51
|
Miller MM, McMullen PD, Andersen ME, Clewell RA. Multiple receptors shape the estrogen response pathway and are critical considerations for the future of in vitro-based risk assessment efforts. Crit Rev Toxicol 2017; 47:564-580. [DOI: 10.1080/10408444.2017.1289150] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023]
|
52
|
Arnal JF, Lenfant F, Metivier R, Flouriot G, Henrion D, Adlanmerini M, Fontaine C, Gourdy P, Chambon P, Katzenellenbogen B, Katzenellenbogen J. Membrane and Nuclear Estrogen Receptor Alpha Actions: From Tissue Specificity to Medical Implications. Physiol Rev 2017; 97:1045-1087. [DOI: 10.1152/physrev.00024.2016] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/29/2016] [Revised: 12/19/2016] [Accepted: 01/18/2017] [Indexed: 12/22/2022] Open
Abstract
Estrogen receptor alpha (ERα) has been recognized now for several decades as playing a key role in reproduction and exerting functions in numerous nonreproductive tissues. In this review, we attempt to summarize the in vitro studies that are the basis of our current understanding of the mechanisms of action of ERα as a nuclear receptor and the key roles played by its two activation functions (AFs) in its transcriptional activities. We then depict the consequences of the selective inactivation of these AFs in mouse models, focusing on the prominent roles played by ERα in the reproductive tract and in the vascular system. Evidence has accumulated over the two last decades that ERα is also associated with the plasma membrane and activates non-nuclear signaling from this site. These rapid/nongenomic/membrane-initiated steroid signals (MISS) have been characterized in a variety of cell lines, and in particular in endothelial cells. The development of selective pharmacological tools that specifically activate MISS and the generation of mice expressing an ERα protein impeded for membrane localization have begun to unravel the physiological role of MISS in vivo. Finally, we discuss novel perspectives for the design of tissue-selective ER modulators based on the integration of the physiological and pathophysiological roles of MISS actions of estrogens.
Collapse
Affiliation(s)
- Jean-Francois Arnal
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Françoise Lenfant
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Raphaël Metivier
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Gilles Flouriot
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Daniel Henrion
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Marine Adlanmerini
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Coralie Fontaine
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Pierre Gourdy
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Pierre Chambon
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Benita Katzenellenbogen
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - John Katzenellenbogen
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| |
Collapse
|
53
|
Cooke PS, Nanjappa MK, Ko C, Prins GS, Hess RA. Estrogens in Male Physiology. Physiol Rev 2017; 97:995-1043. [PMID: 28539434 PMCID: PMC6151497 DOI: 10.1152/physrev.00018.2016] [Citation(s) in RCA: 283] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/28/2016] [Revised: 01/06/2017] [Accepted: 01/17/2017] [Indexed: 02/06/2023] Open
Abstract
Estrogens have historically been associated with female reproduction, but work over the last two decades established that estrogens and their main nuclear receptors (ESR1 and ESR2) and G protein-coupled estrogen receptor (GPER) also regulate male reproductive and nonreproductive organs. 17β-Estradiol (E2) is measureable in blood of men and males of other species, but in rete testis fluids, E2 reaches concentrations normally found only in females and in some species nanomolar concentrations of estrone sulfate are found in semen. Aromatase, which converts androgens to estrogens, is expressed in Leydig cells, seminiferous epithelium, and other male organs. Early studies showed E2 binding in numerous male tissues, and ESR1 and ESR2 each show unique distributions and actions in males. Exogenous estrogen treatment produced male reproductive pathologies in laboratory animals and men, especially during development, and studies with transgenic mice with compromised estrogen signaling demonstrated an E2 role in normal male physiology. Efferent ductules and epididymal functions are dependent on estrogen signaling through ESR1, whose loss impaired ion transport and water reabsorption, resulting in abnormal sperm. Loss of ESR1 or aromatase also produces effects on nonreproductive targets such as brain, adipose, skeletal muscle, bone, cardiovascular, and immune tissues. Expression of GPER is extensive in male tracts, suggesting a possible role for E2 signaling through this receptor in male reproduction. Recent evidence also indicates that membrane ESR1 has critical roles in male reproduction. Thus estrogens are important physiological regulators in males, and future studies may reveal additional roles for estrogen signaling in various target tissues.
Collapse
Affiliation(s)
- Paul S Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Manjunatha K Nanjappa
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - CheMyong Ko
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Gail S Prins
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Rex A Hess
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
54
|
Wegner A, Benson S, Rebernik L, Spreitzer I, Jäger M, Schedlowski M, Elsenbruch S, Engler H. Sex differences in the pro-inflammatory cytokine response to endotoxin unfold in vivo but not ex vivo in healthy humans. Innate Immun 2017; 23:432-439. [PMID: 28443392 DOI: 10.1177/1753425917707026] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022] Open
Abstract
Clinical data indicate that inflammatory responses differ across sexes, but the mechanisms remain elusive. Herein, we assessed in vivo and ex vivo cytokine responses to bacterial endotoxin in healthy men and women to elucidate the role of systemic and cellular factors underlying sex differences in inflammatory responses. Participants received an i.v. injection of low-dose endotoxin (0.4 ng/kg body mass), and plasma TNF-α and IL-6 responses were analyzed over a period of 6 h. In parallel, ex vivo cytokine production was measured in endotoxin-stimulated blood samples obtained immediately before in vivo endotoxin administration. As glucocorticoids (GCs) play an important role in the negative feedback regulation of the inflammatory response, we additionally analyzed plasma cortisol concentrations and ex vivo GC sensitivity of cytokine production. Results revealed greater in vivo pro-inflammatory responses in women compared with men, with significantly higher increases in plasma TNF-α and IL-6 concentrations. In addition, the endotoxin-induced rise in plasma cortisol was more pronounced in women. In contrast, no sex differences in ex vivo cytokine production and GC sensitivity were observed. Together, these findings demonstrate major differences in in vivo and ex vivo responses to endotoxin and underscore the importance of systemic factors underlying sex differences in the inflammatory response.
Collapse
Affiliation(s)
- Alexander Wegner
- 1 Department of Orthopedics and Trauma Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sven Benson
- 2 Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Laura Rebernik
- 2 Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ingo Spreitzer
- 3 Paul Ehrlich Institute, Federal Agency for Sera and Vaccines, Langen, Germany
| | - Marcus Jäger
- 1 Department of Orthopedics and Trauma Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Manfred Schedlowski
- 2 Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sigrid Elsenbruch
- 2 Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Harald Engler
- 2 Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
55
|
Smith S, Fernando T, Wu PW, Seo J, Ní Gabhann J, Piskareva O, McCarthy E, Howard D, O'Connell P, Conway R, Gallagher P, Molloy E, Stallings RL, Kearns G, Forbess L, Ishimori M, Venuturupalli S, Wallace D, Weisman M, Jefferies CA. MicroRNA-302d targets IRF9 to regulate the IFN-induced gene expression in SLE. J Autoimmun 2017; 79:105-111. [PMID: 28318807 DOI: 10.1016/j.jaut.2017.03.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/31/2017] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 11/19/2022]
Abstract
Systemic lupus erythematosus (SLE) is a complex disease targeting multiple organs as a result of overactivation of the type I interferon (IFN) system, a feature currently being targeted by multiple biologic therapies against IFN-α. We have identified an estrogen-regulated microRNA, miR-302d, whose expression is decreased in SLE patient monocytes and identify its target as interferon regulatory factor (IRF)-9, a critical component of the transcriptional complex that regulates expression of interferon-stimulated genes (ISGs). In keeping with the reduced expression of miR-302d in SLE patient monocytes, IRF9 levels were increased, as was expression of a number of ISGs including MX1 and OAS1. In vivo evaluation revealed that miR-302d protects against pristane-induced inflammation in mice by targeting IRF9 and hence ISG expression. Importantly, patients with enhanced disease activity have markedly reduced expression of miR-302d and enhanced IRF9 and ISG expression, with miR-302d negatively correlating with IFN score. Together these findings identify miR-302d as a key regulator of type I IFN driven gene expression via its ability to target IRF9 and regulate ISG expression, underscoring the importance of non-coding RNA in regulating the IFN pathway in SLE.
Collapse
Affiliation(s)
- Siobhán Smith
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Thilini Fernando
- Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Centre, 8700 Beverly Blvd, Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Centre, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Pei Wen Wu
- Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Centre, 8700 Beverly Blvd, Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Centre, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Jane Seo
- Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Centre, 8700 Beverly Blvd, Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Centre, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Joan Ní Gabhann
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Olga Piskareva
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Eoghan McCarthy
- Department of Rheumatology, Beaumont Hospital, Dublin 9, Ireland
| | - Donough Howard
- Department of Rheumatology, Beaumont Hospital, Dublin 9, Ireland
| | - Paul O'Connell
- Department of Rheumatology, St. Vincent's University Hospital, Dublin 4, Ireland
| | - Richard Conway
- Department of Rheumatology, St. Vincent's University Hospital, Dublin 4, Ireland
| | - Phil Gallagher
- Department of Rheumatology, St. Vincent's University Hospital, Dublin 4, Ireland
| | - Eamonn Molloy
- Department of Rheumatology, St. Vincent's University Hospital, Dublin 4, Ireland
| | - Raymond L Stallings
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Grainne Kearns
- Department of Biomedical Sciences, Cedars-Sinai Medical Centre, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Lindsy Forbess
- Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Centre, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Mariko Ishimori
- Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Centre, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Swamy Venuturupalli
- Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Centre, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Daniel Wallace
- Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Centre, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Michael Weisman
- Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Centre, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Caroline A Jefferies
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland; Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Centre, 8700 Beverly Blvd, Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Centre, 8700 Beverly Blvd, Los Angeles, CA 90048, USA.
| |
Collapse
|
56
|
Ciucci A, Zannoni GF, Buttarelli M, Lisi L, Travaglia D, Martinelli E, Scambia G, Gallo D. Multiple direct and indirect mechanisms drive estrogen-induced tumor growth in high grade serous ovarian cancers. Oncotarget 2016; 7:8155-71. [PMID: 26797759 PMCID: PMC4884983 DOI: 10.18632/oncotarget.6943] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/30/2015] [Accepted: 01/10/2016] [Indexed: 02/06/2023] Open
Abstract
The notion that menopausal estrogen replacement therapy increases ovarian cancer risk, but only for the two more common types (i.e. serous and endometrioid), while possibly decreasing risk for clear cell tumors, is strongly suggestive of causality. However, whether estradiol (E2) is tumorigenic or promotes development of occult preexisting disease is unknown. The present study investigated molecular and cellular mechanisms by which E2 modulates the growth of high grade serous ovarian cancer (HGSOC). Results showed that ERα expression was necessary and sufficient to induce the growth of HGSOC cells in in vitro models. Conversely, in vivo experimental studies demonstrated that increasing the levels of circulating estrogens resulted in a significant growth acceleration of ERα-negative HGSOC xenografts, as well. Tumors from E2-treated mice had significantly higher proliferation rate, angiogenesis, and density of tumor-associated macrophage (TAM) compared to ovariectomized females. Accordingly, immunohistochemical analysis of ERα-negative tissue specimens from HGSOC patients showed a significantly greater TAM infiltration in premenopausal compared to postmenopausal women. This study describes novel insights into the impact of E2 on tumor microenvironment, independently of its direct effect on tumor cell growth, thus supporting the idea that multiple direct and indirect mechanisms drive estrogen-induced tumor growth in HGSOC.
Collapse
Affiliation(s)
- Alessandra Ciucci
- Department of Obstetrics and Gynecology, Catholic University of The Sacred Heart, 00168 Rome, Italy
| | - Gian Franco Zannoni
- Department of Histopathology, Catholic University of The Sacred Heart, 00168 Rome, Italy
| | - Marianna Buttarelli
- Department of Obstetrics and Gynecology, Catholic University of The Sacred Heart, 00168 Rome, Italy
| | - Lucia Lisi
- Institute of Pharmacology, Catholic University of The Sacred Heart, 00168 Rome, Italy
| | - Daniele Travaglia
- Department of Obstetrics and Gynecology, Catholic University of The Sacred Heart, 00168 Rome, Italy
| | - Enrica Martinelli
- Department of Obstetrics and Gynecology, Catholic University of The Sacred Heart, 00168 Rome, Italy
| | - Giovanni Scambia
- Department of Obstetrics and Gynecology, Catholic University of The Sacred Heart, 00168 Rome, Italy
| | - Daniela Gallo
- Department of Obstetrics and Gynecology, Catholic University of The Sacred Heart, 00168 Rome, Italy
| |
Collapse
|
57
|
Chantalat E, Boudou F, Laurell H, Palierne G, Houtman R, Melchers D, Rochaix P, Filleron T, Stella A, Burlet-Schiltz O, Brouchet A, Flouriot G, Métivier R, Arnal JF, Fontaine C, Lenfant F. The AF-1-deficient estrogen receptor ERα46 isoform is frequently expressed in human breast tumors. Breast Cancer Res 2016; 18:123. [PMID: 27927249 PMCID: PMC5142410 DOI: 10.1186/s13058-016-0780-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/30/2016] [Accepted: 11/12/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND To date, all studies conducted on breast cancer diagnosis have focused on the expression of the full-length 66-kDa estrogen receptor alpha (ERα66). However, much less attention has been paid to a shorter 46-kDa isoform (ERα46), devoid of the N-terminal region containing the transactivation function AF-1. Here, we investigated the expression levels of ERα46 in breast tumors in relation to tumor grade and size, and examined the mechanism of its generation and its specificities of coregulatory binding and its functional activities. METHODS Using approaches combining immunohistochemistry, Western blotting, and proteomics, antibodies allowing ERα46 detection were identified and the expression levels of ERα46 were quantified in 116 ERα-positive human breast tumors. ERα46 expression upon cellular stress was studied, and coregulator bindings, transcriptional, and proliferative response were determined to both ERα isoforms. RESULTS ERα46 was expressed in over 70% of breast tumors at variable levels which sometimes were more abundant than ERα66, especially in differentiated, lower-grade, and smaller-sized tumors. We also found that ERα46 can be generated via internal ribosome entry site-mediated translation in the context of endoplasmic reticulum stress. The binding affinities of both unliganded and fully-activated receptors towards co-regulator peptides revealed that the respective potencies of ERα46 and ERα66 differ significantly, contributing to the differential transcriptional activity of target genes to 17β estradiol (E2). Finally, increasing amounts of ERα46 decrease the proliferation rate of MCF7 tumor cells in response to E2. CONCLUSIONS We found that, besides the full-length ERα66, the overlooked ERα46 isoform is also expressed in a majority of breast tumors. This finding highlights the importance of the choice of antibodies used for the diagnosis of breast cancer, which are able or not to detect the ERα46 isoform. In addition, since the function of both ERα isoforms differs, this work underlines the need to develop new technologies in order to discriminate ERα66 and ERα46 expression in breast cancer diagnosis which could have potential clinical relevance.
Collapse
Affiliation(s)
- Elodie Chantalat
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, BP 84225, 31 432, Toulouse cedex 04, France.,Pôle IUC Oncopole CHU, Institut Universitaire du Cancer de Toulouse - Oncopole, 1 avenue Irène Joliot-Curie, 31059, Toulouse cedex 9, France
| | - Frédéric Boudou
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, BP 84225, 31 432, Toulouse cedex 04, France
| | - Henrik Laurell
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, BP 84225, 31 432, Toulouse cedex 04, France
| | - Gaëlle Palierne
- UMR CNRS 6290, Institut de Genétique et Développement de Rennes, Equipe SP@RTE, Rennes, 35042 Cedex, France
| | - René Houtman
- PamGene International B.V, P.O. Box 1345, 5200, BJ, 's-Hertogenbosch, The Netherlands
| | - Diana Melchers
- PamGene International B.V, P.O. Box 1345, 5200, BJ, 's-Hertogenbosch, The Netherlands
| | - Philippe Rochaix
- Pôle IUC Oncopole CHU, Institut Universitaire du Cancer de Toulouse - Oncopole, 1 avenue Irène Joliot-Curie, 31059, Toulouse cedex 9, France
| | - Thomas Filleron
- Pôle IUC Oncopole CHU, Institut Universitaire du Cancer de Toulouse - Oncopole, 1 avenue Irène Joliot-Curie, 31059, Toulouse cedex 9, France
| | - Alexandre Stella
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Anne Brouchet
- Pôle IUC Oncopole CHU, Institut Universitaire du Cancer de Toulouse - Oncopole, 1 avenue Irène Joliot-Curie, 31059, Toulouse cedex 9, France
| | - Gilles Flouriot
- INSERM U1085, IRSET (Institut de Recherche en Santé, Environnement et Travail), Université de Rennes 1, 35000, Rennes, France
| | - Raphaël Métivier
- UMR CNRS 6290, Institut de Genétique et Développement de Rennes, Equipe SP@RTE, Rennes, 35042 Cedex, France
| | - Jean-François Arnal
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, BP 84225, 31 432, Toulouse cedex 04, France
| | - Coralie Fontaine
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, BP 84225, 31 432, Toulouse cedex 04, France
| | - Françoise Lenfant
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, BP 84225, 31 432, Toulouse cedex 04, France.
| |
Collapse
|
58
|
Chinigarzadeh A, Karim K, Muniandy S, Salleh N. Isoflavone genistein inhibits estrogen-induced chloride and bicarbonate secretory mechanisms in the uterus in rats. J Biochem Mol Toxicol 2016; 31. [PMID: 27891704 DOI: 10.1002/jbt.21878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/11/2016] [Revised: 09/29/2016] [Accepted: 10/07/2016] [Indexed: 01/23/2023]
Abstract
We hypothesized that genistein could affect the chloride (Cl- ) and bicarbonate (HCO3- ) secretory mechanisms in uterus. Ovariectomized female rats were given estradiol or estradiol plus progesterone with 25, 50, or 100 mg/kg/day genistein. Following completion of the treatment, uterine fluid Cl- and HCO3- concentrations were determined by in vivo uterine perfusion. Uteri were subjected for molecular biological analysis (Western blot, qPCR, and immunohistochemistry) to detect levels of expression of Cystic Fibrosis transmembrane regulator (CFTR), Cl- /HCO3- exchanger (SLC26a6), Na+ /HCO3- cotransporter (SLC4a4), and estrogen receptor (ER)-α and β. Coadministration of genistein resulted in decrease in Cl- and HCO3- concentrations and expression of CFTR, SLC26a6, SLC4a4, and ER-α and ER-β in the uteri of estradiol-treated rats. In estradiol plus progesterone-treated rats, a significant increase in the above parameters were observed following high-dose genistein treatment except for the SLC24a4 level. In conclusion, genistein-induced changes in the uterus could affect the reproductive processes that might result in infertility.
Collapse
Affiliation(s)
- Asma Chinigarzadeh
- Department of Physiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur, 50603, Malaysia
| | - Kamarulzaman Karim
- Department of Physiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur, 50603, Malaysia
| | - Sekaran Muniandy
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur, 50603, Malaysia
| | - Naguib Salleh
- Department of Physiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
59
|
Franconi F, Rosano G, Basili S, Montella A, Campesi I. Human cells involved in atherosclerosis have a sex. Int J Cardiol 2016; 228:983-1001. [PMID: 27915217 DOI: 10.1016/j.ijcard.2016.11.118] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/19/2016] [Accepted: 11/06/2016] [Indexed: 12/30/2022]
Abstract
The influence of sex has been largely described in cardiovascular diseases. Atherosclerosis is a complex process that involves many cell types such as vessel cells, immune cells and endothelial progenitor cells; however, many, if not all, studies do not report the sex of the cells. This review focuses on sex differences in human cells involved in the atherosclerotic process, emphasizing the role of sex hormones. Furthermore, we report sex differences and issues related to the processes that determine the fate of the cells such as apoptotic and autophagic mechanisms. The analysis of the data reveals that there are still many gaps in our knowledge regarding sex influences in atherosclerosis, largely for the cell types that have not been well studied, stressing the urgent need for a clear definition of experimental conditions and the inclusion of both sexes in preclinical studies.
Collapse
Affiliation(s)
- Flavia Franconi
- Assessorato alle Politiche per la Persona of Basilicata Region, Potenza, Italy; Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Giuseppe Rosano
- Cardiovascular and Cell Sciences Research Institute, St. George's University of London, United Kingdom
| | - Stefania Basili
- Department of Internal Medicine and Medical Specialties - Research Center on Gender and Evaluation and Promotion of Quality in Medicine (CEQUAM), Sapienza University of Rome, Italy
| | - Andrea Montella
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Ilaria Campesi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy; Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Osilo, Italy.
| |
Collapse
|
60
|
Campesi I, Marino M, Montella A, Pais S, Franconi F. Sex Differences in Estrogen Receptor α and β Levels and Activation Status in LPS-Stimulated Human Macrophages. J Cell Physiol 2016; 232:340-345. [PMID: 27171902 DOI: 10.1002/jcp.25425] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/21/2015] [Accepted: 05/09/2016] [Indexed: 12/11/2022]
Abstract
Immune function, inflammation, and atherosclerosis display sex differences and are influenced by 17β-estradiol through estrogen receptors subtypes ERα and ERβ. Male tissues express active ERs, but their possible involvement in inflammation in males has never been assessed. Macrophages express both ERα and ERβ and offer the opportunity to evaluate the role of ER levels and activation in inflammation. We assessed the ability of lipopolysaccharide (LPS) to modulate, in a sex-specific way, the expression and the activation status of ERα and ERβ in blood monocytes-derived macrophages (MDMs) from men and women. MDMs were incubated with 100 ng/ml LPS for 24 h and used to evaluate ERα, ERβ, P-ERα, p38, and P-p38 expression by Western Blotting. In basal conditions, ERα and ERβ were significantly higher in female MDMs than in male MDMs. LPS up-regulated ERα and ERα phosphorylation in both sexes, with a significantly higher effect observed in male MDMs, and down-regulated ERβ level only in female MDMs. p38 and P-p38 proteins, indicative of ERβ activity, did not show sex differences both in basal conditions and after LPS treatment. Finally, ERα/ERβ and P-ERα/ERα ratios were significantly higher in male MDMs than in female ones. Our data indicate, for the first time, that LPS affects ERα but not ERβ activation status. We identify a significant role of ERα in LPS-mediated inflammatory responses in MDMs, which represents an initial step in understanding the influence of sex in the relationship between LPS and ERα. J. Cell. Physiol. 232: 340-345, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ilaria Campesi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy. .,Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Osilo, Italy.
| | - Maria Marino
- Cell Physiology Lab, Department of Science, University Roma Tre, Rome, Italy.
| | - Andrea Montella
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Sara Pais
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Flavia Franconi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.,Assessorato alle Politiche per la Persona of Basilicata Region, Potenza, Italy
| |
Collapse
|
61
|
Keselman A, Heller N. Estrogen Signaling Modulates Allergic Inflammation and Contributes to Sex Differences in Asthma. Front Immunol 2015; 6:568. [PMID: 26635789 PMCID: PMC4644929 DOI: 10.3389/fimmu.2015.00568] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/29/2015] [Accepted: 10/23/2015] [Indexed: 12/19/2022] Open
Abstract
Asthma is a chronic airway inflammatory disease that affects ~300 million people worldwide. It is characterized by airway constriction that leads to wheezing, coughing, and shortness of breath. The most common treatments are corticosteroids and β2-adrenergic receptor antagonists, which target inflammation and airway smooth muscle constriction, respectively. The incidence and severity of asthma is greater in women than in men, and women are more prone to develop corticosteroid-resistant or “hard-to-treat” asthma. Puberty, menstruation, pregnancy, menopause, and oral contraceptives are known to contribute to disease outcome in women, suggesting a role for estrogen and other hormones impacting allergic inflammation. Currently, the mechanisms underlying these sex differences are poorly understood, although the effect of sex hormones, such as estrogen, on allergic inflammation is gaining interest. Asthma presents as a heterogeneous disease. In typical Th2-type allergic asthma, interleukin (IL)-4 and IL-13 predominate, driving IgE production and recruitment of eosinophils into the lungs. Chronic Th2-inflammation in the lung results in structural changes and activation of multiple immune cell types, leading to a deterioration of lung function over time. Most immune cells express estrogen receptors (ERα, ERβ, or the membrane-bound G-protein-coupled ER) to varying degrees and can respond to the hormone. Together these receptors have demonstrated the capacity to regulate a spectrum of immune functions, including adhesion, migration, survival, wound healing, and antibody and cytokine production. This review will cover the current understanding of estrogen signaling in allergic inflammation and discuss how this signaling may contribute to sex differences in asthma and allergy.
Collapse
Affiliation(s)
- Aleksander Keselman
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| | - Nicola Heller
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| |
Collapse
|
62
|
Scott JL, Cunningham MA, Naga OS, Wirth JR, Eudaly JG, Gilkeson GS. Estrogen Receptor α Deficiency Modulates TLR Ligand-Mediated PDC-TREM Expression in Plasmacytoid Dendritic Cells in Lupus-Prone Mice. THE JOURNAL OF IMMUNOLOGY 2015; 195:5561-71. [PMID: 26553076 DOI: 10.4049/jimmunol.1500315] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/10/2015] [Accepted: 10/09/2015] [Indexed: 01/21/2023]
Abstract
Female lupus-prone NZM2410 estrogen receptor α (ERα)-deficient mice are protected from renal disease and have prolonged survival compared with wild-type littermates; however, the mechanism of protection is unknown. Plasmacytoid dendritic cells (pDCs) and type I IFN drive lupus pathogenesis. Estrogen acting via ERα enhances both pDC development and IFN production. The objectives for this study were to determine if ERα modulates pDC function and IFN activity in predisease NZM2410 mice as a possible protective mechanism of ERα deficiency in lupus-prone mice. We measured the effect of ERα deficiency on spleen pDC frequency, number, maturation, and activation state. ERα deficiency reduced type I IFN activity and the frequency of MHC class II(+) pDCs in the spleen without altering overall pDC frequency, number, or maturation state. Additionally, ERα-deficient NZM2410 mice had a significantly decreased frequency of pDCs expressing PDC-TREM, a modulator of TLR-mediated IFN production. After in vitro TLR9 stimulation, ERα deficiency significantly reduced the expression of PDC-TREM on pDCs from both NZM2410 and C57BL/6 mice. Thus, we have identified a significant effect of ERα deficiency on pDCs in predisease NZM2410 mice, which may represent a mechanism by which ERα deficiency protects NZM2410 mice from lupuslike disease.
Collapse
Affiliation(s)
- Jennifer L Scott
- Department of Microbiology and Immunology, College of Graduate Studies, Medical University of South Carolina, Charleston, SC 29425; Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425; and
| | - Melissa A Cunningham
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425; and
| | - Osama S Naga
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425; and
| | - Jena R Wirth
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425; and
| | - Jackie G Eudaly
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425; and
| | - Gary S Gilkeson
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425; and Medical Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403
| |
Collapse
|
63
|
Ghirardello A, Gizzo S, Noventa M, Quaranta M, Vitagliano A, Gallo N, Pantano G, Beggio M, Cosma C, Gangemi M, Plebani M, Doria A. Acute immunomodulatory changes during controlled ovarian stimulation: evidence from the first trial investigating the short-term effects of estradiol on biomarkers and B cells involved in autoimmunity. J Assist Reprod Genet 2015; 32:1765-72. [PMID: 26466939 DOI: 10.1007/s10815-015-0588-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/07/2015] [Accepted: 09/28/2015] [Indexed: 12/20/2022] Open
Abstract
PURPOSE The aim of the present study was to evaluate the in vivo immunomodulatory effects of an acute short-term estradiol (E(2)) increase on serum levels of B cell-activating factor (BAFF), immunoglobulins (Ig), anti-nuclear antibodies (ANA), and the peripheral B cell phenotype. METHODS We conducted, at the Infertility Center of the University of Padua, a prospective case-control study on a cohort of infertile normo-responder women (group-A, 63 patients) undergoing controlled ovarian stimulation (COS) compared with an age-matched cohort of normo-ovulatory healthy women (group-B, 39 patients). Three serial blood sample assays were conducted in both groups, at T0, hypothalamic suppression; T1, ovulation induction; and T2, βhCG test in group A, and at T0, 2nd day; T1, 14th day; and T2, 21st day of cycle in group B, and serum levels of E(2) and BAFF, BAFF/E(2) ratio, circulating IgM, IgG, and IgA, ANA titer, and peripheral B cell phenotype were measured. We compared group-A versus group-B in terms of absolute and E(2) normalized values of BAFF at baseline (T0) to verify for possible differences between healthy and infertile women, at T1 to verify for possible differences occurring after spontaneous ovulation versus COS, and at T2 to evaluate differences in serum BAFF levels between pregnant versus non-pregnant patients (considering only group-A) and between non-pregnant women after spontaneous versus COS cycles (group-B versus group-A). In group-A, we also evaluated IgM, IgG, IgA levels, ANA titer, and peripheral B cell phenotype at T0 versus T1 versus T2. RESULTS With the exception of E(2) levels at T1 (as expected), no significant differences were found between the two groups for all outcome measures. In group-A, BAFF at T0 positively correlated with IgM levels; marginal zone CD19+/CD27+/IgD+ memory B cell compartment tended to be expanded at T1 when compared with T0. CONCLUSIONS Despite several mechanistic and clinical studies supporting a stimulatory role of E(2) on autoimmunity, the acute increase of E(2) during COS for infertility treatment does not seem to have a major impact on the immune system.
Collapse
Affiliation(s)
- Anna Ghirardello
- Division of Rheumatology, Department of Medicine, University of Padua, Padua, Italy
| | - Salvatore Gizzo
- Department of Woman and Child Health, Gynaecologic and Obstetric Unit, University of Padua, Padua, Italy. .,Dipartimento di Salute della Donna e del Bambino, U.O.C. di Ginecologia e Ostetricia, Via Giustiniani 3, 35128, Padova, Italy.
| | - Marco Noventa
- Department of Woman and Child Health, Gynaecologic and Obstetric Unit, University of Padua, Padua, Italy
| | - Michela Quaranta
- Department of Obstetrics and Gynaecology, University of Verona, Verona, Italy
| | - Amerigo Vitagliano
- Department of Woman and Child Health, Gynaecologic and Obstetric Unit, University of Padua, Padua, Italy
| | - Nicoletta Gallo
- Department of Laboratory Medicine, University of Padua, Padua, Italy
| | - Giorgia Pantano
- Department of Laboratory Medicine, University of Padua, Padua, Italy
| | - Marianna Beggio
- Division of Rheumatology, Department of Medicine, University of Padua, Padua, Italy
| | - Chiara Cosma
- Department of Laboratory Medicine, University of Padua, Padua, Italy
| | - Michele Gangemi
- Department of Woman and Child Health, Gynaecologic and Obstetric Unit, University of Padua, Padua, Italy
| | - Mario Plebani
- Department of Laboratory Medicine, University of Padua, Padua, Italy
| | - Andrea Doria
- Division of Rheumatology, Department of Medicine, University of Padua, Padua, Italy
| |
Collapse
|
64
|
Martínez-Ramírez OC, Pérez-Morales R, Petrosyan P, Castro-Hernández C, Gonsebatt ME, Rubio J. Differences in 4-hydroxyestradiol levels in leukocytes are related to CYP1A1(∗)2C, CYP1B1(∗)3 and COMT Val158Met allelic variants. Steroids 2015; 102:1-6. [PMID: 26123186 DOI: 10.1016/j.steroids.2015.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/18/2015] [Revised: 06/09/2015] [Accepted: 06/21/2015] [Indexed: 12/31/2022]
Abstract
Exposure to estrogen and its metabolites, including catechol estrogens (CEs) and catechol estrogen quinones (CE-Qs) is closely related to breast cancer. Polymorphisms of the genes involved in the catechol estrogens metabolism pathway (CEMP) have been shown to affect the production of CEs and CE-Qs. In this study, we measured the induction of CYP1A1, CYP1B1, COMT, and GSTP1 by 17β-estradiol (17β-E2) in leukocytes with CYP1A1(∗)2C, CYP1B1(∗)3, COMT Val158Met and GSTP1 Ile105Val polymorphisms by semi quantitative RT-PCR and compared the values to those of leukocytes with wild type alleles; we also compared the differences in formation of 4- hydroxyestradiol (4-OHE2) and DNA-adducts. The data show that in the leukocytes with mutant alleles treatment with 17β-E2 up-regulates CYP1A1 and CYP1B1 and down-regulates COMT mRNA levels, resulting in major increments in 4-OHE2 levels compared to leukocytes with wild-type alleles. Therefore, we propose induction levels of gene expression and intracellular 4-OHE2 concentrations associated with allelic variants in response to exposure of 17β-E2 as a noninvasive biomarker that can help determine the risk of developing non-hereditary breast cancer in women.
Collapse
Affiliation(s)
- O C Martínez-Ramírez
- Escuela de Nutrición, Universidad Autónoma del Estado de Morelos, Río Iztacihuatl s/n. Col. Vista Hermosa, C.P. 62350, Mexico
| | - R Pérez-Morales
- Departamento de Biología Molecular, Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, C.P. 35010 Durango, Mexico
| | - P Petrosyan
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228, C.P. 04510 México D.F., Mexico
| | - C Castro-Hernández
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228, C.P. 04510 México D.F., Mexico
| | - M E Gonsebatt
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228, C.P. 04510 México D.F., Mexico
| | - J Rubio
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228, C.P. 04510 México D.F., Mexico.
| |
Collapse
|
65
|
Characterization of the fundamental properties of the N-terminal truncation (Δ exon 1) variant of estrogen receptor α in the rat. Gene 2015; 571:117-25. [DOI: 10.1016/j.gene.2015.06.086] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/13/2015] [Revised: 06/02/2015] [Accepted: 06/22/2015] [Indexed: 02/05/2023]
|
66
|
Pelekanou V, Kampa M, Kiagiadaki F, Deli A, Theodoropoulos P, Agrogiannis G, Patsouris E, Tsapis A, Castanas E, Notas G. Estrogen anti-inflammatory activity on human monocytes is mediated through cross-talk between estrogen receptor ERα36 and GPR30/GPER1. J Leukoc Biol 2015; 99:333-47. [PMID: 26394816 DOI: 10.1189/jlb.3a0914-430rr] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/09/2014] [Accepted: 09/02/2015] [Indexed: 12/22/2022] Open
Abstract
Estrogens are known modulators of monocyte/macrophage functions; however, the underlying mechanism has not been clearly defined. Recently, a number of estrogen receptor molecules and splice variants were identified that exert different and sometimes opposing actions. We assessed the expression of estrogen receptors and explored their role in mediating estrogenic anti-inflammatory effects on human primary monocytes. We report that the only estrogen receptors expressed are estrogen receptor-α 36-kDa splice variant and G-protein coupled receptor 30/G-protein estrogen receptor 1, in a sex-independent manner. 17-β-Estradiol inhibits the LPS-induced IL-6 inflammatory response, resulting in inhibition of NF-κB transcriptional activity. This is achieved via a direct physical interaction of ligand-activated estrogen receptor-α 36-kDa splice variant with the p65 component of NF-κB in the nucleus. G-protein coupled receptor 30/G-protein estrogen receptor 1, which also physically interacts with estrogen receptor-α 36-kDa splice variant, acts a coregulator in this process, because its inhibition blocks the effect of estrogens on IL-6 expression. However, its activation does not mimic the effect of estrogens, on neither IL-6 nor NF-κB activity. Finally, we show that the estrogen receptor profile observed in monocytes is not modified during their differentiation to macrophages or dendritic cells in vitro and is shared in vivo by macrophages present in atherosclerotic plaques. These results position estrogen receptor-α 36-kDa splice variant and G-protein coupled receptor 30 as important players and potential therapeutic targets in monocyte/macrophage-dependent inflammatory processes.
Collapse
Affiliation(s)
- Vasiliki Pelekanou
- Laboratories of *Experimental Endocrinology, Pathology, and Biochemistry, University of Crete School of Medicine, Heraklion, Crete, Greece; First Department of Pathology, National and Kapodistrian University of Athens School of Medicine, Athens, Greece; INSERM U976, Hôpital Saint Louis, Paris, France; and University Paris Diderot, Paris, France
| | - Marilena Kampa
- Laboratories of *Experimental Endocrinology, Pathology, and Biochemistry, University of Crete School of Medicine, Heraklion, Crete, Greece; First Department of Pathology, National and Kapodistrian University of Athens School of Medicine, Athens, Greece; INSERM U976, Hôpital Saint Louis, Paris, France; and University Paris Diderot, Paris, France
| | - Foteini Kiagiadaki
- Laboratories of *Experimental Endocrinology, Pathology, and Biochemistry, University of Crete School of Medicine, Heraklion, Crete, Greece; First Department of Pathology, National and Kapodistrian University of Athens School of Medicine, Athens, Greece; INSERM U976, Hôpital Saint Louis, Paris, France; and University Paris Diderot, Paris, France
| | - Alexandra Deli
- Laboratories of *Experimental Endocrinology, Pathology, and Biochemistry, University of Crete School of Medicine, Heraklion, Crete, Greece; First Department of Pathology, National and Kapodistrian University of Athens School of Medicine, Athens, Greece; INSERM U976, Hôpital Saint Louis, Paris, France; and University Paris Diderot, Paris, France
| | - Panayiotis Theodoropoulos
- Laboratories of *Experimental Endocrinology, Pathology, and Biochemistry, University of Crete School of Medicine, Heraklion, Crete, Greece; First Department of Pathology, National and Kapodistrian University of Athens School of Medicine, Athens, Greece; INSERM U976, Hôpital Saint Louis, Paris, France; and University Paris Diderot, Paris, France
| | - George Agrogiannis
- Laboratories of *Experimental Endocrinology, Pathology, and Biochemistry, University of Crete School of Medicine, Heraklion, Crete, Greece; First Department of Pathology, National and Kapodistrian University of Athens School of Medicine, Athens, Greece; INSERM U976, Hôpital Saint Louis, Paris, France; and University Paris Diderot, Paris, France
| | - Efstratios Patsouris
- Laboratories of *Experimental Endocrinology, Pathology, and Biochemistry, University of Crete School of Medicine, Heraklion, Crete, Greece; First Department of Pathology, National and Kapodistrian University of Athens School of Medicine, Athens, Greece; INSERM U976, Hôpital Saint Louis, Paris, France; and University Paris Diderot, Paris, France
| | - Andreas Tsapis
- Laboratories of *Experimental Endocrinology, Pathology, and Biochemistry, University of Crete School of Medicine, Heraklion, Crete, Greece; First Department of Pathology, National and Kapodistrian University of Athens School of Medicine, Athens, Greece; INSERM U976, Hôpital Saint Louis, Paris, France; and University Paris Diderot, Paris, France
| | - Elias Castanas
- Laboratories of *Experimental Endocrinology, Pathology, and Biochemistry, University of Crete School of Medicine, Heraklion, Crete, Greece; First Department of Pathology, National and Kapodistrian University of Athens School of Medicine, Athens, Greece; INSERM U976, Hôpital Saint Louis, Paris, France; and University Paris Diderot, Paris, France
| | - George Notas
- Laboratories of *Experimental Endocrinology, Pathology, and Biochemistry, University of Crete School of Medicine, Heraklion, Crete, Greece; First Department of Pathology, National and Kapodistrian University of Athens School of Medicine, Athens, Greece; INSERM U976, Hôpital Saint Louis, Paris, France; and University Paris Diderot, Paris, France
| |
Collapse
|
67
|
Haring R, Schurmann C, Homuth G, Steil L, Völker U, Völzke H, Keevil BG, Nauck M, Wallaschofski H. Associations between Serum Sex Hormone Concentrations and Whole Blood Gene Expression Profiles in the General Population. PLoS One 2015; 10:e0127466. [PMID: 26001193 PMCID: PMC4441431 DOI: 10.1371/journal.pone.0127466] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/23/2014] [Accepted: 04/15/2015] [Indexed: 01/28/2023] Open
Abstract
Background Despite observational evidence from epidemiological and clinical studies associating sex hormones with various cardiometabolic risk factors or diseases, pathophysiological explanations are sparse to date. To reveal putative functional insights, we analyzed associations between sex hormone levels and whole blood gene expression profiles. Methods We used data of 991 individuals from the population-based Study of Health in Pomerania (SHIP-TREND) with whole blood gene expression levels determined by array-based transcriptional profiling and serum concentrations of total testosterone (TT), sex hormone-binding globulin (SHBG), free testosterone (free T), dehydroepiandrosterone sulfate (DHEAS), androstenedione (AD), estradiol (E2), and estrone (E1) measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and immunoassay. Associations between sex hormone concentrations and gene expression profiles were analyzed using sex-specific regression models adjusted for age, body mass index, and technical covariables. Results In men, positive correlations were detected between AD and DDIT4 mRNA levels, as well as between SHBG and the mRNA levels of RPIA, RIOK3, GYPB, BPGM, and RAB2B. No additional significant associations were observed. Conclusions Besides the associations between AD and DDIT4 expression and SHBG and the transcript levels of RPIA, RIOK3, GYPB, BPGM, and RAB2B, the present study did not indicate any association between sex hormone concentrations and whole blood gene expression profiles in men and women from the general population.
Collapse
Affiliation(s)
- Robin Haring
- Institute for Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- * E-mail:
| | - Claudia Schurmann
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Leif Steil
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Henry Völzke
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Institute for Community Medicine; University Medicine Greifswald, Greifswald, Germany
| | - Brian G. Keevil
- Department of Clinical Chemistry, University Hospital South Manchester, Manchester, United Kingdom
| | - Matthias Nauck
- Institute for Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Henri Wallaschofski
- Institute for Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| |
Collapse
|
68
|
CCL2 and CCL5 Are Novel Therapeutic Targets for Estrogen-Dependent Breast Cancer. Clin Cancer Res 2015; 21:3794-805. [DOI: 10.1158/1078-0432.ccr-15-0204] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/26/2015] [Accepted: 04/09/2015] [Indexed: 11/16/2022]
|
69
|
Kovats S. Estrogen receptors regulate innate immune cells and signaling pathways. Cell Immunol 2015; 294:63-9. [PMID: 25682174 PMCID: PMC4380804 DOI: 10.1016/j.cellimm.2015.01.018] [Citation(s) in RCA: 678] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/10/2014] [Revised: 01/26/2015] [Accepted: 01/29/2015] [Indexed: 02/07/2023]
Abstract
Humans show strong sex differences in immunity to infection and autoimmunity,
suggesting sex hormones modulate immune responses. Indeed, receptors for estrogens (ER)
regulate cells and pathways in the innate and adaptive immune system, as well as immune
cell development. ERs are ligand-dependent transcription factors that mediate long-range
chromatin interactions and form complexes at gene regulatory elements, thus promoting
epigenetic changes and transcription. ERs also participate in membrane-initiated steroid
signaling to generate rapid responses. Estradiol and ER activity show profound dose- and
context-dependent effects on innate immune signaling pathways and myeloid cell
development. While estradiol most often promotes the production of type I interferon, innate pathways
leading to pro-inflammatory cytokine production may be enhanced or dampened by ER
activity. Regulation of innate immune cells and signaling by ERs may contribute to the
reported sex differences in innate immune pathways. Here we review the recent literature
and highlight several molecular mechanisms by which ERs regulate the development or
functional responses of innate immune cells.
Collapse
Affiliation(s)
- Susan Kovats
- Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, United States.
| |
Collapse
|
70
|
Liu X, Shi H. Regulation of Estrogen Receptor α Expression in the Hypothalamus by Sex Steroids: Implication in the Regulation of Energy Homeostasis. Int J Endocrinol 2015; 2015:949085. [PMID: 26491443 PMCID: PMC4600542 DOI: 10.1155/2015/949085] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 05/19/2015] [Revised: 07/18/2015] [Accepted: 07/22/2015] [Indexed: 12/16/2022] Open
Abstract
Sex differences exist in the complex regulation of energy homeostasis that utilizes central and peripheral systems. It is widely accepted that sex steroids, especially estrogens, are important physiological and pathological components in this sex-specific regulation. Estrogens exert their biological functions via estrogen receptors (ERs). ERα, a classic nuclear receptor, contributes to metabolic regulation and sexual behavior more than other ER subtypes. Physiological and molecular studies have identified multiple ERα-rich nuclei in the hypothalamus of the central nervous system (CNS) as sites of actions that mediate effects of estrogens. Much of our understanding of ERα regulation has been obtained using transgenic models such as ERα global or nuclei-specific knockout mice. A fundamental question concerning how ERα is regulated in wild-type animals, including humans, in response to alterations in steroid hormone levels, due to experimental manipulation (i.e., castration and hormone replacement) or physiological stages (i.e., puberty, pregnancy, and menopause), lacks consistent answers. This review discusses how different sex hormones affect ERα expression in the hypothalamus. This information will contribute to the knowledge of estrogen action in the CNS, further our understanding of discrepancies in correlation of altered sex hormone levels with metabolic disturbances when comparing both sexes, and improve health issues in postmenopausal women.
Collapse
Affiliation(s)
- Xian Liu
- Department of Biology, Miami University, 700 E. High Street, Oxford, OH 45056, USA
| | - Haifei Shi
- Department of Biology, Miami University, 700 E. High Street, Oxford, OH 45056, USA
- *Haifei Shi:
| |
Collapse
|
71
|
Stojić-Vukanić Z, Nacka-Aleksić M, Bufan B, Pilipović I, Arsenović-Ranin N, Djikić J, Kosec D, Leposavić G. 17β-Estradiol influences in vitro response of aged rat splenic conventional dendritic cells to TLR4 and TLR7/8 agonists in an agonist specific manner. Int Immunopharmacol 2014; 24:24-35. [PMID: 25479725 DOI: 10.1016/j.intimp.2014.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/22/2014] [Revised: 10/14/2014] [Accepted: 11/10/2014] [Indexed: 11/15/2022]
Abstract
This study was undertaken considering that, despite the broad use of the unopposed estrogen replacement therapy in elderly women, data on estrogen influence on the functional capacity of dendritic cells (DCs), and consequently immune response are limited. We examined the influence of 17β-estradiol on phenotype, cytokine secretory profile, and allostimulatory and polarizing capacity of splenic (OX62+) conventional DCs from 26-month-old (aged) Albino Oxford rats matured in vitro in the presence of LPS, a TLR4 agonist, and R848, a TLR7/8 agonist. In the presence of 17β-estradiol, DCs from aged rats exhibited an impaired ability to mature upon stimulation with LPS, as shown by the lower surface density of MHC II and costimulatory CD80 and CD86 molecules. 17β-Estradiol alone enhanced CD40 expression in OX62+ DCs without affecting the expression of other costimulatory molecules, thereby confirming that the expression of this molecule is regulated independently from the regulation of other costimulatory molecules. However, although R848 upregulated the expression of MHC II and CD80 and CD40 costimulatory molecules on DCs, 17β-estradiol diminished the effect of this TLR agonist only on MHC II expression. In conjunction, the previous findings suggest that LPS and R848 elicit changes in the expression of costimulatory molecules via triggering differential intracellular signaling pathways. Furthermore, 17β-estradiol diminished the stimulatory influence of both LPS- and R848-matured OX62+ DCs on allogeneic CD4+ T lymphocyte proliferation in a mixed lymphocyte reaction (MLR). Moreover, as shown in MLR, the exposure to 17β-estradiol during LPS- and R848-induced maturation diminished Th1- and enhanced Th17-driving capacity and reduced Th1-driving capacity of OX62+ DCs, respectively. This suggests that LPS and R848 affect not only the surface phenotype, but also functional characteristics of OX62+ DCs triggering distinct intracellular signaling pathways. Collectively, the findings indicate that estrogen directly acting on OX62+ DCs, may affect CD4+ lymphocyte-dependent immune response in aged female rats.
Collapse
Affiliation(s)
- Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Mirjana Nacka-Aleksić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Biljana Bufan
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Ivan Pilipović
- Immunology Research Center "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia
| | - Nevena Arsenović-Ranin
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Jasmina Djikić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Duško Kosec
- Immunology Research Center "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia
| | - Gordana Leposavić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
72
|
Regulation of ceramide synthase 6 in a spontaneous experimental autoimmune encephalomyelitis model is sex dependent. Biochem Pharmacol 2014; 92:326-35. [DOI: 10.1016/j.bcp.2014.08.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/08/2014] [Revised: 08/12/2014] [Accepted: 08/13/2014] [Indexed: 12/16/2022]
|
73
|
Synergistic effect of vaginal trauma and ovariectomy in a murine model of stress urinary incontinence: upregulation of urethral nitric oxide synthases and estrogen receptors. Mediators Inflamm 2014; 2014:314846. [PMID: 25258476 PMCID: PMC4166435 DOI: 10.1155/2014/314846] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/18/2014] [Accepted: 08/18/2014] [Indexed: 02/08/2023] Open
Abstract
The molecular mechanisms underlying stress urinary incontinence (SUI) are unclear. We aimed to evaluate the molecular alterations in mice urethras following vaginal trauma and ovariectomy (OVX). Twenty-four virgin female mice were equally distributed into four groups: noninstrumented control; vaginal distension (VD) group; OVX group; and VD + OVX group. Changes in leak point pressures (LPPs), genital tract morphology, body weight gain, plasma 17β-estradiol level and expressions of neuronal nitric oxide synthase (nNOS), induced nitric oxide synthase (iNOS), and estrogen receptors (ERs—ERα and ERβ) were analyzed. Three weeks after VD, the four groups differed significantly in genital size and body weight gain. Compared with the control group, the plasma estradiol levels were significantly decreased in the OVX and VD + OVX groups, and LPPs were significantly decreased in all three groups. nNOS, iNOS, and ERα expressions in the urethra were significantly increased in the VD and VD + OVX groups, whereas ERβ expression was significantly increased only in the VD + OVX group. These results show that SUI following vaginal trauma and OVX involves urethral upregulations of nNOS, iNOS, and ERs, suggesting that NO- and ER-mediated signaling might play a role in the synergistic effect of birth trauma and OVX-related SUI pathogenesis.
Collapse
|
74
|
Xiang J, Wang Y, Su K, Liu M, Hu PC, Ma T, Li JX, Wei L, Zheng Z, Yang F. Ritonavir binds to and downregulates estrogen receptors: molecular mechanism of promoting early atherosclerosis. Exp Cell Res 2014; 327:318-30. [PMID: 25017101 DOI: 10.1016/j.yexcr.2014.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/19/2014] [Revised: 06/29/2014] [Accepted: 07/01/2014] [Indexed: 11/16/2022]
Abstract
Estrogenic actions are closely related to cardiovascular disease. Ritonavir (RTV), a human immunodeficiency virus (HIV) protease inhibitor, induces atherosclerosis in an estrogen-related manner. However, how RTV induce pathological phenotypes through estrogen pathway remains unclear. In this study, we found that RTV increases thickness of coronary artery walls of Sprague Dawley rats and plasma free fatty acids (FFA) levels. In addition, RTV could induce foam cell formation, downregulate both estrogen receptor α (ERα) and ERβ expression, upregulate G protein-coupled estrogen receptor (GPER) expression, and all of them could be partially blocked by 17β-estradiol (E2), suggesting RTV acts as an antagonist for E2. Computational modeling shows a similar interaction with ERα between RTV and 2-aryl indoles, which are highly subtype-selective ligands for ERα. We also found that RTV directly bound to ERα and selectively inhibited the nuclear localization of ERα, and residue Leu536 in the hydrophobic core of ligand binding domain (LBD) was essential for the interaction with RTV. In addition, RTV did not change the secondary structure of ERα-LBD like E2, which explained how ERα lost the capacity of nuclear translocation under the treatment of RTV. All of the evidences suggest that ritonavir acts as an antagonist for 17β-estradiol in regulating α subtype estrogen receptor function and early events of atherosclerosis.
Collapse
Affiliation(s)
- Jin Xiang
- Ministry of Education Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Science, Wuhan University, Wuhan 430071, PR China
| | - Ying Wang
- Department of Pathophysiology, School of Medicine, Wuhan University, Wuhan 430071, PR China
| | - Ke Su
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Min Liu
- Ministry of Education Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Science, Wuhan University, Wuhan 430071, PR China
| | - Peng-Chao Hu
- Department of Pathophysiology, School of Medicine, Wuhan University, Wuhan 430071, PR China
| | - Tian Ma
- Ministry of Education Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Science, Wuhan University, Wuhan 430071, PR China
| | - Jia-Xi Li
- Ministry of Education Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Science, Wuhan University, Wuhan 430071, PR China
| | - Lei Wei
- Department of Pathophysiology, School of Medicine, Wuhan University, Wuhan 430071, PR China
| | - Zhongliang Zheng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China.
| | - Fang Yang
- Department of Physiology, School of Medicine, Wuhan University, Wuhan 430071, PR China.
| |
Collapse
|
75
|
Shen Z, Fahey JV, Bodwell JE, Rodriguez-Garcia M, Kashuba ADM, Wira CR. Sex hormones regulate tenofovir-diphosphate in female reproductive tract cells in culture. PLoS One 2014; 9:e100863. [PMID: 24978212 PMCID: PMC4076265 DOI: 10.1371/journal.pone.0100863] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/04/2014] [Accepted: 05/30/2014] [Indexed: 11/18/2022] Open
Abstract
The conflicting results of recent pre-exposure prophylaxis (PrEP) trials utilizing tenofovir (TFV) to prevent HIV infection in women led us to evaluate the accumulation of intracellular TFV-diphosphate (TFV-DP) in cells from the female reproductive tract (FRT) and whether sex hormones influence the presence of TFV-DP in these cells. Following incubation with TFV, isolated epithelial cells, fibroblasts, CD4+ T cells and CD14+ cells from the FRT as well as blood CD4+ T cells and monocyte-derived macrophages convert TFV to TFV-DP. Unexpectedly, we found that TFV-DP concentrations (fmol/million cells) vary significantly with the cell type analyzed and the site within the FRT. Epithelial cells had 5-fold higher TFV-DP concentrations than fibroblasts; endometrial epithelial cells had higher TFV-DP concentrations than cells from the ectocervix. Epithelial cells had 125-fold higher TFV-DP concentrations than FRT CD4+ T cells, which were comparable to that measured in peripheral blood CD4+ T cells. These findings suggest the existence of a TFV-DP gradient in the FRT where epithelial cells > fibroblasts > CD4+ T cells and macrophages. In other studies, estradiol increased TFV-DP concentrations in endometrial and endocervical/ectocervical epithelial cells, but had no effect on fibroblasts or CD4+ T cells from FRT tissues. In contrast, progesterone alone and in combination with estradiol decreased TFV-DP concentrations in FRT CD4+ T cells. Our results suggest that epithelial cells and fibroblasts are a repository of TFV-DP that is under hormonal control. These cells might act either as a sink to decrease TFV availability to CD4+ T cells and macrophages in the FRT, or upon conversion of TFV-DP to TFV increase TFV availability to HIV-target cells. In summary, these results indicate that intracellular TFV-DP varies with cell type and location in the FRT and demonstrate that estradiol and/or progesterone regulate the intracellular concentrations of TFV-DP in FRT epithelial cells and CD4+ T cells.
Collapse
Affiliation(s)
- Zheng Shen
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - John V. Fahey
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Jack E. Bodwell
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Marta Rodriguez-Garcia
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Angela D. M. Kashuba
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, United States of America
| | - Charles R. Wira
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
76
|
Estrogen receptor-alpha promotes alternative macrophage activation during cutaneous repair. J Invest Dermatol 2014; 134:2447-2457. [PMID: 24769859 DOI: 10.1038/jid.2014.175] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/05/2013] [Revised: 03/11/2014] [Accepted: 03/11/2014] [Indexed: 01/12/2023]
Abstract
Efficient local monocyte/macrophage recruitment is critical for tissue repair. Recruited macrophages are polarized toward classical (proinflammatory) or alternative (prohealing) activation in response to cytokines, with tight temporal regulation crucial for efficient wound repair. Estrogen acts as a potent anti-inflammatory regulator of cutaneous healing. However, an understanding of estrogen/estrogen receptor (ER) contribution to macrophage polarization and subsequent local effects on wound healing is lacking. Here we identify, to our knowledge previously unreported, a role whereby estrogen receptor α (ERα) signaling preferentially polarizes macrophages from a range of sources to an alternative phenotype. Cell-specific ER ablation studies confirm an in vivo role for inflammatory cell ERα, but not ERβ, in poor healing associated with an altered cytokine profile and fewer alternatively activated macrophages. Furthermore, we reveal intrinsic changes in ERα-deficient macrophages, which are unable to respond to alternative activation signals in vitro. Collectively, our data reveal that inflammatory cell-expressed ERα promotes alternative macrophage polarization, which is beneficial for timely healing. Given the diverse physiological roles of ERs, these findings will likely be of relevance to many pathologies involving excessive inflammation.
Collapse
|
77
|
Mustarichiei R, Levitas J, Arpina J. In silico study of curcumol, curcumenol, isocurcumenol, and β-sitosterol as potential inhibitors of estrogen receptor alpha of breast cancer. MEDICAL JOURNAL OF INDONESIA 2014. [DOI: 10.13181/mji.v23i1.684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/25/2022] Open
|
78
|
Kelly LA, Seidlova-Wuttke D, Wuttke W, O'Leary JJ, Norris LA. Estrogen receptor alpha augments changes in hemostatic gene expression in HepG2 cells treated with estradiol and phytoestrogens. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:155-158. [PMID: 23972791 DOI: 10.1016/j.phymed.2013.07.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/18/2013] [Revised: 07/01/2013] [Accepted: 07/26/2013] [Indexed: 06/02/2023]
Abstract
Phytoestrogens are popular alternatives to estrogen therapy however their effects on hemostasis in post-menopausal women are unknown. The aim of this study was to determine the effect of the phytoestrogens, genistein, daidzein and equol on the expression of key genes from the hemostatic system in human hepatocyte cell models and to determine the role of estrogen receptors in mediating any response seen. HepG2 cells and Hep89 cells (expressing estrogen receptor alpha (ERα)) were incubated for 24 h with 50 nM 17β-estradiol, genistein, daidzein or equol. Tissue plasminogen activator (tPA), plasminogen activator inhibitor-1 (PAI-1), Factor VII, fibrinogen γ, protein C and protein S mRNA expression were determined using TaqMan PCR. Genistein and equol increased tPA and PAI-1 expression in Hep89 cells with fold changes greater than those observed for estradiol. In HepG2 cells (which do not express ERα), PAI-1 and tPA expression were unchanged. Increased expression of Factor VII was observed in phytoestrogen treated Hep89 cells but not in similarly treated HepG2s. Prothrombin gene expression was increased in equol and daidzein treated HepG2 cells in the absence of the classical estrogen receptors. These data suggest that phytoestrogens can regulate the expression of coagulation and fibrinolytic genes in a human hepatocyte cell line; an effect which is augmented by ERα.
Collapse
Affiliation(s)
- Lynne A Kelly
- Coagulation Research Laboratory, Department of Obstetrics and Gynaecology, Trinity Centre for Health Sciences, St. James Hospital, Dublin 8, Ireland.
| | - Dana Seidlova-Wuttke
- Department of Endocrinology, University Medical Center Göttingen, Georg-August-University Göttingen, Germany
| | - Wolfgang Wuttke
- Department of Endocrinology, University Medical Center Göttingen, Georg-August-University Göttingen, Germany
| | - John J O'Leary
- Department of Histopathology, Trinity College Dublin, Ireland
| | - Lucy A Norris
- Coagulation Research Laboratory, Department of Obstetrics and Gynaecology, Trinity Centre for Health Sciences, St. James Hospital, Dublin 8, Ireland
| |
Collapse
|
79
|
Balogh P, Szabó A, Katz S, Likó I, Patócs A, L.Kiss A. Estrogen receptor alpha is expressed in mesenteric mesothelial cells and is internalized in caveolae upon Freund's adjuvant treatment. PLoS One 2013; 8:e79508. [PMID: 24244516 PMCID: PMC3828353 DOI: 10.1371/journal.pone.0079508] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/17/2013] [Accepted: 09/27/2013] [Indexed: 12/03/2022] Open
Abstract
Transformation of epithelial cells into connective tissue cells (epithelial-mesenchymal transition, EMT) is a complex mechanism involved in tumor metastasis, and in normal embryogenesis, while type II EMT is mainly associated with inflammatory events and tissue regenaration. In this study we examined type II EMT at the ultrastructural and molecular level during the inflammatory process induced by Freund's adjuvant treatment in rat mesenteric mesothelial cells. We found that upon the inflammatory stimulus mesothelial cells lost contact with the basal lamina and with each other, and were transformed into spindle-shaped cells. These morphological changes were accompanied by release of interleukins IL-1alpha, -1beta and IL-6 and by secretion of transforming growth factor beta (TGF-β) into the peritoneal cavity. Mesothelial cells also expressed estrogen receptor alpha (ER-α) as shown by immunolabeling at the light and electron microscopical levels, as well as by quantitative RT-PCR. The mRNA level of ER-α showed an inverse correlation with the secretion of TGF-β. At the cellular and subcellular levels ER-α was colocalized with the coat protein caveolin-1 and was found in the plasma membrane of mesothelial cells, in caveolae close to multivesicular bodies (MVBs) or in the membrane of these organelles, suggesting that ER-α is internalized via caveola-mediated endocytosis during inflammation. We found asymmetric, thickened, electron dense areas on the limiting membrane of MVBs (MVB plaques) indicating that these sites may serve as platforms for collecting and organizing regulatory proteins. Our morphological observations and biochemical data can contribute to form a potential model whereby ER-α and its caveola-mediated endocytosis might play role in TGF-β induced type II EMT in vivo.
Collapse
Affiliation(s)
- Petra Balogh
- Department of Human Morphology and Developmental Biology, Semmelweis University, Budapest, Hungary
- * E-mail:
| | - Arnold Szabó
- Department of Human Morphology and Developmental Biology, Semmelweis University, Budapest, Hungary
| | - Sándor Katz
- Department of Human Morphology and Developmental Biology, Semmelweis University, Budapest, Hungary
| | - István Likó
- Pharmacology and Drug Safety Research, R. Gedeon Plc, Hungary
| | - Attila Patócs
- HSA-SE Lendület Hereditary Endocrine Tumors Research Group, Budapest, Hungary
| | - Anna L.Kiss
- Department of Human Morphology and Developmental Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
80
|
Ronchetti SA, Miler EA, Duvilanski BH, Cabilla JP. Cadmium mimics estrogen-driven cell proliferation and prolactin secretion from anterior pituitary cells. PLoS One 2013; 8:e81101. [PMID: 24236210 PMCID: PMC3827476 DOI: 10.1371/journal.pone.0081101] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/29/2013] [Accepted: 10/09/2013] [Indexed: 12/21/2022] Open
Abstract
Cadmium (Cd) is a heavy metal of considerable occupational and environmental concern affecting wildlife and human health. Recent studies indicate that Cd, like other heavy metals, can mimic effects of 17β-estradiol (E2) involving E2 receptor (ER) activation. Lactotrophs, the most abundant cell type in anterior pituitary gland, are the main target of E2, which stimulates cell proliferation and increases prolactin secretion through ERα. The aim of this work was to examine whether Cd at nanomolar concentrations can induce cell proliferation and prolactin release in anterior pituitary cells in culture and whether these effects are mediated through ERs. Here we show that 10 nM Cd was able to stimulate lactotroph proliferation in anterior pituitary cell cultures from female Wistar rats and also in GH3 lactosomatotroph cell line. Proliferation of somatotrophs and gonadotrophs were not affected by Cd exposure. Cd promoted cell cycle progression by increasing cyclins D1, D3 and c-fos expression. Cd enhanced prolactin synthesis and secretion. Cd E2-like effects were blocked by the pure ERs antagonist ICI 182,780 supporting that Cd acts through ERs. Further, both Cd and E2 augmented full-length ERαexpression and its 46 kDa-splicing variant. In addition, when co-incubated Cd was shown to interact with E2 by inducing ERα mRNA expression which indicates an additive effect between them. This study shows for the first time that Cd at nanomolar concentration displays xenoestrogenic activities by inducing cell growth and stimulating prolactin secretion from anterior pituitary cells in an ERs-dependent manner. Cd acting as a potent xenoestrogen can play a key role in the aetiology of different pathologies of the anterior pituitary and in estrogen-responsive tissues which represent considerable risk to human health.
Collapse
Affiliation(s)
- Sonia A. Ronchetti
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Eliana A. Miler
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Beatriz H. Duvilanski
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jimena P. Cabilla
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
81
|
Gürsoy M, Gürsoy UK, Sorsa T, Pajukanta R, Könönen E. High Salivary Estrogen and Risk of Developing Pregnancy Gingivitis. J Periodontol 2013; 84:1281-9. [DOI: 10.1902/jop.2012.120512] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/13/2022]
|
82
|
Abstract
Estrogens exert a variety of effects in both reproductive and non-reproductive tissues. With the discovery of ERα splice variants, prior assumptions concerning tissue-specific estrogen signaling need to be re-evaluated. Accordingly, we sought to determine the expression of the classical estrogen receptors and ERα splice variants across reproductive and non-reproductive tissues of male and female mice. Western blotting revealed that the full-length ERα66 was mainly present in female reproductive tissues but was also found in non-reproductive tissues at lower levels. ERα46 was most highly expressed in the heart of both sexes. ERα36 was highly expressed in the kidneys and liver of female mice but not in the kidneys of males. ERβ was most abundant in non-reproductive tissues and in the ovaries. Because the kidney has been reported to be the most estrogenic non-reproductive organ, we sought to elucidate ER renal expression and localization. Immunofluorescence studies revealed ERα66 in the vasculature and the glomerulus. It was also found in the brush border of the proximal tubule and in the cortical collecting duct of female mice. ERα36 was evident in mesangial cells and tubular epithelial cells of both sexes, as well as podocytes of females but not males. ERβ was found primarily in the podocytes in female mice but was also present in the mesangial cells in both sexes. Within the renal cortex, ERα46 and ERα36 were mainly located in the membrane fraction although they were also present in the cytosolic fraction. Given the variability of expression patterns demonstrated herein, identification of the specific estrogen receptors expressed in a tissue is necessary for interpreting estrogenic effects. As this study revealed expression of the ERα splice variants at multiple sites within the kidney, further studies are warranted in order to elucidate the contribution of these receptors to renal estrogen responsiveness.
Collapse
|
83
|
Bolego C, Cignarella A, Staels B, Chinetti-Gbaguidi G. Macrophage function and polarization in cardiovascular disease: a role of estrogen signaling? Arterioscler Thromb Vasc Biol 2013; 33:1127-34. [PMID: 23640494 DOI: 10.1161/atvbaha.113.301328] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022]
Abstract
Macrophages are plastic and versatile cells adapting their function/phenotype to the microenvironment. Distinct macrophage subpopulations with different functions, including classically (M1) and (M2) activated macrophages, have been described. Reciprocal skewing of macrophage polarization between the M1 and M2 state is a process modulated by transcription factors, such as the nuclear peroxisome proliferator-activated receptors. However, whether the estrogen/estrogen receptor pathways control the balance between M1/M2 macrophages is only partially understood. Estrogen-dependent effects on the macrophage system may be regarded as potential targets of pharmacological approaches to protect postmenopausal women from the elevated risk of cardiovascular disease.
Collapse
Affiliation(s)
- Chiara Bolego
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | | | | | | |
Collapse
|
84
|
Rodriguez-Garcia M, Biswas N, Patel MV, Barr FD, Crist SG, Ochsenbauer C, Fahey JV, Wira CR. Estradiol reduces susceptibility of CD4+ T cells and macrophages to HIV-infection. PLoS One 2013; 8:e62069. [PMID: 23614015 PMCID: PMC3629151 DOI: 10.1371/journal.pone.0062069] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/01/2012] [Accepted: 03/18/2013] [Indexed: 12/21/2022] Open
Abstract
The magnitude of the HIV epidemic in women requires urgent efforts to find effective preventive methods. Even though sex hormones have been described to influence HIV infection in epidemiological studies and regulate different immune responses that may affect HIV infection, the direct role that female sex hormones play in altering the susceptibility of target cells to HIV-infection is largely unknown. Here we evaluated the direct effect of 17-β-estradiol (E2) and ethinyl estradiol (EE) in HIV-infection of CD4+ T-cells and macrophages. Purified CD4+ T-cells and monocyte-derived macrophages were generated in vitro from peripheral blood and infected with R5 and X4 viruses. Treatment of CD4+ T-cells and macrophages with E2 prior to viral challenge reduced their susceptibility to HIV infection in a dose-dependent manner. Addition of E2 2 h after viral challenge however did not result in reduced infection. In contrast, EE reduced infection in macrophages to a lesser extent than E2 and had no effect on CD4+ T-cell infection. Reduction of HIV-infection induced by E2 in CD4+ T-cells was not due to CCR5 down-regulation, but was an entry-mediated mechanism since infection with VSV-G pseudotyped HIV was not modified by E2. In macrophages, despite the lack of an effect of E2 on CCR5 expression, E2–treatment reduced viral entry 2 h after challenge and increased MIP-1β secretion. These results demonstrate the direct effect of E2 on susceptibility of HIV-target cells to infection and indicate that inhibition of target cell infection involves cell-entry related mechanisms.
Collapse
Affiliation(s)
- Marta Rodriguez-Garcia
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Shelley LK, Osachoff HL, van Aggelen GC, Ross PS, Kennedy CJ. Alteration of immune function endpoints and differential expression of estrogen receptor isoforms in leukocytes from 17β-estradiol exposed rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 2013; 180:24-32. [PMID: 23036733 DOI: 10.1016/j.ygcen.2012.09.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 04/25/2012] [Revised: 09/02/2012] [Accepted: 09/07/2012] [Indexed: 10/27/2022]
Abstract
While the endocrine system is known to modulate immune function in vertebrates, the role of 17β-estradiol (E2) in cellular immune function of teleosts is poorly understood. The cellular and molecular responses of juvenile rainbow trout (Oncorhynchus mykiss) to E2 treatment were evaluated by exposing fish to 0.47±0.02μg/L E2 (mean±SEM) for either 2 or 7d, with a subsequent 14d recovery period. After 2 and 7d of exposure to E2, hematocrit was significantly lower than in control fish. Lipopolysaccharide-induced lymphocyte proliferation was elevated on day 2 and concanavalin A-induced lymphocyte proliferation was reduced following 7d of E2 exposure. Four estrogen receptor (ER) transcripts were identified in purified trout head kidney leukocytes (HKL) and peripheral blood leukocytes (PBL). While the mRNA abundance of ERβ1 and ERβ2 was unaffected by treatment, ERα1 was up-regulated in HKL and PBL following 7d of E2 exposure. ERα2 was up-regulated in HKL after 7d of E2 exposure, but down-regulated in PBL after 2 and 7d of treatment. All parameters that were altered during the E2 exposure period returned to baseline levels following the recovery period. This study reports the presence of the full repertoire of ERs in purified HKL for the first time, and demonstrates that ERα transcript abundance in leukocytes can be regulated by waterborne E2 exposure. It also demonstrated that physiologically-relevant concentrations of E2 can modulate several immune functions in salmonids, which may have widespread implications for xenoestrogen-associated immunotoxicity in feral fish populations inhabiting contaminated aquatic environments.
Collapse
Affiliation(s)
- Lesley K Shelley
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | | | | | | | | |
Collapse
|
86
|
Torres-Chávez KE, Sanfins JM, Clemente-Napimoga JT, Pelegrini-Da-Silva A, Parada CA, Fischer L, Tambeli CH. Effect of gonadal steroid hormones on formalin-induced temporomandibular joint inflammation. Eur J Pain 2012; 16:204-16. [PMID: 22323373 DOI: 10.1016/j.ejpain.2011.06.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022]
Abstract
We have recently demonstrated that gonadal steroid hormones decrease formalin-induced temporomandibular joint nociception in rats. Given that the attenuation of inflammation is a potential mechanism underlying this antinociceptive effect, we evaluated the effect of gonadal steroid hormones on formalin-induced temporomandibular joint inflammation. Plasma extravasation, a major sign of acute inflammation, and neutrophil migration, an important event related to tissue injury, were evaluated. Formalin induced significantly lower temporomandibular joint plasma extravasation and neutrophil migration in proestrus females than in males and in diestrus females. Since estradiol serum level is high in proestrus females and low in diestrus females and in males, these findings suggest that the high physiological level of estradiol decreases temporomandibular joint inflammation. Estradiol but not progesterone administration in ovariectomized females significantly decreased formalin-induced plasma extravasation and neutrophil migration, an effect that was blocked by the estrogen receptor antagonist ICI 182780. Plasma extravasation and neutrophil migration were not affected by orchiectomy, but testosterone or estradiol administration in orchidectomized males significantly decreased them. The androgen receptor antagonist flutamide blocked the anti-inflammatory effect of testosterone while ICI 182780 blocked that of estradiol in males. Previous intravenous administration of a nonspecific selectin inhibitor significantly decreased formalin-induced temporomandibular joint nociception and neutrophil migration in males, revealing a potent and positive correlation between temporomandibular joint nociception and inflammation. Taken together, these findings demonstrate a pronounced anti-inflammatory effect of estradiol and testosterone in the temporomandibular joint region and suggest that this effect may mediate, at least in part, the antinociceptive effect of these hormones.
Collapse
Affiliation(s)
- K E Torres-Chávez
- Department of Physiology, Piracicaba Dental School, State University of Campinas - UNICAMP, Piracicaba, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
87
|
Regulation of ERα Protein Expression by 17β-Estradiol in Cultured Neurons of Hypothalamic Ventromedial Nucleus. Neurochem Res 2012; 38:82-9. [DOI: 10.1007/s11064-012-0891-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/27/2012] [Revised: 08/10/2012] [Accepted: 09/10/2012] [Indexed: 12/13/2022]
|
88
|
Physiological status alters immunological regulation of bovine follicle differentiation in dairy cattle. J Reprod Immunol 2012; 96:34-44. [PMID: 22980436 DOI: 10.1016/j.jri.2012.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/18/2012] [Revised: 06/18/2012] [Accepted: 07/01/2012] [Indexed: 11/23/2022]
Abstract
Lactation in dairy cattle is associated with a multitude of endocrine, metabolic and immunological changes that not only influence animal health, but also affect fertility, and in particular ovarian function. We have previously generated a global transcriptomic profile of bovine follicular tissue using RNA sequencing. This study aimed to: identify key immune-related transcriptional changes that occur during follicle differentiation and luteinisation using ingenuity pathway analysis (IPA); and determine if a compromised model of stress (i.e. lactation) influences the temporal expression of these genes. Ovarian follicular tissue from Holstein-Friesian non-lactating heifers (n=17) and lactating cows (n=16) was compared at three stages of preovulatory follicle development: (A) the newly selected dominant follicle in the luteal phase (Selection); (B) the follicular phase before the LH surge (Differentiation), and (C) the preovulatory phase after the LH surge (Luteinisation). IPA revealed an over-representation of immune-related pathways in theca compared with granulosa cells during differentiation; these were related to leucocyte extravasation and chemotaxis. Conversely, luteinisation was characterised by over-representation of immune-related pathways in granulosa compared with theca cells; these were related to inflammation and innate immune response. Notably, comparison of follicles from heifers and lactating cows revealed a large number of differentially expressed genes associated with immune cell subpopulations and chemotaxis. In conclusion, identification of immune-related canonical pathways during follicle development supports the hypothesis that ovulation is an inflammatory event. This process is influenced by the physiological status of lactation and likely contributes to compromised peri-ovulatory follicle function by impairing the inflammatory process of ovulation.
Collapse
|
89
|
Tiyerili V, Müller CF, Fung S, Panek D, Nickenig G, Becher UM. Estrogen improves vascular function via peroxisome-proliferator-activated-receptor-γ. J Mol Cell Cardiol 2012; 53:268-76. [DOI: 10.1016/j.yjmcc.2012.05.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/24/2012] [Revised: 05/04/2012] [Accepted: 05/12/2012] [Indexed: 12/24/2022]
|
90
|
Moulton VR, Holcomb DR, Zajdel MC, Tsokos GC. Estrogen upregulates cyclic AMP response element modulator α expression and downregulates interleukin-2 production by human T lymphocytes. Mol Med 2012; 18:370-8. [PMID: 22281835 DOI: 10.2119/molmed.2011.00506] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/22/2011] [Accepted: 01/17/2012] [Indexed: 11/06/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease with a complex multifactorial pathogenesis. T lymphocytes play a critical role in disease pathogenesis and display abnormal gene expression and poor interleukin (IL)-2 production. We previously showed that the expression of the transcriptional repressor cyclic AMP response element modulator α (CREMα) is increased in SLE T cells and contributes to reduced IL-2 production. Although estrogen is implicated in the onset and exacerbation of SLE, the precise nature of molecular events regulated by estrogen in immune cell function is not well understood. Here, we asked whether estrogen regulates the expression of CREMα in human T lymphocytes. We show that exposure of human T cells to 17-β-estradiol leads to a dose-dependent increase in CREMα mRNA expression, and this increase appears to be mediated through the estrogen receptors α and β. We show that the increased expression of CREMα is due to increased transcriptional activity of the CREM promoter and is mediated by increased expression and binding of the Sp1 transcriptional activator. We further show that estrogen treatment leads to a dose-dependent decrease in IL-2 mRNA and cytokine production by T cells. Finally, the effect of β-estradiol on CREMα is observed more frequently in T cells from women than from men. We conclude that estrogen can modulate the expression of CREMα and lead to IL-2 suppression in human T lymphocytes, thus revealing a molecular link between hormones and the immune system in SLE.
Collapse
Affiliation(s)
- Vaishali R Moulton
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
91
|
Dunbar B, Patel M, Fahey J, Wira C. Endocrine control of mucosal immunity in the female reproductive tract: impact of environmental disruptors. Mol Cell Endocrinol 2012; 354:85-93. [PMID: 22289638 PMCID: PMC4332593 DOI: 10.1016/j.mce.2012.01.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/05/2011] [Revised: 12/28/2011] [Accepted: 01/02/2012] [Indexed: 11/29/2022]
Abstract
The complexity of the human female reproductive tract (FRT) with its multiple levels of hormonally controlled immune protection has only begun to be understood. Dissecting the functions and roles of the immune system in the FRT is complicated by the differential hormonal regulation of its distinct anatomical structures that vary throughout the menstrual cycle. Although many fundamental mechanisms of steroid regulation of reproductive tract immune function have been determined, the effects of exogenous synthetic steroids or endocrine disruptors on immune function and disease susceptibility in the FRT have yet to be evaluated in detail. There is increasing evidence that environmental or synthetic molecules can alter normal immune function. This review provides an overview of the innate and adaptive immune systems, the current status of immune function in the FRT and the potential risks of environmental or pharmacological molecules that may perturb this system.
Collapse
Affiliation(s)
- B Dunbar
- Center for Biotechnology and Bioinformatics, University of Nairobi, Nairobi, Kenya.
| | | | | | | |
Collapse
|
92
|
Huston WM, Harvie M, Mittal A, Timms P, Beagley KW. Vaccination to protect against infection of the female reproductive tract. Expert Rev Clin Immunol 2012; 8:81-94. [PMID: 22149343 DOI: 10.1586/eci.11.80] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2022]
Abstract
Infection of the female genital tract can result in serious morbidities and mortalities from reproductive disability, pelvic inflammatory disease and cancer, to impacts on the fetus, such as infant blindness. While therapeutic agents are available, frequent testing and treatment is required to prevent the occurrence of the severe disease sequelae. Hence, sexually transmitted infections remain a major public health burden with ongoing social and economic barriers to prevention and treatment. Unfortunately, while there are two success stories in the development of vaccines to protect against HPV infection of the female reproductive tract, many serious infectious agents impacting on the female reproductive tract still have no vaccines available. Vaccination to prevent infection of the female reproductive tract is an inherently difficult target, with many impacting factors, such as appropriate vaccination strategies/mechanisms to induce a suitable protective response locally in the genital tract, variation in the local immune responses due to the hormonal cycle, selection of vaccine antigen(s) that confers effective protection against multiple variants of a single pathogen (e.g., the different serovars of Chlamydia trachomatis) and timing of the vaccine administration prior to infection exposure. Despite these difficulties, there are numerous ongoing efforts to develop effective vaccines against these infectious agents and it is likely that this important human health field will see further major developments in the next 5 years.
Collapse
Affiliation(s)
- Wilhelmina M Huston
- Institute of Health and Biomedical Innovation, 60 Musk Avenue, Queensland University of Technology, Kelvin Grove, Queensland, Australia.
| | | | | | | | | |
Collapse
|
93
|
Campesi I, Sanna M, Zinellu A, Carru C, Rubattu L, Bulzomi P, Seghieri G, Tonolo G, Palermo M, Rosano G, Marino M, Franconi F. Oral contraceptives modify DNA methylation and monocyte-derived macrophage function. Biol Sex Differ 2012; 3:4. [PMID: 22284681 PMCID: PMC3298494 DOI: 10.1186/2042-6410-3-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/24/2011] [Accepted: 01/27/2012] [Indexed: 11/26/2022] Open
Abstract
Background Fertile women may be encouraged to use contraception during clinical trials to avoid potential drug effects on fetuses. However, hormonal contraception interferes with pharmacokinetics and pharmacodynamics and modifies internal milieus. Macrophages depend on the milieu to which they are exposed. Therefore, we assessed whether macrophage function would be affected by the use of combined oral contraceptives (OCs) and if this influence depended on the androgenic or non-androgenic properties of progestin. Methods Healthy adult women were enrolled and stratified into two groups: women who did not use OCs (Fs) and women treated with OCs (FOCs). FOCs were further stratified as a function of androgenic (FOCA+) and non-androgenic (FOCA-) properties of progestins. Routine hematological, biochemical, inflammatory and endothelial dysfunction parameters were measured. Monocyte-derived macrophages (MDMs) were evaluated for the expression and activity of estrogen receptors and androgen receptors, and release of tumor necrosis factor α (TNFα) was measured from unstimulated and lipopolysaccharide-stimulated cells. Results As is already known, the use of OCs changed numerous parameters: the number of lymphocytes, iron levels, total iron-binding capacity of transferrin, triglycerides, high-density lipoprotein, total cholesterol, and C-reactive protein increased, while prothrombin time and alkaline phosphatase decreased. Hormonal levels also varied: cortisol was higher in FOCs, while luteinizing hormone, follicle-stimulating hormone, and testosterone were lower in FOCs. Asymmetric dimethylarginine, an index of endothelial function, was lower in FOC than in Fs, as were cysteine and bilirubin. The androgenic properties of progestins affected the activity of OCs: in particular, white blood cell count, hemoglobin, high-density lipoprotein and calcium were higher in FOCA- than in FOCA+, whereas percentage oxygen saturation and γ-glutamyl transpeptidase were lower in FOCA- than in FOCA+. Importantly, FOCs had a lower global DNA methylation, indicating that OC may have epigenetic effects on gene expression. OC did not modify the expression of androgen receptor but increased estrogen receptor α expression, more considerably in FOCA+, and decreased estrogen receptor β, more considerably in FOCA-. Importantly, the activation state of estrogen receptor β in FOCs was decreased, while estrogen receptor α was not active in either Fs or FOCs. Unstimulated MDMs obtained from FOCs showed higher release of TNFα in comparison with Fs. After lipopolysaccharide stimulation, the release of TNFα was significantly higher in Fs than in FOCs. Conclusions OC use induced many changes in hematological and plasmatic markers, modifying hormonal levels, endothelial function, inflammation index and some redox state parameters, producing a perturbation of the internal milieu that impacted macrophagic function. In fact, different levels of estrogen receptor expression and release of TNFα were observed in macrophages derived from OC users. Some of the above activities were linked to the androgenic properties of progestin. Even though it is not known whether these effects are reversible, the results indicate that to avoid potential skewing of results only a single type of OC should be used during a single clinical trial.
Collapse
Affiliation(s)
- Ilaria Campesi
- National Laboratory of Sex-Gender Medicine of the National Institute of Biostructures and Biosystems, Osilo, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Le Romancer M, Poulard C, Cohen P, Sentis S, Renoir JM, Corbo L. Cracking the estrogen receptor's posttranslational code in breast tumors. Endocr Rev 2011; 32:597-622. [PMID: 21680538 DOI: 10.1210/er.2010-0016] [Citation(s) in RCA: 211] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023]
Abstract
Estrogen signaling pathways, because of their central role in regulating the growth and survival of breast tumor cells, have been identified as suitable and efficient targets for cancer therapies. Agents blocking estrogen activity are already widely used clinically, and many new molecules have entered clinical trials, but intrinsic or acquired resistance to treatment limits their efficacy. The basic molecular studies underlying estrogen signaling have defined the critical role of estrogen receptors (ER) in many aspects of breast tumorigenesis. However, important knowledge gaps remain about the role of posttranslational modifications (PTM) of ER in initiation and progression of breast carcinogenesis. Whereas major attention has been focused on the phosphorylation of ER, many other PTM (such as acetylation, ubiquitination, sumoylation, methylation, and palmitoylation) have been identified as events modifying ER expression and stability, subcellular localization, and sensitivity to hormonal response. This article will provide an overview of the current and emerging knowledge on ER PTM, with a particular focus on their deregulation in breast cancer. We also discuss their clinical relevance and the functional relationship between PTM. A thorough understanding of the complete picture of these modifications in ER carcinogenesis might not only open new avenues for identifying new markers for prognosis or prediction of response to endocrine therapy but also could promote the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Muriel Le Romancer
- Université de Lyon, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, Bâtiment Cheney D, 28 rue Laennec, 69373 Lyon Cedex 08, France.
| | | | | | | | | | | |
Collapse
|
95
|
Myeloid-specific estrogen receptor alpha deficiency impairs metabolic homeostasis and accelerates atherosclerotic lesion development. Proc Natl Acad Sci U S A 2011; 108:16457-62. [PMID: 21900603 DOI: 10.1073/pnas.1104533108] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023] Open
Abstract
ERα is expressed in macrophages and other immune cells known to exert dramatic effects on glucose homeostasis. We investigated the impact of ERα expression on macrophage function to determine whether hematopoietic or myeloid-specific ERα deletion manifests obesity-induced insulin resistance in mice. Indeed, altered plasma adipokine and cytokine levels, glucose intolerance, insulin resistance, and increased adipose tissue mass were observed in animals harboring a hematopoietic or myeloid-specific deletion of ERα. A similar obese phenotype and increased atherosclerotic lesion area was displayed in LDL receptor-KO mice transplanted with ERα(-/-) bone marrow. In isolated macrophages, ERα was necessary for repression of inflammation, maintenance of oxidative metabolism, IL-4-mediated induction of alternative activation, full phagocytic capacity in response to LPS, and oxidized LDL-induced expression of ApoE and Abca1. Furthermore, we identified ERα as a direct regulator of macrophage transglutaminase 2 expression, a multifunctional atheroprotective enzyme. Our findings suggest that diminished ERα expression in hematopoietic/myeloid cells promotes aspects of the metabolic syndrome and accelerates atherosclerosis in female mice.
Collapse
|
96
|
Hattori T, Stawski L, Nakerakanti SS, Trojanowska M. Fli1 is a negative regulator of estrogen receptor α in dermal fibroblasts. J Invest Dermatol 2011; 131:1469-76. [PMID: 21451544 DOI: 10.1038/jid.2011.63] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/09/2022]
Abstract
Estrogen is an important regulator of dermal fibroblast functions, including extracellular matrix (ECM) synthesis. Estrogen mediates its effects through estrogen receptors (ERs), ERα and ERβ; however, regulation of ERs in dermal fibroblasts remains poorly understood. Friend leukemia integration factor 1 (Fli1), a member of the Ets transcription factor family, has been shown to play a pivotal role in regulation of the ECM genes in dermal fibroblasts. The aim of this study was to examine a possible interaction between Fli1 and estrogen pathways, focusing on ERα. We show that treatment of human dermal fibroblasts with transforming growth factor-β (TGF-β) increases ERα protein and mRNA levels. Similarly, ERα expression was increased in response to small interfering RNA (siRNA)-mediated depletion of Fli1, suggesting that Fli1 is a mediator of the TGF-β effects on ERα expression. Accordingly, we showed that Fli1 binds to the most proximal region of the ERα promoter, and dissociates from the promoter upon TGF-β treatment. An inverse correlation between Fli1 and ERα expression levels was confirmed in cultured skin fibroblasts obtained from Fli1(+/-) mice and in the skin of Fli1(+/-) mice in vivo. This study supports a role of Fli1 as a negative regulator of the ERα gene in dermal fibroblasts.
Collapse
Affiliation(s)
- Tomoyasu Hattori
- Arthritis Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
97
|
Abstract
Due to the female predominance of autoimmune diseases, the role of gender and sex hormones in the immune system is of long-term interest. Estrogen's primary effects are mediated via estrogen receptors alpha and beta (ER α/β) that are expressed on most immune cells. ERs are nuclear hormone receptors that can either directly bind to estrogen response elements in gene promoters or serve as cofactors with other transcription factors (i.e., NFkB/AP1). Cytoplasmic ER and membrane associated ER impact specific kinase signaling pathways. ERs have prominent effects on immune function in both the innate and adaptive immune responses. Genetic deficiency of ERα in murine models of lupus resulted in significantly decreased disease and prolonged survival, while ERβ deficiency had minimal to no effect in autoimmune models. The protective effect of ERα in lupus is multifactoral. In arthritis models, ERα agonists appears to mediate a protective effect. The modulation of ERα function appears to be a potential target for therapy in autoimmunity.
Collapse
Affiliation(s)
- Melissa Cunningham
- Medical Research Service, Ralph H. Johnson VAMC and the Department of Medicine, Division of Rheumatology, Medical University of South Carolina, 96 Jonathan Lucas Street, Suite 912, Charleston, SC 29425, USA
| | | |
Collapse
|
98
|
Maj T, Switała-Jelen K, Miazek A, Szafarowicz-Basta B, Kiczak L, Slawek A, Chelmonska-Soyta A. Effects of tamoxifen on estrogen receptor-α level in immune cells and humoral specific response after immunization of C3H/He male mice with syngeneic testicular germ cells (TGC). Autoimmunity 2011; 44:520-30. [DOI: 10.3109/08916934.2010.549529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/13/2022]
|
99
|
Fahey JV, Bodwell JE, Hickey DK, Ghosh M, Muia MN, Wira CR. New approaches to making the microenvironment of the female reproductive tract hostile to HIV. Am J Reprod Immunol 2011; 65:334-43. [PMID: 21223421 DOI: 10.1111/j.1600-0897.2010.00949.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/01/2022] Open
Abstract
The studies presented in this review explore three distinct areas with potential for inhibiting HIV infection in women. Based on emerging information from the physiology, endocrinology and immunology of the female reproductive tract (FRT), we propose unique 'works in progress' for protecting women from HIV. Various aspects of FRT immunity are suppressed by estradiol during the menstrual cycle, making women more susceptible to HIV infection. By engineering commensal Lactobacillus to secrete the anti-HIV molecule Elafin as estradiol levels increase, women could be protected from HIV infection. Selective estrogen response modifiers enhance barrier integrity and enhance secretion of protective anti-HIV molecules. Finally, understanding the interactions and regulation of FRT endogenous antimicrobials, proteases, antiproteases, etc., all of which are under hormonal control, will open new avenues to therapeutic manipulation of the FRT mucosal microenvironment. By seeking new alternatives to preventing HIV infection in women, we may finally disrupt the HIV pandemic.
Collapse
Affiliation(s)
- John V Fahey
- Department of Physiology and Neurobiology, Dartmouth Medical School, One Medical Center Drive, Lebanon, NH 03756, USA.
| | | | | | | | | | | |
Collapse
|
100
|
Lindahl G, Saarinen N, Abrahamsson A, Dabrosin C. Tamoxifen, flaxseed, and the lignan enterolactone increase stroma- and cancer cell-derived IL-1Ra and decrease tumor angiogenesis in estrogen-dependent breast cancer. Cancer Res 2010; 71:51-60. [PMID: 21097717 DOI: 10.1158/0008-5472.can-10-2289] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022]
Abstract
The proinflammatory cytokines IL-1α and IL-1β promote tumor angiogenesis that might be counteracted by the IL-1 receptor antagonist (IL-1Ra), anakinra, a clinically approved agent. A diet with high amounts of phytoestrogens, such as flaxseed (Flax), genistein (GEN), and the mammalian lignan enterolactone (ENL), may affect breast cancer progression in a similar fashion as the antiestrogen tamoxifen. Both cancer cells and tumor stroma may be targets for cancer therapy. By using microdialysis in a model of human breast cancers in nude mice, we could perform species-specific analyses of released proteins in the microenvironment. We show that tumors treated with tamoxifen and fed Flax or ENL exhibited decreased in vivo release of IL-1β derived from the murine stroma and decreased microvessel density whereas dietary GEN had no effects. Cancer cell-released IL-1Ra were approximately 5 times higher than stroma-derived IL-1Ra. Tamoxifen, Flax, and ENL increased IL-1Ra levels significantly whereas GEN did not. The tumor stroma contained macrophages, which expressed the estrogen receptor. In vitro, estradiol decreased IL-1Ra released from breast cancer cells and from cultured macrophages. IL-1Ra decreased endothelial cell proliferation significantly in vitro whereas breast cancer cell proliferation was unaffected in presence of estradiol. Finally, IL-1Ra therapy of tumor-bearing mice opposed estrogen-dependent breast cancer growth and decreased angiogenesis. We conclude that the release of IL-1s both by cancer cells and the stroma, where macrophages are a key component, may offer feasible targets for antiestrogen therapy and dietary interventions against breast cancer.
Collapse
Affiliation(s)
- Gabriel Lindahl
- Linkoping University, Clinical and Experimental Medicine, Division of Oncology, Linkoping, Sweden
| | | | | | | |
Collapse
|