scheib
- Department of Archaeology, University of Cambridge, Cambridge CB2 3DZ, UK. .,Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Hongjie Li
- Department of Anthropology and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tariq Desai
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Vivian Link
- Department of Biology, Université de Fribourg, Fribourg, Switzerland
| | - Christopher Kendall
- Department of Anthropology, University of Toronto, Toronto, Ontario M5S 2S2, Canada
| | - Genevieve Dewar
- Department of Anthropology, University of Toronto, Toronto, Ontario M5S 2S2, Canada
| | | | | | - John R Johnson
- Santa Barbara Museum of Natural History, Santa Barbara, CA 93105, USA
| | - Amiee Potter
- Department of Anthropology, Portland State University, Portland, OR 97232, USA.,Knight Diagnostics Laboratory, Oregon Health & Science University, Portland, OR 97239, USA
| | - Susan L Kerr
- Department of Anthropology, Modesto Junior College, Modesto, CA 95350, USA
| | - Phillip Endicott
- Department Hommes Natures Societies, Musée de l'Homme, Paris 75016, France
| | - John Lindo
- Department of Anthropology, Emory University, Atlanta, GA 30322, USA
| | - Marc Haber
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Yali Xue
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Chris Tyler-Smith
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | | | - Joseph G Lorenz
- Department of Anthropology and Museum Studies, Central Washington University, Ellensburg, WA 98926, USA
| | - Tori D Randall
- Department of Anthropology, San Diego City College, San Diego, CA 92101, USA
| | - Zuzana Faltyskova
- Department of Archaeology, University of Cambridge, Cambridge CB2 3DZ, UK
| | - Luca Pagani
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia.,APE Lab, Department of Biology, University of Padova, Padova, Italy
| | - Petr Danecek
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Tamsin C O'Connell
- Department of Archaeology, University of Cambridge, Cambridge CB2 3DZ, UK
| | - Patricia Martz
- Department of Anthropology, California State University, Los Angeles, CA 90032, USA
| | | | - Brian F Byrd
- Far Western Anthropological Research Group Inc., Davis, CA 95618, USA
| | - Alan Leventhal
- Muwekma Ohlone Tribe of the San Francisco Bay Area, P.O. Box 360791, Milpitas, CA 95036, USA.,Department of Anthropology, San Jose State University, San Jose, CA 95192, USA
| | - Rosemary Cambra
- Muwekma Ohlone Tribe of the San Francisco Bay Area, P.O. Box 360791, Milpitas, CA 95036, USA
| | | | | | - Brian Holguin
- Department of Anthropology, University of California, Los Angeles, CA 90095, USA
| | - Ernestine Ygnacio-De Soto
- Barbareño Chumash, California Indian Advisory Committee, Santa Barbara Museum of Natural History, Santa Barbara, CA 93105, USA
| | | | - Mait Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Jay T Stock
- Department of Archaeology, University of Cambridge, Cambridge CB2 3DZ, UK.,Department of Anthropology, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Andrea Manica
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Aylwyn Scally
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Daniel Wegmann
- Department of Biology, Université de Fribourg, Fribourg, Switzerland
| | - Ripan S Malhi
- Department of Anthropology and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Toomas Kivisild
- Department of Archaeology, University of Cambridge, Cambridge CB2 3DZ, UK. .,Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| |
Collapse
|
82
|
Ebenesersdóttir SS, Sandoval-Velasco M, Gunnarsdóttir ED, Jagadeesan A, Guðmundsdóttir VB, Thordardóttir EL, Einarsdóttir MS, Moore KHS, Sigurðsson Á, Magnúsdóttir DN, Jónsson H, Snorradóttir S, Hovig E, Møller P, Kockum I, Olsson T, Alfredsson L, Hansen TF, Werge T, Cavalleri GL, Gilbert E, Lalueza-Fox C, Walser JW, Kristjánsdóttir S, Gopalakrishnan S, Árnadóttir L, Magnússon ÓÞ, Gilbert MTP, Stefánsson K, Helgason A. Ancient genomes from Iceland reveal the making of a human population. Science 2018; 360:1028-1032. [PMID: 29853688 DOI: 10.1126/science.aar2625] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/25/2018] [Indexed: 12/14/2022]
Abstract
Opportunities to directly study the founding of a human population and its subsequent evolutionary history are rare. Using genome sequence data from 27 ancient Icelanders, we demonstrate that they are a combination of Norse, Gaelic, and admixed individuals. We further show that these ancient Icelanders are markedly more similar to their source populations in Scandinavia and the British-Irish Isles than to contemporary Icelanders, who have been shaped by 1100 years of extensive genetic drift. Finally, we report evidence of unequal contributions from the ancient founders to the contemporary Icelandic gene pool. These results provide detailed insights into the making of a human population that has proven extraordinarily useful for the discovery of genotype-phenotype associations.
Collapse
Affiliation(s)
- S Sunna Ebenesersdóttir
- deCODE Genetics/AMGEN, Inc., Reykjavik Iceland. .,Department of Anthropology, University of Iceland, Reykjavik, Iceland
| | - Marcela Sandoval-Velasco
- Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen K, Denmark
| | - Ellen D Gunnarsdóttir
- deCODE Genetics/AMGEN, Inc., Reykjavik Iceland.,Department of Anthropology, University of Iceland, Reykjavik, Iceland
| | - Anuradha Jagadeesan
- deCODE Genetics/AMGEN, Inc., Reykjavik Iceland.,Department of Anthropology, University of Iceland, Reykjavik, Iceland
| | - Valdís B Guðmundsdóttir
- deCODE Genetics/AMGEN, Inc., Reykjavik Iceland.,Department of Anthropology, University of Iceland, Reykjavik, Iceland
| | - Elísabet L Thordardóttir
- deCODE Genetics/AMGEN, Inc., Reykjavik Iceland.,Department of Anthropology, University of Iceland, Reykjavik, Iceland
| | - Margrét S Einarsdóttir
- deCODE Genetics/AMGEN, Inc., Reykjavik Iceland.,Department of Anthropology, University of Iceland, Reykjavik, Iceland
| | | | | | | | | | | | - Eivind Hovig
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway.,Department of Informatics, University of Oslo, Oslo, Norway
| | - Pål Møller
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Department of Human Medicine, Universität Witten/Herdecke, Witten, Germany.,Research Group Inherited Cancer, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Ingrid Kockum
- Center for Molecular Medicine, Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Olsson
- Center for Molecular Medicine, Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Lars Alfredsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Thomas F Hansen
- Institute of Biological Psychiatry, Copenhagen Mental Health Services, Copenhagen, Denmark.,Danish Headache Center, Department of Neurology, Copenhagen University hospital, DK-2600 Glostrup, Denmark
| | - Thomas Werge
- Institute of Biological Psychiatry, Copenhagen Mental Health Services, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark
| | - Gianpiero L Cavalleri
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin, Ireland
| | - Edmund Gilbert
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin, Ireland
| | | | - Joe W Walser
- National Museum of Iceland, Reykjavik, Iceland.,Department of Archaeology, University of Iceland, Reykjavik, Iceland
| | - Steinunn Kristjánsdóttir
- National Museum of Iceland, Reykjavik, Iceland.,Department of Archaeology, University of Iceland, Reykjavik, Iceland
| | - Shyam Gopalakrishnan
- Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen K, Denmark
| | | | | | - M Thomas P Gilbert
- Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen K, Denmark.,Norwegian University of Science and Techonology, University Museum, 7491 Trondheim, Norway
| | - Kári Stefánsson
- deCODE Genetics/AMGEN, Inc., Reykjavik Iceland. .,Faculity of Medicine, University of Iceland, Reykjavik, Iceland
| | - Agnar Helgason
- deCODE Genetics/AMGEN, Inc., Reykjavik Iceland. .,Department of Anthropology, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
83
|
Deniskova TE, Dotsev AV, Selionova MI, Kunz E, Medugorac I, Reyer H, Wimmers K, Barbato M, Traspov AA, Brem G, Zinovieva NA. Population structure and genetic diversity of 25 Russian sheep breeds based on whole-genome genotyping. Genet Sel Evol 2018; 50:29. [PMID: 29793424 PMCID: PMC5968526 DOI: 10.1186/s12711-018-0399-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 05/16/2018] [Indexed: 11/28/2022] Open
Abstract
Background Russia has a diverse variety of native and locally developed sheep breeds with coarse, fine, and semi-fine wool, which inhabit different climate zones and landscapes that range from hot deserts to harsh northern areas. To date, no genome-wide information has been used to investigate the history and genetic characteristics of the extant local Russian sheep populations. To infer the population structure and genome-wide diversity of Russian sheep, 25 local breeds were genotyped with the OvineSNP50 BeadChip. Furthermore, to evaluate admixture contributions from foreign breeds in Russian sheep, a set of 58 worldwide breeds from publicly available genotypes was added to our data. Results We recorded similar observed heterozygosity (0.354–0.395) and allelic richness (1.890–1.955) levels across the analyzed breeds and they are comparable with those observed in the worldwide breeds. Recent effective population sizes estimated from linkage disequilibrium five generations ago ranged from 65 to 543. Multi-dimensional scaling, admixture, and neighbor-net analyses consistently identified a two-step subdivision of the Russian local sheep breeds. A first split clustered the Russian sheep populations according to their wool type (fine wool, semi-fine wool and coarse wool). The Dagestan Mountain and Baikal fine-fleeced breeds differ from the other Merino-derived local breeds. The semi-fine wool cluster combined a breed of Romanian origin, Tsigai, with its derivative Altai Mountain, the two Romney-introgressed breeds Kuibyshev and North Caucasian, and the Lincoln-introgressed Russian longhaired breed. The coarse-wool group comprised the Nordic short-tailed Romanov, the long-fat-tailed outlier Kuchugur and two clusters of fat-tailed sheep: the Caucasian Mountain breeds and the Buubei, Karakul, Edilbai, Kalmyk and Tuva breeds. The Russian fat-tailed breeds shared co-ancestry with sheep from China and Southwestern Asia (Iran). Conclusions In this study, we derived the genetic characteristics of the major Russian local sheep breeds, which are moderately diverse and have a strong population structure. Pooling our data with a worldwide genotyping set gave deeper insight into the history and origin of the Russian sheep populations. Electronic supplementary material The online version of this article (10.1186/s12711-018-0399-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tatiana E Deniskova
- L.K. Ernst Federal Science Center for Animal Husbandry, Dubrovitzy Estate 60, Podolia, Russia, 142132.
| | - Arsen V Dotsev
- L.K. Ernst Federal Science Center for Animal Husbandry, Dubrovitzy Estate 60, Podolia, Russia, 142132
| | - Marina I Selionova
- All-Russian Research Institute of Sheep and Goat Breeding, Zootechnichesky Lane 15, Stavropol, Russia, 355017
| | - Elisabeth Kunz
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Veterinaerstr. 13, 80539, Munich, Germany
| | - Ivica Medugorac
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Veterinaerstr. 13, 80539, Munich, Germany
| | - Henry Reyer
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Klaus Wimmers
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Mario Barbato
- Istituto di Zootecnica, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Alexei A Traspov
- L.K. Ernst Federal Science Center for Animal Husbandry, Dubrovitzy Estate 60, Podolia, Russia, 142132
| | - Gottfried Brem
- L.K. Ernst Federal Science Center for Animal Husbandry, Dubrovitzy Estate 60, Podolia, Russia, 142132.,Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Natalia A Zinovieva
- L.K. Ernst Federal Science Center for Animal Husbandry, Dubrovitzy Estate 60, Podolia, Russia, 142132.
| |
Collapse
|
84
|
Huang YZ, Pamjav H, Flegontov P, Stenzl V, Wen SQ, Tong XZ, Wang CC, Wang LX, Wei LH, Gao JY, Jin L, Li H. Dispersals of the Siberian Y-chromosome haplogroup Q in Eurasia. Mol Genet Genomics 2018; 293:107-117. [PMID: 28884289 PMCID: PMC5846874 DOI: 10.1007/s00438-017-1363-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 08/27/2017] [Indexed: 12/17/2022]
Abstract
The human Y-chromosome has proven to be a powerful tool for tracing the paternal history of human populations and genealogical ancestors. The human Y-chromosome haplogroup Q is the most frequent haplogroup in the Americas. Previous studies have traced the origin of haplogroup Q to the region around Central Asia and Southern Siberia. Although the diversity of haplogroup Q in the Americas has been studied in detail, investigations on the diffusion of haplogroup Q in Eurasia and Africa are still limited. In this study, we collected 39 samples from China and Russia, investigated 432 samples from previous studies of haplogroup Q, and analyzed the single nucleotide polymorphism (SNP) subclades Q1a1a1-M120, Q1a2a1-L54, Q1a1b-M25, Q1a2-M346, Q1a2a1a2-L804, Q1a2b2-F1161, Q1b1a-M378, and Q1b1a1-L245. Through NETWORK and BATWING analyses, we found that the subclades of haplogroup Q continued to disperse from Central Asia and Southern Siberia during the past 10,000 years. Apart from its migration through the Beringia to the Americas, haplogroup Q also moved from Asia to the south and to the west during the Neolithic period, and subsequently to the whole of Eurasia and part of Africa.
Collapse
Affiliation(s)
- Yun-Zhi Huang
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Horolma Pamjav
- National Center of Forensic Experts and Research, Budapest, 1087, Hungary
| | - Pavel Flegontov
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 71000, Ostrava, Czech Republic
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051, Russian Federation
| | - Vlastimil Stenzl
- Institute of Criminalistics, Police of the Czech Republic, 17089, Prague, Czech Republic
| | - Shao-Qing Wen
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xin-Zhu Tong
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Chuan-Chao Wang
- Department of Anthropology and Ethnology, Xiamen University, Xiamen, 361005, China
| | - Ling-Xiang Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Lan-Hai Wei
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Institut National des Langues et Civilisations Orientales, 75013, Paris, France
| | - Jing-Yi Gao
- Faculty of Arts and Humanities, University of Tartu, 50090, Tartu, Estonia
- Faculty of Central European Studies, Beijing International Studies University, Beijing, 100024, China
| | - Li Jin
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Hui Li
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
85
|
Whole-sequence analysis indicates that the Y chromosome C2*-Star Cluster traces back to ordinary Mongols, rather than Genghis Khan. Eur J Hum Genet 2018; 26:230-237. [PMID: 29358612 DOI: 10.1038/s41431-017-0012-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 07/27/2017] [Accepted: 08/23/2017] [Indexed: 11/08/2022] Open
Abstract
The Y-chromosome haplogroup C3*-Star Cluster (revised to C2*-ST in this study) was proposed to be the Y-profile of Genghis Khan. Here, we re-examined the origin of C2*-ST and its associations with Genghis Khan and Mongol populations. We analyzed 34 Y-chromosome sequences of haplogroup C2*-ST and its most closely related lineage. We redefined this paternal lineage as C2b1a3a1-F3796 and generated a highly revised phylogenetic tree of the haplogroup, including 36 sub-lineages and 265 non-private Y-chromosome variants. We performed a comprehensive analysis and age estimation of this lineage in eastern Eurasia, including 18,210 individuals from 292 populations. We discovered that the origin of populations with high frequencies of C2*-ST can be traced to either an ancient Niru'un Mongol clan or ordinary Mongol tribes. Importantly, the age of the most recent common ancestor of C2*-ST (2576 years, 95% CI = 1975-3178) and its sub-lineages, and their expansion patterns, are consistent with the diffusion of all Mongolic-speaking populations, rather than Genghis Khan himself or his close male relatives. We concluded that haplogroup C2*-ST is one of the founder paternal lineages of all Mongolic-speaking populations, and direct evidence of an association between C2*-ST and Genghis Khan has yet to be discovered.
Collapse
|
86
|
Triska P, Chekanov N, Stepanov V, Khusnutdinova EK, Kumar GPA, Akhmetova V, Babalyan K, Boulygina E, Kharkov V, Gubina M, Khidiyatova I, Khitrinskaya I, Khrameeva EE, Khusainova R, Konovalova N, Litvinov S, Marusin A, Mazur AM, Puzyrev V, Ivanoshchuk D, Spiridonova M, Teslyuk A, Tsygankova S, Triska M, Trofimova N, Vajda E, Balanovsky O, Baranova A, Skryabin K, Tatarinova TV, Prokhortchouk E. Between Lake Baikal and the Baltic Sea: genomic history of the gateway to Europe. BMC Genet 2017; 18:110. [PMID: 29297395 PMCID: PMC5751809 DOI: 10.1186/s12863-017-0578-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The history of human populations occupying the plains and mountain ridges separating Europe from Asia has been eventful, as these natural obstacles were crossed westward by multiple waves of Turkic and Uralic-speaking migrants as well as eastward by Europeans. Unfortunately, the material records of history of this region are not dense enough to reconstruct details of population history. These considerations stimulate growing interest to obtain a genetic picture of the demographic history of migrations and admixture in Northern Eurasia. RESULTS We genotyped and analyzed 1076 individuals from 30 populations with geographical coverage spanning from Baltic Sea to Baikal Lake. Our dense sampling allowed us to describe in detail the population structure, provide insight into genomic history of numerous European and Asian populations, and significantly increase quantity of genetic data available for modern populations in region of North Eurasia. Our study doubles the amount of genome-wide profiles available for this region. We detected unusually high amount of shared identical-by-descent (IBD) genomic segments between several Siberian populations, such as Khanty and Ket, providing evidence of genetic relatedness across vast geographic distances and between speakers of different language families. Additionally, we observed excessive IBD sharing between Khanty and Bashkir, a group of Turkic speakers from Southern Urals region. While adding some weight to the "Finno-Ugric" origin of Bashkir, our studies highlighted that the Bashkir genepool lacks the main "core", being a multi-layered amalgamation of Turkic, Ugric, Finnish and Indo-European contributions, which points at intricacy of genetic interface between Turkic and Uralic populations. Comparison of the genetic structure of Siberian ethnicities and the geography of the region they inhabit point at existence of the "Great Siberian Vortex" directing genetic exchanges in populations across the Siberian part of Asia. Slavic speakers of Eastern Europe are, in general, very similar in their genetic composition. Ukrainians, Belarusians and Russians have almost identical proportions of Caucasus and Northern European components and have virtually no Asian influence. We capitalized on wide geographic span of our sampling to address intriguing question about the place of origin of Russian Starovers, an enigmatic Eastern Orthodox Old Believers religious group relocated to Siberia in seventeenth century. A comparative reAdmix analysis, complemented by IBD sharing, placed their roots in the region of the Northern European Plain, occupied by North Russians and Finno-Ugric Komi and Karelian people. Russians from Novosibirsk and Russian Starover exhibit ancestral proportions close to that of European Eastern Slavs, however, they also include between five to 10 % of Central Siberian ancestry, not present at this level in their European counterparts. CONCLUSIONS Our project has patched the hole in the genetic map of Eurasia: we demonstrated complexity of genetic structure of Northern Eurasians, existence of East-West and North-South genetic gradients, and assessed different inputs of ancient populations into modern populations.
Collapse
MESH Headings
- Algorithms
- Asia
- DNA
- Datasets as Topic
- Emigration and Immigration/history
- Ethnicity/genetics
- Europe
- Female
- Genetic Variation
- Genetics, Population
- Genotyping Techniques
- History, 15th Century
- History, 16th Century
- History, 17th Century
- History, 18th Century
- History, 19th Century
- History, 20th Century
- History, 21st Century
- History, Ancient
- History, Medieval
- Humans
- Male
- Russia
Collapse
Affiliation(s)
- Petr Triska
- Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Nikolay Chekanov
- Federal State Institution "Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences", Moscow, Russia
- "Genoanalytica" CJSC, Moscow, Russia
| | - Vadim Stepanov
- Institute of Medical Genetics, Tomsk National Medical Research Center, Russian Academy of Sciences, Siberian Branch, Tomsk, Russia
| | - Elza K Khusnutdinova
- Institute of Biochemistry and Genetics, Russian Academy of Sciences, Ufa Scientific Centre of Russian Academy of Sciences, Ufa, Russia
- Bashkir State University, Ufa, Russia
| | | | - Vita Akhmetova
- Institute of Biochemistry and Genetics, Russian Academy of Sciences, Ufa Scientific Centre of Russian Academy of Sciences, Ufa, Russia
| | - Konstantin Babalyan
- Moscow Institute of Physics and Technology, Department of Molecular and Bio-Physics, Moscow, Russia
| | | | - Vladimir Kharkov
- Institute of Medical Genetics, Tomsk National Medical Research Center, Russian Academy of Sciences, Siberian Branch, Tomsk, Russia
| | - Marina Gubina
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
| | - Irina Khidiyatova
- Institute of Biochemistry and Genetics, Russian Academy of Sciences, Ufa Scientific Centre of Russian Academy of Sciences, Ufa, Russia
- Bashkir State University, Ufa, Russia
| | - Irina Khitrinskaya
- Institute of Medical Genetics, Tomsk National Medical Research Center, Russian Academy of Sciences, Siberian Branch, Tomsk, Russia
| | - Ekaterina E Khrameeva
- "Genoanalytica" CJSC, Moscow, Russia
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow, Russia
| | - Rita Khusainova
- Institute of Biochemistry and Genetics, Russian Academy of Sciences, Ufa Scientific Centre of Russian Academy of Sciences, Ufa, Russia
- Bashkir State University, Ufa, Russia
| | | | - Sergey Litvinov
- Institute of Biochemistry and Genetics, Russian Academy of Sciences, Ufa Scientific Centre of Russian Academy of Sciences, Ufa, Russia
| | - Andrey Marusin
- Institute of Medical Genetics, Tomsk National Medical Research Center, Russian Academy of Sciences, Siberian Branch, Tomsk, Russia
| | - Alexandr M Mazur
- Federal State Institution "Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences", Moscow, Russia
| | - Valery Puzyrev
- Institute of Medical Genetics, Tomsk National Medical Research Center, Russian Academy of Sciences, Siberian Branch, Tomsk, Russia
| | - Dinara Ivanoshchuk
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
| | - Maria Spiridonova
- Institute of Medical Genetics, Tomsk National Medical Research Center, Russian Academy of Sciences, Siberian Branch, Tomsk, Russia
| | - Anton Teslyuk
- Moscow Institute of Physics and Technology, Department of Molecular and Bio-Physics, Moscow, Russia
| | - Svetlana Tsygankova
- Moscow Institute of Physics and Technology, Department of Molecular and Bio-Physics, Moscow, Russia
| | - Martin Triska
- Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Natalya Trofimova
- Institute of Biochemistry and Genetics, Russian Academy of Sciences, Ufa Scientific Centre of Russian Academy of Sciences, Ufa, Russia
| | - Edward Vajda
- Department of Modern and Classical Languages, Western Washington University, Bellingham, WA, USA
| | - Oleg Balanovsky
- Research Centre for Medical Genetics, Moscow, Russia
- Vavilov Institute of General Genetics, Moscow, Russia
| | - Ancha Baranova
- Research Centre for Medical Genetics, Moscow, Russia
- School of Systems Biology, George Mason University, Fairfax, VA, USA
- Atlas Biomed Group, Moscow, Russia
| | - Konstantin Skryabin
- Federal State Institution "Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences", Moscow, Russia
- Russian Scientific Centre "Kurchatov Institute", Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Tatiana V Tatarinova
- Vavilov Institute of General Genetics, Moscow, Russia.
- School of Systems Biology, George Mason University, Fairfax, VA, USA.
- Atlas Biomed Group, Moscow, Russia.
- Department of Biology, University of La Verne, La Verne, CA, USA.
- A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia.
| | - Egor Prokhortchouk
- Federal State Institution "Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences", Moscow, Russia.
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
87
|
Zhao YX, Yang J, Lv FH, Hu XJ, Xie XL, Zhang M, Li WR, Liu MJ, Wang YT, Li JQ, Liu YG, Ren YL, Wang F, Hehua EE, Kantanen J, Arjen Lenstra J, Han JL, Li MH. Genomic Reconstruction of the History of Native Sheep Reveals the Peopling Patterns of Nomads and the Expansion of Early Pastoralism in East Asia. Mol Biol Evol 2017. [PMID: 28645168 PMCID: PMC5850515 DOI: 10.1093/molbev/msx181] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
China has a rich resource of native sheep (Ovis aries) breeds associated with historical movements of several nomadic societies. However, the history of sheep and the associated nomadic societies in ancient China remains poorly understood. Here, we studied the genomic diversity of Chinese sheep using genome-wide SNPs, mitochondrial and Y-chromosomal variations in > 1,000 modern samples. Population genomic analyses combined with archeological records and historical ethnic demographics data revealed genetic signatures of the origins, secondary expansions and admixtures, of Chinese sheep thereby revealing the peopling patterns of nomads and the expansion of early pastoralism in East Asia. Originating from the Mongolian Plateau ∼5,000‒5,700 years ago, Chinese sheep were inferred to spread in the upper and middle reaches of the Yellow River ∼3,000‒5,000 years ago following the expansions of the Di-Qiang people. Afterwards, sheep were then inferred to reach the Qinghai-Tibetan and Yunnan-Kweichow plateaus ∼2,000‒2,600 years ago by following the north-to-southwest routes of the Di-Qiang migration. We also unveiled two subsequent waves of migrations of fat-tailed sheep into northern China, which were largely commensurate with the migrations of ancestors of Hui Muslims eastward and Mongols southward during the 12th‒13th centuries. Furthermore, we revealed signs of argali introgression into domestic sheep, extensive historical mixtures among domestic populations and strong artificial selection for tail type and other traits, reflecting various breeding strategies by nomadic societies in ancient China.
Collapse
Affiliation(s)
- Yong-Xin Zhao
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Ji Yang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Feng-Hua Lv
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Xiao-Ju Hu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Xing-Long Xie
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Min Zhang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China.,School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Wen-Rong Li
- Animal Biotechnological Research Center, Xinjiang Academy of Animal Science, Urumqi, China
| | - Ming-Jun Liu
- Animal Biotechnological Research Center, Xinjiang Academy of Animal Science, Urumqi, China
| | - Yu-Tao Wang
- College of Life and Geographic Sciences, Kashgar University, Kashgar, China
| | - Jin-Quan Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yong-Gang Liu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yan-Ling Ren
- Shandong Binzhou Academy of Animal Science and Veterinary Medicine, Binzhou, China
| | - Feng Wang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
| | - EEr Hehua
- Grass-Feeding Livestock Engineering Technology Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Juha Kantanen
- Green Technology, Natural Resources Institute Finland (Luke), Jokioinen, Finland.,Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,Livestock Genetics Program, International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Meng-Hua Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China
| |
Collapse
|
88
|
Derenko M, Denisova G, Malyarchuk B, Dambueva I, Bazarov B. Mitogenomic diversity and differentiation of the Buryats. J Hum Genet 2017; 63:71-81. [PMID: 29215085 DOI: 10.1038/s10038-017-0370-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 12/25/2022]
Abstract
In this paper we present a results of first comprehensive study of the complete mitogenomes in the Buryats with regard to their belonging to the main regional (eastern and western Buryats); tribal (Khori, Ekhirid, Bulagad, and Khongodor), and ethno-territorial (Aginsk, Alar, Balagansk, Barguzin, Ida, Khorinsk, Kuda, Selenga, Verkholensk, Olkhon, Tunka, and Shenehen Buryats) groups. The analysis of molecular variation performed using regional, tribal, and ethno-territorial divisions of the Buryats showed lack of genetic differentiation at all levels. Nonetheless, the complete mitogenome analysis revealed a very high level of genetic diversity in the Buryats which is the highest among Siberian populations and comparable to that in populations of eastern and western Asia. The AMOVA and MDS analyses results imply to a strong genetic similarity between the Buryats and eastern Asian populations of Chinese and Japanese, suggesting their origin on the basis of common maternal ancestry components. Several new Buryat-specific branches of haplogroup G (G2a2a, G2a1i, G2a5a) display signals of dispersals dating to 2.6-6.6 kya with a possible origin in eastern Asia, thus testifying Bronze Age and Neolithic arrival of ancestral eastern Asian component to the South Siberia region.
Collapse
Affiliation(s)
- Miroslava Derenko
- Genetics Laboratory, Institute of Biological Problems of the North, Russian Academy of Sciences, Magadan, Russia.
| | - Galina Denisova
- Genetics Laboratory, Institute of Biological Problems of the North, Russian Academy of Sciences, Magadan, Russia
| | - Boris Malyarchuk
- Genetics Laboratory, Institute of Biological Problems of the North, Russian Academy of Sciences, Magadan, Russia
| | - Irina Dambueva
- Institute of Mongolian, Buddhist and Tibetan Studies, Russian Academy of Sciences, Ulan-Ude, Russia
| | - Boris Bazarov
- Institute of Mongolian, Buddhist and Tibetan Studies, Russian Academy of Sciences, Ulan-Ude, Russia
| |
Collapse
|
89
|
Yardumian A, Shengelia R, Chitanava D, Laliashvili S, Bitadze L, Laliashvili I, Villanea F, Sanders A, Azzam A, Groner V, Edleson K, Vilar MG, Schurr TG. Genetic diversity in Svaneti and its implications for the human settlement of the Highland Caucasus. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 164:837-852. [PMID: 29076141 DOI: 10.1002/ajpa.23324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 07/19/2017] [Accepted: 09/10/2017] [Indexed: 11/11/2022]
Abstract
OBJECTIVES In this study, we characterized genetic diversity in the Svans from northwestern Georgia to better understand the phylogeography of their genetic lineages, determine whether genetic diversity in the highland South Caucasus has been shaped by language or geography, and assess whether Svan genetic diversity was structured by regional residence patterns. MATERIALS AND METHODS We analyzed mtDNA and Y-chromosome variation in 184 individuals from 13 village districts and townlets located throughout the region. For all individuals, we analyzed mtDNA diversity through control region sequencing, and, for males, we analyzed Y-chromosome diversity through SNP and STR genotyping. The resulting data were compared with those for populations from the Caucasus and Middle East. RESULTS We observed significant mtDNA heterogeneity in Svans, with haplogroups U1-U7, H, K, and W6 being common there. By contrast, ∼78% of Svan males belonged to haplogroup G2a, with the remainder falling into four other haplogroups (J2a1, I2, N, and R1a). While showing a distinct genetic profile, Svans also clustered with Caucasus populations speaking languages from different families, suggesting a deep common ancestry for all of them. The mtDNA data were not structured by geography or linguistic affiliation, whereas the NRY data were influenced only by geography. DISCUSSION These patterns of genetic variation confirm a complex set of geographic sources and settlement phases for the Caucasus highlands. Such patterns may also reflect social and cultural practices in the region. The high frequency and antiquity of Y-chromosome haplogroup G2a in this region further points to its emergence there.
Collapse
Affiliation(s)
- Aram Yardumian
- Department of History and Social Sciences, Bryn Athyn College, Pennsylvania 19009.,Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Ramaz Shengelia
- Department of the History of Medicine and Bioethics, Tbilisi State Medical University, Tbilisi 01747, Georgia
| | - David Chitanava
- Laboratory for Anthropologic Studies, Ivane Javakhishvili Institute of History and Ethnology, Tbilisi 0102, Georgia
| | - Shorena Laliashvili
- Laboratory for Anthropologic Studies, Ivane Javakhishvili Institute of History and Ethnology, Tbilisi 0102, Georgia
| | - Lia Bitadze
- Laboratory for Anthropologic Studies, Ivane Javakhishvili Institute of History and Ethnology, Tbilisi 0102, Georgia
| | - Irma Laliashvili
- Laboratory for Anthropologic Studies, Ivane Javakhishvili Institute of History and Ethnology, Tbilisi 0102, Georgia
| | - Fernando Villanea
- Grant Programs, Science and Exploration, National Geographic Society, Washington, DC 20036
| | - Akiva Sanders
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Andrew Azzam
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Victoria Groner
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Kristi Edleson
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Miguel G Vilar
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania 19104.,Grant Programs, Science and Exploration, National Geographic Society, Washington, DC 20036
| | - Theodore G Schurr
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
90
|
Leonardi M, Barbujani G, Manica A. An earlier revolution: genetic and genomic analyses reveal pre-existing cultural differences leading to Neolithization. Sci Rep 2017; 7:3525. [PMID: 28615641 PMCID: PMC5471218 DOI: 10.1038/s41598-017-03717-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/02/2017] [Indexed: 01/28/2023] Open
Abstract
Archaeological evidence shows that, in the long run, Neolitization (the transition from foraging to food production) was associated with demographic growth. We used two methods (patterns of linkage disequilibrium from whole-genome SNPs and MSMC estimates on genomes) to reconstruct the demographic profiles for respectively 64 and 24 modern-day populations with contrasting lifestyles across the Old World (sub-Saharan Africa, south-eastern Asia, Siberia). Surprisingly, in all regions, food producers had larger effective population sizes (Ne) than foragers already 20 k years ago, well before the Neolithic revolution. As expected, this difference further increased ~12–10 k years ago, around or just before the onset of food production. Using paleoclimate reconstructions, we show that the early difference in Ne cannot be explained by food producers inhabiting more favorable regions. A number of mechanisms, including ancestral differences in census size, sedentism, exploitation of the natural resources, social stratification or connectivity between groups, might have led to the early differences in Ne detected in our analyses. Irrespective of the specific mechanisms involved, our results provide further evidence that long term cultural differences among populations of Palaeolithic hunter-gatherers are likely to have played an important role in the later Neolithization process.
Collapse
Affiliation(s)
- Michela Leonardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Borsari 44, 44121, Ferrara, Italy. .,Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Oester Voldgade 5-7, DK-1350, Copenhagen, Denmark.
| | - Guido Barbujani
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Borsari 44, 44121, Ferrara, Italy
| | - Andrea Manica
- Department of Zoology, University of Cambridge, Downing street, CB2 3EJ, Cambridge, UK
| |
Collapse
|
91
|
The Connection of the Genetic, Cultural and Geographic Landscapes of Transoxiana. Sci Rep 2017; 7:3085. [PMID: 28596519 PMCID: PMC5465200 DOI: 10.1038/s41598-017-03176-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 04/26/2017] [Indexed: 11/09/2022] Open
Abstract
We have analyzed Y-chromosomal variation in populations from Transoxiana, a historical region covering the southwestern part of Central Asia. We studied 780 samples from 10 regional populations of Kazakhs, Uzbeks, Turkmens, Dungans, and Karakalpaks using 35 SNP and 17 STR markers. Analysis of haplogroup frequencies using multidimensional scaling and principal component plots, supported by an analysis of molecular variance, showed that the geographic landscape of Transoxiana, despite its distinctiveness and diversity (deserts, fertile river basins, foothills and plains) had no strong influence on the genetic landscape. The main factor structuring the gene pool was the mode of subsistence: settled agriculture or nomadic pastoralism. Investigation of STR-based clusters of haplotypes and their ages revealed that cultural and demic expansions of Transoxiana were not closely connected with each other. The Arab cultural expansion introduced Islam to the region but did not leave a significant mark on the pool of paternal lineages. The Mongol expansion, in contrast, had enormous demic success, but did not impact cultural elements like language and religion. The genealogy of Muslim missionaries within the settled agricultural communities of Transoxiana was based on spiritual succession passed from teacher to disciple. However, among Transoxianan nomads, spiritual and biological succession became merged.
Collapse
|
92
|
Ancient and recent admixture layers in Sicily and Southern Italy trace multiple migration routes along the Mediterranean. Sci Rep 2017; 7:1984. [PMID: 28512355 PMCID: PMC5434004 DOI: 10.1038/s41598-017-01802-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 04/04/2017] [Indexed: 12/12/2022] Open
Abstract
The Mediterranean shores stretching between Sicily, Southern Italy and the Southern Balkans witnessed a long series of migration processes and cultural exchanges. Accordingly, present-day population diversity is composed by multiple genetic layers, which make the deciphering of different ancestral and historical contributes particularly challenging. We address this issue by genotyping 511 samples from 23 populations of Sicily, Southern Italy, Greece and Albania with the Illumina GenoChip Array, also including new samples from Albanian- and Greek-speaking ethno-linguistic minorities of Southern Italy. Our results reveal a shared Mediterranean genetic continuity, extending from Sicily to Cyprus, where Southern Italian populations appear genetically closer to Greek-speaking islands than to continental Greece. Besides a predominant Neolithic background, we identify traces of Post-Neolithic Levantine- and Caucasus-related ancestries, compatible with maritime Bronze-Age migrations. We argue that these results may have important implications in the cultural history of Europe, such as in the diffusion of some Indo-European languages. Instead, recent historical expansions from North-Eastern Europe account for the observed differentiation of present-day continental Southern Balkan groups. Patterns of IBD-sharing directly reconnect Albanian-speaking Arbereshe with a recent Balkan-source origin, while Greek-speaking communities of Southern Italy cluster with their Italian-speaking neighbours suggesting a long-term history of presence in Southern Italy.
Collapse
|
93
|
Silva M, Oliveira M, Vieira D, Brandão A, Rito T, Pereira JB, Fraser RM, Hudson B, Gandini F, Edwards C, Pala M, Koch J, Wilson JF, Pereira L, Richards MB, Soares P. A genetic chronology for the Indian Subcontinent points to heavily sex-biased dispersals. BMC Evol Biol 2017; 17:88. [PMID: 28335724 PMCID: PMC5364613 DOI: 10.1186/s12862-017-0936-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/14/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND India is a patchwork of tribal and non-tribal populations that speak many different languages from various language families. Indo-European, spoken across northern and central India, and also in Pakistan and Bangladesh, has been frequently connected to the so-called "Indo-Aryan invasions" from Central Asia ~3.5 ka and the establishment of the caste system, but the extent of immigration at this time remains extremely controversial. South India, on the other hand, is dominated by Dravidian languages. India displays a high level of endogamy due to its strict social boundaries, and high genetic drift as a result of long-term isolation which, together with a very complex history, makes the genetic study of Indian populations challenging. RESULTS We have combined a detailed, high-resolution mitogenome analysis with summaries of autosomal data and Y-chromosome lineages to establish a settlement chronology for the Indian Subcontinent. Maternal lineages document the earliest settlement ~55-65 ka (thousand years ago), and major population shifts in the later Pleistocene that explain previous dating discrepancies and neutrality violation. Whilst current genome-wide analyses conflate all dispersals from Southwest and Central Asia, we were able to tease out from the mitogenome data distinct dispersal episodes dating from between the Last Glacial Maximum to the Bronze Age. Moreover, we found an extremely marked sex bias by comparing the different genetic systems. CONCLUSIONS Maternal lineages primarily reflect earlier, pre-Holocene processes, and paternal lineages predominantly episodes within the last 10 ka. In particular, genetic influx from Central Asia in the Bronze Age was strongly male-driven, consistent with the patriarchal, patrilocal and patrilineal social structure attributed to the inferred pastoralist early Indo-European society. This was part of a much wider process of Indo-European expansion, with an ultimate source in the Pontic-Caspian region, which carried closely related Y-chromosome lineages, a smaller fraction of autosomal genome-wide variation and an even smaller fraction of mitogenomes across a vast swathe of Eurasia between 5 and 3.5 ka.
Collapse
Affiliation(s)
- Marina Silva
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Marisa Oliveira
- i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto), R. Alfredo Allen 208, 4200-135, Porto, Portugal.,IPATIMUP (Instituto de Patologia e Imunologia Molecular da Universidade do Porto), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
| | - Daniel Vieira
- Department of Informatics, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Andreia Brandão
- i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto), R. Alfredo Allen 208, 4200-135, Porto, Portugal.,IPATIMUP (Instituto de Patologia e Imunologia Molecular da Universidade do Porto), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
| | - Teresa Rito
- i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto), R. Alfredo Allen 208, 4200-135, Porto, Portugal.,Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana B Pereira
- i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto), R. Alfredo Allen 208, 4200-135, Porto, Portugal.,IPATIMUP (Instituto de Patologia e Imunologia Molecular da Universidade do Porto), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
| | - Ross M Fraser
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland, UK.,Synpromics Ltd, Nine Edinburgh Bioquarter, Edinburgh, EH16 4UX, UK
| | - Bob Hudson
- Archaeology Department, University of Sydney, Sydney, NSW, 2006, Australia
| | - Francesca Gandini
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Ceiridwen Edwards
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Maria Pala
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - John Koch
- University of Wales Centre for Advanced Welsh and Celtic Studies, National Library of Wales, Aberystwyth, SY23 3HH, Wales, UK
| | - James F Wilson
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland, UK.,MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, Scotland, UK
| | - Luísa Pereira
- i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto), R. Alfredo Allen 208, 4200-135, Porto, Portugal.,IPATIMUP (Instituto de Patologia e Imunologia Molecular da Universidade do Porto), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
| | - Martin B Richards
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| | - Pedro Soares
- IPATIMUP (Instituto de Patologia e Imunologia Molecular da Universidade do Porto), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal. .,CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
94
|
Marchi N, Hegay T, Mennecier P, Georges M, Laurent R, Whitten M, Endicott P, Aldashev A, Dorzhu C, Nasyrova F, Chichlo B, Ségurel L, Heyer E. Sex-specific genetic diversity is shaped by cultural factors in Inner Asian human populations. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 162:627-640. [PMID: 28158897 DOI: 10.1002/ajpa.23151] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 11/30/2016] [Accepted: 12/02/2016] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Sex-specific genetic structures have been previously documented worldwide in humans, even though causal factors have not always clearly been identified. In this study, we investigated the impact of ethnicity, geography and social organization on the sex-specific genetic structure in Inner Asia. Furthermore, we explored the process of ethnogenesis in multiple ethnic groups. METHODS We sampled DNA in Central and Northern Asia from 39 populations of Indo-Iranian and Turkic-Mongolic native speakers. We focused on genetic data of the Y chromosome and mitochondrial DNA. First, we compared the frequencies of haplogroups to South European and East Asian populations. Then, we investigated the genetic differentiation for eight Y-STRs and the HVS1 region, and tested for the effect of geography and ethnicity on such patterns. Finally, we reconstructed the male demographic history, inferred split times and effective population sizes of different ethnic groups. RESULTS Based on the haplogroup data, we observed that the Indo-Iranian- and Turkic-Mongolic-speaking populations have distinct genetic backgrounds. However, each population showed consistent mtDNA and Y chromosome haplogroups patterns. As expected in patrilocal populations, we found that the Y-STRs were more structured than the HVS1. While ethnicity strongly influenced the genetic diversity on the Y chromosome, geography better explained that of the mtDNA. Furthermore, when looking at various ethnic groups, we systematically found a genetic split time older than historical records, suggesting a cultural rather than biological process of ethnogenesis. CONCLUSIONS This study highlights that, in Inner Asia, specific cultural behaviors, especially patrilineality and patrilocality, leave a detectable signature on the sex-specific genetic structure.
Collapse
Affiliation(s)
- Nina Marchi
- Eco-anthropologie et Ethnobiologie, UMR 7206 CNRS, MNHN, Univ Paris Diderot, Sorbonne Paris Cité, F-75016, Paris, France
| | - Tatyana Hegay
- Uzbek Academy of Sciences, Institute of Immunology, Tashkent, Uzbekistan
| | - Philippe Mennecier
- Eco-anthropologie et Ethnobiologie, UMR 7206 CNRS, MNHN, Univ Paris Diderot, Sorbonne Paris Cité, F-75016, Paris, France
| | - Myriam Georges
- Eco-anthropologie et Ethnobiologie, UMR 7206 CNRS, MNHN, Univ Paris Diderot, Sorbonne Paris Cité, F-75016, Paris, France
| | - Romain Laurent
- Eco-anthropologie et Ethnobiologie, UMR 7206 CNRS, MNHN, Univ Paris Diderot, Sorbonne Paris Cité, F-75016, Paris, France
| | - Mark Whitten
- MPRG on Comparative Population Linguistics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Philipp Endicott
- Eco-anthropologie et Ethnobiologie, UMR 7206 CNRS, MNHN, Univ Paris Diderot, Sorbonne Paris Cité, F-75016, Paris, France
| | - Almaz Aldashev
- Institute molecular biology and medicine, Bishkek, 720040, Kyrgyzstan
| | | | - Firuza Nasyrova
- Laboratory of Plant Genetics, Institute of Botany, Plant Physiology and Genetics, TAS, Dushanbe, 734063, Tajikistan
| | - Boris Chichlo
- Eco-anthropologie et Ethnobiologie, UMR 7206 CNRS, MNHN, Univ Paris Diderot, Sorbonne Paris Cité, F-75016, Paris, France
| | - Laure Ségurel
- Eco-anthropologie et Ethnobiologie, UMR 7206 CNRS, MNHN, Univ Paris Diderot, Sorbonne Paris Cité, F-75016, Paris, France
| | - Evelyne Heyer
- Eco-anthropologie et Ethnobiologie, UMR 7206 CNRS, MNHN, Univ Paris Diderot, Sorbonne Paris Cité, F-75016, Paris, France
| |
Collapse
|
95
|
Reconstructing the population history of the largest tribe of India: the Dravidian speaking Gond. Eur J Hum Genet 2017; 25:493-498. [PMID: 28145430 DOI: 10.1038/ejhg.2016.198] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 11/01/2016] [Accepted: 12/14/2016] [Indexed: 01/15/2023] Open
Abstract
The Gond comprise the largest tribal group of India with a population exceeding 12 million. Linguistically, the Gond belong to the Gondi-Manda subgroup of the South Central branch of the Dravidian language family. Ethnographers, anthropologists and linguists entertain mutually incompatible hypotheses on their origin. Genetic studies of these people have thus far suffered from the low resolution of the genetic data or the limited number of samples. Therefore, to gain a more comprehensive view on ancient ancestry and genetic affinities of the Gond with the neighbouring populations speaking Indo-European, Dravidian and Austroasiatic languages, we have studied four geographically distinct groups of Gond using high-resolution data. All the Gond groups share a common ancestry with a certain degree of isolation and differentiation. Our allele frequency and haplotype-based analyses reveal that the Gond share substantial genetic ancestry with the Indian Austroasiatic (ie, Munda) groups, rather than with the other Dravidian groups to whom they are most closely related linguistically.
Collapse
|
96
|
Lessons from the Whole Exome Sequencing Effort in Populations of Russia and Tajikistan. BIONANOSCIENCE 2016. [DOI: 10.1007/s12668-016-0282-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
97
|
Refrégier G, Abadia E, Matsumoto T, Ano H, Takashima T, Tsuyuguchi I, Aktas E, Cömert F, Gomgnimbou MK, Panaiotov S, Phelan J, Coll F, McNerney R, Pain A, Clark TG, Sola C. Turkish and Japanese Mycobacterium tuberculosis sublineages share a remote common ancestor. INFECTION GENETICS AND EVOLUTION 2016; 45:461-473. [PMID: 27746295 DOI: 10.1016/j.meegid.2016.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/23/2016] [Accepted: 10/12/2016] [Indexed: 12/19/2022]
Abstract
Two geographically distant M. tuberculosis sublineages, Tur from Turkey and T3-Osaka from Japan, exhibit partially identical genotypic signatures (identical 12-loci MIRU-VNTR profiles, distinct spoligotyping patterns). We investigated T3-Osaka and Tur sublineages characteristics and potential genetic relatedness, first using MIRU-VNTR locus analysis on 21 and 25 samples of each sublineage respectively, and second comparing Whole Genome Sequences of 8 new samples to public data from 45 samples uncovering human tuberculosis diversity. We then tried to date their Most Recent Common Ancestor (MRCA) using three calibrations of SNP accumulation rate (long-term=0.03SNP/genome/year, derived from a tuberculosis ancestor of around 70,000years old; intermediate=0.2SNP/genome/year derived from a Peruvian mummy; short-term=0.5SNP/genome/year). To disentangle between these scenarios, we confronted the corresponding divergence times with major human history events and knowledge on human genetic divergence. We identified relatively high intrasublineage diversity for both T3-Osaka and Tur. We definitively proved their monophyly; the corresponding super-sublineage (referred to as "T3-Osa-Tur") shares a common ancestor with T3-Ethiopia and Ural sublineages but is only remotely related to other Euro-American sublineages such as X, LAM, Haarlem and S. The evolutionary scenario based on long-term evolution rate being valid until T3-Osa-Tur MRCA was not supported by Japanese fossil data. The evolutionary scenario relying on short-term evolution rate since T3-Osa-Tur MRCA was contradicted by human history and potential traces of past epidemics. T3-Osaka and Tur sublineages were found likely to have diverged between 800y and 2000years ago, potentially at the time of Mongol Empire. Altogether, this study definitively proves a strong genetic link between Turkish and Japanese tuberculosis. It provides a first hypothesis for calibrating TB Euro-American lineage molecular clock; additional studies are needed to reliably date events corresponding to intermediate depths in tuberculosis phylogeny.
Collapse
Affiliation(s)
- Guislaine Refrégier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France.
| | - Edgar Abadia
- Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | - Tomoshige Matsumoto
- Department of Clinical Research and Development, Osaka Prefectural Hospital Organization, Osaka Prefectural Medical Center for Respiratory and Allergic Diseases, Habikino-city, Japan
| | - Hiromi Ano
- Department of Clinical Research and Development, Osaka Prefectural Hospital Organization, Osaka Prefectural Medical Center for Respiratory and Allergic Diseases, Habikino-city, Japan
| | - Tetsuya Takashima
- Department of Clinical Research and Development, Osaka Prefectural Hospital Organization, Osaka Prefectural Medical Center for Respiratory and Allergic Diseases, Habikino-city, Japan
| | - Izuo Tsuyuguchi
- Department of Clinical Research and Development, Osaka Prefectural Hospital Organization, Osaka Prefectural Medical Center for Respiratory and Allergic Diseases, Habikino-city, Japan
| | - Elif Aktas
- Şişli Etfal Research and Training Hopital, Istanbul, Turkey
| | - Füsun Cömert
- Faculty of Medicine, Bülent Ecevit University, Zonguldak, Turkey
| | - Michel Kireopori Gomgnimbou
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Stefan Panaiotov
- National Center of Parasitic and Infectious Diseases, Sofia, Bulgaria
| | - Jody Phelan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Francesc Coll
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Ruth McNerney
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK; Infection and Immunity Unit, UCT Lung Institute, University of Cape Town, Old Main Building, Groote Schuur Hospital, Cape Town,South Africa
| | - Arnab Pain
- Pathogen Genomics Group, Biological, Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Christophe Sola
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| |
Collapse
|
98
|
Novembre J, Peter BM. Recent advances in the study of fine-scale population structure in humans. Curr Opin Genet Dev 2016; 41:98-105. [PMID: 27662060 DOI: 10.1016/j.gde.2016.08.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/18/2016] [Accepted: 08/24/2016] [Indexed: 01/17/2023]
Abstract
Empowered by modern genotyping and large samples, population structure can be accurately described and quantified even when it only explains a fraction of a percent of total genetic variance. This is especially relevant and interesting for humans, where fine-scale population structure can both confound disease-mapping studies and reveal the history of migration and divergence that shaped our species' diversity. Here we review notable recent advances in the detection, use, and understanding of population structure. Our work addresses multiple areas where substantial progress is being made: improved statistics and models for better capturing differentiation, admixture, and the spatial distribution of variation; computational speed-ups that allow methods to scale to modern data; and advances in haplotypic modeling that have wide ranging consequences for the analysis of population structure. We conclude by outlining four important open challenges: the limitations of discrete population models, uncertainty in individual origins, the incorporation of both fine-scale structure and ancient DNA in parametric models, and the development of efficient computational tools, particularly for haplotype-based methods.
Collapse
Affiliation(s)
- John Novembre
- Department of Human Genetics, University of Chicago, IL 60636, United States; Department of Ecology and Evolutionary Biology, University of Chicago, IL 60636, United States
| | - Benjamin M Peter
- Department of Human Genetics, University of Chicago, IL 60636, United States
| |
Collapse
|
99
|
Pankratov V, Litvinov S, Kassian A, Shulhin D, Tchebotarev L, Yunusbayev B, Möls M, Sahakyan H, Yepiskoposyan L, Rootsi S, Metspalu E, Golubenko M, Ekomasova N, Akhatova F, Khusnutdinova E, Heyer E, Endicott P, Derenko M, Malyarchuk B, Metspalu M, Davydenko O, Villems R, Kushniarevich A. East Eurasian ancestry in the middle of Europe: genetic footprints of Steppe nomads in the genomes of Belarusian Lipka Tatars. Sci Rep 2016; 6:30197. [PMID: 27453128 PMCID: PMC4958967 DOI: 10.1038/srep30197] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/29/2016] [Indexed: 12/04/2022] Open
Abstract
Medieval era encounters of nomadic groups of the Eurasian Steppe and largely sedentary East Europeans had a variety of demographic and cultural consequences. Amongst these outcomes was the emergence of the Lipka Tatars—a Slavic-speaking Sunni-Muslim minority residing in modern Belarus, Lithuania and Poland, whose ancestors arrived in these territories via several migration waves, mainly from the Golden Horde. Our results show that Belarusian Lipka Tatars share a substantial part of their gene pool with Europeans as indicated by their Y-chromosomal, mitochondrial and autosomal DNA variation. Nevertheless, Belarusian Lipkas still retain a strong genetic signal of their nomadic ancestry, witnessed by the presence of common Y-chromosomal and mitochondrial DNA variants as well as autosomal segments identical by descent between Lipkas and East Eurasians from temperate and northern regions. Hence, we document Lipka Tatars as a unique example of former Medieval migrants into Central Europe, who became sedentary, changed language to Slavic, yet preserved their faith and retained, both uni- and bi-parentally, a clear genetic echo of a complex population interplay throughout the Eurasian Steppe Belt, extending from Central Europe to northern China.
Collapse
Affiliation(s)
- Vasili Pankratov
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Sergei Litvinov
- Institute of Biochemistry and Genetics, Ufa Research Centre, RAS, Ufa, Bashkortostan, Russia.,Estonian Biocentre, Tartu, Estonia
| | - Alexei Kassian
- Institute of Linguistics, Russian Academy of Sciences, Moscow, Russia.,School for Advanced Studies in the Humanities, Russian Presidential Academy of National Economy and Public Administration, Moscow, Russia
| | - Dzmitry Shulhin
- Belarusian State University, Faculty of Applied Mathematics and Computer Science Department of Probability Theory and Mathematical Statistics, Minsk, Belarus
| | - Lieve Tchebotarev
- Center of analytical and genetic engineering studies, Institute of Microbiology, National Academy of Sciences of Belarus, Minsk, Belarus
| | | | - Märt Möls
- Institute of Mathematical Statistics, University of Tartu, Tartu, Estonia
| | - Hovhannes Sahakyan
- Estonian Biocentre, Tartu, Estonia.,Laboratory of Ethnogenomics, Institute of Molecular Biology, National Academy of Sciences of Armenia, Yerevan, 0014, Armenia
| | - Levon Yepiskoposyan
- Laboratory of Ethnogenomics, Institute of Molecular Biology, National Academy of Sciences of Armenia, Yerevan, 0014, Armenia
| | | | - Ene Metspalu
- Estonian Biocentre, Tartu, Estonia.,Department of Evolutionary Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Maria Golubenko
- The Research Institute for Medical Genetics, 634050, Tomsk, Russia
| | - Natalia Ekomasova
- Department of Genetics and Fundamental Medicine of Bashkir State University, Ufa, Bashkortostan, Russia
| | - Farida Akhatova
- Department of Genetics and Fundamental Medicine of Bashkir State University, Ufa, Bashkortostan, Russia.,Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Research Centre, RAS, Ufa, Bashkortostan, Russia.,Department of Genetics and Fundamental Medicine of Bashkir State University, Ufa, Bashkortostan, Russia
| | - Evelyne Heyer
- Eco-Anthropologie et Ethnobiologie, UMR 7206 CNRS, MNHN, Université Paris Diderot, Sorbonne Universités, Muséum national d'Histoire naturelle, Musée de l'Homme, Paris, France
| | - Phillip Endicott
- Eco-Anthropologie et Ethnobiologie, UMR 7206 CNRS, MNHN, Université Paris Diderot, Sorbonne Universités, Muséum national d'Histoire naturelle, Musée de l'Homme, Paris, France
| | - Miroslava Derenko
- Institute of Biological Problems of the North, Russian Academy of Sciences, Magadan, Russia
| | - Boris Malyarchuk
- Institute of Biological Problems of the North, Russian Academy of Sciences, Magadan, Russia
| | | | - Oleg Davydenko
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Richard Villems
- Estonian Biocentre, Tartu, Estonia.,Department of Evolutionary Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Alena Kushniarevich
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, Belarus.,Estonian Biocentre, Tartu, Estonia
| |
Collapse
|
100
|
Morozova I, Flegontov P, Mikheyev AS, Bruskin S, Asgharian H, Ponomarenko P, Klyuchnikov V, ArunKumar G, Prokhortchouk E, Gankin Y, Rogaev E, Nikolsky Y, Baranova A, Elhaik E, Tatarinova TV. Toward high-resolution population genomics using archaeological samples. DNA Res 2016; 23:295-310. [PMID: 27436340 PMCID: PMC4991838 DOI: 10.1093/dnares/dsw029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 05/22/2016] [Indexed: 12/30/2022] Open
Abstract
The term ‘ancient DNA’ (aDNA) is coming of age, with over 1,200 hits in the PubMed database, beginning in the early 1980s with the studies of ‘molecular paleontology’. Rooted in cloning and limited sequencing of DNA from ancient remains during the pre-PCR era, the field has made incredible progress since the introduction of PCR and next-generation sequencing. Over the last decade, aDNA analysis ushered in a new era in genomics and became the method of choice for reconstructing the history of organisms, their biogeography, and migration routes, with applications in evolutionary biology, population genetics, archaeogenetics, paleo-epidemiology, and many other areas. This change was brought by development of new strategies for coping with the challenges in studying aDNA due to damage and fragmentation, scarce samples, significant historical gaps, and limited applicability of population genetics methods. In this review, we describe the state-of-the-art achievements in aDNA studies, with particular focus on human evolution and demographic history. We present the current experimental and theoretical procedures for handling and analysing highly degraded aDNA. We also review the challenges in the rapidly growing field of ancient epigenomics. Advancement of aDNA tools and methods signifies a new era in population genetics and evolutionary medicine research.
Collapse
Affiliation(s)
- Irina Morozova
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Pavel Flegontov
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic Bioinformatics Center, A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russian Federation
| | - Alexander S Mikheyev
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Sergey Bruskin
- Vavilov Institute of General Genetics RAS, Moscow, Russia
| | - Hosseinali Asgharian
- Department of Computational and Molecular Biology, University of Southern California, Los Angeles, CA, USA
| | - Petr Ponomarenko
- Center for Personalized Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA Spatial Sciences Institute, University of Southern California, Los Angeles, CA, USA
| | | | | | - Egor Prokhortchouk
- Research Center of Biotechnology RAS, Moscow, Russia Department of Biology, Lomonosov Moscow State University, Russia
| | | | - Evgeny Rogaev
- Vavilov Institute of General Genetics RAS, Moscow, Russia University of Massachusetts Medical School, Worcester, MA, USA
| | - Yuri Nikolsky
- Vavilov Institute of General Genetics RAS, Moscow, Russia F1 Genomics, San Diego, CA, USA School of Systems Biology, George Mason University, VA, USA
| | - Ancha Baranova
- School of Systems Biology, George Mason University, VA, USA Research Centre for Medical Genetics, Moscow, Russia Atlas Biomed Group, Moscow, Russia
| | - Eran Elhaik
- Department of Animal & Plant Sciences, University of Sheffield, Sheffield, South Yorkshire, UK
| | - Tatiana V Tatarinova
- Bioinformatics Center, A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russian Federation Center for Personalized Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA Spatial Sciences Institute, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|