51
|
Abdullah NAMH, Dom NC, Salleh SA, Dapari R, Precha N. Dengue's climate conundrum: how vegetation and temperature shape mosquito populations and disease outbreaks. BMC Public Health 2025; 25:4. [PMID: 39748318 PMCID: PMC11694384 DOI: 10.1186/s12889-024-21105-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
INTRODUCTION Dengue, a prevalent mosquito-borne viral disease in tropical regions, is influenced by environmental factors such as rainfall, temperature, and urbanization. This study aims to assess the effects of microclimate, vegetation, and Aedes species distribution on dengue transmission in distinct hotspot and non-hotspot locations. METHODS This cohort study was conducted in two sites within Selangor, Malaysia: a recurrent dengue hotspot and a non-dengue hotspot. Microclimatic variables (temperature, humidity, and rainfall) were monitored over six months using data loggers, and vegetation cover was assessed through visual estimation and GIS mapping. Adult Aedes mosquitoes were collected using Gravid Oviposition Sticky (GOS) traps and identified to species level. Dengue virus presence was detected using ProDetect® Dengue NS1 Ag Rapid Test. Weekly indices for mosquito abundance and dengue risk were calculated, and statistical analyses were performed to explore correlations between microclimate, vegetation, and mosquito indices. RESULTS In the non-dengue hotspot, Aedes albopictus was the predominant species, while both Aedes aegypti and Ae. albopictus coexisted in the dengue hotspot. No dengue virus was detected in Ae. albopictus, while intermittent virus presence was noted in Ae. aegypti within the dengue hotspot. Significant microclimatic differences were observed: non-dengue hotspot had higher mean humidity and lower minimum temperatures, influenced by greater vegetation cover. In contrast, dengue hotspot showed lower humidity and higher minimum temperatures. Correlation analyses indicated positive associations between temperature and mosquito abundance, with variations in vegetation cover impacting local microclimatic conditions. CONCLUSION This study demonstrates how vegetation and microclimatic conditions shape Aedes mosquito distribution and dengue risk. Findings highlight the need for targeted urban planning and community interventions that reduce mosquito breeding habitats, with special attention to vegetation management and environmental modifications to control dengue transmission.
Collapse
Affiliation(s)
- Nur Athen Mohd Hardy Abdullah
- Faculty of Health Sciences, Universiti Teknologi MARA (UiTM), UITM Cawangan Selangor, 42300 Puncak Alam, Selangor, Malaysia
| | - Nazri Che Dom
- Faculty of Health Sciences, Universiti Teknologi MARA (UiTM), UITM Cawangan Selangor, 42300 Puncak Alam, Selangor, Malaysia
- Integrated Mosquito Research Group (I-MeRGe), Universiti Teknologi MARA (UiTM), UITM Cawangan Selangor, 42300 Puncak Alam, Selangor, Malaysia
| | - Siti Aekball Salleh
- Institute for Biodiversity and Sustainable Development (IBSD), Universiti Teknologi MARA, Shah Alam, Selangor, 40450, Malaysia
| | - Rahmat Dapari
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Integrated Dengue Research and Development, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Nopadol Precha
- Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
52
|
Naidoo K, Oliver SV. Gene drives: an alternative approach to malaria control? Gene Ther 2025; 32:25-37. [PMID: 39039203 PMCID: PMC11785527 DOI: 10.1038/s41434-024-00468-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Genetic modification for the control of mosquitoes is frequently touted as a solution for a variety of vector-borne diseases. There has been some success using non-insecticidal methods like sterile or incompatible insect techniques to control arbovirus diseases. However, control by genetic modifications to reduce mosquito populations or create mosquitoes that are refractory to infection with pathogens are less developed. The advent of CRISPR-Cas9-mediated gene drives may advance this mechanism of control. In this review, use and progress of gene drives for vector control, particularly for malaria, is discussed. A brief history of population suppression and replacement gene drives in mosquitoes, rapid advancement of the field over the last decade and how genetic modification fits into the current scope of vector control are described. Mechanisms of alternative vector control by genetic modification to modulate mosquitoes' immune responses and anti-parasite effector molecules as part of a combinational strategy to combat malaria are considered. Finally, the limitations and ethics of using gene drives for mosquito control are discussed.
Collapse
Affiliation(s)
- Kubendran Naidoo
- SAMRC/Wits Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
- National Health Laboratory Service, Johannesburg, South Africa.
- Wits Research Institute for Malaria, Faculty of Health Sciences, National Health Laboratory Service, University of the Witwatersrand, Johannesburg, South Africa.
- Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Shüné V Oliver
- Wits Research Institute for Malaria, Faculty of Health Sciences, National Health Laboratory Service, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
53
|
Alharbi AM. The increasing importance of Dengue virus infection in Saudi Arabia: A review. Virus Res 2025; 351:199510. [PMID: 39681278 PMCID: PMC11732239 DOI: 10.1016/j.virusres.2024.199510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/30/2024] [Accepted: 12/11/2024] [Indexed: 12/18/2024]
Abstract
Exacerbated by the rise of global warming due to climate change, as well as ease of international travel and mass migration, the dengue virus infection remains of particular economic and global concern. Of note, the emergence of the first case of dengue viral infection occurred in Saudi Arabia in the 1990s, and since then there has been a steady rise in the number of cases. Moreover, the arrival of imported dengue virus variants poses a significant challenge to dengue fever surveillance and control efforts within the region, especially as Saudi Arabia attracts millions of religious pilgrims throughout the year. Herein, we discuss the epidemiology of dengue viral infection in Saudi Arabia, dengue fever biology and clinical manifestation. Current management strategies, amongst other factors influencing dengue fever in Saudi Arabia are also deliberated upon. Future ongoing research and consistent monitoring of both established and emerging dengue viral strains within Saudi Arabia are needed, given the lack of current comprehensive studies.
Collapse
Affiliation(s)
- Ahmad M Alharbi
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, 21944, Saudi Arabia.
| |
Collapse
|
54
|
Kumari Y, Gunathilaka N, Amarasinghe D. A comprehensive review of biological and genetic control approaches for leishmaniasis vector sand flies; emphasis towards promoting tools for integrated vector management. PLoS Negl Trop Dis 2025; 19:e0012795. [PMID: 39869587 PMCID: PMC11771870 DOI: 10.1371/journal.pntd.0012795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Leishmaniasis is a health problem in many regions with poor health and poor life resources. According to the World Health Organization (WHO), an estimated 700,000-1 million new cases arise annually. Effective control of sand fly vector populations is crucial for reducing the transmission of this disease. Therefore, this review aims to comprehensively examine and evaluate the current methods for controlling sand fly populations, focusing on biological and gene drive techniques. METHODS AND FINDINGS A detailed, comprehensive literature search was carried out using databases including Google Scholar, PubMed, ScienceDirect, and the National Library of Medicine (NIH). These searches were done using specific keywords related to the field of study. This current review identified several promising methods, including genetically modified sand flies, using transgenic approaches by taking advanced gene editing tools like Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR/Cas9) and genetic modification of symbiotic microorganisms for controlling sand fly populations, which appeared to be proven under laboratory and field settings. CONCLUSION Genetic control approaches have many benefits over chemical control, including long-lasting effects on targets, high specificity, and less environmental impact. Advances in genetic engineering technologies, particularly CRISPR/Cas9, sterile insect techniques, and gene drive insect modification, offer new avenues for precise and efficient sand fly management. Future research should prioritize optimizing rearing and sterilization techniques, conducting controlled field trials, and fostering collaboration across disciplines to realize the potential of genetic control strategies in combating leishmaniasis.
Collapse
Affiliation(s)
- Yasoda Kumari
- Department of Parasitology, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
- Department of Zoology and Environment Management, Faculty of Science, University of Kelaniya, Dalugama, Sri Lanka
| | - Nayana Gunathilaka
- Department of Parasitology, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| | - Deepika Amarasinghe
- Department of Zoology and Environment Management, Faculty of Science, University of Kelaniya, Dalugama, Sri Lanka
| |
Collapse
|
55
|
Zavaleta-Monestel E, Rojas-Chinchilla C, Molina-Sojo P, Murillo-Castro MF, Rojas-Molina JP, Martínez-Vargas E. Impact of Climate Change on the Global Dynamics of Vector-Borne Infectious Diseases: A Narrative Review. Cureus 2025; 17:e77972. [PMID: 39996198 PMCID: PMC11849761 DOI: 10.7759/cureus.77972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2025] [Indexed: 02/26/2025] Open
Abstract
Climate change has significantly altered the dynamics of vector-borne infectious diseases, favoring their proliferation and geographic expansion. Factors such as rising temperatures, the frequency of extreme weather events, and uncontrolled urbanization have increased the incidence of diseases such as dengue, Zika, chikungunya, malaria, and Lyme disease, especially in vulnerable regions with limited infrastructure. This article presents a narrative review based on recent scientific literature (2018-2025) to assess the impact of climate change on vector distribution, co-infections, and control strategies. The evidence collected highlights how changing climate conditions, combined with socioeconomic, political, and demographic factors, exacerbate public health crises and complicate mitigation efforts. It is concluded that facing this challenge requires a comprehensive strategy that combines environmental management, technological innovation, epidemiological surveillance, and community educational programs, promoting a coordinated global response to reduce the associated risks.
Collapse
|
56
|
Lowe R, Codeço CT. Harmonizing Multisource Data to Inform Vector-Borne Disease Risk Management Strategies. ANNUAL REVIEW OF ENTOMOLOGY 2025; 70:337-358. [PMID: 39378344 DOI: 10.1146/annurev-ento-040124-015101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
In the last few decades, we have witnessed the emergence of new vector-borne diseases (VBDs), the globalization of endemic VBDs, and the urbanization of previously rural VBDs. Data harmonization forms the basis of robust decision-support systems designed to protect at-risk communities from VBD threats. Strong interdisciplinary partnerships, protocols, digital infrastructure, and capacity-building initiatives are essential for facilitating the coproduction of robust multisource data sets. This review provides a foundation for researchers and practitioners embarking on data harmonization efforts to (a) better understand the links among environmental degradation, climate change, socioeconomic inequalities, and VBD risk; (b) conduct risk assessments, health impact attribution, and projection studies; and (c) develop robust early warning and response systems. We draw upon best practices in harmonizing data for two well-studied VBDs, dengue and malaria, and provide recommendations for the evolution of research and digital technology to improve data harmonization for VBD risk management.
Collapse
Affiliation(s)
- Rachel Lowe
- Centre on Climate Change and Planetary Health and Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Barcelona Supercomputing Center (BSC), Barcelona, Spain;
| | | |
Collapse
|
57
|
Sánchez-González L, Crawford JE, Adams LE, Brown G, Ryff KR, Delorey M, Ruiz-Valcarcel J, Nazario N, Borrero N, Miranda J, Mitchell SN, Howell PI, Ohm JR, Behling C, Wasson B, Eldershaw C, White BJ, Rivera-Amill V, Barrera R, Paz-Bailey G. Incompatible Aedes aegypti male releases as an intervention to reduce mosquito population-A field trial in Puerto Rico. PLoS Negl Trop Dis 2025; 19:e0012839. [PMID: 39836703 PMCID: PMC11785262 DOI: 10.1371/journal.pntd.0012839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 01/31/2025] [Accepted: 01/14/2025] [Indexed: 01/23/2025] Open
Abstract
Mosquito-transmitted viruses such as dengue are a global and growing public health challenge. Without widely available vaccines, mosquito control is the primary tool for fighting the spread of these viruses. New mosquito control technologies are needed to complement existing methods, given current challenges with scalability, acceptability, and effectiveness. A field trial was conducted in collaboration with the Communities Organized to Prevent Arboviruses project in Ponce, Puerto Rico, to measure entomological and epidemiological effects of reducing Aedes aegypti populations using Wolbachia incompatible insect technique. We packed and shipped Wolbachia-males from California and released them into 19 treatment clusters from September 2020 to December 2020. Preliminary evaluation revealed sub-optimal Wolbachia-male densities and impact on the wild-type population. In 2021, we shifted to a phased release strategy starting in four clusters, reducing the mosquito population by 49% (CI 29-63%). We describe the investigation into male quality and other factors that may have limited the impact of Wolbachia-male releases. Laboratory assays showed a small but significant impact of packing and shipping on male fitness. However, mark-release-recapture assessments suggest that male daily survival rates in the field may have been significantly impacted. We compared induced-sterility levels and suppression of the wild population and found patterns consistent with mosquito population compensation in response to our intervention. Analysis of epidemiological impact was not possible due to very low viral transmission rates during the intervention period. Our entomological impact data provide evidence that Wolbachia incompatible-male releases reduced Ae. aegypti populations, although efficacy will be maximized when releases are part of an integrated control program. With improvement of shipping vessels and shipped male fitness, packing and shipping male mosquitoes could provide a key solution for expanding access to this technology. Our project underscores the challenges involved in large and complex field effectiveness assessments of novel vector control methods.
Collapse
Affiliation(s)
- Liliana Sánchez-González
- Division of Vector Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Jacob E. Crawford
- Verily Life Sciences, San Francisco, California, United States of America
| | - Laura E. Adams
- Division of Vector Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Grayson Brown
- Puerto Rico Vector Control Unit, San Juan, Puerto Rico
| | - Kyle R. Ryff
- Division of Vector Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Mark Delorey
- Division of Vector Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Jose Ruiz-Valcarcel
- Division of Vector Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | | | | | | | - Sara N. Mitchell
- Verily Life Sciences, San Francisco, California, United States of America
| | - Paul I. Howell
- Verily Life Sciences, San Francisco, California, United States of America
| | - Johanna R. Ohm
- Verily Life Sciences, San Francisco, California, United States of America
| | - Charlie Behling
- Verily Life Sciences, San Francisco, California, United States of America
| | - Brian Wasson
- Verily Life Sciences, San Francisco, California, United States of America
| | - Craig Eldershaw
- Verily Life Sciences, San Francisco, California, United States of America
| | - Bradley J. White
- Verily Life Sciences, San Francisco, California, United States of America
| | | | - Roberto Barrera
- Division of Vector Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Gabriela Paz-Bailey
- Division of Vector Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| |
Collapse
|
58
|
Shaik RA, Ahmad MS, Miraj M, Sami W, Azam AA, Okwarah P. Evaluating the burden and transmission dynamics of chikungunya virus infections in the Eastern Mediterranean Region: a systematic review and meta-analysis. Eur J Public Health 2025; 35:i27-i34. [PMID: 39801330 PMCID: PMC11725947 DOI: 10.1093/eurpub/ckae165] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
The Chikungunya virus (CHIKV) presents substantial public health challenges in the Eastern Mediterranean Region (EMR), with its prevalence and interaction with other arboviruses (ABVs) remaining poorly understood. This systematic review and meta-analysis aimed to assess the prevalence of CHIKV and its association with other ABVs, such as dengue virus (DENV), Rift Valley fever virus (RVFV), malaria, and yellow fever virus (YFV), in the EMR. We systematically searched databases including PubMed, Embase, Web of Science, Scopus, Cochrane Library, CINAHL, PsycINFO, and ScienceDirect to identify epidemiological studies that report CHIKV prevalence and provide odds ratios (ORs) for CHIKV compared to other ABVs. Data analysis was performed using a random-effects model. Heterogeneity was evaluated using the χ2 test and I2 statistic. The GRADE approach was used to evaluate the quality of the studies while the AXIS tool, NOS tool, and AHRQ checklist assessed the risk of bias. The meta-analysis revealed a significant prevalence of CHIKV in the EMR. However, the studies exhibited heterogeneity, indicating variability in the results. A comparison of CHIKV with other ABVs did not show any statistically significant differences in prevalence. The meta-analysis found a notable prevalence of CHIKV in the EMR. The results also indicated that the prevalence of CHIKV is comparable to that of other ABVs in the region. These findings provide an overview of the burden of CHIKV in the EMR.
Collapse
Affiliation(s)
- Riyaz Ahamed Shaik
- Department of Family and Community Medicine, College of Medicine, Majmaah University, Majmaah, Saudi Arabia
| | - Mohammad Shakil Ahmad
- Department of Family and Community Medicine, College of Medicine, Majmaah University, Majmaah, Saudi Arabia
| | - Mohammad Miraj
- Department of Physical Therapy and Health Rehabilitation, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Waqas Sami
- Department of Pre-Clinical Affairs, College of Nursing, QU-Health, Qatar University, Doha, Qatar
| | - Alashjaee Ahmed Azam
- Department of Internal Medicine, College of Medicine, Jouf University, Saudi Arabia
| | - Patrick Okwarah
- Department of Community Health, Amref International University, Nairobi, Kenya
- Infectious Hazard Prevention and Preparedness Unit, Department of Health Emergency, World Health Organization, Eastern Mediterranean Region Office, Cairo, Egypt
| |
Collapse
|
59
|
Al-Osaimi HM, Kanan M, Marghlani L, Al-Rowaili B, Albalawi R, Saad A, Alasmari S, Althobaiti K, Alhulaili Z, Alanzi A, Alqarni R, Alsofiyani R, Shrwani R. A systematic review on malaria and dengue vaccines for the effective management of these mosquito borne diseases: Improving public health. Hum Vaccin Immunother 2024; 20:2337985. [PMID: 38602074 PMCID: PMC11017952 DOI: 10.1080/21645515.2024.2337985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
Insect vector-borne diseases (VBDs) pose significant global health challenges, particularly in tropical and subtropical regions. The WHO has launched the "Global Vector Control Response (GVCR) 2017-2030" to address these diseases, emphasizing a comprehensive approach to vector control. This systematic review investigates the potential of malaria and dengue vaccines in controlling mosquito-borne VBDs, aiming to alleviate disease burdens and enhance public health. Following PRISMA 2020 guidelines, the review incorporated 39 new studies out of 934 identified records. It encompasses various studies assessing malaria and dengue vaccines, emphasizing the significance of vaccination as a preventive measure. The findings indicate variations in vaccine efficacy, duration of protection, and safety considerations for each disease, influencing public health strategies. The review underscores the urgent need for vaccines to combat the increasing burden of VBDs like malaria and dengue, advocating for ongoing research and investment in vaccine development.
Collapse
Affiliation(s)
- Hind M. Al-Osaimi
- Department of Pharmacy Services Administration, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh, Kingdom of Saudi Arabia
| | - Mohammed Kanan
- Department of Clinical Pharmacy, King Fahad Medical City, Riyadh, Kingdom of Saudi Arabia
| | - Lujain Marghlani
- Department of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Badria Al-Rowaili
- Pharmaceutical Services Department, Northern Area Armed Forces Hospital, King Khalid Military, Hafr Al Batin, Kingdom of Saudi Arabia
| | - Reem Albalawi
- Department of Medicine, Tabuk University, Tabuk, Kingdom of Saudi Arabia
| | - Abrar Saad
- Pharmacy Department, Royal Commission Hospital, Yanbu, Kingdom of Saudi Arabia
| | - Saba Alasmari
- Department of Clinical Pharmacy, King Khalid University, Jeddah, Kingdom of Saudi Arabia
| | - Khaled Althobaiti
- Department of Medicine, Taif University, Ta’if, Kingdom of Saudi Arabia
| | - Zainab Alhulaili
- Department of Clinical Pharmacy, Dammam Medical Complex, Dammam, Kingdom of Saudi Arabia
| | - Abeer Alanzi
- Department of Medicine, King Abdulaziz Hospital, Makkah, Kingdom of Saudi Arabia
| | - Rawan Alqarni
- Department of Medicine and Surgery, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Razan Alsofiyani
- Department of Medicine, Taif University, Ta’if, Kingdom of Saudi Arabia
| | - Reem Shrwani
- Department of Clinical Pharmacy, Jazan University, Jazan, Kingdom of Saudi Arabia
| |
Collapse
|
60
|
Wang M, Zhou Y, Yao S, Wu J, Zhu M, Dong L, Wang D. Enhancing vector control: AI-based identification and counting of Aedes albopictus (Diptera: Culicidae) mosquito eggs. Parasit Vectors 2024; 17:511. [PMID: 39696631 DOI: 10.1186/s13071-024-06587-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/17/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Dengue fever poses a significant global public health concern, necessitating the monitoring of Aedes mosquito population density. These mosquitoes serve as the disease vectors, making their surveillance crucial for dengue prevention. The objective of this study was to address the difficulty associated with identifying and counting mosquito eggs of wild strains during the monitoring of Aedes albopictus (Diptera: Culicidae) density via ovitraps in field surveys. METHODS We constructed a dataset comprising 1729 images of Ae. albopictus mosquito eggs from wild strains and employed the Segment Anything Model to enhance the applicability of the detection model in complex environments. A two-stage Faster Region-based Convolutional Neural Network model was used to establish a detection model for Ae. albopictus mosquito eggs. The identification and counting process involved applying the tile overlapping method, while morphological filtering was employed to remove impurities. The model's performance was evaluated in terms of precision, recall, and F1 score, and counting accuracy was assessed using R-squared and root mean square error (RMSE). RESULTS The experimental results revealed the model's remarkable identification capabilities, achieving precision of 0.977, recall of 0.978, and an F1 score of 0.977. The R-squared value between the actual and identified egg counts was 0.997, with an RMSE of 1.742. The average detection time for a single tile was 0.48 s, which was more than 10 times as fast as the human-computer interaction method in counting an entire image. CONCLUSIONS The model demonstrated excellent performance in recognizing and counting Ae. albopictus mosquito eggs, indicating great application potential. This study offers novel technological support for enhancing vector control effectiveness and public health standards.
Collapse
Affiliation(s)
- Minghao Wang
- Key Laboratory of Geographic Information Science, Ministry of Education, Shanghai, China
- School of Geographic Sciences, East China Normal University, Shanghai, China
| | - Yibin Zhou
- Minhang Center for Disease Prevention and Control, Shanghai, China
| | - Shenjun Yao
- Key Laboratory of Geographic Information Science, Ministry of Education, Shanghai, China.
- School of Geographic Sciences, East China Normal University, Shanghai, China.
| | - Jianping Wu
- Key Laboratory of Spatial-Temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, China
- Institute of Cartography, East China Normal University, Shanghai, China
| | - Minhui Zhu
- Minhang Center for Disease Prevention and Control, Shanghai, China
| | - Linjuan Dong
- Minhang Center for Disease Prevention and Control, Shanghai, China
| | - Dunjia Wang
- Minhang Center for Disease Prevention and Control, Shanghai, China
| |
Collapse
|
61
|
Beaudry MS, Bhuiyan MIU, Glenn TC. Enriching the future of public health microbiology with hybridization bait capture. Clin Microbiol Rev 2024; 37:e0006822. [PMID: 39545729 PMCID: PMC11629615 DOI: 10.1128/cmr.00068-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024] Open
Abstract
SUMMARYPublic health microbiology focuses on microorganisms and infectious agents that impact human health. For years, this field has relied on culture or molecular methods to investigate complex samples of public health importance. However, with the increase in accuracy and decrease in sequencing cost over the last decade, there has been a transition to the use of next-generation sequencing in public health microbiology. Nevertheless, many available sequencing methods (e.g., shotgun metagenomics and amplicon sequencing) do not work well in complex sample types, require deep sequencing, or have inherent biases associated with them. Hybridization bait capture, also known as target enrichment, brings in solutions for such limitations. It is an increasingly popular technique to simultaneously characterize many thousands of genetic elements while reducing the amount of sequencing needed (thereby reducing the sequencing costs). Here, we summarize the concept of hybridization bait capture for public health, reviewing a total of 35 bait sets designed in six key topic areas for public health microbiology [i.e., antimicrobial resistance (AMR), bacteria, fungi, parasites, vectors, and viruses], and compare hybridization bait capture to previously relied upon methods. Furthermore, we provide an in-depth comparison of the three most popular bait sets designed for AMR by evaluating each of them against three major AMR databases: Comprehensive Antibiotic Resistance Database, Microbial Ecology Group Antimicrobial Resistance Database, and Pathogenicity Island Database. Thus, this article provides a review of hybridization bait capture for public health microbiologists.
Collapse
Affiliation(s)
- Megan S. Beaudry
- Department of Environmental Health Science, University of Georgia, Athens, Georgia, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| | | | - Travis C. Glenn
- Department of Environmental Health Science, University of Georgia, Athens, Georgia, USA
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
62
|
Jibowu M, Nolan MS, Ramphul R, Essigmann HT, Oluyomi AO, Brown EL, Vigilant M, Gunter SM. Spatial dynamics of Culex quinquefasciatus abundance: geostatistical insights from Harris County, Texas. Int J Health Geogr 2024; 23:26. [PMID: 39639303 PMCID: PMC11619097 DOI: 10.1186/s12942-024-00385-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024] Open
Abstract
Mosquito-borne diseases pose a significant public health threat, prompting the need to pinpoint high-risk areas for targeted interventions and environmental control measures. Culex quinquefasciatus is the primary vector for several mosquito-borne pathogens, including West Nile virus. Using spatial analysis and modeling techniques, we investigated the geospatial distribution of Culex quinquefasciatus abundance in the large metropolis of Harris County, Texas, from 2020 to 2022. Our geospatial analysis revealed clusters of high mosquito abundance, predominantly located in central Houston and the north-northwestern regions of Harris County, with lower mosquito abundance observed in the western and southeastern areas. We identified persistent high mosquito abundance in some of Houston's oldest neighborhoods, highlighting the importance of considering socioeconomic factors, the built environment, and historical urban development patterns in understanding vector ecology. Additionally, we observed a positive correlation between mosquito abundance and neighborhood-level socioeconomic status with the area deprivation index explaining between 22 and 38% of the variation in mosquito abundance (p-value < 0.001). This further underscores the influence of the built environment on vector populations. Our study emphasizes the utility of spatial analysis, including hotspot analysis and geostatistical interpolation, for understanding mosquito abundance patterns to guide resource allocation and surveillance efforts. Using geostatistical analysis, we discerned fine-scale geospatial patterns of Culex quinquefasciatus abundance in Harris County, Texas, to inform targeted interventions in vulnerable communities, ultimately reducing the risk of mosquito exposure and mosquito-borne disease transmission. By integrating spatial analysis with epidemiologic risk assessment, we can enhance public health preparedness and response efforts to prevent and control mosquito-borne disease.
Collapse
Affiliation(s)
- Morgan Jibowu
- Department of Epidemiology, UTHealth School of Public Health, Houston, TX, USA
- Division of Tropical Medicine, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
- William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, USA
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Melissa S Nolan
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Ryan Ramphul
- Department of Epidemiology, UTHealth School of Public Health, Houston, TX, USA
| | - Heather T Essigmann
- Department of Epidemiology, UTHealth School of Public Health, Houston, TX, USA
| | - Abiodun O Oluyomi
- Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Eric L Brown
- Department of Epidemiology, UTHealth School of Public Health, Houston, TX, USA
| | - Maximea Vigilant
- Harris County Public Health, Mosquito and Vector Control Division, Houston, TX, USA
| | - Sarah M Gunter
- Division of Tropical Medicine, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA.
- William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, USA.
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
63
|
Mushtaq M, Siddiqui AR, Shafeeq S, Khalid A, Ul-Haq Z. Shifting paradigms: The promise of allosteric inhibitors against dengue virus protease. Int J Biol Macromol 2024; 282:137056. [PMID: 39488315 DOI: 10.1016/j.ijbiomac.2024.137056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
Dengue, a mosquito-borne viral infection caused by the dengue virus (DENV), is a global health challenge. Annually, approximately 400 million cases are reported worldwide, signaling a persistent upward trend from previous years and projected a manifold increase in the future. There is a growing need for innovative and integrated approaches aimed at effective disease management. In this regard, scientific efforts are underway to find a new antiviral inhibitor that is desperately needed due to the growing prevalence of dengue, along with inadequate vector control and few vaccinations. The NS2B-NS3 protease complex within the DENV genome holds significant importance, making it an attractive target for potential interventions. Many competitive inhibitors are not clinically relevant even after extensive study, and these early hits are often not followed up to viable leads. The current focus is on exploring alternative target sites for developing effective anti-dengue compounds, resulting in the identification of various allosteric sites in recent years. While previous reviews have extensively covered active site inhibitors, this is to the best of our knowledge the first comprehensive review discussing the allosteric sites and allosteric inhibitors in greater detail. The present survey may assist researchers in understanding the key aspects and identifying new antagonists targeting the allosteric site of DENV protease.
Collapse
Affiliation(s)
- Mamona Mushtaq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Ali Raza Siddiqui
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sehrish Shafeeq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
64
|
Silburn A, Arndell J. The impact of dengue viruses: Surveillance, response, and public health implications in Queensland, Australia. PUBLIC HEALTH IN PRACTICE 2024; 8:100529. [PMID: 39071864 PMCID: PMC11282963 DOI: 10.1016/j.puhip.2024.100529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 05/22/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
This study examines dengue transmission, symptoms, vaccination efforts, treatment options, and global impact, focusing on Australia, especially Queensland. It evaluates current surveillance and response systems, identifies areas for improvement, and proposes strategies to enhance public health preparedness. Highlighting the socioeconomic impact of dengue outbreaks, the study underscores the need for integrated public health measures, effective vaccines, advanced surveillance methods, and sustainable mosquito control programs to mitigate the threat of dengue outbreaks and potential endemicity.
Collapse
Affiliation(s)
- Alan Silburn
- Western Sydney University, Campbelltown, 2560, NSW, Australia
| | - Joel Arndell
- Western Sydney University, Campbelltown, 2560, NSW, Australia
| |
Collapse
|
65
|
Balaska S, Khajehali J, Mavridis K, Akiner M, Papapostolou KM, Remadi L, Kioulos I, Miaoulis M, Fotakis EA, Chaskopoulou A, Vontas J. Development and application of species ID and insecticide resistance assays, for monitoring sand fly Leishmania vectors in the Mediterranean basin and in the Middle East. PLoS Negl Trop Dis 2024; 18:e0012408. [PMID: 39625992 PMCID: PMC11642961 DOI: 10.1371/journal.pntd.0012408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/13/2024] [Accepted: 11/08/2024] [Indexed: 12/14/2024] Open
Abstract
BACKGROUND Development of insecticide resistance (IR) in sand fly populations is an issue of public health concern, threatening leishmaniasis mitigation efforts by insecticide-based vector control. There is a major knowledge gap in the IR status of wild populations worldwide, possibly attributed to the unavailability of specialized tools, such as bioassay protocols, species baseline susceptibility to insecticides and molecular markers, to monitor such phenomena in sand flies. METHODOLOGY/PRINCIPAL FINDINGS Sand fly populations from (semi-)rural regions of Greece, Turkey and Iran were sampled and identified to species, showing populations' structure in accordance with previously reported data. Genotyping of known pyrethroid resistance-associated loci revealed the occurrence of voltage-gated sodium channel (vgsc) mutations in all surveyed countries. Knock-down resistance (kdr) mutation L1014F was prevalent in Turkish regions and L1014F and L1014S were recorded for the first time in Iran, and in Turkey and Greece, respectively, yet in low frequencies. Moreover, CDC bottle bioassays against pyrethroids in mixed species populations from Greece indicated full susceptibility, using though the mosquito discriminating doses. In parallel, we established a novel individual bioassay protocol and applied it comparatively among distinct Phlebotomus species' populations, to detect any possible divergent species-specific response to insecticides. Indeed, a significantly different knock-down rate between P. simici and P. perfiliewi was observed upon exposure to deltamethrin. CONCLUSIONS/SIGNIFICANCE IR in sand flies is increasingly reported in leishmaniasis endemic regions, highlighting the necessity to generate additional monitoring tools, that could be implemented in relevant eco-epidemiological settings, in the context of IR management. Our molecular and phenotypic data add to the IR map in an area with otherwise limited data coverage.
Collapse
Affiliation(s)
- Sofia Balaska
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Jahangir Khajehali
- Department of Plant Protection, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Konstantinos Mavridis
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, Heraklion, Greece
| | - Mustafa Akiner
- Recep Tayyip Erdogan University, Department of Biology, Zoology Section, Rize, Turkey
| | - Kyriaki Maria Papapostolou
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, Heraklion, Greece
| | - Latifa Remadi
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, Heraklion, Greece
| | - Ilias Kioulos
- Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Michail Miaoulis
- European Biological Control Laboratory, USDA-ARS, Thessaloniki, Greece
| | - Emmanouil Alexandros Fotakis
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, Heraklion, Greece
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | - John Vontas
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, Heraklion, Greece
- Department of Crop Science, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
66
|
Wyer CAS, Trajanovikj V, Hollis B, Ponlawat A, Cator LJ. Evidence for Significant Skew and Low Heritability of Competitive Male Mating Success in the Yellow Fever Mosquito Aedes aegypti. Evol Appl 2024; 17:e70061. [PMID: 39735342 PMCID: PMC11671345 DOI: 10.1111/eva.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 11/12/2024] [Accepted: 12/03/2024] [Indexed: 12/31/2024] Open
Abstract
Aedes aegpyti mosquitoes are vectors of several viruses of major public health importance, and many new control strategies target mating behaviour. Mating in this species occurs in swarms characterised by male scramble competition and female choice. These mating swarms have a male-biased operational sex ratio, which is expected to generate intense competition among males for mating opportunities. However, it is not known what proportion of swarming males successfully mate with females, how many females each male is able to mate with, and to what extent any variation in the male mating success phenotype can be explained by genetic variation. Here, we describe a novel assay to quantify individual male mating success in the presence of operational sex ratios characteristic of Ae. aegypti. Our results demonstrate that male mating success is skewed. Most males do not mate despite multiple opportunities, and very few males mate with multiple females. We compared measures of male mating success between fathers and sons and between full siblings to estimate the heritability of the trait in the narrowh 2 and broadH 2 sense, respectively. We found significant broad sense heritability estimates but little evidence for additive genetic effects, suggesting a role for dominance or epistatic effects and/or larval rearing environment in male mating success. These findings enhance our understanding of sexual selection in this species and have important implications for mass-release programmes that rely on the release of competitive males.
Collapse
Affiliation(s)
| | | | - Brian Hollis
- Department of Biological SciencesUniversity of South CarolinaColumbiaSouth CarolinaUSA
| | - Alongkot Ponlawat
- Department of EntomologyArmed Forces Research Institute of Medical SciencesBangkokThailand
| | | |
Collapse
|
67
|
Markandan K, Tiong YW, Sankaran R, Subramanian S, Markandan UD, Chaudhary V, Numan A, Khalid M, Walvekar R. Emergence of infectious diseases and role of advanced nanomaterials in point-of-care diagnostics: a review. Biotechnol Genet Eng Rev 2024; 40:3438-3526. [PMID: 36243900 DOI: 10.1080/02648725.2022.2127070] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022]
Abstract
Infectious outbreaks are the foremost global public health concern, challenging the current healthcare system, which claims millions of lives annually. The most crucial way to control an infectious outbreak is by early detection through point-of-care (POC) diagnostics. POC diagnostics are highly advantageous owing to the prompt diagnosis, which is economical, simple and highly efficient with remote access capabilities. In particular, utilization of nanomaterials to architect POC devices has enabled highly integrated and portable (compact) devices with enhanced efficiency. As such, this review will detail the factors influencing the emergence of infectious diseases and methods for fast and accurate detection, thus elucidating the underlying factors of these infections. Furthermore, it comprehensively highlights the importance of different nanomaterials in POCs to detect nucleic acid, whole pathogens, proteins and antibody detection systems. Finally, we summarize findings reported on nanomaterials based on advanced POCs such as lab-on-chip, lab-on-disc-devices, point-of-action and hospital-on-chip. To this end, we discuss the challenges, potential solutions, prospects of integrating internet-of-things, artificial intelligence, 5G communications and data clouding to achieve intelligent POCs.
Collapse
Affiliation(s)
- Kalaimani Markandan
- Temasek Laboratories, Nanyang Technological University, Nanyang Drive, Singapore
- Faculty of Engineering, Technology and Built Environment, UCSI University, Kuala Lumpur, Malaysia
| | - Yong Wei Tiong
- NUS Environmental Research Institute, National University of Singapore, Engineering Drive, Singapore
| | - Revathy Sankaran
- Graduate School, University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia
| | - Sakthinathan Subramanian
- Department of Materials & Mineral Resources Engineering, National Taipei University of Technology (NTUT), Taipei, Taiwan
| | | | - Vishal Chaudhary
- Research Cell & Department of Physics, Bhagini Nivedita College, University of Delhi, New Delhi, India
| | - Arshid Numan
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, Petaling Jaya, Selangor, Malaysia
- Sunway Materials Smart Science & Engineering (SMS2E) Research Cluster School of Engineering and Technology, Sunway University, Selangor, Malaysia
| | - Mohammad Khalid
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, Petaling Jaya, Selangor, Malaysia
- Sunway Materials Smart Science & Engineering (SMS2E) Research Cluster School of Engineering and Technology, Sunway University, Selangor, Malaysia
| | - Rashmi Walvekar
- Department of Chemical Engineering, School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| |
Collapse
|
68
|
Awal SK, Swu AK. Beyond the Bite: Detailed findings on Chikungunya and Dengue co-detection in Punjab, North India - clinical insights and diagnostic challenges. Braz J Microbiol 2024; 55:3711-3719. [PMID: 39222222 PMCID: PMC11711412 DOI: 10.1007/s42770-024-01493-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVES The co-circulation of Chikungunya virus (CHIKV) and Dengue virus (DENV) in India poses a challenge for the diagnosing clinician, as they share similar clinical signs and symptoms and geographical distribution. Both arthropod-borne viruses are maintained in the environment by the Aedes mosquito, commonly found in tropical countries including India. Here we aim to investigate the clinical and laboratory aspects of Chikungunya/Dengue suspected cases in Punjab, India during 2021-2022, focusing on the differential diagnosis of Dengue. METHODS All suspected cases were submitted to serological differential diagnosis approaches to arboviruses like Chikungunya and Dengue. For the detection of Chikungunya Infection, CHIK IgM Capture ELISA was employed. Whereas, for Dengue NS1 antigen ELISA and IgM Capture ELISA assays were employed. RESULTS A total of 370 cases suspected of arboviral infection were investigated and 38.3% (142/370) were confirmed as Chikungunya. Chikungunya cases were slightly more prevalent in males (54%) and the most frequently affected age group was adults between 16 and 30 years old (45.7%). Polyarthralgia affected 79.5% of patients, 63.3% exhibited headache and 50% presented with retro-orbital pain. 28.9% (107/370) had serological evidence of DENV exposure by detection of specific anti-DENV IgM or NS1 and 9.1% (34/370) cases of co-detection of Chikungunya and Dengue were reported. Urban populations had a higher infection rate of co-detection of Chikungunya and Dengue than rural populations with 83% versus 17%, respectively. CONCLUSIONS Despite an initial clinical diagnosis of Dengue, most patients with fever and arthralgia were serologically confirmed as Chikungunya cases, with a notable prevalence of CHIKV/DENV co-detection. Strengthening differential diagnosis of circulating arboviruses is crucial for improving patient care and enhancing vector control and environmental management strategies.
Collapse
Affiliation(s)
- Sampreet Kaur Awal
- Department of Microbiology, Manipal Tata Medical College, Manipal Academy of Higher Education, Manipal, India.
| | - Anato K Swu
- Consultant Microbiologist & Head of Laboratory Services Putuonuo Hospital, Kohima, Nagaland, India
| |
Collapse
|
69
|
de Miranda RPR, Soares TKDA, Castro DP, Genta FA. General aspects, host interaction, and application of Metarhizium sp. in arthropod pest and vector control. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1456964. [PMID: 39634290 PMCID: PMC11614621 DOI: 10.3389/ffunb.2024.1456964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/14/2024] [Indexed: 12/07/2024]
Abstract
The application of microorganisms as bio-control agents against arthropod populations is a need in many countries, especially in tropical, subtropical, and neotropical endemic areas. Several arthropod species became agricultural pests of paramount economic significance, and many methods have been developed for field and urban applications to prevent their, the most common being the application of chemical insecticides. However, the indiscriminate treatment based upon those substances acted as a selective pressure for upcoming resistant phenotype populations. As alternative tools, microorganisms have been prospected as complementary tools for pest and vectorial control, once they act in a more specific pattern against target organisms than chemicals. They are considered environmentally friendly since they have considerably less off-target effects. Entomopathogenic fungi are organisms capable of exerting pathogenesis in many vector species, thus becoming potential tools for biological management. The entomopathogenic fungi Metarhizium sp. have been investigated as a microbiological agent for the control of populations of insects in tropical regions. However, the development of entomopathogenic fungi as control tools depends on physiological studies regarding aspects such as mechanisms of pathogenicity, secreted enzymes, viability, and host-pathogen aspects. The following review briefly narrates current aspects of entomopathogenic fungi, such as physiology, cellular characteristics, host-pathogen interactions, and its previous applications against different insect orders with medical and economic importance. Approaches integrating new isolation, prospection, characterization, delivery strategies, formulations, and molecular and genetic tools will be decisive to elucidate the molecular mechanisms of EPFs and to develop more sustainable alternative pesticides.
Collapse
Affiliation(s)
| | | | - Daniele Pereira Castro
- Laboratorio de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Fernando Ariel Genta
- Laboratorio de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| |
Collapse
|
70
|
Msugupakulya BJ, Mhumbira NS, Mziray DT, Kilalangongono M, Jumanne M, Ngowo HS, Kahamba NF, Limwagu AJ, Mollel ML, Selvaraj P, Wilson AL, Okumu FO. Field surveys in rural Tanzania reveal key opportunities for targeted larval source management and species sanitation to control malaria in areas dominated by Anopheles funestus. Malar J 2024; 23:344. [PMID: 39548494 PMCID: PMC11568556 DOI: 10.1186/s12936-024-05172-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Larval source management (LSM) is re-emerging as a critical malaria intervention to address challenges associated with core vector control tools, such as insecticide-treated nets (ITNs), and to accelerate progress towards elimination. Presently, LSM is not widely used in rural settings and is instead more commonly applied in urban and arid settings. A systematic entomological assessment was conducted in rural communities of southeastern Tanzania, where insecticide-treated nets (ITNs) are widely used, to explore opportunities for deploying LSM to improve malaria control. METHODS Aquatic habitat surveys were conducted in 2022 and 2023 to understand habitat usage by different mosquito vectors, covering five villages during the rainy season and seven villages during the dry season. Additionally, samples of adult mosquitoes were collected to assess the role of various Anopheles species in malaria transmission in the area, and to explore opportunities for species sanitation using targeted LSM. RESULTS Adult mosquito surveys showed that in this area, the total entomological inoculation rates (EIR) for indoor collections were 20.1 and 6.5 infectious bites per person per year for outdoors. Anopheles funestus and Anopheles arabiensis were the only Anopheles vectors identified. Anopheles funestus was responsible for over 97.6% of the malaria transmission indoors and 95.4% outdoors. The concurrent larval surveys found that habitats with late instar An. arabiensis and An. funestus comprised only a small subset of 11.2%-16.5% of all water bodies in the rainy season, and 9.7%-15.2% in the dry season. In terms of size, these habitats covered 66.4%-68.2% of the total habitat areas in the wet season, reducing to 33.9%-40.6% in the dry season. From the rainy season to the dry season, the surface area of habitats occupied by An. arabiensis and An. funestus decreased by 92.0% to 97.5%, while the number of habitats occupied by An. arabiensis and An. funestus decreased by 38.0% to 57.3%. Anopheles funestus preferred large, permanent habitats with clear water and vegetation year-round, while An. arabiensis showed contrasting seasonal preferences, favouring sunlit still waters in the rainy season and larger, opaque habitats in the dry season. CONCLUSION These findings suggest that An. funestus, which is the dominant malaria vector in the area, mediating over 95% of malaria transmission, preferentially occupies only a small subset of uniquely identifiable aquatic habitats in both wet and dry seasons. This presents an opportunity to expand LSM in rural settings by carefully targeting An. funestus habitats, which might be effective and logistically feasible as a complementary approach alongside existing interventions. Further research should assess the impact of targeted LSM for species sanitation compared to blanket LSM.
Collapse
Affiliation(s)
- Betwel J Msugupakulya
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania.
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Nicolaus S Mhumbira
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Dawson T Mziray
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Masoud Kilalangongono
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Mohamed Jumanne
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Halfan S Ngowo
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Najat F Kahamba
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Alex J Limwagu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Meleji L Mollel
- Health Department, Ulanga District Council, P.O. Box 4, Ulanga, Tanzania
| | - Prashanth Selvaraj
- Institute for Disease Modeling, Bill and Melinda Gates Foundation, Seattle, USA
| | - Anne L Wilson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Fredros O Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, UK
- School of Life Science and Bioengineering, The Nelson Mandela African Institution of Sciences & Technology, Arusha, Tanzania
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Park Town, Republic of South Africa
| |
Collapse
|
71
|
Ferrati M, Baldassarri C, Rossi P, Favia G, Benelli G, De Fazi L, Morshedloo MR, Quassinti L, Petrelli R, Spinozzi E, Maggi F. Unveiling the Larvicidal Potential of Golpar ( Heracleum persicum Desf. ex Fisch.) Essential Oil and Its Main Constituents on Aedes and Anopheles Mosquito Vectors. PLANTS (BASEL, SWITZERLAND) 2024; 13:2974. [PMID: 39519893 PMCID: PMC11547868 DOI: 10.3390/plants13212974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Natural products are thoroughly studied as valuable alternatives to synthetic insecticides. Heracleum persicum Desf. ex Fisch. (Apiaceae), commonly known as Golpar, is an Iranian medicinal plant largely employed as a spice, which has previously revealed insecticidal potential. The chemical composition of H. persicum essential oil (EO) was investigated by GC-MS and was mainly dominated by hexyl butyrate (36.1%) and octyl acetate (23.7%). The EO and its main esters were tested on three mosquito species. Aedes aegypti (L.) larvae were the most sensitive to all tested products. Lethal concentrations (LC50) of 59.09, 53.59, and 47.05 ppm were recorded for the EO, hexyl butyrate, and octyl acetate, respectively. Aedes albopictus (Skuse) and Anopheles gambiae Giles demonstrated comparable sensitivity to the EO, with LC50 values of 102.97 and 97.91 ppm, respectively, whereas the isolated constituents appeared more active on An. gambiae (LC50 of hexyl butyrate and octyl acetate of 70.97 and 60.71 ppm, respectively) with respect to Ae. albopictus (LC50 of hexyl butyrate and octyl acetate of 85.40 and 91.38 ppm, respectively). Low toxicity was registered for both EO and single components against human embryonic kidney (HEK293) cells. Overall, the H. persicum EO, hexyl butyrate, and octyl acetate could be further considered for larvicide development.
Collapse
Affiliation(s)
- Marta Ferrati
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (R.P.); (F.M.)
| | - Cecilia Baldassarri
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, 62032 Camerino, Italy; (C.B.); (P.R.); (G.F.)
| | - Paolo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, 62032 Camerino, Italy; (C.B.); (P.R.); (G.F.)
| | - Guido Favia
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, 62032 Camerino, Italy; (C.B.); (P.R.); (G.F.)
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (G.B.); (L.D.F.)
| | - Livia De Fazi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (G.B.); (L.D.F.)
| | - Mohammad Reza Morshedloo
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh 551877684, Iran;
| | - Luana Quassinti
- School of Pharmacy, University of Camerino, Via Gentile III Da Varano, 62032 Camerino, Italy;
| | - Riccardo Petrelli
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (R.P.); (F.M.)
| | - Eleonora Spinozzi
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (R.P.); (F.M.)
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (R.P.); (F.M.)
| |
Collapse
|
72
|
Camacho E, Dong Y, Chrissian C, Cordero RJ, Saravia RG, Anglero-Rodriguez Y, Smith DF, Jacobs E, Hartshorn I, Patiño-Medina JA, DePasquale M, Dziedzic A, Jedlicka A, Smith B, Mlambo G, Tripathi A, Broderick NA, Stark RE, Dimopoulos G, Casadevall A. Dietary L-3,4-dihydroxyphenylalanine (L-DOPA) augments cuticular melanization in Anopheles mosquitos while reducing their lifespan and malaria parasite burden. RESEARCH SQUARE 2024:rs.3.rs-5167892. [PMID: 39483913 PMCID: PMC11527263 DOI: 10.21203/rs.3.rs-5167892/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
L-3,4-dihydroxyphenylalanine (L-DOPA), a naturally occurring tyrosine derivative, is prevalent in environments that include mosquito habitats, potentially serving as part of their diet. Given its role as a precursor for melanin synthesis we investigated the effect of dietary L-DOPA on mosquito physiology and immunity to Plasmodium falciparum and Cryptococcus neoformans infection. Dietary L-DOPA was incorporated into mosquito melanin via a non-canonical pathway and had profound transcriptional effects that were associated with enhanced immunity, increased pigmentation, and reduced lifespan. Increased melanization resulted in an enhanced capacity to absorb electromagnetic radiation that affected mosquito temperatures. Bacteria in the mosquito microbiome were sources of dopamine, which is a substrate for melanization. Our results illustrate how an environmentally abundant amino acid analogue can affect mosquito physiology and suggest its potential usefulness as an environmentally friendly vector control agent to reduce malaria transmission, warranting further research and field studies.
Collapse
|
73
|
Davis C, Javor ER, Rebarber SI, Rychtář J, Taylor D. A mathematical model of visceral leishmaniasis transmission and control: Impact of ITNs on VL prevention and elimination in the Indian subcontinent. PLoS One 2024; 19:e0311314. [PMID: 39365771 PMCID: PMC11452004 DOI: 10.1371/journal.pone.0311314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/17/2024] [Indexed: 10/06/2024] Open
Abstract
Visceral Leishmaniasis (VL) is a deadly, vector-borne, parasitic, neglected tropical disease, particularly prevalent on the Indian subcontinent. Sleeping under the long-lasting insecticide-treated nets (ITNs) was considered an effective VL prevention and control measures, until KalaNet, a large trial in Nepal and India, did not show enough supporting evidence. In this paper, we adapt a biologically accurate, yet relatively simple compartmental ordinary differential equations (ODE) model of VL transmission and explicitly model the use of ITNs and their role in VL prevention and elimination. We also include a game-theoretic analysis in order to determine an optimal use of ITNs from the individuals' perspective. In agreement with the previous more detailed and complex model, we show that the ITNs coverage amongst the susceptible population has to be unrealistically high (over 96%) in order for VL to be eliminated. However, we also show that if the whole population, including symptomatic and asymptomatic VL cases adopt about 90% ITN usage, then VL can be eliminated. Our model also suggests that ITN usage should be accompanied with other interventions such as vector control.
Collapse
Affiliation(s)
- Cameron Davis
- Department of Mathematics, Fitchburg State University, Fitchburg, MA, United States of America
| | - Elizabeth R. Javor
- Department of Mathematics, Rochester Institute of Technology, Rochester, NY, United States of America
| | - Sonja I. Rebarber
- Department of Mathematics and Statistics, Swarthmore College, Swarthmore, PA, United States of America
| | - Jan Rychtář
- Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Dewey Taylor
- Department of Mathematics, Rochester Institute of Technology, Rochester, NY, United States of America
| |
Collapse
|
74
|
Blyden K, Thomas J, Emami-Naeini P, Fashina T, Conrady CD, Albini TA, Carag J, Yeh S. Emerging Infectious Diseases and the Eye: Ophthalmic Manifestations, Pathogenesis, and One Health Perspectives. Int Ophthalmol Clin 2024; 64:39-54. [PMID: 39480207 PMCID: PMC11512616 DOI: 10.1097/iio.0000000000000539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Infectious diseases may lead to ocular complications including uveitis, an ocular inflammatory condition with potentially sight-threatening sequelae, and conjunctivitis, inflammation of the conjunctiva. Emerging infectious pathogens with known ocular findings include Ebola virus, Zika virus, Avian influenza virus, Nipah virus, severe acute respiratory syndrome coronaviruses, and Dengue virus. Re-emerging pathogens with ocular findings include Toxoplasma gondii and Plasmodium species that lead to malaria. The concept of One Health involves a collaborative and interdisciplinary approach to achieve optimal health outcomes by combining human, animal, and environmental health factors. This approach examines the interconnected and often complex human-pathogen-intermediate host interactions in infectious diseases that may also result in ocular disease, including uveitis and conjunctivitis. Through a comprehensive review of the literature, we review the ophthalmic findings of emerging infectious diseases, pathogenesis, and One Health perspectives that provide further insight into the disease state. While eye care providers and vision researchers may often focus on key local aspects of disease process and management, additional perspective on host-pathogen-reservoir life cycles and transmission considerations, including environmental factors, may offer greater insight to improve outcomes for affected individuals and stakeholders.
Collapse
Affiliation(s)
- K’Mani Blyden
- Medical College of Georgia, Augusta University, Augusta, GA
| | - Joanne Thomas
- Emory Eye Center, Emory University School of Medicine, Atlanta, GA
- Emory University School of Medicine, Atlanta, GA
| | - Parisa Emami-Naeini
- Department of Ophthalmology, University of California, Davis, Sacramento, CA
| | - Tolulope Fashina
- Department of Ophthalmology, University of Nebraska Medical Center, Omaha, NE
| | - Christopher D. Conrady
- Department of Ophthalmology, University of Nebraska Medical Center, Omaha, NE
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE
| | - Thomas A. Albini
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL
| | | | - Steven Yeh
- Department of Ophthalmology, University of Nebraska Medical Center, Omaha, NE
- Global Center for Health Security, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
75
|
Kientega M, Clarkson CS, Traoré N, Hui TYJ, O'Loughlin S, Millogo AA, Epopa PS, Yao FA, Belem AMG, Brenas J, Miles A, Burt A, Diabaté A. Whole-genome sequencing of major malaria vectors reveals the evolution of new insecticide resistance variants in a longitudinal study in Burkina Faso. Malar J 2024; 23:280. [PMID: 39285410 PMCID: PMC11406867 DOI: 10.1186/s12936-024-05106-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/08/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Intensive deployment of insecticide based malaria vector control tools resulted in the rapid evolution of phenotypes resistant to these chemicals. Understanding this process at the genomic level is important for the deployment of successful vector control interventions. Therefore, longitudinal sampling followed by whole genome sequencing (WGS) is necessary to understand how these evolutionary processes evolve over time. This study investigated the change in genetic structure and the evolution of the insecticide resistance variants in natural populations of Anopheles gambiae over time and space from 2012 to 2017 in Burkina Faso. METHODS New genomic data have been generated from An. gambiae mosquitoes collected from three villages in the western part of Burkina Faso between 2012 and 2017. The samples were whole-genome sequenced and the data used in the An. gambiae 1000 genomes (Ag1000G) project as part of the Vector Observatory. Genomic data were analysed using the analysis pipeline previously designed by the Ag1000G project. RESULTS The results showed similar and consistent nucleotide diversity and negative Tajima's D between An. gambiae sensu stricto (s.s.) and Anopheles coluzzii. Principal component analysis (PCA) and the fixation index (FST) showed a clear genetic structure in the An. gambiae sensu lato (s.l.) species. Genome-wide FST and H12 scans identified genomic regions under divergent selection that may have implications in the adaptation to ecological changes. Novel voltage-gated sodium channel pyrethroid resistance target-site alleles (V402L, I1527T) were identified at increasing frequencies alongside the established alleles (Vgsc-L995F, Vgsc-L995S and N1570Y) within the An. gambiae s.l. POPULATIONS Organophosphate metabolic resistance markers were also identified, at increasing frequencies, within the An. gambiae s.s. populations from 2012 to 2017, including the SNP Ace1-G280S and its associated duplication. Variants simultaneously identified in the same vector populations raise concerns about the long-term efficacy of new generation bed nets and the recently organophosphate pirimiphos-methyl indoor residual spraying in Burkina Faso. CONCLUSION These findings highlighted the benefit of genomic surveillance of malaria vectors for the detection of new insecticide resistance variants, the monitoring of the existing resistance variants, and also to get insights into the evolutionary processes driving insecticide resistance.
Collapse
Affiliation(s)
- Mahamadi Kientega
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545, Bobo-Dioulasso 01, Burkina Faso.
- Université Nazi Boni, 01 BP 1091, Bobo-Dioulasso, Burkina Faso.
| | - Chris S Clarkson
- Vector Surveillance Programme, Genomic Surveillance Unit, Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Nouhoun Traoré
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545, Bobo-Dioulasso 01, Burkina Faso
- Université Nazi Boni, 01 BP 1091, Bobo-Dioulasso, Burkina Faso
| | - Tin-Yu J Hui
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, SL5 7PY, UK
| | - Samantha O'Loughlin
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, SL5 7PY, UK
| | - Abdoul-Azize Millogo
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545, Bobo-Dioulasso 01, Burkina Faso
- Institut des Sciences des Sociétés, 03 BP 7047, Ouagadougou 03, Burkina Faso
| | - Patric Stephane Epopa
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545, Bobo-Dioulasso 01, Burkina Faso
| | - Franck A Yao
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545, Bobo-Dioulasso 01, Burkina Faso
| | | | - Jon Brenas
- Vector Surveillance Programme, Genomic Surveillance Unit, Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Alistair Miles
- Vector Surveillance Programme, Genomic Surveillance Unit, Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Austin Burt
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, SL5 7PY, UK
| | - Abdoulaye Diabaté
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545, Bobo-Dioulasso 01, Burkina Faso.
| |
Collapse
|
76
|
Salvioni Recalde OD, Rolón MS, Velázquez MC, Kowalewski MM, Alfonso Ruiz Diaz JJ, Rojas de Arias A, Moraes MO, Magdinier Gomes H, de Azevedo Baêta B, Dias Cordeiro M, Vega Gómez MC. Diversity of Anaplasmataceae Transmitted by Ticks (Ixodidae) and the First Molecular Evidence of Anaplasma phagocytophilum and Candidatus Anaplasma boleense in Paraguay. Microorganisms 2024; 12:1893. [PMID: 39338567 PMCID: PMC11433689 DOI: 10.3390/microorganisms12091893] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/07/2024] [Accepted: 07/19/2024] [Indexed: 09/30/2024] Open
Abstract
Anaplasmataceae bacteria are emerging infectious agents transmitted by ticks. The aim of this study was to identify the molecular diversity of this bacterial family in ticks and hosts, both domestic and wild, as well as blood meal sources of free-living ticks in northeastern Paraguay. The bacteria were identified using PCR-HRM, a method optimized for this purpose, while the identification of ticks and their blood meal was performed using conventional PCR. All amplified products were subsequently sequenced. The bacteria detected in the blood hosts included Ehrlichia canis, Anaplasma platys, and Anaplasma phagocytophilum, Candidatus Anaplasma boleense, and Wolbachia spp., which had not been previously reported in the country. Free-living and parasitic ticks on dogs (Canis lupus familiaris) and wild armadillos (Dasypus novemcinctus) were collected and identified as Rhipicephalus sanguineus and Amblyomma spp. The species E. canis, A. platys, A. phagocytophilum, and Ca. A. boleense were detected in domestic dog ticks, and E. canis and A. platys were found for the first time in armadillos and free-living ticks. Blood feeding sources detected in free-living ticks were rodents, humans, armadillos and dogs. Results show a high diversity of tick-borne pathogens circulating among domestic and wild animals in the northeastern region of Paraguay.
Collapse
Affiliation(s)
- Oscar Daniel Salvioni Recalde
- Center for the Development of Scientific Research (CEDIC), Manduvira 635, Asunción 1255, Paraguay; (O.D.S.R.); (M.S.R.); (J.J.A.R.D.); (A.R.d.A.)
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Miriam Soledad Rolón
- Center for the Development of Scientific Research (CEDIC), Manduvira 635, Asunción 1255, Paraguay; (O.D.S.R.); (M.S.R.); (J.J.A.R.D.); (A.R.d.A.)
| | | | - Martin M. Kowalewski
- Estación Biológica Corrientes CECOAL (Centro de Ecología Aplicada del Litoral) CONICET-UNNE, Corrientes 3400, Argentina;
| | - Jorge Javier Alfonso Ruiz Diaz
- Center for the Development of Scientific Research (CEDIC), Manduvira 635, Asunción 1255, Paraguay; (O.D.S.R.); (M.S.R.); (J.J.A.R.D.); (A.R.d.A.)
| | - Antonieta Rojas de Arias
- Center for the Development of Scientific Research (CEDIC), Manduvira 635, Asunción 1255, Paraguay; (O.D.S.R.); (M.S.R.); (J.J.A.R.D.); (A.R.d.A.)
| | - Milton Ozório Moraes
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
- Laboratório de Biologia Molecular Aplicada à Micobactérias, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Av. Brasil 4365, Manguinhos 21045-900, Brazil;
| | - Harrison Magdinier Gomes
- Laboratório de Biologia Molecular Aplicada à Micobactérias, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Av. Brasil 4365, Manguinhos 21045-900, Brazil;
| | - Bruna de Azevedo Baêta
- Laboratory of Parasitic Diseases of the Federal Rural University of Rio de Janeiro (UFRRJ), Km 07, Seropédica, Rio de Janeiro 21040-900, Brazil; (B.d.A.B.); (M.D.C.)
| | - Matheus Dias Cordeiro
- Laboratory of Parasitic Diseases of the Federal Rural University of Rio de Janeiro (UFRRJ), Km 07, Seropédica, Rio de Janeiro 21040-900, Brazil; (B.d.A.B.); (M.D.C.)
| | - María Celeste Vega Gómez
- Center for the Development of Scientific Research (CEDIC), Manduvira 635, Asunción 1255, Paraguay; (O.D.S.R.); (M.S.R.); (J.J.A.R.D.); (A.R.d.A.)
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
77
|
Mechan F, Praulins G, Gillespie J, Gleave K, Murphy-Fegan A, McDermott DP, Weetman D, Lees RS. Power calculation for mosquito bioassays: Quantifying variability in the WHO tube bioassay and developing sample size guidance for the PBO synergism assay using a Shiny application. Gates Open Res 2024; 8:96. [PMID: 39569042 PMCID: PMC11576473 DOI: 10.12688/gatesopenres.16123.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 11/22/2024] Open
Abstract
Background The WHO tube bioassay is a method for exposing mosquitos to determine susceptibility to insecticides, with mortality to discriminating doses <98% indicating possible resistance and <90% confirming resistance. This bioassay is also used for synergism testing to assess if susceptibility is restored by pre-exposure to the synergist piperonyl butoxide. Methods Here we perform testing with pyrethroid-susceptible and pyrethroid-resistant An. gambiae to quantify the variability of the WHO tube bioassay and identify its sources. These estimates of within and between day variability are then used to evaluate the power of the bioassay to detect a mortality difference between pyrethroid-only and pyrethroid-PBO. Results We show that approximately two-thirds of variation occurs between days, with the pyrethroid-susceptible strain twice as variable as the pyrethroid-resistant strain. The total number of mosquitoes in the tube and their bodyweight contributes to approximately 10% of this variability. Changes in temperature and humidity, within a climate-controlled insectary, didn't impact mortality. Using a simulation-based framework, we show that the current synergism guidelines, using a 4x4 design, can reliably detect a difference between 90% and 100% mortality (>90% power). However, as the mortality of either group gets closer to 50%, a 10% difference between groups is more difficult to reliably detect. In the worst-case scenario where the mortality of either group is 50%, the mortality difference must be >22.5% to be detected with 80% power. We provide an R shiny application to assess power for other comparisons. Conclusions Our findings indicate that detecting synergism with the WHO tube assay is more difficult than assumed by the current WHO guidelines. Additionally, we demonstrate the value of using a Shiny application to make the outputs of simulation-based power analysis readily available to end-users, allowing them to determine the number of tubes needed to detect a given mortality difference.
Collapse
Affiliation(s)
- Frank Mechan
- Innovation To Impact (I2I), Department of Vector Biology, Liverpool, Liverpool, L35QA, UK
- Vector Biology, Liverpool School of Tropical Medicine, Liverpool, England, UK
| | - Giorgio Praulins
- Innovation To Impact (I2I), Department of Vector Biology, Liverpool, Liverpool, L35QA, UK
- Vector Biology, Liverpool School of Tropical Medicine, Liverpool, England, UK
| | - Jack Gillespie
- Innovation To Impact (I2I), Department of Vector Biology, Liverpool, Liverpool, L35QA, UK
- Vector Biology, Liverpool School of Tropical Medicine, Liverpool, England, UK
| | - Katherine Gleave
- Innovation To Impact (I2I), Department of Vector Biology, Liverpool, Liverpool, L35QA, UK
- Vector Biology, Liverpool School of Tropical Medicine, Liverpool, England, UK
| | - Annabel Murphy-Fegan
- Innovation To Impact (I2I), Department of Vector Biology, Liverpool, Liverpool, L35QA, UK
- Vector Biology, Liverpool School of Tropical Medicine, Liverpool, England, UK
| | - Daniel P McDermott
- Vector Biology, Liverpool School of Tropical Medicine, Liverpool, England, UK
| | - David Weetman
- Vector Biology, Liverpool School of Tropical Medicine, Liverpool, England, UK
| | - Rosemary Susan Lees
- Innovation To Impact (I2I), Department of Vector Biology, Liverpool, Liverpool, L35QA, UK
- Vector Biology, Liverpool School of Tropical Medicine, Liverpool, England, UK
| |
Collapse
|
78
|
Amaro FIF, Soares P, Velo E, Carvalho DO, Gomez M, Balestrino F, Puggioli A, Bellini R, Osório HC. Mark-Release-Recapture Trial with Aedes albopictus (Diptera, Culicidae) Irradiated Males: Population Parameters and Climatic Factors. INSECTS 2024; 15:685. [PMID: 39336653 PMCID: PMC11432691 DOI: 10.3390/insects15090685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024]
Abstract
Aedes albopictus is considered one of the major invasive species in the world and can transmit viruses such as dengue, Zika, or chikungunya. The Sterile Insect Technique (SIT) can be used to suppress the native populations of Ae. albopictus. Mark-release-recapture (MRR) studies are crucial to support the development of the release strategy during the SIT application. Meanwhile, weather conditions can affect the MRR trial's results and it is critical to understand the influence of climatic factors on the results. In October 2022, 84,000 irradiated sterile males were released for three consecutive weeks in Faro, Southern Portugal. Mosquitoes were recaptured by human landing collection (HLC) one, two, four, and six days after release. Generalized linear models with a negative binomial family and log function were used to estimate the factors associated with the number of recaptured mosquitoes, prevalence ratios, and the 95% confidence intervals (CIs). A total of 84,000 sterile male mosquitoes were released, with 528 recaptured (0.8%) by HLC. The prevalence of recaptured mosquitoes was 23% lower when the wind intensity was moderate. Marked sterile males had an average median distance travelled of 88.7 m. The median probability of daily survival and the average life expectancy were 61.6% and 2.1 days, respectively. The wild male population estimate was 443.33 males/ha. Despite no statistically significant association being found with humidity, temperature, and precipitation, it is important to consider weather conditions during MRR trial analyses to obtain the best determinant estimation and a more efficient application of the SIT in an integrated vector management program.
Collapse
Affiliation(s)
- Fátima Isabel Falcão Amaro
- Centre for Vectors and Infectious Diseases Research Doutor Francisco Cambournac (CEVDI), National Institute of Health Doutor Ricardo Jorge (INSA), Avenida da Liberdade 5, 2965-575 Palmela, Portugal
- Environmental Health Institute (ISAMB), Faculty of Medicine, University of Lisbon, Av. Prof. Egas Moniz, Ed. Egas Moniz, Piso 0, Ala C, 1649-028 Lisboa, Portugal
| | - Patricia Soares
- Centre for Vectors and Infectious Diseases Research Doutor Francisco Cambournac (CEVDI), National Institute of Health Doutor Ricardo Jorge (INSA), Avenida da Liberdade 5, 2965-575 Palmela, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, NOVA University Lisbon, 1070-312 Lisbon, Portugal
- Centre of Statistics and its Applications (CEAUL), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Enkelejda Velo
- Department of Epidemiology and Control of Infectious Diseases, Institute of Public Health, Tirana 1001, Albania
| | - Danilo Oliveira Carvalho
- Insect Pest Control Subprogramme, Department of Nuclear Sciences and Applications, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, 1400 Vienna, Austria
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611, USA
| | - Maylen Gomez
- Insect Pest Control Subprogramme, Department of Nuclear Sciences and Applications, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, 1400 Vienna, Austria
| | - Fabrizio Balestrino
- Centro Agricoltura Ambiente "G. Nicoli", Department of Sanitary Entomology and Zoology, 40014 Crevalcore, Italy
| | - Arianna Puggioli
- Centro Agricoltura Ambiente "G. Nicoli", Department of Sanitary Entomology and Zoology, 40014 Crevalcore, Italy
| | - Romeo Bellini
- Centro Agricoltura Ambiente "G. Nicoli", Department of Sanitary Entomology and Zoology, 40014 Crevalcore, Italy
| | - Hugo Costa Osório
- Centre for Vectors and Infectious Diseases Research Doutor Francisco Cambournac (CEVDI), National Institute of Health Doutor Ricardo Jorge (INSA), Avenida da Liberdade 5, 2965-575 Palmela, Portugal
- Environmental Health Institute (ISAMB), Faculty of Medicine, University of Lisbon, Av. Prof. Egas Moniz, Ed. Egas Moniz, Piso 0, Ala C, 1649-028 Lisboa, Portugal
| |
Collapse
|
79
|
Charamis J, Balaska S, Ioannidis P, Dvořák V, Mavridis K, McDowell MA, Pavlidis P, Feyereisen R, Volf P, Vontas J. Comparative Genomics Uncovers the Evolutionary Dynamics of Detoxification and Insecticide Target Genes Across 11 Phlebotomine Sand Flies. Genome Biol Evol 2024; 16:evae186. [PMID: 39224065 PMCID: PMC11412322 DOI: 10.1093/gbe/evae186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Sand flies infect more than 1 million people annually with Leishmania parasites and other bacterial and viral pathogens. Progress in understanding sand fly adaptations to xenobiotics has been hampered by the limited availability of genomic resources. To address this gap, we sequenced, assembled, and annotated the transcriptomes of 11 phlebotomine sand fly species. Subsequently, we leveraged these genomic resources to generate novel evolutionary insights pertaining to their adaptations to xenobiotics, including those contributing to insecticide resistance. Specifically, we annotated over 2,700 sand fly detoxification genes and conducted large-scale phylogenetic comparisons to uncover the evolutionary dynamics of the five major detoxification gene families: cytochrome P450s (CYPs), glutathione-S-transferases (GSTs), UDP-glycosyltransferases (UGTs), carboxyl/cholinesterases (CCEs), and ATP-binding cassette (ABC) transporters. Using this comparative approach, we show that sand flies have evolved diverse CYP and GST gene repertoires, with notable lineage-specific expansions in gene groups evolutionarily related to known xenobiotic metabolizers. Furthermore, we show that sand flies have conserved orthologs of (i) CYP4G genes involved in cuticular hydrocarbon biosynthesis, (ii) ABCB genes involved in xenobiotic toxicity, and (iii) two primary insecticide targets, acetylcholinesterase-1 (Ace1) and voltage gated sodium channel (VGSC). The biological insights and genomic resources produced in this study provide a foundation for generating and testing hypotheses regarding the molecular mechanisms underlying sand fly adaptations to xenobiotics.
Collapse
Affiliation(s)
- Jason Charamis
- Department of Biology, University of Crete, Heraklion 71409, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| | - Sofia Balaska
- Department of Biology, University of Crete, Heraklion 71409, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| | - Panagiotis Ioannidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
- Institute of Computer Science, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Vít Dvořák
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Konstantinos Mavridis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| | - Mary Ann McDowell
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Pavlos Pavlidis
- Department of Biology, University of Crete, Heraklion 71409, Greece
- Institute of Computer Science, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - René Feyereisen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Athens 11855, Greece
| |
Collapse
|
80
|
García-Suárez O, Tolsá-García MJ, Arana-Guardia R, Rodríguez-Valencia V, Talaga S, Pontifes PA, Machain-Williams C, Suzán G, Roiz D. Seasonal mosquito (Diptera: Culicidae) dynamics and the influence of environmental variables in a land use gradient from Yucatan, Mexico. Acta Trop 2024; 257:107275. [PMID: 38851624 DOI: 10.1016/j.actatropica.2024.107275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
Mosquito-borne diseases constitute a significant global impact on public and animal health. Climatic variables are recognized as major drivers in the mosquitoes' life history, principally rainfall and temperature, which directly influence mosquito abundance. Likewise, urbanization changes environmental conditions, and understanding how environmental variables and urbanization influence mosquito dynamics is crucial for the integrated management of mosquito-borne diseases, especially in the context of climate change. In this study, our aim was to observe the effect of temperature, rainfall, and the percentage of impervious surface on the abundance of mosquito species over a temporal scale of one complete year of fortnightly samplings, spanning from June 2021 to June 2022 in Yucatan, Mexico. We selected nine localities along an urbanization gradient (three natural, three rural, and three urban) from Mérida City to Reserva de la Biosfera Ría Celestún. Using BG-traps, mosquitoes were collected biweekly at each locality. Additionally, we estimated the percentage of impervious surface. Daily data of the maximum, mean and minimum temperatures, diurnal temperature range and rainfall were accumulated weekly. We calculated the accumulated quantities of temperatures and rainfall and lagged from one to four weeks before sampling for each locality. Generalized linear mixed models were then performed to study the influence of environmental variables and percentage of impervious surfaces on each of the 15 most abundant species. A total of 131,525 mosquitoes belonging to 11 genera and 49 species were sampled with BG-Sentinel traps baited with BG-lure and dry ice. The most frequently significative variable is the accumulated precipitation four weeks before the sampling. We observed a positive relationship between Cx. quinquefasciatus and Cx. thriambus with the diurnal temperature range. For Ae. aegypti, we observed a positive relationship with minimum temperature. Conversely, the percentage of impervious surface serves as a proxy of anthropogenic influence and helped us to distinguishing species exhibiting habitat preference for urban and rural environments, versus those preferring natural habitats. Our results characterize the species-specific effects of environmental variables (temperature, rainfall and impervious surface) on mosquito abundance.
Collapse
Affiliation(s)
- O García-Suárez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico; International Joint Laboratory IRD/UNAM ELDORADO, Mérida, Yucatán 97205, Mexico
| | - M J Tolsá-García
- International Joint Laboratory IRD/UNAM ELDORADO, Mérida, Yucatán 97205, Mexico; MIVEGEC, University Montpellier, CNRS, IRD, Montpellier, France
| | - R Arana-Guardia
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico; International Joint Laboratory IRD/UNAM ELDORADO, Mérida, Yucatán 97205, Mexico
| | - V Rodríguez-Valencia
- International Joint Laboratory IRD/UNAM ELDORADO, Mérida, Yucatán 97205, Mexico; MIVEGEC, University Montpellier, CNRS, IRD, Montpellier, France
| | - S Talaga
- Institut Pasteur de la Guyane, Vectopôle Amazonien Emile Abonnenc, Unité d'Entomologie Médicale, 23 Avenue Pasteur Guiana, Cayenne 97300, French
| | - P A Pontifes
- International Joint Laboratory IRD/UNAM ELDORADO, Mérida, Yucatán 97205, Mexico; MIVEGEC, University Montpellier, CNRS, IRD, Montpellier, France
| | - C Machain-Williams
- Unidad Profesional Interdisciplinaria de Ingeniería Palenque (UPIIP), Instituto Politécnico Nacional, Carretera Federal 199, Nueva Esperanza, Palenque, Chiapas 29960, Mexico
| | - G Suzán
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico; International Joint Laboratory IRD/UNAM ELDORADO, Mérida, Yucatán 97205, Mexico
| | - D Roiz
- International Joint Laboratory IRD/UNAM ELDORADO, Mérida, Yucatán 97205, Mexico; MIVEGEC, University Montpellier, CNRS, IRD, Montpellier, France.
| |
Collapse
|
81
|
Rastegar M, Nazar E, Nasehi M, Sharafi S, Fakoor V, Shakeri MT. Bayesian estimation of the time-varying reproduction number for pulmonary tuberculosis in Iran: A registry-based study from 2018 to 2022 using new smear-positive cases. Infect Dis Model 2024; 9:963-974. [PMID: 38873589 PMCID: PMC11169078 DOI: 10.1016/j.idm.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/09/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024] Open
Abstract
Introduction Tuberculosis (TB) is one of the most prevalent infectious diseases in the world, causing major public health problems in developing countries. The rate of TB incidence in Iran was estimated to be 13 per 100,000 in 2021. This study aimed to estimate the reproduction number and serial interval for pulmonary tuberculosis in Iran. Material and methods The present national historical cohort study was conducted from March 2018 to March 2022 based on data from the National Tuberculosis and Leprosy Registration Center of Iran's Ministry of Health and Medical Education (MOHME). The study included 30,762 tuberculosis cases and 16,165 new smear-positive pulmonary tuberculosis patients in Iran. We estimated the reproduction number of pulmonary tuberculosis in a Bayesian framework, which can incorporate uncertainty in estimating it. Statistical analyses were accomplished in R software. Results The mean age at diagnosis of patients was 52.3 ± 21.2 years, and most patients were in the 35-63 age group (37.1%). Among the data, 9121 (56.4%) cases were males, and 7044 (43.6%) were females. Among patients, 7459 (46.1%) had a delayed diagnosis between 1 and 3 months. Additionally, 3039 (18.8%) cases were non-Iranians, and 2978 (98%) were Afghans. The time-varying reproduction number for pulmonary tuberculosis disease was calculated at an average of 1.06 ± 0.05 (95% Crl 0.96-1.15). Conclusions In this study, the incidence and the time-varying reproduction number of pulmonary tuberculosis showed the same pattern. The mean of the time-varying reproduction number indicated that each infected person is causing at least one new infection over time, and the chain of transmission is not being disrupted.
Collapse
Affiliation(s)
- Maryam Rastegar
- Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Eisa Nazar
- Orthopedic Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahshid Nasehi
- Centre for Communicable Diseases Control, Ministry of Health and Medical Education, Tehran, Iran
| | - Saeed Sharafi
- Centre for Communicable Diseases Control, Ministry of Health and Medical Education, Tehran, Iran
| | - Vahid Fakoor
- Department of Statistics, Faculty of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Taghi Shakeri
- Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
82
|
Ojianwuna CC, Enwemiwe VN, Esiwo E, Mekunye F, Anidiobi A, Oborayiruvbe TE. Susceptibility status and synergistic activity of DDT and Lambda-cyhalothrin on Anopheles gambiae and Aedes aegypti in Delta State, Nigeria. PLoS One 2024; 19:e0309199. [PMID: 39208076 PMCID: PMC11361428 DOI: 10.1371/journal.pone.0309199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
The detection of insecticide resistance in male mosquitoes has been treated with less importance in monitoring insecticide resistance spread in mosquitoes. There are no studies on the susceptibility and synergistic activity of DDT and lambda-cyhalothrin on male Anopheles gambiae and Aedes aegypti in Delta State, Nigeria. Even though studies have extensively reported resistance in female mosquitoes, the susceptibility of male mosquitoes to insecticide classes should be ascertained. In this study, we tested the susceptibility status and synergistic activity of DDT and Lambda-cyhalothrin on An. gambiae and Ae. aegypti in Delta State, Nigeria, in order to ascertain the level of resistance and knockdown. In addition, we modelled the knockdown time using Probit analysis model. WHO bioassay method was used to expose two days old adult mosquitoes to 4% DDT and 0.05% lambda-cyhalothrin. The results showed that An. gambiae mosquitoes exposed to DDT and lambda-cyhalothrin were confirmed resistant (61% and 53% respectively). However, pre-exposing the resistant mosquito population to piperonyl butoxide (4%) showed an increase in mortality to 90% (possible resistance) in DDT and 98% (susceptible) in lambda-cyhalothrin. Ae. aegypti mosquitoes exposed to DDT were susceptible (98%) while those exposed to lambda-cyhalothrin were confirmed resistant (87%) and this increased to complete mortality (100%) in PBO+lambda-cyhalothrin population. Furthermore, the results showed that the knockdown time (KDT50 and KDT95) in An. gambiae exposed to DDT was 39.5-71.2 minutes and 124.5-146.4 minutes respectively, while that of lambda-cyhalothrin was 33.0-81.8 minutes and 64.0-124.4 minutes respectively. In Ae. aegypti, KDT50 and KDT95 was 23.9 and 61.7minutes for DDT exposure whereas it was 5.6-15.3 minutes and 36.1-72.3 minutes for lambda-cyhalothrin exposure. It can be concluded that male An. gambiae mosquitoes exposed to the insecticides were resistant and the causes may be linked to certain resistant genes in the mosquitoes. The chances of transferring resistance are possible in wild species and molecular-based studies on the resistant gene in male mosquitoes as well as the tendencies of transfer are required to establish this focus.
Collapse
Affiliation(s)
- Chioma C. Ojianwuna
- Department of Animal and Environmental Biology, Faculty of Science, Delta State University, Abraka, Nigeria
| | - Victor N. Enwemiwe
- Department of Animal and Environmental Biology, Faculty of Science, Delta State University, Abraka, Nigeria
| | - Eric Esiwo
- Department of Animal and Environmental Biology, Faculty of Science, Delta State University, Abraka, Nigeria
| | - Favour Mekunye
- Department of Animal and Environmental Biology, Faculty of Science, Delta State University, Abraka, Nigeria
| | - Ann Anidiobi
- Department of Animal and Environmental Biology, Faculty of Science, Delta State University, Abraka, Nigeria
| | - Treasure E. Oborayiruvbe
- Department of Animal and Environmental Biology, Faculty of Science, Delta State University, Abraka, Nigeria
| |
Collapse
|
83
|
Kayesh MEH, Nazneen H, Kohara M, Tsukiyama-Kohara K. An effective pan-serotype dengue vaccine and enhanced control strategies could help in reducing the severe dengue burden in Bangladesh-A perspective. Front Microbiol 2024; 15:1423044. [PMID: 39228383 PMCID: PMC11368799 DOI: 10.3389/fmicb.2024.1423044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024] Open
Abstract
Dengue is an important vector-borne disease occurring globally. Dengue virus (DENV) infection can result in a potentially life-threatening disease. To date, no DENV-specific antiviral treatment is available. Moreover, an equally effective pan-serotype dengue virus vaccine is not available. Recently, two DENV vaccines, Dengvaxia and Qdenga, were licensed for limited use. However, none of them have been approved in Bangladesh. DENV is transmitted by Aedes mosquitoes, and global warming caused by climate change favoring Aedes breeding plays an important role in increasing DENV infections in Bangladesh. Dengue is a serious public health concern in Bangladesh. In the year 2023, Bangladesh witnessed its largest dengue outbreak, with the highest number of dengue cases (n = 321,179) and dengue-related deaths (n = 1,705) in a single epidemic year. There is an increased risk of severe dengue in individuals with preexisting DENV-specific immunoglobulin G if the individuals become infected with different DENV serotypes. To date, vector control has remained the mainstay for controlling dengue; therefore, an immediate, strengthened, and effective vector control program is critical and should be regularly performed for controlling dengue outbreaks in Bangladesh. In addition, the use of DENV vaccine in curbing dengue epidemics in Bangladesh requires more consideration and judgment by the respective authority of Bangladesh. This review provides perspectives on the control and prevention of dengue outbreaks. We also discuss the challenges of DENV vaccine use to reduce dengue epidemics infection in Bangladesh.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, Bangladesh
| | - Humayra Nazneen
- Department of Haematology, Dhaka Medical College Hospital, Dhaka, Bangladesh
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kyoko Tsukiyama-Kohara
- Joint Faculty of Veterinary Medicine, Transboundary Animal Diseases Centre, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
84
|
Cerda-Apresa D, Gutierrez-Rodriguez SM, Davila-Barboza JA, Lopez-Monroy B, Rodriguez-Sanchez IP, Saavedra-Rodriguez KL, Flores AE. Repurposing Insecticides for Mosquito Control: Evaluating Spiromesifen, a Lipid Synthesis Inhibitor against Aedes aegypti (L.). Trop Med Infect Dis 2024; 9:184. [PMID: 39195622 PMCID: PMC11360630 DOI: 10.3390/tropicalmed9080184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/13/2024] [Accepted: 08/17/2024] [Indexed: 08/29/2024] Open
Abstract
The growing resistance of Aedes aegypti (L.) to conventional insecticides presents a major challenge in arbovirus control, necessitating the exploration of alternative insecticidal chemistries. Spiromesifen, derived from spirocyclic tetronic acids, is widely used against agricultural pests and is crucial in resistance management due to its unique lipid synthesis inhibition. This study evaluates the insecticidal activity of spiromesifen against temephos-resistant Ae. aegypti populations, focusing on larval body weight, volume, biochemical composition, and adult female reproductive potential. Spiromesifen demonstrated effective larvicidal activity, significantly reducing adult emergence. Resistance to spiromesifen was not observed, with resistance ratios (RR50, RR90) ranging from 0.36- to 3.31-fold. Larvae exposed to LC50 showed significant reductions in body weight and volume, and reduced carbohydrate, lipid, and protein contents. Enhanced catalase activity and malondialdehyde levels indicated increased oxidative stress and lipid peroxidation, highlighting its effects on lipid metabolism. Spiromesifen also exhibited sterilizing effects, significantly reducing fecundity and fertility in adult females, thereby impacting Ae. aegypti reproductive capacity. These findings highlight the potential of spiromesifen as a component of integrated vector management strategies, especially in regions with prevalent insecticide resistance in Ae. aegypti, serving as an effective larvicide and impacting adult reproductive outcomes.
Collapse
Affiliation(s)
- Daniela Cerda-Apresa
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n Cd. Universitaria, San Nicolas de los Garza 66455, NL, Mexico; (D.C.-A.); (S.M.G.-R.); (J.A.D.-B.); (B.L.-M.); (I.P.R.-S.)
| | - Selene M. Gutierrez-Rodriguez
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n Cd. Universitaria, San Nicolas de los Garza 66455, NL, Mexico; (D.C.-A.); (S.M.G.-R.); (J.A.D.-B.); (B.L.-M.); (I.P.R.-S.)
| | - Jesus A. Davila-Barboza
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n Cd. Universitaria, San Nicolas de los Garza 66455, NL, Mexico; (D.C.-A.); (S.M.G.-R.); (J.A.D.-B.); (B.L.-M.); (I.P.R.-S.)
| | - Beatriz Lopez-Monroy
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n Cd. Universitaria, San Nicolas de los Garza 66455, NL, Mexico; (D.C.-A.); (S.M.G.-R.); (J.A.D.-B.); (B.L.-M.); (I.P.R.-S.)
| | - Iram P. Rodriguez-Sanchez
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n Cd. Universitaria, San Nicolas de los Garza 66455, NL, Mexico; (D.C.-A.); (S.M.G.-R.); (J.A.D.-B.); (B.L.-M.); (I.P.R.-S.)
| | - Karla L. Saavedra-Rodriguez
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA;
| | - Adriana E. Flores
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n Cd. Universitaria, San Nicolas de los Garza 66455, NL, Mexico; (D.C.-A.); (S.M.G.-R.); (J.A.D.-B.); (B.L.-M.); (I.P.R.-S.)
| |
Collapse
|
85
|
Liang Y, Dai X. The global incidence and trends of three common flavivirus infections (Dengue, yellow fever, and Zika) from 2011 to 2021. Front Microbiol 2024; 15:1458166. [PMID: 39206366 PMCID: PMC11349664 DOI: 10.3389/fmicb.2024.1458166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Background Flavivirus pose a continued threat to global health, yet their worldwide burden and trends remain poorly quantified. We aimed to evaluate the global, regional, and national incidence of three common flavivirus infections (Dengue, yellow fever, and Zika) from 2011 to 2021. Methods Data on the number and rate of incidence for the three common flavivirus infection in 204 countries and territories were retrieved from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021. The estimated annual percent change (EAPC) was calculated to quantify the temporal trend during 2011-2016, 2016-2019, and 2019-2021, respectively. Results In 2021, an estimated 59,220,428 individuals were infected globally, comprising 58,964,185 cases of dengue, 86,509 cases of yellow fever, and 169,734 cases of Zika virus infection. The age-standardized incidence rate (ASIR) of the three common flavivirus infections increased by an annual average of 5.08% (95% CI 4.12 to 6.05) globally from 2011 to 2016, whereas decreased by an annual average of -8.37% (95% CI -12.46 to -4.08) per year between 2016 to 2019. The ASIR remained stable during 2019-2021, with an average change of 0.69% (95% CI -0.96 to 2.37) per year globally for the three common flavivirus infections. Regionally, the burden of the three common flavivirus infections was primarily concentrated in those regions with middle income, such as South Asia, Southeast Asia, and Tropical Latin America. Additionally, at the country level, there was an inverted "U" relationship between the SDI level and the ASI. Notably, an increase in the average age of infected cases has been observed worldwide, particularly in higher-income regions. Conclusion Flavivirus infections are an expanding public health concern worldwide, with considerable regional and demographic variation in the incidence. Policymakers and healthcare providers must stay vigilant regarding the impact of COVID-19 and other environmental factors on the risk of flavivirus infection and be prepared for potential future outbreaks.
Collapse
Affiliation(s)
- Yuanhao Liang
- Clinical Experimental Center, Jiangmen Engineering Technology Research Center of Clinical Biobank and Translational Research, Jiangmen Central Hospital, Jiangmen, China
| | - Xingzhu Dai
- Department of Stomatology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
86
|
Paz S. The potential of climatic suitability indicator for Leishmania transmission modelling in Europe: insights and suggested directions. THE LANCET REGIONAL HEALTH. EUROPE 2024; 43:100995. [PMID: 39045126 PMCID: PMC11263619 DOI: 10.1016/j.lanepe.2024.100995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024]
Affiliation(s)
- Shlomit Paz
- School of Environmental Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
87
|
Hayes CC, Schal C. Review on the impacts of indoor vector control on domiciliary pests: good intentions challenged by harsh realities. Proc Biol Sci 2024; 291:20240609. [PMID: 39043243 PMCID: PMC11265923 DOI: 10.1098/rspb.2024.0609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 07/25/2024] Open
Abstract
Arthropod vectored diseases have been a major impediment to societal advancements globally. Strategies to mitigate transmission of these diseases include preventative care (e.g. vaccination), primary treatment and most notably, the suppression of vectors in both indoor and outdoor spaces. The outcomes of indoor vector control (IVC) strategies, such as long-lasting insecticide-treated nets (LLINs) and indoor residual sprays (IRSs), are heavily influenced by individual and community-level perceptions and acceptance. These perceptions, and therefore product acceptance, are largely influenced by the successful suppression of non-target nuisance pests such as bed bugs and cockroaches. Adoption and consistent use of LLINs and IRS is responsible for immense reductions in the prevalence and incidence of malaria. However, recent observations suggest that failed control of indoor pests, leading to product distrust and abandonment, may threaten vector control programme success and further derail already slowed progress towards malaria elimination. We review the evidence of the relationship between IVC and nuisance pests and discuss the dearth of research on this relationship. We make the case that the ancillary control of indoor nuisance and public health pests needs to be considered in the development and implementation of new technologies for malaria elimination.
Collapse
Affiliation(s)
- Christopher C. Hayes
- Department of Entomology and Plant Pathology, North Carolina State University, Campus Box 7613, Raleigh, NC27695-7613, USA
| | - Coby Schal
- Department of Entomology and Plant Pathology, North Carolina State University, Campus Box 7613, Raleigh, NC27695-7613, USA
| |
Collapse
|
88
|
Clare G, Kempen JH, Pavésio C. Infectious eye disease in the 21st century-an overview. Eye (Lond) 2024; 38:2014-2027. [PMID: 38355671 PMCID: PMC11269619 DOI: 10.1038/s41433-024-02966-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/10/2024] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
Infectious diseases affecting the eye often cause unilateral or asymmetric visual loss in children and people of working age. This group of conditions includes viral, bacterial, fungal and parasitic diseases, both common and rare presentations which, in aggregate, may account for a significant portion of the global visual burden. Diagnosis is frequently challenging even in specialist centres, and many disease presentations are highly regional. In an age of globalisation, an understanding of the various modes of transmission and the geographic distribution of infections can be instructive to clinicians. The impact of eye infections on global disability is currently not sufficiently captured in global prevalence studies on visual impairment and blindness, which focus on bilateral disease in the over-50s. Moreover, in many cases it is hard to differentiate between infectious and immune-mediated diseases. Since infectious eye diseases can be preventable and frequently affect younger people, we argue that in future prevalence studies they should be considered as a separate category, including estimates of disability-adjusted life years (DALY) as a measure of overall disease burden. Numbers of ocular infections are uniquely affected by outbreaks as well as endemic transmission, and their control frequently relies on collaborative partnerships that go well beyond the remit of ophthalmology, encompassing domains as various as vaccination, antibiotic development, individual healthcare, vector control, mass drug administration, food supplementation, environmental and food hygiene, epidemiological mapping, and many more. Moreover, the anticipated impacts of global warming, conflict, food poverty, urbanisation and environmental degradation are likely to magnify their importance. While remote telemedicine can be a useful aide in the diagnosis of these conditions in resource-poor areas, enhanced global reporting networks and artificial intelligence systems may ultimately be required for disease surveillance and monitoring.
Collapse
Affiliation(s)
| | - John H Kempen
- Department of Ophthalmology and Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary; and Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Sight for Souls, Bellevue, WA, USA
- MCM Eye Unit; MyungSung Christian Medical Center (MCM) Comprehensive Specialized Hospital and MyungSung Medical College, Addis Ababa, Ethiopia
- Department of Ophthalmology, Addis Ababa University School of Medicine, Addis Ababa, Ethiopia
| | | |
Collapse
|
89
|
da Costa MV, Rodrigues GD, de Lima HIL, Krolow TK, Krüger RF. Tabanidae (Diptera) collected on horses in a Cerrado biome in the state of Tocantins, Brazil. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2024; 33:e001924. [PMID: 39016348 PMCID: PMC11296682 DOI: 10.1590/s1984-29612024036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/03/2024] [Indexed: 07/18/2024]
Abstract
Tabanidae (Diptera), popularly known as horse flies, is an important vector group. This is the first study to ascertain the abundance and diversity of horse flies in horses at the cerrado biome of the state of Tocantins, Brazil. Collecting took place in typical Cerrado, and sampling occurred in the dry and rainy seasons. The horseflies were collected from horses using an entomological net. A total of 249 individuals were collected and spread over 25 species. The prevalent species were Stypommisa aripuana (25.8%) and Catachlorops rufescens (6.4%), in the dry period, and Fidena lissorhina (22.5%), Tabanus occidentalis var. dorsovittatus (10%) and Poeciloderas quadripunctatus (6.4%), in the rainy season. The results suggest that tabanids attack horses throughout the dry and rainy seasons, posing a constant threat to their health in the Cerrado of Tocantins.
Collapse
Affiliation(s)
- Mariana Vaz da Costa
- Programa de Pós-graduação em Biodiversidade, Ecologia e Conservação, Universidade Federal do Tocantins – UFT, Porto Nacional, TO, Brasil
| | - Gratchela Dutra Rodrigues
- Programa de Pós-graduação em Biodiversidade Animal, Universidade Federal de Pelotas – UFPel, Pelotas, RS, Brasil
| | - Helena Iris Leite de Lima
- Programa de Pós-graduação em Entomologia, Universidade Federal de Pelotas – UFPel, Pelotas, RS, Brasil
| | | | | |
Collapse
|
90
|
Hayes CC, Schal C. Repellency of N,N-diethyl-3-methylbenzamide (DEET) during host-seeking behavior of bed bugs (Hemiptera: Cimicidae) in binary choice olfactometer assays. JOURNAL OF MEDICAL ENTOMOLOGY 2024; 61:1016-1025. [PMID: 38839102 PMCID: PMC11239792 DOI: 10.1093/jme/tjae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 06/07/2024]
Abstract
The bed bug (Cimex lectularius L.) is one of the most prolific and burdensome indoor pests, and suppression of bed bug populations is a global priority. Understanding bed bug behavior is important to the development of new tactics for their control. Major gaps exist in our understanding of how host cues, insecticide resistance, and exposure modality impact the repellency of formulated products to bed bugs. Here, we validate the use of a binary choice olfactometer for assessing bed bug repellency behaviors using N,N-diethyl-3-methylbenzamide (DEET) in a dose-dependent manner, while considering the role of host-associated stimuli (with vs. without CO2), exposure modality (olfactory vs. olfactory and contact), and resistance status (susceptible vs. resistant) on repellency. We observed that host-seeking insecticide-susceptible bed bugs were repelled only when olfactorily exposed to high concentrations of DEET. However, exposure to DEET by contact repelled insecticide-susceptible bed bugs at 100-fold lower dose of DEET. Further, we demonstrate for the first time that insecticide-resistant bed bugs were significantly more responsive to DEET than susceptible bed bugs. We conclude that the 2-choice olfactometer is an effective tool for assessing the behavioral responses of bed bugs to spatial and contact repellents.
Collapse
Affiliation(s)
- Christopher C Hayes
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Coby Schal
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
91
|
Roiz D, Pontifes PA, Jourdain F, Diagne C, Leroy B, Vaissière AC, Tolsá-García MJ, Salles JM, Simard F, Courchamp F. The rising global economic costs of invasive Aedes mosquitoes and Aedes-borne diseases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173054. [PMID: 38729373 DOI: 10.1016/j.scitotenv.2024.173054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/05/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Invasive Aedes aegypti and Aedes albopictus mosquitoes transmit viruses such as dengue, chikungunya and Zika, posing a huge public health burden as well as having a less well understood economic impact. We present a comprehensive, global-scale synthesis of studies reporting these economic costs, spanning 166 countries and territories over 45 years. The minimum cumulative reported cost estimate expressed in 2022 US$ was 94.7 billion, although this figure reflects considerable underreporting and underestimation. The analysis suggests a 14-fold increase in costs, with an average annual expenditure of US$ 3.1 billion, and a maximum of US$ 20.3 billion in 2013. Damage and losses were an order of magnitude higher than investment in management, with only a modest portion allocated to prevention. Effective control measures are urgently needed to safeguard global health and well-being, and to reduce the economic burden on human societies. This study fills a critical gap by addressing the increasing economic costs of Aedes and Aedes-borne diseases and offers insights to inform evidence-based policy.
Collapse
Affiliation(s)
- David Roiz
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France; International Joint Laboratory ELDORADO, IRD/UNAM, Mexico.
| | - Paulina A Pontifes
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France; International Joint Laboratory ELDORADO, IRD/UNAM, Mexico
| | - Fréderic Jourdain
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France; Santé Publique France (French National Public Health Agency), Montpellier, France
| | - Christophe Diagne
- CBGP, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34988 Montferrier-sur-Lez, France
| | - Boris Leroy
- Unité Biologie des Organismes et Écosystèmes Aquatiques (BOREA, UMR 7208), Muséum national d'Histoire naturelle, Sorbonne Université, Université de Caen Normandie, CNRS, IRD, Université des Antilles, Paris, France
| | - Anne-Charlotte Vaissière
- CNRS, AgroParisTech, Écologie Systématique et Évolution, Université Paris-Saclay, Gif-sur-Yvette, 91190, France; ECOBIO (écosystèmes, biodiversité, évolution) - UMR 6553, CNRS, Université de Rennes, 263 Avenue du Général Leclerc, 35042 Rennes, France
| | - María José Tolsá-García
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France; International Joint Laboratory ELDORADO, IRD/UNAM, Mexico
| | - Jean-Michel Salles
- CEE-M, Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | | | - Franck Courchamp
- CNRS, AgroParisTech, Écologie Systématique et Évolution, Université Paris-Saclay, Gif-sur-Yvette, 91190, France
| |
Collapse
|
92
|
Boanyah GY, Koekemoer LL, Herren JK, Bukhari T. Effect of Microsporidia MB infection on the development and fitness of Anopheles arabiensis under different diet regimes. Parasit Vectors 2024; 17:294. [PMID: 38982472 PMCID: PMC11234536 DOI: 10.1186/s13071-024-06365-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Microsporidia MB (MB) is a naturally occurring symbiont of Anopheles and has recently been identified as having a potential to inhibit the transmission of Plasmodium in mosquitoes. MB intensity is high in mosquito gonads, with no fitness consequences for the mosquito, and is linked to horizontal (sexual) and vertical (transovarial) transmission from one mosquito to another. Maximising MB intensity and transmission is important for maintaining heavily infected mosquito colonies for experiments and ultimately for mosquito releases. We have investigated how diet affects the MB-Anopheles arabiensis symbiosis phenotypes, such as larval development and mortality, adult size and survival, as well as MB intensity in both larvae and adults. METHODS F1 larvae of G0 females confirmed to be An. arabiensis and infected with MB were either combined (group lines [GLs]) or reared separately (isofemale lines [IMLs]) depending on the specific experiment. Four diet regimes (all mg/larva/day) were tested on F1 GLs: Tetramin 0.07, Tetramin 0.3, Gocat 0.3 and Cerelac 0.3. GLs reared on Tetramin 0.3 mg/larva/day were then fed either a 1% or 6% glucose diet to determine adult survival. Larvae of IMLs were fed Tetramin 0.07 mg and Tetramin 0.3 mg for larval experiments. The mosquitoes in the adult experiments with IMLs were reared on 1% or 6% glucose. RESULTS Amongst the four larval diet regimes tested on An. arabiensis development in the presence of MB, the fastest larval development highest adult emergence, largest body size of mosquitoes, highest prevalence and highest density of MB occurred in those fed Tetramin 0.3 mg/larva/day. Although adult MB-positive mosquitoes fed on 6% glucose survived longer than MB-negative mosquitoes, there was no such effect for those fed on the 1% glucose diet. Development time, wing length and adult survival were not significantly different between MB-infected and uninfected An. arabiensis fed on the Tetramin 0.07 mg/larva/day diet, demonstrating that the MB-conferred fitness advantage was diet-dependent. CONCLUSIONS Microsporidia MB does not adversely impact the development and fitness of An. arabiensis, even under limited dietary conditions. The diet regime of Tetramin 0.3 mg/larva/day + 6% glucose for adults is the superior diet for the mass rearing of MB-infected An. arabiensis mosquitoes. These results are important for rearing MB-infected An. arabiensis in the laboratory for experiments and the mass rearing required for field releases.
Collapse
Affiliation(s)
- Godfred Yaw Boanyah
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lizette L Koekemoer
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Emerging Zoonotic & Parasitic Diseases, Division of the National Health Laboratory Service, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Jeremy K Herren
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya.
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Tullu Bukhari
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya.
| |
Collapse
|
93
|
Kancharlapalli SJ, Brelsfoard CL. The impact of non-lethal doses of pyriproxyfen on male and female Aedes albopictus reproductive fitness. FRONTIERS IN INSECT SCIENCE 2024; 4:1430422. [PMID: 39015484 PMCID: PMC11250599 DOI: 10.3389/finsc.2024.1430422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/13/2024] [Indexed: 07/18/2024]
Abstract
Introduction Control of the mosquito Aedes albopictus is confounded by its behavior due to females preferring to oviposition in small natural and artificial containers that are often difficult to remove or treat with insecticides. Autodissemination strategies utilizing highly potent insect growth regulators (IGRs) have emerged as promising tools for the control of this container-inhabiting species. The intended goal of autodissemination approaches is to use mosquitoes to self-deliver an IGR to these cryptic oviposition locations. Previous studies have focused on the efficacy of these approaches to impact natural populations, but little focus has been placed on the impacts on mosquitoes when exposed to non-lethal doses of IGRs similar to the levels they would be exposed to with autodissemination approaches. Methods In this study, the impact of non-lethal doses of pyriproxyfen (PPF) on the reproductive fitness of Ae. albopictus was investigated. Female and male Ae. albopictus mosquitoes were exposed to non-lethal doses of PPF and their fecundity and fertility were measured. To examine the impact of non-lethal doses of PPF, the expression of the ecdysone-regulated genes USP, HR3, and Vg, which are involved in vitellogenesis, was determined. Results Our results demonstrated a significant reduction in female fecundity and in the blood feeding and egg hatching rates upon exposure to non-lethal doses of PPF. Oocyte development was also delayed in PPF-treated females. Furthermore, exposure to non-lethal doses of PPF altered the expression of the genes involved in vitellogenesis, indicating disruption of hormonal regulation. Interestingly, PPF exposure also reduced the sperm production in males, suggesting a potential semi-sterilization effect. Discussion These findings suggest that non-lethal doses of PPF could enhance the efficacy of autodissemination approaches by impacting the reproductive fitness of both males and females. However, further research is needed to validate these laboratory findings in field settings and to assess their practical implications for vector control strategies.
Collapse
Affiliation(s)
| | - Corey L. Brelsfoard
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
94
|
Mandal U, Suman M, Dutta J, Dixit V, Suman DS. Surveillance of mosquitoes harnessing their buzzing sound. Acta Trop 2024; 255:107221. [PMID: 38642695 DOI: 10.1016/j.actatropica.2024.107221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Mosquito surveillance for vector-borne disease management relies on traditional morphological and molecular techniques, which are tedious, time-consuming, and costly. The present study describes a simple and efficient recording device that analyzes mosquito sound to estimate species composition, male-female ratio, fed-unfed status, and harmonic convergence interaction using fundamental frequency (F0) bandwidth, harmonics, amplitude, and combinations of these parameters. The study examined a total of 19 mosquito species, including 3 species of Aedes, 7 species of Anopheles, 1 species of Armigeres, 5 species of Culex, 1 species of Hulecoetomyia, and 2 species of Mansonia. Among them, the F0 ranges between 269.09 ± 2.96 Hz (Anopheles culiciformis) to 567.51 ± 3.82 Hz (Aedes vittatus) and the harmonic band (hb) number ranges from 5 (An. culiciformis) to 12 (Ae. albopictus). In terms of species identification, the success rate was 95.32 % with F0, 84.79 % with F0-bandwidth, 84.79 % with harmonic band (hb) diversity, and 49.7 % with amplitude (dB). The species identification rate has gone up to 96.50 % and 97.66 % with the ratio and multiplication of F0 and hb, respectively. This is because of the matrices that combine multiple sound attributes. Comparatively, combinations of the amplitude of the F0 and the higher harmonic frequency band were non-significant for species identification (60.82 %). The fed females have shown a considerable increase in F0 in comparison to the unfed. The males of all the species possessed significantly higher frequencies with respect to the females. Interestingly, the presence of male-female of Ae. vittatus together showed harmonic convergence between the 2nd and 3rd harmonic bands. In conclusion, the sound-based technology is simple, precise, and cost-effective and provides better resolution for species, sex, and fed-unfed status detection in comparison to conventional methods. Real-time surveillance of mosquitoes could potentially utilize this technology.
Collapse
Affiliation(s)
- Udita Mandal
- Estuarine Biology Regional Center (EBRC), Zoological Survey of India (ZSI), (Ministry of Environment, Forest, Climate Change GoI), Gopalpur-on-Sea, Ganjam, Odisha 761002, India; Lovely Professional University, Phagwara, Punjab 144402, India
| | - Maanas Suman
- Lovely Professional University, Phagwara, Punjab 144402, India
| | - Joydeep Dutta
- Lovely Professional University, Phagwara, Punjab 144402, India
| | - Vivek Dixit
- Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Devi Shankar Suman
- Estuarine Biology Regional Center (EBRC), Zoological Survey of India (ZSI), (Ministry of Environment, Forest, Climate Change GoI), Gopalpur-on-Sea, Ganjam, Odisha 761002, India.
| |
Collapse
|
95
|
Zhang WX, Zhou Y, Tembo E, Du J, Zhang SS, Wei TT, Liu YQ, Wang C, Zulu R, Hamainza B, Cui F, Lu QB. Association between indoor residual spraying and the malaria burden in Zambia and factors associated with IRS refusals: a case-control study in Vubwi District. Parasit Vectors 2024; 17:274. [PMID: 38937791 PMCID: PMC11210042 DOI: 10.1186/s13071-024-06328-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/19/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Indoor residual spraying (IRS) has been implemented to prevent malaria in Zambia for several decades, but its effectiveness has not been evaluated long term and in Vubwi District yet. This study aimed to assess the association between IRS and the malaria burden in Zambia and Vubwi District and to explore the factors associated with refusing IRS. METHODS A retrospective study was used to analyze the association between IRS and malaria incidence in Zambia in 2001-2020 and in Vubwi District in 2014-2020 by Spearman correlation analysis. A case-control study was used to explore the factors associated with IRS refusals by households in Vubwi District in 2021. A logistic regression model was performed to identify factors associated with IRS refusals. RESULTS The malaria incidence reached its peak (391/1000) in 2001 and dropped to the lowest (154/1000) in 2019. The annual percentage change in 2001-2003, 2003-2008, 2008-2014, 2014-2018 and 2018-2020 was - 6.54%, - 13.24%, 5.04%, - 10.28% and 18.61%, respectively. A significantly negative correlation between the percentage of population protected by the IRS against the total population in Zambia (coverage) and the average malaria incidence in the whole population was observed in 2005-2020 (r = - 0.685, P = 0.003) and 2005-2019 (r = - 0.818, P < 0.001). Among 264 participants (59 in the refuser group and 205 in the acceptor group), participants with specific occupations (self-employed: OR 0.089, 95% CI 0.022-0.364; gold panning: OR 0.113, 95% CI 0.022-0.574; housewives: OR 0.129, 95% CI 0.026-0.628 and farmers: OR 0.135, 95% CI 0.030-0.608 compared to employees) and no malaria case among household members (OR 0.167; 95% CI 0.071-0.394) had a lower risk of refusing IRS implementation, while those with a secondary education level (OR 3.690, 95% CI 1.245-10.989) had a higher risk of refusing IRS implementation compared to those who had never been to school. CONCLUSIONS Increasing coverage with IRS was associated with decreasing incidence of malaria in Zambia, though this was not observed in Vubwi District, possibly because of the special geographical location of Vubwi District. Interpersonal communication and targeted health education should be implemented at full scale to ensure household awareness and gain community trust.
Collapse
Affiliation(s)
- Wan-Xue Zhang
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, No. 38 Xue-Yuan Road, Haidian District, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Center for Infectious Diseases and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, China
| | - Yiguo Zhou
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, No. 38 Xue-Yuan Road, Haidian District, Beijing, China
- Department of Health Policy and Management, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Elijah Tembo
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, No. 38 Xue-Yuan Road, Haidian District, Beijing, China
- Ministry of Health, Vubwi District, Lusaka, Zambia
| | - Juan Du
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, No. 38 Xue-Yuan Road, Haidian District, Beijing, China
- Center for Infectious Diseases and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Shan-Shan Zhang
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, No. 38 Xue-Yuan Road, Haidian District, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Center for Infectious Diseases and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, China
| | - Ting-Ting Wei
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, No. 38 Xue-Yuan Road, Haidian District, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Center for Infectious Diseases and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, China
| | - Ya-Qiong Liu
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, No. 38 Xue-Yuan Road, Haidian District, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Center for Infectious Diseases and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Chao Wang
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, No. 38 Xue-Yuan Road, Haidian District, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Center for Infectious Diseases and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Reuben Zulu
- National Malaria Elimination Centre, Lusaka, Zambia
| | | | - Fuqiang Cui
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, No. 38 Xue-Yuan Road, Haidian District, Beijing, China.
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China.
- Center for Infectious Diseases and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, China.
- Department of Health Policy and Management, School of Public Health, Peking University, Beijing, China.
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China.
| | - Qing-Bin Lu
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, No. 38 Xue-Yuan Road, Haidian District, Beijing, China.
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China.
- Center for Infectious Diseases and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, China.
- Department of Health Policy and Management, School of Public Health, Peking University, Beijing, China.
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China.
| |
Collapse
|
96
|
Rahman MM, Morshed MN, Adnan SM, Howlader MTH. Assessment of biorational larvicides and botanical oils against Culex quinquefasciatus Say (Diptera: Culicidae) larvae in laboratory conditions. Heliyon 2024; 10:e31453. [PMID: 38832263 PMCID: PMC11145214 DOI: 10.1016/j.heliyon.2024.e31453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
Mosquitoes are known vectors that transmit deadly diseases to millions of people across the globe. The reliance on synthetic insecticides has been the sole way to combat mosquito vectors for decades. In recent years, the extensive use of conventional insecticides in mosquito suppression has led to significant pesticide resistance and serious human health hazards. In this light, investigating the potential application of biorational compounds for vector management has drawn significant attention. We, hereby, evaluated the efficacy of three microbial derivative biorational insecticides, abamectin, spinosad, and buprofezin, and two botanical oils, neem (Azadirachta indica A. Juss) and karanja oil (Pongamia pinnata Linn.) against the Culex quinquefasciatus under laboratory conditions. The fourth-instar C. quinquefasciatus larvae were exposed to different concentrations of the selected larvicides and lethality was estimated based on LC50 and LT50 with Probit analysis. All larvicides showed concentration-dependent significant effects on survival and demonstrated larvicidal activity against C. quinquefasciatus larvae. However, abamectin exerted the highest toxicity (LC50 = 10.36 ppm), exhibited statistically significant effects on C. quinquefasciatus larval mortality, followed by spinosad (LC50 = 21.32 ppm) and buprofezin (LC50 = 56.34 ppm). Abamectin caused larval mortality ranged from 30.00 to 53.33 % and 53.00-70.00 % at 06 and 07 h after treatment (HAT), respectively. In the case of botanicals, karanja oil (LC50 = 216.61 ppm) was more lethal (more than 1.5 times) and had a shorter lethal time than neem oil (LC50 = 330.93 ppm) and showed a classic pattern of relationship between concentrations and mortality over time. Overall, the present study highlighted the potential of deploying new generation biorational pesticides and botanicals in mosquito vector control programs.
Collapse
Affiliation(s)
- Md Mahfuzur Rahman
- Insect Biotechnology and Biopesticide Laboratory, Department of Entomology, Bangladesh Agricultural University, Bangladesh
- Lecturer, Department of Entomology, EXIM Bank Agricultural University Bangladesh, Nawabganj-6300, Bangladesh
| | - Md Niaz Morshed
- Insect Biotechnology and Biopesticide Laboratory, Department of Entomology, Bangladesh Agricultural University, Bangladesh
- Scientific Officer, Adaptive Research Division, Bangladesh Rice Research Institute (BRRI), Gazipur-1701, Bangladesh
| | - Saleh Mohammad Adnan
- Insect Biotechnology and Biopesticide Laboratory, Department of Entomology, Bangladesh Agricultural University, Bangladesh
- Research Entomologist, New South Wales Department of Primary Industries, Australia
| | | |
Collapse
|
97
|
Omokungbe B, Centurión A, Stiehler S, Morr A, Vilcinskas A, Steinbrink A, Hardes K. Gene silencing in the aedine cell lines C6/36 and U4.4 using long double-stranded RNA. Parasit Vectors 2024; 17:255. [PMID: 38863029 PMCID: PMC11167938 DOI: 10.1186/s13071-024-06340-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/30/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND RNA interference (RNAi) is a target-specific gene silencing method that can be used to determine gene functions and investigate host-pathogen interactions, as well as facilitating the development of ecofriendly pesticides. Commercially available transfection reagents (TRs) can improve the efficacy of RNAi. However, we currently lack a product and protocol for the transfection of insect cell lines with long double-stranded RNA (dsRNA). METHODS We used agarose gel electrophoresis to determine the capacity of eight TRs to form complexes with long dsRNA. A CellTiter-Glo assay was then used to assess the cytotoxicity of the resulting lipoplexes. We also measured the cellular uptake of dsRNA by fluorescence microscopy using the fluorophore Cy3 as a label. Finally, we analyzed the TRs based on their transfection efficacy and compared the RNAi responses of Aedes albopictus C6/36 and U4.4 cells by knocking down an mCherry reporter Semliki Forest virus in both cell lines. RESULTS The TRs from Biontex (K4, Metafectene Pro, and Metafectene SI+) showed the best complexing capacity and the lowest dsRNA:TR ratio needed for complete complex formation. Only HiPerFect was unable to complex the dsRNA completely, even at a ratio of 1:9. Most of the complexes containing mCherry-dsRNA were nontoxic at 2 ng/µL, but Lipofectamine 2000 was toxic at 1 ng/µL in U4.4 cells and at 2 ng/µL in C6/36 cells. The transfection of U4.4 cells with mCherry-dsRNA/TR complexes achieved significant knockdown of the virus reporter. Comparison of the RNAi response in C6/36 and U4.4 cells suggested that C6/36 cells lack the antiviral RNAi response because there was no significant knockdown of the virus reporter in any of the treatments. CONCLUSIONS C6/36 cells have an impaired RNAi response as previously reported. This investigation provides valuable information for future RNAi experiments by showing how to mitigate the adverse effects attributed to TRs. This will facilitate the judicious selection of TRs and transfection conditions conducive to RNAi research in mosquitoes.
Collapse
Affiliation(s)
- Bodunrin Omokungbe
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325, Frankfurt Am Main, Germany
- Institute for Insect Biotechnology, Justus-Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Alejandra Centurión
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325, Frankfurt Am Main, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch of Bioresources, Ohlebergsweg 12, 35392, Giessen, Germany
| | - Sabrina Stiehler
- Institute for Insect Biotechnology, Justus-Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Antonia Morr
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch of Bioresources, Ohlebergsweg 12, 35392, Giessen, Germany
| | - Andreas Vilcinskas
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325, Frankfurt Am Main, Germany
- Institute for Insect Biotechnology, Justus-Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch of Bioresources, Ohlebergsweg 12, 35392, Giessen, Germany
| | - Antje Steinbrink
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325, Frankfurt Am Main, Germany
- Institute for Insect Biotechnology, Justus-Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Kornelia Hardes
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325, Frankfurt Am Main, Germany.
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch of Bioresources, Ohlebergsweg 12, 35392, Giessen, Germany.
- BMBF Junior Research Group in Infection Research "ASCRIBE", Ohlebergsweg 12, 35392, Giessen, Germany.
| |
Collapse
|
98
|
Taracena-Agarwal ML, Walter-Nuno AB, Bottino-Rojas V, Mejia APG, Xu K, Segal S, Dotson EM, Oliveira PL, Paiva-Silva GO. Juvenile Hormone as a contributing factor in establishing midgut microbiota for fecundity and fitness enhancement in adult female Aedes aegypti. Commun Biol 2024; 7:687. [PMID: 38839829 PMCID: PMC11153597 DOI: 10.1038/s42003-024-06334-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 05/15/2024] [Indexed: 06/07/2024] Open
Abstract
Understanding the factors influencing mosquitoes' fecundity and longevity is important for designing better and more sustainable vector control strategies, as these parameters can impact their vectorial capacity. Here, we address how mating affects midgut growth in Aedes aegypti, what role Juvenile Hormone (JH) plays in this process, and how it impacts the mosquito's immune response and microbiota. Our findings reveal that mating and JH induce midgut growth. Additionally, the establishment of a native bacterial population in the midgut due to JH-dependent suppression of the immune response has important reproductive outcomes. Specific downregulation of AMPs with an increase in bacteria abundance in the gut results in increased egg counts and longer lifespans. Overall, these findings provide evidence of a cross-talk between JH response, gut epithelial tissue, cell cycle regulation, and the mechanisms governing the trade-offs between nutrition, immunity, and reproduction at the cellular level in the mosquito gut.
Collapse
Affiliation(s)
- Mabel L Taracena-Agarwal
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brasil.
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA.
- Entomology Department, Cornell University, College of Agriculture and Life Sciences, Ithaca, NY, USA.
| | - Ana Beatriz Walter-Nuno
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brasil
| | - Vanessa Bottino-Rojas
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brasil
| | | | - Kelsey Xu
- Entomology Department, Cornell University, College of Agriculture and Life Sciences, Ithaca, NY, USA
| | - Steven Segal
- Entomology Department, Cornell University, College of Agriculture and Life Sciences, Ithaca, NY, USA
| | - Ellen M Dotson
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Pedro L Oliveira
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brasil
| | - Gabriela O Paiva-Silva
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brasil.
| |
Collapse
|
99
|
Heneghan J, John DC, Bartsch SM, Piltch-Loeb R, Gilbert C, Kass D, Chin KL, Dibbs A, Shah TD, O'Shea KJ, Scannell SA, Martinez MF, Lee BY. A Systems Map of the Challenges of Climate Communication. JOURNAL OF HEALTH COMMUNICATION 2024; 29:77-88. [PMID: 38845202 PMCID: PMC11414781 DOI: 10.1080/10810730.2024.2361842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Over the past sixty years, scientists have been warning about climate change and its impacts on human health, but evidence suggests that many may not be heeding these concerns. This raises the question of whether new communication approaches are needed to overcome the unique challenges of communicating what people can do to slow or reverse climate change. To better elucidate the challenges of communicating about the links between human activity, climate change and its effects, and identify potential solutions, we developed a systems map of the factors and processes involved based on systems mapping sessions with climate change and communication experts. The systems map revealed 27 communication challenges such as "Limited information on how individual actions contribute to collective human activity," "Limited information on how present activity leads to long-term effects," and "Difficult to represent and communicate complex relationships." The systems map also revealed several themes among the identified challenges that exist in communicating about climate change, including a lack of available data and integrated databases, climate change disciplines working in silos, a need for a lexicon that is easily understood by the public, and the need for new communication strategies to describe processes that take time to manifest.
Collapse
Affiliation(s)
- Jessie Heneghan
- Center for Advanced Technology and Communication in Health (CATCH), CUNY Graduate School of Public Health and Health Policy, New York City, New York, USA
- Public Health Informatics, Computational, and Operations Research (PHICOR), CUNY Graduate School of Public Health and Health Policy, New York City, New York, USA
- Artificial Intelligence, Modeling, and Informatics, for Nutrition Guidance and Systems (AIMINGS) Center, CUNY Graduate School of Public Health and Health Policy, New York City, USA
| | - Danielle C John
- Center for Advanced Technology and Communication in Health (CATCH), CUNY Graduate School of Public Health and Health Policy, New York City, New York, USA
- Public Health Informatics, Computational, and Operations Research (PHICOR), CUNY Graduate School of Public Health and Health Policy, New York City, New York, USA
- Pandemic Response Institute, New York City, New York, USA
| | - Sarah M Bartsch
- Center for Advanced Technology and Communication in Health (CATCH), CUNY Graduate School of Public Health and Health Policy, New York City, New York, USA
- Public Health Informatics, Computational, and Operations Research (PHICOR), CUNY Graduate School of Public Health and Health Policy, New York City, New York, USA
- Artificial Intelligence, Modeling, and Informatics, for Nutrition Guidance and Systems (AIMINGS) Center, CUNY Graduate School of Public Health and Health Policy, New York City, USA
| | - Rachael Piltch-Loeb
- Environmental, Occupational, and Geospatial Health Sciences, City University of New York Graduate School of Public Health and Health Policy, New York City, New York, USA
| | - Christine Gilbert
- School of Communication & Journalism, Stony Brook University, Stony Brook, New York, USA
- Alan Alda Center for Communicating Science, Stony Brook University, Stony Brook, New York, USA
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Dan Kass
- Vital Strategies, New York, New York, USA
| | - Kevin L Chin
- Center for Advanced Technology and Communication in Health (CATCH), CUNY Graduate School of Public Health and Health Policy, New York City, New York, USA
- Public Health Informatics, Computational, and Operations Research (PHICOR), CUNY Graduate School of Public Health and Health Policy, New York City, New York, USA
- Artificial Intelligence, Modeling, and Informatics, for Nutrition Guidance and Systems (AIMINGS) Center, CUNY Graduate School of Public Health and Health Policy, New York City, USA
| | - Alexis Dibbs
- Center for Advanced Technology and Communication in Health (CATCH), CUNY Graduate School of Public Health and Health Policy, New York City, New York, USA
- Public Health Informatics, Computational, and Operations Research (PHICOR), CUNY Graduate School of Public Health and Health Policy, New York City, New York, USA
- Artificial Intelligence, Modeling, and Informatics, for Nutrition Guidance and Systems (AIMINGS) Center, CUNY Graduate School of Public Health and Health Policy, New York City, USA
| | - Tej D Shah
- Center for Advanced Technology and Communication in Health (CATCH), CUNY Graduate School of Public Health and Health Policy, New York City, New York, USA
- Public Health Informatics, Computational, and Operations Research (PHICOR), CUNY Graduate School of Public Health and Health Policy, New York City, New York, USA
- Artificial Intelligence, Modeling, and Informatics, for Nutrition Guidance and Systems (AIMINGS) Center, CUNY Graduate School of Public Health and Health Policy, New York City, USA
| | - Kelly J O'Shea
- Center for Advanced Technology and Communication in Health (CATCH), CUNY Graduate School of Public Health and Health Policy, New York City, New York, USA
- Public Health Informatics, Computational, and Operations Research (PHICOR), CUNY Graduate School of Public Health and Health Policy, New York City, New York, USA
- Artificial Intelligence, Modeling, and Informatics, for Nutrition Guidance and Systems (AIMINGS) Center, CUNY Graduate School of Public Health and Health Policy, New York City, USA
| | - Sheryl A Scannell
- Center for Advanced Technology and Communication in Health (CATCH), CUNY Graduate School of Public Health and Health Policy, New York City, New York, USA
- Public Health Informatics, Computational, and Operations Research (PHICOR), CUNY Graduate School of Public Health and Health Policy, New York City, New York, USA
- Artificial Intelligence, Modeling, and Informatics, for Nutrition Guidance and Systems (AIMINGS) Center, CUNY Graduate School of Public Health and Health Policy, New York City, USA
| | - Marie F Martinez
- Center for Advanced Technology and Communication in Health (CATCH), CUNY Graduate School of Public Health and Health Policy, New York City, New York, USA
- Public Health Informatics, Computational, and Operations Research (PHICOR), CUNY Graduate School of Public Health and Health Policy, New York City, New York, USA
- Artificial Intelligence, Modeling, and Informatics, for Nutrition Guidance and Systems (AIMINGS) Center, CUNY Graduate School of Public Health and Health Policy, New York City, USA
| | - Bruce Y Lee
- Center for Advanced Technology and Communication in Health (CATCH), CUNY Graduate School of Public Health and Health Policy, New York City, New York, USA
- Public Health Informatics, Computational, and Operations Research (PHICOR), CUNY Graduate School of Public Health and Health Policy, New York City, New York, USA
- Artificial Intelligence, Modeling, and Informatics, for Nutrition Guidance and Systems (AIMINGS) Center, CUNY Graduate School of Public Health and Health Policy, New York City, USA
- Pandemic Response Institute, New York City, New York, USA
| |
Collapse
|
100
|
Facile V, Sabetti MC, Balboni A, Urbani L, Tirolo A, Magliocca M, Lunetta F, Dondi F, Battilani M. Detection of Anaplasma spp. and Ehrlichia spp. in dogs from a veterinary teaching hospital in Italy: a retrospective study 2012-2020. Vet Res Commun 2024; 48:1727-1740. [PMID: 38536514 PMCID: PMC11147850 DOI: 10.1007/s11259-024-10358-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/13/2024] [Indexed: 06/04/2024]
Abstract
Anaplasma phagocytophilum, Anaplasma platys and Ehrlichia canis, responsible of diseases in dogs, are tick-borne pathogens with a proven or potential zoonotic role that have shown increasing prevalence worldwide. The aims of this retrospective study were to assess the frequency of Anaplasma spp. and Ehrlichia spp. exposure in dogs tested in a veterinary teaching hospital in Italy over a 9-year period, to compare the performance of the diagnostic tests used, to evaluate correlations with clinical data, and to genetically analyse the identified bacteria. During the study period, 1322 dogs tested by at least one of the rapid immunoenzymatic test, indirect immunofluorescent antibody test or end-point PCR assay for Anaplasmataceae detection were included. Dogs were tested if they had clinical signs or clinicopathological alteration or risk factors related to infection, and if they were potential blood-donor animals. Ninety-four of 1322 (7.1%) dogs tested positive for at least one pathogen: 53 (4.3%) for A. phagocytophilum, one (0.1%) for A. platys and 63 (4.6%) for E. canis. The number of dogs tested increased and the positivity rate progressively declined over the years. Comparison of tests showed a near-perfect agreement between serological tests and a poor agreement between PCR and indirect assays. A breed predisposition has been highlighted for A. phagocytophilum infection in hunting breed dogs and for E. canis infection in mixed breed dogs. Phylogeny confirmed potential zoonotic implications for A. phagocytophilum and showed no correlation of the identified bacteria with the geographical origin. Our study provides new insights into possible risk factors in dogs and evidenced discordant results between different tests, suggesting that a combination of serological and molecular assays is preferable for a correct diagnosis.
Collapse
Affiliation(s)
- Veronica Facile
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, Bologna, 40064, Italy
| | - Maria Chiara Sabetti
- Department of Veterinary Sciences, University of Parma, Strada del Taglio 10, Parma, 43126, Italy
| | - Andrea Balboni
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, Bologna, 40064, Italy
| | - Lorenza Urbani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, Bologna, 40064, Italy
| | - Alessandro Tirolo
- Department of Veterinary Sciences, University of Parma, Strada del Taglio 10, Parma, 43126, Italy
| | - Martina Magliocca
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, Bologna, 40064, Italy
| | - Francesco Lunetta
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, Bologna, 40064, Italy
| | - Francesco Dondi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, Bologna, 40064, Italy.
| | - Mara Battilani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, Bologna, 40064, Italy
| |
Collapse
|